A Suppose ' $m$ ' denotes Myfanwy, ' $n$ ' denotes Ninian, 'o' denotes Olwen, ' $F x$ ' means $x$ is a philosopher, 'Gx' means $x$ speaks Welsh, 'Lxy' means $x$ loves $y$, and 'Rxyz' means that $x$ is a child of $y$ and $z$. Take the domain of discourse to consist of human beings. Translate the following into QL :

1 Ninian is loved by Myfanwy and Olwen (Lmn $\wedge$ Lon)

2 Neither Myfanwy nor Ninian love Olwen
$\neg($ Lmo $\vee \mathrm{Lno})$ or $(\neg \mathrm{Lmo} \wedge \neg \mathrm{Lno})$
3 Someone is a child of Myfanwy and Ninian $\exists x R x m n$

4 No philosopher loves Olwen
$\neg \exists x(F x \wedge L x o)$ or $\forall x(F x \supset \neg L x o)$
5 Myfanwy and Ninian love everyone
$\forall x(\operatorname{Lmx} \wedge \operatorname{Lnx})$ or $(\forall x \operatorname{Lmx} \wedge \forall x \operatorname{Lnx})$
6 Some philosophers speak Welsh
$\exists x(F x \wedge G x)$
7 No Welsh-speaker who loves Myfanwy is a philosopher
$\neg \exists \mathrm{x}((\mathrm{Gx} \wedge \mathrm{Lxm})) \wedge \mathrm{Fx})$ or $\quad \forall \mathrm{x}((\mathrm{Gx} \wedge \mathrm{Lxm})) \supset \neg \mathrm{Fx})$
8 Some philosophers love both Myfanwy and Olwen
$\exists x(F x \wedge(L x m \wedge L x o))$
9 Some philosophers love every Welsh speaker
$\exists x(F x \wedge \forall y(G y \supset L x y))$
10 Everyone who loves Ninian is a philosopher who loves Myfanwy
$\forall x(L x n \supset(F x \wedge L x m))$
11 Some philosopher is a child of Olwen and someone or other $\exists x(F x \wedge \exists y$ Rxoy $)$
12 Whoever is a child of Myfanwy and Ninian loves them both $\forall x(R x m n \supset(L x m \wedge L x n))$
13 Everyone speaks Welsh only if Olwen speaks Welsh ( $\forall \mathrm{xGx} \supset \mathrm{Go}$ ) [not $\forall \mathrm{x}(\mathrm{Gx} \supset \mathrm{Go})$, which isn't equivalent]

14 Myfanwy is a child of Ninian and of someone who loves Ninian $\exists x(\operatorname{Rmnx} \wedge L x n)$
[oops, first printing has 'Bethan' etc. Sorry! Using obvious translation, that would be
$\exists x(R b c x \wedge L x c)]$
15 Some philosophers love no Welsh speakers
$\exists x(F x \wedge \neg \exists y(G y \wedge L x y))$ or $\exists x(F x \wedge \forall y(G y \supset \neg L x y))$
16 Every philosopher who speaks Welsh loves Olwen

$$
\forall x((F x \wedge G x) \supset L x o))
$$

17 Every philosopher who speaks Welsh loves someone who loves Olwen $\forall x((F x \wedge G x) \supset \exists y(L x y \wedge L y o))$
18 If Ninian loves every Welsh speaker, then Ninian loves Myfanwy
$(\forall x(G x \supset \operatorname{Ln} x) \supset \operatorname{Lnm})$
19 No Welsh speaker is loved by every philosopher
$\neg \exists x(\mathrm{Gx} \wedge \forall \mathrm{y}(\mathrm{Fy} \supset \mathrm{Lyx}))$ or $\forall \mathrm{x}(\mathrm{Gx} \supset \exists \mathrm{y}(\mathrm{Fy} \wedge \neg \mathrm{Lyx}))$
20 Every Welsh speaker who loves Ninian loves no one who loves Olwen $\forall x((G x \wedge L x n) \supset \neg \exists y(L x y \wedge L y o))$

21 Whoever loves Myfanwy, loves a philosopher only if the latter loves Myfanwy too $\forall x(L x m \supset \forall y((L x y \wedge F y) \supset L y m))$

22 Anyone whose parents are a philosopher and someone who loves a philosopher is a philosopher too.
$\forall x(\{\exists y \exists z R x y z \wedge[y$ is a philosopher and $z$ loves a philosopher $]\} \supset F x)$
$\forall x((\exists y \exists z R x y z \wedge(F y \wedge \exists w(L z w \wedge F w))) \supset F x)$
23 Only if Ninian loves every Welsh-speaking philosopher does Myfanwy love him
$(L m n \supset \forall x((F x \wedge G x) \supset L n x))$
24 No philosophers love any Welsh-speaker who has no children
$\forall x(F x \supset \neg \exists y(L x y \wedge\{G y \wedge y$ has no children $\}))$
$\forall x(F x \supset \neg \exists y(L x y \wedge(G y \wedge \neg \exists z \exists w R z y w)))$

B Take the domain of quantification to be the (positive whole) numbers, and let ' $n$ ' denote the number one, ' $F x$ ' mean $x$ is odd, ' $G x$ ' mean $x$ is even, ' $H x$ ' mean $x$ is prime, ' Lxy ' mean $x$ is greater than $y$, 'Rxyz' mean that $x$ is the sum of $y$ and $z$. Then translate the following from QL into natural English:
$1 \neg \exists x(F x \wedge \neg G x)$
$\Rightarrow$ No odd number is not even [which is false! to get a truth, which is what I'd intended, delete the second negation in both (1) and its translation!]
$\forall x \forall y \exists z R z x y$
$\Rightarrow$ Every pair of numbers has a sum
$\forall x \forall y((F x \wedge R y x n) \supset G y)$
$\Rightarrow$ If a number is one more than an odd number, then it is even.
5
$\forall x \forall y((G x \wedge R x y n) \supset F y)$
$\Rightarrow$ If a number is one less than an even number, then it is odd.
6
$\forall x \exists y((G x \wedge F y) \wedge R x y y)$
$\quad \Rightarrow$ Any even number is equal to twice some odd number (more literally: any even number
$\quad$ is equal to some odd number added to itself - false of course!
$7 \quad \forall x \forall y(\exists z(R z x n \wedge R y z n) \supset(G x \supset G y))$
$\Rightarrow$ If two numbers differ by two, then if one is even, so is the other.
8
$\forall x \forall y \forall z(((F x \wedge F y) \wedge R z x y) \supset G z)$
$\Rightarrow$ The sum of two odd numbers is even.
$9 \forall x(G x \supset \exists y \exists z((H y \wedge H z) \wedge R x y z))$
$\Rightarrow$ Every even number is the sum of two primes. [Goldbach's conjecture]
10
$\forall w \exists x \exists y(((H x \wedge H y) \wedge(L x w \wedge L y w)) \wedge \exists z(R z x n \wedge R y z n))$
$\Rightarrow$ Take any number, then there is a pair of primes larger than it which differ by two. [The twin primes conjecture]

C Which of the following pairs are equivalent, and why?

## 1. $\forall x(F x \supset G x) ;(\forall x F x \supset \forall x G x)$

Interpret ' $F$ ' as man, ' $G$ ' as woman, and take the domain to be people. Then ' $\forall x(F x \supset G x)$ ' is false; but ' $\forall x F x$ ' and ' $\forall x G x$ ' are both false so ' $(\forall x F x \supset \forall x G x)$ ' is true. So these wffs are not equivalent.
2. $\exists x(F x \supset G x) ;(\exists x F x \supset \exists x G x)$

Interpret ' $F$ ' as horse, ' $G$ ' as unicorn, and take the domain to be living creatures. Then ' $\exists x F x$ ' is true, and ' $\exists x G x$ ' is false so ' $(\exists x F x \supset \exists x G x)$ ' is false. Suppose 'a' denotes a dog in the domain; then 'Fa' is false, as is ' Ga ', so '( $\mathrm{Fa} \supset \mathrm{Ga}$ )' is true, so ' $\exists \mathrm{x}(\mathrm{Fx} \supset \mathrm{Gx})$ ' is true. So these wffs are not equivalent.
3. $\exists x(F x \supset G x) ;(\forall x F x \supset \exists x G x)$

Equivalent: for consider this chain $\exists x(F x \supset G x) \equiv \neg \forall x \neg(F x \supset G x) \equiv \neg \forall x(F x \wedge \neg G x) \equiv$ $\neg(\forall x F x \wedge \forall x \neg G x) \equiv(\forall x F x \supset \neg \forall x \neg G x) \equiv(\forall x F x \supset \exists x G x)$ - which relies on the equivalence of
$\forall x(A x \wedge B x)$ and $(\forall x A x \wedge \forall x B x)$.
4. $\quad \forall x(F x \supset G x) ;(\exists x F x \supset \forall x G x)$

Take the domain to be living things, interpret ' $F$ ' as man, ' $G$ ' as human. Then ' $\forall x(F x \supset G x)$ ' is true and ' $(\exists x F x \supset \forall x G x)$ ' false, so the wffs are not equivalent.

Q: The claim that, e.g., that a wff of the form $(A \vee \exists x F x)$ is equivalent to one of the form $\exists x(A \vee \mathrm{Fx})$ depends on our stipulation that the domain of quantification isn't empty. Why?

A: Because in an empty domain, $\exists x \subset$ is always false; so if $A$ is true, $(A \vee \exists x F x)$ is true but $\exists x(A \vee \mathrm{Fx})$ is false; so the wffs aren't equivalent.
Q : Which other equivalences we stated in $\$ 24.3$ above also depend on that stipulation?
A: Similarly, if $A$ is false, $(A \supset \exists x F x)$ is true and $\exists x(A \supset \mathrm{Fx})$ false, so those are no equivalent in empty domains. The other equivalences stated remain correct.

