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 HILARY PUTNAM

 HOW TO THINK QUANTUM-LOGICALLY

 The heart of the quantum-logical interpretation of quantum mechanics is
 the following 'proportion':

 GEOMETRY LOGIC
 GENERAL RELATIVITY " QUANTUM MECHANICS'

 The laws of geometry, it should be remembered, were regarded as
 necessary truths for thousands of years. If someone asserted that he had
 traveled in a straight line and without reversing the sense of his motion,
 and went on to claim that in the course of his trip he had visited the same

 point twice, he would have been accused of contradicting himself just as
 much as if he had violated some elementary law of logic. But the accep
 tance of general relativity theory has forced us to say that the state of
 affairs just described is conceivable, not inconceivable, and that things
 just as 'bad' as this actually happen.
 The advocate of the quantum-logical interpretation of quantum

 mechanics claims that in exactly parallel fashion the laws of logic have
 been regarded as necessary truths for thousands of years, but with no
 more justification than was present in the case of geometry. More
 precisely, the laws of Aristotelian logic have been regarded as necessary
 truths, and the laws of Euclidean geometry have been regarded as neces
 sary truths. And just as it is impossible to understand the true nature of

 space and time as long as it is assumed that 'space' obeys the laws of
 Euclidean geometry, so it is impossible to understand the true nature of
 microprocesses as long as it is assumed that physical propositions obey
 the laws of Aristotelian logic. Logic, we advocates of this interpretation
 claim, is just as empirical as geometry.
 The statement that one cannot understand the true nature of space and

 time as long as one assumes the validity of Euclidean geometry does not
 at all mean that one cannot construct a physics which assumes Euclidean
 geometry, nor does it mean that such a physics must of necessity lead to
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 56  HILARY PUTNAM

 false predictions. As Reichenbach long ago pointed out, one can stick to
 Euclidean geometry in one's physics provided one is willing to pay the
 price. And the price, as he showed in detail, is the acceptance of causal
 anomalies - mysterious forces, instantaneous actions at a distance,
 infinite reduplications, or some choice among or combination of these. In
 a Riemannian world, for example, if I visit the same place twice while
 traveling in a straight line, I can get around the apparent contradiction
 with Euclidean geometry by insisting that it was not really the same place
 that I visited, or that the line I traveled on was not really straight, etc. ;
 but then a host of physical phenomena will receive very strange explana
 tions.

 In the same way, according to the advocates of quantum logic, one can
 stick to classical logic in one's physics provided one is willing to pay the
 price. And the price is very similar to the price that one pays if one sticks
 to classical geometry in one's physics: one ends up with mysterious
 forces, or with a systematic 'cut between the observer and the system'
 (which is just to say, 'what one observes depends on how one looks, but
 one cannot say how and why it depends on how one looks'), or something
 else equally silly.

 I. THE CORRECT WAY TO VIEW THE WORLD

 The heart of the quantum-logical interrelation is that the logical relations
 among physical states of affairs - the relations of implication and in
 compatibility-are themselves an empirical matter. If we think of physical
 states of affairs as 'objects',1 then we must think of these 'objects' as
 having a lattice structure (cf. Putnam, 1968). The ordering relation in this
 lattice is the relation of implication. And whereas the traditional view is
 that this relation of implication is given a priori, the quantum-logical
 view is that it is a factual, synthetic, empirical matter, to be determined by
 the construction of theories and the scientific testing of those theories in
 the context of trying to understand various physical processes, just as the
 geometry of the world is an empirical matter.

 Let me now come down to some details. The world consists of particles
 (not of'waves', nor of'waveparticles'). I say this because I am quantizing a
 particle theory; if I were quantizing a field theory, I would say 'the world
 consists of fields'. Each of these particles has a position. And each of these
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 HOW TO THINK QUANTUM-LOGICALLY 57

 particles has a momentum. In symbols, taking 'Oscar' to be the name of
 one of these particles:

 (Er) the position of Oscar is r . (Er') the momentum of Oscar
 is r'.

 But it must not be concluded that each of these particles has a position
 and a momentum ! For the following is rejected :

 (Er) (Er') (the position of Oscar is r. the momentum of Oscar
 is r').

 Since these two statements are equivalent in classical logic, while in
 quantum logic one of them is accepted and the other is rejected, we see
 that the equivalence of these two statements must also be rejected in
 quantum logic, and this is our first example of a logical law which holds
 in classical logic but not in quantum logic:

 (Ex) Fx . (Ey) Gy is equivalent to (Ex) (Ey) Fx . Gy (correct in
 classical logic, but not correct in general in quantum logic).

 This is an instance of a distributive law, and it is such laws - distributive

 laws - which are for the most part given up in quantum logic. For example,
 the law of propositional calculus,

 (pv q). ris equivalent to (p . r) v (q . r),

 which is intimately related to the above law of classical predicate calculus,
 is one which fails in quantum logic.
 We can now list some features of the quantum-logical view of the world.

 (1) Measurement only determines what is already the case: it does not
 bring into existence the observable measured, or cause it to 'take on a sharp
 value ' which it did not already possess.

 The statement 'Oscar has a position' is just the statement '(Er) the posi
 tion of Oscar is r\ and this statement is accepted at all times, whether we
 know the position of Oscar or not. 'Measurement' is just a physical inter
 action, obeying the same laws as any other physical interaction; indeed
 the term 'measurement' plays no role in the axiomatization of physics, on
 this view.

 Inasmuch as a measurement, say, a position measurement, is just an
 interaction which enables me to find out something which was there to be
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 58  HILARY PUTNAM

 found out prior to my making the measurement, this interpretation might
 be called a 'hidden variable' interpretation. But it differs from the usual
 hidden variable theories in two ways:

 (a) Complementarity is fully retained. For any particular r and any
 particular r' the statement 'Oscar has the position r and Oscar has the
 momentum r" is a logical contradiction. It is, of course, just the sacrifice
 of the distributive law that we mentioned a few moments ago that enables

 us to simultaneously retain the objective conception of measurement as
 finding out something which exists independently and the objective
 conception of complementarity as a prohibition on the simultaneous
 existence of certain states of affairs, and not just as a prohibition on
 simultaneous knowledge.

 (b) The laws of quantum mechanics admit of no supplementation by
 laws of motion of the traditional Hamiltonian or Lagrangian kind. The
 statement 'the position of Oscar is r' is a logically strongest consistent
 statement in quantum logic. To conjoin any other 'information' to this
 statement would have to lead to either a redundancy or a logical contra
 diction. (Thus the 'completeness' of the quantum-mechanical description,
 as von Neumann terms it, is retained in this interpretation.) In particular,
 laws which require as inputs statements of the form 'Oscar has position
 r . Oscar has momentum r" cannot possibly be consistent with quantum
 mechanics. Moreover, given a logically strongest consistent statement
 about the state of Oscar at any one time t0, the laws of quantum mechanics

 enable one to determine some logically strongest consistent statement
 about the state of Oscar at an arbitrary later or earlier time t1 ; so the laws
 of motion of quantum mechanics cannot be supplemented in any way at
 all without redundancy or contradiction. (In view of (b), this interpreta
 tion is not a hidden variable theory, contrary to what was said a moment

 ago; but it is better to say that quantum logic resolves the whole dispute
 between hidden variable theorists and von Neumann theorists by keeping
 what is correct in each view, than to try to classify the quantum-logical

 interpretation as 'hidden variable' or not.)
 (2) Probability enters into quantum theory just as it enters into classical

 physics: through considering large ensembles.
 This will be discussed in a future paper, and reasons of space do not

 permit me to give even a brief discussion here. However, I will mention
 one respect in which quantum physics appears to be superior to classical

This content downloaded from 
�������������46.190.44.247 on Tue, 12 Apr 2022 19:28:16 UTC������������� 

All use subject to https://about.jstor.org/terms



 HOW TO THINK QUANTUM-LOGICALLY  59

 physics : on this interpretation, the laws of motion which apply to all
 systems have as a logical consequence the statistical laws which describe
 the distribution of a property in a large ensemble of noninteracting
 systems which all satisfy some logically strongest consistent statement.
 Thus the question as to where such statistical distributions 'come from'
 receives an unexpected and very satisfying answer from quantum logic.

 (3) The Hubert spaces used in quantum mechanics are simply math
 ematical representations of various 'logical spaces'; namely, the lattices of
 physical propositions involved in treating the particular systems at issue in
 the various problems handled.

 At first blush, the use of Hubert spaces (and more general linear
 spaces) in quantum mechanics seems like black magic. Once one observes
 that the subspaces of a Hilbert space form a lattice under the relation
 'subspace of, and that that lattice is isomorphic to the lattice formed by
 the physical propositions about the system whose Hilbert space that
 Hilbert space is (i.e., isomorphic to the lattice formed by certain physical
 propositions under the relation of implication), then the appearance of
 black magic disappears. In classical physics also each well-defined system
 corresponded to a 'space', the so-called phase space. Each instantaneous
 state description corresponded, in the classical case, to a point in phase
 space. Thus the points in phase space were the mathematical counter
 parts of logically strongest consistent statements. An arbitrary consistent
 statement could be mathematically represented by a set of points, namely,
 the set of state descriptions in which that statement was true. The lattice of

 subsets of phase space was then isomorphic, under a well-known iso
 morphism, to the lattice of physical propositions about the system in
 question.

 In quantum mechanics, we who advocate the quantum-logical inter
 pretation maintain, the corresponding lattice of physical propositions is
 not 'Boolean'; in particular, distributive laws fail. So it cannot be iso
 morphic to any Boolean lattice, and in particular not to the lattice of
 subsets of any space. But it can be isomorphic to the lattice of subspaces
 of a suitable linear space because that lattice has the same structure as the

 lattice of physical propositions. And the whole function of the linear
 spaces used in quentum mechanics is to provide a convenient mathemati
 cal representation of the lattice of physical propositions, and to enable
 one to give a convenient mathematical representation of time develop
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 60  HILARY PUTNAM

 ment laws (i.e., laws of the form : 'if/? is true at time x, then q will be true at

 timex + f).

 II. STATE VECTORS AND QUANTUM LOGIC

 We can now say what the famous '^-function' (also called the 'state vector'
 or 'state function') of quantum mechanics really is. Each state vector
 corresponds to a one-dimensional subspace of the Hilbert space (namely,
 the one-dimensional subspace in which that vector lies). And a one
 dimensional subspace of a linear space has no subspaces except itself and
 the null space. So the physical proposition corresponding to a state
 vector must be one which is implied by no proposition except itself and
 the logically false proposition: that is to say, it must be a logically
 strongest consistent proposition. And that is indeed the case: each
 ^-function corresponds to a statement which is implied only by itself and
 by the logically false statement, in quantum logic. So we say, the state
 vector is nothing but the mathematical representation of a logically
 strongest consistent statement.
 Many writers write as if a system had one and only one state vector at a

 given time, however. Can this be true, if quantum logic is assumed? The
 answer is 'no'. For let \?tu ^2>---> *A? be all the state vectors which are
 eigenvectors of position; that is to say (identifying each state vector with
 the corresponding physical proposition), let i//l9 y\il9..., \j/n be all the
 statements of the form 'Oscar has the position r\ (Of course, these are non
 denumerably infinite in number; but we shall simplify by pretending that

 there are only finitely many possible positions.) Similarly, let <?>l9 </>2>-->
 (?>n be all the statements of the form 'Oscar has the momentum r\ Then, as

 we have already stated, the conjunction

 (i.e., 'Oscar has a position . Oscar has a momentum') is true, and this may
 be expressed also by writing

 (E\ji) (\?/ is an eigenvector of position . Oscar has ij/).

 (E(?>) (ay is an eigenvector of momentum . Oscar has <j>).

 Thus, on the quantum logic interpretation, contrary to what is often
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 HOW TO THINK QUANTUM-LOGICALLY 61

 maintained, a system has many state vectors; it has a state vector of each
 nondegenerate observable, in fact.

 Now then, let ^bea state vector which is an eigenvector of position
 and let ^bea state vector which is an eigenvector of momentum. Then
 the statement

 Oscar has \j/1. Oscar has (?)l

 is a logical contradiction ! For this is just another way of saying that Oscar
 has a definite position r and a definite momentum r' in violation of
 complementarity.

 Thus we get: a system has more than one state vector, on the quantum
 logic interpretation, but one can never assign more than one state vector !

 Or, to drop talk of 'state vectors' altogether, since that talk tends to be
 highly misleading on the view of the world sketched in the preceding part,
 we may say: A system has a position and it has a momentum. But if you

 know the position (say, r), you cannot know the momentum. For if you did,
 say, know that the momentum was r', you would know 'Oscar has the
 position r. Oscar has the momentum r' ', which is a logical contradiction.

 The logic by itself does not say exactly how any particular position
 measurement will make momentum uncertain. But we know that in each

 case the physical laws will in some way have to say that the position
 measurement makes the momentum uncertain, because physical laws
 have to be compatible with logic - that is to say, they have to be compati
 ble with the true logic, which is quantum logic.

 Harvard University

 NOTE

 1 In my view this is a permissible but not a necessary way of talking. Cf. Putnam (1967).
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