CHAPTER 1

ON THE ORIGIN AND SIGNIFICANCE OF THE
' AXIOMS OF GEOMETRY

(Vortrége und Reden, 5th ed., vol. 1L, pp. 1-31)

The fact that a science like geometry can exist, and can be built up in the
way it is, has necessarily demanded the closest attention of anyone who
ever felt an interest in the fundamental questions of epistemology. There
is no other branch of human knowledge which resembles it in having
seemingly sprung forth ready-made, like a fully armed Minerva from the
head of Jupiter, none before whose devastating aegis dispute and doubt
so little dared to lift their eyes. In this it wholly escapes the troublesome
and tedious task of gathering empirical facts, as the natural sciences in the
narrower sense are obliged to, but instead the form of its scientific proce-
dure is exclusively deduction®. Conclusion is developed from conclusion,
and yet nobody in his right mind ultimately doubts that these geometrical
theorems must have their very practical application to the actuality
surrounding us. In surveying and architecture, in mechanical engineering
and mathematical physics, we all constantly calculate the most varied
kinds of spatial relationships in accordance with geometrical theorems.
We expect the issue of their constructions and experiments to be subject
to these calculations, and no case is yet known in which we were deceived
in this expectation, provided we calculated correctly and with sufficient
data.

Thus in the conflict over that issue which forms, as it were, the focus
of all the oppositions between philosophical systems, the fact that
geometry exists and achieves such things has always been used to prove,
as an impressive example, that knowledge of propositions of real con-
tent is possible without recourse to a corresponding basis taken from
experience. In answering especially Kant’s famous question “How are
synthetic a priori propositions possible?”, the axioms of geometry
probably constitute the examples which seem to show most evidently,
that synthetic propositions a priori are in general possible %. The circum-
stance that such propositions exist, and necessarily force our assent, is
moreover for him a proof that space is a form, given a priori, of all outer
intuition®. By that he seems to mean not merely that this form given
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a priori has the character of a purely formal scheme, in itself devoid of
any content*, and into which any arbitrary content of experience would
fit. Rather, he seems also to include certain details in the schema whose
effect is precisely that only a content restricted in a certain lawlike way
can enter it, and become intuitable for us*.

It is precisely this epistemological interest of geometry which gives
me the courage to speak of geometrical matters in a gathering of whose
members only the smallest proportion have penetrated more deeply into
mathematical studies than their school days required. Fortunately, the
knowledge of geometry which is normally taught in high school will
suffice to convey to you the sense, at least, of the propositions to be
discussed in what follows.

My intention is namely to give you an account of a recent series of
interconnected mathematical studies, which concern the axioms of
geometry, their relations to experience, and the logical possibility of
replacing them with others. The relevant original studies of the mathe-
maticians are, in the first instance, intended only to provide proofs for the
experts in a field which demands a higher capacity for abstraction than
any other, and are fairly inaccessible to the non-mathematician. So I
shall try to give even such a person an intuitive conception of what is
involved. I hardly need remark that my discussion is not meant o give
any proof of the correctness of the new insights. Whoever seeks this must
simply take the trouble to study the originals.

If a person once enters geometry, in other words the mathematical
theory of space®, by the gates of its first elementary propositions, he
faces on his further journey the unbroken chain of conclusions of which
I spoke already. Through them, successively more numerous and compli-
cated spatial forms receive their laws. But in those first elements are

* In his book Uber die Grenzen der Philosophie [“On the limits of philosophy™], W. Tobias
claims that some previous utterances of mine (o a similar effect were a misunderstanding
of Kant’s opinion, But Kant specifically quotes the propositions that the straight ling is
the shortest (Kritik der reinen Vernunf [“Critique of purc reason™], 2nd cd., p. | 6), that
space has three dimensions (p. 41) and that between two points only one straight linc is
possible (p. 204), as ones which “express the conditions of sensible intuition a priori™.
Whether these propositions are given originally in spatial intuition, or whether this only
gives the starting points from which the faculty of understanding can develop such prop-
ositions a priori — this being what my critic attaches importance to - is quitc irrelevant
here.
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laid down a few propositions concerning which even geometry declares
it cannot prove them, but can only count on the recognition of their
correctness by whoever understands their sense. These are the so-called
axioms of geometry.

If we call the shortest line that can be drawn between two points a
straight line, then there is firstly the axiom that there can only be one
straight line between two points, and not two different ones. It 15 a
further axiom that a plane can be placed through any three points of
space that do not lie in a straight line, namely a surface which wholly
includes every straight line connecting any two of its points. Another
and a much-discussed axiom asserts that through a point lying outside
a straight line only one single straight line can be drawn parallel to the
first, and not two different ones'. Parallel is what one calls two lines
lying in the same plane which never meet, however far they are extended.
Besides this, the axioms of geometry also assert propositions which
specify the number of dimensions of both space and its surfaces, lines
and points, and which elucidate the concept of the continuity of these
formations. Such are the propositions that the limit of a body is a surface,
the limit of a surface is a line, the limit of a line is a point, and a point is
indivisible. And also the propositions that a line is described by the
motion of a point, a line or a surface by the motion of a line, a surface or a
body by the motion of a surface, but only another body by the motion of
a body®.

Where do such propositions come from, being unprovable and yet
indubitably correct in the domain of a science in which everything else
has submitted to the authority of inference’? Are they an inheritance
from the divine source of our reason, as the idealist philosophers®
believe, or have earlier generations of mathematicians merely not
yet had sufficient ingenuity to find the proof? Every new disciple of
geometry, coming to this science with fresh zeal, naturally tries to be
the fortunate one who outdoes all his predecessors. It is also quite
proper that everyone should have a try at it afresh, since in the situation
to date one could only convince oneself by one’s own fruitless attempts
that the proof was impossible®. Unfortunately, there still arises the
occasional obsessive searcher who entangles himself for so long and so

t [This is strictly speaking not Euclid’s postulate (axiom) of parallels, but a common sub-
stitute for it.]
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deeply in intricate reasonings that he can no longer discover his mis-
takes, and believes he has found the solution. The axiom of parallels
especially has evoked a large number of apparent proofs.

The greatest difficulty in these investigations has been, and still is,
that so long as the only method of geometry was the intuitive method
taught by Euclid'°, it was all too easy to intermix results of everyday
experience, as apparent necessities of thought, with the logical develop-
ment of concepts. Proceeding in this way, it is in particular extraordin-
arily difficult to ascertain that one is nowhere involuntarily and un-
knowingly helped, in the steps which one successively prescribes for the
demonstration, by certain very general results of experience, which have
already taught us practically that certain prescribed parts of the proce-
dure can be carried out.

In drawing any subsidiary line in any proof, the well-trained geo-
meter always asks whether it will indeed always be possible to draw a
line of the required kind. Constructional tasks, as is well known, play
an essential role in the system of geometry. Viewed superficially, these
seem to be practical applications which have been inserted as an exercise
for pupils. But in truth they ascertain the existence of certain structures.
They show that points, straight lines or circles such as those whose
construction is required as a task, are either possible under all con-
ditions, or characterise the exceptional cases that may be present.

It is essentially a point of this kind, about which the investigations to
be discussed in what follows turn. In the Euclidean method, the basis
of all proofs is demonstration of the congruence of the relevant lines,
angles, plane figures, bodies, and so on. In order to make the congruence
intuitive, one imagines the relevant geometrical structures moved up to
each other'!, naturally without changing their form and dimensions.
That this is in fact possible, and can be carried out, is something we have
all experienced from earliest youth onwards. But if we want to erect
necessities of thought upon this assumption, that fixed! spatial struc-
tures can be moved freely without distortion to any location in space,
then we must raise the question of whether this assumption involves any
presupposition which has not been logically proved. We shall soon see
below that it does in fact involve one, and indeed one of far-reaching

! [Helmholtz’ use of ‘fest’ (‘fixed’) instead of ‘starr’ (‘rigid’) is alluded to in note 31 below.]
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implications. But if it does, then every congruence proof is supported by
a fact drawn only from experience’?.

I bring up these considerations here in order, in the first place, only
to make clear what difficulties we stumble upon, when we analyse fully
all of the presuppositions made by us in using the intuitive method.
We escape them, if in our investigation of basic principles we employ
the analytic method'® developed in modern calculative geometry.
The calculation is wholly carried out as a purely logical operation'?.
It can yield no relationship between the quantities subjected to the
calculation, which is not already contained in the equations forming
the starting point of the calculation. For this reason, the mentioned
recent investigations have been pursued almost exclusively by means
of the purely abstract method of analytic geometry.

Yet it is possible besides this to give to some extent an intuitive con-
ception of the points at issue, now that they have been made known by
the abstract method. This is best done if we descend into a narrower
domain than that of our own spatial world. Let us think of intelligent
beings, having only two dimensions, who live and move in the surface
of one of our solid bodies — in this there is no logical impossibility. We
assume that although they are not capable of perceiving anything out-
side this surface, they are able to have perceptions, similar to our own,
within the expanse of the surface in which they move. When such beings
develop their geometry, they will naturally ascribe only two dimensions
to their space. They will ascertain that a moving point describes a line
and a moving line a plane, this being for them the most complete spatial
structure of their acquaintance. But they will as little be able to have
any imagination of a further spatial structure that would arise if a surface
moved out of their surface-like space, as we are of a structure that
would arise if a body moved out of the space known to us.

By the much misused expression ‘to imagine’ ' or ‘to be able to
think of how something happens’ , I understand '° that one could depict
the series of sense impressions which one would have if such a thing
happened in a particular case. I do not see how one could understand
anything else by it without abandoning the whole sense of the expres-
sion. Bul suppose no sense impression whatsoever is known that would

t [See Translator’s Note ]
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relate to such a never observed process as for us a motion into a fourth
dimension of space, or for the surface beings a motion into the third
dimension known to us. Then no such ‘imagining’ is possible, just as
little as someone absolutely blind from youth will be able to ‘imagine’
colours, even if he could be given a conceptual description of them.

The surface beings would besides also be able to draw shortest lines
in their surface space. These would not necessarily be straight lines in
our sense, but what in geometrical terminology we would call geodetic
lines of the surface on which they live, ones which will be described by
a taut thread applied to the surface and able to slide freely upon it. In
what follows, I shall permit myself to term such lines the straightest
lines'® of the relevant surface (or of a given space), in order to emphasise
the analogy between them and the straight line in a plane. I hope this
intuitive expression will make the concept more accessible to my non-
mathematical listeners, but without causing confusions.

If moreover beings of this kind lived in an infinite plane, they would
lay down precisely our planimetric geometry. They would maintain that
only one straight line is possible between two points, that through ‘a
third point lying outside it only one line parallel to the first can be
drawn, that furthermore straight lines can be extended infinitely without
their ends meeting again, and so on. Their space might be infinitely
extended. But even if they encountered limits to their motion and per-
ception, they would be able to imagine intuitively a continuation beyond
those limits. In imagining this, their space would seem to them to be
infinitely extended just as ours does to us, although we too cannot leave
our earth with our bodies, and our sight only reaches as far as fixed
stars are available.

But intelligent beings of this kind could also live in the surface of a
sphere. For them, the shortest or straightest line between two points
would then be an arc of the great circle through the points in question.
Every great circle through two given points is divided thereby into two
parts. When their two lengths are not equal, the shorter part is certainly
the unique shortest line on the sphere between these two points. But the
other and greater arc of the same great circle is also a geodetic or straight-
est line, meaning that each of its smaller parts is a shortest line between
its two endpoints. Because of this circumstance, we cannot simply
identify the concept of a geodetic or straightest line with that of a shortest
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line. If moreover the two given points are endpoints of the same diameter
of the sphere, then any plane through this diameter intersects the surface
of the sphere in semicircles, all of which are shortest lines between the
two endpoints. So in such a case there are infinitely many shortest lines,
all equal to each other, between the two given points. Accordingly, the
axiom that only one shortest line exists between two points would not
be valid, for the sphere dwellers, without a certain exception.

Parallel lines would be quite unknown to the inhabitants of the sphere.
They would maintain that two arbitrary straightest lines, suitably ex-
tended, must eventually intersect not in just one point, but in two. The
sum of the angles in a triangle would always be greater than two right
angles, and would increase with the area of the triangle. For just that
reason, they would also lack the concept of geometrical similarity of
form between greater and smaller figures of the same kind, since a
greater triangle would necessarily have different angles from a smaller
one!”. Their space would be found to be unbounded, yet finitely extended,
or at least would have to be imagined to be such.

It is clear that the beings on the sphere, though having the same
logical capabilities, would have to lay down a quite different system of
geometrical axioms from what the beings in the plane would, and from
what we ourselves do in our space of three dimensions. These examples
already show us that beings, whose intellectual powers could correspond
entirely to our own, would have to lay down different geometrical
axioms according to the kind of space in which they lived.

But let us go further, and think of intelligent beings existing in the
surface of an egg-shaped body. Between any three points of such a
surface one could draw shortest lines, and so construct a triangle. But
if one tried to construct congruent triangles at different locations in this
surface, it would be found that the angles of two triangles having equally
Jong sides would not turn out to be equal. A triangle drawn at the
pointed end of the egg would have angles whose sum differed more
from two right angles, than would a triangle with the same sides drawn
at the blunt end. It emerges from this, that even such a simple spatial
structure as a triangle, in such a surface, could not be moved from one
location to another without distortion. It would be found equally, that
if circles of equal radii (the length of the radii being always measured by
shortest lines along the surface) were constructed at different locations
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in such a surface, their periphery at the blunt end would turn out to be
greater than at the pointed end.

It also follows from this, that it is a special geometrical property of a
surface to be such that the figures lying in it can be displaced freely
without altering any of their angles or lines as measured along the surface,
and that this will not be the case on every kind of surface. The condition
for a surface’s having this important property was already established
by Gauss in his famous essay on the curvature of surfaces. The condition
is that what he called the ‘measure of curvature’ , namely the reciprocal
of the product of the two principal radii of curvature, should have the
same magnitude throughout the whole expanse of the surface.

At the same time, Gauss showed that if the surface is bent without
being stretched or shrunk in any part, this measure of curvature is not
altered. Thus we can roll up a flat sheet of paper into a cylinder or cone
without any alteration in the measuremients of figures on the sheet, if the
measurements are taken along its surface. And equally we can roll
together the hemispherical closed half of a pig’s bladder into the form of
a spindle, without altering the measurements in this surface itself. The
~ geometry on a plane will therefore also be the same as that in a cylin-
drical surface. We must only imagine in the latter case that many layers
of this surface lie without limit on top of one another, like the layers
of a rolled-up sheet of paper, and that with every complete circuit round
the circumference of the cylinder one enters another layer, different
from the one in which one was before.

These observations are necessary, in order to give you an idea of a
kind of surface whose geometry is on the whole similar to that of the
plane, but for which the axiom of parallels does not hold. It is a kind
of curved surface which behaves in geometrical terms like the contrary
of a sphere. For this reason the outstanding Italian mathematician
E. Beltrami*, who investigated its properties, called it the pseudo-
spherical surface. 1t is a saddle-shaped surface, of which only bounded
pieces or strips can be displayed as a connected whole in our space.
However, one can think of its being continued infinitely in all directions,

* Saggio di Interpretazione della Geometria Non-Euclidea, [ An essay at interpreting non-
Euclidean geometry”], Naples, 1848. “Teoria Fondamentale degli Spazii di Curvatura
Costante”, [*The fundamental theory of spaces of constant curvature'), Annali di Mate-
matica, 2nd series, 11, 232-255.
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since one can think of taking each surface portion lying at the boundary of
the constructed part of the surface, pushing it back towards its middle,
and then continuing it'%. A surface portion displaced in this process
must change its flexure but not its dimensions, just as one can push a
sheet of paper back and forth on a cone which has arisen by rolling a
plane up together. Such a sheet will everywhere adapt itself to the surface
of the cone, but it must be more strongly bent nearer the tip, and it
cannot be pushed on past the tip in such a way as to remain adapted to
both the existing cone and its ideal continuation beyond the tip.
Pseudospherical surfaces are of constant curvature like the plane and
the sphere, so that every piece of them fits exactly when laid upon any
other part of the surface. Therefore, any figure constructed at one place
in the surface can be transferred to any other place with a form com-
pletely congruent, and with complete equality of all dimensions lying
in the surface itself. The measure of curvature laid down by Gauss,
which is positive for the sphere and equal to zero for the plane, will
have a constant negative value for pseudospherical surfaces, because

the two principal curvatures of a saddle-shaped surface have their

concavities on opposite sides’.

It is, for example, possible to display a strip of a pseudo-spherical
surface furled up as the surface of a ring. Think of a surface such as
aabb (Figure 1), rotated about its axis of symmetry AB, in which case
the two arcs ab would describe such a pseudospherical ringlike surface.
The two edges of the surface, above at aa and below at bb, would bend
more and more sharply outwards until the surface was perpendicular
to the axis. It would end there at the rim with infinite curvature. One
could also furl up half of a pseudospherical surface into a calyx-shaped
champagne glass with an infinitely prolonged and tapering stem, as
Figure 2. But the surface is necessarily always limited on one side by an
abrupt edge beyond which a continuous extension is not immediately
realisable. Only if one thinks of each individual portion of the edge being
cut loose and pushed along the surface of the ring or calyx-shaped glass,
can one bring such portions of the surface to locations of different flexure
where they can be extended further.

In this way, the straightest lines of the pseudospherical surface can
also be prolonged infinitely. They do not return upon themselves, like
those of the sphere. There can instead, as on the plane, be only one
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single shortest line between any two given points. But the axiom of
parallels does not hold. Given a straightest line on the surface and a
point lying outside it, one can find a whole pencil of straightest lines
through the point, none of which intersects the given line even when
prolonged infinitely. They are namely all lines lying between a certain
pair of straightest lines which bound the pencil. One of these meets
the given line when infinitely prolonged in one direction, and the other
in the other direction.

Such a geometry, which drops the axiom of parallels, was moreover
completely elaborated as long ago as 1829 by the mathematician N. J.
Lobatchewsky * in Kazan, using Euclid’s synthetic method %°. It was
found that this geometrical system could be implemented in a manner
as deductive and as free of contradiction as can that of Euclid. This
geometry accords completely with that of pseudospherical surfaces,
more recently developed by Beltrami.

From all this we see that the assumption, in two-dimensional geometry,
that any figure can be moved in any direction without at all altering its
dimensions in the surface, characterises the surface concerned as being
a plane, a sphere or a pseudospherical surface. The axiom that there
exists only one shortest line between any two points separates the plane
and the pseudospherical surface from the sphere, and the axiom of
parallels divides off the plane from the pseudosphere. These three
axioms are therefore necessary and sufficient, in order to characterise

* Prinzipien der Geometrie [‘Principles of geometry’], Kazan, 1829-30.
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the surface to which Euclidean planimetric geometry refers as a plane,
as opposed to all other two-dimensional spatial structures.

The distinction between geometry in a plane and on a spherical surface
has been clear and intuitive for a long time. But the sense of the axiom
of parallels could only be understood after Gauss had developed the
concept of surfaces which can be bent without stretching, and therefore
of the possibility of extending pseudospherical surfaces infinitely. We
of course, being inhabitants of a three-dimensional space and endowed
with sense organs for perceiving all of these dimensions, can intuitively
imagine the various cases in which surface-like beings would have to
develop their spatial intuition, because to this end we only have to re-
strict our own intuitions to a narrower domain. It is easy to think away
intuitions which one has. But to imagine with our senses intuitions
for which one has never had any analogue, is very difficult. So when we
go over to three-dimensional space, we are impeded in our powers of
imagination by the structure of our organs and the experiences thereby
acquired, which are only appropriate to the space in which we live.

However, we have also another way of dealing with geometry scien-
tifically. All spatial relationships known to us are namely measurable,
meaning that they can be reduced to the specification of magnitudes
(lengths of lines, angles, areas, volumes). For just this reason, the prob-
lems of geometry can also be solved by looking for the methods of
calculation whereby the unknown spatial magnitudes have to be derived
from the known ones. This occurs in analytic geometry, where all of the
structures of space are only treated as magnitudes and specified by
means of other magnitudes. Our axioms themselves also speak of spatial
magnitudes?'. The straight line is defined as the shortest between two
points — in this one is specifying a magnitude. The axiom of parallels
declares that if two straight lines in the same plane do not intersect (are

parallel), the corresponding angles, or the alternate angles, made by a
third line intersecting them are pairwise equal'. Or it is postulated, in
place of this, that the sum of the angles any triangle is equal to two right
angles. These too are cases of specifying magnitudes.

S0 one can also start from this aspect of the concept of space, according

to which the situation of any point can be specified by measuring certain

t [A theorem of Euclid closely related to his postulate of parallels.]
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magnitudes with respect to some spatial structure which is regarded as
fixed (coordinate system). One can then look and see what particular
specifications accrue to our space as it manifests itself in the actual
measurements to be executed, and whether there are such by which it is
distinguished from magnitudes of extension of similar manifold. This
approach was first initiated in Gottingen by Riemann*, who was sadly
lost too early to science. It has the peculiar advantage, that all of its
operations consist purely in specifying magnitudes by calculation,
whereby the danger is completely obviated that familiar, intuitive facts
might insinuate themselves as necessities of thought.

The number of measurements needed for determining the position of a
point is equal to the total number of dimensions of the space concerned.
In a line the distance from one fixed point, thus one magnitude, suffices.
In a surface one must already give the distances from two fixed points
in order to fix the position of the point. In space one must give those
from three, so that we need, as on the earth, longitude, latitude and
height above sea-level, or, as is usual in analytic geometry, the distances
from three coordinate planes. Riemann terms a system of differences
in which the individual can be specified by n measurements, a n-fold
extended manifold, or a manifold of n dimensions. Thus the space known
to us, in which we live, is in these terms a threefold extended manifold
of points. A surface is a twofold one, a line a onefold one, and time
equally a onefold one. The colour system too consists of a threefold
manifold, inasmuch as every colour, according to Thomas Young’s and
Maxwell’s** investigations, can be described as a mixture of three basic
colours, of each of which a definite amount is to be used. Using the
coloured spinning top, one can actually carry out such mixtures and
measurements.

We could equally regard the realm of simple tones*** as a manifold
of two dimensions, if we just distinguished them by pitch and intensity
and disregarded differences of timbre23. This generalisation of the con-
cept is very suitable for bringing out what distinguishes space from other

* ‘Uber die Hypothesen, welche der Geometrie zu Grunde liegen’ ['On the hypotheses
underlying geometry’], inaugural dissertation of 10 June 1854, Published in vol. XIII of
the Abhandlungen der kéniglichen Gesellschaft zu Gottingen?,

** See [Helmholtz’] Vortrige und Reden, vol. I, p. 307.
*** Vortrige und Reden, vol. 1, p. 141,
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manifolds of three dimensions **. In space, as you all know from every-
day experience, we can compare the distance between two points lying
one above the other with the horizontal distance between two points on
the floor, because we can apply one measuring rod alternately to the one
pair and to the other. But we cannot compare the distance between two
tones of equal pitch and different intensity with that between two tones
of equal intensity and different pitch.

By considerations of this kind, Riemann showed that the essential
basis of any geometry is the expression giving the separation between
two points for any arbitrary direction of separation, and to be exact
that in the first place between two infinitesimally separated points. From
analytic geometry, he obtained the most general form* which this ex-
pression takes for a completely arbitrary choice of the kind of measure-
- ments yielding the place of each point. He then showed that the kind of
freedom of motion without distortion which characterises bodies in our
space, can only exist if certain magnitudes ** emerging from the calcu-
lation have the same value everywhere. In respect of the relationships in
surfaces, these magnitudes reduce to the Gaussian measure of curvature.
For this very reason, when these calculated magnitudes have the same
value in all directions from a given location, Riemann terms them the
measure of curvature, at that location, of the space concerned.

To prevent misunderstandings, I just wish also to emphasize here that
this so-called measure of curvature of space is a calculated magnitude
obtained in a purely analytic way, and that its introduction in no way
rests upon insinuating relationships which would only have a sense as
ones intuited by the senses. The name, as a brief expression for denoting
a complicated relationship, has simply been adopted from the one case
where the denoted magnitude corresponds to something intuited by the
senses?>.

If moreover this measure of curvature of space has everywhere the
value zero, such a space corresponds everywhere to the axioms of
Fuclid. In this case we can term it a flat space, in contrast with other

* Namely, for the square of the distance between two infinitely close points a homoge-
neous second degree function of the differentials of their coordinates.

*» |t is an algebraic expression which is constructed out of the coefficients of the individual
terms in the expression for the square of the separation between two neighbouring points
and their derivatives.
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analytically constructible Spaces which one might term curved, because
their measure of curvature has a value different from zero. At the same
time, the analytic geometry of spaces of the latter kind can be worked
out as completely and self-consistently, as the customary geometry of
our in fact existing 2° flat space. For a positive measure of curvature we
obtain spherical space, in which straightest lines return upon themselves
and in which there are no parallel lines. Such a space would, like the
surface of a sphere, be unbounded but not infinitely large. On the other
hand, a constant negative measure of curvature gives pseudospherical
space, in which straightest lines go on to infinity, and where in any
flattest surface one can find a pencil of straightest lines through any
point which do not intersect some other given straightest line of that
surface?’,

This latter situation has been made intuitively accessible by Bel-
trami*, through his showing how one can form an image of the points,
lines and surfaces of a three-dimensional pseudospherical space in the
interior of a sphere of Euclidean space, and in such a way that every
straightest line of the pseudospherical space is represented in the sphere
by a straight line, and every flattest surface of the former by a plane in
the latter. The surface itself of the sphere corresponds here to the in-
finitely distant points of the pseudospherical space. In their image in
the sphere, the various parts of that space become progressively smaller
as they approach the surface of the sphere, and indeed more strongly
mn the direction of its radii than in directions perpendicular to them,
Straight lines in the sphere which intersect only outside its surface,
correspond to straightest lines of the pseudospherical space which never
intersect.

It thus emerged that space, considered as a domain of measurable
magnitudes, by no means corresponds to the most general concept of a
three-dimensional manifold. Instead, it contains further particular
specifications, which are occasioned by the completely free mobility
without distortion of fixed bodies to every place and with every possible
change of direction. And occasioned too by the particular value of the
measure of curvature, which is to be set equal to zero for the in fact exis-
ting space, or whose value is at least not noticeably distinct from zero. This

* ‘Teoria Fondamentale degli Spazii di Curvatura Costante’ (op. cit).
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last stipulation is given in the axioms of straight lines and of parallels.

Riemann entered this new field by starting from the most general
basic questions of analytic geometry. I myself had meanwhile arrived at
similar considerations, partly through investigations into portraying
the colour system spatially, thus through comparing one threefold
extended manifold with another, and partly through investigations into
the origin of our visual estimation for measurements in the visual field.
Riemann started out from the above mentioned algebraic expression,
which describes in the most general form the separation between two
infinitely close points, as his basic assumption, and he derived from it
the theorem on the mobility of fixed spatial structures, whereas [ started
out from the observational fact?®, that in our space the motion of fixed
spatial structures is possible with that degree of freedom with which we
are acquainted, and I derived from this fact the necessity of the alge-
braic expression which Riemann set down as an axiom. The following
were the assumptions on which I had to base the calculation 2°.

It must firstly be presupposed — in order to make treatment by calcu-
lation possible at all — that the situation of any point 4 can be specified
by measuring certain spatial magnitudes, whether lines or angles be-
tween lines or angles between surfaces or whatever else, with respect to
certain spatial structures which are regarded as unchangeable and fixed.
As is well known, one terms the measurements needed for specifying the
situation of the point A its coordinates. The total number of coordinates
needed in general for specifying completely the situation of any point
whatever, specifies the total number of dimensions of the space con-
cerned. It is further presupposed that the spatial magnitudes used as
coordinates change continuously as the point A moves.

One must secondly give such a definition of a fixed body, or fixed point
system, as is needed to enable comparison of spatial magnitudes by con-
gruence. As we should not yet presuppose here any special methods of
measuring 3° spatial magnitudes, the definition of a fixed body can now
only be given by the following characteristic: there must exist, between
the coordinates of any two points belonging to a fixed body, an equation
which expresses an unchanged spatial relationship between the two
points (which finally turns out to be their separation) for any motion of
the body, and one which is the same for congruent point pairs, while
point pairs are congruent, if they can successively coincide with the same
point pair fixed in space 1.
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This definition has extremely far-reaching implications, although its
formulation seems so incompletely specific, because with an increasing
number of points the total number of equations grow much faster than
the number of the coordinates (of these points) that they determine. Five
points, A, B, C, D and E, give ten different point pairs:

AB, AC, AD, AE,
BC, BD, BE,
CD, CE,

DE

]

and so ten equations, which in three-dimensional space contain fifteen
- variable coordinates. Of these, however, six must remain freely dispos-
able if the system of five points is to be freely movable and rotatable.
Thus the ten equations are to determine only nine coordinates, as depen-
dent upon the six variable ones. With six points we get fifteen equations
for twelve variable magnitudes, with seven points twenty-one equations
for fifteen magnitudes, and so on.

However, from n mutually independent equations we can determine
n magnitudes appearing in them. If we have more than » equations, the
surplus ones must themselves be derivable from the first » of them. From
this it follows that the equations which exist between the coordinates of
each point pair of a fixed body must be of a particular kind, namely such
that if they are satisfied in three-dimensional space for nine of the point
pairs formed from any five points, the equation for the tenth pair must
follow from them identically. It is in virtue of this circumstance, that the
stated assumption for the definition of fixity is indeed sufficient in order
to specify the kind of equations which exist between the coordinates of
two fixedly interconnected points.

It resulted thirdly that the calculation had to be based on the fact of
yet one more particular peculiarity of the motion of fixed bodies, a pe-
culiarity so familiar to us, that without this investigation we might never
have chanced to regard it as something that might also not be so. If we
namely hold fixed two points of a fixed body in our three-dimensional
space, it can then only rotate about the straight linc connecting them as
axis of rotation. If we rotate it once right round, it comes back exactly
to the situation in which it was initially. Now it has to be specifically
stated, that rotation of any fixed body without reversal always brings it
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back to its initial situation 32. There might be a geometry where this was
not so. This is to be seen most simply for the geometry of the plane. If
one thinks of every plane figure increasing its linear dimensions under
any rotation in proportion to the angle of rotation, then after a whole
rotation through 360 degrees the figure would no longer be congruent
with its initial state. Yet of course any other figure which was congruent
with it in its initial situation could also be made congruent with it in its
second situation, if the second figure too were rotated through 360
degrees. A self-consistent system of geometry, not falling within
Riemann’s scheme, would be possible under this assumption too.

I have shown, on the other hand, that the enumerated three assump-
tions are together sufficient in order to establish the starting point as-
sumed by Riemann in the investigation. With it are also established all
further results of his work which concern the distinction of the various
spaces according to measure of curvature.

One might yet ask whether the laws of motion, and of its dependence
on motive forces, can also be carried over without contradiction to
spherical or pseudospherical space. This investigation has been carried
out by Herr Lipschitz* in Bonn. One can actually carry over the com-
prehensive expression of all laws of dynamics, namely Hamilton’s
Principle®?, directly to spaces whose measures of curvature are not equal
to zero. Thus the deviating systems of geometry are not subject to contra-
diction in this respect either.

We shall now have to go on and ask for the origin of these particular
specifications [which characterise our space as a flat space], since it has
emerged that they are not included in the general concept of an extended
three-dimensional magnitude and of the free mobility of the bounded
structures contained in it. They are not necessities of thought*, deriving
from the concept of such a manifold and its measurability, or from the
most general concept of a fixed structure contained in it and of the freest
mobility of the latter.

We now wish to investigate the contrary assumption that may be

* ‘Untersuchungen iiber die ganzen homogenen Funktionen von n Differentialen’ [ “In-
vestigations on total homogeneous functions of n differentials’ ], Borchardts Journal fiir
Mathematik 70, 71 and 72, 1. ‘Untersuchung eines Problems der Variationsrechnung’
[ ‘Investigation of a problem in the calculus of variations'}, ibid., 74.
t [Hertz and Schiick appear to have omitted this clause by mistake.]
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made about their origin, namely the question of whether their origin is
empirical, whether they are to be derived or made evident from facts of
experience, or correspondingly to be tested and perhaps even refuted by
these>>. This latter eventuality would then include too, that we should be
able to imagine series of observable facts of experience by which another
value of the measure of curvature would be indicated, than that of Eu-
clid’s flat space. If indeed spaces of another kind are imaginable in the
sense stated, this will also refute the claim that the axioms of geometry
are in Kant’s sense necessary consequences of a transcendental form,
given a priori, of our intuitions 6.

As noted above, the distinction between Euclidean, spherical and
pseudospherical geometry rests upon the value of a certain constant,
which Riemann terms the measure of curvature of the space concerned,
and whose value must be equal to zero if Euclid’s axioms hold. If it is
not equal to zero, triangles of large area will necessarily have a different
sum of angles from small ones, the former having a larger sum in spher-
ical and a smaller one in pseudospherical space. Moreover, geometrical
similarity between larger and smaller bodies or figures is only possible
in Euclidean space. All systems of practically executed geometrical mea-
surements in which the three angles of large rectilinear triangles have
been measured individually, and so in particular all systems of astro-
nomical measurements which yield zero for the parallax3’ of immea-
surably distant fixed stars (in pseudospherical space even the infinitely
distant points must have positive parallax), confirm the axiom of par-
allels empirically *®. They show that in our space and using our methods
of measurement, the measure of curvature of space appears to be indis-
tinguishable from zero. One must of course raise, with Riemann, the ques-
tion of whether this perhaps might not be different if instead of our
limited base lines, of which the greatest is the major axis of the earth’s
orbit, we could use greater base lines.

But we should not forget here, that all geometrical measurcments rest
ultimately on the principle of congruence *°. We measure separations
between points by moving a pair of dividers or measuring rod or mea-
suring chain up to them. We measure angles by bringing a protractor
or theodolite up to the vertex of the angle. We determine straight lines,
additionally, by the path of light rays too, which in our experience is
rectilinear; but it could also be carried over equally to spaces of other
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measures of curvature that light, as long as it stays in an unchanging
refracting medium, is propagated along shortest lines. So all our geo-
metrical measurements rest upon the presupposition that the measuring
instruments which we take to be fixed, actually *° are bodies of unchang-
ing form. Or that they at least undergo no kinds of distortion other than
those which we know, such as those of temperature change, or the small
extensions which ensue from the different effect of gravity in a changed
location.

When we measure, we are only doing, with the best and most reliable
auxiliary means known to us, the same thing as what we otherwise
ordinarily ascertain through observation by visual estimation and touch,
or through pacing something off. In the latter cases, our own body with
its organs is the measuring instrument which we carry around in space.
At different moments our hand or our legs are our dividers, or our eye
turning in all directions is the theodolite with which we measure arcs or
plane angles in the visual field.

Thus any comparative estimation of magnitudes, or measurement of
spatial relationships, starts from a presupposition about the physical
behaviour of certain bodies, whether of our own body or of applied
measuring instruments. This presupposition may incidentally have the
highest degree of probability*' and be in the best agreement with all
physical circumstances otherwise known to us, but it still goes beyond
the domain of pure spatial intuitions.

One indeed can instance a certain behaviour*? of the bodies that ap-
pear fixed to us, such that measurements in Euclidean space would turn
out as if they had been performed in pseudospherical or spherical space.
To see this*2, 1 will point out first that if the whole of the linear dimen-
sions of the bodies surrounding us, and with them those of our own
body, were all decreased in the same proportion — say by half, or say
they were all increased to double their size - we would be quite unable
to notice such a change with our means of spatial intuition. The same
would moreover also be the case if the extension or contraction were
different in different directions, provided that our own body changed in
the same way, and provided further that a rotating body adopted, without
undergoing or exercising mechanical resistance, at every moment the
degree of extension of its various dimensions that corresponded to its
momentary situation**,
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Think of the image of the world in a convex mirror. The familiar
silvered globes that are commonly set up in gardens display the essential
phenomena of such an image, if indeed distorted by some optical ir-
regularities. A well-made convex mirror of not too great an aperture
displays, in a definite situation and at a definite distance behind its sur-
face, the apparently corporeal image of any object lying in front of it.
But the images of the distant horizon and of the sun in the sky lie behind
the mirror at a limited distance, equal to its focal length. The images of
all other objects lying in front of it are contained between those images
and its surface, but such that the images are progressively more dimin-
ished and flattened with increasing distance of their objects from the
mirror. The flattening, in other words the diminution in the dimension
of depth, is relatively more pronounced than the diminution in the areal
dimensions. Nonetheless, every straight line of the outer world is por-
trayed by a straight line in the image, and every plane by a plane. The
image of a man measuring, with a measuring rod, a straight line stretch-
ing away from the mirror, would progressively shrivel up as its original
moved away. But the man in the image would count up, with his equally
shrivelled measuring rod, exactly the same number of centimeters as the
man in actuality. In general, all geometrical measurements of lines or
angles carried out with the regularly changing mirror images of the
actual instruments, would yield exactly the same results as those in the
outer world. All congruences would match in the images, if the bodies
concerned were actually laid against each other, just as in the outer
world. All lines of sight in the outer world would be replaced by straight
lines of sight in the mirror.

In short, I do not see how the men in the mirror could bring it out
that their bodies were not fixed bodies and their experiences [not] good
examples of the correctness of Euclid’s axioms. But if they could look
out into our world, as we look into theirs, without being able to cross
the boundary, then they would have to pronounce our world to be the
image of a convex mirror, and speak of us just as we of them. And as
far as I can see, if the men of the two worlds could converse together,
then neither would be able to convince the other that he had the true
and the other the distorted situation. I cannot even recognise that such
a question has at all any sense*>, as long as we introduce no mechanical
considerations 4.
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Now Beltrami’s mapping®? of pseudospherical space onto a whole
sphere of Euclidean space is of a quite similar kind, except that the back-
ground surface is not a plane, as with the convex mirror, but the surface of
a sphere, and that the proportion in which the images contract, as they
approach the surface of the sphere, has a different mathematical expres-
sion. Suppose one therefore thinks conversely of bodies which move in
the sphere in whose interior Euclid’s axioms hold, and which always
contract, like the images in the convex mirror, when moving away from
the centre, and which moreover contract in such a way that their images
constructed in pseudospherical space preserve unchanged dimensions.
Then observers whose own bodies regularly underwent this change would
obtain results from geometrical measurements, made as they could make
them, as if they themselves lived in pseudospherical space.

Starting from here we can go yet one step further. We can deduce how
the objects of a pseudospherical world would appear to an observer,
whose visual estimation and spatial experiences had, exactly as ours,
been developed in flat space, if he could enter such a world. Such an
observer would continue to see the lines of light rays, or the lines of
sight of his eyes, as straight lines like those existing in flat space, and
like they actually are in the spherical image of pseudospherical space.
The visual image of the objects in pseudospherical space would therefore
give him the same impression as if he were at the centre of Beltrami’s
spherical image*®. He would believe he could see all round himself the
most distant objects of this space at a finite distance*, let us for example
assume at a distance of 100 feet. But if he approached these distant ob-
jects they would expand in front of him, and indeed more in depth than
in area, while behind him they would contract. He would discern that
he had judged by visual estimation falsely.

Suppose he saw two straight lines which, in his estimation, stretched
away parallel for this whole distance of 100 feet, to where the world
seemed to end for him. On pursuing them he would then discern that,
together with this expansion of the objects he approached, these lines
would spread apart the more he advanced along them. Behind him, on
the other hand, the distance between them would seem to dwindle, so
that as he advanced they would seem to be progressively more divergent

* The negative inverse square of this distance would be the measure of curvature of the
pseudospherical space.
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and separated from each other. But two straight lines which seemed,
from the first viewpoint, to converge to one and the same point in the
background at a distance of 100 feet, would always do this however far
he went, and he would never reach their point of intersection.

Now we can obtain quite similar pictures of our actual world, if we
put before our eyes a large convex lens of corresponding negative focal
length, or indeed only two convex eye glasses, which would have to be
ground slightly prismatically as if they were parts of a larger, connected
lens. These, just like the convex mirror mentioned above, show us distant
objects brought up closer, the most distant ones up to the distance of
the focal point of the lens. If we move with such a lens before our eyes,
there take place quite similar expansions of the objects we approach to
those I have described for pseudospherical space. If, moreover, someone
puts such a lens before his eyes, and not even a lens of focal length 100 feet,
but a much stronger one of focal length only 60 inches, then perhaps
for the first moment he notices that he sees objects brought up closer.
But after a little going back and forth the illusion fades, and he judges
distances correctly despite the false images. We all have grounds to sur-
mise that it would soon enough be the same for us in pseudospherical
space, as it is after just a few hours for someone who begins to wear
glasses. In short, pseudospherical space would seem to us to be relatively
not very strange at all. Only at first would we find ourselves subject
to illusions, in measuring the magnitude and distance of more distant
objects by their visual impression.

A three-dimensional spherical space would be accompanied by the
opposite illusions, if we entered it with the visual estimation acquired
in Euclidean space. We would take more distant objects to be further
off and larger than they were. On approaching them, we would find our-
selves reaching them more quickly than we should assume from their
visual image. However, we would also see before us objects which we
could only fixate with diverging lines of sight: this would be the case
with all those more distant from us than a quadrant of a great circle.
This kind of view would hardly strike us as very unusual, since we can
produce it for earthly objects too, by putting before one eye a weakly
prismatic glass whose thicker side is turned towards the nose. Then 0o

' [i.e. a concave lens.]
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we have to set our eyes divergently in order to fixate distant objects. It
produces in the eyes a certain feeling of unaccustomed strain, but does
not notably change the visual features of objects seen thus, whereas the
strangest visual feature of the spherical world would consist of the back
of our own head, upon which all of our lines of sight would reconverge, to
the extent that they could pass freely between other objects, and which
would have to fill up the furthest background of the whole perspective
image.

At the same time, the following is of course also to be noted. Just as
a small flat elastic plate, say a small flat rubber disk, can only be accom-
modated to a weakly curved spherical surface with a relative contraction
of its edge and stretching of its middle, so also our own body, which has
grown up in Euclidean flat space, could not go over into a curved space
without undergoing similar stretchings and compressions of its parts.
Naturally, the interconnexion of these parts could only be maintained as
long as their elasticity allowed yielding without tearing and breaking. The
kind of stretching would have to be the same as if we thought of a small
body at the centre of Beltrami’s sphere, and then transposed from it to
its pseudospherical or spherical image. For such a transposition to ap-
pear possible, it must always be presupposed that the body transposed
is sufficiently elastic and small, in comparison with the real or imaginary
radius of curvature of the curved space into which it is to be transposed.

This will suffice to show how one can deduce from the known laws of
our sense perceptions, continuing in the way begun here, the series of
sense impressions which a spherical or pseudospherical world would give
us if it existed. In this respect too we nowhere meet an impossibility or
deductive fault, just as little as in the calculative treatment of the metrical
relationships. We can just as well depict the view in all directions, in a
pseudospherical world, as we can develop its concept. For this reason,
we also cannot admit that the axioms of our geometry are based upon
the given form of our faculty of intuition, or are connected with such a
form in any way*®.

It is otherwise with the three dimensions of space. All our means of
intuition by the senses only stretch to a space of three dimensions, and
the fourth dimension would not be a mere modification of what exists,
but something completely new. Thus if only on account of our bodily
makeup, we find ourselves absolutely unable to imagine a way of intuitiv-
ely conceiving a fourth dimension®®.
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I wish finally to stress further, that the axioms of geometry are cer-
tainly not propositions belonging to the pure theory of space alone*!.
As I have already mentioned, they speak of magnitudes. One can only
talk of magnitudes if one knows and intends some procedure, whereby
one can compare these magnitudes, split them up into parts and measure
them. Thus all spatial mmeasurement, and therefore in general all mag-
nitude concepts applied to Space, presuppose the possibility of the motion
of spatial structures whose form and magnitude one may take to be un-
changing despite the motion. In geometry, such spatial forms are indeed
by custom referred to only as geometrical bodies, surfaces, angles and
lines, because one abstracts from all other distinctions of a physical and
chemical kind manifested by natural bodies. But one retains nonetheless
one of their physical properties, namely fixity. Now we have no criterion
for the fixity of bodies and spatial structures other than that when applied
to one another at any time, in any place and after any rotation, they
always show again the same congruences as before. But we certainly
cannot decide in a purely geometrical way, without bringing in mechanical
considerations®*, whether the bodies applied to each other have not
themselves both changed in the same manner.

If we ever found it useful for some purpose, we could, in a completely
logical way, regard the space in which we live as the apparent space
behind a convex mirror with its shortened and contracted background.
Or we could regard a bounded sphere of our space, beyond whose bounds
we perceive nothing more, as infinite pseudospherical space. We would
then only have to ascribe the corresponding stretchings and shortenings
to the bodies which appear to us to be fixed, and equally to our own
body at the same time. We would of course at the same time have to
change our system of mechanical principles completely. For even the
proposition, that every moving point upon which no force acts continues
to move in a straight line with unchanged velocity, no longer applies to
the image of the world in the convex mirror. The path would indeed still
be straight, but the velocity dependent upon place 3.

Thus the axioms of geometry certainly do not speak of spatial relation-
ships alone, but also, at the same time, of the mechanical behaviour of our
most fixed bodies during motions>4. One could admittedly also take the
concept of fixed geometrical spatial structures to be a transcendental’s
concept, which is formed independent of actual experiences and to which
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these need not necessarily correspond, as in fact our natural bodies are
already not even in wholly pure and undistorted correspondence to those
concepts which we have abstracted from them by way of induction. By
adopting such a concept of fixity, conceived only as an ideal, a strict
Kantian certainly could then regard the axioms of geometry as propo-
sitions given a priori through transcendental intuition, ones which could
be neither confirmed nor refuted by any experience, because one would
have to decide according to them alone whether any particular natural
bodies were to be regarded as fixed bodies. But we would then have to
maintain that according to this conception, the axioms of geometry
would certainly not be synthetic propositions in Kant’s sense. For they
would then only assert something which followed analytically from the
concept of the fixed geometrical structures necessary for measurement,
since only structures satisfying those axioms could be acknowledged to
be fixed ones.

But suppose we further add propositions concerning the mechanical
properties of natural bodies to the axioms of geometry, if only the law
of inertia, or the proposition that the mechanical and physical proper-
ties of bodies cannot, under otherwise constant influences, depend upon
the place where they are. Then such a system of propositions is given
an actual content, which can be confirmed or refuted by experience, but
which for just that reason can also be obtained by experience®®.

Incidentally, I naturally do not intend to maintain that humankind
only obtained intuitions of space, corresponding to Euclid’s axioms, by
carefully executed systems of exact geometrical measurements. A series
of everyday experiences, and especially the intuition of the geometrical
similarity of larger and smaller bodies — which 1s only possible in flat
space — must rather have led to the rejection as impossible of every geo-
metrical intuition opposed to this fact. For this no knowledge was needed
of the conceptual connexion between the observed fact of geometrical
similarity and the axioms, but only an intuitive acquaintance with the
typical behaviour of spatial relationships, obtained by observing them
frequently and exactly, namely the kind of intuition of objects to be por-
trayed which the artist has, and by means of which he decides, with
assurance and refinement, whether or not an attempted new combination
corresponds to the nature of the object to be portrayed. We indeed know
of no other name in our language to refer to this but ‘intuition’, but it is
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an empirical acquaintance, obtained by the accumulation and reinforce-
ment in our memory of impressions which recur in the same manner. It
is no transcendental form of intuition given before all experience.

That this sort of intuition of a typical lawlike occurrence, gained em-
pirically and not yet developed to the clarity of a definitely expressed
concept, has often enough imposed itself upon metaphysicians as a prop-
osition given a priori, is a matter which I need not discuss further here.

NOTES AND COMMENTS

! In logic one understands by ‘deduction’ the derivation of a judgment from more com-
prehensive judgments, i.e. from ones having more general validity, It is the only procedure
giving a completely rigorous foundation for a truth by means of other truths. The most
usual form of deduction is the syllogism (compare note 1V.43)*. Deduction stands in op-
position to logical “induction”, which endeavours to infer more generally valid truths
from particular and individual ones, and which, to thisend, must submit to the ““troublesome
and tedious task™ of gathering empirical facts, of which Helmholtz speaks in this same
sentence. Inductive inference lacks absolute certainty, for inasmuch as it extends, by gen-
eralization, a proposition extracted from a number of individual cases to cases that have
not yet been observed, it goes beyond the actual content of the presuppositions. Thus
propositions obtained by induction can only claim to hold with probability (though with
frequently an extremely high one).

? In this question Kant summarizes the problem of his Kritik der reinen Vernunft [Critique
of Pure Reason].

By a ‘synthetic judgment’ he understands a proposition which attributes to an object
a predicate that does not belong to the object already in virtue of its definition. As against
this, an ‘analytic judgment’ only asserts of a subject something that is already contained
in this subject by definition. If, for instance, by a ‘body’ 1 always understand something
extended, then the proposition ‘all bodies are extended’ is evidently analytic, whereas we
would have a synthetic judgment if we said ‘all bodies are subject on the surface of the earth
to an acceleration of about 981 cm/sec?”. The first judgment follows simply from the
definition, from the concept of a body. The second cannot be derived from this, but only
experience can teach us whether, and with what acceleration, the objccts characterised
by the concept ‘body’ fall towards the earth,

A judgment whose validity is assured wholly independent of any experience is termed
by Kant ‘a priori’ ; if its validity rests only upon expericnce, it is called ‘a posteriori’ .
It follows from what has been said that every analytic judgment is a priori, for indeed one
needs no experience to perceive its validity, but only an analysis of the concept of its

t [In modern logic the syllogism no longer has a position of any promincnee; its signifi-
cance is now historical as the first fragment of logic to have been analyzed with full logical
rigour.]

tt [This is not the only kind of inductive inference: sce R, Carnap, Logical Foundations
of Probability, 2nd ed., 1962, §44B. The whole subject is still controversial.]



NOTES AND COMMENTS BY MORITZ SCHLICK 27

subject, and this concept is completely given by its definition. It also follows that most
synthetic judgments, both in everyday life and in science, are a posteriori, because they
express the results of experience.

Are there also synthetic a priori judgments, thus in other words propositions which
asserl more about an object than already exists in its concept, yet without drawing this
‘more’ from experience? One easily recognizes the enormous importance of the question.
For only in synthetic judgments is there a real advance of knowledge; only they extend
our knowledge, while analytic ones merely elucidate what we have put into our concepts
by definition. But if all synthetic judgments are only a posteriori, then no advance of knowl-
edge occurs with absolutely certain validity, since a validity resting upon items of expe-
rience reaches no further than these very items themselves and may be overthrown by
new observations.

We are only certain of the universal, necessary validity of a proposition if it is valid a
priori. Necessity, and validity without exception, are therefore the characteristic by which
the a priori is recognized. According to Kant, this characteristic attaches to the axioms
of geometry, and he also, as.noted by Helmholtz in the text, does not doubt that they are
synthetic. Thus he believed that synthetic a priori judgments, this highest form of knowl-
edge, indeed exist, and the only question for him was: how are they possible ? How can 1
with certainty assert of an object something which is neither deduced from its definition
nor drawn from experience ? Helmholtz’ investigation, as will emerge, examines the ques-
tion as to whether the axioms of geometry actually should, as Kant presupposed, be re-
garded as synthetic a priori judgments.

3 In taking space to be a ‘form of intuition’ , and hence a lawlike feature characteristic
of our intuiting consciousness, Kant precisely wanted to explain the possibility of syn-
thetic a priori judgments about space. Everything that we can perceive and intuitively
imagine must necessarily be subject to the laws governing the manner in which we intuit.
Thus these laws, according to Kant, must be valid a priori for everything that can be
experienced.

4 « schema devoid of any content” — this will later need comment in greater detail
(compare note 1V .33).

5 The definition of geometry as ‘the theory of space’ suffices at this point, although it
raises several questions — especially whether one can state more precisely what is to be
understood here by ‘space’ . It could, for instance, be that the mathematician, the phys-
icist and the psychologist do not at all mean the same thing when speaking of ‘space’.
Helmholtz investigation will also lead of itself to this question.

6 This list of ‘axioms’ is clearly to be taken as only a collection of examples, intended
to indicate what is involved. Helmholtz clearly does not want to say here that precisely
these propositions, and in exactly this formulation, must appear as axioms in a self-con-
tained system of geometry.

7 The great successes of the method of logical inference in mathematics explain the wish
to give a proof for everything, and at the same time the belief in the success of such an
undertaking (an endeavour to which, in the field of philosophy, the systems of Fichte and
Reinhold owe their origin; both tried to derive a whole system from one single proposi-
tion). However, the simple consideration that every inference needs premises shows the
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impossibility of proving everything, and the necessity of making presuppositions. Such
starting points of logical thought are the axioms, whose origin is precisely to be investi-
gated here.

® The prototype of the idealist philosopher is Plato. He explains the self-evidence of the
axioms of geometry by the hypothesis of ‘anamnesis’ or ‘recollection’ . In earlier stages
of its existence, before its earthly birth, the human soul supposedly became acquainted
with the truths of mathematics through immediate contemplation, and it now knows
about them without earthly experience, by mere recollection.

It perhaps deserves to be mentioned that in this Platonic doctrine the explanation is,
properly speaking, still based on experience, even though not on that of the senses which
belongs to earthly life, but on an entirely different kind of experience during a mythical
pre-existence.

® This of course does not yet provide a rigorous proof of the fruitlessness of the attempts.
The impossibility of deriving a proposition from certain axioms (i.e. the “independence”
of this proposition from those axioms, which requires its being placed with the other
axioms as a new one) is in general proved by dropping the proposition in question — or
replacing it with another — while retaining all the other axioms, and testing the system of
axioms which results for freedom from contradiction. Thus, for instance, the independence
of the axiom of parallels from the other Euclidean axioms follows from the fact, that by
giving it up we variously arrive at the geometrical system of Bolyai and Lobatchewsky
or at thdt of Riemann. Now one can prove that these two non-Euclidean geometries are
free from internal contradiction, provided that Euclidean geometry is. The freedom of the
latter from contradiction (which was probably never in doubt) can be proved if one
presupposes that the structure of number theory — arithmetic — is free from contradiction.
To date nobody seems to have succeeded in rigorously demonstrating the correctness of this
presupposition’,

1% The Greek mathematician Euclid compiled, around 300 B.c., the mathematical knowl-
edge of his time in a text-book of such excellence that it occasionally (e.g. in English schools)
serves as the basis for teaching geometry even to this day.

11 1n talking, as Helmholtz does here, of ‘movement’ as something that can in fact be
experienced, as an actual process, one must by ‘geometrical structures’ understand here
rigid corporeal models, and not purely mathematical lines or surfaces as mere structures
of abstraction. There arises the important question of to what extent a distinction can be
made at all between ‘geometrical’ and ‘corporeal’ structures, thus the problem of the
relation of geometry to physics, on which Helmholtz, towards the end of the lecture, quite
specifically adopts a position.

' A number of proofs have been given for the consistency of the arithmetic of the natural
numbers, starting with G. Gentzen, ‘Die Wiederspruchsfreiheit der reinen Zahlentheorie’
[‘The freedom from contradiction of pure number theory’], Math. Annalen, CXI11 (1936),
formulated only in a mathematical form of language (e.g. mathematical and even transfinite
induction are used). There are moreover theoretical reasons for supposing that this draw-
back is insuperable. See Elliott Mendelson, Introduction to Mathematical Logic, Van
Nostrand, Princeton, 1964, Appendix and pp. 148-9.
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12 1t should be noted that the conclusion drawn by Helmholtz in the last sentence is only
admissible, if it is true that every presupposition must either have a logical foundation or
have originated in experience, and thus cannot have.come from a third source.

13 “Analytic’ geometry reduces all proofs to calculations through denoting each point
of space by three numbers (coordinates), for instance by giving its distances from three
mutually perpendicular planes (compare p. 13 of the text). In this way it becomes pos-
sible to treat, in a purely calculative manner, the relations between spatial structures as
numerical relations (namely between the coordinates of their points).

14 «nurely logical operation’, i.e. deduction (compare note 1).

15 As it is appropriate to restrict the term ‘to think’ to the logical operations of judgment
and inference, the first of the two formulations, ‘to imagine’, is doubtless to be preferred.
The sense of the explanation given by Helmholtz in this sentence can hardly be misunder-
stood in its simplicity. ‘Imaginable’ means everything that is intuitively reproducible in
the sense of psychology. Although a certain subjectivity or relativity is inherent in this
definition, due to individual differences of imaginative capacity, it should not affect the
basic meaning of this delimitation of the concept ‘imaginable’ (compare note IV.42).

16 The concept of the ‘straightest” path also plays a decisive role in the mechanics of
Heinrich Hertz.

17 Thus J. Wallis (1614--1703) substituted for the Euclidean axiom of parallels the prop-
osition: for any figure there exists a similar one of arbitrary magnitude. See Bonola-
Licbmann, Die nichteuclidische Geometrie | ‘Non-Euclidean geometry’ ], Leipzig, 1908,
pp. 14f.

18 D, Hilbert (Grundlagen der Geometrie | ‘Foundations of geometry’ ], 3rd ed., Leipzig
and Berlin, 1909, p. 251) has proved that “‘there does not exist an analytic surface of con-
stant negative curvature which is without singularities and everywhere regular. Thus in
particulat, the question of whether one can realize in Beltrami’s manner the whole of the
Lobatchewskian plane by means of a regular analytic surface in space, must also be an-
swered in the negative.” But this mathematical result, to which Riehl also refers (Helmholtz
in seinem Verkdltnis zu Kant [ ‘Helmholtz in his relation to Kant ], 1904, p. 37), is not
of fundamental significance for the basic epistemological thought behind Helmholtz’
lecture,

19 and the radii of curvature are therefore taken to have opposite signs.

20 *Eyclid’s synthetic method’ is the same as what Helmholtz on p. 4 called the ‘intuitive
method’.

21 Namely the axioms of our ordinary metric geometry. One can also think of a geometric
system containing no concepts of magnitude at all. Such is analysis situs, which deals
exclusively with those properties of spatial structures which contain no metric concepts.
For this reason Poincaré terms analysis situs the true “qualilative geometry™ (Der Werr
der Wissenschaft [‘The value of science’], 2nd ed., 1910, p. 49).

22 Rjemann’s dissertation has recently been published with detailed comments by H. Weyl,
Berlin, 1919, 2nd ed., 1921,
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*3 Thus in the manifold of colours, the three amounts of the basic colours needed for
mixing a specific colour would have to be regarded as the three ‘coordinates’ of the latter
(see notes I1.8, I11.29); in the manifold of tones, the intensity and pitch of each tone would
be its two coordinates.

2% The distinguishing characteristic stressed by Helmholtz in the following is not sufficient,
though indeed necessary, to specify what is proper to ‘space’ as against other three-
dimensional manifolds. To what extent can one at all speak of a ‘definition” of space?
What spatial extension is in the psychological-intuitive sense, can only become known
through perceptual experiences; it is just as little definable, as it is possible to give a person
born blind an idea of what ‘red’ is. Only those properties of space are to be regarded
as definable which are accessible to mathematical analysis. But these are the sole properties
that physics has to make use of, and from this one can draw important conclusions.

> One can hardly draw attention emphatically enough to what Helmholtz is stressing
here: the expression ‘measure of curvature’ in its application to space should only ever
be understood in a metaphorical sense, it is not intended to denote anything that we can
in any way intuitively perceive or imagine as a curvature, A iypical example of this wide-
spread misunderstanding is found in the polemic Kant und Helmholtz [ ‘Kant and Helm-
holtz’ ] by Albrecht Krause, Lahr, 1878, where it is said on p. 84: “Lines, surfaces, axes
of bodies in space have an orientation and thus also a measure of curvature, but space
as such has no orientation, precisely because everything oriented is in space, and it there-
fore has no measure of curvature; but this is something other than having a measure of
curvature equal to zero.”

Another misunderstanding, frequently met, is connected with this. Since we are only
able to imagine a curved surface in a three-dimensional space, il is namely inferred that
a ‘curved’ three-dimensional manifold presupposes the existence of a four-dimensional
one. But this inference from analogy is false. Were it correct, then ‘flat” Euclidean space
would also have to be imaginable only as embedded in a four-dimensional space: it is
namely evident that we also cannot imagine a flat surface otherwise than as in space, since
certainly for our imagination it always remains possible to leave the flat surface, just as
a curved one, by stepping out on either side into space. The layman too easily forgets that
‘curvature’ in the Gaussian sense is a wholly internal property of the surface, and that
a curved surface is just as much a merely two-dimensional structure as a flat one.

Helmbholtz says correctly that in the case of a surface an intuition of the senses corre-
sponds to the ‘curvature’. But not every surface which is curved for intuition is thus also
in the mathematical sense. Notably, the surfaces of e.g. a cone or a cylinder have the
Gaussian measure of curvature zero.

26 Helmholtz speaks of our “in fact existing” space; he never doubted that physical space
is not merely a partially arbitrary mental construction, but something actual, whose prop-
erties can be ascertained by observation. In what sense this presupposition is founded and
justified we shall see from Helmholtz’ own statements, Here he describes the in fact existing
space as ‘flat’; on p. 18 he says further that besides flatness a tiny mecasure of curvature,
not noticeably different from zero, is also compatible with the data of experience.

27 Further types of space again are elliptical space and Klein-Clifford space; compare
note I1.30.
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28 Helmholtz terms it an ‘observational fact’ that motion of fixed spatial structures, 1.e.
change of place of rigid bodies, is possible. To what extent this should actually count as
an observational fact will be discussed later on (note 40).

29 The mathematical developments whose results are briefly stated here by Helmholtz,
will be found in the paper ‘On the Facts Underlying Geometry’ . For more detailed crit-
icism of Helmholtz’ presuppositions — which however is of no importance for the epistemo-
logical outcome —~ we may refer to the comments on that paper.

30 The characteristic of a fixed body (the unchanging separation between two points in
the body) cited by Helmholtz in what follows, gives the basis on which every physical
measurement must rest, for in the last analysis a measurement always occurs through
repeatedly applying a measuring rod. But a measuring rod is a body on which two (or
more) points are marked whose separation is regarded as constant. To ‘apply’ the mea-
suring rod to an object to be measured means: to bring those two points inte coincidence
with specific points in the object.

31 This definition reduces congruence (the equality of two extents*) to the coincidence of
point pairs in rigid bodies “with the same point pair fixed in space”, and thus presupposes
that ‘points in space’ can be distinguished and held fixed. This presupposition was ex-
plicitly made by Helmholtz in the preceding paragraph, but for this he had to presuppose
in turn the existence of “certain spatial structures which are regarded as unchangeable and
fixed” (p. 15). Unchangeability and fixity (the term ‘rigidity’ is more usual nowadays) cannot
for its own part again be specified with the help of that definition of congruence, for one
would otherwise clearly go round in a circle. For this reason the definition seems not to
be logically satisfactory.

One escapes the circle only by stipulating by convention that certain bodies are 1o be
regarded as rigid, and one chooses these bodies such that the choice leads to a simplest
possible system of describing nature (Poincaré, Der Wert der Wissenschaft [op. cit.], pp.
441.) I is easy to find bodies which (if temperature effects and other influences are excluded)
fulfil this ideal sufficiently closely in practice. Then congruence can be defined unobjection-
ably (as by Einstein in Geometrie und Erfahrung [ ‘Geometry and Experience’ ], p. 9) as
follows: “We want to term an extent what is embodied by two marks made on a body
which is in practice rigid. We think of two practically rigid bodies with an extent marked
on each. These two extents shall be called ‘equal to each other’ if the marks on the one
can constantly be brought into coincidence with the marks on the other.”

32 This is the so-called monodromic principle. Compare on this point the second paper
in this volume, and in particular the comments upon it.

33 <Hamillon’s principle’ expresses the laws of nature in such a general and compre-
hensive form that it has also held good for all modern extensions of physical conceptions.
According to i, the course of all physical processes is such that a certain function of the
magnitudes that determine the momentary state takes a minimum value (in exceptional
cases a maximum one) for the transition from the initial to the final state.

* [ ‘Strecken’, i.e. ‘stretches’ or ‘lincar extensions’ ; the same word is used by Einstein
in the quotation below.]
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** “Necessities of thought’ . The results of our thought should only be called necessary

if they have been obtained by deduction (compare note 1). But since the particular speci-
fications of our in fact existing space cannot be deduced from the mere concept of a three-
dimensional manifold, Helmholtz rightly denies that they are necessary for thought. In
Kant’s terminology this conclusion would have to be formulated by saying: the prop-
ositions which assert those particular properties of our space — i.e. the axioms of geometry
— are not analytic. For indeed those judgments were called analytic which only assert of
an object what is already contained in its concept, thus what can be deduced from it.

*3 The ‘contrary assumption’ would, in the first instance, be only that the axioms of
geometry constitute synthetic propositions, for this is the contrary of analytic, and the
latter coincides, according to the preceding note, with ‘necessary for thought’. But Helm-
holtz already goes one step further and raises the question of whether the axioms are
empirical propositions, i.e. synthetic a posteriori judgments. He therefore seems to have
in view only these two possibilities for the axioms: either analytic, or synthetic a posteriori.
(Thus already above: compare note 12). He seems from the outset not to allow for the
very class of judgments on which everything depends here, namely the synthetic a priori
ones.

Empirical propositions, which Helmholtz opposes to judgments necessary for thought,
thus to analytic judgments, are in fact the contrary of necessary judgments as such; as
against this, Kant’s synthetic a priori judgments, if there were such, would indeed not be
necessary for thought, but they would constitute infuitive necessities. Even according to
Kant’s doctrine, non-Euclidean axiom systems would be wholly thinkable, i.e. they could
be set up without contradiction. But they would not be imaginable, not realizable in
products of intuitive imagination, and they could find no application in physical actuality,
for this, as being intuitively perceptible, would be subject to the laws governing the manner
in which we intuit. If the Euclidean axioms were amongst these laws, then we would be
unable to perceive and imagine the corporeal world other than as ordered in Euclidean
space.

Kantians have objected against Helmholtz that he did not distinguish between intuitive
necessity and necessity for thought, and indeed he omitted to mention this important
distinction here. But he was fully aware, in fact, that the resolution of his problem depends
precisely upon whether some other geometry is intuitively imaginable besides Euclidean
geometry. This already emerges very clearly from the next sentence of the text, for there
Helmholtz uses the word ‘imagine’, whose sense he explicitly defined above (compare
note 15). He rightly attaches great importance to that definition, for he comes back to it
several times (p. 23 of this lecture, also in “The Facts in Perception”, below p. 130; like-
wise in his Abhandlungen, vol. 11, p. 644),

¢ This sentence formulates the problem precisely and is completely correct. If *‘spaces
of another kind are imaginable in the sense stated” (compare the previous note) then
Euclidean space has no intuitive necessity for us; and since Euclid’s axioms, as already
shown by Helmholtz, are not necessary for thought either, proof will have been given that
they are not necessary at all, and consequently (compare note 2) not valid a priori. They
will then indeed have to have originated in experience and be a posteriori. Helmholtz
quickly applies himself in the text to the demonstration that non-Euclidean spaces in fact
are imaginable. The following paragraphs starl with preparatory considerations.

37 By the parallax of a fixed star is understood the angle which the major axis of the
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carth’s orbit subtends as viewed from the star. The fixed star and the two extremities of
the axis of the earth’s orbit form together the terminal points of a very elongated triangle;
the angle at the tip is the parallax. As the sum of angles of a Euclidean triangle equals
two right angles, one obtains the value of the parallax by substracting from two right
angles the sum of the two angles at the base of the triangle. For immeasurably distant
stars, the two long sides of the triangle become markedly parallel, the sum of the base
angles becomes equal to two right angles and the parallax zero. As the sum of angles of
a pseudospherical triangle is smaller than two right angles, the sum of the base angles
cannot reach this total. Thus if one substracts it from two right angles, the result will al-
ways have to be positive even for the most distant stars, as Helmholtz mentions in paren-
theses. In spherical space, on the other hand, one will even get negative values for the
angle, since the sum of the two base angles could exceed two right angles.

38 |4 holds only with certain reservations that the axiom of parallels, and consequently
the Euclidean structure of space, can be “‘empirically confirmed” by astronomical obser-
vations. Above all, it only holds under the presupposition that light rays are to be regarded
as straight lines. If the determinations of parallax e.g. yielded negative values, this result
could always be explained just as well by the assumption of curvilinear propagation of
light as by the hypothesis of positive curvature of space. This has been pointed out with
particular emphasis by H. Poincaré, who says with regard to this case (Wissenschaft und
Hypothese [ ‘Science and hypothesis’ ], 2nd ed., 1906, p. 74): “one would thus have the
choice between two conclusions: we could renounce Euclidean geometry, or alter the laws
of optics and allow that light is not propagated exactly in a straight line.” It is unquestion-
ably a fault in Helmholtz’ account that he does not sufficiently emphasize the second
possibility and sharply contrast the two alternatives with each other. He thereby appeared
to offer an easy target for the attacks of the Kantians. We shall return to this later, and
then see that he perceived the true state of affairs with complete clarity.

Poincaré is thoroughly wrong in continuing at that point: “It is needless to add that
everybody would consider the latter solution to be the more advantageous.” The successes
of Einstein’s general theory of relativity, which sacrifices the validity of the Euclidean
axioms, prove the error of Poincare’s assertion, and it may be said with certainty that he
would today gladly withdraw it in the face of those successes.

He believed that Euclidean geometry would always have to retain its preferential status
in physics because it was the ‘simplest” . Yet it is not the simplicity of an individual branch
or an auxiliary means of science which is decisive, but it ultimately comes down to the
simplicity of the system of science, a simplicity which is identical with the unity of natural
knowledge. This maximal simplicily is nowadays attained more perfectly by dropping
Euclidean geometry than by retaining it. The observation that the planets do not travel
around the sun precisely in simple Keplerian ellipses, but describe extremely complicated
orbits, nonetheless made the world picture simpler, because it enabled one to ascribe to
Newton’s law of gravitation a more precise validity. Just as Poincaré (ibid., p. 152) rec-
ognized that “the simplicity of Kepler’s laws is only apparent”, he would equally say to-
day: the simplicity of Euclidean geometry in its application to nature is only apparent.
Helmholtz. attaching himself to Riemann, advocated the admissibility of this standpoint
clearly and resolutely; what he contributed as well to its philosophical justification will
shortly be considered.

39 ‘Congruence’ is established by observing the coincidence of material points. All phys-
ical measurements can be reduced to this same principle, since any reading of any of our
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instruments is brought about with the help of coincidences of movable parts with points

on a scale, etc. Helmholtz’ proposition can therefore be extended to the truth that no

occurrences whatsoever can be ascertained physically other than meetings of points, and

g:&;ﬁ;ﬁlﬂi?? has logically drawn the conclusion that all physical laws should contain

. y statements abo‘qt suf:h coincidences. The following paragraphs of Helmholtz
Ie contain statements going in the same direction.

0 In the little word ‘actually’ there lurks the most essential philosophical problem of
the whole lecture. What kind of sense is there in saying of a body that it is actually rigid ?
According to Helmholtz' definition of a fixed body (p. 15), this would presuppose lt‘llat
one could speak of the distance between points ‘of space’ without having regard 1o bodies;
but it is beyond doubt that without such bodies one cannot ascertain and measure the
distance in any way. Thus one gets into the difficulties already described in note 31. If
the content of the concept ‘actually’ is to be such that it can be empirically tested and
ascertained, then there remains only the expedient already mentioned in that note: to de-
clare those bodies to be ‘rigid’ which, when used as measuring rods, lead to the simplest
physics. Those are precisely the bodies which satisfy the condition adduced by Einstein
(compare note 31). Thus what has to count as ‘actually’ rigid is then not determined by
a logical necessity of thought or by intuition, but by a convention, a definition.

! Here it seems as if Helmholtz did, after all, regard the concept of a rigid measuring
rod as something absolute, continuing to exist independent of our conventions, for one
can speak of the probability or truth of an assertion only if its correctness can in principle
be tested; the concept of probability is not applicable to definitions. But we obviously
have to see in this formulation only a concession 1o the reader’s capacity of comprehen-
sion, and Helmholtz only gradually introduces him to the rigorous consistency of the more
radical thoughts.

*2 This behaviour is in fact not specified immediately, but only after three purely pre-
paratory paragraphs, in the one which follows them.

43 With regard to what follows, compare the presentation of the same thoughts in Del-
boeuf, Prolégoménes Philosophiques de la Géomérrie [ ‘Philosophical prolegomena to ge-
ometry' ], 1860; Mongré, Das Chaos in kosmischer Auslese [ ‘Chaos in cosmic selection’ ],
1898, ch. 5; Poincaré, Der Wert der Wissenschafl, [ap. cit], pp. 46f.; Science et Méthode
[ ‘Science and method’ ], 1908, pp. 96M.; Derniéres Pensées [ ‘Last thoughts™ ], 1913, pp.
37ff.; Schlick, Rawm und Zeit ['Space and time’], 3rd cd., 1920, ch. 3.

44 The hypothetical change described here by Helmholtz can be expressed in mathematical
language thus: if one thinks of the whole world deformed such that its new shape arises
from its old one by a one-to-one and continuous, but otherwise quite arbitrary point trans-
formation, then the new world is in actuality completely indistinguishable from the old.
The mirror example which follows in the text corresponds to a special case of such a trans-
formation. (Compare the literature cited in note 43.)

45 The realization that the question is meaningless as to which of the two worlds described
is the ‘actual’ and which the deformed one, is of the highest importance for the whole
problem. There exists no ‘actual’ difference at all between the two worlds, but only one
of description, in that a different kind of coordinate system is assumed in cach case (com-
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pare again the literature cited above in note 43). In other words: in both cases we are dealing
with the same objective actuality, which is portrayed by two different systems of symbols.

46 1f Helmholtz wanted to say, in the last clause of this sentence, that the men of the two
worlds would ascertain differing mechanical laws, then this would obviously be an error,
so long as he does not drop the presupposition that in the world of the mirror all mea-
suring rods participate in the distortions of the bodies. For otherwise all measurements
there, all readings of instruments, must lead to precisely the same numbers as in the
original world; all point coincidences remain constant (compare note 39). But a law is
only a summary expression for the results of measurements; consequently the physical
laws in the two worlds are not different. Yet perhaps Helmholtz is thinking in terms of
the observer in the deformed world somehow getting offered measuring rods which do not
participate in the deformation otherwise prevailing there, and with which he can continu-
ally compare his bodies. In this case he would ascertain peculiar laws of motion, and he
could infer that it would be more reasonable to regard the other world as undistorted,
because there (with respect to those measuring rods) a much simpler mechanics prevails.

47 F.Klein has introduced in a purely projective way the specificaticn of the non-Euclidean
metric in the interior of a second degree surface (Ges. Abhandlungen, vol. 1, pp. 287f.).

48 Wherever the observer may be situated, there always exists a mapping into the Eu-
clidean sphere such that his situation corresponds to the centre of the sphere. Let P be a
point in the non-Euclidean space and Q its image in the space of the sphere. If now 44" are
the eyes of the observer in the non-Euclidean space and BB’ are their images, which are
taken to be very close to each other, then the non-Euclidean angles PAA4” and PA'4 must,
apart from infinitely small quantities of higher order, be equal to the angles QBB" and 0 B'B.
Thus someone who has Euclidean habits will see Q at the very distance which it in fact
has in Beltrami’s spherical image.

49 1p this paragraph Helmholtz has formulated the chief epistemological result of his in-
vestigation. Having shown, in the preceding paragraphs, that the sense impressions which
one would receive in a non-Euclidean world can very well be imagined intuitively, he
infers that Euclidean space is nor an inescapable form of our faculty of intuition, but a
product of experience. Is this inference really cogent?

This has been particularly contested on the part of Kantian philosophy (compare for
instance A. Riehl, Helmholtz in seinem Verhdlinis zu Kant [op. cit.], pp. 35f1.), with the ob-
jection that the various series of perceptions described by Helmholtz need not necessarily
be interpreted as processes in a non-Euclidean space, but that one can equally well, as it
clearly emerges precisely from Helmholtz® own account, conceive of them as peculiar
changes of place and shape in Euclidean space. And this latter kind of interpretation —
thus the a priori school goes on to assert — is the one which our intuition inevitably forces
upon us. It obliges us, if any strange behaviour of bodies is observed, to make their phys-
ical constitutions and laws alone responsible for this, and forbids us to seek instead the
ground for that behaviour in a constitution of ‘space’ which deviates from the Euclidean
one.

We have already emphasized more than once that actually both possibilities of inter-
pretation exist, one beside the other. But Helmholtz was so firmly convinced that we would
choose the geomerrical interpretation for certain experiences of perception and measure-
ment, thal he did not explicitly refute here the other possibility. He was himsell obviously
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so capable of freeing himself from rooted habits of intuition, that self-observation seemed
to show him immediately the absence of the alleged pure intuition. Yet, probably not
everybody can struggle through so easily to this attitude; and thus a gap is to be found
here in the reasoning. One should have refuted the a priori view according to which we
have available, for the interpretation of actuality, only physical hypotheses and not purely
geometrical ones, because the latter, though possible in thought, are excluded by an in-
tuitive constraint.

The gap in the proof may be variously filled in. Thus Poincaré makes it extremely plau-
sible, in his books on epistemology, that for instance those lines which we call straight
are certainly not distinguished over and above other lines by immediately given intuitive
properties, but solely by the role which, according to experience, they play in physical
actuality; and this result js then in fact decisive. Furthermore, and perhaps above all, it
might be pointed out that we do not possess a purely geometrical intuition at all, in that
for instance surfaces without any thickness, colour, etc. are not imaginable at all.
(Compare also F. Klein’s lecture of 14 October 1905 to the Philosophical Society of Vienna
University; M. Pasch, Vorlesungen iiber neuere Geometrie [ ‘lLectures on modern geom-
etry’]. Also already J. S. Mill, and before him Hume in the Treatise, Book I, part II,
section IV.) Then only physical-corporeal structures are accessible at all to our sensible-
intuitive imagination, and it follows that the physical and the geometrical are already in-
separably fused together in our intuitive geometry, so that it therefore coincides with
‘practical geometry’. This was undoubtedly Helmholtz’ opinion. Thus even the gap found
here in the proof is, in this sense, closed by him in Appendix 111 to the address on ‘“The
Facts in Perception’; see below, p. 153. Compare on the question of the existence of a
pure intuition also Schlick, Allgemeine Erkenntnislehre ['General Epistemology’], 1918, §37.

30 On this point a number of mathematicians go beyond Helmholtz, and are of the epinion
that we cannot be denied off-hand the capacity to imagine a world of four spatial dimen-
sions. Thus, for example, Poincaré. He points out (Wissenschaft und Hypothese [op. cil.],
p. 70) that the three-dimensionality of our visual space arises, inter alia, from the fact that
the simultaneous perceptions of one eye, which are basically only two-dimensional, follow
each other according to quite specific laws — namely the laws of perspective. Following
this he thinks that we would automatically imagine the world to have four spatial
dimensions, if observation revealed a certain transformation of three-dimensional corporeal
forms, taking place according to quite specific laws. These forms would then have to ap-
pear to us as three-dimensional perspective views of four-dimensional structures, which
would therefore be intuitively imaginable in the same sense as the third dimension of
visual space is for a one-eyed person.

If this is already true for visual space, to which Helmholtz of course restricts his con-
siderations, then for the other ideas of the senses — such as those of the sense of touch
and the muscular sense — it seems much less certain still that they must necessarily appear
arranged in a three-dimensional manifold. At any rate, the question of the imaginability
of a fourth spatial dimension must at least be regarded as a problem deserving serious
consideration,

31 This sentence contains the fundamental insight — which Riemann had already attained
and which has recently become truly fruitful in the gemeral theory of relativity — that
geometry is to be regarded as a part of physics, and thus not as a science of purely ideal
structures, such as say arithmetic, the theory of numbers. The sentences of the text which
follow give an irreproachable foundation for this insight.
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The sentence is perhaps not quite happily formulated, inasmuch as Helmholtz seems
in it to contrast geometry with a ‘pure theory of space’, yet without stating how the concept
of a pure theory of space is to be delimited. Today we would rather say that precisely the
‘theory of space’ is simply an empirical science, and namely, to use Einstein’s way of
putting it, that part of physics which deals with the ‘situabilities’ * of bodies. Even Newton
already thought the same, as is proved by the quotation which Helmholtz gives elsewhere
(p. 163 of this volume). The purely mathematical discipline of geometry, as opposed to
practical or physical geometry, is nothing but a structure of theorems, which are derived
in a purely logico-formal way from a series of axioms, without regard to whether there
exist any objects (e.g. spatial structures) for which those axioms hold (compare Schlick,
Allgemeine Erkenntnislehre [op. cit], §7). This rigorous ‘geometry’ therefore, properly
speaking, bears its name without justification, and can raise no claim to be a ‘theory of
space’. That there indeed exists no ‘pure’ theory of space was also Helmholtz’ opinion, as
can easily be seen from his remarks on pp. 155 fI.

52 Compare note 46.

53 In contrast to less careful statements (compare notes 31, 40, 41), this paragraph shows
how clear Helmholtz was about the interdependence between geometry and physics: he
rightly declares that we can conceive the in fact existing space of our world to be an ar-
bitrary non-Euclidean one, provided only we introduce, at the same time, entirely new
laws of a physical kind. Why don’t we do this? Why do we in practice, e.g. in technology,
always employ Euclidean geometry? Kant would have answered: because our a priori
spatial intuition does not let it be otherwise ! Poincaré would say: because geometry thereby
becomes the science of the situabilities of our fixed bodies, and our physical formulae
thereupon assume their simplest form. This is naturally also Helmholtz’s opinion; for him
too, as the first line of this paragraph shows, what decides the conception to be chosen
is scientific usefulness.

54 This sentence says it once again: the theory of space is not a purely mathematical
discipline, but a theory of the situabilities of rigid bodies, or, as Einstein also terms it,
‘practical geometry’. Helmholtz also calls it physical geometry (see below, p. 154).

55 Helmholtz does not use the word ‘transcendental’ correctly in its Kantian sense; in
particular he often confuses it, as also in this passage, with ‘a priori’ .

The sense of the sentences which follow should be further elucidated with a few words
in view of the importance of their content. Having rejected the existence of an a priori
intuition of ‘space', Helmholtz examines the question of whether we perhaps possess an
a priori intuition of the ‘fixed body’ . What, he asks, would be the consequence? The
propositions of the then existing intuitive geometry, though indeed a priori, would be
analytic, for they would be deducible from the properties of those ideal rigid bodies with
whose situabilities this geometry would deal. But as to what are the situabilities of any
actual bodies — on this question of practical geometry it could indeed teach us nothing;
the propositions of the latter would continue to be synthetic a posteriori judgments.

Let us assume for a moment that this supposed a priori geometry were Euclidean, then
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whose situational laws obey Euclidean rules. However, it is a purely empirical fact if our
most convenient mesuring rods actually are rigid in this sense. This a priori intuition would
therefore be superfluous, it would contribute nothing to the knowledge of actuality and
thus would not fulfil the very task assigned to it by Kant. It would indeed even obstruct
and be harmful for our knowledge, as soon as it turned out (as is evidently the case now-
adays) that we can only maintain the assumption of strictly Euclidean situabilities if we
sacrifice for this the beauty and perfection of our system of physics. In short, the assump-
tion of an a priori intuition of the rigid body would be scientifically mistaken in every
respect. Helmholtz also follows similar trains of thought below on pp. 155 ff.

¢ This paragraph repeats once again that the geometry applied to actuality — which arises
from the formally abstract discipline as soon as one brings it into coincidence with actuality
at any point whatsoever, and gives its empty concepts a real content — that this practical
geometry is an empirical science throughout.



