1) Elements of Propositional Logic
INTRODUCTION
Deductive systems are divided into axiomatic systems and systems of natural deduction. Here we shall be concerned exclusively with the latter, and more specifically we shall present, in a somewhat simplified form, the system of natural deduction for propositional logic developed by E. J. Lemmon [1965].[footnoteRef:1] [1:  “Propositional” is called the calculus in which the logical atoms are propositions (e.g. p, q, r, etc.).] 

A system of natural deduction aims to set out the ways in which a conclusion follows validly from certain premisses. It therefore consists of a set of rules of inference that determine whether or not a well-formed formula follows logically from any number of well-formed formulas.
FORMATION RULES
Before turning to the rules of inference, we must clarify a metatheoretical issue: the premisses of an argument (whether valid or not) must be linguistic entities that admit of the predicates true and false, and only such entities. That is to say, they must be propositions. In formal logic, which is concerned with the form rather than the content of propositions, premisses typically consist of propositional variables that either occur freely[footnoteRef:2] or are combined by propositional connectives.[footnoteRef:3] In order, then, for such expressions to function as premisses or conclusions of arguments, they must be either true or false; and for this to be possible, they must be well-formed. This means that a well-formed formula (hereafter: wff) must be a bearer of meaning and, as such, must allow for a judgment as to its truth or falsity. [2:  For example, the variables p, q, etc. may function as premisses.]  [3:  For example, p & q.] 

Attention: the truth or falsity of a formula does not depend on whether or not it is well-formed. What does depend on this is whether it can be true or false at all.
We therefore present a set of formation rules.
The language we employ has the following features.
It contains the following symbols:
1. An infinite number of propositional variables: p, q, r, s, …
2. The following propositional connectives: ¬, →, &, ∨, ↔.
3. Left and right parentheses.
By a “formula” we mean any sequence of one or more symbols. For example, even the non-well-formed sequence p)(&counts as a formula.
The well-formed formulas are the following, and only the following:
1. Every propositional variable.
2. Any wff that is preceded by ¬, e.g. ¬p.
3. Any formula consisting of a wff, followed by the connective →, which is in turn followed by a wff, with the whole formula enclosed in parentheses, e.g. (p→q).
4. The same as (3), but with & in place of →.
5. The same as (3), but with ∨ in place of →.
6. The same as (3), but with ↔ in place of →.
For reasons of convenience, the syntactic rules concerning parentheses may be simplified on the basis of the following conventions. Let us agree that ¬ has narrower scope than & and ∨; that & and ∨ have narrower scope than →; and finally that → has narrower scope than ↔. Under this assumption, many parentheses may be omitted from various formulas without calling into question their status as wffs. Put differently, parentheses may be omitted if, and only if, the formula that results from their removal uniquely determines their reinsertion. For example, the wff ((p&q)→r) may be simplified to (p&q→r), precisely because the convention that & has narrower scope than → renders p&q the antecedent and r the consequent. It may be further simplified to p&q→r, since no ambiguity arises thereby. By contrast, the formula (p&(q→r)) may be simplified only to p&(q→r), because any further simplification would make it equivalent to the previous formula, rather than to (p&(q→r)).
NATURAL DEDUCTION
We may now state the rules of inference, having first clarified that the variables A, B, C, etc., will be variables ranging over well-formed formulas (that is, meta-variables), and that the meta-connective ⊢ will connect a set of well-formed formulas with another well-formed formula, signifying that the formula occurring to its right is derived logically from the set occurring to its left. For example,
{p→q, q} ⊢ p
means that the conclusion p is derived from the premisses p→q and q.
Attention: the fact that the above expression means what it means does not imply that it is correct. In the present case, it in fact constitutes one of the most typical logical fallacies.
Let us further clarify that, for the formal presentation of arguments, the following procedure will be adopted. First, the premisses and the conclusion will be presented using the above technique involving the meta-connective ⊢. Next, each inferential step will be presented independently on a separate line and will be assigned, on its left, a consecutive number drawn from the set of natural numbers (that is, the first step will receive the number 1, the second the number 2, and so on). On the right of each step, the rule of inference that licenses its appearance at that step will be indicated, and, where necessary, the consecutive numbers of the premisses from which it has been derived.
We now turn to the rules:
1. Rule of Assumption: This rule allows us to introduce, at any point in a proof, any well-formed formula we wish. To the right of the premiss, the abbreviation Ass. is written.
2. Modus Ponendo Ponens: This rule states that if one premiss is of the form A→B and another is of the form A, then we may derive the formula B. To the right of B, we write the consecutive numbers of the premisses A→B and A, together with the abbreviation MPP.
3. Modus Tollendo Tollens: This rule states that if one premiss is of the form A→B and another is of the form ¬B, then we may derive the formula ¬A. To the right of ¬A, we write the consecutive numbers of the premisses A→Band ¬B, together with the abbreviation MTT.
4. Double Negation: This rule states that if one premiss is of the form A, we may derive the formula ¬¬A, and conversely. To the right of the derived formula, we write the consecutive number of the premiss from which it is derived and the abbreviation DN.
5. Conditional Proof: According to this rule, if, on the basis of a premiss A, we have derived the conclusion B, we may derive the autonomous conclusion A→B. To the right of A→B, we write the consecutive numbers of A and B, together with the abbreviation CP.
6. &-Introduction: If one premiss is of the form A and another is of the form B, then we may derive the formula A&B. To the right of A&B, we write the consecutive numbers of A and B, together with the abbreviation &-I.
7. &-Elimination: If one premiss is of the form A&B, then we may derive both the formula A and the formula B. To the right of A (or of B), we write the consecutive number of A&B, together with the abbreviation &-E.
8. ∨-Introduction: If one premiss is of the form A, then we may derive the formula A∨B, whatever B may be. To the right of A∨B, we write the consecutive number of A, together with the abbreviation ∨-I.
9. ∨-Elimination: If one premiss is of the form A∨B, and we have succeeded in deriving the conclusion C both on the basis of the premiss A and on the basis of the premiss B, then we may derive the conclusion C on the basis of the premiss A∨B. To the right of C, we write the consecutive numbers of A∨B, of the assumption A, of the conclusion Cas derived from the assumption A, of the assumption B, and of the conclusion C as derived from the assumption B. Finally, we add the abbreviation ∨-E.
10. Reductio ad Absurdum: If, on the basis of a premiss A, we have derived an arbitrary formal contradiction B&¬B, we may derive the premiss ¬A. To the right of ¬A, we write the consecutive numbers of A and of the conclusion B&¬B, together with the abbreviation RAA.
11. Rule of Tautology Introduction: Any tautology may be introduced at any step of a proof without being counted as an additional premiss. To the right of the tautology, we write the abbreviation T.[footnoteRef:4] [4:  A tautology or theorem is any formula that is true under every possible assignment of truth values. We may also formulate the same definition by saying that tautologies are valid conclusions derivable from a zero number of premisses. Very often the notation ⊢ A or ∅ ⊢ A is used for precisely this purpose, and in this spirit. The formula p → p is a tautology in the sense that the set of premisses supporting it is empty. That is to say, it is true unconditionally.] 

Exercise 1: Prove the following arguments by natural deduction:[footnoteRef:5] [5:  The expression “A ↔ B” is an abbreviation of the expression “(A → B) & (B → A)”.] 

1. { p } ⊢ p
2. { p→q, q→r, p } ⊢ r
3. { p→(q→r), p, ¬r } ⊢ ¬q
4. { ¬p→q, ¬q } ⊢ p
5. { p→q } ⊢ ¬q→¬p
6. { q→r } ⊢ (¬q→¬p)→(p→r)
7. { (p&q)→r } ⊢ p→(q→r)
8. { p&q } ⊢ q&p
9. { p∨q } ⊢ q∨p
10. { p→¬p } ⊢ ¬p
11. { ¬p, p∨q } ⊢ q
12. Show why, on the basis of the rule of Conditional Proof, all the above arguments may also be presented as tautologies (theorems), and determine which these are. Note that an expression of the form { A, B }→C is not a well-formed formula. How can this obstacle be overcome? Find two ways.
13. ∅ ⊢ ¬(p&¬p) — Law of Non-Contradiction.
14. ∅ ⊢ p∨¬p — Law of Excluded Middle.
15. On the basis of the tautology obtained from exercise 11, prove that { p&¬p } ⊢ r.
NOTE BENE: Exercises 1–10 are of increasing difficulty. There is a rough correspondence with the order in which the rules were presented, but as the exercises progress the rules are combined. 

TRUTH TABLES
In addition to the proof method presented above, there is also the so-called method based on truth tables. This method is deductively equivalent to natural deduction and is grounded in a fundamental assignment of truth values to the connectives ¬ and →, together with a series of definitions for the remaining connectives.
The truth tables for the connectives ¬ and → are the following:
	¬
	

	1
	0

	0
	1

	
	1
	0

	1
	1
	0

	0
	1
	1


The above tables are to be read as follows. In the first column, vertically, the possible truth values of the rightmost variable are listed.[footnoteRef:6] In the first row, horizontally, the possible truth values of the second variable from the right are listed. The tables then function like Cartesian coordinate diagrams. The overall truth value corresponding to each possible assignment is found in the square at the intersection of the rectangle in which the one variable appears with the rectangle in which the other appears.[footnoteRef:7] The number 1 denotes truth, and 0 denotes falsity. [6:  In the case of negation there is one and only one variable.]  [7:  Obviously, in the case of negation there is no such intersection, and the total value appears on the second horizontal line.] 

Attention: Observe that the above tables reflect the definitions of both negation and material implication. The negation of a true proposition is false, and conversely. The only case in which a material implication is false is when the antecedent is true and the consequent false.
The remaining connectives may be introduced as follows:
A∨B =def. ¬A→B
A&B =def. ¬(A→¬B)
A↔B =def. (A→B)&(B→A)
Here it should be emphasized that the connective “=def.” belongs to the metalanguage and indicates that the expression appearing to its left is an abbreviation of the expression (already available in the calculus) appearing to its right. As a result, the two expressions may be mutually substituted salva veritate, that is, without altering the truth value of the formula in which they occur.

Exercise 2
1. Construct the truth tables for the remaining connectives, on the basis of the truth tables for negation and material implication and the definitions given above.
2. Prove the formulas of Exercise 2 by means of truth tables.
NOTE BENE: The proofs required in Exercise 2.2 may be carried out in three ways. First, you may exhaust all possible truth-value assignments for all the variables occurring in each formula, and verify that the resulting statement is always true. Second, you may focus on only some of these variables and verify that the statement comes out true no matter what values those variables receive. In that case, the proof may stop there, since the values of the remaining variables become irrelevant. Finally, you may reason as follows: assume that the formula you wish to prove is false. If that assumption yields an inconsistent assignment, then the formula is true, by reductio ad absurdum. Compare the proofs of the formula p→(¬p→r) as presented in the course.
These three methods are typically preferable in the reverse order from that in which they have been listed here. This, however, is not a panacea. The general criterion is which of the three, in each case, leads to the fastest possible proof. In any event, the second method is not always feasible.


2) Russell’s Paradox
The axiom of early (or, as it is also called, naïve) Set Theory that most closely approximates the fifth axiom of the Grundgesetze and that is held responsible for generating Russell’s paradox appears to articulate an intuitively obvious truth—namely, that for every property there exists a set consisting of all and only those objects that have (satisfy) that property.
This axiom is called the axiom of comprehension (or of inclusion) (comprehension; sometimes also the “axiom of extension”),[footnoteRef:8] and in formal guise it is stated as follows: [8:  Although this name is usually given to another axiom of Set Theory, according to which, if an object belongs to one set if and only if it belongs to another, then the two sets are identical.] 

(∀φ)(∃y)(∀x)(x∈y ↔ φ(x))[footnoteRef:9] [9:  Because quantification over properties belongs to second-order categorical logic (i.e. to a logic in which a variable may be substituted also by properties), whereas standard Set Theory is first-order (i.e. the variable takes as values only individuals and sets), this axiom is presented as an axiom schema. That is, it is in essence an infinity of axioms, each of which expresses the corresponding truth for each of the infinitely many properties. More specifically, you will see it formulated as (∃y)(∀x)(x ∈ y ↔ F(x)), with the remark that this is an axiom schema. This means that it corresponds to the axioms (∃y)(∀x)(x ∈ y ↔ x is white), (∃y)(∀x)(x ∈ y ↔ x is circular), etc., for any property whatsoever. We also note that in first-order logic these properties, although infinite, are denumerable.] 

It is read as follows: “for every property, there exists a set such that, for every object, it belongs to that set if and only if the object satisfies the property”—or, more accurately: “for every property, there exists an object such that any object belongs[footnoteRef:10] to the first if and only if the second satisfies the property.” From this it follows easily that, for every property, there exists exactly one such set. Hence the axiom is equivalent to the claim that to each property there corresponds exactly one set, namely the set of things that satisfy it; and, ultimately, that every property denotes a unique set that constitutes its extension. [10:  From this we understand that the second object must be a set, so that the relation can make sense. This, however, does not mean that the sentence—for example—“the set of the rationals belongs to Mr Papadopoulos” is ill-formed. It is simply false, because (among other things) no individual can have subsets.] 

Before we proceed to the construction of Russell’s paradox, let us recall that properties correspond (at the level of language) to predicates, and that these, in non-technical language, may be correlated with so-called “open sentences of n places.” A monadic predicate (what in ordinary speech we typically call a property) corresponds to an open sentence of one place. For example, in the sentence “4 is a number” we create a gap by removing “4” and obtain the open sentence “— is a number.” This is the open sentence corresponding to the property of being a number. For dyadic, triadic, etc. predicates (what in ordinary speech we typically call relations), we proceed analogously so as to arrive at open sentences of one place, two places, and so on. For example, for the dyadic predicate (relation) of something’s being greater than something else,[footnoteRef:11] we begin with the (arbitrary) sentence “4 is greater than 3,” remove “4” and form the open sentence “— is greater than 3,” which corresponds to the property of being greater than 3; then we remove “3” as well, thereby arriving at the desired open sentence of two places, “— is greater than —,” which corresponds to the relation in question. [11:  Ordinary language is misleading here, because in this expression it is suggested that the first argument of the property cannot be the same as the second. In the formal language, however, this does not hold, since the expression “… R —” can be completed with the same argument in both the first and the second slot, whatever R may be. Of course, if R is “— is greater than —”, and we supply the same argument in both slots, the result will be a false statement. But this does not mean that it will be ill-formed.] 

Consider now the sentence “A does not belong to itself,” and remove its subject.[footnoteRef:12] We thereby obtain the sentence “— does not belong to itself.” This corresponds to the property of not belonging to itself. In formal language, the predicate of belonging is symbolized by “∈”[footnoteRef:13] and that of not belonging by “∉.” And it is evident that, since the ordinary-language sentence “A does not belong to itself” is equivalent to the sentence “A does not belong to A,” the formula “A∉A” is the formal counterpart of the latter; and the quantified formula “(∀x)(x∉x) ↔ φ(x)” states that the property of being φ coincides extensionally with the property of not belonging to itself. This is something we shall apply immediately below in the semi-formal derivation of Russell’s paradox. [12:  Someone might wonder what it could mean for something to belong (or not to belong) to itself. Intuitively, both of these predicates are notions that apply to sets, since only to sets can something belong. But can a set belong to itself? Again intuitively, one might say that a set cannot belong to itself. The set—for example—of all mammals is not itself a mammal, and therefore does not belong to the set of mammals, i.e. to itself. But consider the set of all things that are not mammals. Since it itself (as a set) is not a mammal, it must belong to itself.]  [13:  From the Ancient Greek “ἔστι”. This symbol was first used with this meaning by the Italian mathematician Peano.] 

Let us therefore return to the axiom of comprehension and specify φ as the property of not belonging to itself. Since the “something” at issue is here x, the formula becomes (∃y)(∀x)(x∈y ↔ x∉x). The rule of quantificational logic applied here is the rule of Universal Instantiation, which formalizes the intuitively obvious truth that if something holds of everything, then it holds of each individual thing. The axiom of comprehension asserts something about all properties; consequently, what it states holds also for the property of not belonging to itself. Beyond this point there are many equally legitimate ways to continue until one reaches a formal contradiction. One of these is the so-called technique of the arbitrary object,[footnoteRef:14] which, however, involves certain difficulties and will not be applied except at the final stage. Another way is to pass from (∃y)(∀x)(x∈y ↔ x∉x) to (∃y)(y∈y ↔ y∉y). In effect, we choose to assign to the variable bound by the universal quantifier the value of the variable bound by the corresponding existential quantifier. Why this is legitimate becomes intuitively evident if one reflects that, if there exists an object such that every thing stands to it in relation R, then that object must stand in relation R to itself as well (whatever it may be).[footnoteRef:15] [14:  According to this rule, if a formula says that there exists at least one object for which something holds, we are entitled temporarily to assign an arbitrary value to the variable and eliminate the quantifier. For example, from the premiss “(∃x)(Fx)” we may suppose that one of the objects that are F is denoted by the term (see the notes on quantifiers) “a”, and derive (temporarily) the formula “F(a)”.]  [15:  Note here that, in general, the corresponding inference would not be legitimate if we were dealing with the premiss (∀x)(∃y)(x ∈ y ↔ φ(x)). If for every thing there exists an object such that it is related to it by the relation R, it does not follow that there exists an object such that every thing is related to it by R. In this respect, P. Geach’s example is illuminating. The sentences “There is a girl whom all the boys love” and “All the boys love a girl” are not equivalent. The first implies the second, but not conversely, since the first implies that the girl is the same one, whereas the second does not. Thus, if and only if it is the same one, then indeed all the boys love one (the same) girl. But it does not hold that, if all the boys love a (possibly different in each case) girl, that girl must be the same.] 

At this point we are very close to a formula that constitutes a formal contradiction. Recall that a formal contradiction is any formula falling under the general schema p ↔ ~p. The presence of the existential quantifier at the head of “(∃y)(y∈y ↔ y∉y)” constitutes a final obstacle, but one that can easily be overcome by assigning an arbitrary value to this object[footnoteRef:16]—i.e. to the object that belongs to itself if and only if it does not belong to itself. Let us suppose that this object (one of these objects) is called “α.” Then we immediately obtain the conclusion (α∈α) ↔ (α∉α), which in turn is equivalent to (α∈α) ↔ ~(α∈α).[footnoteRef:17] We emphasize here that this object need not be called by that name. All we take as given is that, if it exists, then it must be called something, and hence some corresponding formula must hold. Now, if we attend to the last formula, we cannot but see that it falls under the aforementioned schema. We may therefore now also eliminate the arbitrary designation[footnoteRef:18] of the set, arriving at the metalinguistic formula (∃p)(p ↔ ~p).[footnoteRef:19] This metalinguistic formula states that there exists, in the object-language, a formula that holds if and only if its negation holds. [16:  And, to be more precise, “one of these objects”. We know that this object is unique, but this does not follow from the last formula, nor does it have to follow in order for us to be led to a paradox. Note, moreover, that here we are applying the rule that we avoided above.]  [17:  This is by definition of the symbol “∉”.]  [18:  This is something we must always do within the framework of this technique.]  [19:  If one wishes to avoid this technique of arbitrary value, one may use the so-called descriptive way of denoting sets, and arrive at the formula ({x : x ∉ x} ∈ {x : x ∉ x}) ↔ ¬({x : x ∉ x} ∈ {x : x ∉ x}), which is equally contradictory.] 

Thus, starting from the intuitively obvious axiom of comprehension and proceeding by valid logical steps, we have arrived at a formal paradox. The foregoing is a formulation of the extensional aspect[footnoteRef:20] of Russell’s famous paradox. [20:  We remind the reader that the intensional aspect formulates the paradox not in set-theoretic terms but in terms of properties. See below.] 

In the first years following the discovery of the paradox, attempts were made to restrict its consequences in such a way that contradictory statements would not impinge upon the edifice of mathematics. Put differently, logicians attempted to prevent contradictions from infiltrating all levels. As was shown, however, almost simultaneously by Post and by Łukasiewicz, once a contradictory statement becomes a theorem of the calculus, all statements without exception become theorems. In effect, this was a result already known to Medieval logicians, but it had meanwhile been forgotten.[footnoteRef:21] Another way of putting the same point is that, once a contradiction arises in the system, a free propositional variable also arises. Consider what it would mean for p to be a theorem: it would mean that any well-formed formula is a theorem, since any well-formed formula may serve as a permissible substitution instance of p. [21:  This logical principle is also known as ex contradictio quodlibet. From a contradiction, everything follows.] 

A more drastic solution was required.
The solutions proposed since then are, in essence, three. The first is Russell’s Theory of Types.[footnoteRef:22] The second comprises various set theories first formulated by Zermelo,[footnoteRef:23] which replace the axiom of comprehension with the axiom of separation(Aussonderung). The third consists of the so-called zig-zag theories, first systematized by Quine,[footnoteRef:24] though the intuition underlying them had already been expressed by Russell. [22:  First formulated in B. Russell, “Mathematical Logic as Based on the Theory of Types”, American Journal of Mathematics 30 (1908).]  [23:  E. Zermelo, “Untersuchungen über die Grundlagen der Mengenlehre”, I, Mathematische Annalen 59 (1908).]  [24:  W. O. Quine, “New Foundations for Mathematical Logic”, American Mathematical Monthly 44 (1937).] 

The first of these avenues is the most intuitively obvious. Its technical apparatus, however, is particularly complex. The second is technically simpler, but its solution has fewer intuitive supports. The third, although it begins with relatively simple modifications of the axiom of comprehension, leads to formal results that, while not contradictory, are so counter-intuitive that they are anything but helpful to the working mathematician.
In what follows, we shall present the general principle governing the Theory of Types, as well as a formal sequence illustrating why Zermelo’s set theory does not allow the paradox to be formed.
The general principle underlying the Theory of Types is intuitively clearest with respect to the intensional aspect of the paradox, which we shall present here in ordinary language. Consider the property of not applying to itself. The earlier examples concerning sets suffice—once transformed into examples of properties—to show when a property applies to itself and when it does not. The property, for instance, of being a mammal does not apply to itself, since properties are not mammals. By contrast, the property of not being a mammal does apply to itself, for precisely the same reason. The question that generates the contradiction is whether the property of not applying to itself applies to itself or not. Suppose that it does apply to itself. Then, since what it requires is that something not apply to itself, it does not apply to itself. Suppose, on the other hand, that it does not apply to itself. Then, since it satisfies the condition associated with it, it does apply to itself. Hence, it applies to itself if and only if it does not apply to itself.
In order to give a minimum degree of formality to the present discussion, let us suppose that from the sentence “being a mammal does not apply to itself” we remove the subject and form the one-place open sentence: “— does not apply to itself.” Let us further suppose that the property corresponding to this open sentence is symbolized in a formal language as E[ … ]. Then the intensional paradox corresponds to the formula
E[E[ … ]] ↔ ~E[E[ … ]].
We recall here that within the brackets we place the argument of the function. Thus, if, as in our case, the argument is the function itself, we must repeat it in the position reserved for the argument. And this is exactly what we have done above.
The solution corresponding to the Theory of Types consists in excluding the possibility that a function may take just any value as its argument. The so-called Vicious Circle Principle excludes the use of an expression as an argument of itself. At the level of functions, this means that no function may take itself as an argument; and, at the level of properties, that no property may hold—or fail to hold—of itself. To say that either of these occurs is simply syntactically ill-formed. More precisely, the Russellian solution consists in stratifying functions into an infinity of Types, each of which takes as arguments objects belonging to the immediately lower one. Thus, a function of Type n may take as arguments objects of Type n – 1. The question whether the property of not applying to itself applies to itself or not is devoid of meaning, since this “something” lacks a determinate Type. The question should rather be whether the property of not applying to itself, when that “something” is of Type n, applies to itself or not. And the answer is that it cannot apply—or fail to apply—to itself, because the property is of Type n + 1. In our example, the expression E[E[ … ]] is illegitimate, because both the function and the argument are the same thing and hence belong to the same Type, whereas the former ought to belong to the immediately higher Type than the latter. As Russell puts it, “every expression containing an apparent variable has a type higher than that of the variable.”

The way in which the paradox is addressed from the standpoint of Zermelo’s Set Theory is different. The intuition that led Zermelo to the formulation of the axiom of separation, which in effect replaced the axiom of comprehension, is the following. To say that for every property there exists a set denoted by it appears to have the same truth conditions as saying that for every property and for every set there exists a subset of the latter consisting of those objects that belong to the former and satisfy the property in question.[footnoteRef:25] How close these two conditions are can be seen from the following consideration. What the axiom of comprehension essentially seeks to secure is that there exists an ideal extensional criterion by means of which we can decide, for every object and every property, whether or not the object satisfies the property. This extensional criterion is whether or not the object belongs to the set denoted by the property. Now consider what the second of the above claims entails.[footnoteRef:26] It entails (intuitively) exactly the same thing as the first, because, according to it, if an object belongs to some (arbitrary) set, there exists a subset of that set consisting precisely of those members of the superset that satisfy the property. Consequently, the object satisfies the property if it belongs to that subset, and it does not satisfy it if it does not belong to it. [25:  This subset may also be the empty set or the set itself. It will be empty in the case where none of the members of the superset satisfies the property, and it will be the superset itself if all of its members satisfy it.]  [26:  That is, to say that for every property and for every set there exists a subset of the latter consisting of those objects that belong to it and satisfy the given property.] 

A more careful look, however, shows that the truth conditions of these two claims are not the same. They would be exactly the same under the assumption that for every object there exists a set to which it belongs. This assumption appears intuitively obvious if one reflects that (again, intuitively) there exists a set that contains everything—that is, the universal set. It is precisely this assumption that Zermelo’s set theory rejects.[footnoteRef:27] More specifically, the axiom of separation forces us, if we are to avoid the paradox, to arrive at the conclusion that there exist multiplicities[footnoteRef:28] that are not subsets, and for which, consequently, the criterion cannot be applied. These multiplicities will later be called classes in subsequent set theories, and their general characteristic is that they are excessively large. Hence this method is called (already by Russell) the method of limitation of size. [27:  This, however, is something that also holds in Type Theory. It does not hold in Quine’s systems.]  [28:  Among which are the set of all sets and the set of all sets that do not belong to themselves.] 

Let us now examine more closely how the axiom of separation works, which, incidentally, is so called because the set that constitutes the extension of a given property must each time be a subset “separated off” from a pre-existing set.
It is evident, on the basis of the foregoing, that the axiom of separation must be formulated as follows:
(∀φ)(∀z)(∃y)(∀x)(x∈y ↔ φ(x) & y⊆z)[footnoteRef:29] [29:  According to the usage we adopt for the symbols, the formulation y ⊆ z does not exclude y being identical with z. This is excluded by the formulation y ⊂ z. Caution! In other textbooks the opposite convention holds. It should also be noted that, for other reasons, in first-order logic the axiom is an axiom schema. In textbooks the axiom usually appears as (∃y)(∀x)(x ∈ y ↔ φ(x) & x ∈ z). The set of separation appears as a free variable, something that facilitates many technical manipulations, but which does not fall under the rules of Categorical Logic that we are using here. Finally, find for yourselves why the truth of “(∀x)(x ∈ A → x ∈ B)” implies the truth of “A ⊆ B”, and conversely.] 

We must note here that z is the set from which y is separated (hence the additional condition y⊆z, read as “y is a subset of z”). Put simply, the axiom states that for every property and for every set, there exists a subset of that set consisting of precisely those members of it that satisfy the property.
Let us now see in two ways how this formulation blocks the paradox.
We begin with an approach in ordinary language. Suppose we consider the property of not belonging to itself, and take (as the separating set) the set of all objects that do not belong to themselves. According to the axiom, there must exist a subset of this set consisting of exactly those of its members that do not belong to themselves. We must also be able, for any object, to say whether or not it belongs to this subset. The question that generated the paradox was whether the set of all sets that do not belong to themselves belongs to itself or not. Let us now pose the same question mutatis mutandis. It is evident that what we are now asking is whether the separating set belongs or does not belong to that subset of it which satisfies the property in question. Since this set is the one corresponding to the property of not belonging to itself, this amounts to asking whether it belongs to itself or not. Now, however, and in contrast to what happened before, we can avoid the contradiction by denying that it is a subset of itself. (Recall that, according to Zermelo, multiplicities of this kind are not subsets of any set.)[footnoteRef:30] Thus, according to Zermelo, we are forced to conclude that our initial assumption concerning the separating set was mistaken, and that it is not a set, since every set is a subset of itself. According to von Neumann, we are led to the necessary conclusion that this multiplicity is not a set but a class. [30:  More precisely, Zermelo did not even consider them well-formed collections. They were later so characterised by von Neumann.] 

More formally, we may proceed as follows. First, we specify φ, as in the axiom of comprehension, and are led to the formula:
(∀z)(∃y)(∀x)(x∈y ↔ x∉x & y⊆z).
Next, we specify x by assigning it the value z, which yields the formula:
(∀z)(∃y)(z∈y ↔ z∉z & y⊆z).
Now, in the present case, we can also show that if we assign to z the value of the multiplicity of all sets that do not belong to themselves, the value of y will coincide with that of z, and hence we may initially arrive at the formula:
(∃y)(y∈y ↔ y∉y & y⊆y),[footnoteRef:31] [31:  Caution! The derivation of the formula (∃y)(y ∈ y ↔ y ∉ y & y ⊆ y) from (∀z)(∃y)(z ∈ y ↔ z ∉ z & y ⊆ z) is not immediate. Instantiation is possible here because z is the specific collection we have in mind. Compare the “derivation” of (∃y)(y ≠ y) from (∀x)(∃y)(x ≠ y). It is illegitimate: the first formula is false, whereas the second is true. If one wishes to avoid these complications, one may use the aforementioned rule of the arbitrary object as follows. First, instantiate z with the object b. The formula becomes (∃y)(∀x)(x ∈ y ↔ x ∉ x & y ⊆ b). Then, using the rule of the arbitrary object, instantiate y with a, obtaining (∀x)(x ∈ a ↔ x ∉ x & a ⊆ b). Finally, instantiate x with a, and we arrive at the non-contradictory “a ∈ a ↔ a ∉ a & a ⊆ b”. This simply implies ¬(a ⊆ b). In this proof, of course, it is implicit that, with the particular collections we have in mind, a = b.] 

and then, exactly as in the case of the axiom of comprehension, at the formula:
α∈α ↔ α∉α & α⊆α.
In contrast to what happened in the axiom of comprehension, however, the formula derived here is not a formal contradiction.[footnoteRef:32] This is because it is either a formal contradiction or true. It is a formal contradiction under all possible truth-value assignments except that in which both “α∈α” and “α⊆α” are false. Consequently, in order to avoid the antinomy, we must infer ¬(α⊆α), something that accords with the Russellian intuition that this multiplicity is so large that it is not a subset of any set. [32:  The only relevant metalinguistic conclusion that can be drawn is “(∃p)(∃q)(p ↔ ¬p & q)”, which, however, does not render the object language contradictory. Compare the corresponding conclusion concerning the axiom of comprehension.] 

Finally, note that, from a technical point of view, what makes the avoidance of the paradox possible is the additional condition, which creates vital space within the overall formula so that a non-contradictory assignment of truth values can exist. The formula p↔¬p is equivalent to a free variable, whereas the formula p↔¬p & q merely entails that both p and qare false.


3) Methods of Quantification
The aim of the following pages is to bring out the substantive philosophical differences that lie beneath the three most important quantificational methods, namely, objectual quantification, substitutional quantification, and quantification within the framework of free logic (henceforth “FL”).
The essential difference that distinguishes these three methods concerns what the bound variable in the calculus represents (or, equivalently, how it is interpreted). The difference is therefore, in the first instance, semantic rather than syntactic. This means that the distinction concerns, primarily, not the rules governing the relations among the symbols of the calculus, but what those symbols represent (i.e. the interpretation we assign to them). A consequence of this difference, of course, is that the predicate logics that adopt these three methods are not deductively equivalent. There are various views about when two logics are deductively equivalent. Here we shall use the coarsest criterion: two logics are deductively equivalent if and only if they have the same set of theorems.
In what follows, we shall present an argument form (together with its corresponding theorem) which is valid under objectual quantification, also valid under substitutional quantification (but under a different interpretation), and invalid in FL.
We recall that our predicate language is taken to include, in addition to (1) the language of propositional logic, (2) infinitely many predicate symbols (F…, G…, etc.), (3) the universal and existential quantifier, and (4) variables bound by the universal and existential quantifier, also (5) an infinite number of constants:[footnoteRef:33] x(1), x(2), x(3), …, y(1), y(2), y(3), …, and so on. These constants are governed by the following formation rule: [33:  It would be the same if we said “names” and used the term in the sense of S. Kripke, according to whom names have a fixed denotation in all possible worlds. In his terminology, they are “rigid designators”.] 

For any predicate symbol F and any constant x(n), the formula “F(x(n))” is well formed.
This is read as “x(n) is F.” Under any other condition, a formula containing these constants is not well formed, unless it is a complex well-formed formula and thus analysable into more primitive well-formed formulas.[footnoteRef:34] If the latter obtains, then any well-formed formula containing constants must contain them in the form specified at the beginning of the paragraph. [34:  For example, the formula “F(x(1)) & F(x(2))” is well-formed but compound, since within it occur the well-formed formulas “F(x(1))” and “F(x(2))”.] 

For the moment we leave unspecified what sort of constants these are, since the answer to that question depends directly on which school of quantification we adopt. It suffices, for present purposes, to say that the domain of the bound variable is directly related to these constants. More specifically, we may say that the domain of the variable and the set of constants can be put into a one-to-one correspondence both in the objectual and in the substitutional setting. In the latter case, the domain is that very set; in the former, it is whatever set that set denotes. In the case of FL, finally, the domain of the variable may be a subset of the set of constants.
Moreover, we may suspect from the term “constants,” as opposed to “variables,” that they have a denotation that does not depend on context. But what, exactly, is that relation, and what, exactly, is that domain?
This is the point at which the different semantics of the above methods determine the nature of these constants.
According to the semantics of objectual quantification, the bound variable ranges over the set of objects (things, individuals) in the world. According to the semantics of substitutional quantification, the bound variable ranges over the set of terms of the language. According to FL, the bound variable ranges over the same sort of set as in objectual quantification, but the set of terms of the language denotes the set of all possible objects in all possible worlds.[footnoteRef:35] [35:  We present here a simplified version of this method, because free logic also allows for terms that denote impossible objects.] 

Accordingly, using set-theoretic terminology, we may symbolize the above domains as follows:
Domain of objectual quantification: W
Domain of substitutional quantification: {α : α is a singular term of L}
Domain denoted by the set of terms of a language, according to FL: {x : (∃W)(x ∈ W)}
With respect to these formulations, it should be noted that the symbol “W” is used for the world;[footnoteRef:36] the symbols “x,” “y,” etc. are used for objects; the symbol “L” denotes the language; and the symbols “α,” “β,” etc. denote singular terms of the language. We recall that, in formal language, a “singular term” is anything that can serve as the subject of a sentence of the non-formal (ordinary) language and is not (in its formal analysis) a variable. For example, “man” in the sentence “man is mortal” is not a singular term, since it is analysed as “(∀x)(A(x)→Θ(x)),” where A(…) is the predicate “… is a man” and Θ(…) the predicate “… is mortal.” We further clarify that whether a term of natural language is singular, a variable, or general does not depend on whether the grammatical subject is in the singular or plural. For example, the logical analysis of the sentence “The natural numbers are infinite” treats the subject as a singular term: the subject is {x : x is a natural number}. By contrast, a variable is the logical subject of the sentence “The natural numbers are either odd or even.” [36:  In the case of free logic, W becomes a bound variable, which implies that there (may) be more than one (possible) worlds.] 

Let us now consider a specific example.
One of the most central issues in the semantics of the quantifiers is whether we are entitled to infer, from sentences of the form [(∀x) φ], sentences of the form [(∃x) φ]. More specifically, in ordinary language, the question is whether we are entitled to infer, from sentences of the form “For all …, it holds that —,” sentences of the form “There exists an … such that —.” Because of the familiar peculiarity of material implication—according to which any conditional is true whenever its antecedent is false—we shall not examine analyses of sentences of the form “For all …, it holds that —.” The reason is that, by the same implication, the sentence “(∀x)(A(x)→Θ(x))” is true, in the case in which there are no human beings in the world.
To avoid this complication, we shall focus on sentences of the general form [F(x(n))], where “x(n)” is an arbitrary constant, and we shall ask whether from sentences of this form we may infer sentences of the form [(∃x)F(x)]. In ordinary language, the question is whether from sentences of the form “x(n) is —” we may infer sentences of the form “There exists something that is —.”
More specifically, the argument schema[footnoteRef:37] under consideration is: [37:  We say “argument schema” and not “argument”, because in essence it is an infinity (denumerable) of arguments, whose premisses are F(x(1)), F(x(2)), F(x(3)), etc., and whose fixed conclusion is (∃x)F(x).] 

F(x(n))
──────────
(∃x)F(x)
which, according to the completeness theorem for first-order predicate logic, should correspond to the theorem schema:
⊢ F(x(n)) → (∃x)F(x)
The critical question as to whether the argument is valid is whether, on the assumption that x(n) is F, we are entitled to infer that something exists that is F.
Let us reason contrapositively. Under what circumstances could the sentence “x(n) is F” be true while nothing is F? Plainly, this would be possible if and only if x(n) did not exist. But, as we said above, in objectual settings the set of constants corresponds one-to-one with the domain of the variable. More precisely, the source of this correspondence is that the former denotes the latter. On the other hand, we have already clarified that, in such settings, the variable ranges over the domain of (existing) objects. To say, then, that the sentence “x(n) is F” is true is to say that (1) as the variable ranges over its domain it encounters x(n), and (2) x(n) is F. But (1) is equivalent to (1′) there exists an object that is x(n).[footnoteRef:38] If one combines (1′) and (2), one obtains immediately the conclusion that there exists an object that is F. The latter is logically analysed as (∃x)F(x), which is exactly what had to be shown for the validity of the argument. [38:  With respect to objectual quantification, a point that requires attention and often causes misunderstandings is that constants are terms, whereas the subjects of ordinary-language sentences, as well as the arguments of formal languages, are things. This means that, in objectual-quantificational environments, to say that Socrates is mortal means that the being denoted by the name “Socrates” is mortal. It does not mean merely that, if I complete the open sentence “… is mortal” with the word “Socrates”, a true sentence results. Of course, the former is a sufficient condition for the latter, but not conversely.] 

Hence the argument schema is valid in objectual settings.
As we shall now see, the schema is also valid in substitutional settings, but for different reasons. In such settings, to say, for example, that Socrates is mortal is to say that if one fills the open sentence “— is mortal” with the proper name “Socrates,” one obtains a true sentence. Correspondingly, affirming the premiss “F(x(n))” means that, for the argument “x(n),” the function “F(…)” yields truth. Here, however, we must note that, according to substitutional quantification, the argument is a term rather than an object. Whether that term denotes anything is a further question. What matters is that the resulting sentence is true.
The key to our question concerning the validity of the argument form lies in the domain of the quantifier. As we said, under the substitutional method the variable ranges over the domain of singular terms of the language. Since the constants are singular terms,[footnoteRef:39] it follows immediately that if the open sentence “F(…)” is filled with the constant “x(n)” and thereby yields a true sentence, then there exists an element of the variable’s domain that “is F.” Hence (∃x)F(x) is again true. And since this has been established under the assumption that F(x(n)) holds, it follows again that the argument form is valid. [39:  The remaining singular terms are proper names and (possibly) definite descriptions.] 

Thus the argument is valid under the substitutional method as well. Note that the method is called substitutional because the truth and falsity of open sentences are determined by the way in which their gaps are filled by terms—i.e. by linguistic entities. It is evident that, although in general it is the world’s objects that are or are not something, at the level of propositions it is linguistic items, not things, that are substituted. Socrates himself does not occur anywhere inside the sentence.
An equally important observation about the argument form we are examining is that if one attempts to interpret the constants substitutionally but the quantifier (at least the existential quantifier) objectually, then the argument can become invalid. For example, many are willing to assent to the truth of the open sentence “— is a winged horse” when it is filled with the term “Pegasus.” Yet they are not willing to accept that somewhere in the universe there exists such a being. Formally interpreted, this means that they affirm “Φ(Pegasus)”[footnoteRef:40] while denying “(∃x)Φ(x),”[footnoteRef:41] which entails that the argument schema fails. Of course, the two methods could again be made deductively equivalent, on the condition either that all non-denoting terms be banished, or that all sentences containing such terms be regarded as false. The first of these was suggested by Frege in his essay “On Sense and Reference,”[footnoteRef:42] while the second is the famous doctrine of existential import, already found in Aristotle.[footnoteRef:43] [40:  We obviously take the expression “F(…)” as the formal counterpart of the open sentence “… is a winged horse”.]  [41:  Another example is the derivation of the sentence (∃x)F(x) from the premiss (∀x)F(x). If we interpret the universal quantifier substitutionally and the existential objectually, then we may accept the premiss and deny the “conclusion”. For example, someone may accept that the open sentence “… is identical with itself” is true of all singular terms, without at the same time accepting that even one of them denotes some (existing) being. This means that such a person will accept that the property of identity holds even in empty universes. The formal formulation of this position is that the following is not a theorem: (∀x)(x = x) → (∃x)(x = x).]  [42:  One of the reasons scholars dispute whether the quantificational method followed by Frege is objectual or substitutional is that, as we said, after this restriction the methods coincide proof-theoretically, however one interprets the existential quantifier.]  [43:  According to Aristotle, the open sentence “Socrates is …” is false, however we fill in the blank, in the case where Socrates is dead.] 

The foregoing observation provides an adequate introduction to the third and last of the quantificational methods considered here. The semantics of FL is, in effect, a combination of the objectual and substitutional methods. It resembles the objectual method insofar as the domain of the variable consists of objects rather than words. It resembles the substitutional method insofar as it does not exclude terms that denote non-existent beings. The combination of these two features is made possible by the following convention:
The domain from which the language draws the terms placed in argument position is the domain of terms that denote objects not only of the actual world but of any other world as well. Thus, for example, the term “Pegasus” may be placed in argument position. Yet the objects denoted by such terms still do not belong to the domain of the bound variables. The quantifiers therefore retain their classical objectual interpretation: the domain of bound variables is the set of objects of the actual world. The device that permits terms denoting objects beyond this domain to occur in argument position is the use of singular terms and of free variables. A singular term occurring in a sentence is not a variable and therefore need not be bound by any quantifier. For example, suppose that “Φ(…)” formally translates the one-place open sentence “— is a winged horse.” According to the syntactic rules of FL, the sentence “Φ(Pegasus) & ¬(∃x)(Φ(x))” is true, even though the first conjunct says that Pegasus is a winged horse and the second that there are no winged horses. It is true precisely because the proper name “Pegasus”[footnoteRef:44] does not occur in the position of a bound variable and therefore belongs to a wider linguistic domain than that denoted by the domain of the bound variables. We may thus regard the set consisting of the terms that denote objects in the domain of the bound variable as a subset of the terms that denote the totality of objects (actual or not) and that may be used freely. [44:  We here take the word “Pegasus” as a proper name. We could instead place the constant that denotes the same object, or a definite description of it.] 

More technically, FL assigns to each concept (predicate-function) an extension in each possible world. The set of these extensions constitutes the intension of the concept (predicate-function). For example, the intension of the concept “winged horse” is the set of ordered pairs[footnoteRef:45] whose first member is the relevant possible world and whose second is the extension of the concept in that world. Suppose, for instance, that there are three possible worlds and that the objects occurring in them are: W(1)=∅,[footnoteRef:46] W(2)={Pegasus}. Let W(3) be the actual world.[footnoteRef:47] Then the intension of the concept “winged horse” is the set: {⟨W(1), ∅⟩, ⟨W(2), Pegasus⟩, ⟨W(3), ∅⟩}. [45:  An ordered pair is a set with two members, in which the order in which they appear matters. For example, we speak of the “set” of the students of this department, but of the “ordered set” of their ranking by age. The former is symbolised, like all sets (i.e. {a(1), a(2), …, a(n)}), and the order plays no role, whereas the latter is written as ⟨a(1), a(2), …, a(n)⟩, and the order is of essential importance.]  [46:  “∅” is the symbol for the empty set. This means that W(1) is empty.]  [47:  Here we tacitly assume that the domain of objects corresponding to each world is not fixed.] 

From the foregoing it is evident that the argument form and theorem we have been considering throughout the present text do not belong to the tautologies and valid argument forms of FL. The obvious counterexample that establishes this is to take for F(…) the predicate “Π(…)” and to place, in the position of x(n), the constant that denotes Pegasus. The argument is invalid because, although Pegasus is a winged horse, no winged horse occurs in our world; hence the premiss is true and the conclusion false.
Finally, it should be noted that FL, by admitting the possibility that a world may be empty,[footnoteRef:48] also invalidates the classical argument form: [48:  This reflects the intuition that the existence of at least one object in the world is contingent.] 

(∀x)F(x)
──────────
(∃x)F(x)
To see why this form is invalid, consider the metalinguistic interpretation of the premiss. The premiss is true if and only if, for every object belonging to the empty world, it is F. But this may also be stated as follows: for every object, if it belongs to the empty world, then (material implication) it is F. We then observe that the antecedent is always false, and hence the conditional is true for any x. For precisely the opposite reason, the conclusion is always false: there is no object in the empty world, and hence no property that applies to it.
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