Multipole Expansion (Few comments)

$V(\mathbf{r})$

$$
=\frac{1}{4 \pi \epsilon_{0} r} \int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}+\frac{1}{4 \pi \epsilon_{0} r^{2}} \int r^{\prime}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}+\frac{1}{4 \pi \epsilon_{0} r^{3}} \int\left(r^{\prime}\right)^{2}\left(\frac{3}{2} \cos ^{2} \alpha-\frac{1}{2}\right) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}
$$

$$
+\cdots
$$

Monopole potential ($1 / r$ dependence)

Dipole potential ($1 / r^{2}$ dependence)

Quadrupole potential ($1 / r^{3}$ dependence)

- It is an exact expression, not an approximation.
- A particular term in the expansion is defined by its r dependence
- At large r, the potential can be approximated by the first non-zero term.
- More terms can be added if greater accuracy is required

Questions 1:

Q: In this following configuration, is the "large \mathbf{r} " limit valid, since the source dimensions are much smaller than \mathbf{r} ?

Ans: No. The "large \mathbf{r} " limit essentially mean $|\mathbf{r}| \gg\left|\mathbf{r}^{\prime}\right|$. In majority of the situations, the charge distribution is centered at the origin and therefore the "large \mathbf{r} " limit is
 the same as source dimension being smaller than \mathbf{r}.

Multipole Expansion (Monopole and Dipole terms)

Monopole term:

$\mathrm{V}_{\text {mono }}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r} \int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r}$

- $Q=\int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}$ is the total charge
- If $Q=0$, monopole term is zero.
- For a collection of point charges

$$
Q=\sum_{i=1}^{n} q_{i}
$$

Dipole term:

$$
\mathrm{V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \int r^{\prime}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}
$$ α is the angle between \mathbf{r} and \mathbf{r}^{\prime}.

$$
\begin{gathered}
\text { So, } r^{\prime}(\cos \alpha)=\hat{\mathbf{r}} \cdot \mathbf{r}^{\prime} \\
\mathrm{V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \hat{\mathbf{r}} \cdot \int \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}
\end{gathered}
$$

$$
\mathrm{V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}}
$$

- $\mathbf{p} \equiv \int \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime}$ is called the dipole moment of a charge distribution
- If $\mathbf{p}=0$, dipole term is zero.
- For a collection of point charges.

$$
\mathbf{p}=\sum_{i=1}^{n} \mathbf{r}_{\mathbf{i}}^{\prime} q_{i}
$$

Multipole Expansion (Monopole and Dipole terms)

Monopole term:

$$
\mathrm{V}_{\mathrm{mono}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r} \int \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime} \quad \rightarrow \frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r} \underset{\text { charges) }}{\text { (for point }} \quad Q=\sum_{i=1}^{n} q_{i}
$$

Dipole term:

$$
\mathrm{V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \int r^{\prime}(\cos \alpha) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime} \rightarrow \frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}} \underset{\text { charges) }}{\text { (for point }} \mathbf{p}=\sum_{i=1}^{n} \mathbf{r}_{\mathbf{i}}^{\prime} q_{i}
$$

Example: A three-charge system

$$
\begin{aligned}
& Q=\sum_{i=1}^{n} q_{i}=-q \\
& \mathbf{p}=\sum_{i=1}^{n} \mathbf{r}_{\mathbf{i}}^{\prime} q_{i}=q a \hat{\mathbf{z}}+[-q a-q(-a)] \widehat{\boldsymbol{y}}=q a \widehat{\mathbf{z}}
\end{aligned}
$$

The electric field of pure dipole ($Q=0$)

$$
\begin{aligned}
& Q=0 \text { And } \mathbf{p} \neq 0 \quad \text { Assume } \mathbf{p}=p \hat{\mathbf{z}} \\
& \mathrm{~V}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{p \hat{\mathbf{z}} \cdot \hat{\mathbf{r}}}{r^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{p \cos \theta}{r^{2}} \\
& \mathbf{E}(\mathbf{r})=-\nabla \mathrm{V} \\
& E_{r}=-\frac{\partial V}{\partial r}=\frac{2 p \cos \theta}{4 \pi \epsilon_{0} r^{3}} \\
& E_{\theta}=-\frac{1}{r} \frac{\partial V}{\partial \theta}=\frac{p \sin \theta}{4 \pi \epsilon_{0} r^{3}} \\
& E_{\phi}=-\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi}=0
\end{aligned}
$$

