ZOOLOGICAL PHILOSOPHY # AN EXPOSITION WITH REGARD TO THE NATURAL HISTORY OF ANIMALS THE DIVERSITY OF THEIR ORGANISATION AND THE FACULTIES WHICH THEY DERIVE FROM IT; THE PHYSICAL CAUSES WHICH MAINTAIN LIFE WITHIN THEM AND GIVE RISE TO THEIR VARIOUS MOVEMENTS; LASTLY, THOSE WHICH PRODUCE FEELING AND INTELLIGENCE IN SOME AMONG THEM BY ## J. B. LAMARCK TRANSLATED, WITH AN INTRODUCTION, BY ### HUGH ELLIOT AUTHOR OF "MODERN SCIENCE AND THE ILLUSIONS OF PROFESSOR BERGSON" EDITOR OF "THE LETTERS OF JOHN STUART MILL," ETC., ETC. HAFNER PUBLISHING COMPANY New York and London 1963 ### TABLE OF CONTENTS | Introduction | xvii | |--|------| | Life—The <i>Philosophie Zoologique</i> —Zoology—Evolution—Inheritance of acquired characters—Classification—Physiology—Psychology—Conclusion. | | | Preface | 1 | | Object of the work, and general observations on the subjects dealt with in it. | | | Preliminary Discourse | 9 | | Some general considerations on the interest of the study of animals and their organisation, especially among the most imperfect. | | | PART I. | | | CONSIDERATIONS ON THE NATURAL HISTORY OF ANIMALS, TE
CHARACTERS, AFFINITIES, ORGANISATION, CLASSIFICAT
AND SPECIES. | | | I. On Artificial Devices in dealing with the Pro- | | | DUCTIONS OF NATURE | 19 | | How schematic classifications, classes, orders, families, genera and nomenclature are only artificial devices. | | | II. Importance of the Consideration of Affinities - | 29 | | How a knowledge of the affinities between the known natural
productions lies at the base of natural science, and is the funda-
mental factor in a general classification of animals. | | | III. OF Species among Living Bodies, and the Idea that | | | WE SHOULD ATTACH TO THAT WORD | 35 | | That it is not true that Species are as old as Nature, and have
all been in existence for an equal period; but that it is true that
they have been formed one after another, that they have only a rela-
tive constancy, and are only invariable temporarily. | | | IV. GENERAL PRINCIPLES CONCERNING ANIMALS | PAG | |---|-----| | The actions of animals only take place by means of movements that are stimulated, and not transmitted from without. Irritability is a faculty which they all possess, and is not found except in animals: it is the source of their actions. It is not true that all animals possess feeling, nor the faculty of carrying out acts of will. | | | V. On the True Arrangement and Classification of Animals | 50 | | That animals may be arranged, as regards their larger groups, in a series which exhibits a gradually increasing complexity of organisation; that the knowledge of the affinities between the | | | various animals is our only guide in determining this series, and that the use of this method dispenses with arbitrary judgments; lastly, that the number of the lines of demarcation, by which classes are established, has to be increased in correspondence with our knowledge of the different systems of organisation, so that the | | | series now presents fourteen distinct classes, of great service in
the study of animals. | | | VI. DEGRADATION AND SIMPLIFICATION OF ORGANISATION, | | | FROM ONE EXTREMITY TO THE OTHER OF THE ANI- | | | MAL CHAIN, PROCEEDING FROM THE MOST COMPLEX | 0.4 | | TO THE SIMPLEST | 68 | | That it is a positive fact that on following the animal chain in
the usual direction from the most perfect to the most imperfect
animals, we observe an increasing degradation and simplification | | | of organisation; that, consequently on traversing the animal | | | scale in the opposite direction, that is to say, in the same order as Nature's, we shall find an increasing complexity in the organisation of animals, a complexity which would advance with evenness and regularity, if the environmental conditions, mode of life, etc., did not occasion many anomalies in it. | | | VII. OF THE INFLUENCE OF THE ENVIRONMENT ON THE | | | ACTIVITIES AND HABITS OF ANIMALS, AND THE | | | Influence of the Activities and Habits of these Living Bodies in modifying their Organisation | | | AND STRUCTURE | 106 | | How the environment acts upon the organisation, general form and structure of animals; how changes subsequently occurring in their environment, mode of life, etc., involve corresponding changes in the activities of animals; lastly, how a change in the activities, which has become permanent, involves on the one hand more frequent use of certain parts of the animal, thus developing and enlarging them proportionally; while, on the other hand, this same change diminishes and sometimes abolishes | | | the use of certain other parts, thus acting unfavourably on their development, reducing them, and finally causing their disappearance. | PAGE | |---|------| | (See the Additions at the end of Part I.) | | | VIII. OF THE NATURAL ORDER OF ANIMALS, AND THE WAY IN WHICH THEIR CLASSIFICATION SHOULD BE DRAWN | | | UP, SO AS TO BE IN CONFORMITY WITH THE ACTUAL ORDER OF NATURE | 128 | | That the natural order of animals constitutes a series, which we should traverse from the most imperfect animals to the most perfect, in order to be in harmony with the order of Nature; for Nature did not bring them all into existence at the same moment. Since she had to form them in turn, she was obliged to begin with the simplest, and only produced at the end those with the most | | | complex organisation. That the classification presented herewith is unquestionably the one that approaches most nearly to the order of Nature; so that if there are any corrections to be made in it, it can only be in matters of detail; I believe, for instance, that the Naked Polyps should form the third order of the class, and the Floating Polyps the fourth. | | | Additions to the Subject-matter of Chaps. VII. and VIII. | 173 | | PART II. | | | IN ENQUIRY INTO THE PHYSICAL CAUSES OF LIFE, THE ODITIONS REQUIRED FOR ITS EXISTENCE, THE EXCITING FOOF ITS MOVEMENTS, THE FACULTIES WHICH IT CONFERS BODIES POSSESSING IT, AND THE RESULTS OF ITS PRESE IN THOSE BODIES. | RCE | | NTRODUCTION | 183 | | Some general considerations on nature, and her power to create life and organisation, and subsequently to increase the complexity of the latter. In all these operations, she works only by the action of various moving fluids on supple bodies, which are modified, organised, and animated by these fluids. | | | | | | I. Comparison of Inorganic Bodies with Living Bodies,
followed by a Parallel between Animals | | | AND PLANTS | 191 | | That there is a great difference between living bodies and inorganic bodies. That animals are essentially distinguished from plants by Irritability, which is possessed exclusively by the former, and which enables their parts to make sudden movements, repeated | | | as often as they are stimulated by exciting causes,—a peculiarity | | | II. OF LIFE, WHAT IT CONSISTS OF, AND THE CONDITIONS OF | PAGI | |--|------| | ITS EXISTENCE IN A BODY | 201 | | That life in itself is a purely physical phenomenon, which gradually gives rise to many other phenomena, and which is due | | | exclusively to the relations existing between the adapted containing parts of a body, the contained fluids moving in them, and | | | the exciting cause of the movements and changes which take place in the body. | | | III. OF THE EXCITING CAUSE OF ORGANIC MOVEMENTS - | 211 | | That the organic movements, as also the movements which constitute the actions of animals, are not communicated, but stimulated by the activity of an exciting cause, which is not part of the bodies it animates and does not perish like them; that this cause resides in the invisible, subtle, expansive fluids, constantly in agitation, which penetrate into, or are incessantly being developed in the bodies which they animate. | | | | 016 | | IV. OF ORGASM AND IRRITABILITY | 219 | | That the exciting cause of organic movements sets up in the supple parts of living bodies, especially of animals, an orgasm which is essential for the preservation of life; and which, in the case of animals, confers on the parts which possess it the faculty of | | | being irritable. That Irritability is a faculty belonging exclusively to the supple parts of animals, that it confers on them the power of producing local manifestations which are repeated as often as the instigating cause is brought to bear; lastly, that this faculty is essentially | | | distinct from that
of feeling. | | | V. OF CELLULAR TISSUE, REGARDED AS THE MATRIX IN WHICH ALL ORGANISATION HAS BEEN CAST | 230 | | That cellular tissue is the universal matrix of all organisation, | | | and that the movement of fluids in this tissue is the means employed
by nature for the creation and gradual development of the organs,
at the expense of the tissue in question. | | | VI. OF DIRECT OR SPONTANEOUS GENERATION | 236 | | That, since all living bodies are productions of nature, she must herself have organised the simplest of such bodies, endowed them directly with life, and with the faculties peculiar to living bodies. | | | That by means of these direct generations formed at the beginning both of the animal and vegetable scales, nature has ultimately conferred existence on all other living bodies in turn. | | | VII. OF THE IMMEDIATE RESULTS OF LIFE IN A BODY | 249 | | That it is not true that living bodies have the faculty of resisting
the laws and forces to which all non-living bodies are subject, nor | | | | | | TABLE OF CONTENTS | Хi | |--|------| | that they are controlled by laws peculiar to themselves; but, on the contrary, that it is true that the laws, which regulate the changes occurring in bodies, meet with very different conditions in living bodies from those that they find in lifeless bodies, and hence work upon the former results very different from those worked upon the latter. That living bodies have the faculty of building up their own substance for themselves and thus forming combinations which would never have come into existence without them; hence their remains furnish the material which serves for the formation of the various minerals. | PAGE | | VIII. OF THE FACULTIES COMMON TO ALL LIVING BODIES - | 259 | | That life endows all bodies which possess it with certain faculties in common, and that the production of these faculties requires no special organ whatever, but only such a state of things in the parts of these bodies as may enable life to exist in them. | | | IX. OF THE FACULTIES PECULIAR TO CERTAIN LIVING BODIES That, in addition to the faculties conferred by life on all living bodies, some living bodies have faculties which are altogether peculiar to themselves. Now observation shows that these latter faculties only arise, when special organs, capable of producing them, exist in the animals possessing such faculties. | 265 | | SUMMARY OF PART II | 280 | | | | | PART III. | | | AN ENQUIRY INTO THE PHYSICAL CAUSES OF FEELING, INTO FORCE WHICH PRODUCES ACTIONS, AND LASTLY INTO ORIGIN OF THE ACTS OF INTELLIGENCE OBSERVED VARIOUS ANIMALS. | THE | | Introduction | 285 | | Some general observations on the means possessed by nature, for giving rise in living bodies to the phenomena known as sensa- | | I. OF THE NERVOUS SYSTEM, ITS FORMATION, AND THE 291 VARIOUS SORTS OF FUNCTIONS THAT IT CAN FULFIL That the system of organs, called the nervous system, is limited to certain animals, and that among those which possess it, it is found in different degrees of complexity and perfection; that tions, ideas and the various acts of intelligence. this system confers on some animals only the faculty of muscular movement, on others this faculty together with that of feeling, and on others again these two faculties together with that of forming ideas, and of carrying out by this means various acts of intelligence. That the system of organs under examination fulfils four very different kinds of functions, but only when it has reached a complexity sufficient to give it the power of doing so. ### II. Of the Nervous Fluid - - - - 314 That there is developed in the bodies of certain animals a very subtle, invisible, containable fluid, remarkable for the rapidity of its movements; that this fluid has the faculty of exciting muscular movement, and that by its means nerves which are affected produce feeling; that, when its entire mass is agitated, it gives rise to inner emotions; and that finally it is the singular agent by which ideas and all intellectual acts are formed. ## III. OF PHYSICAL SENSIBILITY AND THE MECHANISM OF SENSATIONS - - - - 321 That it is not true that any matter, or any part of a living body, can have in itself the faculty of feeling; but that it is true that feeling is a phenomenon resulting from the functions of a special system of organs capable of giving rise to it. That feeling is the result of action upon the subtle nervous fluid of an affected nerve, which is propagated throughout the nervous fluid of the sensitive system, and is terminated by a general reaction which is carried back to the individual's inner feeling and to the point affected. # IV. OF THE INNER FEELING, THE EMOTIONS THAT IT MAY EXPERIENCE, AND THE POWER WHICH IT THENCE DERIVES FOR THE PRODUCTION OF ACTIONS - That the inner feeling results from the totality of internal sensations produced by the vital movements, and from the fact that all parts of the nervous fluid are in communication so as to form a single though divided whole, which is capable of acquiring those general agitations termed emotions. 332 That this inner feeling is the bond of union between the physical and moral, and the origin of both; that the feeling in question on the one hand acquaints the individual with sensations that he experiences (whence the physical); and, on the other hand, gives him consciousness of his ideas and thoughts (whence the moral); and lastly, as a result of emotions aroused by needs, causes the individual to act without any participation of his will (whence instinct). | TABLE OF CONTENTS | Xiii | |--|------| | V. Of the Force which produces the Actions of Animals, and of certain peculiar facts resulting | PAGE | | That since muscular action is a power fully adequate for the production of the movements performed by animals, and since nervous influence is able to excite that muscular action, such animals as have physical feeling possess in their inner feeling a power quite capable of driving to the muscles the fluid which excites their movements; and it is in fact by its emotions that this feeling obtains the force to work the muscles. | 343 | | OF THE CONSUMPTION AND DRAINAGE OF THE NERVOUS FLUID IN THE PRODUCTION OF ANIMAL ACTIONS - | 348 | | OF THE ORIGIN OF THE PROPENSITY TOWARDS REPEATING THE SAME ACTIONS | 349 | | OF Instinct in Animals | 350 | | OF Skill in Certain Animals | 353 | | VI. OF THE WILL | 355 | | That, since the will always results from a judgment, and since a judgment necessarily arises from a comparison of ideas, a thought, or some impression that causes it, every act of will is an act of intelligence, and that consequently only animals with a special organ for intelligence can carry out acts of will. That, since the will always depends on a judgment, not only is it never really free, but, since judgments are liable to numerous causes of error, the will resulting from them is less reliable than instinct in the inner feeling driven by some need. | | | VII. OF THE UNDERSTANDING, ITS ORIGIN, AND THE ORIGIN OF IDEAS | 362 | | That all acts of the understanding require a special system of organs for their execution; that acquired ideas are the material of all operations of the understanding; that although every idea is originally a sensation, every sensation need not become an idea, since a special organ is necessary for its formation, and the sensation, moreover, has to be noticed; finally, that, in all acts of intelligence, the nervous fluid is the only active factor, in that it moves in the organ concerned, while the organ itself remains passive, simply providing for the diversity of the operations by the diversity of its parts. | | | CHAP. | PAGE | |---|-------------| | VIII. OF THE PRINCIPAL ACTS OF THE UNDERSTANDING, OR | | | THOSE OF THE FIRST ORDER FROM WHICH ALL THE | | | REST ARE DERIVED | 379 | | That the principal acts of the understanding are attention, a special preparatory state of the organ, without which none of its acts could be produced; thought, from which spring complex ideas of all orders; memory, whose acts, named recollections, recall ideas of any kind, by bringing them again to the inner feeling, or consciousness of the individual; and judgments, which are the
most important acts of the understanding, and without which no reasoning, or act of will could be produced, nor any knowledge be acquired. | | | Of Imagination | 38 8 | | OF REASON, AND ITS COMPARISON WITH INSTINCT - | 401 | | | | | INDEX | 407 | ### CHAPTER III. OF SPECIES AMONG LIVING BODIES AND THE IDEA THAT WE SHOULD ATTACH TO THAT WORD. It is not a futile purpose to decide definitely what we mean by the so-called *species* among living bodies, and to enquire if it is true that species are of absolute constancy, as old as nature, and have all existed from the beginning just as we see them to-day; or if, as a result of changes in their environment, albeit extremely slow, they have not in course of time changed their characters and shape. The solution of this question is of importance not only for our knowledge of zoology and botany, but also for the history of the world I shall show in one of the following chapters that every species has derived from the action of the environment in which it has long been placed the *habits* which we find in it. These habits have themselves influenced the parts of every individual in the species, to the extent of modifying those parts and bringing them into relation with the acquired habits. Let us first see what is meant by the name of species. Any collection of like individuals which were produced by others similar to themselves is called a species. This definition is exact; for every individual possessing life always resembles very closely those from which it sprang; but to this definition is added the allegation that the individuals composing a species never vary in their specific characters, and consequently that species have an absolute constancy in nature. It is just this allegation that I propose to attack, since clear proofs drawn from observation show that it is ill-founded. The almost universally received belief is that living bodies constitute species distinguished from one another by unchangeable characteristics, and that the existence of these species is as old as nature herself. This belief became established at a time when no sufficient observations had been taken, and when natural science was still almost negligible. It is continually being discredited for those who have seen much, who have long watched nature, and who have consulted with profit the rich collections of our museums. Moreover, all those who are much occupied with the study of natural history, know that naturalists now find it extremely difficult to decide what objects should be regarded as species. They are in fact not aware that species have really only a constancy relative to the duration of the conditions in which are placed the individuals composing it; nor that some of these individuals have varied, and constitute races which shade gradually into some other neighbouring species. Hence, naturalists come to arbitrary decisions about individuals observed in various countries and diverse conditions, sometimes calling them varieties and sometimes species. The work connected with the determination of species therefore becomes daily more defective, that is to say, more complicated and confused. It has indeed long been observed that collections of individuals exist which resemble one another in their organisation and in the sum total of their parts, and which have kept in the same condition from generation to generation, ever since they have been known. So much so that there seemed a justification for regarding any collection of like individuals as constituting so many invariable species. Now attention was not paid to the fact that the individuals of the species perpetuate themselves without variation only so long as the conditions of their existence do not vary in essential particulars. Since existing prejudices harmonise well with these successive regenerations of like individuals, it has been imagined that every species is invariable and as old as nature, and that it was specially created by the Supreme Author of all existing things. Doubtless, nothing exists but by the will of the Sublime Author of all things, but can we set rules for him in the execution of his will, or fix the routine for him to observe? Could not his infinite power create an *order of things* which gave existence successively to all that we see as well as to all that exists but that we do not see? Assuredly, whatever his will may have been, the immensity of his power is always the same, and in whatever manner that supreme will may have asserted itself, nothing can diminish its grandeur. I shall then respect the decrees of that infinite wisdom and confine myself to the sphere of a pure observer of nature. If I succeed in unravelling anything in her methods, I shall say without fear of error that it has pleased the Author of nature to endow her with that faculty and power. The idea formed of species among living bodies was quite simple, easy to understand, and seemed confirmed by the constancy in the shapes of individuals, perpetuated by reproduction or generation. Such are a great number of these alleged species that we see every day. Meanwhile, the farther we advance in our knowledge of the various organised bodies which cover almost every part of the earth's surface, the greater becomes our difficulty in determining what should be regarded as a species, and still more in finding the boundaries and distinctions of genera. According as the productions of nature are collected and our museums grow richer, we see nearly all the gaps filled up and the lines of demarcation effaced. We find ourselves reduced to an arbitrary decision which sometimes leads us to take the smallest differences of varieties and erect them into what we call species, and sometimes leads us to describe as a variety of some species slightly differing individuals which others regard as constituting a separate species. Let me repeat that the richer our collections grow, the more proofs do we find that everything is more or less merged into everything else, that noticeable differences disappear, and that nature usually leaves us nothing but minute, nay puerile, details on which to found our distinctions. How many genera there are both among animals and plants, among which the number of species referred to them is so great that the study and determination of these species are well nigh impracticable! The species of these genera, arranged in series according to their natural affinities, exhibit such slight differences from those next them as to coalesce with them. These species merge more or less into one another, so that there is no means of stating the small differences that distinguish them. It is only those who have long and diligently studied the question of species, and who have examined rich collections, that are in a position to know to what extent species among living bodies merge into one another. And no one else can know that species only appear to be isolated, because others are lacking which are close to them but have not yet been collected. I do not mean that existing animals form a very simple series, regularly graded throughout; but I do mean that they form a branching series, irregularly graded and free from discontinuity, or at least once free from it. For it is alleged that there is now occasional discontinuity, owing to some species having been lost. It follows that the species terminating each branch of the general series are connected on one side at least with other neighbouring species which merge into them. This I am now able to prove by means of well-known facts. I require no hypothesis or supposition; I call all observing naturalists to witness. Not only many genera but entire orders, and sometimes even classes, furnish instances of almost complete portions of the series which I have just indicated. When in these cases the species have been arranged in series, and are all properly placed according to their natural affinities, if you choose one, and then, jumping over several others, take another a little way off, these two species when compared will exhibit great differences. It is thus in the first instance that we began to see such of nature's productions as lay nearest to us. Generic and specific distinctions were then quite easy to establish; but now that our collections are very rich, if you follow the above-mentioned series from the first species chosen to the second, which is very different from it, you reach it by slow gradations without having observed any noticeable distinctions. I ask, where is the experienced zoologist or botanist who is not convinced of the truth of what I state? How great the difficulty now is of studying and satisfactorily deciding on species among that multitude of every kind of polyps, radiarians, worms, and especially insects, such as butterflies, *Phalaena*, *Noctua*, *Tinea*, flies, *Ichneumon*, *Curculio*, *Cerambix*, chafers, rosechafers, etc.! These genera alone possess so many species which merge indefinably into one another. What a swarm of mollusc shells are furnished by every country and every sea, eluding our means of distinction and draining our resources. Consider again, fishes, reptiles, birds and even mammals; you will see that except for gaps still to be filled, neighbouring species and even genera are separated by the finest differences, so that we have scarcely any foothold for setting up sound distinctions. Is there not an exactly similar state of affairs in the case of botany, which deals with the other series, consisting of plants? How great indeed are the difficulties of the study and determination of species in the genera *Lichen*, *Fucus*, *Carex*, *Poa*, *Piper*, *Euphorbia*, *Erica*, *Hieracium*, *Solanum*, *Geranium*, *Mimosa*, etc., etc. When these genera were constituted only a small number of species belonging to them were known, and it was then easy to distinguish them; but now that nearly all the gaps are filled, our specific differences are necessarily minute
and usually inadequate. Let us see what are the causes which have given rise to this undoubted state of affairs; let us see if nature affords any explanation, and whether observation can help us. We learn from a number of facts that, according as the individuals of one of our species change their abode, climate, habits, or manner of life, they become subject to influences which little by little alter the consistency and proportions of their parts, their shape, properties and even their organisation; so that in course of time everything in them shares in these mutations. In the same climate, very different habitats and conditions at first merely cause variations in the individuals exposed to them; but in course of time the continued change of habitat in the individuals of which I speak, living and reproducing in these new conditions, induces alterations in them which become more or less essential to their being; thus, after a long succession of generations these individuals, originally belonging to one species, become at length transformed into a new species distinct from the first. Suppose, for example, that the seeds of a grass or any other plant that grows normally in a damp meadow, are somehow conveyed first to the slope of a neighbouring hill where the ground although higher is still rich enough to allow the plant to maintain its existence. Suppose that then, after living there and reproducing itself many times, it reaches little by little the dry and almost barren ground of a mountain side. If the plant succeeds in living there and perpetuating itself for a number of generations, it will have become so altered that botanists who come across it will erect it into a separate species. The same thing happens in the case of animals that are forced by circumstances to change their climate, habits, and manner of life: but in their case more time is required to work any noticeable change than in the case of plants. The idea of bringing together under the name of species a collection of like individuals, which perpetuate themselves unchanged by reproduction and are as old as nature, involved the assumption that the individuals of one species could not unite in reproductive acts with individuals of a different species. Unfortunately, observation has proved and continues every day to prove that this assumption is unwarranted; for the hybrids so common among plants, and the copulations so often noticed between animals of very different species, disclose the fact that the boundaries between these alleged constant species are not so impassable as had been imagined. It is true that often nothing results from these strange copulations, especially when the animals are very disparate; and when anything does happen the resulting individuals are usually infertile; but we also know that when there is less disparity these defects do not occur. Now this cause is by itself sufficient gradually to create varieties, which then become races, and in course of time constitute what we call species. To assist us to a judgment as to whether the idea of species has any real foundation, let us revert to the principles already set forth; they show: (1) That all the organised bodies of our earth are true productions of nature, wrought successively throughout long periods of time. (2) That in her procedure, nature began and still begins by fashioning the simplest of organised bodies, and that it is these alone which she fashions immediately, that is to say, only the rudiments of organisation indicated in the term spontaneous generation. (3) That, since the rudiments of the animal and plant were fashioned in suitable places and conditions, the properties of a commencing life and established organic movement necessarily caused a gradual development of the organs, and in course of time produced diversity in them as in the limbs. (4) That the property of growth is inherent in every part of the organised body, from the earliest manifestations of life; and then gave rise to different kinds of multiplication and reproduction, so that the increase of complexity of organisation, and of the shape and variety of the parts, has been preserved. (5) That with the help of time, of conditions that necessarily were favourable, of the changes successively undergone by every part of the earth's surface, and, finally, of the power of new conditions and habits to modify the organs of living bodies, all those which now exist have imperceptibly been fashioned such as we see them. (6) That, finally, in this state of affairs every living body underwent greater or smaller changes in its organisation and its parts; so that what we call species were imperceptibly fashioned among them one after another and have only a relative constancy, and are not as old as nature. But objections may be raised to the allegation that nature has little by little fashioned the various animals known to us by the aid of much time and an infinite variation of environment. It may be asked whether this allegation is not refuted by the single fact of the wonderful variety observed in the *instinct* of various animals, and in the marvellous *skill* of all kinds which they exhibit. Will anyone, it may be asked, venture to carry his love of system so far as to say that nature has created single-handed that astonishing diversity of powers, artifice, cunning, foresight, patience and skill, of which we find so many examples among animals? Is not what we see in the single class of insects far more than enough to convince us that nature cannot herself produce so many wonders; and to compel the most obstinate philosopher to recognise that the will of the Supreme Author of all things must be here invoked, and could alone suffice for bringing into existence so many wonderful things? No doubt he would be a bold man, or rather a complete lunatic, who should propose to set limits to the power of the first Author of all things; but for this very reason no one can venture to deny that this infinite power may have willed what nature herself shows us it has willed. This being so, if I find that nature herself works all the wonders just mentioned; that she has created organisation, life and even feeling, that she has multiplied and diversified within unknown limits the organs and faculties of the organised bodies whose existence she subserves or propagates; that by the sole instrumentality of needs, establishing and controlling habits, she has created in animals the fountain of all their acts and all their faculties, from the simplest to instinct, to skill, and finally to reason; if I find all this, should I not recognise in this power of nature, that is to say in the order of existing things, the execution of the will of her Sublime Author, who was able to will that she should have this power? Shall I admire the greatness of the power of this first cause of everything any the less if it has pleased him that things should be so, than if his will by separate acts had occupied itself and still continued to occupy itself with the details of all the special creations, variations, developments, destructions and renewals, in short, with all the mutations which take place at large among existing things? Now I hope to prove that nature possesses the necessary powers and faculties for producing herself that so much excite our wonder. The objection is still raised however that everything we see in living bodies indicates an unchangeable constancy in the preservation of their form. It is held that all animals whose history has come down to us for two or three thousand years have always been the same, and neither lost nor acquired anything in the perfection of their organs and the shape of their parts. Not only had this apparent stability passed for an undoubted fact, but an attempt has recently been made to find special proofs of it in a report on the natural history collections brought from Egypt by M. Geoffroy. The authors of the report express themselves as follows: "The collection has in the first place this peculiarity, that it may be said to contain animals of all periods. It has long been asked whether species change their shape in the course of time. This question, apparently so futile, is none the less necessary for the history of the world, and consequently for the solution of innumerable other questions which are not foreign to the gravest subjects of human worship. "We have never been in so good a position to settle this question, in so far as concerns a large number of remarkable species and some thousands that are not remarkable. It appears as though the superstition of the ancient Egyptians were inspired by nature for the purpose of leaving a record of her history." "It is impossible," continue the authors of the report, "to control our flights of imagination, on seeing still preserved with its smallest bones and hair, perfectly recognisable, an animal which two or three thousand years ago had in Thebes or Memphis its priests and altars. But without giving rein to all the ideas suggested by this approach to antiquity, we shall confine ourselves to the announcement that this part of M. Geoffroy's collection shows that these animals are exactly similar to those of to-day." (Annales du Muséum d'Hist. natur., vol. i. pp. 235 and 236.) I do not refuse to believe in the close resemblance of these animals with individuals of the same species living to-day. Thus, the birds that were worshipped and embalmed by the Egyptians two or three thousand years ago are still exactly like those which now live in that country. It would indeed be very odd if it were otherwise; for the position and climate of Egypt are still very nearly what they were in those times. Now the birds which live there, being still in the same conditions as they were formerly, could not possibly have been forced into a change of habits. Furthermore, it is obvious that birds, since they can travel so easily and choose the places which suit them, are
less liable than many other animals to suffer from variations in local conditions, and hence less hindered in their habits. Indeed there is nothing in the observation now cited that is contrary to the principles which I have set forth on this subject; or which proves that the animals concerned have existed in nature for all time; it proves only that they inhabited Egypt two or three thousand years ago; and every man who has any habit of reflection and at the same time of observing the monuments of nature's antiquity will easily appreciate the import of a duration of two or three thousand years in comparison with it. Hence we may be sure that this appearance of stability of the things in nature will by the vulgar always be taken for reality; because people in general judge everything with reference to themselves. For the man who forms his judgment only with reference to the changes that he himself perceives, the eras of these mutations are stationary states which appear to him to be unlimited, on account of the shortness of the existence of individuals of his own species. Moreover, we must remember that the records of his observations, and the notes of facts which he has been able to register, only extend back a few thousand years; which is a time infinitely great with reference to himself, but very small with reference to the time occupied by the great changes occurring on the surface of the earth. Everything seems to him to be *stable* in the planet which he inhabits; and he is led to repudiate the signs which exist everywhere in the monuments heaped up around him, or buried in the soil which he tramples underfoot. Magnitudes are relative both in space and time: let man take that truth to heart, and he will then be more reserved in his judgments on the stability which he attributes to the state of things that he observes in nature. (See the Appendix, p. 141, of my Recherches sur les corps vivants.) In order to admit the imperceptible changing of species, and the modifications which their individuals undergo according as they are forced to change their habits and contract new ones, we are not reduced to a mere consideration of the very short spaces of time comprised in our observations; for, in addition to this induction, a number of facts collected many years ago throw enough light on the question to free it from doubt; and I can now affirm that our observations are so far advanced that the solution sought for is patent. Indeed not only do we know the results of anomalous fertilisations, but we also now know positively that a compulsory and sustained alteration in the habitats and manner of life of animals works after a sufficient time a very remarkable mutation in the individuals exposed to it. Consider the animal which normally lives in freedom in plains where it habitually exerts itself by swift running; or the bird which is compelled by its needs to pass incessantly through large spaces in the air. When they find themselves imprisoned, the one in the dens of a menagerie or in our stables, the other in our cages or back yards, they undergo in course of time striking alterations, especially after a succession of generations in their new state. The former loses a great part of his swiftness and agility; his body thickens, the strength and subtleness of his limbs diminish, and his faculties are no longer the same; the latter becomes heavy, can scarcely fly, and takes on more flesh in all his parts. In Chapter VI. of this Part I., I shall have occasion to prove by well-known facts the power of changes of conditions for giving to animals new needs, and leading them on to new actions; the power of new actions when repeated to induce new habits and inclinations; finally, the power resulting from the more or less frequent use of any organ to modify that organ either by strengthening, developing and increasing it, or by weakening, reducing, attenuating it, and even making it disappear. With regard to plants, the same thing may be seen as a result of new conditions on their manner of life and the state of their parts; so that we shall no longer be astonished to see the considerable changes that we have brought about in those that we have long cultivated. Thus, among living bodies, nature, as I have already said, definitely contains nothing but individuals which succeed one another by reproduction and spring from one another; but the species among them have only a relative constancy and are only invariable temporarily. Nevertheless, to facilitate the study and knowledge of so many different bodies it is useful to give the name of species to any collection of like individuals perpetuated by reproduction without change, so long as their environment does not alter enough to cause variations in their habits, character and shape. ### OF THE SPECIES ALLEGED TO BE LOST. I am still doubtful whether the means adopted by nature to ensure the preservation of species or races have been so inadequate that entire races are now extinct or lost. Yet the fossil remains that we find buried in the soil in so many different places show us the remains of a multitude of different animals which have existed, and among which are found only a very small number of which we now know any living analogues exactly alike. Does this fact really furnish any grounds for inferring that the species which we find in the fossil state, and of which no living individual completely similar is known to us, no longer exist in nature? There are many parts of the earth's surface to which we have never penetrated, many others that men capable of observing have merely passed through, and many others again, like the various parts of the sea-bottom, in which we have few means of discovering the animals living there. The species that we do not know might well remain hidden in these various places. If there really are lost species, it can doubtless only be among the large animals which live on the dry parts of the earth; where man exercises absolute sway, and has compassed the destruction of all the individuals of some species which he has not wished to preserve or domesticate. Hence arises the possibility that animals of the genera Palaeotherium, Anoplotherium, Megalonix, Megatherium, Mastodon, of M. Cuvier, and some other species of genera previously known, are no longer extant in nature: this however is nothing more than a possibility. But animals living in the waters, especially the sea waters, and in addition all the races of small sizes living on the surface of the earth and breathing air, are protected from the destruction of their species by man. Their multiplication is so rapid and their means of evading pursuit or traps are so great, that there is no likelihood of his being able to destroy the entire species of any of these animals. It is then only the large terrestrial animals that are liable to extermination by man. This extermination may actually have occurred; but its existence is not yet completely proved. Nevertheless, among the fossil remains found of animals which existed in the past, there are a very large number belonging to animals of which no living and exactly similar analogue is known; and among these the majority belong to molluscs with shells, since it is only the shells of these animals which remain to us. Now, if a quantity of these fossil shells exhibit differences which prevent us, in accordance with prevailing opinion, from regarding them as the representatives of similar species that we know, does it necessarily follow that these shells belong to species actually lost? Why, moreover, should they be lost, since man cannot have compassed their destruction? May it not be possible on the other hand, that the fossils in question belonged to species still existing, but which have changed since that time and become converted into the similar species that we now actually find. The following consideration, and our observations throughout this work, will give much probability to such an assumption. Every qualified observer knows that nothing on the surface of the earth remains permanently in the same state. Everything in time undergoes various mutations, more or less rapid according to the nature of the objects and the conditions; elevated ground is constantly being denuded by the combined action of the sun, rainwaters and yet other causes; everything detached from it is carried to lower ground; the beds of streams, of rivers, even of seas change in shape and depth, and shift imperceptibly; in short, everything on the surface of the earth changes its situation, shape, nature and appearance, and even climates are not more stable. Now I shall endeavour to show that variations in the environment induce changes in the needs, habits and mode of life of living beings, and especially of animals; and that these changes give rise to modifications or developments in their organs and the shape of their parts. If this is so, it is difficult to deny that the shape or external characters of every living body whatever must vary imperceptibly, although that variation only becomes perceptible after a considerable time. Let us then no longer be astonished that among the numerous fossils found in all the dry parts of the world, and constituting the remains of so many animals which formerly existed, there are so few of which we recognise the living representatives. What we should wonder at, on the contrary, is finding amongst these numerous fossil remains of once living bodies, any of which the still existing analogues are known to us. This fact, proved by our collections of fossils, suggests that the fossil remains of animals whose living analogues we know are the least ancient fossils. The species to which each of them belongs doubtless has not had time to undergo variation. Naturalists who did not perceive the changes undergone by most animals in course of time tried to explain the facts connected with fossils, as well as the commotions known to have occurred
in different parts of the earth's surface, by the supposition of a universal catastrophe which took place on our globe. They imagined that everything had been displaced by it, and that a great number of the species then existing had been destroyed. Unfortunately this facile method of explaining the operations of nature, when we cannot see their causes, has no basis beyond the imagination which created it, and cannot be supported by proof. Local catastrophes, it is true, such as those produced by earthquakes, volcanoes and other special causes are well known, and we can observe the disorder ensuing from them. But why are we to assume without proof a universal catastrophe, when the better known procedure of nature suffices to account for all the facts which we can observe? Consider on the one hand that in all nature's works nothing is done abruptly, but that she acts everywhere slowly and by successive stages; and on the other hand that the special or local causes of disorders, commotions, displacements, etc., can account for everything that we observe on the surface of the earth, while still remaining subject to nature's laws and general procedure. It will then be recognised that there is no necessity whatever to imagine that a universal catastrophe came to overthrow everything, and destroy a great part of nature's own works. I have said enough on a subject which presents no difficulty. Let us now consider the general principles and essential characters of animals. ### CHAPTER VII. OF THE INFLUENCE OF THE ENVIRONMENT ON THE ACTIVITIES AND HABITS OF ANIMALS, AND THE INFLUENCE OF THE ACTIVITIES AND HABITS OF THESE LIVING BODIES IN MODIFYING THEIR ORGANISATION AND STRUCTURE. WE are not here concerned with an argument, but with the examination of a positive fact—a fact which is of more general application than is supposed, and which has not received the attention that it deserves, no doubt because it is usually very difficult to recognise. This fact consists in the influence that is exerted by the environment on the various living bodies exposed to it. It is indeed long since the influence of the various states of our organisation on our character, inclinations, activities and even ideas has been recognised; but I do not think that anyone has yet drawn attention to the influence of our activities and habits even on our organisation. Now since these activities and habits depend entirely on the environment in which we are habitually placed, I shall endeavour to show how great is the influence exerted by that environment on the general shape, state of the parts and even organisation of living bodies. It is, then, with this very positive fact that we have to do in the present chapter. If we had not had many opportunities of clearly recognising the result of this influence on certain living bodies that we have transported into an environment altogether new and very different from that in which they were previously placed, and if we had not seen the resulting effects and alterations take place almost under our very eyes, the important fact in question would have remained for ever unknown to us. The influence of the environment as a matter of fact is in all times and places operative on living bodies; but what makes this influence difficult to perceive is that its effects only become perceptible or recognisable (especially in animals) after a long period of time. Before setting forth to examine the proofs of this fact, which deserves our attention and is so important for zoological philosophy, let us sum up the thread of the discussions that we have already begun. In the preceding chapter we saw that it is now an unquestionable fact that on passing along the animal scale in the opposite direction from that of nature, we discover the existence, in the groups composing this scale, of a continuous but irregular degradation in the organisation of animals, an increasing simplification in their organisation, and, lastly, a corresponding diminution in the number of their faculties. This well-ascertained fact may throw the strongest light over the actual order followed by nature in the production of all the animals that she has brought into existence, but it does not show us why the increasing complexity of the organisation of animals from the most imperfect to the most perfect exhibits only an *irregular gradation*, in the course of which there occur numerous anomalies or deviations with a variety in which no order is apparent. Now on seeking the reason of this strange irregularity in the increasing complexity of animal organisation, if we consider the influence that is exerted by the infinitely varied environments of all parts of the world on the general shape, structure and even organisation of these animals, all will then be clearly explained. It will in fact become clear that the state in which we find any animal, is, on the one hand, the result of the increasing complexity of organisation tending to form a regular gradation; and, on the other hand, of the influence of a multitude of very various conditions ever tending to destroy the regularity in the gradation of the increasing complexity of organisation. I must now explain what I mean by this statement: the environment affects the shape and organisation of animals, that is to say that when the environment becomes very different, it produces in course of time corresponding modifications in the shape and organisation of animals. It is true if this statement were to be taken literally, I should be convicted of an error; for, whatever the environment may do, it does not work any direct modification whatever in the shape and organisation of animals. But great alterations in the environment of animals lead to great alterations in their needs, and these alterations in their needs necessarily lead to others in their activities. Now if the new needs become permanent, the animals then adopt new habits which last as long as the needs that evoked them. This is easy to demonstrate, and indeed requires no amplification. It is then obvious that a great and permanent alteration in the environment of any race of animals induces new habits in these animals. Now, if a new environment, which has become permanent for some race of animals, induces new habits in these animals, that is to say, leads them to new activities which become habitual, the result will be the use of some one part in preference to some other part, and in some cases the total disuse of some part no longer necessary. Nothing of all this can be considered as hypothesis or private opinion; on the contrary, they are truths which, in order to be made clear, only require attention and the observation of facts. We shall shortly see by the citation of known facts in evidence, in the first place, that new needs which establish a necessity for some part really bring about the existence of that part, as a result of efforts; and that subsequently its continued use gradually strengthens, develops and finally greatly enlarges it; in the second place, we shall see that in some cases, when the new environment and the new needs have altogether destroyed the utility of some part, the total disuse of that part has resulted in its gradually ceasing to share in the development of the other parts of the animal; it shrinks and wastes little by little, and ultimately, when there has been total disuse for a long period, the part in question ends by disappearing. All this is positive; I propose to furnish the most convincing proofs of it. In plants, where there are no activities and consequently no habits, properly so-called, great changes of environment none the less lead to great differences in the development of their parts; so that these differences cause the origin and development of some, and the shrinkage and disappearance of others. But all this is here brought about by the changes sustained in the nutrition of the plant, in its absorption and transpiration, in the quantity of caloric, light, air and moisture that it habitually receives; lastly, in the dominance that some of the various vital movements acquire over others. Among individuals of the same species, some of which are continually well fed and in an environment favourable to their development, while others are in an opposite environment, there arises a difference in the state of the individuals which gradually becomes very remarkable. How many examples I might cite both in animals and plants which bear out the truth of this principle! Now if the environment remains constant, so that the condition of the ill-fed, suffering or sickly individuals becomes permanent, their internal organisation is ultimately modified, and these acquired modifications are preserved by reproduction among the individuals in question, and finally give rise to a race quite distinct from that in which the individuals have been continuously in an environment favourable to their development. A very dry spring causes the grasses of a meadow to grow very little, and remain lean and puny; so that they flower and fruit after accomplishing very little growth. A spring intermingled with warm and rainy days causes a strong growth in this same grass, and the crop is then excellent. But if anything causes a continuance of the unfavourable environment, a corresponding variation takes place in the plants: first in their general appearance and condition, and then in some of their special characters. Suppose, for instance, that a seed of one of the meadow grasses in question is transported to an elevated place on a dry, barren and stony plot much exposed to the winds, and is there left to germinate; if the plant can live in such a place, it will always be badly nourished, and if the individuals reproduced from it continue to exist in this bad environment, there will result a race fundamentally different from that which lives in the meadows and from which it originated. The individuals of this new race will have small and
meagre parts; some of their organs will have developed more than others, and will then be of unusual proportions. Those who have observed much and studied large collections, have acquired the conviction that according as changes occur in environment, situation, climate, food, habits of life, etc., corresponding changes in the animals likewise occur in size, shape, proportions of the parts, colour, consistency, swiftness and skill. What nature does in the course of long periods we do every day when we suddenly change the environment in which some species of living plant is situated. Every botanist knows that plants which are transported from their native places to gardens for purposes of cultivation, gradually undergo changes which ultimately make them unrecognisable. Many plants, by nature hairy, become glabrous or nearly so; a number of those which used to lie and creep on the ground, become erect; others lose their thorns or excrescences; others again whose stem was perennial and woody in their native hot climates, become herbaceous in our own climates and some of them become annuals; lastly, the size of their parts itself undergoes very considerable changes. These effects of alterations of environment are so widely recognised, that botanists do not like to describe garden plants unless they have been recently brought into cultivation. Is it not the case that cultivated wheat (*Triticum sativum*) is a plant which man has brought to the state in which we now see it? I should like to know in what country such a plant lives in nature, otherwise than as the result of cultivation. Where in nature do we find our cabbages, lettuces, etc., in the same state as in our kitchen gardens? and is not the case the same with regard to many animals which have been altered or greatly modified by domestication? How many different races of our domestic fowls and pigeons have we obtained by rearing them in various environments and different countries; birds which we should now vainly seek in nature? Those which have changed the least, doubtless because their domestication is of shorter standing and because they do not live in a foreign climate, none the less display great differences in some of their parts, as a result of the habits which we have made them contract. Thus our domestic ducks and geese are of the same type as wild ducks and geese; but ours have lost the power of rising into high regions of the air and flying across large tracts of country; moreover, a real change has come about in the state of their parts, as compared with those of the animals of the race from which they come. Who does not know that if we rear some bird of our own climate in a cage and it lives there for five or six years, and if we then return it to nature by setting it at liberty, it is no longer able to fly like its fellows, which have always been free? The slight change of environment for this individual has indeed only diminished its power of flight, and doubtless has worked no change in its structure; but if a long succession of generations of individuals of the same race had been kept in captivity for a considerable period, there is no doubt that even the structure of these individuals would gradually have undergone notable changes. Still more, if instead of a mere continuous captivity, this environmental factor had been further accompanied by a change to a very different climate; and if these individuals had by degrees been habituated to other kinds of food and other activities for seizing it, these factors when combined together and become permanent would have unquestionably given rise imperceptibly to a new race with quite special characters. Where in natural conditions do we find that multitude of races of dogs which now actually exist, owing to the domestication to which we have reduced them? Where do we find those bull-dogs, grey-hounds, water-spaniels, spaniels, lap-dogs, etc., etc.; races which show wider differences than those which we call specific when they occur among animals of one genus living in natural freedom? No doubt a single, original race, closely resembling the wolf, if indeed it was not actually the wolf, was at some period reduced by man to domestication. That race, of which all the individuals were then alike, was gradually scattered with man into different countries and climates; and after they had been subjected for some time to the influences of their environment and of the various habits which had been forced upon them in each country, they underwent remarkable alterations and formed various special races. Now man travels about to very great distances, either for trade or any other purpose; and thus brings into thickly populated places, such as a great capital, various races of dogs formed in very distant countries. The crossing of these races by reproduction then gave rise in turn to all those that we now know. The following fact proves in the case of plants how the change of some important factor leads to alteration in the parts of these living bodies. So long as Ranunculus aquatilis is submerged in the water, all its leaves are finely divided into minute segments; but when the stem of this plant reaches the surface of the water, the leaves which develop in the air are large, round and simply lobed. If several feet of the same plant succeed in growing in a soil that is merely damp without any immersion, their stems are then short, and none of their leaves are broken up into minute divisions, so that we get Ranunculus hederaceus, which botanists regard as a separate species. There is no doubt that in the case of animals, extensive alterations in their customary environment produce corresponding alterations in their parts; but here the transformations take place much more slowly than in the case of plants; and for us therefore they are less perceptible and their cause less readily identified. As to the conditions which have so much power in modifying the organs of living bodies, the most potent doubtless consist in the diversity of the places where they live, but there are many others as well which exercise considerable influence in producing the effects in question. It is known that localities differ as to their character and quality, by reason of their position, construction and climate: as is readily perceived on passing through various localities distinguished by special qualities; this is one cause of variation for animals and plants living in these various places. But what is not known so well and indeed what is not generally believed, is that every locality itself changes in time as to exposure, climate, character and quality, although with such extreme slowness, according to our notions, that we ascribe to it complete stability. Now in both cases these altered localities involve a corresponding alteration in the environment of the living bodies that dwell there, and this again brings a new influence to bear on these same bodies. Hence it follows that if there are extremes in these alterations, there are also finer differences: that is to say, intermediate stages which fill up the interval. Consequently there are also fine distinctions between what we call species. It is obvious then that as regards the character and situation of the substances which occupy the various parts of the earth's surface, there exists a variety of environmental factors which induces a corresponding variety in the shapes and structure of animals, independent of that special variety which necessarily results from the progress of the complexity of organisation in each animal. In every locality where animals can live, the conditions constituting any one order of things remain the same for long periods: indeed they alter so slowly that man cannot directly observe it. It is only by an inspection of ancient monuments that he becomes convinced that in each of these localities the order of things which he now finds has not always been existent; he may thence infer that it will go on changing. Races of animals living in any of these localities must then retain their habits equally long: hence the apparent constancy of the races that we call species,—a constancy which has raised in us the belief that these races are as old as nature. But in the various habitable parts of the earth's surface, the character and situation of places and climates constitute both for animals and plants environmental influences of extreme variability. The animals living in these various localities must therefore differ among themselves, not only by reason of the state of complexity of organisation attained in each race, but also by reason of the habits which each race is forced to acquire; thus when the observing naturalist travels over large portions of the earth's surface and sees conspicuous changes occurring in the environment, he invariably finds that the characters of species undergo a corresponding change. Now the true principle to be noted in all this is as follows: 1. Every fairly considerable and permanent alteration in the environment of any race of animals works a real alteration in the needs of that race. 2. Every change in the needs of animals necessitates new activities on their part for the satisfaction of those needs, and hence new habits. 3. Every new need, necessitating new activities for its satisfaction, requires the animal, either to make more frequent use of some of its parts which it previously used less, and thus greatly to develop and enlarge them; or else to make use of entirely new parts, to which the needs have imperceptibly given birth by efforts of its inner feeling; this I shall shortly prove by means of known facts. Thus to obtain a knowledge of the true causes of that great diversity of shapes and habits found in the various known animals, we must reflect that the infinitely diversified but slowly changing environment in which the animals of each race have successively been placed, has involved each of them in new needs and
corresponding alterations in their habits. This is a truth which, once recognised, cannot be disputed. Now we shall easily discern how the new needs may have been satisfied, and the new habits acquired, if we pay attention to the two following laws of nature, which are always verified by observation. #### FIRST LAW. In every animal which has not passed the limit of its development, a more frequent and continuous use of any organ gradually strengthens, develops and enlarges that organ, and gives it a power proportional to the length of time it has been so used; while the permanent disuse of any organ imperceptibly weakens and deteriorates it, and progressively diminishes its functional capacity, until it finally disappears. #### SECOND LAW. All the acquisitions or losses wrought by nature on individuals, through the influence of the environment in which their race has long been placed, and hence through the influence of the predominant use or permanent disuse of any organ; all these are preserved by reproduction to the new individuals which arise, provided that the acquired modifications are common to both sexes, or at least to the individuals which produce the young. Here we have two permanent truths, which can only be doubted by those who have never observed or followed the operations of nature, or by those who have allowed themselves to be drawn into the error which I shall now proceed to combat. Naturalists have remarked that the structure of animals is always in perfect adaptation to their functions, and have inferred that the shape and condition of their parts have determined the use of them. Now this is a mistake: for it may be easily proved by observation that it is on the contrary the needs and uses of the parts which have caused the development of these same parts, which have even given birth to them when they did not exist, and which consequently have given rise to the condition that we find in each animal. If this were not so, nature would have had to create as many different kinds of structure in animals, as there are different kinds of environment in which they have to live; and neither structure nor environment would ever have varied. This is indeed far from the true order of things. If things were really so, we should not have race-horses shaped like those in England; we should not have big draught-horses so heavy and so different from the former, for none such are produced in nature; in the same way we should not have basset-hounds with crooked legs, nor grey-hounds so fleet of foot, nor water-spaniels, etc.; we should not have fowls without tails, fantail pigeons, etc.; finally, we should be able to cultivate wild plants as long as we liked in the rich and fertile soil of our gardens, without the fear of seeing them change under long cultivation. A feeling of the truth in this respect has long existed; since the following maxim has passed into a proverb and is known by all, Habits form a second nature. Assuredly if the habits and nature of each animal could never vary, the proverb would have been false and would not have come into existence, nor been preserved in the event of any one suggesting it. If we seriously reflect upon all that I have just set forth, it will be seen that I was entirely justified when in my work entitled *Recherches sur les corps vivants* (p. 50), I established the following proposition: "It is not the organs, that is to say, the nature and shape of the parts of an animal's body, that have given rise to its special habits and faculties; but it is, on the contrary, its habits, mode of life and environment that have in course of time controlled the shape of its body, the number and state of its organs and, lastly, the faculties which it possesses." If this proposition is carefully weighed and compared with all the observations that nature and circumstances are incessantly throwing in our way, we shall see that its importance and accuracy are sub- stantiated in the highest degree. Time and a favourable environment are as I have already said nature's two chief methods of bringing all her productions into existence: for her, time has no limits and can be drawn upon to any extent. As to the various factors which she has required and still constantly uses for introducing variations in everything that she produces, they may be described as practically inexhaustible. The principal factors consist in the influence of climate, of the varying temperatures of the atmosphere and the whole environment, of the variety of localities and their situation, of habits, the commonest movements, the most frequent activities, and, lastly, of the means of self-preservation, the mode of life and the methods of defence and multiplication. Now as a result of these various influences, the faculties become extended and strengthened by use, and diversified by new habits that are long kept up. The conformation, consistency and, in short, the character and state of the parts, as well as of the organs, are imperceptibly affected by these influences and are preserved and propagated by reproduction. These truths, which are merely effects of the two natural laws stated above, receive in every instance striking confirmation from facts; for the facts afford a clear indication of nature's procedure in the diversity of her productions. But instead of being contented with generalities which might be considered hypothetical, let us investigate the facts directly, and consider the effects in animals of the use or disuse of their organs on these same organs, in accordance with the habits that each race has been forced to contract. Now I am going to prove that the permanent disuse of any organ first decreases its functional capacity, and then gradually reduces the organ and causes it to disappear or even become extinct, if this disuse lasts for a very long period throughout successive generations of animals of the same race. I shall then show that the habit of using any organ, on the contrary, in any animal which has not reached the limit of the decline of its functions, not only perfects and increases the functions of that organ, but causes it in addition to take on a size and development which imperceptibly alter it; so that in course of time it becomes very different from the same organ in some other animal which uses it far less. The permanent disuse of an organ, arising from a change of habits, causes a gradual shrinkage and ultimately the disappearance and even extinction of that organ. Since such a proposition could only be accepted on proof, and not on mere authority, let us endeavour to make it clear by citing the chief known facts which substantiate it. The vertebrates, whose plan of organisation is almost the same throughout, though with much variety in their parts, have their jaws armed with teeth; some of them, however, whose environment has induced the habit of swallowing the objects they feed on without any preliminary mastication, are so affected that their teeth do not develop. The teeth then remain hidden in the bony framework of the jaws, without being able to appear outside; or indeed they actually become extinct down to their last rudiments. In the right-whale, which was supposed to be completely destitute of teeth, M. Geoffroy has nevertheless discovered teeth concealed in the jaws of the foetus of this animal. The professor has moreover discovered in birds the groove in which the teeth should be placed, though they are no longer to be found there. Even in the class of mammals, comprising the most perfect animals, where the vertebrate plan of organisation is carried to its highest completion, not only is the right-whale devoid of teeth, but the ant-eater (*Myrmecophaga*) is also found to be in the same condition, since it has acquired a habit of carrying out no mastication, and has long preserved this habit in its race. Eyes in the head are characteristic of a great number of different animals, and essentially constitute a part of the plan of organisation of the vertebrates. Yet the mole, whose habits require a very small use of sight, has only minute and hardly visible eyes, because it uses that organ so little. Olivier's Spalax (Voyage en Égypte et en Perse), which lives underground like the mole, and is apparently exposed to daylight even less than the mole, has altogether lost the use of sight: so that it shows nothing more than vestiges of this organ. Even these vestiges are entirely hidden under the skin and other parts, which cover them up and do not leave the slightest access to light. The *Proteus*, an aquatic reptile allied to the salamanders, and living in deep dark caves under the water, has, like the *Spalax*, only vestiges of the organ of sight, vestiges which are covered up and hidden in the same way. The following consideration is decisive on the question which I am now discussing, Light does not penetrate everywhere; consequently animals which habitually live in places where it does not penetrate, have no opportunity of exercising their organ of sight, if nature has endowed them with one. Now animals belonging to a plan of organisation of which eyes were a necessary part, must have originally had them. Since, however, there are found among them some which have lost the use of this organ and which show nothing more than hidden and covered up vestiges of them, it becomes clear that the shrinkage and even disappearance of the organ in question are the results of a permanent disuse of that organ. This is proved by the fact that the organ of hearing is never in this condition, but is always found in animals whose organisation is of the kind that includes it: and for the following reason. The substance of sound, that namely which, when set in motion by the shock or the vibration of bodies, transmits to the organ of hearing That this is an error is attested by many known facts, showing that it is impossible ¹ Physicists believe and even affirm that the atmospheric air is the actual
substance of sound, that is to say, that it is the substance which, when set in motion by the shocks or vibrations of bodies, transmits to the organ of hearing the impression of the concussions received. the impression received, penetrates everywhere and passes through any medium, including even the densest bodies: it follows that every animal, belonging to a plan of organisation of which hearing is an essential part, always has some opportunity for the exercise of this organ wherever it may live. Hence among the vertebrates we do not find any that are destitute of the organ of hearing; and after them, when this same organ has come to an end, it does not subsequently recur in any animal of the posterior classes. It is not so with the organ of sight; for this organ is found to disappear, re-appear and disappear again according to the use that the animal makes of it. In the acephalic molluses, the great development of the mantle would make their eyes and even their head altogether useless. The permanent disuse of these organs has thus brought about their disappearance and extinction, although molluses belong to a plan of organisation which should comprise them. Lastly, it was part of the plan of organisation of the reptiles, as of other vertebrates, to have four legs in dependence on their skeleton. Snakes ought consequently to have four legs, especially since they are by no means the last order of the reptiles and are farther from the fishes than are the batrachians (frogs, salamanders, etc.). Snakes, however, have adopted the habit of crawling on the ground and hiding in the grass; so that their body, as a result of continually repeated efforts at elongation for the purpose of passing through narrow spaces, has acquired a considerable length, quite out of proportion to its size. Now, legs would have been quite useless to these animals and consequently unused. Long legs would have interfered that the air should penetrate to all places to which the substance producing sound actually does penetrate. See my memoir On the Substance of Sound, printed at the end of my Hydrogéologie, p. 225, in which I furnished the proofs of this mistake. Since the publication of my memoir, which by the way is seldom cited, great efforts have been made to make the known velocity of the propagation of sound in air tally with the elasticity of the air, which would cause the propagation of its oscillations to be too slow for the theory. Now, since the air during oscillation necessarily undergoes alternate compressions and dilatations in its parts, recourse has been had to the effects of the caloric squeezed out during the sudden compressions of the air and of the caloric absorbed during the rarefactions of that fluid. By means of these effects, quantitatively determined by convenient hypotheses, geometricians now account for the velocity with which sound is propagated through air. But this is no answer to the fact that sound is also propagated through bodies which air can neither traverse nor set in motion. These physicists assume forsooth a vibration in the smallest particles of solid bodies; a vibration of very dubious existence, since it can only be propagated through homogeneous bodies of equal density, and cannot spread from a dense body to a rarefied one or vice versâ. Such a hypothesis offers no explanation of the well-known fact that sound is propagated through heterogeneous bodies of very different densities and kinds. with their need of crawling, and very short legs would have been incapable of moving their body, since they could only have had four. The disuse of these parts thus became permanent in the various races of these animals, and resulted in the complete disappearance of these same parts, although legs really belong to the plan of organisation of the animals of this class. Many insects, which should have wings according to the natural characteristics of their order and even of their genus, are more or less completely devoid of them through disuse. Instances are furnished by many Coleoptera, Orthoptera, Hymenoptera and Hemiptera, etc., where the habits of these animals never involve them in the necessity of using their wings. But it is not enough to give an explanation of the cause which has brought about the present condition of the organs of the various animals,—a condition that is always found to be the same in animals of the same species; we have in addition to cite instances of changes wrought in the organs of a single individual during its life, as the exclusive result of a great mutation in the habits of the individuals of its species. The following very remarkable fact will complete the proof of the influence of habits on the condition of the organs, and of the way in which permanent changes in the habits of an individual lead to others in the condition of the organs, which come into action during the exercise of these habits. M. Tenon, a member of the Institute, has notified to the class of sciences, that he had examined the intestinal canal of several men who had been great drinkers for a large part of their lives, and in every case he had found it shortened to an extraordinary degree, as compared with the same organ in all those who had not adopted the like habit. It is known that great drinkers, or those who are addicted to drunkenness, take very little solid food, and eat hardly anything; since the drink which they consume so copiously and frequently is sufficient to feed them. Now since fluid foods, especially spirits, do not long remain either in the stomach or intestine, the stomach and the rest of the intestinal canal lose among drinkers the habit of being distended, just as among sedentary persons, who are continually engaged on mental work and are accustomed to take very little food; for in their case also the stomach slowly shrinks and the intestine shortens. This has nothing to do with any shrinkage or shortening due to a binding of the parts which would permit of the ordinary extension, if instead of remaining empty these viscera were again filled; we have to do with a real shrinkage and shortening of considerable extent, and such that these organs would burst rather than yield at once to any demand for the ordinary extension. Compare two men of equal ages, one of whom has contracted the habit of eating very little, since his habitual studies and mental work have made digestion difficult, while the other habitually takes much exercise, is often out-of-doors, and eats well; the stomach of the first will have very little capacity left and will be filled up by a very small quantity of food, while that of the second will have preserved and even increased its capacity. Here then is an organ which undergoes profound modification in size and capacity, purely on account of a change of habits during the life of the individual. The frequent use of any organ, when confirmed by habit, increases the functions of that organ, leads to its development and endows it with a size and power that it does not possess in animals which exercise it less. We have seen that the disuse of any organ modifies, reduces and finally extinguishes it. I shall now prove that the constant use of any organ, accompanied by efforts to get the most out of it, strengthens and enlarges that organ, or creates new ones to carry on functions that have become necessary. The bird which is drawn to the water by its need of finding there the prey on which it lives, separates the digits of its feet in trying to strike the water and move about on the surface. The skin which unites these digits at their base acquires the habit of being stretched by these continually repeated separations of the digits; thus in course of time there are formed large webs which unite the digits of ducks, geese, etc., as we actually find them. In the same way efforts to swim, that is to push against the water so as to move about in it, have stretched the membranes between the digits of frogs, sea-tortoises, the otter, beaver, etc. On the other hand, a bird which is accustomed to perch on trees and which springs from individuals all of whom had acquired this habit, necessarily has longer digits on its feet and differently shaped from those of the aquatic animals that I have just named. Its claws in time become lengthened, sharpened and curved into hooks, to clasp the branches on which the animal so often rests. We find in the same way that the bird of the water-side which does not like swimming and yet is in need of going to the water's edge to secure its prey, is continually liable to sink in the mud. Now this bird tries to act in such a way that its body should not be immersed in the liquid, and hence makes its best efforts to stretch and lengthen its legs. The long-established habit acquired by this bird and all its race of continually stretching and lengthening its legs, results in the individuals of this race becoming raised as though on stilts, and gradually obtaining long, bare legs, denuded of feathers up to the thighs and often higher still. (Système des Animaux sans vertèbres, p. 14.) We note again that this same bird wants to fish without wetting its body, and is thus obliged to make continual efforts to lengthen its neck. Now these habitual efforts in this individual and its race must have resulted in course of time in a remarkable lengthening, as indeed we actually find in the long necks of all water-side birds. If some swimming birds like the swan and goose have short legs and yet a very long neck, the reason is that these birds while moving about on the water acquire the habit of plunging their head as deeply as they can into it in order to get the aquatic larvae and various animals on which they feed; whereas they make no effort to lengthen their legs. If an animal, for the satisfaction of its needs, makes repeated efforts to lengthen its tongue, it will acquire a considerable length (ant-eater, green-woodpecker); if it requires to seize anything with
this same organ, its tongue will then divide and become forked. Proofs of my statement are found in the humming-birds which use their tongues for grasping things, and in lizards and snakes which use theirs to palpate and identify objects in front of them. Needs which are always brought about by the environment, and the subsequent continued efforts to satisfy them, are not limited in their results to a mere modification, that is to say, an increase or decrease of the size and capacity of organs; but they may even go so far as to extinguish organs, when any of these needs make such a course necessary. Fishes, which habitually swim in large masses of water, have need of lateral vision; and, as a matter of fact, their eyes are placed on the sides of their head. Their body, which is more or less flattened according to the species, has its edges perpendicular to the plane of the water; and their eyes are placed so that there is one on each flattened side. But such fishes as are forced by their habits to be constantly approaching the shore, and especially slightly inclined or gently sloping beaches, have been compelled to swim on their flattened surfaces in order to make a close approach to the water's edge. In this position, they receive more light from above than below and stand in special need of paying constant attention to what is passing above them; this requirement has forced one of their eyes to undergo a sort of displacement, and to assume the very remarkable position found in the soles, turbots, dabs, etc. (*Pleuronectes* and *Achirus*). The position of these eyes is not symmetrical, because it results from an incomplete mutation. Now this mutation is entirely completed in the skates, in which the transverse flattening of the body is altogether horizontal, like the head. Accordingly the eyes of skates are both situated on the upper surface and have become symmetrical. Snakes, which crawl on the surface of the earth, chiefly need to see objects that are raised or above them. This need must have had its effect on the position of the organ of sight in these animals, and accordingly their eyes are situated in the lateral and upper parts of their head, so as easily to perceive what is above them or at their sides; but they scarcely see at all at a very short distance in front of them. They are, however, compelled to make good the deficiency of sight as regards objects in front of them which might injure them as they move forward. For this purpose they can only use their tongue, which they are obliged to thrust out with all their might. This habit has not only contributed to making their tongue slender and very long and contractile, but it has even forced it to undergo division in the greater number of species, so as to feel several objects at the same time; it has even permitted of the formation of an aperture at the extremity of their snout, to allow the tongue to pass without having to separate the jaws. Nothing is more remarkable than the effects of habit in herbivorous mammals. A quadruped, whose environment and consequent needs have for long past inculcated the habit of browsing on grass, does nothing but walk about on the ground; and for the greater part of its life is obliged to stand on its four feet, generally making only few or moderate movements. The large portion of each day that this kind of animal has to pass in filling itself with the only kind of food that it cares for, has the result that it moves but little and only uses its feet for support in walking or running on the ground, and never for holding on, or climbing trees. From this habit of continually consuming large quantities of food-material, which distend the organs receiving it, and from the habit of making only moderate movements, it has come about that the body of these animals has greatly thickened, become heavy and massive and acquired a very great size: as is seen in elephants, rhinoceroses, oxen, buffaloes, horses, etc. The habit of standing on their four feet during the greater part of the day, for the purpose of browsing, has brought into existence a thick horn which invests the extremity of their digits; and since these digits have no exercise and are never moved and serve no other purpose than that of support like the rest of the foot, most of them have become shortened, dwindled and, finally, even disappeared. Thus in the pachyderms, some have five digits on their feet invested in horn, and their hoof is consequently divided into five parts; others have only four, and others again not more than three; but in the ruminants, which are apparently the oldest of the mammals that are permanently confined to the ground, there are not more than two digits on the feet and indeed, in the solipeds, there is only one (horse, donkey). Nevertheless some of these herbivorous animals, especially the ruminants, are incessantly exposed to the attacks of carnivorous animals in the desert countries that they inhabit, and they can only find safety in headlong flight. Necessity has in these cases forced them to exert themselves in swift running, and from this habit their body has become more slender and their legs much finer; instances are furnished by the antelopes, gazelles, etc. In our own climates, there are other dangers, such as those constituted by man, with his continual pursuit of red deer, roe deer and fallow deer; this has reduced them to the same necessity, has impelled them into similar habits, and had corresponding effects. Since ruminants can only use their feet for support, and have little strength in their jaws, which only obtain exercise by cutting and browsing on the grass, they can only fight by blows with their heads, attacking one another with their crowns. In the frequent fits of anger to which the males especially are subject, the efforts of their inner feeling cause the fluids to flow more strongly towards that part of their head; in some there is hence deposited a secretion of horny matter, and in others of bony matter mixed with horny matter, which gives rise to solid protuberances: thus we have the origin of horns and antlers, with which the head of most of these animals is armed. It is interesting to observe the result of habit in the peculiar shape and size of the giraffe (Camelo-pardalis): this animal, the largest of the mammals, is known to live in the interior of Africa in places where the soil is nearly always arid and barren, so that it is obliged to browse on the leaves of trees and to make constant efforts to reach them. From this habit long maintained in all its race, it has resulted that the animal's fore-legs have become longer than its hind legs, and that its neck is lengthened to such a degree that the giraffe, without standing up on its hind legs, attains a height of six metres (nearly 20 feet). Among birds, ostriches, which have no power of flight and are raised on very long legs, probably owe their singular shape to analogous circumstances. The effect of habit is quite as remarkable in the carnivorous mammals as in the herbivores; but it exhibits results of a different kind. Those carnivores, for instance, which have become accustomed to climbing, or to scratching the ground for digging holes, or to tearing their prey, have been under the necessity of using the digits of their feet: now this habit has promoted the separation of their digits, and given rise to the formation of the claws with which they are armed. But some of the carnivores are obliged to have recourse to pursuit in order to catch their prey: now some of these animals were compelled by their needs to contract the habit of tearing with their claws, which they are constantly burying deep in the body of another animal in order to lay hold of it, and then make efforts to tear out the part seized. These repeated efforts must have resulted in its claws reaching a size and curvature which would have greatly impeded them in walking or running on stony ground: in such cases the animal has been compelled to make further efforts to draw back its claws, which are so projecting and hooked as to get in its way. From this there has gradually resulted the formation of those peculiar sheaths, into which cats, tigers, lions, etc. withdraw their claws when they are not using them. Hence we see that efforts in a given direction, when they are long sustained or habitually made by certain parts of a living body, for the satisfaction of needs established by nature or environment, cause an enlargement of these parts and the acquisition of a size and shape that they would never have obtained, if these efforts had not become the normal activities of the animals exerting them. Instances are everywhere furnished by observations on all known animals. Can there be any more striking instance than that which we find in the kangaroo? This animal, which carries its young in a pouch under the abdomen, has acquired the habit of standing upright, so as to rest only on its hind legs and tail; and of moving only by means of a succession of leaps, during which it maintains its erect attitude in order not to disturb its young. And the following is the result: 1. Its fore legs, which it uses very little and on which it only supports itself for a moment on abandoning its erect attitude, have never acquired a development proportional to that of the other parts, and have remained meagre, very short and with very little strength. 2. The hind legs, on the contrary, which are almost continually in action either for supporting the whole body or for making leaps, have acquired a great development and become very large and strong. 3. Lastly, the tail, which is in this case much used for supporting the animal and carrying out its chief movements, has acquired an extremely remarkable thickness and strength at its base. These well-known facts are surely quite sufficient to establish the results of habitual use on an organ or any other part of animals. If on observing in an animal any organ
particularly well-developed, strong, and powerful, it is alleged that its habitual use has nothing to do with it, that its continued disuse involves it in no loss, and finally, that this organ has always been the same since the creation of the species to which the animal belongs, then I ask, Why can our domestic ducks no longer fly like wild ducks? I can, in short, cite a multitude of instances among ourselves, which bear witness to the differences that accrue to us from the use or disuse of any of our organs, although these differences are not preserved in the new individuals which arise by reproduction: for if they were their effects would be far greater. I shall show in Part II., that when the will guides an animal to any action, the organs which have to carry out that action are immediately stimulated to it by the influx of subtle fluids (the nervous fluid), which become the determining factor of the movements required. This fact is verified by many observations, and cannot now be called in question. Hence it follows that numerous repetitions of these organised activities strengthen, stretch, develop and even create the organs necessary to them. We have only to watch attentively what is happening all around us, to be convinced that this is the true cause of organic development and changes. Now every change that is wrought in an organ through a habit of frequently using it, is subsequently preserved by reproduction, if it is common to the individuals who unite together in fertilisation for the propagation of their species. Such a change is thus handed on to all succeeding individuals in the same environment, without their having to acquire it in the same way that it was actually created. Furthermore, in reproductive unions, the crossing of individuals who have different qualities or structures is necessarily opposed to the permanent propagation of these qualities and structures. Hence it is that in man, who is exposed to so great a diversity of environment, the accidental qualities or defects which he acquires are not preserved and propagated by reproduction. If, when certain peculiarities of shape or certain defects have been acquired, two individuals who are both affected were always to unite together, they would hand on the same peculiarities; and if successive generations were limited to such unions, a special and distinct race would then be formed. But perpetual crossings between individuals, who have not the same peculiarities of shape, cause the disappearance of all peculiarities acquired by special action of the environment. Hence, we may be sure that if men were not kept apart by the distances of their habitations, the crossing in reproduction would soon bring about the disappearance of the general characteristics distinguishing different nations. If I intended here to pass in review all the classes, orders, genera and species of existing animals, I should be able to show that the conformation and structure of individuals, their organs, faculties, etc., etc., are everywhere a pure result of the environment to which each species is exposed by its nature, and by the habits that the individuals composing it have been compelled to acquire; I should be able to show that they are not the result of a shape which existed from the beginning, and has driven animals into the habits they are known to possess. It is known that the animal called the ai or sloth (Bradypus tridactylus) is permanently in a state of such extreme weakness that it only executes very slow and limited movements, and walks on the ground with difficulty. So slow are its movements that it is alleged that it can only take fifty steps in a day. It is known, moreover, that the organisation of this animal is entirely in harmony with its state of feebleness and incapacity for walking; and that if it wished to make other movements than those which it actually does make it could not do so. Hence on the supposition that this animal had received its organisation from nature, it has been asserted that this organisation forced it into the habits and miserable state in which it exists. This is very far from being my opinion; for I am convinced that the habits which the ai was originally forced to contract must necessarily have brought its organisation to its present condition. If continual dangers in former times have led the individuals of this species to take refuge in trees, to live there habitually and feed on their leaves, it is clear that they must have given up a great number of movements which animals living on the ground are in a position to perform. All the needs of the ai will then be reduced to clinging to branches and crawling and dragging themselves among them, in order to reach the leaves, and then to remaining on the tree in a state of inactivity in order to avoid falling off. This kind of inactivity, moreover, must have been continually induced by the heat of the climate; for among warm-blooded animals, heat is more conducive to rest than to movement. Now the individuals of the race of the ai have long maintained this habit of remaining in the trees, and of performing only those slow and little varied movements which suffice for their needs. Hence their organisation will gradually have come into accordance with their new habits; and from this it must follow: - 1. That the arms of these animals, which are making continual efforts to clasp the branches of trees, will be lengthened; - 2. That the claws of their digits will have acquired a great length and a hooked shape, through the continued efforts of the animal to hold on; 3. That their digits, which are never used in making independent movements, will have entirely lost their mobility, become united and have preserved only the faculty of flexion or extension all together; 4. That their thighs, which are continually clasping either the trunk or large branches of trees, will have contracted a habit of always being separated, so as to lead to an enlargement of the pelvis and a back- ward direction of the cotyloid cavities; 5. Lastly, that a great many of their bones will be welded together, and that parts of their skeleton will consequently have assumed an arrangement and form adapted to the habits of these animals, and different from those which they would require for other habits. This is a fact that can never be disputed; since nature shows us in innumerable other instances the power of environment over habit and that of habit over the shape, arrangement and proportions of the parts of animals. Since there is no necessity to cite any further examples, we may now turn to the main point elaborated in this discussion. It is a fact that all animals have special habits corresponding to their genus and species, and always possess an organisation that is completely in harmony with those habits. It seems from the study of this fact that we may adopt one or other of the two following conclusions, and that neither of them can be verified. Conclusion adopted hitherto: Nature (or her Author) in creating animals, foresaw all the possible kinds of environment in which they would have to live, and endowed each species with a fixed organisation and with a definite and invariable shape, which compel each species to live in the places and climates where we actually find them, and there to maintain the habits which we know in them. My individual conclusion: Nature has produced all the species of animals in succession, beginning with the most imperfect or simplest, and ending her work with the most perfect, so as to create a gradually increasing complexity in their organisation; these animals have spread at large throughout all the habitable regions of the globe, and every species has derived from its environment the habits that we find in it and the structural modifications which observation shows us. The former of these two conclusions is that which has been drawn hitherto, at least by nearly everyone: it attributes to every animal a fixed organisation and structure which never have varied and never do vary; it assumes, moreover, that none of the localities inhabited by animals ever vary; for if they were to vary, the same animals could no longer survive, and the possibility of finding other localities and transporting themselves thither would not be open to them. The second conclusion is my own: it assumes that by the influence of environment on habit, and thereafter by that of habit on the state of the parts and even on organisation, the structure and organisation of any animal may undergo modifications, possibly very great, and capable of accounting for the actual condition in which all animals are found. In order to show that this second conclusion is baseless, it must first be proved that no point on the surface of the earth ever undergoes variation as to its nature, exposure, high or low situation, climate, etc., etc.; it must then be proved that no part of animals undergoes even after long periods of time any modification due to a change of environment or to the necessity which forces them into a different kind of life and activity from what has been customary to them. Now if a single case is sufficient to prove that an animal which has long been in domestication differs from the wild species whence it sprang, and if in any such domesticated species, great differences of conformation are found between the individuals exposed to such a habit and those which are forced into different habits, it will then be certain that the first conclusion is not consistent with the laws of nature, while the second, on the contrary, is entirely in accordance with them. Everything then combines to prove my statement, namely: that it is not the shape either of the body or its parts which gives rise to the habits of animals and their mode of life; but that it is, on the contrary, the habits, mode of life and all the other influences of the environment which have in course of time built up the shape of the body
and of the parts of animals. With new shapes, new faculties have been acquired, and little by little nature has succeeded in fashioning animals such as we actually see them. Can there be any more important conclusion in the range of natural history, or any to which more attention should be paid than that which I have just set forth? Let us conclude this Part I. with the principles and exposition of the natural order of animals.