


An Introduction to Gödel’s Theorems

In 1931, the young Kurt Gödel published his First Incompleteness Theorem,
which tells us that, for any sufficiently rich theory of arithmetic, there are some
arithmetical truths the theory cannot prove. This remarkable result is among
the most intriguing (and most misunderstood) in logic. Gödel also outlined an
equally significant Second Incompleteness Theorem. How are these Theorems
established, and why do they matter? Peter Smith answers these questions by
presenting an unusual variety of proofs for the First Theorem, showing how to
prove the Second Theorem, and exploring a family of related results (including
some not easily available elsewhere). The formal explanations are interwoven
with discussions of the wider significance of the two Theorems. This book will
be accessible to philosophy students with a limited formal background. It is
equally suitable for mathematics students taking a first course in mathematical
logic.

Peter Smith is Lecturer in Philosophy at the University of Cambridge. His
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and ‘Gödel sentences’ · Incompletability and consistency extensions · The

equivalence of fixed points for ¬Prov · Theories that ‘prove’ their own

inconsistency · Löb’s Theorem
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Preface

In 1931, the young Kurt Gödel published his First and Second Incompleteness
Theorems; very often, these are simply referred to as ‘Gödel’s Theorems’. His
startling results settled (or at least, seemed to settle) some of the crucial ques-
tions of the day concerning the foundations of mathematics. They remain of
the greatest significance for the philosophy of mathematics – though just what
that significance is continues to be debated. It has also frequently been claimed
that Gödel’s Theorems have a much wider impact on very general issues about
language, truth and the mind.

This book gives proofs of the Theorems and related formal results, and touches –
necessarily briefly – on some of their implications. Who is this book for? Roughly
speaking, for those who want a lot more fine detail than you get in books for a
general audience (the best of those is Franzén, 2005), but who find the rather
forbidding presentations in classic texts in mathematical logic (like Mendelson,
1997) too short on explanatory scene-setting. So I hope philosophy students
taking an advanced logic course will find the book useful, as will mathematicians
who want a more accessible exposition.

But don’t be misled by the relatively relaxed style; don’t try to browse through
too quickly. We do cover a lot of ground in quite a bit of detail, and new ideas
often come thick and fast. Take things slowly!

Theorems are numbered in the standard way, so Theorem 16.2 is the second
theorem in Chapter 16. The distinction between a ‘proof’, a ‘proof sketch’ and
(occasionally) a ‘sketch of a proof sketch’ is blurry. The end of a proof or proof
sketch is marked by �.

I assume only a modest amount of background in logic. So we can’t cover, for
example, material that presupposes a serious knowledge of model theory; which
means that we don’t discuss (say) model-theoretic arguments for incompleteness.
That’s a pity. But there’s a sequel planned for enthusiasts who want to know
about such matters.

I originally intended to write a rather shorter book, leaving many of the formal
details to be filled in from elsewhere. But while that plan might have suited some
readers, I soon realized that it would seriously irritate others to be sent hither
and thither to consult a variety of textbooks with different terminologies and
different notations. So in the end, I have given more or less full proofs of most of
the key results we cover. However, my original plan shows through in two ways.
First, some proofs are still only partially sketched in. Second, I try to signal very
clearly when the detailed proofs I do give can be skipped without much loss of
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Preface

understanding. With judicious skimming, you should be able to follow the main
formal themes of the book even if you start from a very modest background in
logic. For those who want to fill in more details and test their understanding
there are exercises on the book’s website at www.godelbook.net.

As we go through, there is also a small amount of broadly philosophical com-
mentary. I follow Gödel in believing that our formal investigations and our gen-
eral reflections on foundational matters should illuminate and guide each other.
I hope that the more philosophical discussions – relatively elementary though
certainly not always uncontentious – will also be reasonably widely accessible.
Note however that I am more interested in patterns of ideas and arguments
than in being historically very precise when talking e.g. about logicism or about
Hilbert’s Programme.

Writing a book like this presents many problems of organization. At various
points we will need to call upon some background ideas from general logical
theory. Do we explain them all at once, up front? Or do we introduce them as
we go along, when needed? Similarly we will also need to call upon some ideas
from the general theory of computation – for example, we will make use of both
the notion of a ‘primitive recursive function’ and the more general notion of a
‘μ-recursive function’. Again, do we explain these together? Or do we give the
explanations many chapters apart, when the respective notions first get used?

I’ve mostly adopted the second policy, introducing new ideas as and when
needed. This has its costs, but I think that there is a major compensating benefit,
namely that the way the book is organized makes it clearer just what depends on
what. It also reflects something of the historical order in which ideas emerged.

My colleague Michael Potter has been an inspiring presence since I returned to
Cambridge. Many thanks are due to him and to all those who have very kindly
given me comments on parts of various drafts, including the late Torkel Franzén,
Tim Button, Luca Incurvati, Jeffrey Ketland, Aatu Koskensilta, Christopher
Leary, Mary Leng, Toby Ord, Alex Paseau, Jacob Plotkin, José F. Ruiz, Kevin
Scharp, Hartley Slater, and Tim Storer. I should especially mention Richard
Zach, whose comments at two different stages were particularly extensive and
particularly helpful.

But my greatest debt is to Patsy Wilson-Smith, without whose continuing
love and support this book would never have been written.
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1 What Gödel’s Theorems say

1.1 Basic arithmetic

It seems to be child’s play to grasp the fundamental notions involved in the arith-
metic of addition and multiplication. Starting from zero, there is a sequence of
‘counting’ numbers, each having just one immediate successor. This sequence of
numbers – officially, the natural numbers – continues without end, never circling
back on itself; and there are no ‘stray’ numbers, lurking outside this sequence.
Adding n to m is the operation of starting from m in the number sequence and
moving n places along. Multiplying m by n is the operation of (starting from
zero and) repeatedly adding m, n times. And that’s about it.

Once these fundamental notions are in place, we can readily define many more
arithmetical notions in terms of them. Thus, for any natural numbers m and n,
m < n iff there is a number k �= 0 such that m + k = n. m is a factor of n iff
0 < m and there is some number k such that 0 < k and m× k = n. m is even iff
it has 2 as a factor. m is prime iff 1 < m and m’s only factors are 1 and itself.
And so on.1

Using our basic and/or defined concepts, we can then make various general
claims about the arithmetic of addition and multiplication. There are familiar
truths like ‘addition is commutative’, i.e. for any numbers m and n, we have
m + n = n + m. There are also yet-to-be-proved conjectures like Goldbach’s
conjecture that every even number greater than two is the sum of two primes.

That second example illustrates the truism that it is one thing to understand
what we’ll call the language of basic arithmetic (i.e. the language of the addition
and multiplication of natural numbers, together with the standard first-order
logical apparatus), and it is another thing to be able to evaluate claims that can
be framed in that language.

Still, it is extremely plausible to suppose that, whether the answers are readily
available to us or not, questions posed in the language of basic arithmetic do have
entirely determinate answers. The structure of the number sequence is (surely)
simple and clear. There’s a single, never-ending sequence, starting with zero;
each number is followed by a unique successor; each number is reached by a finite
number of steps from zero; there are no repetitions. The operations of addition
and multiplication are again (surely) entirely determinate; their outcomes are
fixed by the school-room rules. So what more could be needed to fix the truth or
falsity of propositions that – perhaps via a chain of definitions – amount to claims
of basic arithmetic? To put it fancifully: God sets down the number sequence

1‘Iff’ is, of course, the standard logicians’ shorthand for ‘if and only if’.
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1 What Gödel’s Theorems say

and specifies how the operations of addition and multiplication work. He has
then done all he needs to do to make it the case that Goldbach’s conjecture is
true (or false, as the case may be).

Of course, that last remark is far too fanciful for comfort. We may find it
compelling to think that the sequence of natural numbers has a definite structure,
and that the operations of addition and multiplication are entirely nailed down
by the familiar school-room rules. But what is the real content of the thought
that the truth-values of all basic arithmetic propositions are thereby ‘fixed’?

Here’s one initially attractive way of giving non-metaphorical content to that
thought. The idea is that we can specify a bundle of fundamental assumptions
or axioms which somehow pin down the structure of the number sequence, and
which also characterize addition and multiplication (after all, it is entirely natural
to suppose that we can give a reasonably simple list of true axioms to encapsulate
the fundamental principles so readily grasped by the successful learner of school
arithmetic). So suppose that ϕ is a proposition which can be formulated in
the language of basic arithmetic. Then, the plausible suggestion continues, the
assumed truth of our axioms always ‘fixes’ the truth-value of any such ϕ in the
following sense: either ϕ is logically deducible from the axioms by a normal kind
of proof, and so ϕ is true; or its negation ¬ϕ is deducible from the axioms,
and so ϕ is false.2 We may not, of course, actually stumble on a proof one way
or the other: but the idea is that such a proof always exists, since the axioms
contain enough information to enable the truth-value of any basic arithmetical
proposition to be deductively extracted by deploying familiar step-by-step logical
rules of inference.

Logicians say that a theory T is (negation) complete if, for every sentence ϕ
in the language of the theory, either ϕ or ¬ϕ is deducible in T ’s proof system.
So, put into that jargon, the suggestion we are considering is this: we should be
able to specify a reasonably simple bundle of true axioms which, together with
some logic, give us a complete theory of basic arithmetic: we could in principle
use the theory to prove the truth or falsity of any claim about addition and/or
multiplication (or at least, any claim we can state using quantifiers like ‘for all’,
connectives like ‘if’ and ‘not’, and identity). And if that’s right, truth in basic
arithmetic could just be equated with provability in this complete theory.

It is tempting to say more. For what will the axioms of basic arithmetic look
like? Here’s one candidate: ‘For every natural number, there’s a unique next
one’. This is evidently true: but evident how? Is it that we have some special
and rather mysterious faculty of mathematical intuition which allows us just to
‘see’ that this axiom is true? Or can we avoid an appeal to intuition? Maybe the
axiom is evidently true because it is some kind of definitional triviality. Perhaps
it is just part of what we mean by talk of the natural numbers that we are
dealing with an ordered sequence where each member of the sequence has a

2‘Normal proof’ is vague, and soon we will need to be more careful: but the idea is that
we don’t want to countenance, e.g., ‘proofs’ with an infinite number of steps.
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Incompleteness

unique successor. And, plausibly, other candidate axioms are similarly true by
definition (or are logically derivable from definitions).

If those tempting thoughts are right – if the truths of basic arithmetic all flow
deductively from logic plus definitionally true axioms – then true arithmetical
claims would be simply analytic in the philosophers’ sense.3 And this so-called
‘logicist’ view would then give us a very neat explanation of the special certainty
and the necessary truth of correct claims of basic arithmetic.

1.2 Incompleteness

But now, in headline terms, Gödel’s First Incompleteness Theorem shows that
the entirely natural idea that we can completely axiomatize basic arithmetic is
wrong. Suppose we try to specify a suitable axiomatic theory T that seems to
capture the structure of the natural number sequence and pin down addition and
multiplication (and maybe a lot more besides). Then Gödel gives us a recipe for
coming up with a corresponding sentence GT , couched in the language of basic
arithmetic, such that (i) we can show (on very modest assumptions, e.g. that T
is consistent) that neither GT nor ¬GT can be derived in T , and yet (ii) we can
also recognize that, at least if T is consistent, GT will be true.

This is surely astonishing. Somehow, it seems, the class of basic arithmetic
truths about addition and multiplication will always elude our attempts to pin
it down by a fixed set of fundamental assumptions from which we can deduce
everything else.

How does Gödel show this in his great 1931 paper which presents the In-
completeness Theorems? Well, note how we can use numbers and numerical
propositions to encode facts about all sorts of things. For a trivial example,
students in the philosophy department might be numbered off in such a way
that one student’s code-number is less than another’s if the first student en-
rolled before than the second; a student’s code-number ends with ‘1’ if she is
an undergraduate student and with ‘2’ if she is a graduate; and so on and so
forth. More excitingly, we can use numbers and numerical propositions to encode
facts about theories, e.g. facts about what can be derived in a theory T .4 And

3Thus Gottlob Frege, writing in his wonderful Grundlagen der Arithmetik, urges us to seek
the proof of a mathematical proposition by ‘following it up right back to the primitive truths.
If, in carrying out this process, we come only on general logical laws and on definitions, then
the truth is an analytic one.’ (Frege, 1884, p. 4)

4It is absolutely standard for logicians to talk of a theory T as proving a sentence ϕ when
there is a logically correct derivation of ϕ from T ’s assumptions. But T ’s assumptions may
be contentious or plain false or downright absurd. So, T ’s proving ϕ in the logician’s sense
does not mean that ϕ is proved in the sense that it is established as true. It is far too late
in the game to kick against the logician’s usage, and in most contexts it is harmless. But our
special concern in this book is with the connections and contrasts between being true and being
provable in this or that theory T . So we need to be on our guard. And to help emphasize that
proving-in-T is not always proving-as-true, I’ll often talk of ‘deriving’ rather than ‘proving’
sentences when it is the logician’s notion which is in play.

3



1 What Gödel’s Theorems say

what Gödel did is find a general method that enabled him to take any theory T
strong enough to capture a modest amount of basic arithmetic and construct a
corresponding arithmetical sentence GT which encodes the claim ‘The sentence
GT itself is unprovable in theory T ’. So GT is true if and only if T can’t prove it.

Suppose that T has true axioms and a reliably truth-preserving deductive
logic. Then everything T proves must be true, i.e. T is a sound theory. But if T
were to prove its Gödel sentence GT , then it would prove a falsehood (since GT
is true if and only if it is unprovable). Hence, if T is sound, GT is unprovable in
T . But then GT is true. Hence ¬GT is false; and so that too can’t be proved by
T , because T only proves truths. In sum, still assuming T is sound, neither GT
nor its negation will be provable in T : therefore T can’t be negation complete.
And in fact we don’t even need to assume that T is sound: the official First
Theorem shows, for a start, that T ’s mere consistency is enough to guarantee
that a suitably constructed GT is true-but-unprovable-in-T .

To repeat: the sentence GT encodes the claim that that very sentence is un-
provable. But doesn’t this make GT uncomfortably reminiscent of the Liar sen-
tence ‘This very sentence is false’ (which is false if it is true, and true if it is
false)? You might well wonder whether Gödel’s argument doesn’t lead to a cousin
of the Liar paradox rather than to a theorem. But not so. As we will soon see,
there is nothing at all suspect or paradoxical about Gödel’s First Theorem as a
technical result about formal axiomatized systems (a result which we can in any
case prove without appeal to ‘self-referential’ sentences).

‘Hold on! If we can locate GT , a Gödel sentence for our favourite nicely ax-
iomatized theory of arithmetic T , and can argue that GT is true-but-unprovable,
why can’t we just patch things up by adding it to T as a new axiom?’ Well, to
be sure, if we start off with theory T (from which we can’t deduce GT ), and add
GT as a new axiom, we’ll get an expanded theory U = T +GT from which we can
quite trivially derive GT . But we can now just re-apply Gödel’s method to our
improved theory U to find a new true-but-unprovable-in-U arithmetic sentence
GU that encodes ‘I am unprovable in U ’. So U again is incomplete. Thus T is
not only incomplete but, in a quite crucial sense, is incompletable.

Let’s emphasize this key point. There’s nothing mysterious about a theory
failing to be negation complete, plain and simple. Imagine the departmental
administrator’s ‘theory’ D which records some basic facts about the course se-
lections of a group of students: the language of D, let’s suppose, is very limited
and can only be used to tell us about who takes what course in what room
when. From the ‘axioms’ of D we’ll be able, let’s suppose, to deduce further
facts – such as that Jack and Jill take a course together, and that ten people
are taking the logic course. But if there’s no relevant axiom in D about their
classmate Jo, we might not be able to deduce either J = ‘Jo takes logic’ or ¬J =
‘Jo doesn’t take logic’. In that case, D isn’t yet a negation-complete story about
the course selections of students. However, that’s just boring: for the ‘theory’
about course selection is no doubt completable (i.e. it can be expanded to set-
tle every question that can be posed in its very limited language). By contrast,

4



More incompleteness

what gives Gödel’s First Theorem its real bite is that it shows that any properly
axiomatized and consistent theory of basic arithmetic must remain incomplete,
whatever our efforts to complete it by throwing further axioms into the mix.

Finally, note that since GU can’t be derived from U , i.e. T + GT , it can’t be
derived from the original T either. So we can iterate the same Gödelian con-
struction to generate a never-ending stream of independent true-but-unprovable
sentences for any nicely axiomatized T including enough basic arithmetic.

1.3 More incompleteness

Incompletability does not just affect theories of basic arithmetic. Consider set
theory, for example. Start with the empty set ∅. Form the set {∅} containing
∅ as its sole member. Now form the set {∅, {∅}} containing the empty set we
started off with plus the set we’ve just constructed. Keep on going, at each stage
forming the set of all the sets so far constructed. We get the sequence

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

This sequence has the structure of the natural numbers. We can pick out a first
member (corresponding to zero); each member has one and only one successor; it
never repeats. We can go on to define analogues of addition and multiplication.
Moreover, any standard set theory can define this sequence. So if we could have
a negation-complete axiomatized set theory, then we could, in particular, have a
negation-complete theory of the fragment of set theory which provides us with
an analogue of arithmetic; adding a simple routine for translating the results for
this fragment into the familiar language of basic arithmetic would then give us a
complete theory of arithmetic. Hence, by Gödel’s First Incompleteness Theorem,
there cannot be a negation-complete set theory.

The point evidently generalizes: any axiomatized mathematical theory T that
can define (an analogue of) the natural-number sequence and replicate enough
of the basic arithmetic of addition and multiplication must be incomplete and
incompletable.5

1.4 Some implications?

Gödelian incompleteness immediately defeats what is otherwise a surely attrac-
tive suggestion about the status of arithmetic – namely the logicist idea that it
all flows deductively from a simple bunch of definitional truths that articulate
the very ideas of the natural numbers, addition and multiplication.

But then, how do we manage somehow to latch on to the nature of the un-
ending number sequence and the operations of addition and multiplication in a
way that outstrips whatever rules and principles can be captured in definitions?

5We return to this point more carefully in Section 18.2.
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1 What Gödel’s Theorems say

At this point it can seem that we must have a rule-transcending cognitive grasp
of the numbers which underlies our ability to recognize certain ‘Gödel sentences’
as correct arithmetical propositions. And if you are tempted to think so, then
you may well be further tempted to conclude that minds such as ours, capable
of such rule-transcendence, can’t be machines (supposing, reasonably enough,
that the cognitive operations of anything properly called a machine can be fully
captured by rules governing the machine’s behaviour).

So there’s apparently a quick route from reflections about Gödel’s First The-
orem to some conclusions about the nature of arithmetical truth and the nature
of the minds that grasp it. Whether those conclusions really follow will emerge
later. For the moment, we have an initial idea of what the Theorem says and
why it might matter – enough, I hope, already to entice you to delve further into
the story that unfolds in this book.

1.5 The unprovability of consistency

If we can derive even a modest amount of basic arithmetic in theory T , then we’ll
be able to derive 0 �= 1.6 So if T also proves 0 = 1, it is inconsistent. Conversely, if
T is inconsistent, then – since we can derive anything in an inconsistent theory7

– it can prove 0 = 1. But we said that we can use numerical propositions to
encode facts about what can be derived in T . So there will in particular be a
numerical consistency sentence ConT that encodes the claim that we can’t derive
0 = 1 in T , i.e. encodes in a natural way the claim that T is consistent.

We know, however, that there is a numerical proposition which encodes the
claim that GT is unprovable: we have already said that it is GT itself.

So this means that (part of) the conclusion of Gödel’s First Theorem, namely
the claim that if T is consistent, then GT is unprovable, can itself be encoded by
a numerical proposition, namely ConT → GT . And now for another wonderful
Gödelian insight. It turns out that the informal reasoning that we use, outside
T , to show ‘if T is consistent, then GT is unprovable’ is elementary enough to
be mirrored by reasoning inside T (i.e. by reasoning with numerical propositions
which encode facts about T -proofs). Or at least that’s true so long as T satisfies
conditions only slightly stronger than the First Theorem assumes. So, again on
modest assumptions, we can derive ConT → GT inside T .

But the First Theorem has already shown that if T is consistent we can’t derive
GT in T . So it immediately follows that if T is consistent it can’t prove ConT .
And that is Gödel’s Second Incompleteness Theorem. Roughly interpreted: nice
theories that include enough basic arithmetic can’t prove their own consistency.8

6We’ll allow ourselves to abbreviate expressions of the form ¬σ = τ as σ �= τ .
7There are, to be sure, deviant non-classical logics in which this principle doesn’t hold. In

this book, however, we aren’t going to take further note of them, if only because of considera-
tions of space.

8That is rough. The Second Theorem shows that T can’t prove ConT , which is certainly
one natural way of expressing T ’s consistency inside T . But couldn’t there perhaps be some
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1.6 More implications?

Suppose that there’s a genuine issue about whether T is consistent. Then even
before we’d ever heard of Gödel’s Second Theorem, we wouldn’t have been con-
vinced of its consistency by a derivation of ConT inside T . For we’d just note
that if T were in fact inconsistent, we’d be able to derive any T -sentence we like
in the theory – including a statement of its own consistency!

The Second Theorem now shows that we would indeed be right not to trust a
theory’s announcement of its own consistency. For (assuming T includes enough
arithmetic), if T entails ConT , then the theory must in fact be inconsistent.

However, the real impact of the Second Theorem isn’t in the limitations it
places on a theory’s proving its own consistency. The key point is this. If a
nice arithmetical theory T can’t even prove itself to be consistent, it certainly
can’t prove that a richer theory T+ is consistent (since if the richer theory
is consistent, then any cut-down part of it is consistent). Hence we can’t use
‘safe’ reasoning of the kind we can encode in ordinary arithmetic to prove other
more ‘risky’ mathematical theories are in good shape. For example, we can’t use
unproblematic arithmetical reasoning to convince ourselves of the consistency of
set theory (with its postulation of a universe of wildly infinite sets).

And that is a very interesting result, for it seems to sabotage what is called
Hilbert’s Programme, which is precisely the project of defending the wilder
reaches of infinitistic mathematics by giving consistency proofs which use only
‘safe’ methods. A lot more about this in due course.

1.7 What’s next?

What we’ve said so far, of course, has been very sketchy and introductory. We
must now start to do better. In Chapter 2, we introduce the notions of effective
computability, decidability and enumerability, notions we are going to need in
what follows. Then in Chapter 3, we explain more carefully what we mean by
talking about an ‘axiomatized theory’ and prove some elementary results about
axiomatized theories in general. In Chapter 4, we introduce some concepts relat-
ing specifically to axiomatized theories of arithmetic. Then in Chapters 5 and 6
we prove a pair of neat and relatively easy results – namely that any sound and
‘sufficiently expressive’ axiomatized theory of arithmetic, and likewise any con-
sistent and ‘sufficiently strong’ axiomatized theory, is negation incomplete. For
reasons that we’ll explain, these informal results fall some way short of Gödel’s
own First Incompleteness Theorem. But they do provide a very nice introduc-
tion to some key ideas that we’ll be developing more formally in the ensuing
chapters.

other sentence of T , Con′T , which also in some good sense expresses T ’s consistency, where T
doesn’t prove Con′T → GT but does prove Con′T ? We’ll return to this question in Sections 24.5
and 27.2.
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2 Decidability and enumerability

This chapter briskly introduces a number of concepts – mostly related to the
idea of computability – that we’ll need in the next few chapters. Later in the
book, we’ll return to some of these ideas and give sharper, technical, treatments
of them. But for present purposes, informal intuitive presentations are enough.

2.1 Functions

We’d better start, however, by very quickly reviewing some standard jargon and
notation for talking about functions, since functions will feature so prominently
in what follows. For simplicity, we’ll focus here on one-place functions (it will be
obvious how to generalize definitions to cover many-place functions).

Our concern will be with total functions f : Δ → Γ, i.e. with functions which
map every element x of the domain Δ to exactly one corresponding value f(x)
in the set Γ.1 We then say

i. The range of a function f : Δ → Γ is {f(x) | x ∈ Δ}, i.e. the set of
elements in Γ that are values of f for arguments in Δ.

ii. A function f : Δ → Γ is surjective iff the range of f is the whole of Γ – i.e.
if for every y ∈ Γ there is some x ∈ Δ such that f(x) = y. (If you prefer
that in English, you can say that such a function is onto, since it maps
Δ onto the whole of Γ.)

iii. A function f : Δ → Γ is injective iff f maps different elements of Δ to
different elements of Γ – i.e. if x �= y then f(x) �= f(y). (If you prefer that
in English, you can say that such a function is one-to-one.)

iv. A function f : Δ → Γ is bijective if it is both surjective and injective. (In
English again, f is then a one-one correspondence between Δ and Γ.)

2.2 Effective decidability, effective computability

(a) Familiar school-room arithmetic routines (e.g. for testing whether a number
is prime) give us ways of effectively deciding whether some property holds. Other

1For wider mathematical purposes, the more general idea of a partial function becomes
essential. This is a mapping f which is not necessarily defined for all elements of its domain
(for an obvious example, consider the reciprocal function 1/x for rational numbers, which is
not defined for x = 0). However, we won’t need to say much about partial functions in this
book, and hence – by default – plain ‘function’ will henceforth always mean ‘total function’.

8



Effective decidability, effective computability

routines (e.g. for squaring a number or finding the highest common factor of two
numbers) give us ways of effectively computing the value of a function.

What is meant by talking of effective procedures? Well, we are trying to
sharpen the otherwise rather vague, intuitive, notion of a computation. And the
core idea is that an effective procedure involves executing an algorithm which
successfully terminates.

Here, an algorithm is a set of step-by-step instructions (instructions which
are pinned down in advance of their execution), with each small step clearly
specified in every detail (leaving no room for doubt as to what does and what
doesn’t count as executing the step). More carefully, executing an algorithm (i)
involves an entirely determinate sequence of discrete step-by-small-step proce-
dures (where each small step is readily executable by a very limited calculating
agent or machine). (ii) There isn’t any room left for the exercise of imagination
or intuition or fallible human judgement. Further, in order to execute the proce-
dures, (iii) we don’t have to resort to outside ‘oracles’ (i.e. independent sources of
information), and (iv) we don’t have to resort to random methods (coin tosses).
Such algorithmic procedures can be followed by a dumb computer. Indeed, it is
natural to turn this observation into a first shot at an informal definition:

An algorithmic procedure is one that a suitably programmed com-
puter can execute.

But plainly, if an algorithmic procedure is actually to decide whether some
property holds or actually to compute a function, more is required. It needs to
terminate after a finite number of steps and deliver a result!

So, putting these ideas together, we can give two interrelated rough definitions:

A property/relation is effectively decidable iff there is an algorith-
mic procedure that a suitably programmed computer could use to
decide, in a finite number of steps, whether the property/relation
applies in any given case.

A total function is effectively computable iff there is an algorith-
mic procedure that a suitably programmed computer could use for
calculating, in a finite number of steps, the value of the function
for any given argument.2

(b) But what kind of computer do we have in mind here when we gesture
towards a definition by saying that an algorithmic procedure is one that a com-
puter can execute? We need to say something more about the relevant sort of
computer’s size and speed, and architecture.

A real-life computer is limited in size and speed. There will be some upper
bound on the size of the inputs it can handle; there will be an upper bound on
the size of the set of instructions it can store; there will be an upper bound on

2For more about how to relate these two definitions via the notion of a ‘characteristic
function’, see Section 11.6.
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2 Decidability and enumerability

the size of its working memory. And even if we feed in inputs and instructions it
can handle, it is of little practical use to us if the computer won’t finish executing
its algorithmic procedure for centuries.

Still, we are cheerfully going to abstract from all these ‘merely practical’ con-
siderations of size and speed – which is why we said nothing about them in
explaining what we mean by effective procedures. In other words, we will count
a function as being effectively computable if there is a finite set of step-by-
step instructions which a computer could in principle use to calculate the func-
tion’s value for any particular arguments, given memory, working space and time
enough. Likewise, we will say that a property is effectively decidable if there is
a finite set of step-by-step instructions a computer can use which is in princi-
ple guaranteed to decide whether the property applies in any given case, again
abstracting from worries about limitations of time and memory. Let’s be clear,
then: ‘effective’ here does not mean that the computation must be feasible for
us, on existing computers, in real time. So, for example, we count a numerical
property as effectively decidable in this broad sense even if on existing com-
puters it might take longer to compute whether a given number has it than we
have time left before the heat death of the universe. It is enough that there’s an
algorithm that works in theory and would deliver an answer in the end, if only
we had the computational resources to use it and could wait long enough.

‘But then,’ you might well ask, ‘why on earth bother with these radically
idealized notions of computability and decidability? If we allow procedures that
may not deliver a verdict in the lifetime of the universe, what good is that? If
we are interested in issues of computability, shouldn’t we really be concerned
not with idealized-computability-in-principle but with some stronger notion of
practicable computability?’

That’s a fair challenge. And modern computer science has much to say about
grades of computational complexity and levels of feasibility. However, we will
stick to our ultra-idealized notions of computability and decidability. Why? Be-
cause later we’ll be proving a range of limitative theorems, e.g. about what can’t
be algorithmically decided. By working with a very weak ‘in principle’ notion
of what is required for being decidable, our impossibility results will be corre-
spondingly very strong – they won’t depend on any mere contingencies about
what is practicable, given the current state of our software and hardware, and
given real-world limitations of time or resources. They show that some problems
can’t be mechanically decided, even on the most generous understanding of that
idea.

(c) We’ve said that we are going to be abstracting from limitations on storage,
etc. But you might suspect that this still leaves much to be settled. Doesn’t the
‘architecture’ of a computing device affect what it can compute?

The short answer is that it doesn’t (at least, once we are dealing with devices
of a certain degree of complexity, which can act as ‘general purpose’ computers).
And intriguingly, some of the central theoretical questions here were the subject
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of intensive investigation even before the first electronic computers were built.
Thus, in the mid 1930s, Alan Turing famously analysed what it is for a numerical
function to be step-by-step computable in terms of the capacities of a Turing
machine (a computer following a program built up from extremely simple steps:
for explanations and examples, see Chapter 31). Now, it is easy to spin variations
on the details of Turing’s original story. For example, a standard Mark I Turing
machine has just a single ‘tape’ or workspace to be used for both storing and
manipulating data: but we can readily describe a Mark II machine which has
(say) two tapes – one to be used as a main workspace, and a separate one for
storing data. Or we can consider a computer with unlimited ‘Random Access
Memory’ – that is to say, an idealized version of a modern computer, with an
unlimited set of registers in which it can store various items of working data ready
to be retrieved into its workspace when needed.3 The details don’t matter here
and now. What does matter is that exactly the same functions are computable
by algorithms written for Mark I Turing machines, by algorithms written for
Mark II machines, and by algorithms written for register machines, despite their
different architectures.

Indeed, all the detailed definitions of algorithmic computability by idealized
computers that have ever been seriously proposed turn out to be equivalent. In
a slogan, algorithmic computability is architecture independent : likewise, what is
algorithmically decidable is architecture independent.

(d) Let’s put that last claim a bit more slowly, taking it in two stages. First
stage: there’s a Big Result about the mutual equivalence of various different
proposed ways of refining the idea of algorithmically computing numerical func-
tions and deciding numerical properties. That’s a formal mathematical result.
But it supports the conjecture which Turing famously makes in his classic paper
published in 1936:

Turing’s Thesis The numerical functions that are effectively com-
putable in the informal sense are just those functions that are in
fact computable by a suitable Turing machine. Likewise, the nu-
merical questions that are effectively decidable in the informal
sense are just those questions that are decidable by a suitable
Turing machine.

As we’ll see, however, Turing machines are rather horrible to work with (es-
sentially, you have to program them at the level of ‘machine code’). So you might
want to think instead in terms of the numerical functions which are computable
– at least when we abstract from limitations of time and memory space – on a
modern general purpose computer, using programs written in your favourite gen-
eral purpose language, C++ perhaps. Then Turing’s Thesis is provably equivalent
to this: the numerical functions that are effectively computable in the informal

3The theoretical treatment of unlimited register machines was first given in Shepherdson
and Sturgis (1963); there is a very accessible presentation in the excellent Cutland (1980).
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sense are just those functions that are in principle computable using algorithms
written in C++.

Turing’s Thesis – we’ll further explore its content in Chapter 34 – correlates
an informal notion with a sharp technical analysis. So you might think it isn’t
the sort of thing for which we can strictly speaking give a proof (though see
Chapter 35). But be that as it may. Certainly, after some seventy years, no
successful challenge to Turing’s Thesis has ever been mounted. Which means
that we can continue to talk informally about effectively computable numerical
functions and effectively decidable properties of numbers, and be very confident
that we are referring to fully determinate classes.

(e) Second stage: what about the idea of being computable as applied to non-
numerical functions (like truth-functions) or the idea of being effectively decid-
able as applied to non-numerical properties (like the property of being an axiom
of some theory)? Are these ideas determinate too?

Well, they are determinate enough for our purposes. For think how a real-
world computer can be used to evaluate a truth-function or decide whether a
formal expression is an axiom in a given system. In the first case, we code the
truth-values true and false using numbers, say 0 and 1, and then do a numerical
computation. In the second case, we write a program for manipulating strings
of symbols, and again – though this time behind the scenes – these strings get
correlated with binary codes, and it is these numbers that the computer works
on. In the end, using numerical codings, the computations in both cases are done
on numbers after all.

Now generalize that thought. A natural suggestion is that a computation deal-
ing with sufficiently determinate and distinguishable Xs can always be turned
into an equivalent numerical computation via the trick of using simple numerical
codes for the different Xs. More carefully: by a relatively trivial algorithm, we
can map Xs to numbers; we can then do the appropriate core computation on
the numbers; and then another trivial algorithm translates the result back into
a claim about Xs.

Fortunately, we don’t need to assess that natural suggestion in its fullest gen-
erality. For the purposes of this book, the non-numerical computations we are
most interested in are cases where the Xs are expressions from standard formal
languages, or sequences of expressions, etc. And in those cases, there’s no doubt
at all that we can algorithmically map claims about such things to corresponding
claims about numbers (see Sections 3.5, 15.1, 15.2). So the question e.g. whether
a certain property of formulae is a decidable one can be translated quite un-
contentiously into the question whether a corresponding numerical property is
a decidable one. Given Turing’s Thesis that it is quite determinate what counts
as a decidable property of numbers, it then follows that it is quite determinate
what counts as a decidable property of formal expressions (and similarly for
properties of sequences of expressions).
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2.3 Enumerable sets

Having introduced the twin ideas of effective computability and decidability, we
now need to explain the related notion of effective enumerability. But before we
can do that in the next section, we need to explain the prior notion of (plain)
enumerability.

Suppose, then, that Σ is some set of items: its members might be numbers,
strings of symbols, proofs, computer programs or whatever. Then, as a first rough
shot, we’ll say:

Σ is enumerable if its members can – at least in principle – be
listed off in some order (a zero-th, first, second, . . . ) with every
member appearing on the list; repetitions are allowed, and the list
may be infinite.

It is tidiest to think of the empty set as the limiting case of an enumerable set:
after all, it is enumerated by the empty list!

Of course, if we are to talk of ‘listing off’ elements of Σ, then we really need
to be thinking of these elements either as being things that themselves can
be written down (like strings of symbols), or as having standard representations
that can be written down (in the way that natural numbers have numerals which
denote them). But that condition will be satisfied in the cases that most interest
us in this book.

For the pernickety, however, we can give a more rigorous definition that doesn’t
presuppose that we have a way of writing down the members of Σ. In fact, we
can do this in a number of equivalent ways: we’ll give just one. As usual, we’ll
use ‘N’ to denote the set of all natural numbers (and ‘N2’ for the set of pairs of
numbers, etc.). Then here’s our more official definition:

The set Σ is enumerable iff either Σ is empty or else there is a
surjective function f : N → Σ (so Σ is the range of f : we can say
that such a function enumerates Σ).

It is easy to see that this comes to the same as our original informal definition
(in the cases we are interested in, when we can write down the members of Σ).

Proof Both definitions trivially cover the case where Σ is empty. So concentrate
on the non-empty cases.

Suppose we have a list – possibly infinite, possibly repetitious – of all the
members of Σ in some order. Count off the members of the list from zero, and
define the function f as follows: f(n) = the n-th member of the list, if the list
goes on that far, or f(n) = f(0) otherwise. Then f : N → Σ is a surjection.

Suppose conversely that f : N → Σ is a surjection. Then, if we successively
evaluate f for the arguments 0, 1, 2, . . . in turn, we get a corresponding list of
values f(0), f(1), f(2), . . . which by hypothesis we can write down and which
contains all the elements of Σ, with repetitions allowed. �
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Every set of natural numbers, finite or infinite, is enumerable (its members
can be put into a list). However, Cantor’s Theorem4 tells us that

Theorem 2.1 There are infinite sets that are not enumerable.

Proof Consider the set B of infinite binary strings s, i.e. the set of unending
strings like ‘0110001010011 . . .’. There’s obviously an infinite number of different
ones. Suppose, for reductio, that there is an enumerating function which maps
the natural numbers onto the binary strings as follows:

0 → s0 : 0110001010011 . . .
1 → s1 : 1100101001101 . . .
2 → s2 : 1100101100001 . . .
3 → s3 : 0001111010101 . . .
4 → s4 : 1101111011101 . . .
. . . . . .

Go down the diagonal, taking the n-th digit of the n-th string sn (in our example,
this produces 01011 . . .). Now flip each digit, swapping 0s and 1s (in our example,
yielding 10100 . . .). By construction, this ‘flipped diagonal’ string differs from s0,
the initial string in our original enumeration, in the first place; it differs from the
next string s1 in the next place; and so on. So our diagonal construction defines
a new string s that differs from each of the sj , contradicting the assumption that
our enumerating function is ‘onto’, i.e. that it enumerates all the binary strings.
So B is infinite, but not enumerable. In a word, it is indenumerable. �

It’s worth pausing to add three quick comments about this result.
First, an infinite binary string s = b0b1b2 . . . can be thought of as charac-

terizing a real number 0 ≤ b ≤ 1 in binary digits. So our theorem shows that
the real numbers in the interval [0, 1] can’t be enumerated (and hence we can’t
enumerate all the reals either).

Second, an infinite binary string s = b0b1b2 . . . can also be thought of as
characterizing a corresponding set of natural numbers Σ, where n ∈ Σ if bn = 0
and n /∈ Σ if bn = 1. So, for example, the string s0 above corresponds to the
set of numbers {0, 3, 4, 5, 7, 9, 10, . . .}. Our theorem is therefore equivalent to the
result that the set of sets of natural numbers can’t be enumerated. Given any
enumeration of sets of numbers Σ0, Σ1, Σ2 . . . , then ‘going down the diagonal’
defines the set K such that k ∈ K iff k ∈ Σk. And ‘flipping’ gives us K, the
complement of K, which differs from each Σk, so can’t be on the enumeration.

A third way of thinking of an infinite binary string b0b1b2 . . . is as characteriz-
ing a corresponding function f , i.e. the function that maps each natural number
to one of the numbers {0, 1}, where f(n) = bn. So our theorem is also equivalent

4Georg Cantor first established this key result in Cantor (1874), using the Bolzano-
Weierstrass theorem. The neater ‘diagonal argument’ first appears in Cantor (1891).
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to the result that the set of functions f : N → {0, 1} can’t be enumerated. Put in
terms of functions, the trick in the proof is to suppose that these functions can
be enumerated f0, f1, f2, . . ., define another function by ‘going down the diago-
nal and flipping digits’, i.e. define δ(n) = fn(n) + 1 mod 2, and then note that
this diagonal function δ can’t be on the list after all.

2.4 Effective enumerability

We said: a non-empty set Σ is enumerable so long as there is some way of listing
its elements, or – equivalently – so long as there is a function f : N → Σ which
enumerates it. Note that this definition does not require that the listing can be
done ‘mechanically’. In other words, the enumerating function f here can be any
arbitrary correlation of numbers with elements of Σ (so long as it is ‘onto’); f
need not even be finitely specifiable, let alone be a ‘nice’ effectively computable
function.

So let’s now add a further definition:

A set Σ is effectively enumerable if an (idealized) computer could
be programmed to generate a list of its members such that any
member will eventually be mentioned – the list may be empty, or
have no end, and may contain repetitions, so long as any item in
the set eventually makes an appearance.

Again, that informal characterization will do for most purposes. But more offi-
cially, we will say:

The set Σ is effectively enumerable iff either Σ is empty or else
there is an effectively computable function that enumerates it.5

Reflect that a function f : N → Σ can only be evaluated by a computer if the
elements of Σ are the sort of things that a computer can handle representations
for (i.e., if elements of Σ can be listed). So these two definitions can also readily
be seen to be equivalent, by a minor tweak of the argument as before.

Proof Again both definitions trivially cover the case where Σ is empty. So
concentrate on the non-empty cases.

Suppose the algorithm Π lists the members σ ∈ Σ, and o is the first of them
listed. Then the following describes a slightly more complex algorithm Π′ which
takes numerical inputs. Given input n, run Π for n steps: if at that step Π
outputs some σ, then Π′ also outputs σ; otherwise it outputs o. This algorithm
evidently computes a numerical function f whose range is the whole of Σ.

5NB: whether a set is effectively enumerable, enumerable but not effectively so, or neither,
depends on what functions there are, not on which functions we know about. Also note that
terminology hereabouts isn’t entirely stable: some writers use ‘enumerable’ to mean effectively
enumerable, and use e.g. ‘denumerable’ for the wider notion of enumerability.
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Suppose conversely that f enumerates the members of Σ. We can simply run
the algorithm that computes f on the inputs 0, 1, 2, . . . in turn to get a way of
mechanically listing all the members of Σ. �

It is often crucial whether a set can be effectively enumerated in this sense.
A finite set of finitely specifiable objects is always effectively enumerable: any
listing will do, and – since it is finite – it could be stored in an idealized computer
and spat out on demand. For a simple example of an effectively enumerable
infinite set, imagine an algorithm that takes the natural numbers one at a time
in order and applies the well-known mechanical test for being prime, and lists
the successes: this procedure generates a never-ending list on which every prime
will eventually appear – so the primes are effectively enumerable.

We’ll soon see, however, that there are important cases of infinite sets which
are enumerable but which can’t be effectively enumerated (see Theorem 5.5).

2.5 Effectively enumerating pairs of numbers

Here’s another quick example of an effectively enumerable set, for later use.

Theorem 2.2 The set of ordered pairs of natural numbers 〈i, j〉
is effectively enumerable.

Proof The idea is simple. We just arrange the ordered pairs in a systematic
array and start zig-zagging through them, for example like this:

〈0, 0〉 → 〈0, 1〉 〈0, 2〉 → 〈0, 3〉 . . .
↙ ↗ ↙

〈1, 0〉 〈1, 1〉 〈1, 2〉 〈1, 3〉 . . .
↓ ↗ ↙

〈2, 0〉 〈2, 1〉 〈2, 2〉 〈2, 3〉 . . .
↙

〈3, 0〉 〈3, 1〉 〈3, 2〉 〈3, 3〉 . . .
↓

This procedure is entirely mechanical, runs through all the pairs, and evidently
defines a bijection f : N → N

2, a one-one correspondence mapping n to the n-th
pair on the zig-zag path. �

If you have a taste for trivial arithmetical puzzles, you can explicitly define a
computable function pair(i, j) which tells you the position n of the pair 〈i, j〉 in
the zig-zag effective enumeration. You can likewise write down two computable
functions fst(n) and snd(n) which return, respectively the first member i and
the second member j of the n-th pair in the zig-zag enumeration. But we can
leave that as an exercise.
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Gödel’s Incompleteness Theorems tell us about the limits of theories of arith-
metic. Or rather, more carefully, they tell us about the limits of axiomatized
formal theories of arithmetic. But what exactly does this mean? This chapter
starts exploring the idea and proves some elementary results about axiomatized
formal theories in general.

3.1 Formalization as an ideal

Rather than just dive into a series of definitions, it is well worth pausing to
remind ourselves of why we care about formalized theories.

Let’s get back to basics. In elementary logic classes, we are drilled in translat-
ing arguments into an appropriate formal language and then constructing formal
deductions of putative conclusions from given premisses. Why bother with for-
mal languages? Because everyday language is replete with redundancies and
ambiguities, not to mention sentences which simply lack clear truth-conditions.
So, in assessing complex arguments, it helps to regiment them into a suitable
artificial language which is expressly designed to be free from obscurities, and
where surface form reveals logical structure.

Why bother with formal deductions? Because everyday arguments often in-
volve suppressed premisses and inferential fallacies. It is only too easy to cheat.
Setting out arguments as formal deductions in one style or another enforces
honesty: we have to keep a tally of the premisses we invoke, and of exactly
what inferential moves we are using. And honesty is the best policy. For suppose
things go well with a particular formal deduction. Suppose we get from the given
premisses to some target conclusion by small inference steps each one of which
is obviously valid (no suppressed premisses are smuggled in, and there are no
suspect inferential moves). Our honest toil then buys us the right to confidence
that our premisses really do entail the desired conclusion.

Granted, outside the logic classroom we almost never set out deductive ar-
guments in fully formalized versions. No matter. We have glimpsed a first ideal
– arguments presented in an entirely perspicuous language with maximal clar-
ity and with everything entirely open and above board, leaving no room for
misunderstanding, and with all the arguments’ commitments systematically and
frankly acknowledged.1

1For an early and very clear statement of this ideal, see Frege (1882), where he explains the
point of the first modern formal system of logic – albeit with a horrible notation – presented
in his Begriffsschrift (i.e. Conceptual Notation) of 1879.
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Old-fashioned presentations of Euclidean geometry illustrate the pursuit of a
related second ideal – the (informal) axiomatized theory. Like beginning logic
students, school students used to be drilled in providing deductions, though the
deductions were framed in ordinary geometric language. The game is to establish
a whole body of theorems about (say) triangles inscribed in circles, by deriving
them from simpler results, which had earlier been derived from still simpler
theorems that could ultimately be established by appeal to some small stock of
fundamental principles or axioms. And the aim of this enterprise? By setting
out the derivations of our various theorems in a laborious step-by-step style –
where each small move is warranted by simple inferences from propositions that
have already been proved – we develop a unified body of results that we can be
confident must hold if the initial Euclidean axioms are true.

On the surface, school geometry perhaps doesn’t seem very deep: yet making
all its fundamental assumptions fully explicit is surprisingly difficult. And giving
a set of axioms invites further enquiry into what might happen if we tinker with
these assumptions in various ways – leading, as is now familiar, to investigations
of non-Euclidean geometries.

These days, quite a few mathematical theories are presented axiomatically in
a more formal way from the very outset. For example, set theories are typically
presented by laying down some basic axioms expressed in a logical language
and exploring their deductive consequences. We want to discover exactly what
is guaranteed by the fundamental principles embodied in the axioms. And we
are again interested in exploring what happens if we change the axioms and
construct alternative set theories.

Now, even the most tough-minded mathematics texts which explore axioma-
tized theories are written in an informal mix of ordinary language and mathe-
matical symbolism. Proofs are rarely spelt out in every formal detail, and so their
presentation falls short of the logical ideal of full formalization. But we will hope
that nothing stands in the way of our more informally presented mathematical
proofs being sharpened up into fully formalized ones – i.e. we hope that they
could be set out in a strictly regimented formal language of the kind that lo-
gicians describe, with absolutely every inferential move made fully explicit and
checked as being in accord with some overtly acknowledged rule of inference,
with all the proofs ultimately starting from our explicitly given axioms. True,
the extra effort of laying out everything in this kind of detail will almost never be
worth the cost in time and ink. In mathematical practice we use enough formal-
ization to convince ourselves that our results don’t depend on illicit smuggled
premisses or on dubious inference moves, and leave it at that – our motto is ‘suf-
ficient unto the day is the rigour thereof’.2 But still, it is absolutely essential for
good mathematics to achieve precision and to avoid the use of unexamined in-
ference rules or unacknowledged assumptions. So, putting together the logician’s

2‘Most mathematical investigation is concerned not with the analysis of the complete
process of reasoning, but with the presentation of such an abstract of the proof as is sufficient
to convince a properly instructed mind.’ (Russell and Whitehead, 1910–13, vol. 1, p. 3)
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aim of perfect clarity and honest inference with the mathematician’s project of
regimenting a theory into a tidily axiomatized form, we can see the point of the
notion of an axiomatized formal theory as a composite ideal.

Note, we are not saying that mathematicians ought really always to work
inside fully formalized theories. Mathematics is hard enough even when done
using the usual strategy of employing just as much rigour as seems appropriate
to the case in hand.3 And in any case, as mathematicians (and some philosophical
commentators) are apt to stress, there is a lot more to mathematical practice
than striving towards the logical ideal. For a start, we typically aim for proofs
which are not merely correct but explanatory – which not only show that some
proposition must be true, but in some sense make it clear why it is true. However,
such observations don’t affect our present point, which is that the business of
formalization just takes to the limit features that we expect to find in good
proofs anyway, i.e. precise clarity and lack of inferential gaps.

3.2 Formalized languages

So, putting together the ideal of formal precision and the ideal of regimentation
into an axiomatic system, we have arrived at the concept of an axiomatized
formal theory, which comprises a formalized language, a set of formulae from the
language which we treat as axioms for the theory, and a deductive system for
proof-building, so that we can derive theorems from the axioms.

In this section, we’ll say just a bit more about the idea of a properly formalized
language – though we’ll be very brisk, as we don’t want to get bogged down in
details, and most of the ideas here should be very familiar.4 Our main concern
is to emphasize points about decidability.

(a) Note that we are normally interested in interpreted languages – i.e. we are
normally concerned not merely with patterns of symbols but with expressions
which have an intended significance. After all, our formalized proofs are ideally
supposed to be just that, i.e. proofs with content, which show things to be
true. Agreed, we’ll often be very interested in certain features of proofs that can
be assessed independently of their significance (for example, we’ll want to know
whether a putative proof does obey the formal syntactic rules of a given deductive
system). But it is one thing to ignore their semantics for some purposes; it is
another thing entirely to drain formal proofs of all semantic significance.

Anyway, we can usefully think of a formal language L as in general being a
pair 〈L, I〉, where L is a syntactically defined system of expressions and I gives
the intended interpretation of these expressions.

3See Lakatos (1976) for a wonderful exploration of how mathematics evolves. This gives
some real sense of how regimenting proofs in order to clarify their assumptions – the process
which formalization idealizes – is just one phase in the complex process that leads to the
growth of mathematical knowledge.

4If the ideas aren’t familiar, any logic textbook will help – see e.g. Leary (2000, Ch. 1).
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(b) Start with the syntactic component L. We can assume that this is based on
a finite alphabet of symbols.5 And we first need to settle which symbols or strings
of symbols make up L’s logical vocabulary : typically this will comprise variables,
symbols for connectives and quantifiers, the identity sign, and bracketing devices.
Then we need to specify which symbols or finite strings of symbols make up L’s
non-logical vocabulary, e.g. the individual constants (names), predicates, and
function-signs. Finally, we need syntactic construction rules to determine which
finite sequences of logical and non-logical vocabulary constitute the well-formed
formulae of L – its wffs, for short. It is useful to assume that our formal languages
allow wffs with free variables; but of course, our main interest will be in the L-
sentences, i.e. closed wffs without variables dangling free.

Let’s make just one comment on syntax. Given that the whole point of using a
formalized language is to make everything as clear and determinate as possible,
we do not want it to be a disputable matter whether a given symbol or cluster
of symbols is e.g. a constant or one-place predicate of a system L. Nor, crucially,
do we want disputes about whether a given string of symbols is an L-wff. And
we don’t want disputes either about what is a closed L-wff, i.e. an L-sentence.

So, whatever the details, for a properly formalized syntax L, there should
be clear and objective procedures, agreed on all sides, for effectively deciding
whether a putative constant-symbol really is a constant, etc. Likewise we need to
be able to effectively decide whether a string of symbols is an L-wff/L-sentence.
It goes almost without saying that the formal languages familiar from elementary
logic have this feature.

(c) Let’s move on, then, to the interpretation I. Our prime aim is to fix the
content of each closed L-wff, i.e. each L-sentence. And standardly, we fix the
content of formal sentences by giving truth-conditions, i.e. by saying what it
would take for a given sentence to be true. However, we can’t, in the general
case, do this just by giving a list associating L-sentences with truth-conditions
(for the simple reason that there will be an unlimited number of sentences). We’ll
therefore aim for a ‘compositional semantics’, which tells us how to systemati-
cally work out the truth-condition of any L-sentence in terms of the semantic
significance of the expressions which it contains.

What does such a compositional semantics look like? Here’s a very quick
reminder of the simplest sort of case; we can again assume that this is all broadly
familiar from elementary logic. Suppose, then, that L has the usual syntax of
a first-order language (for the moment, without identity or function signs).6 A
standard interpretation I will start by fixing the domain of quantification, will
assign values in the domain to constants, and will give satisfaction conditions
for predicates. For example, perhaps

5We can always construct e.g. an unending supply of variables from a finite base by stan-
dard tricks like using repeated primes (to yield ‘x’, ‘x′’, ‘x′′’, etc.).

6‘First-order’ means that the quantifiers run over the objects in the domain: compare
‘second-order’ logic which also allows a second sort of quantifier that runs over properties of
those objects. See Section 22.1.
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The domain of quantification is the set of people;
the value of ‘m’ is Socrates;
the value of ‘n’ is Plato;
something satisfies ‘F’ iff it is wise;
an ordered pair of things satisfies ‘L’ iff the first of them loves the
second.

Then I continues by giving us the obvious rules for assigning truth-conditions
to atomic sentences, so that e.g. ‘Fm’ is true just in case the value of ‘m’ satisfies
‘F’ (i.e. iff Socrates is wise); ‘Lmn’ is true just in case the ordered pair 〈value of
‘m’, value of ‘n’〉 satisfies ‘L’ (i.e. iff Socrates loves Plato); and so on.7

Now we need to deal with the logical vocabulary. First, there are the usual
rules for assigning truth-conditions to sentences built up out of simpler ones
using the propositional connectives.

That leaves the quantifiers to deal with. Take the existential case. Here’s one
way of telling the story. Intuitively, if the quantifier is to range over people, then
‘∃xFx’ is true just if there is someone we could temporarily dub using the new
name ‘c’ who would make ‘Fc’ come out true (because that person is wise). So
let’s generalize this thought. To fix the truth-condition for quantified sentences
on interpretation I, we must have specified a domain for the quantifiers to run
over (the set of people, for example). Then we can say that a sentence of the
form ∃ξϕ(ξ) is true on I just if we can extend the interpretation I to I+ by
assigning the new name κ a value in the domain in such a way that ϕ(κ) is true
on the expanded interpretation I+. Similarly for universal quantifiers.

Given the aims of formalization, a compositional semantics needs to yield an
unambiguous truth-condition for each sentence (and do it in an effective way).
The usual accounts of the semantics of the standard formal languages of logic
have this feature of effectively generating unique readings for sentences.8

7Note that something satisfies ‘F’ according to I iff it is wise, hence iff it is in the set of
wise people. Call that set associated with ‘F’ its extension. Then ‘Fm’ is true on interpretation
I iff the value of ‘m’ is in the extension of ‘F’. Pursuing this idea, we can give a basically
equivalent semantic story that deals with one-place predicates by assigning them subsets of
the domain as extensions rather than by giving satisfaction conditions; similarly two-place
predicates will be assigned sets of ordered pairs of elements of the domain, and so forth. Which
is the way logic texts more usually tell the official semantic story, and for a very good reason.
In logic, we are interested in finding the valid inferences, i.e. those which are such that, on
any possible interpretation of the relevant sentences, if the premisses are true, the conclusion
is true. Logicians therefore need to be able to generalize about all possible interpretations.
Describing interpretations set-theoretically gives us a mathematically clean way of doing this
generalizing work. However, in specifying a particular interpretation I for a given L we don’t
need to put it in such overly set-theoretic terms. So we won’t.

8‘But what about wffs with free variables? Or what comes to much the same, wffs with
‘parameters’, as used in natural deduction proofs? You haven’t said how an interpretation I
assigns them truth-conditions!’ True. But we don’t need to. We only need to think of such
wffs as getting truth-values on interpretations I+ which extend our original interpretation I
by assigning references to the variables/parameters, in effect treating the wffs in question as
sentences involving temporary names. For more, see e.g. Tennant (1978, pp. 29, 71–74).
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3.3 Axiomatized formal theories

Now for the idea of an axiomatized formal theory, built in a formalized language
(normally, of course, an interpreted formalized language). Again, it is issues
about decidability which need to be highlighted.

(a) First, some wffs of our theory’s language are to be selected as (non-logical)
axioms, i.e. as the fundamental non-logical assumptions of our theory. Of course,
we’ll normally want these axioms to be sentences which are true on interpreta-
tion: but that needn’t be built into the very notion of an axiomatized theory.

Since the fundamental aim of the axiomatization game is to see what follows
from a bunch of axioms, we certainly don’t want it to be a matter for dispute
whether a given proof does or doesn’t appeal only to axioms in the chosen set.
Given a purported derivation of some result, there should be an absolutely clear
procedure for settling whether the input premisses are genuinely to be found
among the official axioms. In other words, for an axiomatized formal theory, we
must be able to effectively decide whether a given wff is an axiom or not.

That doesn’t, by the way, rule out theories with infinitely many axioms. We
might want to say ‘every wff of such-and-such a form is an axiom’ (where there
is an unlimited number of instances): that’s permissible so long as it is still
effectively decidable what counts as an instance of that form.

(b) Second, an axiomatized formal theory needs some deductive apparatus, i.e.
some sort of formal proof system. And we’ll take proof derivations always to be
finite arrays of wffs, arrays which are built up in ways that conform to the rules
of the relevant proof system.9

We’ll take it that the core idea of a proof system is once more very familiar
from elementary logic. The differences between various equivalent systems of
proof presentation – e.g. old-style linear proof systems which use logical axioms
vs. different styles of natural deduction proofs vs. tableau (or ‘tree’) proofs –
don’t essentially matter. What is crucial, of course, is the strength of the over-
all system we adopt. We will predominantly be working with some version of
standard first-order logic with identity. But whatever system we adopt, we need
to be able to specify it in a way which enables us to settle, without room for
dispute, what counts as a well-formed derivation.

In other words, we require the property of being a well-formed proof from

9We are not going to put any finite upper bound on the permissible length of proofs. So you
might well ask: why not allow infinite arrays to count as proofs too? And indeed, there is some
interest in theorizing about infinite proofs. For example, there are proof systems including the
so-called ω-rule, which says that from the infinite array of premisses ϕ(0), ϕ(1), ϕ(2), . . . ,
ϕ(n), . . . we can infer ∀xϕ(x) where the quantifier runs over all natural numbers. But do note
that finite minds can’t really take in the infinite number of separate premisses in an application
of the ω-rule: that’s an impossible task. Hence, in so far as the business of formalization is
primarily concerned to regiment and formalize the practices of ordinary mathematicians, albeit
in an idealized way, it’s natural at least to start by restricting ourselves to finite proofs, even
if we don’t put any contingent bound on the length of proofs.
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premisses ϕ1, ϕ2, . . . , ϕn to conclusion ψ in the theory’s proof system to be an
effectively decidable one. The whole point of formalizing proofs is to set out
the deductive structure of an argument with absolute determinacy; so we don’t
want it to be a disputable or subjective question whether the inference moves
in a putative proof do or do not conform to the rules for proof-building for the
formal system in use. Hence there should be a clear and effective procedure for
deciding whether an array counts as a well-constructed derivation according to
the relevant proof system.10

Be careful! The claim here is only that it should be decidable whether an array
of wffs presented as a well-constructed derivation really is a proper derivation.
This is not to say that we can always decide in advance whether a derivation
from given premisses exists to be discovered. Even in familiar first-order quan-
tificational logic, for example, it is not in general decidable whether there exists
a proof from certain premisses to a given conclusion (we’ll be proving this un-
decidability result later, in Section 30.5).

(c) In the case of an axiomatized formal theory T , it is decidable which wffs
are T ’s axioms (whether non-logical axioms, or logical axioms if it has any), and
it is decidable which arrays of wffs conform to the derivation rules of T ’s proof
system. It will therefore be decidable which arrays of wffs are axiomatic T -proofs
– i.e. which arrays are properly constructed proofs, all of whose premisses are
indeed T -axioms. So, to summarize:

T is an (interpreted) axiomatized formal theory just if (i) T is
couched in an (interpreted) formalized language 〈L, I〉, such that
it is effectively decidable what counts as a wff/sentence of L, and
what the truth-condition of any sentence is, etc., (ii) it is effectively
decidable which L-wffs are axioms of T , and (iii) T uses a proof
system such that it is effectively decidable whether an array of L-
wffs counts as conforming to the proof-building rules, and hence
(iv) it is effectively decidable whether an array of L-wffs counts as
a proof from T ’s axioms.

3.4 More definitions

Here are six more standard definitions, specifically to do with theories:

i. Given a derivation of the sentence ϕ from the axioms of the theory T using
the background logical proof system, we will say that ϕ is a theorem of
the theory. Using the standard abbreviatory symbol, we write: T � ϕ.

10When did the idea clearly emerge that properties like being a wff or an axiom or a proof
ought to be decidable? It was arguably already implicit in Hilbert’s conception of rigorous
proof. But Richard Zach has suggested that an early source for the explicit deployment of the
idea is von Neumann (1927).
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ii. A theory T is sound iff every theorem of T is true (i.e. true on the in-
terpretation built into T ’s language). Soundness is, of course, normally a
matter of having true axioms and a truth-preserving proof system.

iii. A theory T is decidable iff the property of being a theorem of T is an
effectively decidable property – i.e. iff there is a mechanical procedure for
determining, for any given sentence ϕ of T ’s language, whether T � ϕ.

iv. Assume now that T has a standard negation connective ‘¬’. A theory T
decides the sentence ϕ iff either T � ϕ or T � ¬ϕ. A theory T correctly
decides ϕ just when, if ϕ is true (on the interpretation built into T ’s
language), T � ϕ, and if ϕ is false, T � ¬ϕ.

v. A theory T is negation complete iff T decides every sentence ϕ of its
language (i.e. for every sentence ϕ, either T � ϕ or T � ¬ϕ).

vi. T is inconsistent iff for some sentence ϕ, we have both T � ϕ and T � ¬ϕ.

Note, it is convenient to restrict the theorems to the derivable sentences, wffs
without free variables; but nothing really hangs on this.

Here’s a very elementary example to illustrate some of these definitions. Con-
sider a trivial pair of theories, T1 and T2, whose shared language consists of the
interpreted propositional atoms ‘p’, ‘q’, ‘r’ together with all the wffs that can
be constructed from them using the familiar propositional connectives, whose
shared underlying logic is a standard natural deduction system for propositional
logic, and whose sets of axioms are respectively {‘¬p’} and {‘¬p’, ‘q’, ‘¬r’}. T1

and T2 are then both axiomatized formal theories. For it is mechanically decid-
able what is a wff of the theory, and whether a purported proof is a proof from
the given axioms. Both theories are consistent. Moreover, both are decidable
theories; just use the truth-table test to determine whether a candidate theorem
really follows from the axioms.

However, note that although T1 is a decidable theory that doesn’t mean T1

decides every wff ; it doesn’t decide e.g. the wff ‘(q ∧ r)’, since T1’s sole axiom
doesn’t entail either ‘(q ∧ r)’ or ‘¬(q ∧ r)’. To stress the point: it is one thing
to have a general way of mechanically deciding what is a theorem; it is another
thing for a theory to be negation complete, i.e. to have the resources to prove or
disprove every wff.

By contrast, T2 is negation complete: any wff constructed from the three
atoms using the truth-functional connectives has its truth-value decided, and
the true ones can be proved and the false ones disproved.

Our mini-example illustrates another crucial terminological point. You will be
familiar with the idea of a deductive system being ‘(semantically) complete’ or
‘complete with respect to its standard semantics’. For example, a natural deduc-
tion system for propositional logic is said to be semantically complete when every
inference which is semantically valid (i.e. truth-table valid) can be shown to be
valid by a proof in the deductive system. But a theory’s having a semantically
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complete logic is one thing, being a negation-complete theory is something else
entirely. For example, T1 by hypothesis has a complete truth-functional logic,
but is not a complete theory. For a more interesting example, we’ll soon meet
a formal arithmetic which we label ‘Q’. This theory uses a standard quantifi-
cational deductive logic, which again is a (semantically) complete logic: but we
can easily show that Q is not a (negation) complete theory.11

Do watch out for this annoying and potentially dangerous double use of the
term ‘complete’; beware too of the use of ‘decidable’ and ‘decides’ for two
significantly different ideas. These dual usages are unfortunately now entirely
entrenched: you just have to learn to live with them.

3.5 The effective enumerability of theorems

Deploying our notion of effective enumerability, we can now state and prove the
following portmanteau theorem (the last claim is the crucial part):

Theorem 3.1 If T is an axiomatized formal theory then (i) the
set of wffs of T , (i ′) the set of sentences of T , (ii) the set of proofs
constructible in T , and (iii) the set of theorems of T , can each be
effectively enumerated.

Proof sketch for (i) By hypothesis, T has a formalized language with a finite
basic alphabet; and we can give an algorithm for mechanically enumerating all
the possible finite strings of symbols formed from a finite alphabet.

For example, put the symbols of the finite alphabet into some order. Then
start by listing all the strings of length 1, followed by all those of length 2 in
‘alphabetical order’, followed by all those of length 3 in ‘alphabetical order’, and
so on and so forth.

By the definition of a formalized language, there is a mechanical procedure for
deciding which of these symbol strings count as wffs. So, putting these mechanical
procedures together, as we ploddingly enumerate all the possible strings we can

11Putting it symbolically may help. To say that a theory T with the set of axioms Σ is
(negation) complete is to say that, for any sentence ϕ,

either Σ � ϕ or Σ � ¬ϕ;

while to say that a logic is (semantically) complete is to say that for any set of wffs Σ and any
sentence ϕ,

if Σ � ϕ then Σ � ϕ,

where ‘�’ signifies the relation of formal deducibility, and ‘�’ signifies the relation of semantic
consequence. As it happens, the first proof of the semantic completeness of a proof system
for quantificational logic was also due to Gödel, and the result is often referred to as ‘Gödel’s
Completeness Theorem’ (Gödel, 1929). The topic of that theorem is therefore evidently not to
be confused with the topic of his (First) Incompleteness Theorem: the semantic completeness
of a proof system for quantificational logic is one thing, the negation incompleteness of certain
theories of arithmetic quite a different thing.
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throw away the non-wffs that turn up, leaving us with an effective enumeration
of all the wffs. �

Proof sketch for (i ′) As for (i), replacing ‘wff’ by ‘sentence’. �

Proof sketch for (ii) Assume that T -proofs are linear sequences of wffs. Just as
we can effectively enumerate all the possible wffs, so we can effectively enumerate
all the possible finite sequences of wffs in some ‘alphabetical order’. One brute-
force way is to start effectively enumerating all possible strings of symbols, and
throw away any that isn’t a sequence of wffs. By the definition of an axiomatized
theory, there is then an algorithmic recipe for deciding which of these sequences
of wffs are well-formed derivations from axioms of the theory. So as we go along
we can mechanically select out these proof sequences from the other sequences
of wffs, to give us an effective enumeration of all the possible proofs. (If T -proofs
are more complex arrays of wffs – as in tree systems – then the construction of an
effective enumeration of the arrays needs to be correspondingly more complex:
but the core proof-idea remains the same.) �

Proof sketch for (iii) Start effectively enumerating the well-constructed proofs
again. But this time, just record their conclusions when they pass the mechanical
test for being closed sentences. This mechanically generated list now contains all
and only the theorems of the theory. �

Just one comment on this. We should be very clear that to say that the
theorems of a formal axiomatized theory can be mechanically enumerated is not
to say that the theory is decidable. It is one thing to have a mechanical method
which is bound to generate any theorem eventually; it is quite another thing
to have a mechanical method which, given an arbitrary wff ϕ, can determine –
without going on for ever – whether ϕ will ever turn up on the list of theorems.

3.6 Negation-complete theories are decidable

Despite that last point, however, we do have the following important result in
the special case of negation-complete theories:12

Theorem 3.2 Any consistent, axiomatized, negation-complete for-
mal theory T is decidable.

Proof We know from Theorem 3.1 that there’s an algorithm for effectively
enumerating the theorems of T . So start effectively listing the theorems. Let ϕ

12By the way, it is trivial that an inconsistent axiomatized theory with a classical logic
is decidable. For if T is inconsistent, every wff of T ’s language is a theorem by the classical
principle ex contradictione quodlibet. So all we have to do to determine whether ϕ is a T -
theorem is to decide whether ϕ is a wff of T ’s language, which by hypothesis you can if T is
an axiomatized formal theory.
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be any sentence of T . Since, by hypothesis, T is negation complete, either ϕ is
a theorem of T or ¬ϕ is. So it is guaranteed that – within a finite number of
steps – either ϕ or ¬ϕ will be produced in our enumeration of the theorems. If
ϕ is produced, stop the enumeration: ϕ is a theorem. If on the other hand ¬ϕ is
produced, stop the enumeration, for we can conclude that ϕ is not a theorem,
since the theory is assumed to be consistent. Hence, in this case, there is a
dumbly mechanical procedure for deciding whether ϕ is a theorem. �

We are, of course, relying here on our ultra-generous notion of decidability-in-
principle we explained above (in Section 2.2). We might have to twiddle our
thumbs for an immense time before one of ϕ or ¬ϕ turns up. Still, our ‘wait and
see’ method is guaranteed in this case to produce a result in finite time, in an
entirely mechanical way – so this counts as an effectively computable procedure
in our official generous sense.
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The previous chapter concerned axiomatized formal theories in general. This
chapter introduces some key concepts we need in describing formal arithmetics
in particular, notably the concepts of expressing and capturing numerical prop-
erties. But we need to start with two quick preliminary sections, about notation
and about the very idea of a property.

4.1 Three remarks on notation

(a) Gödel’s First Incompleteness Theorem is about the limitations of axioma-
tized formal theories of arithmetic: if a theory T is consistent and satisfies some
other fairly minimal constraints, we can find arithmetical truths that can’t be
derived in T . Evidently, in discussing Gödel’s result, it will be very important to
be clear about when we are working ‘inside’ some specified formal theory T and
when we are talking informally ‘outside’ that particular theory (e.g. in order to
establish truths that T can’t prove).

However, we do want our informal talk to be compact and perspicuous. Hence
we will tend to borrow the standard logical notation from our formal languages
for use in augmenting mathematical English (so, for example, we might write
‘∀x∀y(x+ y = y + x)’ as a compact way of expressing the ‘ordinary’ arithmetic
truth that the order in which you sum numbers doesn’t matter).

Equally, we will want our formal wffs to be readable. Hence we will tend to use
notation in building our formal languages that is already familiar from informal
mathematics (so, for example, if we want to express the addition function in a
formalized theory of arithmetic, we will use the usual sign ‘+’, rather than some
unhelpfully anonymous two-place function symbol like ‘f23 ’).

This two-way borrowing of notation inevitably makes expressions of informal
everyday arithmetic and their formal counterparts look very similar. And while
context alone should make it pretty clear which is which, it is best to have a way
of explicitly marking the distinction. To that end, we will adopt the convention
of using our ordinary type-face (mostly in italics) for informal mathematics, and
using a sans-serif font for expressions in our formal languages. Thus compare . . .

∀x∀y(x+ y = y + x) ∀x∀y(x + y = y + x)

∃y y = S0 ∃y y = S0

1 + 2 = 3 1 + 2 = 3

The expressions on the left will belong to our mathematicians’/logicians’ aug-
mented English (borrowing ‘S’ to mean ‘the successor of’); the expressions on
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the right are wffs – or abbreviations for wffs – of one of our formal languages,
with the symbols chosen to be reminiscent of their intended interpretations.

(b) In addition to italic symbols for informal mathematics and sans-serif symbols
for formal wffs, we also need another layer of symbols. For example, we need a
compact way of generalizing about formal expressions, as when we talked in
Section 3.2 about sentences of the form ∃ξϕ(ξ), or when we defined negation
completeness in Section 3.4 by saying that for any sentence ϕ, the theory T
entails either ϕ or its negation ¬ϕ. We’ll standardly use Greek letters for this
kind of ‘metalinguistic’ duty. We will also occasionally recruit Greek letters like
‘ξ’ and ‘ζ’ to act as place-holders, indicating gaps to be filled in expressions. But
note that Greek letters will never belong to our formal languages themselves:
these symbols belong to logicians’ augmented English.

So what exactly is going on when we are talking about a formal language
L and say e.g. that the negation of ϕ is ¬ϕ, when we are apparently mixing
a symbol from augmented English with a symbol from L? Answer: there are
hidden quotation marks, and ‘¬ϕ’ is to be read as meaning ‘the expression that
consists of the negation sign “¬” followed by ϕ’.

(c) Sometimes, when being very punctilious, logicians use so-called Quine-
quotes when writing mixed expressions which contain both formal and meta-
linguistic symbols (thus: �¬ϕ�). But this is excessive. We are not going to bother,
and no one will get confused by our more casual (and entirely normal) practice.
In any case, we’ll want to use corner-quotes later for a different purpose.

We’ll be very relaxed about ordinary quotation marks too. We’ve so far been
rather punctilious about using them when mentioning, as opposed to using, wffs
and other formal expressions. But from now on, we will normally drop them
other than around single symbols. Again, no confusion should ensue.

Finally, we will also be pretty relaxed about dropping unnecessary brackets
in formal expressions (and we’ll change the shape of pairs of brackets, and oc-
casionally insert redundant ones, when that aids readability).

4.2 A remark about extensionality

The extension of the numerical property P is the set of numbers n such that
n is P . And here’s a stipulation: we are going to use ‘property’ talk in this
book in such a way that P and Q count as the same property if they have the
same extension. As the jargon has it, we are treating properties extensionally.
Likewise, the extension of the numerical two-place relation R is the set of pairs
of numbers m,n such that m is R to n. And we treat co-extensional relations
as the same relation. (There’s nothing at all unusual about this stipulation in
logical contexts: we are just being explicit about our practice in order to fend
off possible misunderstandings.)

Now, just as one and the same thing can be picked out by two co-denoting
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terms, so a property can be presented in different ways. The number two is
picked out by both the terms ‘the smallest prime’ and ‘the cube root of eight’:
as philosophers are apt to put it, although these terms have different senses,
they have the same reference. Likewise, the numerical predicates ‘. . . is exactly
divisible by two’ and ‘. . . is the predecessor of an odd number’ also have different
senses, but locate the same property. For a more dramatic example, if Goldbach’s
conjecture is true, ‘. . . is even and greater than two’ locates the same property
as ‘. . . is even and the sum of two primes’. But very evidently, the two phrases
have quite different senses (and no-one knows if they really do have the same
extension).

4.3 The language LA

Now to business. There is no single language which could reasonably be called
the language for formal arithmetic: rather, there is quite a variety of different
languages, apt for framing theories of different strengths.

However, the core theories of arithmetic which we’ll be discussing are mostly
framed in the language LA, i.e. the interpreted language 〈LA, IA〉, which is
a formalized version of what we called ‘the language of basic arithmetic’ in
Section 1.1. So let’s begin by characterizing this language.

(a) Syntax The logical vocabulary of LA comprises the usual connectives and
brackets, an inexhaustible supply of variables (including, let’s suppose, ‘a’ to ‘d’,
‘u’ to ‘z’), the usual first-order quantifiers, plus the identity symbol. The fine
details are not critical, so let’s not delay over them.

The non-logical vocabulary of LA is {0,S,+,×}, where

‘0’ is a constant;
‘S’ is a one-place function-expression (read ‘the successor of’);
‘+’ and ‘×’ are two-place function-expressions.

For readability, we’ll allow ourselves to write e.g. (a + b) and (a × b) rather than
+(a, b) and ×(a, b).

We’ll now define the (standard) numerals and the terms of LA. Numerals,
then, are expressions that you can build up from our single constant ‘0’ using
just the successor function, i.e. they are expressions of the form SS . . .S0 with
zero or more occurrences of ‘S’.1 We’ll abbreviate the numerals S0, SS0, SSS0,
etc. by 1, 2, 3, etc.

1In using ‘S’ rather than ‘s’, we depart from the normal logical practice which we follow
elsewhere of using upper-case letters for predicates and lower-case letters for functions: but
this particular departure is sanctioned by aesthetics and common usage.

A very common alternative convention is to use a postfixed prime as the symbol for the
successor function; in that notation the standard numerals are then 0, 0′, 0′′, 0′′′, . . . . (We
won’t be using that notation in this book: still, I’ll mostly avoid using the prime symbol for
other purposes when there could be any possibility of a casually browsing reader mistaking it
for an unintended successor symbol.)
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Further, when we want to generalize, we’ll write e.g. ‘n’ to indicate the stan-
dard numeral SS . . .S0 with n occurrences of ‘S’. (Overlining is conventional,
and helpfully distinguishes numerals from variables.)

Next, terms are expressions that you can build up from ‘0’ and/or variables
using the successor function S, addition and multiplication – as in SSS0, (S0 + x),
(SSS0 × (Sx + y)), and so on. Putting it more carefully,

‘0’ is a term, as is any variable.
If σ and τ are terms, so are Sσ, (σ + τ), (σ × τ).
Nothing else is a term.

The closed terms are the variable-free terms. In particular, numerals count as
closed terms.

Now, the only predicate built into LA is the identity sign. So that means that
the only possible atomic wffs have the form σ = τ , where again σ and τ are
terms. Then the wffs are formed from atomic wffs in the entirely standard way,
by using connectives and quantifiers (wffs with free variables are allowed).

(b) Semantics The interpretation IA gives items of LA’s non-logical vocabulary
their natural readings. In particular, IA assigns values to closed terms as follows:

The value of ‘0’ is zero. Or in an obvious shorthand, val [ 0 ] = 0.
If τ is a closed term, then val [Sτ ] = val [τ ] + 1.
If σ and τ are closed terms, then val [(σ+ τ)] = val [σ]+val [τ ], and
val [(σ × τ)] = val [σ] × val [τ ].

It immediately follows, by the way, that numerals have the values that they
should have, i.e. for all n, val [ n ] = n.

The atomic sentences (closed atomic wffs) of LA must all have the form σ = τ ,
where σ and τ are closed terms. And given the standard reading of the identity
relation, it is immediate that

A sentence of the form σ = τ is true iff val [σ] = val [τ ].

Molecular sentences built up using the truth-functional connectives are then
evaluated in the obvious ways: thus

A sentence of the form ¬ϕ is true iff ϕ is not true.
A sentence of the form (ϕ ∧ ψ) is true iff ϕ and ψ are both true.

and so on through the other connectives.
Which leaves the quantified sentences to deal with. Following the line in Sec-

tion 3.2, we could explicitly say that the domain of quantification is the natural
numbers N, and a sentence of the form ∃ξϕ(ξ) is true on IA just if there is some
number in the domain which we can dub with a constant ‘c’ so that – on a
suitable expansion of the interpretation IA – ϕ(c) comes out true. But of course,
each number n in the intended domain already has a term to pick it out, i.e.
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the numeral n. So, here – in this special case – we can drop the explicit talk
of the intended domain of quantification N and put the rule for the existential
quantifier very simply like this:

A sentence of the form ∃ξϕ(ξ) (where ‘ξ’ can be any variable) is
true iff, for some number n, ϕ(n) is true.

Similarly

A sentence of the form ∀ξϕ(ξ) is true iff, for any n, ϕ(n) is true.

And then it is easy to see that IA will, as we want, effectively assign a unique
truth-condition to every LA sentence.

4.4 A quick remark about truth

The semantics IA entails that the sentence (1 + 2) = 3, i.e. (S0 + SS0) = SSS0,
is true just so long as one plus two is three. Likewise the sentence ∃v 4 = (v × 2),
i.e. ∃v SSSS0 = (v × SS0), is true just so long as there is some number such that
four is twice that number (i.e. so long as four is even). But, by any normal
arithmetical standards, one plus two is three, and four is even. So by the same
workaday standards, those two LA-sentences are indeed true.

Later, when we come to present Gödel’s Theorems, we’ll describe how to take
an arithmetical theory T built in the language LA, and construct a sentence
GT which turns out to be ‘true but unprovable-in-T ’. And while the sentence in
question is a bit exotic, there is nothing in the least exotic about the notion of
truth being applied to it here: it is the very same workaday notion we’ve just
so simply explained. IA explicitly defines what it takes for any LA-sentence,
however complex, to be true in this humdrum sense.

Now there are, to be sure, philosophers who will say that no LA-sentence
is strictly speaking true in the humdrum sense – because they are equally pre-
pared to say that, strictly speaking, one plus two isn’t three and four isn’t even.2

Such common-or-garden arithmetic claims, they aver, presuppose the existence
of numbers as mysterious kinds of objects in some Platonic heaven, and they
doubt the literal existence of such things. In the view of many of these philoso-
phers, arithmetical entities should be thought of as useful fictions: and, at least
when we are on our very best behaviour, we really ought to claim only that in
the arithmetical fiction one plus two equals three, and four is even. We can’t,
however, tangle with this rather popular view here: and fortunately we needn’t
do so, for the issues it raises are quite orthogonal to our main concerns in this
book. Fictionalists about arithmetic can systematically read our talk of various
LA sentences being true in their favoured way – i.e. as talk ‘within the arith-
metical fiction’.

2See e.g. Field (1989, Ch. 1) and Balaguer (1998) for discussion.
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4.5 Expressing numerical properties and relations

A competent formal theory of arithmetic should surely be able to talk about a
lot more than just the successor function, addition and multiplication. But ‘talk
about’ how?

(a) Let’s assume for the moment that we are dealing with a theory built in the
language LA. So, for a first example, consider LA-sentences of the type

1. ∃v(2 × v = n).

For n = 4, for example, this unpacks into ‘∃v(SS0 × v = SSSS0)’. Abbreviate
such a wff by ψ(n). Then it is obvious that, for any n,

if n is even, then ψ(n) is true,
if n isn’t even, then ¬ψ(n) is true,

where we mean, of course, true on the arithmetic interpretation built into LA.
So consider the corresponding open wff 3 with one free variable

1′. ∃v(2 × v = x).

This is, as the logicians say, satisfied by the number n just when ψ(n) is true, i.e.
just when n is even. Or to put it another way, ψ(x) has the set of even numbers
as its extension. Which means that our open wff expresses the property even, at
least in the sense of having the right extension.

Another example: n has the property of being prime iff it is greater than one,
and its only factors are one and itself. Or equivalently, n is prime just in case
it is not 1, and of any two numbers that multiply to give n, one of them must
be 1. So consider wffs of the type

2. (n �= 1 ∧ ∀u∀v(u × v = n → (u = 1 ∨ v = 1)))

(where we use α �= β for ¬α = β). Abbreviate such a wff by χ(n). Then χ(n)
holds just in case n is prime, i.e. for every n,

if n is prime, then χ(n) is true,
if n isn’t prime, then ¬χ(n) is true.

The corresponding open wff

2′. (x �= 1 ∧ ∀u∀v(u × v = x → (u = 1 ∨ v = 1)))

is therefore satisfied by exactly the prime numbers. In other words, χ(x) expresses
the property prime, again in the sense of having the right extension.

In this sort of way, a formal language like LA with limited basic resources can
come to express a whole variety of arithmetical properties by means of complex
open wffs with the right extensions. And our examples motivate the following
official definition that applies to any language L in which we can form the
standard numerals:

3Usage varies: in this book, an open wff is one which isn’t closed, i.e. which has at least
one free variable, though it might have other bound variables.
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A property P is expressed by the open wff ϕ(x) with one free
variable in an arithmetical language L iff, for every n,

if n has the property P , then ϕ(n) is true,4

if n does not have the property P , then ¬ϕ(n) is true.

‘True’ of course continues to mean true on the given interpretation built into L.

(b) We can now extend our definition in the obvious way to cover relations.
Note, for example, that in a language like LA

3. ψ(m, n) =def ∃v(v + m = n)

is true just in case m ≤ n. And so it is natural to say that the corresponding
expression

3′. ψ(x, y) =def ∃v(v + x = y)

expresses the relation less-than-or-equal-to, in the sense of getting the extension
right. Generalizing again:

A two-place relation R is expressed by the open wff ϕ(x, y) with
two free variables in an arithmetical language L iff, for any m,n,

if m has the relation R to n, then ϕ(m, n) is true,
if m does not have the relation R to n, then ¬ϕ(m, n) is true.

Likewise for many-place relations.5

(c) Let’s emphasize again that ‘expressing’ in our sense is just a matter of
getting the extension right. Suppose ϕ(x) expresses the property P in L, and
let θ be any true L-sentence. Then whenever ϕ(n) is true so is ϕ(n) ∧ θ. And
whenever ϕ(n) is false so is ϕ(n)∧ θ. Which means that ϕ′(x) =def ϕ(x)∧ θ also
expresses P – irrespective of what θ means.

4Do we need to spell it out? ϕ(n) is of course the result of substituting the numeral for n
for each occurrence of ‘x’ in ϕ(x).

5A footnote for very-well-brought-up logicians. We could have taken the canonical way of
expressing a monadic property to be not a complete open wff ϕ(x) but a predicative expression
ϕ(ξ) – where ‘ξ’ here isn’t a variable but a place-holder, marking a gap to be filled by a term
(i.e. by a name or variable). Similarly, we could have taken the canonical way of expressing
a two-place relation to be a doubly gappy predicative expression ϕ(ξ, ζ), etc. Now, there are
pernickety technical and philosophical reasons for preferring the gappy notation to express
properties and relations. However, it is the default informal mathematical practice to prefer to
use complete expressions with free variables rather than expressions with place-holders which
mark gaps; sticking to this practice therefore makes for a more familiar-looking notation and
hence aids readability. (Trust me! – I did at one stage try writing this book systematically
using Greek letters as place-holders, and some passages looked quite unnecessarily repellent.)

Still, there’s a wrinkle. Just once, in Section 12.4, we’ll want to talk about the expressive
power of a theory whose language lacks quantifiers and variables, so in particular lacks expres-
sions with free variables. In that special context, you’ll have to treat any implicit reference
to expressions of the form ϕ(x, y) as a cheerful abuse of notation, with the apparent variables
really functioning as place-holders, so there we mean what we really should otherwise write as
ϕ(ξ, ζ) and so on.
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Hence, we might say, ϕ(x)’s expressing P in our sense is just a necessary
condition for its expressing that property in the more intuitive sense of having the
right meaning. However, the intuitive notion is murky and notoriously difficult to
analyse (even if we can usually recognize wffs which ‘express the right meaning’
when we meet them). By contrast, our notion is sharply defined, and it will serve
us perfectly well for most purposes.

4.6 Capturing numerical properties and relations

(a) Of course, we don’t merely want various properties and relations of numbers
to be expressible in the language of a formal theory of arithmetic. We also want
to be able to use the theory to prove facts about which numbers have which
properties or stand in which relations (more carefully: we want formal derivations
which will be proofs in the intuitive sense if can we take it that the axioms are
indeed secure truths).

Now, it is a banal observation that to establish facts about individual numbers
typically requires less sophisticated proof-techniques than proving general truths
about all numbers. So let’s focus on the relatively unambitious task of case-by-
case proving that particular numbers have or lack a certain property. This level of
task is reflected in the following general definition concerning formal provability:

The theory T captures the property P by the open wff ϕ(x) iff, for
any n,

if n has the property P , then T � ϕ(n),
if n does not have the property P , then T � ¬ϕ(n).

For example, in theories of arithmetic T with very modest axioms, the wff
ψ(x) =def ∃v(2 × v = x) not only expresses but captures the property even. In
other words, for each even n, T can prove ψ(n), and for each odd n, T can prove
¬ψ(n). Likewise, in the same theories, the wff χ(x) from the previous section not
only expresses but captures the property prime.

As you would expect, extending the notion of ‘capturing’ to the case of rela-
tions is straightforward:

The theory T captures the two-place relation R by the open wff
ϕ(x, y) iff, for any m,n,

if m has the relation R to n, then T � ϕ(m, n),
if m does not have the relation R to n, then T � ¬ϕ(m, n).

Likewise for many-place relations.

(b) We should add a comment which parallels the point we made about ‘ex-
pressing’. Suppose ϕ(x) captures the property P in T , and let θ be any T -
theorem. Then whenever T � ϕ(n), then T � ϕ(n)∧ θ. And whenever T � ¬ϕ(n),
then T � ¬(ϕ(n) ∧ θ). Which means that ϕ′(x) =def ϕ(x) ∧ θ also captures P –
irrespective of θ’s content.
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Hence, we might say, ϕ(x)’s capturing P in our sense is just a necessary con-
dition for its capturing that property in the more intuitive sense of proving wffs
with the right meaning. But again the intuitive notion is murky, and our sharply
defined notion will serve us very well for many purposes (though we will later
also be introducing a notion of ‘canonically capturing’, see Section 13.8).

4.7 Expressing vs. capturing: keeping the distinction clear

A little later, we’ll need the notion of a formal theory’s capturing numerical
functions as well as properties and relations (see Chapter 12). But there are
some irritating minor complications in that case, so let’s not delay over it here:
instead, we’ll immediately press on in the next couple of chapters to apply the
concepts that we’ve already defined.

However, I should pause to note frankly that my talk of a theory’s ‘capturing’ a
numerical property is a bit deviant. But terminology here varies anyway. Perhaps
most commonly these days, logicians talk of P being ‘represented’ by a wff ϕ(x)
satisfying our conditions for capture. But I’m unapologetic: ‘capture’ is helpfully
mnemonic for ‘case-by-case prove’.

But whatever your favoured jargon, the key thing is to be absolutely clear
about the distinction we need to mark – so let’s highlight it again. Whether a
property P is expressible in a given theory just depends on the richness of that
theory’s language. Whether a property P can be captured by the theory depends
on the richness of its axioms and proof system.6

Expressibility does not imply capturability: indeed, we will prove later that
– for any respectable theory of arithmetic T – there are numerical properties
that are expressible in T ’s language but not capturable by T (see e.g. Sec-
tion 21.4). However, there is a link in the other direction. Suppose T is a sound
theory of arithmetic, i.e. one whose theorems are all true on the given arithmetic
interpretation of its language. Hence if T � ϕ(n), then ϕ(n) is true. And if
T � ¬ϕ(n), then ¬ϕ(n) is true. Which immediately entails that if ϕ(x) captures
P in the sound theory T , then ϕ(x) expresses P.

6‘Expresses’ is used in our way by e.g. Smullyan (1992, p. 19). As alternatives, we find e.g.
‘arithmetically defines’ (Boolos et al., 2002, p. 199), or simply ‘defines’ (Leary 2000, p. 130;
Enderton 2002, p. 205).

Gödel originally talked of a numerical relation being ‘decidable’ (entscheidungsdefinit) when
it is captured by an arithmetical wff (Gödel, 1931, p. 176). As later alternatives to our ‘captures’
we find ‘numeralwise expresses’ (Kleene 1952, p. 195; Fisher 1982, p. 112), and also simply
‘expresses’(!) again (Mendelson, 1997, p. 170), ‘formally defines’ (Tourlakis, 2003, p. 180) and
plain ‘defines’ (Boolos et al., 2002, p. 207). At least ‘binumerate’ – (Smoryński 1977, p. 838;
Lindström 2003, p. 9) – won’t cause confusion. But as noted, ‘represents’ (although it is perhaps
too close for comfort to ‘expresses’) seems the most common choice in recent texts: see e.g.
Leary (2000, p. 129), Enderton (2002, p. 205), Cooper (2004, p. 56).

The moral is plain: when reading other discussions, always very carefully check the local
definitions of the jargon!
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In Chapter 3, we proved that the theorems of any properly axiomatized theory
– and hence, in particular, the theorems of any properly axiomatized arithmetic
– can be effectively enumerated. In this chapter, we prove by contrast that the
truths of any sufficiently expressive arithmetic language can’t be effectively enu-
merated (we will explain in just a moment what ‘sufficiently expressive’ means).

Suppose then that T is a properly axiomatized theory with a sufficiently ex-
pressive language. Since T is axiomatized, its theorems can be effectively enu-
merated. Since T ’s language is sufficiently expressive, the truths of its language
can’t be effectively enumerated. Hence the theorems and the truths can’t be the
same: either some T -theorems aren’t truths, or some truths aren’t T -theorems.
Let’s concentrate on sound theories whose theorems are all true. Then for any
sound axiomatized theory T which is sufficiently expressive, there will be truths
which aren’t T -theorems. Let ϕ be such an unprovable truth: then ¬ϕ will be
false, so that too will be unprovable in our sound theory T . Hence T must be
negation incomplete.

So much for the headline news. The rest of this chapter fills in the details.

5.1 Sufficiently expressive languages

Recall: a two-place relation R is effectively decidable iff there is an algorithmic
procedure that decides whether Rmn, for any given m and n (Section 2.2). And
a relation R can be expressed in language L iff there is an open L-wff ϕ such
that ϕ(m, n) is true iff Rmn (Section 4.5).

We will now say that

An interpreted formal language L is sufficiently expressive iff (i) it
can express every effectively decidable two-place numerical rela-
tion, and (ii) it can express quantifications over numbers.

As we’ve just announced, we are going to show that sound axiomatized theories
with sufficiently expressive languages can’t be negation complete.

Of course, that wouldn’t be an interesting result if a theory’s having a suf-
ficiently expressive language were a peculiarly tough condition to meet. But it
isn’t. Much later in this book, in Section 30.1, we’ll show that even LA, the
language of basic arithmetic, is sufficiently expressive (in fact, LA can express
every decidable numerical property and every decidable numerical relation with
any number of places). However, we can’t yet establish this claim about LA: do-
ing that would obviously require having a general theory of decidable properties
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and relations, and so far we haven’t got one. For the moment, then, we’ll just
assume that theories with sufficiently expressive languages are worth thinking
about, and see what follows.1

5.2 More about effectively enumerable sets

We are going to show that the set of truths of a sufficiently expressive language
is not effectively enumerable. To do this, we need three initial theorems about
effectively enumerable sets.

(a) We start with an easy warm-up exercise. Recall: a set of natural numbersW
is effectively enumerable iff it is either empty or there is an effectively computable
function f which enumerates it.2 Then,

Theorem 5.1 If W is an effectively enumerable set of numbers,
then there is some effectively decidable numerical relation R such
that n ∈W if and only if ∃xRxn.

Proof The theorem hold trivially when W is empty (simply choose a suitable R
that is never satisfied). Suppose, then, that the effectively computable function
f enumerates W. That means the values f(0), f(1), f(2), . . . give us all and only
the members of W. So n ∈ W iff ∃xf(x) = n. We now just define Rmn to hold
iff f(m) = n. Evidently, we can decide whether Rmn obtains just be evaluating
f(m) and checking whether the result is indeed n – and both steps are, by
hypothesis, algorithmically computable. So we are done. �

(b) Our second, more substantial, result gives us another way of characteriz-
ing effectively enumerable sets of numbers. Recall we said that an algorithmic
procedure is one that a suitably programmed computer can execute (abstracting
from limitations of time or memory space). To fix ideas, concentrate for the rest
of this section on algorithms written in your favourite general purpose language,
C++ as it might be. And here’s a definition: the numerical domain of such an
algorithm Π is the set of natural numbers n such that when the algorithm Π is

1Though perhaps we can do a bit better than mere assumption even at this point, for con-
sider the following line of argument. If R is decidable, that means there is a computer program
Π which can be used to tell us whether Rmn. In other words, Rmn if and only if the decision
program Π with inputs m and n terminates with a ‘yes’ verdict. But now imagine that we
use numerical coding – procedures for associating programs and descriptions of the computer’s
memory states etc. with numbers – to encode claims about when a computer program gives
a ‘yes’ verdict. There will then be a statement R(m, n) in an arithmetical language L which
encodes the claim that Π gives a ‘yes’ verdict on inputs m and n, so R(m, n) is true just when
Rmn. Hence R expresses R, and L is sufficiently expressive. Or at least, this will be so if L
is rich enough to have the resources to code up descriptions of the behaviour of programs.
However, it should seem fairly plausible that such coding needn’t take very much arithmetical
language – as we’ll indeed confirm in later chapters.

2By the way, the W/We/K notation we use in this section for various sets of numbers is
fairly standard.
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applied to the number n as input, then Π will eventually terminate and deliver
some output (in principle, given world enough and time).

Many algorithms aren’t even intended to apply to (single) numbers, so will
have an empty numerical domain.3 While for some successful numerical algo-
rithms, the numerical domain will be N, the whole set of natural numbers. But
whatever the algorithm, its domain will always be an effectively enumerable set.
For we have the following result:

Theorem 5.2 W is an effectively enumerable set of numbers if
and only if it is the numerical domain of some algorithm Π.

Proof of the ‘only if ’ direction Suppose W is an effectively enumerable set of
numbers. Then either (i) W is empty, or (ii) there is an effectively computable
total function f which enumerates W . In case (i), choose a Π that never pro-
duces any output and we are done. In case (ii) there is some algorithm which
computes the enumerating function f , so we can construct the following com-
posite algorithmic procedure Π. Given number n as input, compute the values
of f(0), f(1), f(2), . . . in turn: keep going on and on unless and until one of those
values turns out to be n – and as soon as does, stop and output the number 0.
Then the numerical domain of Π is obviously W (for Π will terminate just when
fed an n ∈W ). �

Proof of the ‘if ’ direction Suppose that W is the numerical domain of some
algorithm Π. If W is empty, then trivially it is effectively enumerable.

So supposeW isn’t empty and o is some member of it. And now recall the pair-
ing functions we introduced in Section 2.5. Each possible pair of numbers 〈i, j〉
gets effectively correlated one-to-one with a number n, and there are computable
functions fst(n) and snd(n) which return, respectively, the first member i and
the second member j of the n-th pair. Using these, define the new algorithm
Π′ as follows. Given input n, compute i = fst(n), and j = snd(n). Then run Π
on input i for j steps (we defined algorithms as involving discrete step-by-step
procedures, so we can number the steps). If Π on input i has halted with some
output by step j, then Π′ outputs i. Otherwise Π′ outputs the default value o.

As n increases, this procedure Π′ evaluates Π for every input i, for any number
of steps j; it outputs just those arguments i for which Π eventually delivers
some output. So Π′ computes a total function whose range is the whole of Π’s
numerical domain W . Hence W is indeed effectively enumerable. �

(c) We supposed we were working within some general-purpose programming
language like C++ in which we can regiment instructions for performing (the
equivalent of) any algorithm that is supposed to operate on numbers.4 So by

3And if you have ever done any programming, you’ll have learnt the hard way that the
numerical domain of an algorithm which is supposed to apply to numbers is only too often
the empty set again, because your program crashes and doesn’t produce any output!

4Of course, there is an assumption here that there are general purpose languages, apt for
regimenting instructions for all kinds of numerical algorithms. Much later, when we talk more
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effectively listing off in some ‘alphabetical order’ all the possible strings of sym-
bols that obey the syntax for being a series of well-formed program instructions
in that language, we can effectively list off versions of all the possible algorithms
Π0,Π1,Π2, . . . (most of them will be useless algorithms which ‘crash’, of course).
Let the numerical domain of Πe be We. Then, by our last theorem, every effec-
tively enumerable set is We for some index e.

It is now easy to prove

Theorem 5.3 There is an effectively enumerable set of numbers
K such that its complement K is not effectively enumerable.

For we just need to put K =def {e | e ∈We}, as we’ll now show.5

Proof that K is not effectively enumerable For any e, by definition e ∈ K if
and only if e /∈We. Hence, K cannot be identical to any of the We (since e is in
one but not the other), so K isn’t one of the effectively enumerable sets (since
the We are all of them). �

Proof that K is effectively enumerable Since K is not effectively enumerable,
K isn’t the whole of N (for that is trivially effectively enumerable!), so K isn’t
empty. So let o be some member of K. Now consider the effective procedure Π′′

defined as follows. Given input n, compute i = fst(n), and j = snd(n). Then
find Πi, and run it on input i for j steps. If Πi on input i has halted with some
output by step j, then Π′′ outputs i. Otherwise Π′′ outputs the default value o.
As n increases, this procedure runs through all pairs of values i, j: so the output
of Π′′ is the set of all numbers i such that i is in the numerical domain of Πi,
i.e. is the set of i such that i ∈Wi, i.e. is K. So K is effectively enumerable. �

5.3 The truths of arithmetic are not effectively

enumerable

Given the easy results in the last section, it immediate follows that

Theorem 5.4 The set of truths of a sufficiently expressive arith-
metical language L is not effectively enumerable.

Proof Take the argument in stages. (i) Theorem 5.3 tells us that there a set K
which is effectively enumerable but whose complement isn’t. Theorem 5.1 then
entails that there is a decidable relation R such that n ∈ K iff ∃xR(x, n).

(ii) Since R is decidable, then in any given sufficiently expressive arithmetical
language L there will be some formal expression of L which expresses R: let’s
abbreviate that particular formal expression R(x, y).

about Turing’s Thesis, we’ll give strong warrants for this claim. But familiarity with modern
computing practice should make our assumption seem entirely reasonable.

5Compare the analogous construction in our comments on Cantor’s Theorem 2.1.
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(iii) Then Rmn just when R(m, n) is true; and so ∃xR(x, n) just when ∃xR(x, n)
is true (we assumed, recall, that a sufficiently expressive language can express
quantifications over numbers).

(iv) So from (i) and (iii) we have

n ∈ K if and only if ∃xR(x, n) is true; i.e.,
n ∈ K if and only if ¬∃xR(x, n) is true.

(v) Now concentrate on that second way of putting the equivalence. And
suppose for a moment that the set T of truths of arithmetic expressible in L is
effectively enumerable. Then, given a description of the expression R, we could
run through the supposed effective enumeration of T , and whenever we come
across a truth of the type ¬∃xR(x, n) – and it will be effectively decidable if a
wff has a particular syntactic form – list the number n. That procedure would
give us an effectively generated list of all the members of K.

(vi) But by hypothesis K is not effectively enumerable. So T can’t be effec-
tively enumerable after all. Which is what we wanted to show. �

Which is, I hope you agree, a beautiful result. Yet it was simply proved. We have
just taken a couple of pretty elementary observations about effectively enumer-
able sets (Theorems 5.1 and 5.2). Then we defined a pair of sets K/K. That’s
the same kind of little trick that was involved in Cantor’s proof. It was then very
easy to show Theorem 5.3. And these elementary ingredients immediately give
us Theorem 5.4.

A comment. The informal idea of (all) ‘the truths of arithmetic’ is no doubt
not a sharp one: what exactly should we include? But however we refine it,
presumably we want the truths of arithmetic, broadly construed, to include at
least the truths about the nice, decidable, properties and relations of numbers.
So in our jargon, the truths of arithmetic, on any plausible sharpening of that
idea, should be the truths of a language which is sufficiently expressive. Hence
our theorem warrants the informal claim expressed in the title of this section:
the truths of arithmetic can’t be effectively enumerated.

5.4 Incompleteness

We now derive three easy consequences of Theorem 5.4, working up to our first
version of an incompleteness theorem.

(a) We first prove a result which we announced at the very end of Chapter 2:

Theorem 5.5 There are enumerable sets which are not effectively
enumerable.

Proof Theorem 5.3 tells us that there are sets of natural numbers which are
not effectively enumerable: but all sets of natural numbers are enumerable.

Less abstractly, we’ve just shown in Theorem 5.4 that the set of truths (i.e.
true sentences) of a sufficiently expressive formal language L is not effectively
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enumerable. But again that set is enumerable. For we can enumerate the sen-
tences of L (effectively so, by Theorem 3.1). So take such an enumeration, and
imagine God going along the list and removing all the false sentences. That will
turn our listing into a pruned enumeration containing only true sentences. �

(b) To state our second corollary, we need a simple definition:

A set of wffs Σ is axiomatizable iff there is an axiomatized formal
theory T such that, for any wff ϕ, ϕ ∈ Σ if and only if T � ϕ (i.e.
Σ is the set of T -theorems).

Then it is immediate that

Theorem 5.6 The set of true sentences of a sufficiently expres-
sive language L is not axiomatizable.

Proof Suppose otherwise, i.e. suppose that T is an axiomatized formal theory,
framed in a sufficiently expressive language L, such that the T -theorems are just
the truths expressible in that language. Then, because it is properly axiomatized,
T ’s theorems could be effectively enumerated (by the last part of Theorem 3.1).
So the truths of L could be effectively enumerated, contrary to Theorem 5.4.
Hence there can be no such theory as T . �

(c) Finally, we just run again the argument given in the preamble to this chap-
ter. So: suppose we build an axiomatized formal theory T in a sufficiently expres-
sive language L. Then because it is axiomatized, T ’s theorems can be effectively
enumerated. On the other hand, because T ’s language is sufficiently expressive,
the truths expressible in its language cannot be effectively enumerated. There is
therefore a mismatch between the truths and the T -theorems here.

Now suppose that T is a sound theory, i.e. its theorems are all true. The
mismatch between the truths and the T -provable sentences must then be due
to there being truths which T can’t prove. Suppose ϕ is one of these. Then T
doesn’t prove ϕ; and since ¬ϕ is false, T doesn’t prove that either. Hence

Theorem 5.7 If T is a sound axiomatized theory whose language
is sufficiently expressive, then T cannot be negation complete.

Astonishing! We have reached an arithmetical incompleteness theorem already.
And note, by the way, that we can’t patch T up and make it complete by
adding more true axioms and/or a richer truth-preserving logic to get another
properly axiomatized theory T ′. For T ′ will still be sound, still have a sufficiently
expressive language, and hence still be incomplete. So we could equally well call
Theorem 5.7 an incompletability theorem.

The great mathematician Paul Erdős had the fantasy of The Book in which God
keeps the neatest and most elegant proofs of mathematical theorems. Our proof
of Theorem 5.4 and hence of our first incompletability theorem surely belongs
in The Book.6

6For more on Erdős’s conceit of proofs from The Book, see Aigner and Zielger (2004).
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Theorem 5.7, our first shot at an incompleteness theorem, applies to sound
theories. But we have already remarked in Section 1.2 that Gödel’s arguments
show that we don’t need to assume soundness to prove incompleteness. In this
chapter we see how to argue from consistency to incompleteness.

But if we are going to weaken one assumption (from soundness to mere consis-
tency) we’ll need to strengthen another assumption: we’ll now consider theories
that don’t just express enough but which can capture, i.e. prove, enough.

Starting in Chapter 8, we’ll begin examining various formal theories of arith-
metic ‘from the bottom up’, in the sense of first setting down the axioms of the
theories and then exploring what the different theories are capable of proving.
For the moment, however, we are continuing to proceed the other way about. In
the previous chapter, we considered theories that have sufficiently expressive lan-
guages, and so can express what we’d like any arithmetic to be able to express.
Now we introduce the companion concept of a sufficiently strong theory, which
is one that by definition can prove what we’d like any moderately competent
theory of arithmetic to be able to prove about decidable properties of numbers.
We then establish some easy but quite deep results about such theories.

6.1 The idea of a ‘sufficiently strong’ theory

Suppose that P is some effectively decidable property of numbers, i.e. one for
which there is a mechanical procedure for deciding, given a natural number n,
whether n has property P or not.

Now, when we construct a formal theory of the arithmetic of the natural
numbers, we will surely want deductions inside our theory to be able to track,
case by case, any mechanical calculation that we can already perform informally.
We don’t want going formal to diminish our ability to determine whether n has
this property P . As we stressed in Section 3.1, formalization aims at regimenting
what we can already do: it isn’t supposed to hobble our efforts. So while we might
have some passing interest in more limited theories, we will naturally aim for a
formal theory T which at least (a) is able to frame some open wff ϕ(x) which
expresses the decidable property P , and (b) is such that if n has property P ,
T � ϕ(n), and if n does not have property P , T � ¬ϕ(n). In short, we want T
to capture P (in the sense of Section 4.6).

The suggestion therefore is that, if P is any effectively decidable property
of numbers, we ideally want a competent theory of arithmetic T to be able to
capture P . Which motivates the following definition:
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A formal theory of arithmetic T is sufficiently strong iff it captures
all effectively decidable numerical properties.

And it seems a reasonable and desirable condition on a formal theory of the
arithmetic of the natural numbers that it be sufficiently strong.1

Much later (in Section 30.1), when we’ve done some more investigation into
the general idea of effective decidability, we’ll finally be in a position to war-
rant the claim that some simple, intuitively sound, and (by then) very familiar
theories built in LA do indeed meet this condition. We will thereby show that
the condition of being ‘sufficiently strong’ is actually easily met. But we can’t
establish that now: this chapter just supposes that there are such theories and
derives some consequences.

6.2 An undecidability theorem

A trivial way for a theory T to be sufficiently strong (i.e. to prove lots of wffs
about properties of individual numbers) is by being inconsistent (i.e. by proving
every wff about individual numbers). It goes without saying, however, that we
are interested in consistent theories.

We also like to get decidable theories when we can, i.e. theories for which
there is an algorithm for determining whether a given wff is a theorem (see
Section 3.4). But, sadly, we have the following key result:2

Theorem 6.1 No consistent, sufficiently strong, axiomatized for-
mal theory of arithmetic is decidable.

Proof We suppose T is a consistent and sufficiently strong axiomatized theory
yet also decidable, and derive a contradiction.

By hypothesis, T ’s language can frame open wffs with ‘x’ free. These will be
effectively enumerable: ϕ0(x), ϕ1(x), ϕ2(x), . . . . For by Theorem 3.1 we know that
the complete set of wffs of T can be effectively enumerated. It will then be a
mechanical business to select out the ones with just ‘x’ free (there are standard
mechanical rules for determining whether a variable is free or bound).

Now let’s fix on the following definition:

n has the property D if and only if T � ¬ϕn(n).

1Why is being sufficiently expressive defined in terms of expressing relations, and being
sufficiently strong defined in terms of capturing properties? No deep reason at all. We could
have made the definitions symmetric, defining each in terms of expressing/capturing all decid-
able properties and relations. But we’ve chosen instead to build into the respective definitions
only what we actually need to build in if we are to get out our respective theorems.

2The undecidability of arithmetic was first shown by Church (1936b). For a neater proof,
see Tarski et al. (1953, pp. 46–49). The informal proof as given here is due to Timothy Smiley,
who was presenting it in Cambridge lectures in the 1960s. The first published version of it
which I know is in Hunter (1971, pp. 224–225).
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Note that the construction here links the subscripted index with the standard
numeral to be substituted for the variable in ¬ϕn(x). So this is a cousin of the
‘diagonal’ construction which we encountered in Section 2.3 (compare the final
comment on the proof of Theorem 2.1).

We next show that the supposition that T is a decidable theory entails that
the ‘diagonal’ property D is an effectively decidable property of numbers. For
given any number n, it will be a mechanical matter to enumerate the open wffs
until the n-th one, ϕn(x), is produced. Then it is a mechanical matter to form
the numeral n, substitute it for the variable and prefix a negation sign. Now we
just apply the supposed mechanical procedure for deciding whether a sentence
is a T -theorem to test whether the wff ¬ϕn(n) is a theorem. So, on our current
assumptions, there is an algorithm for deciding whether n has the property D.

Since, by hypothesis, the theory T is sufficiently strong, it can capture all
decidable numerical properties: so it follows, in particular, that D is capturable
by some open wff. This wff must of course occur somewhere in our enumeration
of the ϕ(x). Let’s suppose the d-th wff does the trick: that is to say, property D
is captured by ϕd(x).

It is now entirely routine to get out a contradiction. For, by definition, to say
that ϕd(x) captures D means that for any n,

if n has the property D, T � ϕd(n),
if n doesn’t have the property D, T � ¬ϕd(n).

So taking in particular the case n = d, we have

i. if d has the property D, T � ϕd(d),
ii. if d doesn’t have the property D, T � ¬ϕd(d).

But note that our initial definition of the property D implies:

iii. d has the property D if and only if T � ¬ϕd(d).

From (ii) and (iii), it follows that whether d has property D or not, the wff
¬ϕd(d) is a theorem either way. So by (iii) again, d does have property D, hence
by (i) the wff ϕd(d) must be a theorem too. So a wff and its negation are both
theorems of T . Therefore T is inconsistent, contradicting our initial assumption
that T is consistent.

In sum, the supposition that T is a consistent and sufficiently strong axiom-
atized formal theory of arithmetic and decidable leads to contradiction. �

There’s an old hope (which goes back to Leibniz) that can be put in modern
terms like this: we might one day be able to mechanize mathematical reasoning to
the point that a suitably primed computer could solve all mathematical problems
in a domain by deciding theoremhood in an appropriate formal theory. What
we’ve just shown is that this is a false hope: as soon as a theory is strong
enough to capture the results of boringly mechanical reasoning about decidable
properties of individual numbers, it must itself cease to be decidable.
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6.3 Another incompleteness theorem

Now let’s put together Theorem 3.2, Any consistent, axiomatized, negation-
complete formal theory is decidable, and Theorem 6.1, No consistent, sufficiently
strong, axiomatized formal theory of arithmetic is decidable. These, of course,
immediately entail

Theorem 6.2 A consistent, sufficiently strong, axiomatized for-
mal theory of arithmetic cannot be negation complete.

That is to say, for any c.s.s.a. (consistent, sufficiently strong, axiomatized) theory
of arithmetic, there will be a pair of sentences ϕ and ¬ϕ in its language, neither of
which is a theorem. But one of the pair must be true on the given interpretation
of T ’s language. Therefore, for any c.s.s.a. theory of arithmetic T , there are true
sentences of its language which T cannot decide.

And adding in new axioms won’t help. To re-play the sort of argument we
gave in Section 1.2, suppose T is a c.s.s.a. theory of arithmetic, and suppose ϕ
is a true sentence of arithmetic that T can’t prove or disprove. The theory T+

which you get by adding ϕ as a new axiom to T will, of course, now trivially
prove ϕ, so we’ve plugged that gap. But note that T+ is consistent (for if T+,
i.e. T + ϕ, were inconsistent, then T � ¬ϕ contrary to hypothesis). And T+

is sufficiently strong (since it can still prove everything T can prove). It is still
decidable which wffs are axioms of T+, so the theory still counts as a properly
axiomatized formal theory. So T+ is another c.s.s.a. theory and Theorem 6.2
applies: so there is a wff ϕ+ (distinct from ϕ, of course) which is again true-on-
interpretation but which T+ cannot decide (and if T+ can’t prove either ϕ+ or
¬ϕ+, then neither can the weaker T ). In sum, the c.s.s.a. theory T is therefore
not only incomplete but also in a good sense incompletable.3

Which is another proof for The Book.

3Perhaps we should note that, while the informal incompleteness argument of Chapter 5
depended on assuming that there are general-purpose programming languages in which we
can specify (the equivalent of) any numerical algorithm, the argument of this chapter doesn’t
require that assumption. On the other hand, our previous incompleteness result didn’t make
play with the idea of theories strong enough to capture all decidable numerical properties,
whereas our new incompleteness result does. What we gain on the roundabouts we lose on the
swings.
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7.1 Comparing incompleteness arguments

Our informal incompleteness theorems, Theorems 5.7 and 6.2, aren’t the same as
Gödel’s own theorems. But they are cousins, and they seem quite terrific results
to arrive at so very quickly.

Or are they? Everything depends, for a start, on whether the ideas of a ‘suffi-
ciently expressive’ arithmetic language and a ‘sufficiently strong’ theory of arith-
metic are in good order.

Now, as we’ve already briefly indicated in Section 2.2, there are a number
of standard, well-understood, ways of formally refining the intuitive notion of
decidability, ways that turn out to locate the same entirely definite and well-
defined class of numerical properties and relations. In fact, these are the proper-
ties/relations whose application can be decided by a Turing machine. The spec-
ification ‘all decidable relations/properties of numbers’ can therefore be made
perfectly clear. And hence the ideas of a ‘sufficiently expressive’ language (which
expresses all decidable two-place numerical relations) and a ‘sufficiently strong’
theory (which captures all decidable properties of numbers) can also be made
perfectly clear.

But by itself, that observation doesn’t take us very far. For it leaves wide
open the possibility that a language expressing all decidable relations or a the-
ory that captures all decidable properties has to be very rich indeed. However,
we announced right back in Section 1.2 that Gödel’s own arguments rule out
complete theories even of the truths of basic arithmetic. Hence, if our easy The-
orems are to have the full reach of Gödel’s work, we’ll really have to show the
language of basic arithmetic is sufficiently expressive, and that a theory built in
that language can be sufficiently strong.

In sum, if something like our argument for Theorem 5.7 is to be used to
establish a variant of one of Gödel’s own results, then it needs to be augmented
with (i) a general treatment of the class of decidable properties/relations, and
(ii) a proof that (as we claimed) even LA can express the decidable two-place
relations. And if something like our argument for Theorem 6.2 is to be used, it
needs to be augmented by (iii) a proof that (as we claimed) common-or-garden
theories couched in LA can be sufficiently strong.

But even with (i), (ii) and (iii) in play, there would still remain a signifi-
cant difference between our easy theorems and Gödel’s arguments. For our lines
of argument don’t yet give us any specific examples of unprovable truths.1 By

1When we look at the proofs in Chapter 5, we can see that some unprovable wffs will have
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contrast, Gödel’s proof tells us how to take a consistent theory T and actually
construct a true but unprovable-in-T sentence (the one that encodes ‘I am un-
provable in T ’). Moreover, Gödel does this without needing the general treatment
in (i) and without needing all of (ii)/(iii) either.

There is a significant gap, then, between our two intriguing, quickly-derived,
but informal theorems and the industrial-strength results that Gödel proves.
So, while what we have shown so far is highly suggestive, it is time to start
turning to Gödel’s own arguments. But before we press on, let’s highlight two
very important general lessons we can already learn from our informal theorems:

A. Arguments for incompleteness come in (at least) two flavours. First, we
can combine the premiss (i) that we are dealing with a sound theory with
the premiss (ii) that our theory’s language is expressively rich enough. Or
second, we can weaken one assumption and beef up the other: in other
words, we can use the weaker premiss (i′) that we are dealing with a
consistent theory but add the stronger premiss (ii′) that our theory can
prove enough facts. We’ll see that Gödel’s arguments too come in these
two flavours.

B. Arguments for incompleteness don’t have to depend on the construction of
Gödel sentences that somehow say of themselves that they are unprovable.
Neither of our informal proofs do. (More basically: neither proof depends
on Gödel’s trick of associating code-numbers with formal expressions.)

7.2 A road-map

So now we turn to Gödel’s proofs. And to avoid getting lost in what follows, it
will help to have in mind an overall road-map of the route we are taking:

1. We begin by describing some standard formal systems of arithmetic, in
particular the benchmark system PA, so-called ‘First-order Peano Arith-
metic’, and an important subsystem Q, ‘Robinson Arithmetic’. (Chap-
ters 8–10)

2. These systems are framed in LA, the language of basic arithmetic. So they
only have successor, addition and multiplication as ‘built-in’ functions.
But we go on to describe the large family of ‘primitive recursive’ functions,
properties and relations (which includes all familiar arithmetical functions
like the factorial and exponential, and familiar arithmetic properties like
being prime, and relations like one number being the square of another).
And we then show that Q and PA can not only express but capture all the
primitive recursive functions, properties and relations – a major theorem
that was, in essence, first proved by Gödel. (Chapters 11–13)

the form ¬∃jR(j, n). But that’s not terrifically informative as we don’t yet know anything about
what R itself has to look like!
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3. We next turn to Gödel’s simple but crucial innovation – the idea of sys-
tematically associating expressions of a formal arithmetic with numerical
codes. Any sensibly systematic scheme of ‘Gödel numbering’ will do: but
Gödel’s original style of numbering has a certain naturalness, and makes it
tolerably straightforward to prove arithmetical results about the codings.
With a coding scheme in place, we can reflect properties and relations
of strings of symbols of PA (to concentrate on that theory) by properties
and relations of their Gödel numbers. For example, we can define the
numerical properties Term and Wff which hold of a number when it is
the code number for a symbol sequence which is, respectively, a term or a
wff of PA. And we can, crucially, define the numerical relation Prf (m,n)
which holds when m codes for an array of wffs that is a PA proof, and
n codes the closed wff that is thereby proved. This project of coding up
various syntactic relationships is often referred to as the arithmetization
of syntax. And what Gödel showed is that – given a sane system of Gödel
numbering – these and a large family of related arithmetical properties
and relations are primitive recursive. (The outline idea here is beautifully
simple: joining up the dots takes some tiresome work in Chapter 15.)

4. Next – the really exciting bit! – we use the fact that relations like Prf
are expressible in PA to construct a ‘Gödel sentence’ G. Given the coding
scheme, G will be true when there is no number that is the Gödel number
of a PA proof of the wff that results from a certain construction – where
the wff that results is none other than G itself. So G is true just if it is
unprovable in PA. Given PA is sound and only proves truths, G can’t be
provable; hence G is true; hence ¬G is false, and so is also unprovable in
PA. In sum, given PA is sound, it cannot decide G. Further, it turns out
that we can drop the semantic assumption that PA is sound. Using the fact
that PA can capture relations like Prf (as well as merely express them),
we can still show that G is undecidable while just making a syntactic
assumption (it is enough that PA is ‘ω-consistent’). (Chapter 16)

5. Finally, Gödel notes that the true-but-unprovable sentence G for PA is
generated by a method that can be applied to any other arithmetic that
satisfies some modest conditions. In particular, adding G as a new axiom
to PA just gives us a revised theory for which we can generate a new true-
but-unprovable wff G′. Throwing in G′ as a further axiom then gives us
another theory for which we can generate yet another true-but-unprovable
wff. And so it goes. PA is therefore not only incomplete but incompletable.
In fact, any properly axiomatized consistent theory that contains the
weak theory Q is incompletable. (Chapter 17)

Just one comment. This summary makes Gödel’s formal proofs in terms of
primitive recursive properties and relations sound rather different from our infor-
mal proofs using the idea of theories which express/capture decidable properties
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or relations. But a link can be made when we note that the primitive recursive
properties and relations are in fact a large subclass of the intuitively decidable
properties and relations. Moreover, showing that Q and PA can express/capture
all primitive recursive properties and relations takes us most of the way to show-
ing that those theories are sufficiently expressive/sufficiently strong.

However, we’ll leave exploring this link until much later. Only after we have
travelled the original Gödelian route (which doesn’t presuppose a general account
of computability) will we return to consider how to formalize the arguments of
Chapters 5 and 6 (a task which does presuppose such a general account).
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We now move on from the generalities of the previous chapters, and look at
some particular formal arithmetics. In this chapter, we limber up by looking at
Baby Arithmetic, and then we start exploring Robinson Arithmetic. Later, in
Chapter 10, we’ll be introducing Peano Arithmetic, the strongest of our initial
range of formal arithmetics.

These theories differ in strength, but they do share one key feature: the theo-
ries’ deductive apparatus is no richer than familiar first-order logic. So we can
quantify, perhaps, over all numbers: but our theories will lack second-order quan-
tifiers, i.e. we can’t quantify over all numerical properties.1

8.1 BA, Baby Arithmetic

We begin with a very simple theory which ‘knows’ about the addition of partic-
ular numbers, ‘knows’ its multiplication tables, but can’t express general facts
about numbers at all (it lacks the whole apparatus of quantification). Hence our
label Baby Arithmetic, or BA for short. As with any formal theory, we need to
characterize (a) its language, (b) its deductive apparatus, and (c) its axioms.

(a) BA’s language is LB = 〈LB , IB〉. LB ’s non-logical vocabulary is the same as
that of LA (Section 4.3): hence there is a single individual constant ‘0’, the one-
place function symbol ‘S’, and the two-place function symbols ‘+’ and ‘×’. So LB
contains the standard numerals. However, LB ’s logical apparatus is restricted.
As we said, it lacks quantifiers and variables. But it has the identity sign (so
that it can express equalities), and negation (so that it can express inequalities):
and we might as well give it the other propositional connectives too.

The intended interpretation IB is the obvious one. ‘0’ still has the value
zero. ‘S’ still signifies the successor function, and ‘+’ and ‘×’ are interpreted
as addition and multiplication.

(b) BA’s deductive apparatus can be based on your favourite system of propo-
sitional logic to deal with connectives. Then we need to add some standard rules
to deal with the identity sign. In particular, we need a version of Leibniz’s Law.
If τ and ρ are terms,2 then Leibniz’s Law will allow us to infer ϕ(ρ) from the
premisses ϕ(τ) and τ = ρ or ρ = τ .

1Since we are treating properties extensionally, quantifying over numerical properties would
be tantamount to quantifying over their extensions, i.e. over sets of numbers. We say more
about second-order arithmetics in Chapter 22.

2They will be closed terms, in fact, in the sense of Section 4.3.
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(c) Now for the (non-logical) axioms of BA. To start with, we want to pin
down at least the following facts about the structure of the number sequence:
(1) Zero is the first number, i.e. isn’t a successor; so for every n, 0 �= Sn. (2) The
number sequence never circles back on itself; so different numbers have different
successors. Contraposing, for any m,n, if Sm = Sn then m = n.

We haven’t got quantifiers in BA’s language, however, so we can’t express
these general facts directly. Rather, we need to employ schemata (i.e. general
templates) and say: any sentence that you get from one of the following schemata
by substituting standard numerals for the place-holders ‘ζ’, ‘ξ’ is an axiom.

Schema 1 0 �= Sζ

Schema 2 Sζ = Sξ → ζ = ξ

Let’s pause to show that instances of these schemata do indeed determine that
different terms in the sequence 0, S0, SS0, SSS0, . . . , pick out different numbers.
Recall, we use ‘n’ to represent the numeral SS . . .S0 with n occurrences of ‘S’:
so the result we need is that, for any m, n, if m �= n, then BA � m �= n.

Proof Suppose m �= n (and let |m − n| − 1 = j ≥ 0). Now, arguing inside
BA, assume m = n as a temporary supposition (that’s a supposition of the form
SS . . .S0 = SS . . .S0, with m occurrences of ‘S’ on the left and n on the right).
Then use instances of Schema 2 plus modus ponens to repeatedly strip off initial
occurrences of ‘S’, one on each side of the identity, until either (i) we derive
0 = Sj, or else (ii) we derive Sj = 0 and can use the symmetry of identity again
to conclude 0 = Sj. That shows that BA � m = n → 0 = Sj. But BA � 0 �= Sj (by
an instance of Schema 1). Hence, BA � m �= n. �

We next pin down the addition function by saying that any wff that you get
by substituting numerals in the following is also an axiom:

Schema 3 ζ + 0 = ζ

Schema 4 ζ + Sξ = S(ζ + ξ)

Instances of Schema 3 tell us the result of adding zero. Instances of Schema 4
with ‘ξ’ replaced by ‘0’ define how to add one (i.e. add S0) in terms of adding
zero and then applying the successor function to the result. Once we know about
adding one, we can use another instance of Schema 4 with ‘ξ’ replaced by ‘S0’
to define how to add two (SS0) in terms of adding S0. We can then invoke the
same Schema again to define how to add three (SSS0) in terms of adding two.
And so on and so forth, thus defining addition for every natural number.

We can similarly pin down the multiplication function by requiring every
numeral instance of the following to be an axiom too:

Schema 5 ζ × 0 = 0

Schema 6 ζ × Sξ = (ζ × ξ) + ζ
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Instances of Schema 5 tell us the result of multiplying by zero. Instances of
Schema 6 with ‘ξ’ replaced by ‘0’ define how to multiply by one in terms of
multiplying by zero and then applying the already-defined addition function.
Once we know about multiplying by one, we can use another instance of Schema
6 with ‘ξ’ replaced by ‘S0’ to tell us how to multiply by two (multiply by one
and do some addition). And so on and so forth, thus defining multiplication for
every number.

Note, it is evidently decidable whether a wff is an instance of one of the six
Schemata, and so it is decidable whether a wff is an axiom of BA, as is required
if BA is to count as a properly axiomatized theory.

8.2 BA is negation complete

We start by noting the easy result that BA’s axioms can be used to derive all
the correct results about the simple addition or multiplication of two numbers.

To give just one illustration, here’s a BA derivation of 2 × 1 = 2, or rather
(putting that in unabbreviated form) of SS0 × S0 = SS0.

1. SS0 × 0 = 0 Instance of Schema 5
2. SS0 × S0 = (SS0 × 0) + SS0 Instance of Schema 6
3. SS0 × S0 = 0 + SS0 From 1, 2 by LL

(‘LL’ of course indicates the use of Leibniz’s Law which allows us to intersubsti-
tute identicals.) To proceed, we now need to show that 0 + SS0 = SS0. For note,
this isn’t an instance of Schema 3. So:

4. 0 + 0 = 0 Instance of Schema 3
5. 0 + S0 = S(0 + 0) Instance of Schema 4
6. 0 + S0 = S0 From 4, 5 by LL
7. 0 + SS0 = S(0 + S0) Instance of Schema 4
8. 0 + SS0 = SS0 From 6, 7 by LL

Which gives us what we want:

9. SS0 × S0 = SS0 From 3, 8 by LL

That’s pretty laborious, but it works. And a little reflection on this simple proof
reveals that similar proofs will enable us to derive the value of any sum or
product of two numerals.

What about more complex cases? Let’s say that an equation of BA is a wff of
the form τ = ρ, where τ and ρ are closed terms (of any complexity). Then we
have the following pair of general results about equations:

1. If τ = ρ is true, then BA � τ = ρ.

2. If τ = ρ is false, then BA � τ �= ρ.
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In other words, in the jargon of Section 3.4, BA correctly decides all equations.

Proof sketch for (1) Our sample proof above illustrates the sort of BA derivation
that will prove any true simple equation of the form j + k = m or j × k = n. And
given a more complex closed term τ , involving nested additions, multiplications
and applications of the successor function, we can prove a true wff of the form
τ = t (with a numeral on the right) by repeated steps of evaluating inner-most
brackets.

To take a mini-example, suppose τ has the shape SS((j + k) + S(j × k)). Then
we first prove identities of the form j + k = m and j × k = n, thereby evaluat-
ing the inner-most bracketed expressions. Next substitute these results into the
logical truth τ = τ using Leibniz’s Law, and that will enable us to derive

SS((j + k) + S(j × k)) = SS(m + Sn).

Now evaluate the new, simpler, bracketed expression on the right by proving
something of the form m + Sn = o. Then, using Leibniz’s Law again, we get

SS((j + k) + S(j × k)) = SSo.

And we are done, as the expression on the right is a numeral.
Further, it is evident this method of repeated substitutions always works: for

any complex closed term τ we’ll be able to prove a wff correctly equating its
value to that of some numeral.

Hence, given any two closed terms τ and ρ, if they have the same value so
τ = ρ is true, then we’ll be able to prove τ = ρ by proving each term equal to
the same numeral. �

Proof sketch for (2) Suppose that two complex closed terms τ and ρ have values
m and n, where m �= n. By the argument for (1), we’ll then be able to derive a
pair of wffs of the form τ = m, ρ = n. But we’ve already shown in the previous
section that if m �= n, BA proves m �= n. So, if m �= n, a BA proof of τ �= ρ
follows using Leibniz’s Law twice. �

These results (1) and (2) in turn imply:

Theorem 8.1 BA is negation complete.

Proof sketch Note that LB , like LA, has only one primitive predicate, the iden-
tity relation. So the only atomic claims expressible in BA are equations involving
closed terms; all other sentences are truth-functional combinations of such equa-
tions. But we’ve just seen that we can (1) prove each true equation and (2) prove
the negation of each false equation. So, by a theorem of propositional logic, we
can derive any true truth-functional combination of atoms (equations), i.e. prove
any true sentence; likewise, we can also derive the negation of any false truth-
functional combination of atoms (equations), i.e. disprove any false sentence. In
short, in the jargon of Section 3.4, BA correctly decides every sentence. Hence,
for any sentence ϕ of BA, since either ϕ or ¬ϕ is true, either ϕ or ¬ϕ is a theorem.
So BA is negation complete. �
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Since BA is complete, it is decidable, by Theorem 3.2. But of course we don’t
need a brute-force search through possible derivations in order to determine
whether a sentence ϕ is a BA theorem. For note that all BA theorems are true
(since the axioms are); and all true BA-sentences are theorems (as we’ve just
seen). Hence determining whether the BA-sentence ϕ is true settles whether it
is a theorem. But any such ϕ expresses a truth-function of equations, so we can
mechanically work out whether it is true or not by using school-room arithmetic
for the equations and then using a truth-table.

8.3 Q, Robinson Arithmetic

So far, then, so straightforward. But the reason that Baby Arithmetic manages
to prove every correct claim that it can express – and is therefore negation
complete by our definition – is that it can’t express very much. In particular,
it can’t express any generalizations at all. BA’s completeness comes at the high
price of being expressively extremely impoverished.

The obvious way to start beefing up BA into something more exciting is to
restore the familiar apparatus of quantifiers and variables. So let’s keep the
same non-logical vocabulary, but now allow ourselves the full resources of first-
order logic, so that we are working with the full language LA = 〈LA, IA〉 of
basic arithmetic (see Section 4.3). Our theory’s deductive apparatus will be
some version of first-order logic with identity. In the next chapter, we’ll fix on a
convenient official logic.

Since we now have the quantifiers available to express generality, we can re-
place each metalinguistic Schema (specifying an infinite number of formal axioms
governing particular numbers) by a single generalized Axiom. For example, we
can replace the first two Schemata governing the successor function by

Axiom 1 ∀x(0 �= Sx)

Axiom 2 ∀x∀y(Sx = Sy → x = y)

Each instance of our earlier Schemata 1 and 2 can be deduced from the corre-
sponding Axiom by instantiating the quantifiers.

Note, however, that while these Axioms tell us that zero isn’t a successor, they
leave it open whether there are other objects that aren’t successors cluttering up
the domain of quantification (there could be ‘pseudo-zeros’). We don’t want our
quantifiers – now that we’ve introduced them – running over such stray objects.
So let’s explicitly rule them out:

Axiom 3 ∀x(x �= 0 → ∃y(x = Sy))

Next, we can similarly replace our previous Schemata for addition and multi-
plication by universally quantified Axioms:

Axiom 4 ∀x(x + 0 = x)
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Axiom 5 ∀x∀y(x + Sy = S(x + y))

Axiom 6 ∀x(x × 0 = 0)

Axiom 7 ∀x∀y(x × Sy = (x × y) + x)

The formalized theory with language LA, Axioms 1 to 7, plus a standard first-
order logic, is called Robinson Arithmetic, or (very often) simply Q.3

8.4 Q is not complete

Q is a sound theory. Its axioms are all true; its logic is truth-preserving; so its
derivations are proper proofs in the intuitive sense of demonstrations of truth
and every theorem of Q is true. But just which truths are theorems?

Since any BA Axiom – i.e. any instance of one of our previous Schemata –
can be derived from one of our new Q Axioms, every LB-sentence that can be
proved in BA is equally a quantifier-free LA-sentence which can be proved in Q.
Hence, Q again correctly decides every quantifier-free sentence.

However, there are very simple true quantified sentences that Q can’t prove.
For example, Q can prove any particular wff of the form 0 + n = n. But it can’t
prove the universal generalization χ =def ∀x(0 + x = x).

Proof sketch One standard strategy for showing that a wff χ is not a theorem
of a given theory T is to find an interpretation (often a deviant, unintended,
re-interpretation) for the T -wffs which makes the axioms of T true and hence
all its theorems true, but which makes χ false.

So take LA = 〈LA, IA〉, the interpreted language of Q. What we want to find
is a deviant re-interpretation ID of the same LA-wffs, where ID still makes Q’s
Axioms true but allows cases where ‘adding’ a ‘number’ to the ‘zero’ yields a
different ‘number’. Here’s an artificial – but still legitimate – example.

Take the domain of our deviant, unintended, interpretation ID to be the set
N∗ comprising the natural numbers but with two other ‘rogue’ elements a and
b added (these could be e.g. Kurt Gödel and his friend Albert Einstein). Let ‘0’
still to refer to zero. And take ‘S’ now to pick out the successor* function S∗

which is defined as follows: S∗n = Sn for any natural number in the domain,
while for our rogue elements S∗a = a, and S∗b = b. It is immediate that Axioms
1 to 3 are still true on this deviant interpretation.

We now need to extend this interpretation ID to re-interpret Q’s function
‘+’. Suppose we take this to pick out addition*, where m+∗ n = m+ n for any
natural numbers m, n in the domain, while a+∗ n = a and b+∗ n = b. Further,
for any x (whether number or rogue element), x +∗ a = b and x +∗ b = a. It
is easily checked that interpreting ‘+’ as addition* still makes Axioms 4 and 5
true. But by construction, 0 +∗ a �= a, so this interpretation makes χ false.

3This formal system was first isolated by Robinson (1952) and immediately became well-
known through the classic Tarski et al. (1953).
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We are not quite done, however, as we still need to show that we can give a co-
ordinate re-interpretation of ‘×’ in Q by some deviant multiplication* function.
We can leave it as an exercise to fill in suitable details. Then, with the details
filled in, we will have an overall interpretation which makes the axioms of Q true
and χ false. So Q can’t prove χ. �

Obviously, Q can’t prove ¬χ either. Just revert to the standard interpretation
IA. Q certainly has true axioms on this interpretation: so all theorems are true
on IA. But ¬χ is false on IA, so it can’t be a theorem. Hence, in sum, Q � χ
and Q � ¬χ.4 Which gives us the utterly unsurprising

Theorem 8.2 Q is not negation complete.

Of course, we’ve already announced that Gödel’s incompleteness theorem is going
to prove that no sound axiomatized theory in the language of basic arithmetic
can be negation complete. But what we’ve just shown is that we don’t need to
invoke anything as elaborate as Gödel’s arguments to see that Q is incomplete:
Q is, so to speak, boringly incomplete.

8.5 Why Q is interesting

Given it can’t even prove ∀x(0 + x = x), Q is evidently a very weak theory of
arithmetic. Even so, despite its great shortcomings, Q does have some very pretty
properties. In particular, and perhaps rather surprisingly, we’ll later be able
to show that Q is sufficiently strong in the sense of Chapter 6. For ‘sufficient
strength’ is a matter of being able to case-by-case prove enough wffs about de-
cidable properties of individual numbers. And Q’s hopeless weakness at proving
generalizations doesn’t stop it doing that.

So that’s why Q is interesting. Suppose a theory of arithmetic is formally ax-
iomatized, consistent and can prove everything Q can prove (those do seem very
modest requirements). Then what we’ve just announced and promised to prove
is that any such theory will be sufficiently strong. And therefore Theorem 6.2
will apply – any such theory will be incomplete.

However, establishing the crucial claim that Q does have sufficient strength
to capture all decidable properties has to be business for much later – plainly,
we can only establish it when we have a quite general theory of decidability to
hand.

What we will prove quite soon is a rather weaker claim about Q: in Chapter 13,
we show that it can capture all ‘primitive recursive’ properties, where these form
an important subclass of the decidable properties. This major theorem will be
a crucial load-bearing part of our proofs of various Gödel-style incompleteness
theorems. The following chapter goes through some necessary preliminaries.

4The notational shorthand here is to be read in the obvious way: i.e we write T � ϕ as
short for not-(T � ϕ), i.e. ϕ is unprovable in T .
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As we saw, Robinson’s Q is a very weak theory of arithmetic: but we’ll explore
here what it can establish. Unavoidably, some of the detailed proofs of our claims
do get boringly fiddly; so you are very welcome to skip as many of them as you
like (you won’t miss anything exciting). However, you will need to carry forward
to later chapters a good understanding of the key concepts we’ll be introducing.
So here’s a quick guide through the first eight sections of this busy chapter.

1. We begin with some remarks about different systems of first-order logic.

2. We show that the wff ∃v(v + x = y) not only expresses but captures the
relation less-than-or-equal-to in Q (cf. Section 4.5, (b)).

3. This motivates our adding the symbol ‘≤’ to Q so that ξ ≤ ζ is a defini-
tional abbreviation of ∃v(v + ξ = ζ).

4. We then note that Q can formally prove a range of expected results about
the less-than-or-equal-to relation. (But we relegate detailed proofs to a
ninth section at the end of the chapter.)

5. Next we introduce the class of so-called Δ0 wffs: these are bounded LA
wffs, i.e. wffs which are built up using identity, the less-than-or-equals re-
lation, propositional connectives and bounded quantifiers. We also intro-
duce the class of Σ1 wffs which are (equivalent to) unbounded existential
quantifications of Δ0 wffs, and the class of Π1 wffs which are (equivalent
to) unbounded universal quantifications of Δ0 wffs.

6. Consider a bounded existential quantification, as in e.g. (∃x ≤ n)ϕ(x) when
read in the obvious way. That quantification is equivalent to the finite
disjunction ϕ(0) ∨ ϕ(1) ∨ . . . ∨ ϕ(n). Likewise a bounded universal quan-
tification (∀x ≤ n)ϕ(x) is equivalent to a finite conjunction. Δ0 sentences
that are built up with such bounded quantifiers are therefore like the
quantifier-free sentences to which they are equivalent. It will be a simple
matter of mechanical calculation to determine whether they are true.

7. We next show that Q knows enough about bounded quantifiers to be able
to correctly decide every bounded sentence – i.e. prove a Δ0 sentence if it
is true, disprove it if it is false. And that quickly gives us the key theorem
of this chapter: Q can also prove any true existentially quantified bounded
wff – it can prove any true Σ1 sentence, i.e. is ‘Σ1-complete’.

8. We then prove a couple of intriguing corollaries of that last result.
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Systems of logic

9.1 Systems of logic

As will be very familiar, there is a wide variety of formal deductive systems for
first-order logic, systems which are equivalent in the sense of proving the same
sentences as conclusions from given sentences as premisses. Let’s contrast, in
particular, Hilbert-style axiomatic systems with natural deduction systems.

A Hilbert-style system defines a class of logical axioms, usually by giving
schemata such as ϕ → (ψ → ϕ) and ∀ξϕ(ξ) → ϕ(τ) and then stipulating –
perhaps with some restrictions – that any instance of a schema is an axiom.
Having a very rich set of axioms, such a deductive system can make do with
just one or two rules of inference. And a proof in a theory using an axiomatic
logic is then simply a linear sequence of wffs, each one of which is either (i) a
logical axiom, or (ii) an axiom belonging to the specific theory, or (iii) follows
from previous wffs in the sequence by one of the rules of inference.1

A natural deduction system, on the other hand, will have no logical axioms
but many rules of inference. And, in contrast to axiomatic logics, it will allow
temporary assumptions to be made for the sake of argument and then later
discharged. We will need some way, therefore, of keeping track of which tempo-
rary assumptions are in play when. So it becomes compelling to lay out proofs
as non-linear arrays. One option is to use tree structures of the type Gerhard
Gentzen introduced. Another option is to use Frederic Fitch’s device of indenting
a column of argument to the right each time a new assumption is made, and
shifting back to the left when the assumption is discharged.2

Which style of logical system should we adopt in developing Q and other
arithmetics with a first-order logic? Well, that will depend on whether we are
more concerned with the ease of proving certain metalogical results about formal
arithmetics or with the ease of proving results inside the theories. Hilbertian
systems are amenable to metalogical treatment but are horrible to use in practice.
Natural deduction systems are indeed natural in use; but it takes more effort to
theorize about arboriform proof structures.

I propose that in this book we cheerfully have our cake and eat it. So when we
consider arithmetics like Q, then officially we’ll take their logic to be a Hilbertian,
axiomatic one, so that proofs are linear sequences. This way, when we come to
theorize about arithmetic proofs, and e.g. use the Gödelian trick of using numbers
to code proofs, everything goes as simply as it can. However, when we want to
give sample proofs inside formal arithmetics, as in the next section, we will
outline arguments framed in a more manageable natural deduction style. The
familiar equivalences between the different logical systems will then warrant the
implication that an official Hilbert-style proof of the same result will be available.

1The locus classicus is Hilbert and Ackermann (1928). For a modern logic text which uses
a Hilbert-style system, see e.g. Mendelson (1997).

2The locus classicus for natural deduction systems is, of course, Gentzen (1935). For a
modern text which uses a natural deduction system set out in tree form, see e.g. van Dalen
(1994). Frederic Fitch introduces his elegant way of setting out proofs in Fitch (1952).
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9.2 Capturing less-than-or-equal-to in Q

In this section, we’ll show that the less-than-or-equal-to relation is captured by
the wff ∃v(v + x = y) in Q. That is to say, for any particular pair of numbers, m,
n, if m ≤ n, then Q � ∃v(v + m = n), and otherwise Q � ¬∃v(v + m = n).

Proof sketch Suppose m ≤ n, so for some k ≥ 0, k + m = n. Q can prove
everything BA proves and hence, in particular, can prove every true equation. So
we have Q � k + m = n. But k + m = n � ∃v(v + m = n) by existential quantifier
introduction. Therefore Q � ∃v(v + m = n), as was to be shown.

Suppose alternatively m > n. We need to show Q � ¬∃v(v + m = n). We’ll
first demonstrate this in the case where m = 2, n = 1.

Because it is well known (but also simple to follow if you don’t know it), we
will use a Fitch-style system. As we noted before, we indent sub-proofs while a
new temporary assumption is in force. And we use symbols to act as temporary
names (‘parameters’): you can think of these as recruited from our stock of
unused variables.

So consider the following argument (for brevity we will omit statements of Q’s
axioms and some other trivial steps; we drop unnecessary brackets):3

1. ∃v(v + SS0 = S0) Supposition
2. a + SS0 = S0 Supposition
3. a + SS0 = S(a + S0) From Axiom 5
4. S(a + S0) = S0 From 2, 3 by LL
5. a + S0 = S(a + 0) From Axiom 5
6. SS(a + 0) = S0 From 4, 5 by LL
7. a + 0 = a From Axiom 4
8. SSa = S0 From 6, 7 by LL
9. SSa = S0 → Sa = 0 From Axiom 2

10. Sa = 0 From 8, 9 by MP
11. 0 = Sa From 10
12. 0 �= Sa From Axiom 1
13. Contradiction! From 11, 12
14. Contradiction! ∃E 1, 2–13
15. ¬∃v(v + SS0 = S0) RAA 1–14

The only step to explain is at line (14) where we use a version of the Existential
Elimination rule: if the temporary supposition ϕ(a) leads to contradiction, for
arbitrary a, then ∃vϕ(v) must lead to contradiction.

And having done the proof for the case m = 2, n = 1, inspection reveals that
we can use the same general pattern of argument to show Q � ¬∃v(v + m = n)
whenever m > n. (Exercise: convince yourself that this claim is true!) So we are
done. �

3Does it need saying? ‘LL’ again indicates the use of Leibniz’s Law, ‘MP’ stands for modus
ponens, ‘RAA’ for reductio ad absurdum.
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9.3 Adding ‘≤’ to Q

Given the result we’ve just proved, we can sensibly add the standard symbol ‘≤’
to LA, the language of Q, defined so that whatever we put for ‘ξ’ and ‘ζ’, ξ ≤ ζ
is short for ∃v(v + ξ = ζ).4 Since it so greatly helps readability, we’ll henceforth
make very free use of this abbreviatory symbol inside formal arithmetics.

We will also adopt a second, closely related, convention. In informal mathe-
matics we often want to say that all/some numbers less than or equal to a given
number have some particular property. We can now express such claims in for-
mal arithmetics by wffs of the shape ∀ξ(ξ ≤ κ → ϕ(ξ)) and ∃ξ(ξ ≤ κ ∧ ϕ(ξ)),
where ‘≤’ is to be unpacked as we’ve just explained. And it is standard to further
abbreviate such wffs with bounded quantifiers by (∀ξ ≤ κ)ϕ(ξ) and (∃ξ ≤ κ)ϕ(ξ)
respectively.

9.4 Q is order-adequate

Q can case-by-case capture the less-than-or-equal-to relation. We’ll now remark
that Q can also prove a bunch of general facts about this relation. Let’s say, for
brevity, that a theory T is order-adequate if the following nine propositions hold:

O1. T � ∀x(0 ≤ x).

O2. For any n, T � ∀x({x = 0 ∨ x = 1 ∨ . . . ∨ x = n} → x ≤ n).

O3. For any n, T � ∀x(x ≤ n → {x = 0 ∨ x = 1 ∨ . . . ∨ x = n}).

O4. For any n, if T � ϕ(0), T � ϕ(1), . . . , T � ϕ(n),
then T � (∀x ≤ n)ϕ(x).

O5. For any n, if T � ϕ(0), or T � ϕ(1), . . . , or T � ϕ(n),
then T � (∃x ≤ n)ϕ(x).

O6. For any n, T � ∀x(x ≤ n → x ≤ Sn).

O7. For any n, T � ∀x(n ≤ x → (n = x ∨ Sn ≤ x)).

O8. For any n, T � ∀x(x ≤ n ∨ n ≤ x).

O9. For any n > 0, T � (∀x ≤ n − 1)ϕ(x) → (∀x ≤ n)(x �= n → ϕ(x)).

(Obviously, n − 1 is the numeral for n−1.) Then we have the following summary
result:

4We really need to be a bit more careful than that in stating the rule for unpacking the
abbreviation, if we are to avoid any possible clash of variables. But we’re not going to fuss about
the details. We should also remark, by the way, that some presentations treat ‘≤’ as a primitive
symbol built into our formal theories from the start, governed by its own additional axiom(s).
Nothing important hangs on the difference between that approach and our policy of introducing
the symbol by definition. And nothing hangs either on our policy of introducing ‘≤’ as our
basic symbol rather than ‘<’, which could have been defined by ξ < ζ =def ∃v(Sv + ξ = ζ).
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9 What Q can prove

Theorem 9.1 Q is order-adequate.

This theorem is absolutely pivotal for what follows. It does, however, belong
very squarely to the class of ‘trivial but tiresome’ results. It is fiddly to check
that Q satisfies the nine conditions: but none of the proofs involves anything
particularly interesting – we’ll give a few examples in the final section of this
chapter. If you have a taste for logical brain-teasers, then by all means see how
many of the nine conditions you can verify. Otherwise you are very welcome to
skip the proofs and take the results on trust.5

9.5 Defining the Δ0, Σ1 and Π1 wffs

(a) Why bother establishing that Q is order-adequate? Because, as we’ll see,
this implies that Q can prove every true sentence in the class of so-called Σ1 wffs.
And why do we care about this class of wffs (whatever it is)? Because later we’ll
see that it contains just the wffs we need for expressing decidable properties or
relations. So we’ll be able to use the fact that Q copes with Σ1 truths to show
that Q can indeed case-by-case capture each decidable property and hence is
sufficiently strong.

So what, then, are these Σ1 wffs? They are – or are equivalent to – wffs which
begin with one or more ordinary existential quantifiers followed up by a bounded
kernel wff.

And a bounded wff – a Δ0 wff, to use standard jargon – is one which is
built up using the successor, addition, and multiplication functions, identity, the
less-than-or-equal-to relation, plus the familiar propositional connectives and/or
bounded quantification.6 As we’ll soon see, just as Q can prove all true equations
and disprove all false ones, it can also correctly decide all Δ0 sentences about
particular numbers. So it can also prove the existential quantifications of the
true ones. Which is why Q can prove all the true Σ1 sentences.

(b) So much for the brisk headline news. But, over the next three sections, we
had better say the same thing again much more slowly, filling in the details as
we go along. We start with the key definitions:

5‘He has only half learned the art of reading who has not added to it the more refined
art of skipping and skimming.’ (A. J. Balfour, one-time British Prime Minister.) This remark
applies in spades to the art of reading mathematical texts.

6‘Hold on! What exactly is meant by “bounded” quantification here? After all, a bounded
quantification like (∃x ≤ 2)Fx is just short for ∃x(x ≤ 2 ∧ Fx), which involves a perfectly ordi-
nary quantifier, running over all the domain. So, when abbreviations are unpacked, all quan-
tifiers are on a par.’ In a sense, that’s true enough. So let’s be more careful and say that an
existential quantifier, say ∃x, has a bounded occurrence when it occurs in a subformula of the
type ∃x(x ≤ κ ∧ ϕ(x)), for some numeral or variable κ (other than ‘x’). Similarly, a univer-
sal quantifier, say ∀x, has a bounded occurrence when it occurs in a subformula of the form
∀x(x ≤ κ → ϕ(x)). Then the idea will be that a bounded wff, if it involves quantifiers at all,
involves only quantifiers with bounded occurrences.
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i. An atomic Δ0 wff is a wff of one of the forms σ = τ , σ ≤ τ , where σ and
τ are terms.7

ii. Now for the full class of Δ0 wffs:

1) Every atomic Δ0 wff is a Δ0 wff;

2) If ϕ and ψ are Δ0 wffs, so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) and
(ϕ ↔ ψ) (assuming all those connectives are either basic or defined
in LA).

3) If ϕ is a Δ0 wff, so are (∀ξ ≤ κ)ϕ and (∃ξ ≤ κ)ϕ, where ξ is any
variable free in ϕ, and κ is a numeral or a variable distinct from ξ.8

4) Nothing else is a Δ0 wff.

iii. A wff is strictly Σ1 iff it is of the form ∃ξ∃ζ . . .∃ηϕ, where ϕ is Δ0 and
ξ, ζ, . . . , η are one or more distinct variables free in ϕ. A wff is Σ1 iff it is
logically equivalent to a strictly Σ1 wff.

iv. A wff is strictly Π1 iff it is of the form ∀ξ∀ζ . . .∀ηϕ, where ϕ is Δ0. A wff
is Π1 iff it is logically equivalent to a strictly Π1 wff.

(c) Let’s pause for a comment on notation. It is worth remarking that ‘Σ’ in
the standard label ‘Σ1’ comes from an old alternative symbol for the existential
quantifier, as in ΣxFx – that’s a Greek ‘S’ for ‘(logical) sum’. Likewise the ‘Π’ in
‘Π1’ comes from corresponding symbol for the universal quantifier, as in ΠxFx
– that’s a Greek ‘P’ for ‘(logical) product’.

And the subscript ‘1’ in ‘Σ1’ and ‘Π1’ indicates that we are dealing with
wffs which start with one block of similar quantifiers, respectively existential
quantifiers and universal quantifiers. By the same token, a Π2 wff is one that
starts with two blocks of quantifiers, a block of universal quantifiers followed by
a block of existential quantifiers followed by a bounded kernel. Similarly, a Σ0

will be one in which a bounded kernel is preceded by no block of quantifiers –
and therefore the Σ0 wffs are just the Δ0 wffs, as we’ve dubbed them. In fact
both labels are equally current.9

Note, the general concepts of Δ0, Σ1 and Π1 wffs are absolutely standard;
however, the initial definitions given to these concepts do vary in minor ways
across different presentations. Don’t be fazed by this. Given enough background
setting, the various versions are equivalents, and the choice of an initial definition
is largely a matter of convenience. For example, it mostly doesn’t matter if we

7A quick reminder: a term of LA is an expression built up from ‘0’ and/or variables by zero
or more applications of the successor, addition and/or multiplication functions (see Section 4.3,
(a)).

8Why the distinctness requirement? Because (∀x ≤ x)ϕ(x), for example, unpacks as
∀x(x ≤ x → ϕ(x)) which is equivalent to the unbounded ∀xϕ(x). Not what we want!

9The now conventional Σn/Πn notation goes back to the late 1950s: but the original
recognition of the importance of the hierarchy of formulae with increasing quantifier complexity
is due to Kleene (1943).
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9 What Q can prove

alternatively define a strictly Σ1 wff as one which starts with a single existential
quantifier before its Δ0 kernel (for a proof, see Section 10.3).

(d) A few examples might help. Allowing abbreviations,

1. 1 ≤ 3, y + 1 = x, and SS(y × 1) = y × SSSy are atomic Δ0 wffs.

2. y + 1 = x, (∃x ≤ 2) x �= 1, (∃y ≤ 3) x = 1 + y, ¬(∃z ≤ 5)(∀y ≤ x) y ≤ z + x,
and (1 ≤ x → (∃y ≤ x)Sy = x) are Δ0 wffs.

3. ∃x∃y y + 1 = x and ∃x(∃y ≤ x) y + 3 = Sx are both strictly Σ1 wffs. And
∀x∀y x + y = y + x and ∀x(1 ≤ x → (∃y ≤ x)Sy = x) are strictly Π1 wffs.

4. ¬∀x∀y y + 1 �= x and ¬∀x(∀y ≤ x) y + 3 �= Sx are Σ1 wffs since they are
logically equivalent to our sample strictly Σ1 wffs.

9.6 Some easy results

(a) Here are three mini results to write into the record:

1. The negation of a Δ0 wff is also Δ0.

2. The negation of a Σ1 wff is Π1, and the negation of a Π1 wff is Σ1.

3. A Δ0 wff is also both Σ1 and Π1.

Proof The first is trivial. The second is also trivial given the familiar equivalence
of ‘¬∃x’ with ‘∀x¬’, etc. And for the third fact, suppose that the Δ0 wff ϕ doesn’t
have e.g. the variable ‘z’ free. Then (ϕ ∧ z = z) is also Δ0. So ∃z(ϕ ∧ z = z) is
strictly Σ1 and ∀z(ϕ ∧ z = z) is strictly Π1. But those two wffs are each logically
equivalent to the original ϕ; hence ϕ also counts as both Σ1 and Π1. �

Note that the last argument shows that being Σ1 and being Π1 are not exclusive
– though, of course, being strictly Σ1 trivially excludes being strictly Π1.

(b) Another basic result:

4. We can work out the truth or falsity of any closed Δ0 wff by an algorithmic
calculation.

This holds essentially because we only have to look through a finite number of
cases in order to deal with any bounded quantifications. And you might think
our claim is too obvious really to need a proof. Fair enough. But we’ll give an
argument all the same (skip if you must!) – for it does nicely illustrate a standard
technique, namely proving a result about all wffs in some class by an induction
on the complexity of the wff .10

10We should perhaps stress here that we are not going to be using an inductive argument
inside Q; we can’t do that because Q lacks induction axioms (compare PA, introduced in
the next chapter). Rather, we are standing outside Q and using everyday informal inductive
reasoning to show something about Q. If you haven’t met this kind of argument before, you
might find the following helpful: Boolos et al. (2002, pp. 109–110) or Leary (2000, pp. 16–19).
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Q is Σ1-complete

Proof Let’s say that a Δ0 sentence has degree k if it is built up from atomic
wffs by k applications of connectives and/or bounded quantifiers.

Now (α), the degree 0 sentences are the atomic Δ0 sentences; and we can
trivially calculate the truth-value of any such sentence.

And (β), suppose that we can algorithmically calculate the truth-value of any
Δ0 sentence of degree no more than k: then we can calculate the truth-value of
any degree k+1 sentence χ too. For there are just three sorts of case to consider:

i. χ is of the form ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) or (ϕ ↔ ψ), where
ϕ and ψ are Δ0 sentences of degree no greater than k. The truth-value
of the relevant ϕ and ψ is by hypothesis calculable, and hence (using
truth-tables) so is the truth value of χ.

ii. χ is of the form (∀ξ ≤ n)ϕ(ξ), where ϕ(ξ) is a Δ0 wff of degree k.11 Then
χ is equivalent to a conjunction ϕ(0) ∧ ϕ(1) ∧ . . . ∧ ϕ(n). Each conjunct
is therefore a closed Δ0 wff of degree k, i.e. it is a sentence whose truth-
value is by hypothesis calculable. Hence the truth-value of χ is calculable
too.

iii. χ is of the form (∃ξ ≤ n)ϕ(ξ). The argument is similar.

Putting (α) and (β) together, we can mechanically settle the truth-value of Δ0

sentences of degree 0 and, if we can settle the truth-values of Δ0 sentences of
degree up to k, we can settle the values of sentences of degree up to k+1. Hence,
since we can settle the truth-values of Δ0 sentences of degree 0, we can settle the
values of Δ0 sentences of degree 1, and so in turn settle the degree 2 cases, and
so on upwards. In sum, by an informal induction on k, we can algorithmically
determine the truth-value of any Δ0 sentence, however complex. �

9.7 Q is Σ1-complete

Suppose Γ stands in for some type of LA wff (e.g. the Δ0 wffs or the Σ1 wffs,
etc.), and let T be a theory which includes some arithmetic. Then we’ll say

i. T is Γ-sound iff, for any Γ-sentence ϕ, if T � ϕ, then ϕ is true.

ii. T is Γ-complete iff, for any Γ-sentence ϕ, if ϕ is true, then T � ϕ.

(Here, ‘true’ means, of course, true when interpreted as a sentence of arithmetic.)
And with that jargon to hand, we can state the following theorem, the key result
of this chapter:

Theorem 9.2 Q is Σ1-complete.

We can demonstrate this by proving in turn that

11Because χ is a sentence, ϕ(ξ) can only have the variable ξ free. And because it is a
sentence, χ can’t be of the form (∀ξ ≤ ν)ϕ(ξ) with ν a free variable.
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1. Q correctly decides every atomic Δ0 sentence.

2. Q correctly decides every Δ0 sentence.

3. Q proves every true Σ1 sentence.

We already know that Q can correctly decide every quantifier-free sentence, i.e.
every sentence it shares with BA (see the opening remark of Section 8.4). So (2)
extends that simple result to cover sentences with bounded quantifiers. And (3)
follows trivially from (2). You can skip the proofs again.

Proof for (1) An atomic Δ0 sentence – i.e. a Δ0 wff without free variables – is
either (i) an equation τ1 = τ2 or else (ii) a wff of the form τ1 ≤ τ2 (where τ1 and
τ2 are closed terms, denoting the numbers t1 and t2 respectively). In case (i),
we are done, because we already know that Q correctly decides every equation.
In case (ii), again because Q correctly decides every equation, we know Q can
prove a couple of wffs correctly evaluating the terms, i.e. can prove τ1 = t1 and
τ2 = t2 with numerals on the right. But since ‘≤’ captures the less-than-or-
equal-to relation, Q correctly decides whether t1 ≤ t2. Hence, plugging in the
identities, Q correctly decides whether τ1 ≤ τ2. �

Proof for (2) Again, we say that a Δ0 sentence has degree k if it is built up
from atomic wffs by k applications of connectives and/or bounded quantifiers.

The degree 0 sentences are the atomic sentences, and we now know that they
are correctly decided by Q. So let’s assume Q correctly decides all Δ0 sentences
of degree up to k. We’ll show that it correctly decides χ, an arbitrary degree
k + 1 sentence. As before, there are three cases to consider.

i. χ is built using a propositional connective from ϕ and perhaps ψ, sen-
tences of lower degree which by assumption Q correctly decides. But by
elementary logic, if Q correctly decides ϕ and ψ, it correctly decides ¬ϕ,
(ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ) and (ϕ↔ ψ). And so Q correctly decides χ.

ii. χ is of the form (∀ξ ≤ n)ϕ(ξ). If χ is a true sentence, then ϕ(0), ϕ(1),
. . . , ϕ(n) must all be true sentences. Being of lower degree, these are –
by hypothesis – all correctly decided by Q; so Q proves ϕ(0), ϕ(1), . . . ,
ϕ(n). Hence, by (O4) of Section 9.4, Q also proves (∀ξ ≤ n)ϕ(ξ). On the
other hand, if χ is false, ϕ(k) is false for some k ≤ n, and – being of
lower degree – this is correctly decided by Q, so Q proves ¬ϕ(k). Hence,
by (O5), Q proves (∃ξ ≤ n)¬ϕ(ξ), which easily entails ¬(∀ξ ≤ n)ϕ(ξ). So
Q correctly decides χ, i.e. (∀ξ ≤ n)ϕ(ξ).

iii. χ is of the form (∃ξ ≤ n)ϕ(ξ). Dealt with similarly to case (ii).

In sum, Q correctly decides all Δ0 sentences of degree 0; also, if it decides all
Δ0 sentences of degree up to k, it decides all sentences of degree up to k + 1.
Therefore, by an informal induction on k, it decides all Δ0 sentences, whatever
their degree. �
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Intriguing corollaries

Proof for (3) Take, for example, a strictly Σ1 sentence of the type ∃x∃yϕ(x, y),
where ϕ(x, y) is Δ0. If this sentence is true, then for some pair of numbers m,n,
the Δ0 sentence ϕ(m, n) must be true. Therefore, by (2), Q proves ϕ(m, n) and
hence ∃x∃yϕ(x, y), by existential introduction. Evidently the argument general-
izes for any number of initial quantifiers, which shows that Q proves all true
strictly Σ1 sentences. So it will prove their true logical equivalents too. �

9.8 Intriguing corollaries

That wasn’t very exciting, but the work needed to be done: the theorem that Q
– and therefore any stronger arithmetic – is Σ1-complete will turn out be a key
ingredient in various Gödelian incompleteness arguments. But that’s for later.
For now, let’s just note a couple of immediate corollaries of our theorem.

Start with a simple observation: like many interesting arithmetical claims,
Goldbach’s conjecture that every even number greater than two is the sum of
two primes can be expressed by a Π1 sentence.12 As we’ve noted before, no proof
of the conjecture is currently known.

Now suppose that Goldbach’s conjecture is false. Then its negation will be
a true Σ1 sentence, and hence – by Theorem 9.2 – be provable in Q. While if
Goldbach’s conjecture is true, then its negation will be false and therefore not
provable in Q (since Q’s axioms are true, so the theory only implies truths).
So to determine whether Goldbach’s conjecture is true, it is enough to decide
whether its negation follows logically from the axioms of Q. Equivalently, it is
enough to decide whether the conjecture is consistent with Q.

The argument evidently generalizes to any Π1 arithmetical claim: Fermat’s
Last Theorem is another example. Hence,

Theorem 9.3 A Π1 sentence ϕ is true iff ¬ϕ is not logically de-
ducible from Q, i.e. iff ϕ is consistent with Q.

So, if we had a method which we could use to decide whether a wff ϕ was logically
deducible from given assumptions, we’d have a method for deciding the truth
or falsity of any Π1 statement of arithmetic. Unfortunately, as we’ll later show,
there can be no such method (matters of deducibility in first-order logic are not
effectively decidable: that’s Theorem 30.4).

Here’s a further development. We need two final definitions:

12Why so? Well, the property of being even can be expressed by the Δ0 wff

ψ(x) =def (∃v ≤ x)(2 × v = x)

And the property of being prime can be expressed by the Δ0 wff

χ(x) =def x �= 1 ∧ (∀u ≤ x)(∀v ≤ x)(u × v = x → (u = 1 ∨ v = 1))

where we rely on the trivial fact that a number’s factors can be no greater than it. Then we
can express Goldbach’s conjecture as

∀x{(ψ(x) ∧ 4 ≤ x) → (∃y ≤ x)(∃z ≤ x)(χ(y) ∧ χ(z) ∧ y + z = x)}
which is Π1 since what is after the initial quantifier is Δ0.
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i. An interpreted language L2 includes the language L1 iff (a) every L1-wff
is also a wff of L2, perhaps allowing for some definitional extensions of
L2, and (b) the copies of L1-wffs in L2 have the same truth-conditions as
before, i.e. the copies are true just when their originals are true.

ii. A theory T2 extends T1 if T2’s language includes T1’s language and further,
T2 can prove all T1’s theorems (and perhaps more).

Then it is immediate that, since Q is Σ1-complete, so is any theory T which
extends Q. It then follows that

Theorem 9.4 If T extends Q, T is consistent iff it is Π1-sound.

Proof T is Π1-sound iff every Π1 sentence that T proves is true as a sentence of
arithmetic. First, then, suppose T proves a false Π1 sentence ϕ. ¬ϕ will then be
a true Σ1 sentence. But in that case, since T extends Q and so is Σ1-complete, T
will prove ¬ϕ, making T inconsistent. Contraposing, if T is consistent, it proves
no false Π1 sentence, so is Π1-sound.

The converse is trivial, since if T is inconsistent, we can derive anything in T ,
including false Π1 sentences and so T isn’t Π1-sound. �

This is, in its way, a rather remarkable observation. It means that we don’t have
to fully believe a theory T – i.e. don’t have to accept all its theorems are true on
the interpretation built into T ’s language – in order to use it to establish that
some Π1 arithmetic generalization is true. We just have to believe that T is a
consistent theory which extends Q.

Another observation. Suppose QG is the theory you get by adding Goldbach’s
conjecture as an additional axiom to Q. Then, by Theorem 9.4, QG is consistent
only if the conjecture is true, since the conjecture is a Π1 theorem of QG. But
no one knows whether Goldbach’s conjecture is true; so no one knows whether
QG is consistent. Which is a powerful reminder that even very simple theories
may not wear their consistency on their face.

9.9 Proving Q is order-adequate

Finally in this chapter, we’ll (partially) verify Theorem 9.1 since so much depends
on it. But you must not get bogged down in the tiresome details: so feel free to
skip this section!

If you are still reading, then let’s first quickly clarify notation. We are using ‘n’
to indicate LA’s standard numeral for n. So ‘n + 1’ indicates the expression you
get by writing the numeral for n followed by a plus sign followed by ‘1’. What,
then, if we want to indicate instead the numeral for n + 1? That’s ‘n + 1’. The
scope of the overlining shows what is being wrapped up into a single numeral.
(Contrast: ‘n − 1’ stands in for the numeral for n− 1; while ‘n − 1’ is ill-formed
since ‘−’ is not a symbol of LA.)
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Proving Q is order-adequate

Proof for (O1) For arbitrary a, Q proves a + 0 = a, hence ∃v(v + 0 = a), i.e.
0 ≤ a. Generalize to get the desired result. �

Proof for (O2) Arguing inside Q, suppose that a = 0 ∨ a = 1 ∨ . . . ∨ a = n. We
showed in Section 9.2 that if k ≤ m, then Q proves k ≤ m. Which means that
from each disjunct we can derive a ≤ n. Hence, arguing by cases, a ≤ n. So,
discharging the supposition, Q proves (a = 0 ∨ a = 1 ∨ . . . ∨ a = n) → a ≤ n. The
desired result is immediate since a was arbitrary. �

Proof for (O3) This is trickier: we’ll argue by an informal induction. Suppose
we can show that (α) the target wff is provable for n = 0. And suppose we can
also show that (β) if it is provable for n = k it is provable for n = k+1. Together,
these establish the desired conclusion that the target wff is provable for all n.
Hence it is enough to show that (α) and (β) both hold.13

(α) To show that the target wff is provable for n = 0, we need a proof of
∀x(x ≤ 0 → x = 0). It is enough to suppose, inside a Q proof, that a ≤ 0, for
arbitrary a, and deduce a = 0. So suppose a ≤ 0, i.e. ∃v(v + a = 0). Then for some
b, b + a = 0. Now Axiom 3 is equivalent to ∀x(x = 0 ∨ ∃y(x = Sy)), so it tells
us that either (i) a = 0, or (ii) a = Sa′ for some a′. But (ii) implies b + Sa′ = 0,
so by Axiom 5 S(b + a′) = 0, contradicting Axiom 1. That rules out case (ii).
Therefore a = 0. Which establishes (α).

(β) We assume that Q proves ∀x(x ≤ k → {x = 0 ∨ x = 1 ∨ . . . ∨ x = k}). We
want to show that Q proves ∀x(x ≤ k + 1 → {x = 0 ∨ x = 1 ∨ . . . ∨ x = k + 1}).
It is enough to suppose, inside a Q proof, that a ≤ k + 1, for arbitrary a, and
then deduce a = 0 ∨ a = 1 ∨ . . . ∨ a = k + 1.

Our supposition, unpacked, is ∃v(v + a = k + 1). And by Axiom 3, either
(i) a = 0 or (ii) a = Sa′, for some a′.

Exploring case (ii), we then have ∃v(v + Sa′ = Sk): hence, by Axiom 5 and
Axiom 2, we can derive ∃v(v + a′ = k); i.e. a′ ≤ k. So, using our assumption that
the result holds for k, a′ = 0 ∨ a′ = 1 ∨ . . . ∨ a′ = k. Since a = Sa′, that implies
a = 1 ∨ a = 2 ∨ . . . ∨ a = k + 1.

Hence, since either (i) or (ii) holds, a = 0 ∨ a = 1 ∨ a = 2 ∨ . . . ∨ a = k + 1.
Which establishes (β). �

Proofs for (O4) to (O7) Exercises!

Proof for (O8) We show that (α) the target wff is provable in Q for n = 0, and
that (β) if it is provable for n = k it is also provable for n = k+ 1. We can then
conclude by another informal induction that the wff is provable for all n.

(α) We saw in proving (O1) that for any a, 0 ≤ a. A fortiori, 0 ≤ a ∨ a ≤ 0.
Generalizing gives us the desired result for n = 0.

(β) We’ll suppose that the result holds for n = k, and show that it holds for
n = k + 1. Hence, for arbitrary a,

13A notational warning for any reader casually browsing through: in what follows, the prime
symbol as in ‘a′’ does not indicate the successor function! – cf. Section 4.3, fn. 1.
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i. a ≤ k ∨ k ≤ a By our supposition
ii. a ≤ k → a ≤ k + 1 By (O6)
iii. k ≤ a → (k = a ∨ k + 1 ≤ a) By (O7)

And since Q captures less-than-or-equal-to, we know it proves k ≤ k + 1, hence

iv. a = k → a ≤ k + 1

v. a ≤ k + 1 ∨ k + 1 ≤ a From (i) to (iv)

Since a is arbitrary, generalizing gives us what we needed to show. �

Proof for (O9) Another exercise!
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10 First-order Peano Arithmetic

Q is Σ1-complete, a fact which will turn out to be very important. But, as we
saw, in other ways Q is an extremely weak theory. To derive elementary general
truths like ∀x(0 + x = x) that are beyond Q’s reach, we obviously will have to
use a formal arithmetic that incorporates some stronger axiom(s) for proving
quantified wffs. This chapter explains the induction axioms we need to add,
working up to the key theory PA, first-order Peano Arithmetic.

10.1 Induction and the Induction Schema

(a) In informal argumentation, we frequently appeal to the following principle
of mathematical induction in order to prove general claims:

Suppose (i) 0 has the numerical property P . And suppose (ii) for
any number n, if it has P , then its successor n + 1 also has P .
Then we can conclude that (iii) every number has property P .

In fact, we used informal inductions in the last chapter. For example, to prove
that Q correctly decides all Σ1 wffs, we in effect began: let n have the property
P if Q-correctly-decides-Σ1-wffs-of-degree-no-more-than n. Then we argued (i)
0 has property P , and (ii) for any number n, if it has P , then n+ 1 also has P .
So we concluded (iii) every number has P , i.e. Q correctly decides any Σ1 wff,
whatever its degree.

Why are such inductive arguments good arguments? Well, suppose (i) and
(ii) hold. By (i) 0 has P. By (ii), if 0 has P so does S0. Hence S0 has P. By (ii)
again, if S0 has P so does SS0. Hence SS0 has P. Likewise, SSS0 has P. And
so on and so forth, through all the successors of 0. But the successors of 0 are
the only natural numbers. So all natural numbers have property P.

The intuitive induction principle is therefore underwritten by the basic struc-
ture of the number sequence, and in particular by the absence of ‘stray’ numbers
that you can’t get to step-by-step from zero.

(b) Our intuitive principle is a generalization covering any property of num-
bers. Hence to frame a corresponding formal version, it seems that we should
ideally use a language that enables us to generalize over numerical properties.
However, as we announced at the very beginning of Chapter 8, we are cur-
rently concentrating on formal theories built in languages like LA whose logical
apparatus involves only the familiar first-order quantifiers that range over the
domain of numbers: we don’t have second-order quantifiers available to range
over properties of numbers. But then how can we handle induction?

71



10 First-order Peano Arithmetic

Our only option is to use a schema again – i.e. to give a template, and say
that any wff which fits the template is an induction axiom.1 So we’ll say – to
start with – that any sentence that is an instance of the

Induction Schema ({ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx))} → ∀xϕ(x))

is to count as an axiom, where ϕ(x) stands in for some suitable open wff of LA
with just ‘x’ free – and ϕ(0) and ϕ(Sx) are, of course, the results of systematically
substituting ‘0’ and ‘Sx’ for ‘x’. We’ll think about what counts as a ‘suitable’
wff in just a moment: but basically we want expressions ϕ(x) which express gen-
uine properties, i.e. properties which really do fall under the intuitive induction
principle.

10.2 Induction and relations

But even before we start worrying about what ‘suitable’ means, there’s more
to be said about induction. For we can also use inductive arguments to prove
general results about relations as well as about monadic properties.

Take a simple illustrative example. Suppose ‘Rxyz’ abbreviates some open LA
wff with three free variables, which expresses some genuine arithmetical relation
R. Let’s arbitrarily pick objects a and b from the domain. And suppose just for
a moment that our logical apparatus allows these to be temporarily named ‘a’
and ‘b’. Then e.g. ‘Rxab’ now expresses a nice monadic property – the property
of standing in the R relation to a and b. The intuitive induction principle should
therefore now apply to this property too. Hence the following will be true:

({R0ab ∧ ∀x(Rxab → RSxab)} → ∀xRxab)

But we said that ‘a’ and ‘b’ denote arbitrary elements of the domain. Hence we
can generalize into the places temporarily held by these names, to get

∀y∀z({R0yz ∧ ∀x(Rxyz → RSxyz)} → ∀xRxyz)

and this proposition is still intuitively warranted. Now, this isn’t an instance
of our Induction Schema. But it is the universal closure of the instance with
ϕ(x) = Rxyz – where the universal closure of a wff is the result of prefixing it
with enough universal quantifiers to bind its free variables.

What goes for Rxyz evidently goes in other cases. So we can generalize. Take
any suitable ϕ(x) which has ‘x’ free and perhaps other variables free too: then
the universal closure of the corresponding instance of the Induction Schema is
warranted as an axiom.

1Compare BA where we had to use schemata because we then couldn’t even quantify over
objects: now we are using a schema because even in a full first-order language we can’t quantify
over properties.
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Arguing using induction

10.3 Arguing using induction

(a) Which wffs ϕ, however, are ‘suitable’ for appearing in the induction schema?
We said: ones which express genuine numerical properties (and relations) that
fall under the intuitive induction principle. But then the question just becomes:
which wffs express genuine properties and relations?

Well, let’s start very modestly. Suppose ϕ(x) has just ‘x’ free and has at
most bounded quantifiers: in other words, suppose ϕ(x) is Δ0. Then such a wff
surely expresses an entirely determinate property. Indeed, for any n, we can quite
mechanically decide whether n has that property, i.e. we can decide whether ϕ(n)
is true or not – see Section 9.6 (b). Likewise, a Δ0 wff with two or more free
variables surely expresses an entirely determinate relation. So in this section,
we’ll consider the quite uncontroversial use of induction for Δ0 wffs.

The following general claims about the successor function, addition and or-
dering are all provable using Q’s Axioms plus induction for Δ0 wffs:

1. ∀x(x �= Sx)

2. ∀x(0 + x = x)

3. ∀x∀y(Sx + y = S(x + y))

4. ∀x∀y(x + y = y + x)

5. ∀x∀y∀z(x + (y + z) = (x + y) + z)

6. ∀x∀y∀z(x + y = x + z → y = z)

7. ∀x∀y(x ≤ y ∨ y ≤ x)

8. ∀x∀y((x ≤ y ∧ y ≤ x) → x = y)

9. ∀x∀y∀z((x ≤ y ∧ y ≤ z) → x ≤ z)

We’ll leave giving a full derivation of each of these wffs as a rather unexciting
exercise for those who have a taste for such things. Here are just a few hints and
outlines.

Proof sketch for (1) Take ϕ(x) to be x �= Sx. Then Q proves ϕ(0) because that’s
Axiom 1, and proves ∀x(ϕ(x) → ϕ(Sx)) by contraposing Axiom 2. And then an
induction axiom tells us that if we have both ϕ(0) and ∀x(ϕ(x) → ϕ(Sx)) we can
deduce ∀xϕ(x), i.e. no number is a self-successor. �

Recall that our deviant interpretation which makes the axioms of Q true while
making ∀x(0 + x = x) false had Kurt Gödel himself as a self-successor (see Sec-
tion 8.4). A smidgin of induction, however, rules out self-successors.2

2Don’t be lulled into a false sense of security, though! While induction axioms may rule
out deviant interpretations based on self-successors, they don’t rule out some other deviant
interpretations. See Kaye (1991) for an exploration of ‘non-standard models’.
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10 First-order Peano Arithmetic

Proof sketch for (2) We showed in Section 8.4 that the wff ∀x(0 + x = x) is not
provable in Q. But we can derive it once we have induction on the scene.

For take ϕ(x) to be (0 + x = x), which is of course Δ0. Q implies ϕ(0), since
that’s just an instance of Axiom 4.

Next we show Q entails ∀x(ϕ(x) → ϕ(Sx)). Arguing inside Q, it is enough to
suppose ϕ(a) and derive ϕ(Sa). So suppose ϕ(a), i.e. 0 + a = a. But Axiom 5
entails 0 + Sa = S(0 + a). So by Leibniz’s Law, 0 + Sa = Sa, i.e. ϕ(Sa).

And now an instance of the Induction Schema tells us that if we have both
ϕ(0) and ∀x(ϕ(x) → ϕ(Sx)) we can deduce ∀xϕ(x), i.e. ∀x(0 + x = x). �

Proof sketch for (4) Take the universal closure of the instance of the Induction
Schema for ϕ(x) = x + y = y + x. Then instantiate with an arbitrary parameter
to get:

{0 + a = a + 0 ∧ ∀x(x + a = a + x → Sx + a = a + Sx)}
→ ∀x(x + a = a + x)

To proceed, we can obviously derive 0 + a = a + 0, the first conjunct in the curly
brackets, by using (2) plus Q’s Axiom 4.

Now suppose b + a = a + b. Then Sb + a = S(b + a) = S(a + b) = a + Sb, by
appeal to the unproved Result (3), our supposition, and Axiom 5 in turn. So
by Conditional Proof b + a = a + b → Sb + a = a + Sb. Generalizing gets us the
second conjunct in curly brackets.

Detach the consequent and then generalize again to get what we want. �

Proof sketch for (7) Swapping variables, let’s show ∀y∀x(y ≤ x ∨ x ≤ y). Take
the universal closure of the instance of induction for ϕ(x) = y ≤ x ∨ x ≤ y, and
instantiate to get:

{(a ≤ 0 ∨ 0 ≤ a) ∧ ∀x((a ≤ x ∨ x ≤ a) → (a ≤ Sx ∨ Sx ≤ a))}
→ ∀x(a ≤ x ∨ x ≤ a)

So again we need to prove each conjunct in the curly brackets; then we can detach
the consequent of the conditional, and generalize to get the desired result.

It’s trivial to prove the first conjunct, (a ≤ 0 ∨ 0 ≤ a), since its second disjunct
always obtains, by (O1) of Section 9.9.

Next we show that if we suppose a ≤ b ∨ b ≤ a, we can derive a ≤ Sb ∨ Sb ≤ a
for arbitrary b, which is enough to prove the second conjunct. Argue by cases.

Suppose first a ≤ b, i.e. ∃v(v + a = b). But if for some c, c + a = b, then
S(c + a) = Sb, so by Result (3), Sc + a = Sb, whence ∃v(v + a = Sb), i.e. a ≤ Sb,
so (a ≤ Sb ∨ Sb ≤ a).

Suppose secondly b ≤ a, i.e. ∃v(v + b = a). Then for some c, c + b = a. By Q’s
Axiom 3, either c = 0, or c = Sc′ for some c′. In the first case 0 + b = a, so by
Result (2) above a = b, from which it is trivial that a ≤ Sb. In the second case,
Sc′ + b = a, and using Result (3) and Axiom 5 we get c′ + Sb = a, and hence
Sb ≤ a. So (a ≤ Sb ∨ Sb ≤ a) again.

So we can infer ∀x(a ≤ x ∨ x ≤ a). Generalizing gives us the desired result. �
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Arguing using induction

Which all goes to show that proofs by induction do soon get very, very, tiresome.
But carrying on in the same way, we can in fact prove many of the most obvious
general properties of addition and of multiplication too, using only instances of
the Induction Schema where ϕ is a Δ0 wff.

(b) Let’s pause to mention one more result, which is just about worth high-
lighting as

Theorem 10.1 In any theory which extends Q and has induction
for Δ0 wff, a Σ1 wff starting with n > 1 unbounded existential
quantifiers is provably equivalent to a Σ1 wff starting with just a
single unbounded quantifier.

There are two reasons why this is worth proving. First, we’ll actually make use of
this lemma later, in Section 19.4. But second, and more immediately, it explains
away a common variation you’ll find among definitions of the class of (strictly)
Σ1 wffs. Our preferred official definition allows a (strictly) Σ1 wff to begin with
a whole block of unbounded existential quantifiers; but it is equally common
to insist on there being only one unbounded quantifier. Our little result here
shows that, in most cases (i.e. in the context of any theory with just a smidgin
of induction), this is a distinction which doesn’t make a difference.

Proof Observe that the sentence

i. ∃x∃yϕ(x, y)

is intuitively true in exactly the cases when

ii. ∃w(∃x ≤ w)(∃y ≤ w)ϕ(x, y)

is true. And first we’ll show that (i) and (ii) are indeed provably equivalent, for
any ϕ, using Q plus Δ0 induction.

Assume (i) and reason inside our formal theory. So we suppose that for
some a, b, ϕ(a, b). But we know from Result (7) above that a ≤ b ∨ b ≤ a. As-
sume a ≤ b: then we can derive a ≤ b ∧ b ≤ b ∧ ϕ(a, b), which in turn implies
(∃x ≤ b)(∃y ≤ b)ϕ(x, y), and hence (ii). Assume b ≤ a: we can similarly derive
(ii). So, arguing by cases, (i) implies (ii).

For the converse implication, unpacking the abbreviations involved in the
bounded quantifiers is enough to show that (ii) logically entails (i) and so cer-
tainly (ii) implies (i) inside Q.

Now suppose, in particular, that the kernel ϕ in our example is in fact Δ0.
Then the Σ1 sentence (i) with two unbounded quantifiers is equivalent to (ii)
which starts with a single unbounded quantifier, but which is also Σ1 – since the
bit after the unbounded quantifier, i.e. (∃x ≤ w)(∃y ≤ w)ϕ(x, y), is of course Δ0.

The argument then generalizes in entirely obvious ways to cases where ϕ has
additional free variables and/or is preceded by more than two initial unbounded
existential quantifiers. Which gives us the desired result. �
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10 First-order Peano Arithmetic

10.4 Being more generous with induction

(a) To repeat: (the universal closure of) any instance of the Induction Schema
will be intuitively acceptable as an axiom, so long as we replace ϕ in the Schema
by a suitable open wff which expresses a genuine property/relation. We argued at
the beginning of the last section that Δ0 wffs are eminently suitable, and so far
we have only considered instances of induction involving such wffs. It is certainly
of some technical interest to see just how many basic truths of arithmetic can in
fact be proved by adding that limited amount of induction to Q.3 But why be
so restrictive?

Take any open wff ϕ of LA at all. This will be built from no more than the
constant term ‘0’, the familiar successor, addition and multiplication functions,
plus identity and other logical apparatus. Therefore – you might very well sup-
pose – it ought also to express a perfectly determinate arithmetical property or
relation (even if, in the general case, we can’t always decide whether a given
number n has the property or not). So why not be generous and allow any open
LA wff at all to be substituted for ϕ in the Schema?

Here’s a positive argument for generosity. Remember that instances of the
Induction Schema (for monadic predicates) are conditionals which look like this:

({ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx))} → ∀xϕ(x))

So they actually only allow us to derive some ∀xϕ(x) when we can already prove
the corresponding (i) ϕ(0) and also can prove (ii) ∀x(ϕ(x) → ϕ(Sx)). But if we
can already prove (i) and (ii) then (iii) we can already prove each and every
one of ϕ(0), ϕ(S0), ϕ(SS0), . . . . However, there are no ‘stray’ numbers which
aren’t denoted by some numeral; so that means (iv) that we can prove of each
and every number that ϕ is true of it. What more can it possibly take for ϕ
to express a genuine property that indeed holds for every number, so that (v)
∀xϕ(x) is true? In sum, it seems that we can’t overshoot by allowing instances
of the Induction Schema for any open wff ϕ of LA with one free variable. The
only usable instances from our generous range of axioms will be those where we
can prove the antecedents (i) and (ii) of the relevant conditionals: and in those
cases, we’ll have every reason to accept the consequents (v) too. (The argument
generalizes in the obvious way to the case where ϕ(x) is relational.)

(b) Suppose we accept that conclusion, and now take it that any open wff of
LA can be used in the Induction Schema. This means moving on from Q, and
jumping right over a range of possible intermediate theories,4 to adopt the much
richer theory of arithmetic that we can briskly define as follows:

3The theory whose non-logical axioms are those of Q plus instances of the Induction Scheme
where ϕ is Δ0 is commonly known as IΔ0 (or IΣ0). One of the first investigations of the scope
and limits of IΔ0 is by Parikh (1971).

4Later, we’ll have reason to highlight the theory IΣ1, which is what you get when you
add to Q all instances of induction for Σ1 wffs. For an extended exploration of the powers of
this and other intermediate theories of arithmetic with various restrictions on the Induction
Schema, see the wonderful Hájek and Pudlák (1993).
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PA – First-order Peano Arithmetic5 – is the first-order theory
whose language is LA and whose axioms are those of Q plus the
universal closures of all instances of the Induction Schema.

Plainly, it is still decidable whether any given wff has the right shape to be one
of the new axioms, so this is a legitimate formalized theory.

Given its very natural motivation, PA is the benchmark axiomatized first-
order theory of basic arithmetic. Just for neatness, then, let’s bring together all
the elements of its specification in one place. But first, a quick observation. PA
allows, in particular, induction for the Σ1 formula

ϕ(x) =def (x �= 0 → ∃y(x = Sy)).

But now note that the corresponding ϕ(0) is a trivial logical theorem. Likewise,
∀xϕ(Sx) is an equally trivial theorem, and that entails ∀x(ϕ(x) → ϕ(Sx)). So we
can use an instance of the Induction Schema inside PA to derive ∀xϕ(x). But
that’s just Axiom 3 of Q.6 So our initial presentation of PA – as explicitly having
all the Axioms of Q plus the instances of the Induction Schema – involves a
certain redundancy. Bearing that in mind, here’s our . . .

10.5 Summary overview of PA

First, the language of PA is LA, a first-order language whose non-logical vocab-
ulary comprises just the constant ‘0’, the one-place function symbol ‘S’, and the
two-place function symbols ‘+’, ‘×’, and whose intended interpretation is the
obvious one.

Second, PA’s official deductive proof system is a Hilbert-style axiomatic ver-
sion of classical first-order logic with identity (the differences between vari-
ous presentations of first-order logic of course don’t make a difference to what
sentences can be proved in PA: our official choice is just for later metalogical
convenience).

And third, its non-logical axioms – eliminating the redundancy from our orig-
inal listing and renumbering – are the following sentences:

Axiom 1 ∀x(0 �= Sx)

Axiom 2 ∀x∀y(Sx = Sy → x = y)

Axiom 3 ∀x(x + 0 = x)

Axiom 4 ∀x∀y(x + Sy = S(x + y))

5The name is conventional. Giuseppe Peano did publish a list of axioms for arithmetic in
Peano (1889). But they weren’t first-order, only explicitly governed the successor relation, and
– as he acknowledged – had already been stated by Richard Dedekind (1888).

6As we saw in Section 9.9, Axiom 3 enables us to prove some important general claims in
Q, despite the absence of the full range of induction axioms. It, so to speak, functions as a
very restricted surrogate for induction in certain proofs.
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10 First-order Peano Arithmetic

Axiom 5 ∀x(x × 0 = 0)

Axiom 6 ∀x∀y(x × Sy = (x × y) + x)

plus every sentence that is the universal closure of an instance of the following

Induction Schema ({ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx))} → ∀xϕ(x))

where ϕ(x) is an open wff that has ‘x’, and perhaps other variables, free.

10.6 Hoping for completeness?

PA is an intuitively well-motivated theory of basic arithmetic. Investigation and
experimentation reveals that, unlike Q, it does indeed have the resources to
establish all the familiar elementary general truths about the addition and mul-
tiplication of numbers. So we might reasonably have hoped – at least before we’d
heard of Gödel’s Theorems – that PA would turn out to be a negation complete
theory.

Here’s another fact that might well have encouraged this hope, pre-Gödel.
Suppose we define the language LP to be LA without the multiplication sign.
Take P to be the theory couched in the language LP , whose axioms are Q’s
now familiar axioms for successor and addition, plus the universal closures of
all instances of the Induction Schema that can be formed in LP . In short, P is
PA minus multiplication. Then P is a negation-complete theory of successor and
addition.

We are not going to be able to prove that last claim in this book. The argument
uses a standard model-theoretic method called ‘elimination of quantifiers’ which
isn’t hard, but it would just take too long to explain. Note, though, that the
availability of a complete formalized theory for successor and addition was proved
as early as 1929 by Mojżesz Presburger.7

So the situation is as follows, and was known before Gödel got to work.
(i) There is a complete formalized theory BA whose theorems are exactly the
quantifier-free truths expressible using successor, addition and multiplication
(and the connectives). (ii) There is another complete formalized theory (equiva-
lent to PA minus multiplication) whose theorems are exactly the first-order truths
expressible using just successor and addition. Against this background, Gödel’s
result that adding multiplication in order to get full PA gives us a theory which
is incomplete and incompletable (if consistent) comes as a rather nasty surprise.
It certainly wasn’t obviously predictable that multiplication would make all the

7Enthusiasts will find an accessible outline proof in Fisher (1982, Ch. 7), which can usefully
be read in conjunction with Boolos et al. (2002, Ch. 24).

To be strictly accurate, Presburger – then a young graduate student – proved the complete-
ness not of P but of a slightly different and less elegant theory (whose primitive expressions
were ‘0’, ‘1’ and ‘+’): see Presburger (1930). But a few years later, Hilbert and Bernays (1934)
showed that his methods could be applied to the neater theory P, and it is the latter which is
these days typically referred to as ‘Presburger Arithmetic’.
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difference. Yet it does.8 As we’ve already said, any consistent axiomatized theory
which extends Q will be incomplete.

10.7 Where we’ve got to

Let’s quickly review where we’ve got to. In Chapter 8 we introduced Robinson
Arithmetic Q. We very easily proved this weak theory to be incomplete, using
an elementary argument. We just took the sentence χ =def ∀x(0 + x = x), and
showed both that Q � χ and that Q � ¬χ by finding a pair of interpretations
which make the axioms of Q all true and respectively make χ and ¬χ false.

However, we also announced (but did no more than announce) that Q is
sufficiently strong. So, assuming it is consistent, Theorem 6.2 will apply and
that gives us another, very broadly Gödelian, proof that Q is incomplete. But
we aren’t yet in a position to prove Q’s sufficient strength, so for the moment
we can’t use this more sophisticated route to incompleteness.

In this chapter, we have gone on to introduce the formal arithmetic PA which is
the result of adding to Q the universal closure of every instance of the Induction
Schema that you can construct in the language LA. In contrast to Q, this is a
very rich and powerful theory, and it certainly isn’t boringly incomplete – i.e.
there is no easy way of coming up with a simple sentence which is demonstrably
undecidable in PA. But since PA extends Q and Q is sufficiently strong, PA is
sufficiently strong too and Theorem 6.2 applies: hence – assuming that PA is
consistent – PA must after all be incomplete. Again, we are not in a position to
show that yet, but starting in the next chapter we will begin to put together a
version of the original Gödelian argument for this conclusion.

Now, what goes for PA goes for stronger theories. If an axiomatized theory
extends PA and remains consistent, it will once more be sufficiently strong, and
will be incomplete by Theorem 6.2. Given that our main topic is incompleteness,
there is therefore a sense in which we therefore don’t really need to give extensive
coverage of axiomatized theories stronger than PA; what goes for PA as far as
the incompleteness phenomenon is concerned must go for them too.

However, we will pause later to say just a little about some of those stronger
theories. After all, while PA may be the most natural first-order theory of arith-
metic, you might well think that it is odd to focus on such a theory. For recall:
the intuitive principle of mathematical induction seems to be second-order, seems
to quantify over properties. Yet despite that, we still proceeded to keep every-
thing within a first-order framework and we introduced the Induction Schema

8And by the way, it isn’t that multiplication is in itself somehow intrinsically intractable.
In 1929 (the proof was published in his 1930), Thoralf Skolem showed that there is a com-
plete theory for the truths expressible in a suitable first-order language with multiplication but
lacking addition (or the successor function). Why then does putting multiplication together
with addition and successor produce incompleteness? The answer will emerge over the com-
ing chapters, but pivots on the fact that an arithmetic with all three functions built in can
express/capture all ‘primitive recursive’ functions.
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to handle induction. But why hobble ourselves like that? Why not just add
to Q a formal second-order Induction Axiom which directly expresses the in-
tuitive second-order principle, so we get some version of Second-order Peano
Arithmetic?

Well, that’s a perfectly good question. But it would be too distracting to pause
over it now (we’ll return to look at second-order arithmetics in Chapter 22). For
the moment, first-order PA will serve perfectly well as an example of a very pow-
erful arithmetic which isn’t obviously incomplete but which Gödelian arguments
show is in fact both incomplete and incompletable. No properly axiomatized
theory which contains it can be complete: which means that – in particular –
properly axiomatized second-order extensions of PA will be incomplete too.

10.8 Is PA consistent?

As we said, PA proves a great deal more than Q. But of course it wouldn’t be
much joy to discover that PA’s power is due to the theory’s tipping over into
being inconsistent and ‘proving’ every wff. So let’s end this chapter by briefly
considering the issue – not because there’s a sporting chance that PA might
really be in trouble, but because it gives us an opportunity to mention again the
consistency theme which we touched on in Section 1.6 and which will occupy us
later, from Chapter 24 on.

Take the given interpretation IA which we built into PA’s language LA =
〈LA, IA〉. On this interpretation, ‘0’ has the value zero; ‘S’ represents the suc-
cessor function, etc. Hence, on IA, (1) the first two axioms of PA are core truths
about the operation that takes one number to its successor. And the next four
axioms are equally fundamental truths about addition and multiplication. (2) We
have already argued that the informal induction principle is warranted by our un-
derstanding of the structure of the natural number sequence (and in particular,
by the lack of ‘stray’ numbers outside the sequence of successors of zero). And
that informal induction principle warrants the usable instances of PA’s Induc-
tion Schema: so they too will also be true on IA. But (3) the classical first-order
deductive logic of PA is truth-preserving so – given that the axioms are true and
PA’s logical apparatus is in good order – all its theorems are true on IA. Hence
(4), since all PA theorems are true on IA, there cannot be pairs of theorems of
the form ϕ and ¬ϕ (for these of course couldn’t both be true together). Therefore
(5) the theory is consistent.

This intuitive argument is surely pretty compelling. However, in the end it
appeals to our grasp of the structure of the natural numbers and the idea of a
numerical property.9 We are supposed just to see that (1) and (2) are true. But

9True, we could – if we liked – formalize this intuitive argument inside a rich enough
framework such as set theory: but would that actually make it any more compelling? After
all, are our intuitions about the basic laws governing the very rich universe of sets more secure
than those about the basic laws governing the much sparser universe of natural numbers?
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now ultra-cautious philosophers will remark that an argument for a theory’s
consistency which appeals to our supposed intuitive grasp of some intended
interpretation can lead us badly astray. And to justify their caution, they will
refer to one of the most famous episodes in the history of logic, which concerns
the fate of the German logician Gottlob Frege’s Grundgesetze der Arithmetik .10

Frege aimed to construct a formal system in which first arithmetic and then
the theory of the real numbers can be rigorously developed by deducing them
from logic-plus-definitions. He has a wide conception of what counts as logic,
which embraces axioms for what is in effect a theory of classes, so that the
number sequence can be identified as a certain sequence of classes, and then ra-
tional and real numbers can be defined via appropriate classes of these classes.11

Frege takes as his fifth Basic Law the assumption, in effect, that for every well-
constructed open wff ϕ(x) of his language, there is a class (possibly empty) of
exactly those things that satisfy this wff. And what could be more plausible?
If we can coherently express some condition, then we should surely be able to
talk about the (possibly empty) collection of just those things that satisfy that
condition. Can’t we just ‘see’ that that’s true?

But, famously, the assumption is disastrous (at least when combined with
the assumption that classes are themselves things that can belong to classes).12

As Bertrand Russell pointed out in a letter which Frege received as the second
volume of Grundgesetze was going through the press, the plausible assumption
leads to contradiction.13 Take for example the condition R expressed by ‘. . . is a
class which isn’t a member of itself’. This is, on the face of it, a perfectly coherent
condition (the class of people, for example, satisfies the condition: the class of
people contains only people, so it doesn’t contain any classes, so doesn’t contain
itself in particular). And condition R is expressible in the language of Frege’s
system. So on Frege’s assumptions, there will be a class of things that satisfy R.
In other words, there is a class ΣR of all the classes which aren’t members of
themselves. But now ask: is ΣR a member of itself? A moment’s reflection shows
that it is if it isn’t, and isn’t if it is: contradiction! So there can be no such class
as ΣR; hence Russell’s paradox shows that Frege’s assumptions cannot be right,
despite their intuitive appeal, and his formal system which embodies them is
inconsistent.

This sad tale brings home to us vividly that intuitions of truth can be mis-
taken. But let’s not rush to make too much of this. In the end, any argument has
to take something as given. And the fact that we can make mistakes in arguing

10The first volume of Grundgesetze was published in 1893, the second in 1903. For a partial
translation, as The Basic Laws of Arithmetic, see Frege (1964).

11When talking about the views of Frege and Russell, it seems more appropriate to use
Russell’s favoured term ‘class’ rather than ‘set’, if only because the latter has become so very
closely linked to a specific post-Russellian idea, namely the iterative conception of sets as
explained e.g. in Potter (2004, §3.2).

12Hence the remark in fn. 9 above, wondering just how secure are our intuitions about the
basic laws governing sets.

13See Russell (1902).
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for the cogency of a formal system on the basis of our supposed grasp of an
intended interpretation isn’t any evidence at all that we have made a mistake in
our argument for the consistency of PA. Moreover, Peano Arithmetic and many
stronger theories that embed it have been intensively explored for a century and
no contradiction has been exposed.

‘But can’t we do better,’ you might still ask, ‘than make the negative point
that no contradiction has been found (yet): can’t we prove that PA is consistent
in some other way than by appealing to our supposed grasp of an interpretation
(or by appealing to a much richer theory like set theory)?’

Yes, there are other proofs. However, for now we’ll have to put further dis-
cussion of this intriguing issue on hold until after we have said more about
Gödel’s Second Incompleteness Theorem. For that Theorem is all about consis-
tency proofs and it will put some interesting limits on the possibilities here.
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11 Primitive recursive functions

The formal theories of arithmetic that we’ve looked at so far have (at most) the
successor function, addition and multiplication built in. But why on earth stop
there? Even school arithmetic acknowledges many more numerical functions.
This chapter describes a very wide class of such functions, the so-called primitive
recursive ones. Then in Chapter 13, we’ll be able to show that Q and PA in fact
do already have the resources to deal with all these functions.

11.1 Introducing the primitive recursive functions

We’ll start with two more functions that are familiar from elementary arithmetic.
Take the factorial function y!, where e.g. 4! = 1× 2× 3× 4. This can be defined
by the following two equations:

0! = S0 = 1
(Sy)! = y! × Sy

The first clause tells us the value of the function for the argument y = 0; the
second clause tells us how to work out the value of the function for Sy once we
know its value for y (assuming we already know about multiplication). So by
applying and reapplying the second clause, we can successively calculate 1!, 2!,
3!, . . . . Hence our two-clause definition fixes the value of ‘y!’ for all numbers y.

For our second example – this time a two-place function – consider the ex-
ponential, standardly written in the form ‘xy’. This can be defined by a similar
pair of equations:

x0 = S0
xSy = (xy × x)

Again, the first clause gives the function’s value for a given value of x and y = 0,
and – keeping x fixed – the second clause gives the function’s value for the
argument Sy in terms of its value for y.

We’ve seen this two-clause pattern before, of course, in our formal Axioms for
the addition and multiplication functions. Informally, and now presented in the
style of everyday mathematics (leaving quantifiers to be understood), we have:

x+ 0 = x

x+ Sy = S(x+ y)

x× 0 = 0
x× Sy = (x× y) + x
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11 Primitive recursive functions

Three comments about our examples so far:

i. In each definition, the second clause fixes the value of a function for ar-
gument Sn by invoking the value of the same function for argument n.
This kind of procedure is standardly termed ‘recursive’ – or more pre-
cisely, ‘primitive recursive’. And our two-clause definitions are examples
of definition by primitive recursion.1

ii. Note, for example, that (Sn)! is defined as n! × Sn, so it is evaluated by
evaluating n! and Sn and then feeding the results of these computations
into the multiplication function. This involves, in a word, the composition
of functions, where evaluating a composite function involves taking the
output(s) from one or more functions, and treating these as inputs to
another function.

iii. Our series of examples illustrates two short chains of definitions by recur-
sion and functional composition. Working from the bottom up, addition
is defined in terms of the successor function; multiplication is then defined
in terms of successor and addition; then the factorial (or, on the other
chain, exponentiation) is defined in terms of multiplication and successor.

Here’s another little definitional chain:

P (0) = 0
P (Sx) = x

x −· 0 = x

x −· Sy = P (x −· y)

|x− y| = (x −· y) + (y −· x)
‘P ’ signifies the predecessor function (with zero being treated as its own prede-
cessor); ‘−· ’ signifies ‘subtraction with cut-off’, i.e. subtraction restricted to the
non-negative integers (so m −· n is zero if m < n). And |m − n| is of course
the absolute difference between m and n. This time, our third definition doesn’t
involve recursion, only a simple composition of functions.

These examples motivate the following initial gesture towards a definition:

A primitive recursive function is one that can be similarly charac-
terized using a chain of definitions by recursion and composition.2

1Strictly speaking, we need a proof of the claim that primitive recursive definitions really
do well-define functions: such a proof was first given by Richard Dedekind (1888, §126) – for
a modern version see, e.g., Moschovakis (2006, pp. 53–56).

There are also other, more complex, kinds of recursive definition – i.e. other ways of defining
a function’s value for a given argument in terms of its values for smaller arguments. Some of
these kinds of definition turn out in fact to be equivalent to definitions by a simple, primitive,
recursion: but others, such as the double recursion we meet in defining the Ackermann-Péter
function in Section 29.3, are not. For a classic treatment see Péter (1951).

2The basic idea is there in Dedekind and highlighted by Skolem (1923). But the mod-
ern terminology ‘primitive recursion’ seems to be due to Rósza Péter (1934); and ‘primitive
recursive function’ was first used in Stephen Kleene’s classic (1936a).
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That is a quick-and-dirty characterization, though it should be enough to get
across the basic idea. Still, we really need to pause to do better. In particular,
we need to nail down more carefully the ‘starter pack’ of functions that we are
allowed to take for granted in building a definitional chain.

11.2 Defining the p.r. functions more carefully

(a) Consider the recursive definition of the factorial again:

0! = 1
(Sy)! = y! × Sy

This is an example of the following general scheme for defining a one-place
function f :

f(0) = g

f(Sy) = h(y, f(y))

Here, g is just a number, while h is – crucially – a function we are assumed
already to know about prior to the definition of f . Maybe that’s because h is
an ‘initial’ function that we are allowed to take for granted like the successor
function; or perhaps it’s because we’ve already given recursion clauses to define
h; or perhaps h is a composite function constructed by plugging one known
function into another – as in the case of the factorial, where h(y, u) = u× Sy.

Likewise, with a bit of massaging, the recursive definitions of addition, mul-
tiplication and the exponential can all be treated as examples of the following
general scheme for defining two-place functions:

f(x, 0) = g(x)
f(x, Sy) = h(x, y, f(x, y))

where now g and h are both functions that we already know about. Three points
about this:

i. To get the definition of addition to fit this pattern, we have to take g(x)
to be the trivial identity function I(x) = x.

ii. To get the definition of multiplication to fit the pattern, g(x) has to be
treated as the even more trivial zero function Z(x) = 0.

iii. Again, to get the definition of addition to fit the pattern, we have to take
h(x, y, u) to be the function Su. As this illustrates, we must allow h not to
care what happens to some of its arguments. One neat way of doing this
is to help ourselves to some further trivial identity functions that serve to
select out particular arguments. Suppose, for example, we have the three-
place function I3

3 (x, y, u) = u to hand. Then, in the definition of addition,
we can put h(x, y, u) = SI3

3 (x, y, u), so h is defined by composition from
previously available functions.
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11 Primitive recursive functions

So with that motivation, we will now officially say that the full ‘starter pack’ of
initial functions contains, as well as the successor function S, the boring zero
function Z(x) = 0 and all the k-place identity functions, Iki (x1, x2, . . . , xk) = xi
for each k, and for each i, 1 ≤ i ≤ k.3

(b) We next want to generalize the idea of recursion from the case of one-place
and two-place functions. There’s a standard notational device that helps to put
things snappily: we write �x as short for the array of k variables x1, x2, . . . , xk.
Then we can generalize as follows:

Suppose that the following holds:

f(�x, 0) = g(�x)
f(�x, Sy) = h(�x, y, f(�x, y))

Then f is defined from g and h by primitive recursion.

This covers the case of one-place functions f(y) like the factorial if we allow �x
to be empty, in which case g(�x) is a ‘zero-place function’, i.e. a constant.

(c) Finally, we need to tidy up the idea of definition by composition. The basic
idea, to repeat, is that we form a composite function f by treating the output
value(s) of one or more given functions g, g′, g′′, . . . as the input argument(s) to
another function h. For example, we set f(x) = h(g(x)). Or, to take a slightly
more complex case, we could set f(x, y, z) = h(g(x, y), g′(y, z)).

There’s a number of equivalent ways of covering the manifold possibilities of
compounding multi-place functions. But one standard way is to define what we
might call one-at-a-time composition (where we just plug one function g into
another function h), thus:

If g(�y ) and h(�x, u, �z ) are functions – with �x and �z possibly empty
– then f is defined by composition by substituting g into h just if
f(�x, �y, �z ) = h(�x, g(�y), �z ).

We can then think of generalized composition – where we plug more than one
function into another function – as just iterated one-at-a-time composition. For
example, we can substitute the function g(x, y) into h(u, v) to define the function
h(g(x, y), v) by composition. Then we can substitute g′(y, z) into the defined
function h(g(x, y), v) to get the composite function h(g(x, y), g′(y, z)).

(d) To summarize. We informally defined the primitive recursive functions as
those that can be defined by a chain of definitions by recursion and composition.
Working backwards down a definitional chain, it must bottom out with mem-
bers of an initial ‘starter pack’ of trivially simple functions. At the outset, we
highlighted the successor function among the given simple functions. But we’ve

3The identity functions are also often called projection functions. They ‘project’ the vector
with components x1, x2, . . . , xk onto the i-th axis.
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An aside about extensionality

since noted that, to get our examples to fit our official account of definition by
primitive recursion, we need to acknowledge some other, even more trivial, ini-
tial functions. So putting everything together, let’s now offer this more formal
characterization of the p.r. functions (as we’ll henceforth call them for short):4

1. The initial functions S,Z, and Iki are p.r.;
2. if f can be defined from the p.r. functions g and h by com-

position, substituting g into h, then f is p.r.;
3. if f can be defined from the p.r. functions g and h by primitive

recursion, then f is p.r.;
4. nothing else is a p.r. function.

(We allow g in clauses (2) and (3) to be zero-place, i.e. be a constant.) Note,
by the way, that the initial functions are total functions of numbers, defined for
every numerical argument; also, primitive recursion and composition both build
total functions out of total functions. Which means that all p.r. functions are
total functions, defined for all natural number arguments.

11.3 An aside about extensionality

We’d better pause for a clarificatory aside, a general point about the identity
conditions for functions which is then applied to p.r. functions in particular.

If f and g are one-place total numerical functions, we count them as being
the same function iff, for each n, f(n) = g(n). More generally, we count f and
g as the same function iff they have the same extension, i.e. just so long as they
pair up arguments with values in the same way. In a word, we construe talk of
functions extensionally.5

Of course, one and the same function can be presented in different ways, e.g.
in ways that reflect different rules for calculating it. For a trivial example, the
function 2n+1 is the same function as (n+1)2−n2; but the two different modes
of presentation indicate different routines for evaluating the function.

Now, a p.r. function is by definition one that can be specified by a certain
sort of chain of definitions. And so the natural way of presenting such a function
will be by giving a definitional chain for it (which makes it transparent that
the function is p.r.). But the same function can be presented in other ways;
and some modes of presentation can completely disguise the fact that the given
function is recursive. For a dramatic example, consider the function

4Careful! Some books use ‘p.r.’ to abbreviate ‘partial recursive’, which is a quite different
idea. Our abbreviatory usage is, however, the more common one.

5Compare Section 4.2 where we said that P and Q count as the same property iff they
have the same extension. If you accept the thesis of Frege (1891), then we indeed have to treat
properties and functions in the same way. For Frege urges us to regard properties as just a
special kind of function – so a numerical property, in particular, is a function that maps a
number to the truth-value true (if the number has the property) or false (otherwise). Which
comes very close to identifying a property with its characteristic function – see Section 11.6.
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11 Primitive recursive functions

fermat(n) = n if there are solutions to xn+3 + yn+3 = zn+3 (with
x, y, z positive integers);

fermat(n) = 0 otherwise.

This definition certainly doesn’t reveal whether the function is primitive re-
cursive. But we know now – thanks to Andrew Wiles’s proof of Fermat’s Last
Theorem – that fermat is in fact p.r., for it is none other than (i.e. has the same
extension as) the trivially p.r. function Z(n) = 0.

Note too that other modes of presentation may make it clear that a function is
p.r., but still not tell us which p.r. function is in question. Consider, for example,
the function defined by

julius(n) = n if Julius Caesar ate grapes on his third birthday;
julius(n) = 0 otherwise.

There is no way (algorithmic or otherwise) of settling what Caesar ate on his
third birthday! But despite that, the function julius(n) is plainly primitive re-
cursive. Why so? Well, either it is the trivial identity function I(n) = n, or it is
the zero function Z(n) = 0. So we know that julius(n) must be a p.r. function,
though we can’t determine which function it is from our style of definition.

The salient point is this: primitive recursiveness is a feature of a function itself,
irrespective of how it happens to be presented to us.

11.4 The p.r. functions are computable

To repeat, a p.r. function f is one that can be specified by a chain of definitions
by recursion and composition, leading back ultimately to initial functions. But
(a) it is trivial that the initial functions S,Z, and Iki are effectively computable
by a simple algorithm. (b) The composition of two computable functions g and
h is computable (you just feed the output from whatever algorithmic routine
evaluates g as input into the routine that evaluates h). And (c) – the key obser-
vation – if g and h are algorithmically computable, and f is defined by primitive
recursion from g and h, then f is computable too. So as we build up longer and
longer chains of definitions for p.r. functions, we always stay within the class of
effectively computable functions.

To illustrate (c), return once more to our example of the factorial. Here is its
p.r. definition again:

0! = 1
(Sy)! = y! × Sy

The first clause gives the value of the function for the argument 0; then – as
we said – you can repeatedly use the second recursion clause to calculate the
function’s value for S0, then for SS0, SSS0, etc. So the definition encapsulates
an algorithm for calculating the function’s value for any number, and corresponds
exactly to a certain simple kind of computer routine.
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Thus compare our definition with the following schematic program:

1. fact := 1
2. For y = 0 to n− 1
3. fact := (fact × Sy)
4. Loop

Here fact is a memory register that we initially prime with the value of 0!. Then
the program enters a loop: and the crucial thing about executing a ‘for’ loop is
that the total number of iterations to be run through is fixed in advance. The
program numbers the loops from 0, and on loop number k the program replaces
the value in the register with Sk times the previous value (we’ll assume the com-
puter already knows how to find the successor of k and do that multiplication).
When the program exits the loop after a total of n iterations, the value in the
register fact will be n!.

More generally, for any one-place function f defined by recursion in terms of
g and the computable function h, the same program structure always does the
trick for calculating f(n). Thus compare

f(0) = g

f(Sy) = h(y, f(y))

with the corresponding program

1. func := g

2. For y = 0 to n− 1
3. func := h(y, func)
4. Loop

So long as h is already computable, the value of f(n) will be computable using
this ‘for’ loop that terminates with the required value in the register func.

Similarly, of course, for many-place functions. For example, the value of the
two-place function defined by

f(x, 0) = g(x)
f(x, Sy) = h(x, y, f(x, y))

is calculated by the algorithmic program

1. func := g(m)
2. For y = 0 to n− 1
3. func := h(m, y, func)
4. Loop

which gives the value for f(m,n) so long as g and h are computable.
Now, our mini-program for the factorial calls the multiplication function which

can itself be computed by a similar ‘for’ loop (invoking addition). And addition
can in turn be computed by another ‘for’ loop (invoking the successor). So re-
flecting the downward chain of recursive definitions
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11 Primitive recursive functions

factorial ⇒ multiplication ⇒ addition ⇒ successor

there’s a program for the factorial containing nested ‘for’ loops, which ultimately
calls the primitive operation of incrementing the contents of a register by one (or
other operations like setting a register to zero, corresponding to the zero function,
or copying the contents of a register, corresponding to an identity function).

The point obviously generalizes: primitive recursive functions are effectively
computable by a series of (possibly nested) ‘for’ loops.

The converse is also true. Take a ‘for’ loop which computes the value of a
function f for given arguments, a loop which calls on two prior routines, one
which computes a function g (used to set the value of f with some key argument
set to zero), the other which computes a function h (which is used on each loop
to fix the next value of f as that argument is incremented). This plainly corre-
sponds to a definition by recursion of f in terms of g and h. And generalizing,
if a function can be computed by a program using just ‘for’ loops as its main
programming structure – with the program’s ‘built in’ functions all being p.r. –
then the newly defined function will also be primitive recursive.

This gives us a quick-and-dirty way of convincing ourselves that a new function
is p.r.: sketch out a routine for computing it and check that it can all be done
with a succession of (possibly nested) ‘for’ loops which only invoke already known
p.r. functions: then the new function will be primitive recursive.6

11.5 Not all computable numerical functions are p.r.

We have seen that any p.r. function is mechanically computable. But not all
effectively computable numerical functions are primitive recursive. In this sec-
tion, we first make the claim that there are computable-but-not-p.r. numerical
functions look plausible. Then we’ll cook up an example.7

First, then, some plausibility considerations. We’ve just seen that the values
of a given primitive recursive function can be computed by a program involving

6We can put all that a bit more carefully. Imagine a simple programming language loop.
A particular loop program operates on a finite set of registers. At the most basic level, the
language has instructions for setting the contents of a register to zero, copying contents from
one register to another, and incrementing the contents of a register by one. And the only
important programming structure is the ‘for’ loop. Such a loop involves setting a register
with some initial contents (at the zero-th stage of the loop) and then iterating a loop-defined
process n times (where on each loop, the process is applied to the result of its own previous
application), which has just the effect of a definition by recursion. Such loops can be nested.
And sets of nested loop commands can be concatenated so that e.g. a loop for evaluating
a function g is followed by a loop for evaluating h: concatenation evidently corresponds to
composition of functions. Even without going into any more details, it is very easy to see that
every loop program will define a p.r. function, and every p.r. function is defined by a loop
program. For a proper specification of loop and proofs see Tourlakis (2002); the idea of such
programs goes back to Meyer and Ritchie (1967).

7Our cooked-up example, however, isn’t one that might be encountered in ordinary math-
ematical practice: it requires a bit of ingenuity to come up with a ‘natural’ example – see
Section 29.3 where we introduce so-called Ackermann functions.
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‘for’ loops as its main programming structure. Each loop goes through a specified
number of iterations. However, back in Section 2.2 we allowed procedures to
count as computational even when they don’t have nice upper bounds on the
number of steps involved. In other words, we allowed computations to involve
open-ended searches, with no prior bound on the length of search. We made
essential use of this permission in Section 3.6, when we showed that negation-
complete theories are decidable – for we allowed the process ‘enumerate the
theorems and wait to see which of ϕ or ¬ϕ turns up’ to count as a computational
decision procedure.

Standard computer languages of course have programming structures which
implement just this kind of unbounded search. Because as well as ‘for’ loops,
they allow ‘do until’ loops (or equivalently, ‘do while’ loops). In other words,
they allow some process to be iterated until a given condition is satisfied – where
no prior limit is put on the the number of iterations to be executed.

If we count what are presented as unbounded searches as computations, then it
looks very plausible that not everything computable will be primitive recursive.

True, that is as yet only a plausibility consideration. Our remarks so far leave
open the possibility that computations can always somehow be turned into pro-
cedures using ‘for’ loops with a bounded limit on the number of steps. But in
fact we can now show that isn’t the case:

Theorem 11.1 There are effectively computable numerical func-
tions which aren’t primitive recursive.

Proof sketch The set of p.r. functions is effectively enumerable. That is to say,
there is an effective way of numbering off functions f0, f1, f2, . . . , such that each
of the fi is p.r., and each p.r. function appears somewhere on the list.

This holds because, by definition, every p.r. function has a ‘recipe’ in which it
is defined by recursion or composition from other functions which are defined by
recursion or composition from other functions which are defined . . . ultimately
in terms of some primitive starter functions. So choose some standard formal
specification language for representing these recipes. Then we can effectively

0 1 2 3 . . .

f0 f0(0) f0(1) f0(2) f0(3) . . .

f1 f1(0) f1(1) f1(2) f1(3) . . .

f2 f2(0) f2(1) f2(2) f2(3) . . .

f3 f3(0) f3(1) f3(2) f3(3) . . .

. . . . . . . . . . . . . . . ↘

generate ‘in alphabetical order’ all possible strings of symbols from this language;
and as we go along, we select the strings that obey the rules for being a recipe for
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a p.r. function (that’s a mechanical procedure). That generates a list of recipes
which effectively enumerates the p.r. functions, repetitions allowed.

Now consider our table. Down the table we list off the p.r. functions f0, f1,
f2, . . . . An individual row then gives the values of fn for each argument. Let’s
define the corresponding diagonal function, by putting δ(n) = fn(n)+1 (cf. Sec-
tion 2.3). To compute δ(n), we just run our effective enumeration of the recipes
for p.r. functions until we get to the recipe for fn. We follow the instructions in
that recipe to evaluate that function for the argument n. We then add one. Each
step is entirely mechanical. So our diagonal function is effectively computable,
using a step-by-step algorithmic procedure.

By construction, however, the function δ can’t be primitive recursive. For
suppose otherwise. Then δ must appear somewhere in the enumeration of p.r.
functions, i.e. be the function fd for some index number d. But now ask what the
value of δ(d) is. By hypothesis, the function δ is none other than the function
fd, so δ(d) = fd(d). But by the initial definition of the diagonal function, δ(d) =
fd(d) + 1. Contradiction.

So we have ‘diagonalized out’ of the class of p.r. functions to get a new function
δ which is effectively computable but not primitive recursive. �

‘But hold on! Why is the diagonal function not a p.r. function?’ Well, consider
evaluating d(n) for increasing values of n. For each new argument, we will have
to evaluate a different function fn for that argument (and then add 1). We have
no reason to expect there will be a nice pattern in the successive computations
of all the different functions fn which enables them to be wrapped up into a
single p.r. definition. And our diagonal argument in effect shows that this can’t
be done.

11.6 Defining p.r. properties and relations

We have defined the class of p.r. functions. Next, we extend the scope of the idea
of primitive recursiveness and introduce the ideas of p.r. (numerical) properties
and relations.

Now, quite generally, we can tie talk of functions and talk of properties and
relations together by using the notion of a characteristic function. Here’s a def-
inition.

The characteristic function of the numerical property P is the one-
place function cP such that if m is P , then cP (m) = 0, and if m
isn’t P , then cP (m) = 1.

The characteristic function of the two-place numerical relation R is
the two-place function cR such that if m is R to n, then cR(m,n) =
0, and if m isn’t R to n, then cR(m,n) = 1.

And similarly for many-place relations. The choice of values for the characteristic
function is, of course, entirely arbitrary: any pair of distinct numbers would do.

92



Building more p.r. functions and relations

Our choice is supposed to be reminiscent of the familiar use of 0 and 1, one way
round or the other, to stand in for true and false. And our (less usual) selection
of 0 rather than 1 for true is merely for later convenience.

The numerical property P partitions the numbers into two sets, the set of num-
bers that have the property and the set of numbers that don’t. Its corresponding
characteristic function cP also partitions the numbers into two sets, the set of
numbers the function maps to the value 0, and the set of numbers the function
maps to the value 1. And these are the same partition. So in a good sense, P
and its characteristic function cP contain exactly the same information about a
partition of the numbers: hence we can move between talk of a property and talk
of its characteristic function without loss of information. Similarly, of course, for
relations (which partition pairs of numbers, etc.). And in what follows, we’ll
frequently use this link between properties and relations and their characteristic
functions in order to carry over ideas defined for functions and apply them to
properties/relations.

For example:

1. We can officially say that a numerical property is effectively decidable – i.e.
a suitably programmed computer can decide whether the property obtains
– just if its characteristic function is (total and) effectively computable.8

And, without further ado, we now extend the idea of primitive recursiveness to
cover properties and relations:

2. A p.r. property is a property with a p.r. characteristic function, and like-
wise a p.r. relation is a relation with a p.r. characteristic function.

Given that any p.r. function is effectively computable, p.r. properties and rela-
tions are among the effectively decidable ones.

11.7 Building more p.r. functions and relations

(a) The last two sections of this chapter give some general principles for build-
ing new p.r. functions and relations out of old ones, and then give examples of
some of these principles at work.

These are more ‘trivial but tiresome’ details which you could in fact cheerfully
skip, since we only pick up their details in other sections that you can also skip.
On the other hand, in proving Gödel’s Theorems, we will need to claim that a
variety of key functions and relations are p.r.; and our claims will seem more
evidently plausible if you have already worked through some simpler cases. It is
therefore probably worth skimming through these sections: but if you have no
taste for this sort of detail, don’t worry. Don’t get bogged down!

8Compare Section 2.2. The characteristic function needs to be total because it needs to
deliver a verdict about each number as to whether it has the property in question.
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(b) A couple of definitions before the real business gets under way. First, we
introduce the minimization operator ‘μx’, to be read: ‘the least x such that . . . ’.
Much later, in Section 29.1, we’ll be considering the general use of this operator:
but here we will be concerned with bounded minimization. So we write

f(n) = (μx ≤ n)P (x)

when f takes the number n as argument and returns as value the least number
x ≤ n such that P (x) if such an x exists, or returns n otherwise.

Second, suppose that the function f is defined in terms of k + 1 other p.r.
functions fi as follows

f(n) = f0(n) if C0(n)
f(n) = f1(n) if C1(n)
...

f(n) = fk(n) if Ck(n)
f(n) = a otherwise

where the conditions Ci are mutually exclusive and express p.r. properties (i.e.
have p.r. characteristic functions ci), and a is a constant. Then f is said to be
defined by cases from other p.r. functions.

(c) Now we can state five useful general facts about function/relation building:

A. If f(�x) is an n-place p.r. function, then the corresponding relation ex-
pressed by f(�x) = y is an n+ 1-place p.r. relation.

B. Any truth-functional combination of p.r. properties and relations is p.r.

C. Any property or relation defined from a p.r. property or relation by
bounded quantifications is also p.r.

D. If P is a p.r. property, then the function f(n) = (μx ≤ n)P (x) is p.r. And
generalizing, suppose that g(n) is a p.r. function, and P is a p.r. property;
then f ′(n) = (μx ≤ g(n))P (x) is also p.r.

E. Any function defined by cases from other p.r. functions is also p.r.

In each case, the claim amounts to a pretty obvious one about what can be done
using ‘for’ loops. For example, claim (A) comes to this (applied to one-place
functions): if you can evaluate f(m) by an algorithmic routine using ‘for’ loops,
then you can check whether f(m) = n by an algorithmic routine using ‘for’
loops. And claim (C) comes to this (applied to one-place properties): if you can
check whether P (m) using ‘for’ loops, then you can check whether this holds for
some or for all m ≤ n using ‘for’ loops. The other claims should all look similarly
evident, if you think in terms of what can be computed using ‘for’ loops, without
open-ended searches.
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(d) Still, we’d better give official proofs for (A) to (E) for enthusiasts. Note, by
the way, that we are doing informal everyday mathematics here – i.e. we aren’t
producing proofs in a formal system, though for brevity’s sake we borrow some
formal symbols like the connectives and bounded quantifiers.

A preliminary result Put sg(n) = 0 for n = 0, and sg(n) = 1 otherwise. Then
sg is primitive recursive. For we just note that

sg(0) = 0
sg(Sy) = SZ(sg(y))

where SZ(u) is p.r. by composition, and SZ(sg(y)) = S0 = 1. Also, let sg(n) = 1
for n = 0, and sg(n) = 0 otherwise. Then sg is similarly shown to be p.r. �

Proof for (A) We illustrate with the case where f is a one-place function. The
characteristic function of the relation expressed by f(x) = y – i.e. the function
c(x, y) whose value is 0 when f(x) = y and is 1 otherwise – is given by

c(x, y) = sg(|f(x) − y|).

The right-hand side is a composition of p.r. functions, so c is p.r. �

Proof for (B) Suppose p(x) is the characteristic function of the property P . It
follows that sg(p(x)) is the characteristic function of the property not-P, since
sg simply flips the two values 0 and 1. But by simple composition of functions,
sg(p(x)) is p.r. if p(x) is. Hence if P is a p.r. property, so is not-P .

Similarly, suppose that p(x) and q(x) are the characteristic functions of the
properties P and Q respectively. p(n) × q(n) takes the value 0 so long as either
n is P or n is Q, and takes the value 1 otherwise. So p(x) × q(x) is the char-
acteristic function of the disjunctive property of being either P or Q; and by
composition, p(x)× q(x) is p.r. if both p(x) and q(x) are. Hence the disjunction
of p.r. properties is another p.r. property.

But any truth-functional combination of properties is definable in terms of
negation and disjunction. Which completes the proof. �

Proof for (C) Just reflect that checking to see whether e.g. (∃x ≤ n)Px involves
using a ‘for’ loop to check through the cases from 0 to n to see whether any
satisfy Px. Likewise, if f is p.r., checking to see whether (∃x ≤ f(n))Px involves
calculating f(n) and then using a ‘for’ loop to check through the cases from 0
to f(n) to see whether Px holds. It follows that, if f is p.r., then so are both of

K(n) =def (∃x ≤ n)Px
K ′(n) =def (∃x ≤ f(n))Px.

More carefully, suppose that p(x) is P ’s p.r. characteristic function. And by
composition define the p.r. function h(u, v) = (p(Su) × v). Put

k(0) = p(0)
k(Sy) = h(y, k(y))
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11 Primitive recursive functions

so we have

k(n) = p(n) × p(n− 1) × . . .× p(1) × p(0).

Then k is K’s characteristic function – i.e. the function such that k(n) = 1 until
we get to an n such that n is P , when k(n) goes to zero, and thereafter stays
zero. Since k is p.r., K is p.r. by definition.

And to get the generalized result, we just note that K ′(n) = K(f(n)) so is p.r.
by composition. We also have similar results for bounded universal quantifiers;
we can apply the bounded quantifiers to relations as well as monadic properties;
and in the bounded quantifiers we could equally use ‘<’ rather than ‘≤’. �

Proof for (D) Again suppose p is the characteristic function of P , and define k
as in the last proof. Then consider the function defined by

f(0) = 0
f(n) = k(n− 1) + k(n− 2) + . . .+ k(1) + k(0), for n > 0.

Now, k(j) = 1 for each j that isn’t P , and k(j) goes to zero and stays zero as
soon as soon as we hit a j that is P . So f(n) = (μx ≤ n)P (x), i.e. f(n) returns
either the least number that is P , or n, whichever is smaller. So we just need
to show that f so defined is primitive recursive. Well, use composition to define
the p.r. function h′(u, v) = (k(u) + v), and then put

f(0) = 0
f(Sy) = h′(y, f(y)).

Which proves the first, simpler, part of Fact D. For the generalization, just note
that by the same argument we have f(g(n)) = (μx < g(n))P (x) is p.r. if g is, so
we can put f ′(n) = f(g(n)) and we are done. �

Proof for (E) Just note that

f(n) = sg(c0(n))f0(n) + sg(c1(n))f1(n) + . . .+ sg(ck(n))fk(n) +
c0(n)c1(n) . . . ck(n)a

since sg(ci(n)) = 1 when Ci(n) and is otherwise zero, and the product of all the
ci(n) is 1 just in case none of Ci(n) are true, and is zero otherwise. �

11.8 Further examples

(a) With our shiny new building tools to hand, we can finish the chapter by
giving a few more examples of p.r. functions, properties and relations.

R1. The relations m = n, m < n and m ≤ n are primitive recursive.

R2. The relation m|n that holds when m is a factor of n is primitive recursive.
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R3. Let Prime(n) be true just when n is a prime number. Then Prime is a
p.r. property.9

R4. List the primes as π0, π1, π2, . . .. Then the function π(n) whose value is
πn is p.r.

R5. Let exp(n, i) be the – possibly zero – exponent of the prime number πi in
the factorization of n. Then exp is a p.r. function.

R6. Let len(0) = len(1) = 0; and when n > 1, let len(n) be the ‘length’ of n’s
factorization, i.e. the number of distinct prime factors of n. Then len is
again a p.r. function.

You might well want to pause here to convince yourself that all these are indeed
p.r. by the quick-and-dirty method of sketching out how you compute the rel-
evant (characteristic) functions without doing any unbounded searches, just by
using ‘for’ loops.

(b) We’ll now show that those examples are, as claimed, all primitive recursive.
However let’s stress again that – like the arguments in Section 9.9 – the mini-
proofs which follow don’t involve anything deep or illuminating. Do skip if you
wish!

Proof for (R1) The characteristic function of m = n is sg(|m − n|), where
|m− n| is the absolute difference function we showed to be p.r. in Section 11.1.
The characteristic functions ofm < n andm ≤ n are sg(Sn −· m) and sg(n −· m)
respectively. These are all compositions of p.r. functions, and hence themselves
primitive recursive. �

Proof for (R2) We have

m|n↔ (∃y ≤ n)(0 < y ∧ 0 < m ∧ m× y = n).

The relation expressed by the subformula after the quantifier is a truth-functional
combination of p.r. relations (multiplication is p.r., so the last conjunct is p.r.
by Fact A of the last section). So that relation is p.r. by Fact B. Hence m|n is a
p.r. relation by Fact C. �

Proof for (R3) The property of being Prime is p.r. because

Prime(n) ↔ n �= 1 ∧ (∀u ≤ n)(∀v ≤ n)(u× v = n
→ (u = 1∨ v = 1))

and the r.h.s. is built up from p.r. components by truth-functional combination
and restricted quantifiers. (Here we rely on the trivial fact that the factors of n
cannot be greater than n.) �

Proof for (R4) The function πn, whose value is the n-th prime (counting from
zero), is p.r. – for consider the definition

9Remember the useful convention: capital letters for the names of predicates and relations,
small letters for the names of functions.
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11 Primitive recursive functions

π0 = 2
πSn = (μx ≤ n! + 1)(πn < x ∧ Prime(x))

where we rely on the familiar fact that the next prime after n is no greater than
n! + 1 and use the generalized version of Fact D. �

Proof for (R5) By the Fundamental Theorem of Arithmetic, which says that
numbers have a unique factorization into primes, this function is well-defined.
And no exponent in the prime factorization of n is larger than n itself, so

exp(n, i) = (μx ≤ n){(πxi |n) ∧ ¬(πx+1
i |n)}.

That is to say, the desired exponent of πi is the number x such that πxi divides n
but πx+1

i doesn’t: note that exp(n, k) = 0 when πk isn’t a factor of n. Again, our
definition of exp is built out of p.r. components by operations that yield another
p.r. function. �

Proof for (R6) (Prime(m) ∧m|n) holds when m is a prime factor of n. This
is a p.r. relation (being a conjunction of p.r. properties/relations). So it has a
p.r. characteristic function which we’ll abbreviate pf (m,n). Now consider the
function

p(m,n) = sg(pf (m,n)).

Then p(m,n) = 1 just when m is a prime factor of n and is zero otherwise. So

len(n) = p(0, n) + p(1, n) + . . .+ p(n− 1, n) + p(n, n).

So to give a p.r. definition of len, we can first put

l(x, 0) = p(0, x)
l(x, Sy) = (p(Sy, x) + l(x, y))

and then finally put len(n) = l(n, n). �

Well, that’s enough to be going on with. And all good clean fun if you like
that kind of thing. But as I said before, don’t worry if you don’t! For having
shown that these kinds of results can be proved, you can now very cheerfully
forget the tiresome details of how to do it.

98



12 Capturing p.r. functions

At the end of this short chapter, we introduce the pivotal idea of a p.r. adequate
theory of arithmetic, i.e. one that can appropriately capture all p.r. functions,
properties and relations. Then, in the next chapter, we will show that Q and
hence PA are p.r. adequate.

However, we haven’t yet explained the idea of capturing a function as opposed
to capturing a property or relation. So we must start with that.

12.1 Capturing a function

Suppose f is a one-place numerical function. Now define the relation Rf by
saying that m has the relation Rf to n just in case f(m) = n. We’ll say Rf
is f ’s corresponding relation. Functions and their corresponding relations match
up pairs of things in exactly the same way: f and Rf have the same extension,
namely the set of ordered pairs 〈m, f(m)〉.

And just as the characteristic function trick (Section 11.6) allows us to take
ideas defined for functions and apply them to properties and relations, this very
simple tie between functions and their corresponding relations allows us to carry
over ideas defined for relations and apply them to functions (total functions, as
always in this book.)

For a start, consider how we can use this tie to define the idea of expressing a
function using an open wff. Here is our earlier definition of the idea of expressing
a relation, now applied to Rf :

A two-place numerical relation Rf is expressed by ϕ(x, y) in an
(interpreted) arithmetical language L just if, for any m,n,

if m has the relation Rf to n, then ϕ(m, n) is true,
if m doesn’t have relation Rf to n, then ¬ϕ(m, n) is true.

Moving from the relation Rf to the function f, this naturally becomes:

A one-place numerical function f is expressed by ϕ(x, y) in an
(interpreted) arithmetical language L just if, for any m,n,

if f(m) = n, then ϕ(m, n) is true,
if f(m) �= n, then ¬ϕ(m, n) is true.

The generalization to many-place functions is immediate.
Similarly, we can extend the idea of capturing from relations to functions.

Here is the definition again for a two-place relation Rf :
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A two-place numerical relation Rf is captured by ϕ(x, y) in theory
T just if, for any m,n,

if m has the relation Rf to n, then T � ϕ(m, n),
if m does not have the relation Rf to n, then T � ¬ϕ(m, n).

Now let’s say that a one-place total function f is captured by ϕ(x, y) in theory
T so long as that wff captures the corresponding relation Rf . Which comes to
this, our first key definition:

A. A one-place numerical function f is captured by ϕ(x, y) in theory
T just if, for any m,n,

if f(m) = n, then T � ϕ(m, n),
if f(m) �= n, then T � ¬ϕ(m, n).

Again, the generalization to many-place functions is immediate.

12.2 Two more ways of capturing a function

(a) So far, so good. And that first simple definition could serve us perfectly
well. However, two variant notions of capturing functions are also found in the
literature (and indeed, are convenient in various ways). We’d better explain these
notions too.

Our definition (A) is rather weak. For it tells us that T captures a function f
if there is some ϕ which captures the relation that holds between m and n when
f(m) = n: but it doesn’t require that ϕ – so to speak – captures the function
as a function, i.e. it doesn’t require that T can prove that the capturing wff ϕ
relates a given number m to exactly one value n.

Let’s now impose this extra requirement, and say:

B. The one-place function f is captured as a function by ϕ(x, y) in
theory T just if

(i) for every m, T � ∃!yϕ(m, y),
and for any m,n,

(ii) if f(m) = n then T � ϕ(m, n),
(iii) if f(m) �= n, then T � ¬ϕ(m, n).

Here ‘∃!y’ is the standard uniqueness quantifier, to be read ‘there is exactly
one y such that . . . ’.1 So the new clause (i), as we want, insists that the rela-
tion expressed by ϕ can be proved to correlate any specified number to some
unique value. Once again, the generalization of (B) to many-place functions is
immediate.

Note however that, even for very modest theories like Q, conditions (i) and
(ii) in fact imply condition (iii).

1Let ‘∃!’ be defined by taking ‘∃!uϕ(u)’ as short for ‘∃u(ϕ(u) ∧ ∀v(ϕ(v) → v = u))’. We
won’t fuss about how to handle any potential clash of variables.
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Proof Assume (i) and (ii) hold. And suppose f(m) �= n because f(m) = k,
where n �= k. By (ii), T � ϕ(m, k). Hence, by (i), T � n �= k → ¬ϕ(m, n). But
as we saw in Section 8.1, even when T is mere Baby Arithmetic, if n �= k, then
T � n �= k, and hence T � ¬ϕ(m, n). Which shows that, if T contains BA, (i) and
(ii) imply (iii): if f(m) �= n then T � ¬ϕ(m, n). �

Therefore, to confirm that ϕ captures f as a function in Q, for example, we
only need to check that conditions (i) and (ii) hold. That is why capturing-as-a-
function is very often defined just in terms of (i) and (ii) holding.

And to link up with another common variant definition in the literature,
assume that T contains Baby Arithmetic and is consistent. Then the definition
in terms of conditions (i) and (ii) is easily seen to be equivalent to this:

The one-place function f is captured as a function by ϕ(x, y) in
theory T just if, for any m,n,

if f(m) = n, then T � ∀y(ϕ(m, y) ↔ y = n).

Likewise, of course, for many-place functions.

(b) Suppose that ϕ(x, y) captures the function f(x) = y in theory T . It would
be convenient, if only for ease of notation, to expand T ’s language L to L′ by
adding a corresponding function symbol ‘f’, and to expand T to T ′ by adding a
new definitional axiom

∀x∀y{f(x) = y ↔ ϕ(x, y)}.

Then we can say that in T ′ the function symbol ‘f’ captures f (shorthand for
saying that f(x) = y captures f).

However, augmenting T by what is intended to be a mere notational conve-
nience shouldn’t make any difference to which wffs of the original, unextended,
language L are provable. In a probably familiar jargon, this extension of T to
T ′ needs to be a conservative one. And the condition for it to be conservative to
add the function symbol ‘f’ with its definitional axiom is that T can prove that ϕ
is a functional relation, i.e. can prove ∀x∃!yϕ(x, y). That’s an entirely standard
result about first-order theories and we won’t pause to prove it here.2 But note
that this is a slightly stronger requirement than is given in our idea of ϕ’s cap-
turing f as a function – a weak theory like Q might be able to prove ∃!yϕ(m, y)
for each number m but be unable to prove the generalization ∀x∃!yϕ(x, y).

So we want one more definition. Let’s say that

C. The one-place function f is fully captured as a function by ϕ(x, y)
in theory T just if

(i) T � ∀x∃!yϕ(x, y),
and for any m,n,

(ii) if f(m) = n then T � ϕ(m, n),
(iii) if f(m) �= n, then T � ¬ϕ(m, n).

2See e.g. Enderton (2002, Theorem 27A, p. 165) or Mendelson (1997, pp. 103–104).
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The generalization to many-place functions is obvious. In summary, if f is fully
captured as a function in T , then T either already has a function symbol that
captures f, or we can conservatively extend T so that it has one.3

12.3 Relating our definitions

That’s enough definitions to be going on with! Trivially, if (C) ϕ fully captures
f as a function in T , then (B) ϕ captures f as a function. And if (B) ϕ captures
f as a function in T , then (A) ϕ captures f in the weak sense.

The converse implications, however, do not strictly obtain. Still, we have re-
sults which are almost as good. In particular – and this is the important point
for our purposes – if (A) ϕ captures f in T in the weak sense, then (B) there is
a closely related wff ϕ̃ which does capture f as a function in T , so long as T is
at least as strong as Q.

For suppose that ϕ captures the one-place function f in the theory T which
extends Q. And now consider the wff ϕ̃ defined as follows:

ϕ̃(x, y) =def ϕ(x, y) ∧ (∀z ≤ y)(ϕ(x, z) → z = y).

Then, for a given m, ϕ̃(m, x) is satisfied by a unique n, i.e. the smallest n such
that ϕ(m, n) is true. And we can show that this wff not only also captures f but
captures it as a function. Why? Essentially because, as we know from Section 9.4,
Q (and so any theory T which extends Q) is good at proving results involving
bounded quantifiers.

Perhaps we really ought to confirm that claim, so here is the straightforward
proof (less enthusiastic readers can skip!):

Proof Assume we are dealing with a theory T which proves everything Q proves.
And assume too that ϕ captures in T the one-place function f . We need to show

i. for every m, T � ∃!y ϕ̃(m, y),
ii. if f(m) = n then T � ϕ̃(m, n).

So suppose f(m) = n. Since the value of f(m) is unique, that means f(m) �= k
for all k < n. Because ϕ captures f in T , that means (a) T � ϕ(m, n), and (b) for

3We have laboured over the A/B/C definitions partly in order to expedite comparisons
with discussions elsewhere. But terminology in the literature varies widely. For the pair of
ideas ‘capturing a function’ and ‘capturing a function as a function’ we find e.g. ‘weakly
defines’/‘strongly defines’ (Smullyan, 1992, p. 99), ‘defines’/‘represents’ (Boolos et al., 2002,
p. 207), ‘represents’/‘functionally represents’ (Cooper, 2004, pp. 56, 59). While those who
only highlight the idea of capturing-as-a-function sometimes use e.g. ‘defines’ for that notion
(Lindström, 2003, p. 9), though plain ‘represents’ seems most common (Mendelson, 1997, p.
171; Epstein and Carnielli, 2000, p. 192). Finally, when e.g. Hájek and Pudlák (1993, p. 47)
or Buss (1998, p. 87) talk of a formula defining a function they mean what we are calling fully
capturing a function.

So again the moral is plain: when reading other discussions, carefully check the local defi-
nitions of the jargon!
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k < n, T � ¬ϕ(m, k). But (a) and (b) imply (c): for k ≤ n, T � ϕ(m, k) → k = n.
And (c) and (O4) of Section 9.4 entail (d) T � (∀x ≤ n)(ϕ(m, x) → x = n).
Putting (a) and (d) together, that means T � ϕ̃(m, n), which establishes (ii).

Since T � ϕ̃(m, n), to establish (i) it is now enough to show that, for arbi-
trary a, T � ϕ̃(m, a) → a = n. So, arguing in T , suppose ϕ̃(m, a), i.e. ϕ(m, a) ∧
(∀z ≤ a)(ϕ(m, z) → z = a). By (O8) of Section 9.4, a ≤ n ∨ n ≤ a. If the first, (d)
yields ϕ(m, a) → a = n, and so a = n. If the second, then ϕ(m, n) → n = a, so
n = a. So either way a = n. Discharge the supposition, and we’re done. �

The result generalizes, of course, to the case where we are dealing with a wff
ϕ(�x, y) which captures a many-place function f(�x). Just define the corresponding
ϕ̃(�x, y) in the analogous way (replacing ‘x’ by the string of variables ‘�x ’), and ϕ̃
will capture f as a function.

In sum, once we are dealing with arithmetics as strong as Q, if a function is
capturable at all it is capturable-as-a-function. Which is, of course, why many
treatments only bother to introduce the second notion.

We can add that if the theory has a smidgin of induction, then if a function
is capturable at all it is fully capturable-as-a-function. But we won’t prove that
further result, but leave it as a testing exercise.

12.4 The idea of p.r. adequacy

(a) The value of a p.r. function for any given argument(s) is computable in
accordance with a step-by-step algorithm. But, as we’ve said before, the whole
aim of formalization is to systematize and regiment what we can already do. And
if we can informally calculate the value of a p.r. function for a given input in an
entirely mechanical way – ultimately by just repeating lots of school-arithmetic
operations – then we will surely want to aim for a formal arithmetic which is
able to track these informal calculations.

So it seems that we will want a formal arithmetic worth its keep to be able to
express any p.r. function and prove, case-by-case, the correct results about the
function’s values for specific arguments. That motivates a trio of definitions:

A theory T is weakly p.r. adequate (p.r. adequate; strongly p.r.
adequate) if, for every p.r. function f , there is a corresponding ϕ
in T that captures it (respectively: captures it as a function; fully
captures it as a function).4

(b) Trivially, if T is p.r. adequate in any of those senses, then it also captures
every p.r. property and relation. For example, suppose that P is a p.r. property,

4Compare the informal idea of being ‘sufficiently strong’ that we met in Section 6.1. The
informal idea was about capturing any decidable property, i.e. any property with a computable
characteristic function: while being p.r. adequate is a matter of capturing primitive recursive
functions. And we know that there are computable functions which aren’t p.r. So, at least on
the face of it, the informal idea is stronger.
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i.e. a property with a p.r. characteristic function cP . Since T is p.r. adequate, it
captures cP , which means in particular that there is a wff ϕ(x, y) such that

if cP (m) = 0, then T � ϕ(m, 0)
if cP (m) �= 0, then T � ¬ϕ(m, 0)

But, by definition, cP (m) = 0 iff Pm, so this amounts to saying that P is
captured by ϕ(x, 0).

(c) Now, there’s an easy, brute-force, way of constructing a weakly p.r. ade-
quate theory.

Start from BA, our theory of Baby Arithmetic (see Section 8.1). This, recall,
is a quantifier free theory which has schemata which reflect the p.r. definitions
of addition and multiplication. As we showed, we can use instances of those
schemata to prove any true equation or inequation using successor, addition
and multiplication. Hence BA is adequate for those three functions in the sense
that it can evaluate them correctly case-by-case for specific arguments – so, for
example, ζ + ξ = η captures addition in BA.5

Next suppose we start expanding BA by adding new vocabulary and new
schemata. As a first step, we can add the function symbol ‘↑’, intended to express
the exponential function, and then say that all numeral instances of the following
are axioms too:

Schema 7 ζ ↑ 0 = 1

Schema 8 ζ ↑ Sξ = (ζ ↑ ξ) × ζ

Instances of those schemata enable us to prove the correct result for the value
of the exponential function for any arguments, and ζ ↑ ξ = η captures the expo-
nential in our expanded BA.

For tidiness, let’s resymbolize our first four functions using the function sym-
bols ‘f0’, ‘f1’, ‘f2’, ‘f3’. And now let’s keep going: we will add a symbol ‘fn’ for
each n, with the plan that ‘fn’ should express the n-th p.r. function fn in a ‘good’
effective enumeration of the recipes for p.r. functions, where an enumeration is
‘good’ if there is a p.r. definition of fn which only involves functions mentioned
earlier in the enumeration (particular functions may, of course, be covered re-
peatedly in the enumeration of recipes, since any p.r. function can be defined in
many ways). For each ‘fn’, we then write down schemata which reflect fn’s recipe
defining the function in terms of earlier ones. Call the resulting theory PRA0.

PRA0 is still a properly axiomatized theory, because it will be effectively decid-
able whether any given wff is an instance of one of the axiom schemata. Plainly,
its language is much richer than BA’s, since it has a separate function symbol for
each primitive recursive function: but for all that, its language remains impov-
erished in other ways – for it still can’t express any general claims. Because it

5Here we take up the permission we gave ourselves in Section 4.5, fn. 5 to read the variables
in the official definitions of expressing/capturing as serving as place-holders when necessary.
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The idea of p.r. adequacy

is quantifier-free, we can show that PRA0 is a negation-complete theory like BA
(in fact we just generalize the argument we used to show BA can either prove
or disprove every sentence in its limited language). And by construction, PRA0

can capture all p.r. functions – though, lacking quantifiers, it of course can’t be
p.r. adequate in the stronger senses.6

(d) In sum, we can readily construct a (weakly) p.r. adequate arithmetic by
the high-cost method of infinitely expanding the vocabulary of arithmetic and
throwing in axioms for every p.r. function. But do we actually need to do this?

We don’t. In fact, we only need the language of basic arithmetic in order to
frame a (strongly) p.r. adequate theory. To put it very roughly, the ground we lose
by restricting ourselves to a language with successor, addition, and multiplication
as the only built-in functions, we can make up again by having quantification
available for definitional work. Indeed, even the induction-free arithmetic Q is
p.r. adequate. Proving that is work for the next chapter.

6‘PRA0’ is short for ‘quantifier-free Primitive Recursive Arithmetic’. For the record, full
PRA is PRA0 with all first-order logic restored and with induction for all open wffs that don’t
involve unbounded quantification. Full PRA therefore has a very rich language but just by
construction is a p.r. adequate theory in the strongest sense. And in fact some treatments take
this theory rather than Q to be their ‘core’ arithmetical theory just because (i) we don’t have
the bother of having to prove p.r. adequacy, and (ii) it is so much easier to work with a theory
where all the p.r. functions are captured using function symbols: see e.g. Smoryński (1985). By
contrast, focusing on Q as we do, we have the hard work of proving its p.r. adequacy. But the
big pay-off is that our later proof of the First Incompleteness Theorem applies even to theories
built in the modest language LA.
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13 Q is p.r. adequate

We are now going to show that any p.r. function – and hence (via its character-
istic function) any p.r. property and relation – can be captured in Q. Moreover,
it can be captured ‘canonically’, i.e. by a wff which perspicuously recapitulates
the function’s definition as a p.r. function.

Here’s a road-map of the overall line of argument.

1. Every Σ1 function can be captured as a function in Q. A function is Σ1

if there is a (strictly) Σ1 wff ϕ which expresses it. We show that we can
always massage such a ϕ into a related Σ1 wff ϕ′ which captures the same
function f. We prove this in Section 13.2.

2. Every p.r. function is a Σ1 function. This takes us from Sections 13.3
to 13.6 to establish. There are two main phases:

i. We first use Gödel’s ‘β-function’ trick to prove that LA has the re-
sources to express any p.r. function f ; in effect, we recapitulate within
LA the definition of f by recursion and composition.

ii. Then we look at the details of our proof to extract the more detailed
information that a Σ1 wff is always enough to do the expressive job,
so p.r. functions are indeed Σ1.

Those two Big Results together immediately entail that Q can capture any p.r.
function as a function, i.e. Q is p.r. adequate. It then trivially follows that PA is
p.r. adequate too.

This chapter contains the first really heavy-weight proofs in this book. The
bad news is that the proofs are significantly tougher going than what’s gone
before: this is unavoidable. The good news is that the new proof ideas needed to
establish our two Big Results are not used again in this book. So you don’t have
to master the proofs in this chapter in order to grasp what follows later. Feel free
to skim or even skip. Once more, it is important to say: don’t get bogged down
in details.

13.1 More definitions

We start with a trio of simple definitions:

f is a Δ0 function iff it can be expressed by a Δ0 wff;
f is a Σ1 function iff it can be expressed by a Σ1 wff;
f is a Π1 function iff it can be expressed by a Π1 wff.
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Since a Σ1 wff is, by definition, always equivalent to some strictly Σ1 wff, it
is trivial that for any Σ1 function there’s a strictly Σ1 wff which expresses it –
a point we’ll be using repeatedly. Note too that a function f is Σ1 as long as it
can be expressed by some Σ1 wff: that doesn’t rule out its also being expressible
in some other way too. For example, we have

Theorem 13.1 If a function is Σ1 it is also Π1.

Proof Suppose the one-place function f can be expressed by the strictly Σ1

wff ϕ(x, y). Since f is a function, and maps numbers of unique values, we have
f(m) = n if and only if ∀z(f(m) = z → z = n). Hence f(m) = n if and only
if ∀z(ϕ(m, z) → z = n) is true. In other words, f is equally well expressed by
∀z(ϕ(x, z) → z = y). But it is a trivial exercise of moving quantifiers around to
show that if ϕ(x, y) is strictly Σ1, then ∀z(ϕ(x, z) → z = y) is Π1. �

13.2 Q can capture all Σ1 functions

(a) In Section 9.7, we showed that Q can correctly decide every Δ0 sentence
– i.e. can prove it if it is true, refute it if it is false. We’ve also shown that if Q
captures a function by some wff ϕ, it can capture it as a function by a related
wff ϕ̃ (see Section 12.3 again). These results immediately entail

Theorem 13.2 Q can capture any Δ0 function as a function.

Proof Suppose the one-place function f is expressed by the Δ0 wff ϕ(x, y).
Then by definition of ‘expressing’, if f(m) = n, then ϕ(m, n) is true, and hence
– since Q correctly settles every Δ0 wff – Q � ϕ(m, n). Likewise, if f(m) �= n,
then ϕ(m, n) is false, and hence Q � ¬ϕ(m, n). So ϕ(x, y) not only expresses but
captures f in Q. Hence ϕ̃(x, y) captures f as a function in Q. It is easy to check
that, by the construction of ϕ̃, this wff is still Δ0 if ϕ is. (The argument for
many-place functions is, of course, exactly parallel.) �

(b) The rest of this section beefs up that last very easy theorem by using a
delightful bit of sheer ingenuity to establish the stronger result

Theorem 13.3 Q can capture any Σ1 function as a function.

Proof Our proof falls into two stages.

1. (The really ingenious stage!) We show that any Σ1 function is equivalent
to a composition of two Δ0 functions.

2. We then show that Q can capture any composition of Δ0 functions.

Proof of (1) Take the case where we are dealing with a one-place Σ1 function
f(x) = y. So, by hypothesis, f can be expressed by a strictly Σ1 open wff with two
free variables. And let’s assume that this Σ1 wff has just one initial unbounded

107
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quantifier, so it can be rendered as ∃zR(x, y, z), where R(x, y, z) abbreviates a Δ0

wff with three free variables.1 (We’ll generalize in a moment.)
R will, of course, express some three-place relation R. So f(x) = y just when

∃zRxyz.
Now for the clever trickery!2 First we define a couple more functions:

g(x) is the least y such that (∃u ≤ y)(∃v ≤ y)Rxuv;
h(x, y) is the least z ≤ y such that (∃v ≤ y)Rxzv if such a z

exists, or is 0 otherwise.

Since f is total, for every x there are values u, v such that Rxuv, and so g is
well-defined. For a given x, g(x) = c puts a ceiling on the numbers we need to
search through before finding a pair y, z such that Rxyz is true. And h(x, c)
returns a number y under the ceiling c such that for some z also under that
ceiling Rxyz is true, or else returns 0. Which means that

f(x) = h(x, g(x)).

And the point about this cunning redefinition of f as a composition of functions
is that both g and h are Δ0 functions.

Why so? Because our two functions are expressed by, respectively,

G(x, y) =def (∃u ≤ y)(∃v ≤ y)R(x, u, v)
∧ (∀w ≤ y)[w �= y → ¬(∃u ≤ w)(∃v ≤ w)R(x, u, v)]

H(x, y, z) =def [(∃v ≤ y)R(x, z, v) ∧ ¬(∃u ≤ z)(∃v ≤ y)(u �= z ∧ R(x, u, v))]
∨ [¬(∃v ≤ y)R(x, z, v) ∧ z = 0]

where these wffs are evidently Δ0.
To complete the proof, we now need to generalize to the cases where we are

dealing with a many-place Σ1 function f(�x) = y, and where the strictly Σ1

wff which expresses f perhaps has the form ∃�zR(�x, y,�z) with many existential
quantifiers before the core Δ0 wff R(�x, y,�z). But the generalization is in fact
entirely straightforward.3 �

Proof of (2) Now we show that Q not only captures any Δ0 function (as we’ve
already seen) but also any composition of two Δ0 functions.

1A notational footnote, for the fussy. ‘R(x, y, z)’ is serving as an abbreviation for some
no doubt long and messy LA formula. And we said in Section 4.1 we will allow ourselves
to use our sans serif font for abbreviations, as well as for the wffs themselves. Here, though,
there’s some implicitly generalizing work going on, and purists might sternly prefer to use
Greek meta-linguistic symbols. However, our notational practice does make for greater read-
ability, since we can exploit the R/R, G/g H/h links that follow. Our notation won’t cause any
misunderstandings, so – suppressing our purist inclinations – let’s stick with it!

2Credit where credit is due: I learnt this neat dodge from Boolos et al. (2002, p. 206).
3For the notation ‘�x’ see Section 11.2, (b). Likewise, ‘�z’ is short for the array of vari-

ables z1, z2, . . . , zk, and ‘∃�z’ unpacks as a whole bunch of corresponding existential quantifiers,
∃z1∃z2 . . . ∃zn. To generalize our argument above, we essentially just need to sprinkle arrows
over variables as appropriate!
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We’ll take a simple case (again, generalizing the argument is easy, and is left
as an exercise). So suppose, for example, that

f(x) = h(x, g(x))

where g and h are Δ0 functions, expressed by the Δ0 wffs G and H. By the proof
of the previous theorem, these functions are therefore captured as functions by
the corresponding wffs Δ0 wffs G̃ and H̃. We’ll now show that the function f is
captured by the Σ1 wff F(x, y) =def ∃u(G̃(x, u) ∧ H̃(x, u, y)).

Suppose that f(m) = n. Then for some o, g(m) = o, and h(m, o) = n. By the
capturing assumption, the following are provable in Q (see Section 12.2 (a)):

∀u(G̃(m, u) ↔ u = o)
∀y(H̃(m, o, y) ↔ y = n).

By elementary logic, these together imply

∀y(∃u(G̃(m, u) ∧ H̃(m, u, y)) ↔ y = n).

So, given our definition of F, it follows that

If f(m) = n, then Q � ∀y(F(m, y) ↔ y = n).

The Σ1 wff F therefore captures f as a function.

Finishing the proof We have shown that every Σ1 function can be represented
as a composition of two Δ0 functions, and that a composition of Δ0 functions
can be captured as a function in Q (by a Σ1 wff). Therefore Q can capture every
Σ1 function as a function (by a Σ1 wff). �

So stage (1) of this argument tells us how to define two wffs G and H from a given
strictly Σ1 wff ϕ which expresses (but perhaps doesn’t capture) some function
f . Stage (2) of the argument tells us to form the corresponding wffs G̃ and H̃ and
then put them together into another Σ1 wff ϕ′ which captures the same function
f as a function.

13.3 LA can express all p.r. functions: starting the proof

That’s one major theorem under our belt. Our next main aim is to prove

Theorem 13.4 Every p.r. function can be expressed in LA.

The proof strategy Suppose that the following three propositions are all true:

1. LA can express the initial functions.

2. If LA can express the functions g and h, then it can also express a function
f defined by composition from g and h.

3. If LA can express the functions g and h, then it can also express a function
f defined by primitive recursion from g and h.

109



13 Q is p.r. adequate

Now, any p.r. function f can be specified by a chain of definitions by composition
and/or primitive recursion, building up from initial functions. So as we follow
through the chain of definitions which specifies f, we start with initial functions
which are expressible in LA, by (1). By (2) and (3), each successive definitional
move takes us from expressible functions to expressible functions. So, given (1) to
(3) are true, f must be expressible in LA. Hence: in order to prove Theorem 13.4,
it is enough to prove (1) to (3).

Proof for (1) This step is trivial. First, the successor function Sx = y is ex-
pressed by the open wff Sx = y. Second, the zero function Z(x) = 0 is expressed
by the wff Z(x, y) =def (x = x ∧ y = 0).

Finally, the three-place identity function I3
2 (x, y, z) = y, to take just one ex-

ample, is expressed by the wff I32(x, y, z, u) =def (x = x ∧ y = u ∧ z = z). Likewise
for all the other identity functions. (Note, all the initial functions are Δ0, i.e.
are expressible by a Δ0 wff.) �

Proof for (2) Suppose g and h are one-place functions, expressed by the wffs
G(x, y) and H(x, y) respectively. Then, the function f(x) = h(g(x)) is expressed
by the wff ∃z(G(x, z) ∧ H(z, y)). Other cases where g and/or h are multi-place
functions can be handled similarly. �

Starting the proof for (3) Now for the fun part. Consider the primitive recursive
definition of the factorial function again:

0! = 1
(Sx)! = x! × Sx

The multiplication and successor functions here are of course expressible in LA:
but how can we express our defined function in LA?

Think about the p.r. definition for the factorial in the following way. It tells us
how to construct a sequence of numbers 0!, 1!, 2!, . . . , x!, where we move from the
u-th member of the sequence (counting from zero) to the next by multiplying
by Su. Putting x! = y, the p.r. definition thus says

A. There is a sequence of numbers k0, k1, . . . , kx such that: k0 = 1, and if
u < x then kSu = ku × Su, and kx = y.

So the question of how to reflect the p.r. definition of the factorial inside LA
comes to this: how can we express facts about finite sequences of numbers using
the limited resources of LA?

13.4 The idea of a β-function

Let’s pause the proof at this point, and think first about the kind of trick we
could use here.

Suppose π0, π1, π2, π3, . . . is the series of prime numbers 2, 3, 5, 7, . . . . Now
consider the number
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The idea of a β-function

b = πk00 · πk11 · πk22 · . . . · πkn
n .

Like a Gödel number, b can be thought of as encoding the whole sequence
k0, k1, k2, . . . , kn. And we can extract the coded sequence from b by using the
(primitive recursive) decoding function exp(b, i) which we met in Section 11.8.
This function, recall, returns the exponent of the prime number πi in the unique
factorization of b. By the construction of b, then, exp(b, i) = ki for i ≤ n.

Now let’s generalize. We’ll say

A two-place β-function is a numerical function β(c, i) such that,
for any finite sequence of natural numbers k0, k1, k2, . . . , kn there
is a code number c such that for every i ≤ n, β(b, i) = ki.

In other words, for any finite sequence of numbers you choose, you can select
a corresponding code number c to be the first argument for β, and then the
function will decode it and spit out the members of the required sequence in
order as its second argument is increased.4

We’ve just seen that there is nothing in the least bit magical or mysterious
about the idea of a β-function: exp is a simple example. And evidently, we’ll
be able to use code numbers and a decoding β-function to talk, in effect, about
finite sequences of numbers. However, our first example of a β-function is defined
in terms of the exponential function which isn’t built into LA.5 So the obvious
next question is: can we construct a β-function just out of the successor, addition
and multiplication functions which are built into LA?

It turns out to simplify things if we liberalize our notion of a β-function just
a little. So we’ll now also consider three-place β-functions, which take two code
numbers c and d, as follows:

A three-place β-function is a function of the form β(c, d, i) such
that, for any finite sequence of natural numbers k0, k1, k2, . . . , kn
there is a pair of code numbers c, d such that for every i ≤ n,
β(c, d, i) = ki.

A three-place β-function will do just as well as a two-place function to help us
express facts about finite sequences.

Even with this liberalization, though, it still isn’t obvious how to define a β-
function in terms of the functions built into basic arithmetic. But Gödel neatly
solved our problem as follows. Put

4Referring to such a function as a ‘beta-function’ is absolutely standard. The terminology
was introduced by Gödel himself in his Princeton Lectures (1934, p. 365).

5Way back, we could have started by taking our fundamental language of arithmetic to
be not LA but L+

A, i.e. the language you get by adding the exponential function to LA. And,
correspondingly, we could have taken as our basic theories Q+ and PA+, which you get from
Q and PA by adding the obvious recursion axioms for the exponential. Then we’d have a very
easily constructed β-function available and could have avoided all the fuss in the rest of this
section, and in particular the need for the argument of the next footnote. As so often, we have
a trade-off. We are making life harder for ourselves at this point by working with Q/PA rather
than Q+/PA+. The pay-off is that our eventual incompleteness theorems show that there is
no complete theory even for the basic arithmetic of LA truths.
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β(c, d, i) =def the remainder left when c is divided by d(i+ 1) + 1.

Then, given any sequence k0, k1, . . . , kn, we can find a suitable pair of numbers
c, d such that for i ≤ n, β(c, d, i) = ki.

This claim should look intrinsically plausible. As we divide c by d(i + 1) + 1
for different values of i (0 ≤ i ≤ n), we’ll get a sequence of n + 1 remainders.
Vary c and d, and the sequence of n+ 1 remainders will vary. The permutations
as we vary c and d without limit appear to be simply endless. We just need
to check, then, that appearances don’t deceive, and we can always find a (big
enough) c and a (smaller) d which makes the sequence of remainders match a
given n+ 1-term sequence of numbers.6

But now reflect that the concept of a remainder on division can be elementarily
defined in terms of multiplication and addition. Thus consider the following open
wff:

B(c, d, i, y) =def (∃u ≤ c)[c = {S(d × Si) × u} + y ∧ y ≤ (d × Si)].

This, as we want, expresses our Gödelian β-function in LA (and shows that it is
a Δ0 function).

6Here is how to check that claim (this is an exercise in elementary number theory, which
is why we relegate it to a footnote for enthusiasts). First some notation and jargon. We write
a = rm(c, d) when a is the remainder when c is divided by d. We write D for a sequence of
n numbers d0, d1, d2, . . . dn which are relatively prime, i.e. no two of them have a common
factor other than 1. We write Rm(c,D) for the sequence of remainders rm(c, d0), rm(c, d1),
rm(c, d2), . . . , rm(c, dn). And we put |D| for the product d0 · d1 · d2 · . . . · dn. Then we have

The Chinese Remainder Theorem For any sequence D, then as c runs from 0
to |D| − 1, the sequences Rm(c,D) are all different from each other.

Proof Suppose otherwise. Then there are numbers 0 ≤ c1 < c2 < |D|, such that Rm(c1, D) =
Rm(c2, D). Put c = c2 − c1. Trivially, c < |D|. Now, it’s another trivial fact that if c1 and c2
leave the same remainder when divided by some d, then c must exactly divide by d. So, since
– by hypothesis – c1 and c2 leave the same remainders for each di in the sequence D, c divides
by each di. And since the di have no factors in common that means that c must divide by
their product |D|, contradicting the fact that c < |D|. �
Now, there are d0 different possible remainders a number might have when divided by d0 (i.e.
0, 1, 2, . . . d0 − 1), d1 possible remainders when divided by d1, and so on. So there are |D|
different possible sequences of remainders Rm(c,D). Hence, by our theorem, as c runs from 0
to |D| − 1, we get every possible sequence of remainders.

And now we can use this to show Gödel’s claim that for any k0, k1, . . . , kn, we can find a
pair of numbers c, d such that for i ≤ n, β(c, d, i) = ki, where β(c, d, i) = rm(c, d(i+ 1) + 1).

Proof Put s to be greatest of n, k0, k1, . . . , kn. Put d = s! Then first note that for 0 ≤ i ≤ n
the numbers di = d(i + 1) + 1 are relatively prime. For suppose otherwise, i.e. for some j, k
where 1 ≤ j < k ≤ n + 1, dj + 1 and dk + 1 have a common prime factor p. Plainly, p > s
(since any number up to s leaves a remainder 1 when dividing s!j+1). But also since p divides
dj + 1 and dk + 1, it divides their difference d(k − j). But p can’t divide d because it then
wouldn’t divide dj + 1. So p must divide (k − j), which is less than n and so less than s. So
p < s. Contradiction!

Thus the di are relatively prime. So by the Chinese Remainder Theorem, as we run through
the sequences of remainders Rm(c,D) for c = 0 to |D| − 1 we get every possible different
sequence of remainders. And one of these sequences must be k0, k1, . . . , kn (because each of
those ki is less than s so is a potential remainder on division by the corresponding di). �
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13.5 LA can express all p.r. functions: finishing the proof

Continuing the proof for (3) Suppose we have some three-place β-function to
hand. So, given any sequence of numbers k0, k1, . . . , kx, there are code numbers
c, d such that for i ≤ x, β(c, d, i) = ki. Then we can reformulate

A. There is a sequence of numbers k0, k1, . . . , kx such that: k0 = 1, and if
u < x then kSu = ku × Su, and kx = y,

as follows:

B. There is some pair c, d such that: β(c, d, 0) = 1, and if u < x then
β(c, d, Su) = β(c, d, u) × Su, and β(c, d, x) = y.

But we’ve seen that there’s a β-function which can be expressed in LA by the
open wff we abbreviated B. So fixing on this β-function, we can translate (B)
into LA as follows:

C. ∃c∃d{B(c, d, 0, 1) ∧
(∀u ≤ x)[u �= x → ∃v∃w{(B(c, d, u, v) ∧ B(c, d,Su,w)) ∧ w = v × Su}] ∧

B(c, d, x, y)}.

Abbreviate all that by ‘F(x, y)’, and we’ve arrived! For this evidently expresses
the factorial function.

Concluding the proof for (3) We need to show that we can use the same β-
function trick and prove more generally that, if the function f is defined by
recursion from functions g and h which are already expressible in LA, then f
is also expressible in LA. So here, just for the record, is the entirely routine
generalization we need.

We are assuming that

f(�x, 0) = g(�x)
f(�x, Sy) = h(�x, y, f(�x, y)).

This definition amounts to fixing the value of f(�x, y) = z thus:

A* There is a sequence of numbers k0, k1, . . . , ky such that: k0 = g(�x), and if
u < y then ku+1 = h(�x, u, ku), and ky = z.

So using a three-place β-function again, that comes to

B* There is some c, d, such that: β(c, d, 0) = g(�x), and if u < y then
β(c, d, Su) = h(�x, u, β(c, d, u)), and β(c, d, y) = z.

Suppose we can already express the n-place function g by a (n + 1)-variable
expression G, and the (n+2)-variable function h by the (n+3)-variable expression
H. Then – using ‘�x’ to indicate a suitable sequence of n variables – (B*) can be
rendered into Q by
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C* ∃c∃d{∃k[B(c, d, 0, k) ∧ G(�x, k)] ∧
(∀u ≤ y)[u �= y → ∃v∃w{(B(c, d, u, v) ∧ B(c, d,Su,w)) ∧ H(�x, u, v,w)}] ∧

B(c, d, y, z)}.

Abbreviate this defined wff ϕ(�x, y, z); it is then evident that ϕ will serve to
express the p.r. defined function f . Which gives us the desired result (3). �

So, we’ve shown how to establish each of the claims (1), (2) and (3) from the start
of Section 13.3. Hence every p.r. function can be expressed in LA. Theorem 13.4
is in the bag!

13.6 The p.r. functions are Σ1

(a) Reviewing the proof we’ve just given, it’s fairly easy to see that we’ve in
fact already got all the materials to hand to show something stronger – namely
that every p.r. function can be expressed by a Σ1 wff. Hence

Theorem 13.5 Every p.r. function is Σ1.

Before giving the official argument, here’s the basic idea. We’ve just seen how to
build up a wff which expresses the p.r. function f by the dodge of recapitulating
the function’s p.r. definition. As we track through this definition we write down
a wff to express the function defined at each stage. Initial functions are expressed
by Δ0 (hence Σ1) wffs. Compositions are expressed using existential quantifiers
applied to previous wffs expressing the functions we want to compose: so com-
positions don’t take us beyond what can be expressed with Σ1 wffs. A function
f defined by recursion from g and h is expressed by a wff like (C*), again built
up from the previous wffs expressing g and h. Now, (C*) does have a lot of ex-
istential quantifiers inside it (including some buried inside the embedded wffs G
and H). But we can – using a simple little trick – drag all those internal existen-
tial quantifiers to the front, ending up with a (strictly) Σ1 wff (C**) which still
expresses the same function as (C*). So defining functions by recursion applied
to other Σ1 functions still keeps us inside the class of Σ1 functions.

Since that little trick of dragging quantifiers around doesn’t disguise things
very much, we can still say that the series of Σ1 wffs recapitulating some func-
tion’s full p.r. definition yields, at the end of the process, a perspicuous way of
expressing that function (i.e. a way of expressing it from which we can recover
a p.r. definition of the function expressed).

(b) Now we’ll check the key claims (these are just tiresome fiddly details: feel
free to skip the rest of this section). Following exactly the same proof strategy
that we laid out in Section 13.3, it is evidently enough to show the following:

1′. The initial functions are Σ1.

2′. If the functions g and h are Σ1, then so is the function f defined by
composition from g and h.
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3′. If the functions g and h are Σ1, then so is the function f defined by
primitive recursion from g and h.

Proof for (1′) We saw that the initial functions can be expressed using Δ0 wffs,
so are Δ0 functions. But as we noted in Section 9.6, every Δ0 wff is trivially a
Σ1 wff. Hence the initial functions are Σ1 functions too. �

Proof for (2 ′) Let’s suppose, to take a simple case, that g and h are Σ1 one-
place functions, expressed by the strictly Σ1 wffs G(x, y) = ∃uG′(x, y, u) and
H(x, y) = ∃vH′(x, y, v) respectively, where G′ and H′ are Δ0.

Now suppose f is defined by composition, so f(m) = g(h(m)). Then, f is ex-
pressed by ∃z(G(x, z) ∧ H(z, y)), i.e. ∃z(∃uG′(x, z, u) ∧ ∃vH′(z, y, v)). But that’s
equivalent to ∃z∃u∃v(G′(x, z, u) ∧ H′(z, y, v)) which is another strictly Σ1 wff.
So f can be expressed by a strictly Σ1 wff, which was to be shown.

The argument now generalizes in the obvious ways to (i) more complex cases
of composition, and (ii) cases where the Σ1 functions being compounded are
expressed by wffs with more than one existential quantifier at the front. �

Proof sketch for (3 ′) First, let’s introduce the simple ‘quantifier-shift’ trick we
need. Take the sample wff

i. (∀u ≤ n)∃vK(u, v,m).

If (i) is true of some numbers m, n, then for each u ≤ n, there is a corresponding
witness wu which makes K(u,wu,m) true. Now, take w to be the largest of those
n+ 1 witnesses wu. Then (∀u ≤ n)(∃x ≤ w)K(u, x,m) is true. And therefore

ii. ∃v(∀u ≤ n)(∃x ≤ v)K(u, x,m)

is true. Hence if (i) is true, so is (ii); but obviously if (ii) is true, so is (i).
So (ii) is true of numbers m, n, just when (i) is, but it brings the unbounded

existential quantifier ∃v out in front of the bounded universal quantifier (∀u ≤ n),
leaving behind – as it were, as its shadow – a new bounded existential quantifier.7

Obviously, this quantifier shift trick generalizes. Suppose, then, that f is de-
fined by recursion from the Σ1 functions g and h which are expressed by G(�x,w)
and H(�x, u, v,w), where both those wffs are strictly Σ1. Then, as we saw, f is
expressed by the corresponding

C* ∃c∃d{∃k[B(c, d, 0, k) ∧ G(�x,w)] ∧
(∀u ≤ y)[u �= y → ∃v∃w{(B(c, d, u, v) ∧ B(c, d,Su,w)) ∧ H(�x, u, v,w)}] ∧

B(c, d, y, z)}

where B, remember, is Δ0. So now consider the wff (C**) constructed as follows.
First we drag the quantifier ∃k and any unbounded existential quantifiers in G to

7NB: To drag an existential quantifier forwards across an unbounded universal quantifier
is to commit a horrible quantifier shift fallacy. But here we are dragging one across a bounded
universal quantifier, and that makes all the difference!
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the front.8 We then use the quantifier shift trick to drag the quantifiers ∃u∃v plus
any existential quantifiers embedded in H to the front, moving them past the
bounded universal (∀u ≤ y), leaving behind bounded existential quantifiers as
their shadows. The resulting open wff (C**) will then have a block of existential
quantifiers at the front, followed by a Δ0 kernel. And it follows that (C**) is
strictly Σ1, while it still expresses just the same function f as (C*) because it is
satisfied by exactly the same numbers.

Hence a function f defined by recursion from Σ1 functions g and h is itself
expressible by a strictly Σ1 wff: in short, f is Σ1 too. �

13.7 The adequacy theorem

Here are the two Big Results which we’ve established so far in this chapter:

Theorem 13.3 Q can capture any Σ1 function as a function.

Theorem 13.5 Every p.r. function is Σ1.

These of course immediately entail the major theorem that we’ve been aiming
for.9 Q can capture all p.r. functions as functions, i.e.

Theorem 13.6 Q is p.r. adequate.

And by the little result we noted in Section 12.4 (b), that implies that Q can
also capture every p.r. property and relation.

Since PA can prove everything Q proves, that means that PA is p.r. adequate
too. Indeed, because it contains enough induction, PA is strongly p.r. adequate
(i.e. can fully capture every p.r. function as a function): but we don’t need that
result, so we won’t pause over it.

13.8 Canonically capturing

We’ve established that, for any p.r. function f , there exists a wff by which Q
can capture it. But our proof doesn’t just establish the bald existence claim: it
actually shows us how to construct a particular Σ1 wff that does the capturing
job (at least once we are presented with a p.r. definition for f). In a word, we
have proved our adequacy theorem constructively.

Here’s the recipe again, in two main stages. First stage. Take a p.r. definition
for f . This involves giving a series of functions fi ending with f , where each fi

8Changing variables, of course, if that’s what it takes to avoid clashes. We won’t keep on
repeating this sort of caveat.

9Gödel in 1931 didn’t know about Q, which was first isolated as a minimal p.r. adequate
arithmetic in 1952. So Gödel didn’t himself have the theorem in our form. He did, however,
have the absolutely key result that the β-function trick can be used to express any p.r. function
in LA.
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is either an initial function or is defined from earlier functions in the series by
composition or recursion. Now, for each fi, we can write down a corresponding
Σ1 wff which expresses it. This is trivial if fi is an initial function. When fi is
defined by composition from two functions fj and fk earlier in the series, we write
down a strictly Σ1 wff expressing fi which is built by existential quantification
from the two Σ1 wffs which express those earlier functions fj and fk (as in the
proof of (2′) in Section 13.6). When fi is defined by recursion from two previous
functions fj and fk in the series, we write down a strictly Σ1 wff built on the
model of (C**) using the two wffs which express fj and fk. So in this way, we
eventually get to a strictly Σ1 wff ϕ which clearly expresses f , essentially by
recapitulating a p.r. definition for f.

If we do this first-stage building work carefully, we will in fact already have
constructed a wff that captures f . But we haven’t officially proved that. Instead
– and here’s our second stage – we can apply the tricks explained in Section 13.2
to the output of our first-stage construction; for those tricks give us a way of
converting any Σ1 wff ϕ which expresses f into a corresponding Σ1 wff ϕ′ which
is guaranteed to capture f.

Even after all this palaver, the wff we end up with still reflects all the details
of f ’s p.r. definition (and we can recover that definition from the wff, thereby
revealing the function in question to be p.r.). Let’s say that such a capturing
wff built up by systematically tracking through f ’s p.r. definition canonically
captures f.

Three remarks. (i) Our final constructed wff that canonically captures f of
course also expresses f . That’s obvious just from the way it is constructed – the
wff still ‘says’ the right thing. (Or, since Q is sound, we can use the argument at
the very end of Section 4.7 to show that capturing entails expressing.) (ii) There
are many ways of canonically capturing a given p.r. function f in Q (and hence in
PA). Boringly, we can re-label variables, and shift around the order of conjuncts;
more importantly, there will always be alternative ways of giving p.r. definitions
for f (if only by including redundant detours). (iii) There will be innumerable
non-canonical ways of capturing any f : just recall the remark in Section 4.6, (b),
pointing out in effect that if ϕ(�x, y) captures f in some theory, so does ϕ(�x, y) ∧ θ,
for any theorem θ as redundant baggage.
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14 Interlude: A very little about Principia

In the last Interlude, we gave a five-stage map of our route to Gödel’s First
Incompleteness Theorem. The first two stages we mentioned are now behind us.
They involved (1) introducing the standard theories Q and PA, then (2) defining
the p.r. functions and – the hard bit! – proving Q’s p.r. adequacy. In order to do
the hard bit, we have already used one elegant idea from Gödel’s epoch-making
1931 paper, namely the β-function trick. But most of his proof is still ahead of
us: at the end of this Interlude, we’ll review the stages that remain.

But first, let’s relax for a moment after our labours, and take a very short
look at some of the scene-setting background. We’ll say more about the historical
context in a later Interlude (Chapter 28). But for now, we ought at least to say
enough to explain the title of Gödel’s great paper, ‘On formally undecidable
propositions of Principia Mathematica and related systems I’.1

14.1 Principia’s logicism

As we noted in Section 10.8, Frege aimed in Grundgesetze der Arithmetik to
reconstruct arithmetic on a secure footing by deducing it from logic plus defini-
tions. But – in its original form – his overall logicist project flounders on Frege’s
fifth Basic Law, which leads to contradiction. And the fatal flaw that Russell
exposed in Frege’s system was not the only paradox to bedevil early treatments
of the theory of classes.

Various responses to these contradictions were proposed at the beginning of
the twentieth century. One was to try to avoid paradox and salvage logicism by,
in effect, keeping much of Frege’s logic while avoiding the special assumption
about classes that gets him into disastrous trouble.

To explain: Frege’s general logical system involves a kind of type hierarchy.
It very carefully distinguishes ‘objects’ (things, in a broad sense) from prop-
erties from properties-of-properties from properties-of-properties-of-properties,
etc, and insists that every item belongs to a determinate level of the hierarchy.
Then the claim is – plausibly enough – that it only makes sense to attribute
properties which belong at level l to items at level l− 1. For example, the prop-
erty of being wise is a level 1 property, while Socrates is an item at level 0; and
it makes sense to attribute the level 1 property to Socrates, i.e. to claim that
Socrates is wise. Likewise, the property of having some instances is a level 2

1That’s a roman numeral one at the end of the title! Gödel originally planned a Part II,
fearing that readers would not, in particular, accept the very briskly sketched Second Theorem
without further elaboration. But Gödel’s worries proved groundless and Part II never appeared.
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property, and it makes sense to attribute that property to the level 1 property
of being wise, i.e. to claim that the property of being wise has some instances.
But you get nonsense if, for example, you try to attribute that level 2 property
to Socrates and claim that Socrates has some instances.

Note that this strict stratification of items into types blocks the derivation of
the property analogue of Russell’s paradox about classes. The original paradox
concerned the class of all classes that are not members of themselves. So now
consider the putative property of being a property that doesn’t apply to itself.
Does this apply to itself? It might seem that the answer is that it does if it
doesn’t, and it doesn’t if it does – contradiction! But on Frege’s hierarchical
theory of properties, there is no real contradiction to be found here: (i) Every
genuine property belongs to some particular level of the hierarchy, and only
applies to items at the next level down. A level l property therefore can’t sensibly
be attributed to any level l property, including itself. (ii) However, there is no
generic property of ‘being a property that doesn’t apply to itself’ shared by every
property at any level. No genuine property can be type-promiscuous in that way.

One way to avoid class-theoretic paradox is to stratify the universe of classes
into a type-hierarchy in the way that Frege stratifies the universe of properties.
So suppose we now distinguish classes from classes-of-classes from classes-of-
classes-of-classes, and so forth; and on one version of this approach we then
insist that classes at level l can only have as members items at level l−1.2 Frege
himself doesn’t take this line: his disastrous Basic Law V in effect flattens the
hierarchy for classes and puts them all on the same level. However, Bertrand
Russell and Alfred North Whitehead do adopt the hierarchical view of classes
in their monumental Principia Mathematica (1910 –13). They take over and
develop (‘ramify’) Frege’s stratification of properties and then link this to the
stratification of classes in a very direct way, by treating talk about classes as in
effect just lightly disguised talk about their corresponding defining properties.
The resulting system is – as far as we know – consistent.

Having proposed a paradox-blocking theory of types as their logical frame-
work, Russell and Whitehead set out in Principia – like Frege in his Grundge-
setze, and following a similar strategy – to derive all of arithmetic from defini-
tional axioms (compare Section 1.1). Indeed, the project is even more ambitious:
the ultimate aim, as Russell described it a decade earlier, is to prove that

all mathematics deals exclusively with concepts definable in terms
of a very small number of logical concepts, and . . . all its propo-
sitions are deducible from a very small number of fundamental
logical principles. (Russell, 1903, p. xv, my emphases.)

Let’s concentrate, however, on the more limited but still ambitious project of
deriving just arithmetic from logic plus definitions.

2Exercise: why does this block Russell’s paradox from arising? An alternative approach –
the now dominant Zermelo-Fraenkel set theory – is much more liberal: it allows sets formed at
level l to contain members from any lower level. In the jargon, we get a cumulative hierarchy.
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But how could anyone think that project is even possible? Well, consider the
following broadly Fregean chain of ideas (we will have to ride roughshod over
subtleties: but it would be a pity to say nothing, as the ideas are so pretty!).

i. We’ll say that the F s and Gs are equinumerous just in case we can match
up the F s and the Gs one-to-one (i.e., in the jargon of Section 2.3, if there
is a bijection between the F s and the Gs). Thus: the knives and the forks
are equinumerous if we can pair them up, one to one, with none left over.

Now, this idea of there being a one-one correspondence between the
F s and the Gs can be defined using quantifiers and identity (so you can
see why it might be thought to count as a purely logical notion). Here’s
one definition, in words: there’s a one-one correspondence if there is a
relation R such that every F has relation R to a unique G, and for every
G there is a unique F which has relation R to it (the function f such that
f(x) = y iff Rxy will then be a bijection). In symbols, there’s a one-one
correspondence between the F s and the Gs when

∃R{∀x(Fx→ ∃!y(Gy ∧Rxy)) ∧ ∀y(Gy → ∃!x(Fx ∧Rxy))}

Here, ‘∃!’ is the uniqueness quantifier again; and the initial quantifier is
a second-order quantifier ranging over two-place relations.

ii. Intuitively, the number of F s is identical to the number of Gs just in
case the F s and Gs are equinumerous in the logical sense just defined.
This claim is nowadays – with only tenuous justification – called Hume’s
Principle. Any attempt to identify the numbers should surely respect it.

iii. Here’s another, equally intuitive, claim – call it the Successor Principle:
the number of F s is the successor of the number of Gs if there is an object
o which is an F , and the remaining things which are F -but-not-identical-
to-o are equinumerous with the Gs.

iv. What though are numbers? Here’s a brute-force way of identifying them
while respecting Hume’s Principle. Take the number of F s to be the class
of all classes C such that the Cs are equinumerous with the Fs. Then,
as we want, the number of F s is identical with the number of Gs just if
the class of all classes with as many members as there are F s is identical
to the class of all classes with as many members as there are Gs, which
holds just if the F s and Gs are equinumerous.

v. Taking this brute-force line on identifying numbers, we can define zero to
be the class of all classes equinumerous with the non-self-identical things.
For assuredly, zero is the number of x such that x �= x. And, on the
most modest of assumptions, zero will then exist – it is the class of all
empty classes (but there is only one empty class since classes with the
same members are identical). And pressing on, one is the successor of
zero. So applying our definitions, it is the class of all classes-of-F s such
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that (i) there is an o which is an F , and (ii) the class of things which are
F -but-not-identical-to-o is equinumerous with members of zero. In short
– though this makes the story sound circular, which it isn’t – one is the
class of all one-membered sets. Likewise, two is the successor of one: our
definitions make two the class of all pairs. And so it goes.

vi. Finally, we need an account of what the finite natural numbers are (for
note that our basic definition of the number of F s applies equally when
there is an infinite number of F s). Well, let’s say that a property F is
hereditary if, whenever a number has it, so does its successor. Then a
number is a natural number if it has all the hereditary properties that
zero has. Which in effect defines the natural numbers as those for which
the now familiar induction principle holds.

We have a story, then, about what numbers themselves are. We have a story
about zero, one, two, three and so on. We have a story about what it is for one
number to be the successor of another. We have a story about which numbers are
natural numbers, and why induction holds. So suppose that you buy the (very
big!) assumption that the talk about ‘classes’ in the story so far still counts as
logical talk, broadly construed. Then, quite wonderfully, we are launched on our
way towards (re)constructing arithmetic in logical terms.

But how do we ensure that we don’t run out of natural numbers? If the number
n is the class of all n-membered classes, what if there are no n-membered classes?
Frege answered: there must be n-membered classes and so the number n must
exist, because the class of preceding numbers {0, 1, 2, . . . , n − 1} has exactly n
members. So given that zero exists, the rest of the natural numbers must exist.
Which is ingenious, though – you might well think – a bit too ingenious. It smacks
suspiciously of conjuring the numbers into existence, one after the other.3

In Frege’s hands, however, this construction all proceeds inside his flawed
logical system. So what if we follow Russell and Whitehead and try to develop
a paradox-free version of logicism within Principia’s logical system? Well now
note that, intuitively, there can be n-membered classes at different levels, and so
n (thought of as the class of all n-membered classes) would have members at all
different levels, which offends against Principia’s paradox-blocking stratification
of classes into different levels. And Frege’s explanation of why we don’t run out
of numbers also offends.4 So Russell and Whitehead have to complicate their
version of the logicist story considerably. And to ensure that the numbers don’t
give out they make the bald assumption that there are indeed an unlimited
number of things available to be collected into classes of every different finite
size. But then this ‘Axiom of Infinity’ hardly looks like a logical assumption.

3But for a vigorous neo-Fregean defence, see Wright (1983), Hale and Wright (2001).
4If zero, the class containing just the empty class, is two levels up, and the class containing

just zero is at level three, then one, conceived of as the class of all classes like {0} would be at
level four, and there then couldn’t be a class containing both zero and one.
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However, let’s ignore philosophical worries about whether Principia’s system
counts as pure logic. For now enter Gödel, with a devastating formal objection to
the idea we can continue the story in any way that would reveal all arithmetical
truths to be derivable from Principia’s assumptions (whether those assumptions
count as pure logic or not).

14.2 Gödel’s impact

What the First Incompleteness Theorem shows is that, despite its great power,
Russell and Whitehead’s system still can’t capture even all truths of basic arith-
metic, at least assuming it is consistent. As Gödel puts it:

The development of mathematics toward greater precision has led,
as is well known, to the formalization of large tracts of it, so that
one can prove any theorem using nothing but a few mechanical
rules. The most comprehensive formal systems that have been set
up hitherto are the system of Principia Mathematica on the one
hand and the Zermelo-Fraenkel axiom system for set theory . . . on
the other. These two systems are so comprehensive that in them
all methods of proof today used in mathematics are formalized,
that is, reduced to a few axioms and rules of inference. One might
therefore conjecture that these axioms and rules of inference are
sufficient to decide any mathematical question that can at all be
formally expressed in these systems. It will be shown below that
this is not the case, that on the contrary there are in the two
systems mentioned relatively simple problems in the theory of in-
tegers which cannot be decided on the basis of the axioms. This
situation is not in any way due to the special nature of the systems
that have been set up, but holds for a very wide class of formal
systems; . . . . (Gödel, 1931, p. 145)

Now, to repeat, Russell and Whitehead’s system is built on a logic that allows
quantification over properties, properties-of-properties, properties-of-properties-
of-properties, and so on up the hierarchy. Hence the language of Principia is
immensely richer than the language LA of first-order PA (where we can only
quantify over individuals). It perhaps wouldn’t be a great surprise, then, to
learn that Russell and Whitehead’s relatively modest collection of axioms doesn’t
settle every question that can be posed in their immodest formal language. What
is a great surprise is that there are ‘relatively simple’ propositions which are
‘formally undecidable’ in Principia – by which Gödel means that there are wffs
ϕ in effect belonging to LA, the language of basic arithmetic, such that we can’t
prove either ϕ or ¬ϕ from the axioms. Even if we buy all the assumptions of
Principia, we still don’t get the very minimum the logicist hoped to get, i.e. a
complete theory of basic arithmetic. (And similarly, there are basic arithmetical
propositions which are ‘formally undecidable’ in ZF set theory.)
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14.3 Another road-map

As Gödel himself notes, however, his incompleteness proof only needs to invoke
some fairly elementary features of the full-blooded theories of Principia and of
ZF, and these features are equally shared by PA. So we can now largely forget
about Principia and pretend henceforth that Gödel was really talking about PA
all along.

In what follows, there will be other deviations from the details of his original
proof; but the basic lines of argument in the next three chapters are all in
his great paper. Not surprisingly, other ways of establishing his results (and
generalizations and extensions of them) have been discovered since 1931, and
we will be mentioning some of these later. But there remains much to be said
for introducing the incompleteness theorems by something close to Gödel’s own
arguments.

Here, then, is an abbreviated reminder of the three stages in our Gödelian
proof which remain ahead of us:

1. First, we look at Gödel’s great innovation – the idea of systematically as-
sociating expressions of a formal arithmetic with numerical codes. We’ll
stick closely to Gödel’s original type of numbering scheme. With a coding
scheme in place, we can reflect key properties and relations of expres-
sions of PA (to concentrate on that theory) by properties and relations
of their Gödel numbers. For a pivotal example, we can define the numer-
ical relation Prf (m,n) which holds when m codes for a sequence of wffs
that is a PA proof, and n codes the closed wff that is thereby proved. And
Gödel proves that such arithmetical properties and relations are primitive
recursive. (Chapter 15)

2. Since Prf (m,n) is p.r., it can be expressed – indeed, can be captured –
in PA. We can now use this fact to construct a sentence G that, given the
coding scheme, is true if and only if it is unprovable in PA. We can then
show that G is unprovable, assuming no more than that PA is consistent.
So we’ve found an arithmetical sentence which is true but unprovable
in PA. (And given a slightly stronger assumption than PA’s consistency,
¬G must also be unprovable in PA.) Moreover, it turns out that this
unprovable sentence is in one respect a pretty simple one: it is in fact a
Π1 wff. (Chapter 16)

3. As Gödel notes, the true-but-unprovable sentence G for PA is generated
by a method that can be applied to any other arithmetic that satisfies
some modest conditions. Which means that PA is not only incomplete but
incompletable. Indeed, any properly axiomatized theory that contains the
weaker theory Q is incompletable. (Chapter 17)

So, map in hand, on we go . . . !
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This chapter falls into three parts. We first introduce Gödel’s simple but won-
derfully powerful idea of associating the expressions of a formal theory with code
numbers. In particular, we’ll fix on a scheme for assigning code numbers first to
expressions of LA and then to proof-like sequences of expressions. This double
coding scheme will correlate various syntactic properties with purely numerical
properties.

For example, take the syntactic property of being a term of LA. We can define a
corresponding numerical property Term, where Term(n) holds just when n codes
for a term. Likewise, we can define Atom(n), Wff (n), and Sent(n) which hold
just when n codes for an atomic wff, a wff, or a closed wff (sentence) respectively.
It will be easy to see that these numerical properties are primitive recursive ones.

More excitingly, we can define the numerical relation Prf (m,n) which holds
just when m is the code number in our scheme of a PA-derivation of the sentence
with number n. It will also be easy to see – at least in an informal way – that
this relation too is primitive recursive.

The second part of the chapter introduces the idea of the diagonalization of
a wff. This is the idea of taking a wff ϕ(y), and substituting (the numeral for)
its own code number in place of the free variable. Think of a code number as
a way of referring to a wff. Then the operation of ‘diagonalization’ allows us to
form a wff that as it were indirectly refers to itself (refers to itself via the Gödel
coding). We will use this trick in the next chapter to form a Gödel sentence that
encodes ‘I am unprovable in PA’.

These, then, are the two basically very straightforward ideas to carry away
from this chapter. However, we really ought to sketch a proper proof of the
crucial claim that Prf is indeed primitive recursive. That’s the business for the
– eminently missable – third part of the chapter.

15.1 Gödel numbering

(a) Here’s one way of numbering expressions of LA. First map individual sym-
bols from LA’s basic alphabet to digits, and then associate a concatenation of
symbols with (the number expressed by) the corresponding concatenation of dig-
its. This simple approach is perfectly workable;1 but we’ll in fact use a coding
scheme more like Gödel’s original version. We’ll start by thinking about how to

1For example, Raymond Smullyan (1992, pp. 20–24) adopts this kind of coding scheme,
which is preferable for some purposes. However, our more Gödelian coding scheme will serve
us well, and it does – I think – make for some slightly prettier proofs when put to work.
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encode expressions of LA; we’ll consider how to code sequences of expressions in
the next section.

Suppose that our version of LA has the usual logical symbols (connectives,
quantifiers, identity, brackets), and symbols for zero and for the successor, addi-
tion and multiplication functions: associate all those with odd numbers (different
symbol, different number, of course). LA also has an inexhaustible supply of vari-
ables, which we’ll associate with even numbers. So, to pin that down, let’s fix
on this preliminary series of basic codes:

¬ ∧ ∨ → ↔ ∀ ∃ = ( ) 0 S + × x y z . . .

1 3 5 7 9 11 13 15 17 19 21 23 25 27 2 4 6 . . .

Our Gödelian numbering scheme for expressions is now defined in terms of
this table of basic codes as follows:

Let expression e be the sequence of k+1 symbols and/or variables
s0, s1, s2, . . . , sk. Then e’s Gödel number (g.n.) is calculated by
taking the basic code-number ci for each si in turn, using ci as an
exponent for the i + 1-th prime number πi, and then multiplying
the results, to get

πc00 · πc11 · πc22 · . . . · πck

k .

For example:

i. The single symbol ‘S’ has the g.n. 223 (the first prime raised to the ap-
propriate power as read off from our correlation table of basic codes).

ii. The standard numeral SS0 has the g.n. 223 · 323 · 521 (the product of the
first three primes raised to the appropriate powers).

iii. The wff

∃y (S0 + y) = SS0

has the g.n.

213 · 34 · 517 · 723 · 1121 · 1325 · 174 · 1919 · 2315 · 2923 · 3123 · 3721

That last number is, of course, enormous. So when we say that it is elementary
to decode the resulting g.n. by taking the exponents of prime factors, we don’t
mean that the computation is quick and easy. We mean that the computational
routine required for the task – namely, repeatedly extracting prime factors –
involves no more than the mechanical operations of school-room arithmetic.

(b) Three remarks. First, we earlier allowed the introduction of abbreviatory
symbols into LA (for example, ‘≤’ and ‘3’); take the g.n. of an expression in-
cluding such symbols to be the g.n. of the unabbreviated version.
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Second, we will later be assuming there are similar numbering schemes for
the expressions of other theories which use possibly different languages L. We
can imagine each of these numbering schemes to be built up in the same way,
but starting from a different table of preliminary basic codes to cope with the
different basic symbols of L. We won’t spell out the details.

Third, we are going to be introducing numerical properties like Term and
proving them to be primitive recursive. But note, Term(n) is to hold when n is
the code number of a term according to our Gödel numbering scheme. However,
our numbering scheme was fairly arbitrarily chosen. We could, for example, shuf-
fle around the preliminary assignment of basic codes to get a different numbering
scheme; or (more radically) we could use a scheme that isn’t based on powers of
primes. So could it be that a property like Term is p.r. when defined in terms
of our arbitrarily chosen numbering scheme and not p.r. when defined in terms
of some alternative but equally sensible scheme?

Well, what counts as ‘sensible’ here? The key feature of our Gödelian scheme is
this: there is a pair of algorithms, one of which takes us from an LA expression to
its code number, the other of which takes us back again from the code number to
the original expression – and moreover, in following through these algorithms, the
length of the computation is a simple function of the length of the LA expression
to be encoded or the size of the number to be decoded. The algorithms don’t
involve open-ended computations using unbounded searches: in other words, the
computations can be done just using ‘for’ loops.

So let S be any other comparable coding scheme, which similarly involves
a pair of algorithmic methods for moving to and fro between LA expressions
and numerical codes (where the methods don’t involve open-ended searches).
And suppose S assigns code n1 to a certain LA expression. Consider the pro-
cess of first decoding n1 to find the original LA expression and then re-encoding
the expression using our Gödelian scheme to get the code number n2.2 By hy-
pothesis, this process will combine two simple computations which just use ‘for’
loops. Hence, there will be a primitive recursive function which maps n1 to n2.
Similarly, there will be another p.r. function which maps n2 back to n1.

Let’s say that a coding scheme is acceptable iff there is a p.r. function tr which
‘translates’ code numbers according to S into code numbers under our official
Gödelian scheme, and another p.r. function tr−1 which converts code numbers
under our scheme back into code numbers under scheme S. Then we’ve just
argued that being acceptable in this sense is at least a necessary condition for
being an intuitively ‘sensible’ numbering scheme.3

It is immediate that a property like Term defined using our scheme is p.r. if
and only if the corresponding property TermS defined using scheme S is p.r., for
any acceptable scheme S. Why? Well, let the characteristic functions of Term

2Strictly, we need to build in a way of handling the ‘waste’ cases where n1 isn’t an S-code
for any wff.

3For our purposes, we needn’t worry about what might be sufficient conditions for being
intuitively ‘sensible’.
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and TermS be term and termS respectively. Then termS (n) = term(tr(n)),
hence termS will be p.r. by composition so long as term is p.r.; and similarly
term(n) = termS (tr−1 (n)), hence term is p.r. if termS is. So, in sum, Term
is p.r. iff TermS is p.r.: the property’s status as p.r. is not dependent on any
particular choice of coding scheme (so long as it is acceptable).

15.2 Coding sequences

As we’ve already flagged up, the relation Prf (m,n) will be crucial to what
follows, where this relation holds just when m codes for an array of wffs that
is a PA proof, and n codes for the closed wff (sentence) that is thereby proved.
But how do we code for proof-arrays?

The details will obviously depend on the kind of proof system we adopt for
our preferred version of PA. But we said back in Sections 9.1 and 10.5 that our
official line will be that PA has a Hilbert-style axiomatic system of logic. And
in this rather old-fashioned framework, proof-arrays are simply linear sequences
of wffs. A nice way of coding these is by what we’ll call super Gödel numbers.
Given a sequence of wffs or other expressions

e0, e1, e2, . . . , en

we first code each ei by a regular g.n. gi, to yield a sequence of numbers

g0, g1, g2, . . . , gn.

We then encode this sequence of regular Gödel numbers using a single super g.n.
by repeating the trick of multiplying powers of primes to get

2g0 · 3g1 · 5g2 · . . . · πgn
n .

Decoding a super g.n. therefore involves two steps of taking prime factors: first
find the sequence of exponents of the prime factors of the super g.n.; then treat
those exponents as themselves regular g.n., and take their prime factors to arrive
back at a sequence of expressions.

We can now define the proof relation Prf more carefully:

Prf (m,n) holds just if m is the super g.n. of a sequence of wffs
that is a PA proof of the closed wff with regular g.n. n.

15.3 Term, Atom, Wff, Sent and Prf are p.r.

To repeat: Term(n) is to hold when n codes for a term of LA. Similarly, Atom(n),
Wff (n) and Sent(n) are to hold when n codes for an atomic wff, wff, or sentence
of LA respectively. And we’ve just defined Prf (m,n). We now need to convince
ourselves of the following crucial result:

127



15 The arithmetization of syntax

Theorem 15.1 Term(n), Atom(n), Wff (n), Sent(n) and Prf (m,n)
are primitive recursive.

And we have a much easier time of it than Gödel did. Writing at the very
beginning of the period when concepts of computation were being forged, he
couldn’t expect his audience to take anything on trust about what was or wasn’t
‘rekursiv ’ or – as we would now put it – primitive recursive. He therefore had
to do all the hard work of explicitly showing how to define these properties by
a long chain of definitions by composition and recursion.

However, assuming only a very modest familiarity with the ideas of computer
programs and p.r. functions, we can perhaps short-cut all that effort and be
entirely persuaded by the following:

A very sketchy argument To determine whether Term(n), proceed as follows.
Decode n: that’s a mechanical exercise. Now ask: is the result a term? That is
to say, is it ‘0’, a variable, or built up from ‘0’ and/or variables using just the
successor, addition and multiplication functions? (see Section 4.3). That’s algo-
rithmically decidable. And both steps involve simple computations that don’t
involve any open-ended search.

Similarly we can mechanically decide whether Atom(n), Wff (n) or Sent(n).
Decode n again. Now ask: is the result an atomic wff, a wff, or a sentence of LA?
In each case, that’s algorithmically decidable, without any open-ended searches.

To determine whether Prf (m,n), proceed as follows. First doubly decode m:
that’s a mechanical exercise. Now ask: is the result a sequence of PA wffs? That’s
algorithmically decidable (since it is decidable whether each separate string of
symbols is a wff). If it does decode into a sequence of wffs, ask: is this sequence
a properly constructed proof? That’s decidable too (check whether each wff in
the sequence is either an axiom or is an immediate consequence of previous
wffs by one of the rules of inference of PA’s Hilbert-style logical system). If
the sequence is a proof, ask: does its final wff have the g.n. n? That’s again
decidable. Finally ask whether Sent(n) is true. Putting all that together, there
is a computational procedure for telling whether Prf (m,n) holds. Moreover, at
each and every stage, the computation involved is once more a straightforward,
bounded procedure that doesn’t involve any open-ended search.

In sum, suppose that we set out to construct programs for determining whether
Term(n), Atom(n), Wff (n), Sent(n) or Prf (m,n). Then we will be able to do
each of these using programming structures no more exotic than bounded ‘for’
loops (in particular, we don’t need to use any of those open-ended ‘do while’/‘do
until’ structures that can take us outside the limits of the primitive recursive).

Now, the computations we’ve described informally involve shuffling strings of
symbols; but – run on a real computer – those will in effect become computations
done on binary numbers. And if the whole computation can therefore be done
ultimately with ‘for’ loops operating on numbers, the numerical properties and
relations which are decided by the whole procedure must be primitive recursive
(see Section 11.4). �
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Well, that is indeed sketchy: but the argument ought to strike you as entirely
convincing. And if you are happy to take it on trust that we can spell out the
details and make all this rigorous, that really is just fine. If you aren’t, then
Sections 15.6 to 15.9 fill in many of the gaps.

15.4 Some cute notation

That’s the first part of the chapter done. Before proceeding to talk about ‘diag-
onalization’, let’s pause to introduce a really pretty bit of notation. Assume we
have chosen some system for Gödel-numbering the expressions of some language
L. Then

If ϕ is an L-expression, then we’ll use ‘�ϕ�’ in our logicians’ aug-
mented English to denote ϕ’s Gödel number.

Borrowing a species of quotation mark is appropriate because the number �ϕ�
can be thought of as referring to the expression ϕ via our coding scheme.

We are also going to use this very same notation to stand in for standard
numerals inside our formal language, so that (in our second usage)

In abbreviated L-expressions, ‘�ϕ�’ is shorthand for L’s standard
numeral for the g.n. of ϕ.

In other words, inside formal expressions ‘�ϕ�’ stands in for the numeral for the
number �ϕ�.

A simple example to illustrate:

1. ‘SS0’ is an LA expression, the standard numeral for 2.

2. On our numbering scheme �SS0�, the g.n. of ‘SS0’, is 221 · 321 · 519.

3. So, by our further convention, we can also use the expression ‘�SS0�’
inside (a definitional extension of) LA, as an abbreviation for the standard
numeral for that g.n., i.e. as an abbreviation for ‘SSS . . .S0’ with 221 ·321 ·
519 occurrences of ‘S’ !

This double usage – outside a formal language to denote a g.n. of a formal ex-
pression and inside a formal language to take the place of a standard numeral
for that g.n. – should by this stage cause no confusion at all. (We could have
continued our previous practice of overlining abbreviations for standard numer-
als: we would then indicate the numeral for the g.n. number �SS0� by the messy
‘�SS0�’. Many writers do this. But aesthetics recommends our fairly common
and rather prettier convention.)

15.5 The idea of diagonalization

(a) Gödel is going to tell us how to construct a wff G in PA that is true if and
only if it is unprovable in PA. We now have an inkling of how he can do that:
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wffs can contain numerals which refer to numbers which – via Gödel coding –
are correlated with wffs.

Gödel’s construction involves taking an open wff that we’ll abbreviate U, or
by U(y) when we want to emphasize that it contains just ‘y’ free. This wff has
g.n. �U�. And then – the crucial move – Gödel substitutes the numeral for U’s
g.n. for the free variable in U. So the key step involves forming the wff U(�U�).

This substitution operation is called diagonalization, which at first sight might
seem an odd term for it. But in fact, Gödel’s construction involves something
quite closely akin to the ‘diagonal’ constructions we encountered in e.g. Sections
6.2 and 11.5. In the first of those cases, we matched the index of a wff ϕn(x) (in
an enumeration of wffs with one free variable) with the numeral substituted for
its free variable, to form ϕn(n). In the second case, we matched the index of a
function fn (in an enumeration of p.r. functions) with the number the function
takes as argument, to form fn(n). Here, in our Gödelian diagonal construction,
we match U’s Gödel number – and we can think of this as indexing the wff in
a list of wffs – with the numeral substituted for its free variable, and this yields
the Gödel sentence U(�U�).

Now note the following additional point. Given the wff U, it can’t matter
much whether we do the Gödelian construction by forming (i) U(�U�) (as Gödel
himself did in 1931) or alternatively by forming (ii) ∃y(y = �U� ∧ U(y)). For (i)
and (ii) are trivially equivalent. But it in fact makes a few technical details go
slightly easier if we do things the second way – so that motivates our official
definition:

The diagonalization of ϕ is ∃y(y = �ϕ� ∧ ϕ).

It should go without saying that there is no special significance to using the
variable ‘y’ for the significant variable here! But we’ll keep this choice fixed,
simply for convenience.4

(b) Diagonalization is, evidently, a very simple mechanical operation on ex-
pressions. In fact,

Theorem 15.2 There is a p.r. function diag(n) which, when ap-
plied to a number n which is the g.n. of some wff, yields the g.n.
of that wff’s diagonalization.

We will prove this result in the next section; but for the moment here is

Another very sketchy argument Consider this procedure. Decode the g.n. n =
�ϕ� to get some expression ϕ (assume we have some convention for dealing with
‘waste’ cases where we don’t get an expression). Then form ϕ’s diagonalization,
∃y(y = �ϕ� ∧ ϕ). Then work out the g.n. of this result to compute diag(n). This

4Note too that our official definition of the diagonalization of a wff conveniently applies to
any wff, whether it contains ‘y’ free or not (in the latter case, ϕ’s diagonalization is equivalent
to ϕ).
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procedure doesn’t involve any unbounded searches. So we again will be able to
program the procedure using just ‘for’ loops. Hence diag is p.r. �

15.6 The concatenation function

(a) We have given a very informal but hopefully entirely persuasive argument
for Theorem 15.1, and in particular for its crucial claim that the relation Prf is
primitive recursive, where Prf (m,n) holds when m numbers a PA proof of the
sentence with g.n. n.

Gödel, as we said, gives a cast-iron proof of this claim (or rather, he proves the
analogue of this claim for his particular formal system). He shows how to define
a sequence of more and more complex functions and relations by composition
and recursion, eventually leading up to a p.r. definition of Prf. Inevitably, this
is a laborious job: Gödel does it with masterly economy and compression but,
even so, it takes him forty-five steps of function-building to show that Prf is p.r.

We have in fact already traced some of the first steps in Section 11.8. We
showed, in particular, that extracting exponents of prime factors – the key oper-
ation used in decoding Gödel numbers – involves the p.r. function exp. To follow
Gödel further, we need to keep going in the same vein, defining ever more com-
plex functions. What I propose to do in the third and last part of this chapter is
to fill in the next few steps moderately carefully, and then indicate much more
briefly how the remainder go. This should be enough to give you a genuine feel
for Gödel’s demonstration and show you how it can be completed, without going
into too much horrible detail.5

However, although we are only going to give a partial proof that Prf is p.r.,
by all means skip even this cut-down discussion, and jump to the next chapter
where the real excitement starts. You’ll miss nothing of wider conceptual interest.
Gödel’s Big Idea is that Prf is primitive recursive. Working up a full proof that
this Big Idea is right just involves cracking some mildly interesting brain-teasers,
so you might well want to get off the bus at this stop. (Look at it like this. We
argued on general grounds in Section 15.3 that Prf is p.r.: hence there must be a
loop program for determining whether Prf (m,n) holds for particular numbers
m, n. The rest of this chapter in effect begins to describe how to write the
program. Which is fun in its way, if you like that kind of thing. But once you are
convinced that the programming tricks can be done, you can cheerfully forget
how they are done.)

(b) Still aboard? Then do some quick revision of Section 11.8. Recall two facts
in particular. Keeping the old numbering,

R5. The function exp(n, i) is p.r., where this returns the exponent of πi in the
prime factorization of n.

5Masochists and ‘completists’ are quite welcome to struggle through e.g. Mendelson (1997,
pp. 193–198).
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R6. The function len(n) is p.r., where this returns the number of distinct
prime factors of n.

Note: if n is the g.n. of an expression e which is a sequence of symbols/variables
s0, s1, s2, . . . , sk, then exp(n, i) gives the basic code of si. And if n is the super
g.n. of a sequence of wffs or other expressions e0, e1, e2, . . . , ek, then exp(n, i)
gives the g.n. of ei. Further, note that if n is a g.n., then it consists in multiples
of the first len(n) primes (i.e. the primes from π0 to πlen(n)−1).

(c) We will now add another key p.r. function to our list:

R7. There is a concatenation function such that (i) m � n is the g.n. of the
expression that results from stringing together the expression with g.n.
m followed by the expression with g.n. n, and (ii) this ‘star’ function is
primitive recursive.

Proof for (R7) Suppose m is the g.n. of the expression ‘∃y’, i.e. m = 211 · 34,
and n is the g.n. of ‘y = 0’, i.e. n = 24 · 313 · 519. Then we want m � n to deliver
the g.n. of the concatenation of those two expressions, i.e. the g.n. of ‘∃y y = 0’;
so we want m � n = 211 · 34 · 54 · 713 · 1119.

Look at the pattern of exponents here and generalize. Suppose therefore that
m and n are Gödel numbers, and that len(m) = j and len(n) = k. We want
the function m � n to yield the value obtained by taking the first j + k primes,
raising the first j to powers that match the exponents (taken in order) of the
j primes in the prime factorization of m and then raising the next k primes to
powers that match the k exponents in the prime factorization of n. Then m � n
will indeed yield the g.n. of the expression which results from stringing together
the expression with g.n. m followed by the expression with g.n. n.

Now recall that bounded minimization keeps us in the sphere of the primitive
recursive (Section 8.5(b)). It is then readily seen we can define a p.r. function
m � n which applies to Gödel numbers in just the right way. We put6

m � n = (μx ≤ Bm,n)[(∀i < len(m)){exp(x, i) = exp(m, i)} ∧
(∀i ≤ len(n)){exp(x, i+len(m)) = exp(n, i)}]

where Bm,n has to be a suitable primitive recursive function whose values keep
the minimization operator finitely bounded. Bm,n = πm+n

m+n is certainly big
enough to cover all eventualities. �

(d) Some mini-examples of the concatenation function at work:

i. �S� � �0� yields �S0�, the g.n. of S0.

ii. Suppose a is the g.n. of the wff ∃x Sx = 0; then �¬� � a is the g.n. of
¬∃x Sx = 0.

6A reality check: we are here doing informal mathematics. If we use the quantifier and
conjunction symbols familiar from our formal languages, that is for brevity’s sake. And we can
e.g. freely use ‘<’ as well as ‘≤’. These aren’t formal wffs! Cf. Section 4.1; also see the comment
in the proof for (C) in Section 11.7.

132



Proving that Term is p.r.

iii. Suppose b is the g.n. of ‘S0 = 0’. Then �(� � a � �→� � b � �)� is the g.n.
of (∃x Sx = 0 → S0 = 0).

Note, by the way, that ((m�n)�o) = (m� (n�o)), which is why we can suppress
bracketing with the star function.

(e) Here’s a couple more results that we can easily prove now we have the star
function to hand:

R8. The function num(n) whose value is the g.n. of the standard numeral for
n is p.r.

R9. The function diag(n) from the previous section is p.r.

Proof for (R8) The standard numeral for Sn, for n > 0, is of the form ‘S’
followed by the standard numeral for n. So we have

num(0) = �0� = 219

num(Sx) = �S� � num(x) = 221 � num(x).

Hence num is primitive recursive. �

Proof for (R9) The diag function maps n, the g.n. of ϕ, to the g.n. of ϕ’s
diagonalization ∃y(y = �ϕ� ∧ ϕ). So we can put

diag(n) = �∃y(y =� � num(n) � �∧� � n � �)�
where num is as just defined, so diag is a composition of p.r. functions. �

15.7 Proving that Term is p.r.

Prf will evidently be defined in part in terms of Wff (since a proof is a sequence
of wffs); Wff will be defined in terms of Atom (since a wff is built up out of atomic
wffs); and Atom will be defined in terms of Term (since an atomic wff is built
up out of terms). So we’ll begin our outline of a rigorous proof of Theorem 15.1
by showing that Term is primitive recursive.

A term, recall, is either ‘0’, or a variable, or is built up from those using the
function-symbols ‘S’, ‘+’, ‘×’. Let’s say, then, that a ‘constructional history’ for
a term, or a term-sequence, is a sequence of expressions 〈τ0, τ1, . . . , τn〉 such that
each expression τk in the sequence either (i) is ‘0’; or else (ii) is a variable; or
else (iii) has the form Sτj , where τj is an earlier expression in the sequence; or
else (iv) has the form (τi + τj), where τi and τj are earlier expressions in the
sequence; or else (v) has the form (τi×τj), where τi and τj are earlier expressions.
Since any well-formed term must have the right kind of constructional history,
we can adopt as our official definition: a term is an expression which is the last
expression in some term-sequence.

So let’s now define the numerical relation Termseq(m,n), which holds when
m is the super g.n. for a term-sequence, and n is the g.n. of the last expression
in that term-sequence. We then have the following results:
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R10. The property Var(n) which holds when n is the g.n. of a variable is
primitive recursive.

R11. The relation Termseq(m,n) is primitive recursive.

R12. The property Term is primitive recursive.

Proof for (R10) We just note that we can put

Var(n) =def (∃x ≤ n)(n = 22x).

Recall, the basic code for a variable, on our scheme, always has the form 2x, and
the g.n. for a single expression is 2 to the power of the basic code. �

Proof for (R11) We can define Termseq by something of the following shape:

Termseq(m,n) =def exp(m, len(m) − 1) = n ∧
(∀k < len(m)){. . . exp(m, k) . . . }

The first conjunct on the right ensures that, in the sequence with super g.n.
m, the last expression has g.n. n, as we want. We now need to fill out the
curly brackets in the second conjunct in a way that reflects the fact for each
k < len(m), exp(m, k) – the g.n. of τk in our putative term-sequence – is the
g.n. of an expression satisfying one of the five defining conditions for belonging
to a term-sequence.

So, in those curly brackets, we need to say that exp(m, k) is either (i) the g.n.
of ‘0’, or (ii) the g.n. of a variable, or (iii) the g.n. of ‘Sτj ’ where τi occurs earlier
in the sequence, or (iv) the g.n. of ‘(τi + τj)’ where τi and τj occur earlier, or
(v) the g.n. of ‘(τi × τj)’ where τi and τj occur earlier.

Here, then, is what we want in the curly brackets:

{exp(m, k) = �0� ∨
Var(exp(m, k)) ∨
(∃j < k)(exp(m, k) = �S� � exp(m, j)) ∨
(∃i < k)(∃j < k)(exp(m, k) = �(� � exp(m, i) � �+� � exp(m, j) � �)�) ∨
(∃i < k)(∃j < k)(exp(m, k) = �(� � exp(m, i) � �×� � exp(m, j) � �)�)}

All the clauses are p.r. conditions, so their disjunction is a p.r. condition, so
Termseq is p.r., as we wanted to show. �

Proof for (R12) Since a term has to be the final member of some term-sequence,
we can give the following definition:

Term(n) =def (∃x ≤ Bn)Termseq(x, n)

where Bn is a suitably large p.r. bound. Given a term with g.n. n, and hence
with l = len(n) symbols, its term-sequence will be at most l long: so the super
g.n. of any term-sequence constructing it must be less than e.g. Bn = (πnl )l. �
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15.8 Proving that Atom and Wff are p.r.

(a) Given that Term is p.r., it follows quickly that

R13. The property Atom(n) which holds when n is the g.n. of an atomic wff is
primitive recursive.

Proof for (13) To repeat, the only atomic wffs of LA are expressions of the kind
τ1 = τ2. So we can put

Atom(n) =def

(∃x ≤ n)(∃y ≤ n)[Term(x) ∧ Term(y) ∧ n = (x��=��y)].

Which confirms that Atom(n) is primitive recursive. �

(b) We can now proceed to repeat essentially the same tricks to define Wff .
We first introduce the idea of a formula-sequence which is exactly analogous to
the idea of a term-sequence. So: a formula-sequence is a sequence of expressions
〈ϕ0, ϕ1, . . . , ϕn〉 such that each ϕk in the sequence is either (i) an atomic wff or
else (ii) built from one or two previous wffs in the sequence by using a connective
or else (iii) built from a previous wff in the sequence by prefixing ∀ξ or ∃ξ for some
variable ξ.7 We then define Formseq(m,n) to be true when m is the super g.n.
of a formula-sequence, and n is the g.n. of the last expression in that sequence.
This too is primitive recursive – and to show that it is, we can obviously use
exactly the same general strategy as in our proof that Termseq is p.r., writing
down a disjunction of p.r. conditions. We won’t spell out the details here.

Since any wff by definition will be the final formula in a formula-sequence,
then we can define the property of numbering a wff:

Wff (n) =def (∃x ≤ Bn)Formseq(x, n).

We just need to fix on a p.r. bound Bn within which to look for the formula-
sequence for the wff numbered n, and that will confirm that Wff is also p.r.
(exercise: spell out Formseq and find a suitable bound Bn).

15.9 Proving Prf is p.r.

(a) And now the end is in sight: we can finally outline a proof that Prf is
primitive recursive as claimed, and complete the outline Gödelian proof of The-
orem 15.1.

The details will evidently depend heavily on the type of proof system we are
dealing with. But remember, in order to keep things particularly simple, we’re
supposing that we have adopted a very old-fashioned linear proof system for PA
(which therefore doesn’t allow temporary suppositions and sub-proofs). In this
kind of system there are propositional axioms such as instances of the schema

7A technical remark: things go easiest here if we give LA a liberal syntax which allows wffs
with redundant quantifiers which don’t bind any variables in their scope.
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15 The arithmetization of syntax

ϕ→ (ψ → ϕ)

and quantificational axioms such as instances of the schema

∀ξϕ(ξ) → ϕ(τ) where τ is a term ‘free for’ the variable ξ in ϕ(ξ).

And we can manage with just two rules of inference, modus ponens and the
universal quantification rule that allows us to infer ∀ξϕ from ϕ.8

We can then define a PA proof as a sequence of wffs 〈ϕ0, ϕ1, . . . , ϕn〉, each
one of which is either an axiom (a PA axiom or a logical axiom), or follows from
previous wffs in the sequence by one or other of the rules of inference.

Now, the relation Modusponens(m,n, o) – which holds when the wff with g.n.
o follows from the wffs with g.n. m and n by modus ponens – is obviously p.r.,
for it is immediate that Modusponens(m,n, o) just when

m = �(� � n � �→� � o � �)� ∧ Wff (n) ∧ Wff (o).

And the relation Univ(m,n) – which holds when the wff with g.n. n is a
universal quantification of the wff with g.n. m – is also obviously p.r., for it is
immediate that Univ(m,n) just when

(∃x ≤ n)(var(x) ∧ Wff (m) ∧ n = �∀� � x � m).

It’s trickier – quite a lot trickier, in fact – to prove that the property Axiom(n)
is p.r., where Axiom(n) holds just when n numbers a wff which is an axiom
(whether a logical axiom or one of the non-logical axioms of PA). That’s mainly
because, in order to deal with the instances of the logical axiom schemata for
quantification, we’ll have to arithmetize facts about which variables are free in
which wffs, and facts about substituting terms for variables. But for once we
won’t go into details here: by now you shouldn’t need convincing this can all be
done in a p.r. way. (Rather tough exercise: think how the details might go.)

You shouldn’t need convincing either that Sent(n) is also p.r., where Sent(n)
holds just when n numbers a sentence, i.e. a closed wff of LA – for as we noted
before, we can mechanically check that an expression is a closed wff without any
open-ended searches. (Another tough exercise: think how the details might go
for a proof that Sent is p.r.)

(b) But if we can assume that Axiom(n) and Sent(n) are p.r., it is easy to
get to our final target of showing that the relation Prf (m,n) is indeed primitive
recursive.

Proof We echo again the pattern of our definition of Termseq . So we want
something of the following shape:

8See e.g. Mendelson (1997, p. 69): we treat an existential quantifier ∃ξ as mere shorthand
for ¬∃ξ¬. We can in fact recast such a system so that modus ponens is left as the only rule
of inference, as in the system QS of Hunter (1971, pp. 167–168). But this recasting doesn’t
actually buy us any benefits here.
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Proving Prf is p.r.

Prf (m,n) =def exp(m, len(m) − 1) = n ∧ Sent(n) ∧
(∀k < len(m)){. . . exp(m, k) . . . }.

The first conjunct on the right ensures that, in the sequence with super g.n. m,
the last expression has g.n. n, and the next conjunct ensures that the sequence
finishes with a sentence. We now need to fill out the curly brackets in the second
conjunct in a way that reflects the fact for each k < len(m), exp(m, k) – the g.n.
of ϕk in our putative proof-sequence – is the g.n. of an expression satisfying one
of the defining conditions for belonging to a proof-sequence.

So, in those curly brackets, we need to say that exp(m, k) is either (i) the g.n.
of an axiom, or (ii) the g.n. of a wff that follows from two earlier wffs in the
sequence by MP, or (iii) the g.n. of a wff which is the universal quantification of
some earlier wff.

Putting that in symbols, the curly brackets unpack into

{Axiom(exp(m, k)) ∨
(∃i ≤ k)(∃j ≤ k)Modusponens(exp(m, i), exp(m, j), exp(m, k)) ∨
(∃j ≤ k)Univ(exp(m, j), exp(m, k))}.

Which is p.r. since it is built up in p.r. ways from p.r. components. �

And that is enough by way of our promised outline proof that Prf (m,n) is
primitive recursive!

(c) One very important final comment before leaving this, however. Prf (m,n)
holds when m is the super g.n. of a PA proof of the sentence with g.n. n: so
Prov(n) =def ∃vPrf (v, n) holds when the wff with g.n. n is provable. Note,
though, that this time we can’t read off from n some upper bound on the length of
possible proofs for the sentence with g.n. n. So we can’t just define the provability
property by some bounded quantification of the kind (∃v ≤ B)Prf (v, n). If we
could, then the provability property would be p.r.: but it isn’t – as we will show
in Section 21.4.
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16 PA is incomplete

The pieces we need are finally all in place. So in this chapter we at long last learn
how to construct ‘Gödel sentences’ and use them to prove that PA is incomplete.
Then in the next chapter, we show how our arguments can be generalized to prove
that PA – and any other formal arithmetic satisfying very modest constraints
– is not only incomplete but incompletable. Our initial discussion in these two
chapters uses ideas from Gödel’s own treatment in 1931. Then in Chapter 19,
we start extending Gödel’s work.

The beautiful proofs now come thick and fast: savour them slowly!

16.1 Reminders

We start with some quick reminders – or bits of headline news, if you have
impatiently been skipping forward in order to get to the exciting stuff.

Fix on some acceptable scheme for coding up wffs of PA by using Gödel
numbers (‘g.n.’), and coding up sequences of wffs by super Gödel numbers. Then,

i. The diagonalization of ϕ is ∃y(y = �ϕ� ∧ ϕ), where ‘�ϕ�’ here stands in
for the numeral for ϕ’s g.n. – the diagonalization of ϕ(y) is thus equivalent
to ϕ(�ϕ�). (Section 15.5)

ii. diag(n) is a p.r. function which, when applied to a number n which is the
g.n. of some wff ϕ, yields the g.n. of ϕ’s diagonalization. (Section 15.6)

iii. Prf (m,n) is a p.r. relation which holds just if m is the super g.n. of a
sequence of wffs that is a PA proof of a sentence with g.n. n. (Section 15.3)

iv. Any p.r. function or relation can be expressed by a Σ1 wff of PA’s language
LA. (See Section 9.5 for the definition of a Σ1 wff, and Section 13.6 for
the main result.)

v. Any p.r. function or relation can be captured in PA by a Σ1 wff. (Sec-
tion 13.7)

vi. In particular, we can choose a Σ1 wff which ‘canonically ’ captures a given
p.r. relation by recapitulating its p.r. definition (or more strictly, by reca-
pitulating the definition of the relation’s characteristic function). And this
wff which captures the given relation will express it too. (Section 13.8)

For what follows, it isn’t necessary that you know the proofs of the claims we’ve
just summarized: but do ensure that you at least understand what they say.
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‘G is true if and only if it is unprovable’

16.2 ‘G is true if and only if it is unprovable’

We need just one new result:

The relation Gdl(m,n) – which holds just when m is the super
g.n. for a PA proof of the diagonalization of the wff with g.n. n –
is also p.r.

Proof Gdl(m,n) holds, by definition, when Prf (m, diag(n)). The characteristic
function of Gdl is therefore definable by composition from the characteristic
function of Prf and the function diag , and hence is p.r., given facts (ii) and (iii)
from the last section. �

We can now adopt the following notational convention:

Gdl(x, y) stands in for a Σ1 wff which canonically captures Gdl ,

for we know that there must be such a wff by fact (vi). Gdl(x, y) will also express
Gdl . And we next follow Gödel in constructing the corresponding wff

U(y) =def ∀x¬Gdl(x, y).

For convenience, we’ll further abbreviate this simply as ‘U’ when we don’t need
to stress that it contains ‘y’ free. Finally we diagonalize U itself, to give

G =def ∃y(y = �U� ∧ U(y)).

This is our first ‘Gödel sentence’ for PA.
Trivially, G is equivalent to U(�U�). Or unpacking that a bit,

G is equivalent to ∀x¬Gdl(x, �U�).

It is then immediate that

G is true if and only if it is unprovable in PA.

Proof By inspection. For consider what it takes for G to be true (on the in-
terpretation built into LA), given that the formal predicate Gdl expresses the
numerical relation Gdl . By our equivalence, G is true if and only if there is no
number m such that Gdl(m, �U�). That is to say, given the definition of Gdl , G
is true if and only if there is no number m such that m is the code number for
a PA proof of the diagonalization of the wff with g.n. �U�. But the wff with g.n.
�U� is of course U; and its diagonalization is G. So, G is true if and only if there
is no number m such that m is the code number for a PA proof of G. But if G
is provable, some number would be the code number of a proof of it. Hence G is
true if and only if it is unprovable in PA. Wonderful! �

16.3 PA is incomplete: the semantic argument

The very simple proof that, if PA is sound, then PA is incomplete, now runs
along the lines we sketched right back in Section 1.2.
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16 PA is incomplete

Proof Suppose PA is a sound theory, i.e. it proves no falsehoods (because its
axioms are true and its logic is truth-preserving). If G (which is true if and only if
it is not provable) could be proved in PA, the theory would prove a false theorem,
contradicting our supposition. Hence, G is not provable in PA. Hence G is true.
So ¬G is false. Hence ¬G cannot be proved in PA either. In Gödel’s words, G is
a ‘formally undecidable’ sentence of PA. �

So that establishes

Theorem 16.1 If PA has true axioms, then there is an LA-sentence
ϕ such that neither PA � ϕ nor PA � ¬ϕ.

If we are happy with the semantic assumption that PA’s axioms are true on
interpretation and so PA is sound, the argument for incompleteness is as sim-
ple as that, once we have constructed G. For reasons that will become clearer
when we consider Hilbert’s programme and related background in a later Inter-
lude, it was very important to Gödel that incompleteness can also be proved
without supposing that PA is sound: as he puts it, ‘purely formal and much
weaker assumptions’ suffice. However, the further argument that shows this is
a little trickier.1 So don’t lose sight of Gödel’s simple ‘semantic’ argument for
incompleteness.

16.4 ‘G is of Goldbach type’

(a) Before showing how weaker assumptions suffice, let’s note that, unlike The-
orems 5.7 and 6.1, our new Theorem is proved constructively; in other words, our
overall argument doesn’t just make the bald existence claim that there is a for-
mally undecidable sentence of PA, it actually tells us how to construct one: build
the open wff Gdl which canonically captures Gdl , then form the corresponding
sentence G.

Let’s remark too that G, while in one way horribly complex and ridiculously
long (when spelt out in unabbreviated LA), is in another way relatively simple.
In the jargon of Section 9.5, G is Π1.

Proof Gdl(x, y) is Σ1. So Gdl(x, �U�) is Σ1. So its negation ¬Gdl(x, �U�) is Π1.
Hence ∀x¬Gdl(x, �U�) is Π1 too. Its logical equivalent G is therefore also Π1. �

Which means that – as far as its logical complexity goes – the Gödel sentence G
is on a par with e.g. a natural formal statement of Goldbach’s conjecture, which
is another Π1 sentence, as we noted in Section 9.8.

(b) It is worth pursuing this theme a little further. So note that a Π1 sentence
like Goldbach’s conjecture is (equivalent to) the universal generalization of a Δ0

wff. And any Δ0 wff expresses a p.r. property or relation. For evidently an atomic

1Especially when we move on to consider Rosser’s enhanced version of Gödel’s argument
in Section 19.3, which is needed to get the best non-semantic analogue for Theorem 16.1.
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Δ0 wff expresses a p.r. property or relation, and we know that applying proposi-
tional connectives and/or bounded quantifiers keeps us within the realms of the
primitive recursive – see Section 11.7. Hence Goldbach’s conjecture amounts to
a universal generalization about a p.r. property or relation.

That elementary observation motivates a definition:

A sentence is of Goldbach type iff it is (equivalent to) a universal
generalization about a p.r. property or relation.

Then what we’ve just noted is that any Π1 sentence is of Goldbach type.
The converse holds too: any sentence of Goldbach type is equivalent to a Π1

sentence.

Proof Take the simplest case, and take a sentence that says that every number
has the p.r. monadic property P . Since P is p.r., its characteristic function cP
will be p.r., so cP is expressible by a Σ1 wff (by Theorem 13.4 again), and hence
also expressible by a Π1 wff ϕ(x, y) (by the Σ1/Π1 lemma of Section 13.2). So
then the Π1 wff ϕ(x, 0) will express P and the Π1 sentence ∀xϕ(x, 0) will also
express the original claim that every number is P . �

(c) In the light of those remarks, rather than talking rather abstractly about
our Gödel sentence G being a Π1 sentence, we can make things quite a bit more
vivid by saying that it is of Goldbach type, meaning that it is (equivalent to
a) universal generalization about a p.r. property. And we can strengthen our
statement of Theorem 16.1, to give us

Theorem 16.2 If PA has true axioms, then there is an LA-sentence
ϕ of Goldbach type such that neither PA � ϕ nor PA � ¬ϕ.

16.5 Starting the syntactic argument for incompleteness

So far, we have actually only made use of the weak result that PA’s language can
express the relation Gdl . But in fact our chosen Gdl doesn’t just express Gdl but
(canonically) captures it. Using this fact about Gdl, we can again show that PA
does not prove G, but this time without making the semantic assumption that
PA is sound. We’ll show that

A. If PA is consistent, PA � G.

Proof Suppose G is provable in PA. If G has a proof, then there is some super
g.n. m that codes its proof. But by definition, G is the diagonalization of the wff
U. Hence, by definition, Gdl(m, �U�).

Now we use the fact that Gdl captures the relation Gdl . That implies that,
since Gdl(m, �U�), we have (i) PA � Gdl(m, �U�).

But since G is logically equivalent to ∀x¬Gdl(x, �U�), the assumption that G is
provable comes to this: PA � ∀x¬Gdl(x, �U�). The universal quantification here
entails any instance. Hence (ii) PA � ¬Gdl(m, �U�).
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So, combining (i) and (ii), the assumption that G is provable entails that PA
is inconsistent. Hence, if PA is consistent, there can be no PA proof of G. �

16.6 ω-incompleteness, ω-inconsistency

Result (A) tells us that if PA is consistent then PA � G. There is also a com-
panion result (B), which tells us that if PA satisfies a rather stronger syntactic
condition then PA � ¬G. This section explains the needed stronger condition of
‘ω-consistency’. But first, . . .

(a) Here’s another standard definition we need:2

An arithmetic theory T is ω-incomplete iff, for some open wff ϕ(x),
T can prove each ϕ(m) but T can’t go on to prove ∀xϕ(x).

So a theory is ω-incomplete if there are cases where it can prove, case by case,
that each number satisfies some condition ϕ but it can’t go the extra mile and
prove, in one fell swoop, that all numbers satisfy ϕ. It is an immediate corollary
of our last proof that

Theorem 16.3 PA is ω-incomplete if it is consistent.

Proof Assume PA’s consistency. Then we’ve shown that

1. PA � G – i.e., PA � ∀x¬Gdl(x, �U�).

So no number is the super g.n. of a proof of G. That is to say, no number numbers
a proof of the diagonalization of U. That is to say, for any particular m, it isn’t
the case that Gdl(m, �U�). Hence, again by the fact that Gdl captures Gdl , we
have

2. For each m, PA � ¬Gdl(m, �U�).

Putting ϕ(x) =def ¬Gdl(x, �U�) therefore shows that PA is ω-incomplete. �

In Section 8.3, we noted that Q exhibits a radical case of what we are now
calling ω-incompleteness: although it can prove case-by-case all true equations
involving numerals, Q can’t prove many of their universal generalizations. For a
simple example, put Kx =def (0 + x = x); then for every n, Q � Kn, but we don’t
have Q � ∀xKx. In moving from Q to PA by adding the induction axioms, we
vastly increase our ability to prove generalizations. But we now see that some
ω-incompleteness must remain even in PA.

(b) And now here’s the promised definition of the notion we need for part (B)
of our syntactic incompleteness argument:

2To help explain choice of the terminology: ‘ω’ is the logicians’ label for the natural numbers
taken in their natural order – so, more precisely, ω is the first infinite ordinal.
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An arithmetic theory T is ω-inconsistent if, for some open wff ϕ(x),
T can prove each ϕ(m) and T can also prove ¬∀xϕ(x).

Or equivalently:

An arithmetic theory T is ω-inconsistent if, for some open wff
ϕ′(x), T � ∃xϕ′(x), yet for each number m we have T � ¬ϕ′(m).

Compare and contrast. Suppose T can prove ϕ(m) for each m. T is ω-incomplete
if it can’t also prove something we’d like it to prove, namely ∀xϕ(x). While T is
ω-inconsistent if it can actually prove the negation of what we’d like it to prove,
i.e. it can prove ¬∀xϕ(x).

Note that ω-inconsistency, like ordinary inconsistency, is a syntactically de-
fined property: it is characterized in terms of what wffs can be proved, not in
terms of what they mean. Note too that ω-consistency – defined of course as
not being ω-inconsistent! – implies plain consistency. That’s because T ’s being
ω-consistent is a matter of its not being able to prove a certain combination of
wffs, which entails that T can’t be inconsistent and prove all wffs.

Now, ω-incompleteness in a theory of arithmetic is a regrettable weakness;
but ω-inconsistency is a Very Bad Thing (not as bad as outright inconsistency,
maybe, but still bad enough). For evidently, a theory that can prove each of
ϕ(m) and yet also prove ¬∀xϕ(x) is just not going to be an acceptable candidate
for regimenting arithmetic.

(c) That last observation can be made vivid if we bring semantic ideas back
into play. Suppose the language of an arithmetic theory T is given a standard
interpretation, by which we here mean just an interpretation whose domain
comprises the natural numbers, and on which T ’s standard numerals denote the
intended numbers (with the logical apparatus also being treated as normal, so
that inferences in T are truth-preserving). And suppose further that on this
interpretation, the axioms of T are all true. Then T ’s theorems will all be true
too. So now imagine that, for some ϕ(x), T does prove each of ϕ(0), ϕ(1), ϕ(2),
. . . . By hypothesis, these theorems will then be true on the given standard
interpretation; so this means that every natural number must satisfy ϕ(x); so
∀xϕ(x) is true since the domain contains only natural numbers. Hence ¬∀xϕ(x)
will have to be false on this standard interpretation. Therefore ¬∀xϕ(x) can’t be
a theorem, and T must be ω-consistent.

Hence, contraposing, we have

Theorem 16.4 If T is ω-inconsistent then T ’s axioms can’t all
be true on a standard arithmetic interpretation.

Given that we want formal arithmetics to have axioms which are all true on a
standard interpretation, we must therefore want ω-consistent arithmetics. And
given that we think PA is sound on its standard interpretation, we are committed
to thinking that it is ω-consistent.
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16.7 Finishing the syntactic argument

(a) We’ll now show that PA can’t prove the negation of G, without assuming
PA’s soundness: we’ll just make the syntactic assumption of ω-consistency.

B. If PA is ω-consistent, PA � ¬G.

Proof Suppose that PA is ω-consistent but ¬G is provable in PA. That’s equiv-
alent to assuming (i) PA � ∃xGdl(x, �U�).

But if PA is ω-consistent, it is consistent. So if ¬G is provable, G is not provable.
Hence for any m, m cannot code for a proof of G. But G is (again!) the wff you
get by diagonalizing U. Therefore, by the definition of Gdl , our assumptions
imply that Gdl(m, �U�) is false, for each m. So, by the requirement that Gdl
captures Gdl , we have (ii) PA � ¬Gdl(m, �U�) for each m.

But (i) and (ii) together make PA ω-inconsistent after all, contrary to hypoth-
esis. Hence, if PA is ω-consistent, ¬G is unprovable. �

Here’s a quick corollary of our argument. Consider the theory PA† = PA + ¬G
(i.e. the theory you get by adding ¬G as a new axiom to PA). Then if PA is
consistent, this expanded theory PA† is consistent but ω-inconsistent.

Proof If PA†, i.e. PA + ¬G, entailed a contradiction, we’d have PA � G, which
is impossible if PA is consistent. So if PA is consistent, PA† must be consistent
too. Further, PA† trivially entails ¬G, i.e. ∃xGdl(x, �U�). And containing PA, it
still entails ¬Gdl(m, �U�) for each m. So PA† is ω-inconsistent. �

Which confirms that ω-inconsistency doesn’t imply inconsistency, i.e. that ω-
consistency is a stronger requirement than mere consistency.

(b) Let’s put all the ingredients together. Recall that G is of Goldbach type.
That observation, plus the result (A) from Section 16.5, plus the result (B) which
we’ve just proved, gives us the classic syntactic incompleteness theorem for PA:

Theorem 16.5 There is an LA-sentence ϕ of Goldbach type such
that, if PA is consistent then PA � ϕ; and if PA is ω-consistent
then PA � ¬ϕ.

16.8 ‘Gödel sentences’ and what they say

(a) So much for the two Gödelian proofs of the incompleteness of PA. We
can either combine the bolder semantic assumption that PA is sound with the
weak result that every p.r. function is expressible in LA, or combine the more
modest syntactic assumption that PA is ω-consistent (and so consistent) with
the stronger result that every p.r. function is capturable in PA. Either way, we
can show that our G is ‘formally undecidable’ in PA.3

3Compare Remark A from the first Interlude commenting on the different assumptions of
our two informal arguments for incompleteness in Chapters 5 and 6.
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Now, we might call our particular G a canonical Gödel sentence for three
reasons: (i) it is defined in terms of a wff that we said canonically captures Gdl ;
(ii) because it is roughly the sort of sentence that Gödel himself constructed; (iii)
it is the kind of sentence people standardly have in mind when they talk of ‘the’
Gödel sentence for PA (though since Gdl certainly isn’t unique in canonically
capturing Gdl , neither is G). However, let’s now note that neither our semantic
nor our syntactic argument actually depended on fact (i).

To explain. The first, semantic, argument didn’t actually rely on the assump-
tion that Gdl perspicuously reflects Gdl ’s p.r. definition. All we needed was the
assumption that we were dealing with some wff that expresses Gdl , however
it does the job. Suppose Gdle is any other wff that expresses Gdl . Any wff
Gdle(x, y) =def Gdl(x, y) ∧ θ, where θ is a true sentence, will do – see Section 4.5
(c) – though there are also other, wilder, ways of doing the expressive job. And
suppose that Ge is defined from Gdle in the same way as G is defined from Gdl.
Then, by just the same arguments, Ge is also true-but-unprovable in PA, and
therefore formally undecidable in PA: so we might naturally call Ge a Gödel sen-
tence for PA too. (And if the baggage θ carried along in our sample Gdle(x, y) is
Σ1, then Gdle(x, y) is also Σ1 – so then Ge is still Π1.)

The second, syntactic, argument likewise didn’t actually appeal to the as-
sumption that Gdl canonically captures Gdl by recapitulating its p.r. definition.
Suppose Gdlc is any other wff that captures Gdl in PA. For a start, any wff
Gdlc(x, y) =def Gdl(x, y) ∧ θ, where θ is a PA theorem, will do – see Section 4.6 (b).
And suppose that Gc is defined from Gdlc in the same way as G is defined from
Gdl. Then, again by just the same arguments, Gc is also unprovable in PA, as-
suming the theory is consistent, and ¬Gc is unprovable, assuming ω-consistency.
So we can think of Gc-type sentences as a sort of Gödel sentence too. (And if
the baggage θ is Σ1 then Gc is again Π1.)4

(b) It is often claimed that a Gödel sentence like G is not only true if and only
if unprovable, but actually says of itself that it is unprovable: Gödel himself
describes his original Gödel sentence this way (Gödel, 1931, p. 151). However, (i)
this claim is never strictly true; though (ii) if we do restrict ourselves to canonical
Gödel sentences, then these do indirectly say that they are unprovable.

(i) First, let’s stress that any of our Gödel sentences (when unpacked) is just
another sentence of PA’s language LA, the language of basic arithmetic. It is
an enormously long wff involving the first-order quantifiers, the connectives, the
identity symbol, and ‘S’, ‘+’ and ‘×’, which all have the standard interpretation
built into LA. The semantics built into LA therefore tells us that the various

4We think – of course – that PA is a sound theory; and we know from Section 4.7 that a
wff which captures a relation in a sound theory also expresses it. So each capturing wff Gdlc

of PA is also an expressing wff Gdle; and therefore each formally undecidable Gödel sentence
of the type Gc is in fact also a Gödel sentence of the type Ge, so is true if and only if it is
unprovable. But note that this claim does depend on assuming PA to be sound. When we
generalize our arguments to richer theories which might not be sound, we can’t always assume
that the second kind of Gödel sentence in fact forms a subclass of the first.
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terms inside Gödel sentences (in particular, the numerals) have numbers as val-
ues. So, their values therefore aren’t non-numerical items like, e.g., linguistic
expressions. Hence, no Gödel sentence straightforwardly refers to itself: so in
particular G doesn’t directly refer to itself and say that it is itself unprovable.5

(ii) That was trite, but worth stressing. It reminds us that if we claim that
some Gödel sentence does ‘say’ of itself that it is unprovable, then ‘say’ needs to
be carefully qualified.

But now take the case where we are dealing with a canonical Gödel sentence
like G. There is a reasonable sense in which this can be described as indirectly
saying that it is unprovable. That, indeed, is the interest in focusing on such
canonical Gödel sentences as we have been doing.

Note, this is not to make play with some radical re-interpretation of G’s sym-
bols (for doing that would just make any claim about what G says boringly trivial:
if we are allowed radical re-interpretations – like spies choosing to borrow ordi-
nary words for use in a secret code – then any string of symbols can be made to
say anything). No, it is because the symbols are still being given their standard
interpretation that we can recognize that Gdl (when unpacked) will express Gdl ,
given the background framework of Gödel numbering which is involved in the
definition of the relation Gdl . For remember, Gdl canonically captures Gdl and
so perspicuously reveals which p.r. function it expresses. Therefore, given that
coding scheme, we can recognize just from its construction that G will be true
when no number m is such that Gdl(m, �U�), and so no number numbers a proof
of G.

In short, given the coding scheme, we can immediately see that G is con-
structed in such as way as to make it true just when it is unprovable. That is the
limited sense in which we might reasonably claim that, via our Gödel coding,
the canonical G ‘indirectly says’ that it is unprovable.6

5The wff G embeds the standard numeral for U(y)’s Gödel number: and given our particular
numbering scheme this number will be huge. So writing out G in pure LA without abbreviations
would not be a practical possibility. But how significant is this fact? Well, the situation is
actually not at all unusual in mathematics. Given our limited cognitive powers, we need to
use chains of abbreviations all the time, and we often work with propositions whose official
definitional unpacking into the relevant ‘basic’ terms would be far too long to grasp. This
general phenomenon certainly isn’t without its interest and its problematic aspects: see e.g.
Isles (1992). However, the phenomenon occurs right across mathematics. So we aren’t going
to worry unduly that it crops up again here in our dealings with Gödel sentences.

6To make the contrast between G and the wider generality of Gödel sentences clear, recall
again that if Gdl expresses Gdl , so does Gdle(x, y) =def Gdl(x, y) ∧ θ for any true sentence θ.
If θ isn’t trivial, so we don’t immediately know whether it is true or not, then we won’t be
able just to read off from its construction that Gdle in fact expresses Gdl , in the way that we
can read that off from the construction of Gdl. Hence, even when you know about the Gödel
coding, it won’t in general be self-evident that the corresponding Ge is true if and only if it
is unprovable in PA – that won’t be something that Ge ‘says’ on the face of it. See also the
discussion in Section 21.2.
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Back in Chapter 8, we introduced the weak arithmetic Q, and soon saw that
it is boringly incomplete. Then in Chapter 10 we introduced the much stronger
first-order theory PA, and remarked that we couldn’t in the same easy way show
that it fails to decide some elementary arithmetical claims. However, in the last
chapter it has turned out that PA also remains incomplete.

Still, that result in itself isn’t yet hugely exciting, even if it is a bit surprising.
After all, just saying that a particular theory T is incomplete leaves wide open
the possibility that we can patch things up by adding an axiom or two more,
to get a complete theory T+. As we said at the very outset, the real force of
Gödel’s arguments is that they illustrate general methods which can be applied
to any theory satisfying modest conditions in order to show that it is incomplete.
This reveals that a theory like PA is not only incomplete but in a good sense
incompletable.

The present chapter explains these crucial points.

17.1 Generalizing the semantic argument

In Section 16.3, we showed that PA is incomplete on the semantic assumption
that its axioms are true (and its logic is truth-preserving). In this section, we
are going to extend this first ‘semantic’ argument for incompleteness to other
theories.

We begin with an important definition. We said in Section 3.3 that a theory
T counts as an axiomatized formal theory if it is (i) effectively decidable what
counts as a T -wff/T -sentence, (ii) it is effectively decidable which wffs are T ’s
(non-logical) axioms, (iii) T uses a proof system such that it is effectively decid-
able whether an array of T -wffs counts as a well-constructed derivation, and so
(iv) it is effectively decidable which arrays of T -wffs count as proofs from T ’s
axioms. We’ll now say that a theory T is p.r. axiomatized iff (i′) the numerical
properties of being the g.n. of a T -wff/T -sentence are primitive recursive, (ii′)
the numerical property of being the g.n. of an axiom is p.r., likewise (iii′) the
numerical property of being the super g.n. of a properly constructed proof is p.r.,
and therefore (iv′) the numerical property of being the super g.n. of a properly
constructed proof from T ’s axioms is p.r. too.1

1Note, by the way, our remark at the end of Section 15.1, where we explained why a
numerical property like being the g.n. of a T -wff will be p.r. on any acceptable numbering
scheme if it is p.r. on our default Gödel-style scheme. So the question whether a theory is p.r.
axiomatized is not embarrassingly relative to our particular numbering scheme.
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Now let’s turn to think again about how the semantic argument for PA worked.
The key ingredient is the claim that

1. There is an open wff Gdl which expresses the relation Gdl .

But, let’s not forget, we also need another fact:

2. We have quantification available.

For we need quantifiers to form the corresponding wff G from Gdl, where G is
true if and only if it is unprovable in PA.2

Digging deeper, our demonstration that (1) holds for PA is underpinned by
the facts that

3. The relation Gdl is primitive recursive (see Section 16.2).

4. PA’s language LA can express all p.r. functions – in fact, express them by
Σ1 wffs (see Section 13.5).

In fact, we can choose a Σ1 wff which expresses a given p.r. function by perspic-
uously recapitulating the function’s p.r. definition: but that – as we stressed at
the end of the last chapter – isn’t essential to the argument.

Digging deeper again, Gdl can be defined in terms of Prf and the trivially
p.r. diag function. And reviewing our proof that Prf is p.r. in Section 15.7, we
see that this presupposes that

5. PA is p.r. axiomatized.

For the proof depends crucially on the facts that e.g. Wff , Sent and Axiom are
p.r., and that the relations that hold between the codes for the input and output
of inference rules are p.r. too.

And that’s enough proof-mining to enable us to generalize. Suppose that we
are dealing with any other theory T such that

G1. T is p.r. axiomatized;

G2. T ’s language includes LA,

where we say that T ’s language includes LA if (i) every LA wff is also a wff of T ,
perhaps allowing for some definitional extensions of T ’s original language, and
(ii) the copies of LA wffs in T have the same truth-conditions as before, i.e. the
copies are true when their originals are true. Then (G1) gives us the analogue
of (3), i.e. there will be a p.r. relation GdlT such that GdlT (m,n) holds just so

2Compare the discussion in Section 12.4, where we outlined the construction of the theory
PRA0 which expresses all p.r. functions (and hence all p.r. properties and relations). This
theory can therefore express the version of the p.r. relation Gdl defined for that theory, so
the analogue of (1) holds. However, the absence of quantifiers in the language of PRA0 blocks
our going on to form a Gödel sentence for that weak theory. Which is why that theory, as we
claimed, can be negation complete for its limited language.
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long as m numbers a T -proof of the diagonalization of the wff numbered by n.
And (G2) gives us the analogues of (2) and (4).

There will therefore be an open Σ1 wff which expresses the p.r. relation
GdlT (m,n), i.e. the relation which holds just so long as m numbers a T -proof
of the diagonalization of the wff numbered by n. Let GdlT be such a wff. We
can then form a corresponding new Gödel sentence GT in LA, again of Goldbach
type, which is true if and only if it is unprovable in T .3

And from this point on we just use the same easy argument that we used to
prove Theorem 16.1 in order to show that, if T is an arithmetically sound theory
(if its LA theorems are all true), then GT is true-but-unprovable, and thus

Theorem 17.1 If a theory T , whose language includes LA, is
p.r. axiomatized and is arithmetically sound, then there is an LA-
sentence ϕ of Goldbach type such that T � ϕ and T � ¬ϕ.

As before, the precise details of the wff GdlT are not critical, so long as it does
the expressing job. However, we can take the default version of GdlT to be one
where the wff recapitulates the p.r. definition of GdlT . And in this case, as we
saw, we get an undecidable sentence GT which can reasonably be described as
‘indirectly saying’ of itself that it is unprovable in T .

17.2 Incompletability

Suppose T is a p.r. axiomatized, arithmetically sound theory, with a truth-
preserving logic, whose language includes LA; and suppose ϕ is one of the un-
decided arithmetical sentences such that neither T � ϕ nor T � ¬ϕ. One of ϕ,
¬ϕ is true. Consider the result of adding the true one to T as a new axiom. The
new expanded theory T+ is still arithmetically sound, and still a p.r. axioma-
tized theory, whose language includes LA. So, although T+ by construction now
decides ϕ the right way, T+ must still be incomplete.

Take PA as an example. Assume it is sound. Then PA + G (the theory you
get by adding G as a new axiom) is also sound. This new theory trivially entails
G. But being sound, its canonical Gödel sentence GPA+G is unprovable in the
theory. Of course, the further augmented theory PA + G + GPA+G proves it: but
being sound, and still p.r. axiomatized, this theory too is incomplete. And so it
goes.

Add in as many new true axioms to PA as you like, even augment the truth-
preserving deductive apparatus, and the result will still be incomplete – unless

3Of course, when we move to consider a different theory T , the set of axioms and/or
the set of rules of inference will change (and if T involves new symbols, then the scheme
for Gödel-numbering will need to be extended). So the details of the corresponding relation
GdlT will naturally change too. Hence the details of GdlT will change too, and likewise GT .
But still, we can construct our new Gödel sentence along exactly the same general lines as
before in constructing the Gödel sentence G for PA; in particular, we’ll only need to use basic
arithmetical vocabulary.
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it ceases to be p.r. axiomatized. In short, PA is not just incomplete, but it is
incompletable (if we still want a sound, p.r. axiomatized theory).

17.3 Generalizing the syntactic argument

So far, so good. Now we turn to generalizing the syntactic argument for incom-
pleteness. Looking at our proof for Theorem 16.5, we can see that the essential
facts underpinning this incompleteness proof are:

1′. There is an open wff Gdl which captures the relation Gdl .

2. We have quantification available.

Again, as we noted, any Gdl that does the capturing job will do. But in fact we
took a wff that canonically captures Gdl .

Underpinning (1′), we have the facts that

3. The relation Gdl is primitive recursive.

4′. PA can capture all p.r. functions – in fact, capture them by Σ1 wffs (see
Section 13.7).

But, to repeat, (3) depends essentially on the fact that

5. PA is p.r. axiomatized.

And conditions (2) and (4′) obtain because

6. PA contains Q,

which means (trivially) that PA’s language involves quantifiers and (not so triv-
ially) PA can capture all p.r. functions using Σ1 wffs by Theorem 13.6.

And that’s enough proof-analysis for us to be able to generalize again. Suppose
then that we are dealing with any other theory T such that

G1. T is p.r. axiomatized.

G2′. T extends Q,

where T extends Q if T ’s language includes that of Q, and T can prove all Q-
theorems.4 NB, as a limiting case, Q counts as ‘extending’ itself. Then (G1) gives
us the analogue of (3) again: there is a p.r. relation GdlT such that GdlT (m,n)
holds just so long as m numbers a T -proof of the diagonalization of the wff
numbered by n. And (G2′) gives the analogue of (4′), so there will be a Σ1

open wff GdlT which captures the relation GdlT . Hence, using the familiar con-
struction – and by (G2′), quantification will be available – we can again form a
corresponding Gödel sentence GT .

Here’s a useful abbreviatory definition:

4See Section 9.8: and for more about this idea, see Section 18.2.
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We’ll say that a theory T is nice iff T is consistent, p.r. axioma-
tized, and extends Q.

There doesn’t actually seem to be a standard bit of jargon for labelling this kind
of theory: so ‘nice’ is our own local term. Perhaps ‘minimally nice’ or some such
would have been better – since niceness in our sense is only a basic necessary
condition for being nice in the everyday sense of being an attractively acceptable
theory (for example, a nice theory in our sense can have lots of axioms beyond
Q’s which are false on the standard interpretation). But let’s stick to the snappy
shorthand.

And once we have constructed the Gödel sentence GT from GdlT , the line of
argument will continue exactly as before (as in Sections 16.5 and 16.7), and we
get

Theorem 17.2 If T is a nice theory then there is an LA-sentence
ϕ of Goldbach type such that T � ϕ and (if T is also ω-consistent)
T � ¬ϕ.

This result obviously gives us a corresponding fact about incompletability.
Suppose we beef up some nice, ω-consistent, theory T by adding new axioms.
Then T will stay incomplete – unless it becomes ω-inconsistent (bad news) or
stops being nice (even worse news).5

17.4 The First Theorem

Of course, Gödel in 1931 didn’t know that Q is p.r. adequate (because Q wasn’t
isolated as a minimal p.r. adequate arithmetic until twenty years later). So he
didn’t have the concept of ‘niceness’ and it would be anachronistic to identify
our very neat Theorem 17.2 as the First Incompleteness Theorem. But it is a
near miss.

Looking again at our analysis of the syntactic argument for incompleteness, we
see that we are interested in theories which extend Q because we are interested
in p.r. adequate theories which can capture p.r. relations like Gdl . So instead
of mentioning Q, let’s now instead explicitly write in the requirement of p.r.
adequacy. Then we have, by just the same arguments,

Theorem 17.3 If T is a p.r. adequate, p.r. axiomatized theory
whose language includes LA, then there is an LA-sentence ϕ of

5A reality check. Since PA doesn’t decide every LA sentence, assuming it is consistent,
no weaker theory which proves less can decide every LA sentence either! In other words,
it quite trivially follows from PA’s incompleteness that Q – and every other theory whose
language is LA and which is contained in PA – is incomplete. So the interesting new content
of our theorem is that theories stronger than PA must stay incomplete too, so long as they
are normally axiomatized and remain consistent. We’ve stated this generalizing theorem as
applying to all nice theories, rather than as applying just to theories which contain PA, simply
to highlight what fundamentally matters in generating incompleteness.
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Goldbach type such that, if T is consistent then T � ϕ, and if T is
ω-consistent then T � ¬ϕ.

It is this very general syntactic version of the incompleteness result which prob-
ably has as much historical right as any to be called Gödel’s First Theorem.6

For in his 1931 paper, Gödel first proves his Theorem VI, which shows that the
formal system P – which is his simplified version of the hierarchical type-theory
of Principia Mathematica – has a formally undecidable sentence of Goldbach
type. Then he immediately generalizes:

In the proof of Theorem VI no properties of the system P were
used besides the following:

1. The class of axioms and the rules of inference (that is, the
relation ‘immediate consequence’) are [primitive] recursively
definable (as soon as we replace the primitive signs in some
way by the natural numbers).

2. Every [primitive] recursive relation is definable [i.e. is ‘cap-
turable’] in the system P .

Therefore, in every formal system that satisfies the assumptions
1 and 2 and is ω-consistent, there are undecidable propositions of
the form (x)F (x) [i.e. ∀xF (x)], where F is a [primitive] recursively
defined property of natural numbers, and likewise in every exten-
sion of such a system by a recursively definable ω-consistent class
of axioms. (Gödel, 1931, p. 181)

Putting that generalized version together with Gödel’s Theorem VIII – which
tells us that for any claim ∀xF (x) of Goldbach type there is an equivalent claim
which uses only notions from basic arithmetic – gives us our Theorem 17.3.

And so we get to the official First Incompleteness Theorem at very long last.
Let joy be unconfined!

6‘Hold on! If that’s the First Theorem, we didn’t need to do all the hard work showing that
Q and PA are p.r. adequate, did we?’ Well, yes and no. No, proving this original version of the
Theorem of course doesn’t depend on proving that any particular theory is p.r. adequate. But
yes, showing that this Theorem has real bite, showing that it applies to familiar arithmetics,
does depend on proving the adequacy theorem.

By the way, Theorems 17.2 and 17.3 are not quite equivalent in effect because there are some
alternative very weak p.r. adequate arithmetics which are neither contained in nor contain Q.
For some details, see e.g. Boolos et al. (2002, §§16.2, 16.4), comparing the theories which are
there called Q and R. In fact, what’s crucial for p.r. adequacy is that Q and R both deliver
all the results that we listed in Section 9.9. But the differences here won’t matter to us, and
we’ll continue to concentrate on Q as the neatest weak p.r. adequate arithmetic.
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We have achieved our first main goal, namely to prove Gödel’s First Incom-
pleteness Theorem. And it will do no harm to pause for breath and quickly
survey what we’ve established and how we established it. Equally importantly,
we should make it clear what we have not proved. The Theorem attracts serious
misunderstandings. We will briefly block a few of these.

18.1 What we’ve proved

To begin with the headlines about what we have proved (we are going to be
repeating ourselves, but – let’s hope! – in a good way). Suppose we are trying to
regiment the truths of basic arithmetic – i.e. the truths expressible in terms of
successor, addition, multiplication, and the apparatus of first-order logic. Ideally,
we’d like to construct a consistent theory T whose language includes LA and
which proves all the truths of LA (and no falsehoods). So we’d like T to be
negation complete, at least for sentences of LA. But, given some entirely natural
assumptions, there can’t be such a negation-complete theory.

The first natural assumption is that T should be set up so that it is effectively
decidable whether a putative T -proof really is a well-constructed derivation from
T ’s axioms. So, in short, we want T to be a properly axiomatized theory. Indeed,
we surely want more: we want it to be decidable what counts as a T -proof without
needing open-ended search procedures (if would be a very odd kind of theory
where, e.g., checking whether some wff is an axiom takes an unbounded search).
Sharpened up, this is the assumption that T should be not just an axiomatized
formal theory but be a p.r. axiomatized theory.

But next, there’s a fork in the path.

(a) Let’s first assume that T is an arithmetically sound theory – after all, our
original motivation for being interested in the issue of completeness was wanting
a theory that regiments all the truths of LA. Given the soundness assumption,
we then have the following semantic argument for incompleteness (remember,
we are assuming T ’s language includes LA):

1. Every p.r. function and relation can be expressed in LA, the language of
basic arithmetic. (Theorem 13.4, proved in Sections 13.3 to 13.5 – the
argument is elementary once we grasp the β-function trick.)

2. The relation PrfT (m,n), which holds when m codes for a T -proof of
the wff with code number n, is primitive recursive – on the assumptions

153



18 Interlude: About the First Theorem

that T is p.r. axiomatized and that we have a sensible coding system.
(That’s Theorem 15.1, for which we gave a quick and dirty but convincing
argument in Section 15.3.) Likewise, the relation GdlT (m,n), which holds
when m codes for a T -proof of the diagonalization of the wff with code
number n, is primitive recursive (since GdlT is definable in terms of PrfT
and the trivially p.r. diagT function).

3. Then, using the fact that GdlT must be expressible in LA, and hence
also in the language of T , we can construct an arithmetic wff GT which
is true if and only if it is unprovable. A Π1 wff, i.e. one of Goldbach type,
suffices for the job. (See section 16.2: the construction is ingenious, but
quite easy to understand.)

4. Since GT is true if and only if it is unprovable, then – given the assump-
tion that T is arithmetically sound – there’s an entirely straightforward
argument to the dual conclusions that T � GT and T � ¬GT . (Use the
argument which we first gave, in fact, in Section 1.2.)

In sum, then, Gödel’s semantic argument shows that

Theorem 17.1 If a theory T , whose language includes LA, is
p.r. axiomatized and is arithmetically sound, then there is an LA-
sentence ϕ of Goldbach type such that T � ϕ and T � ¬ϕ.

And now let’s now quickly compare this result with the upshot of the easy
semantic incompleteness proof that we gave much earlier:

Theorem 5.7 If T is a sound axiomatized theory whose language
is sufficiently expressive, then T cannot be negation complete.

What has all our hard work since Chapter 5 bought us?
One point of difference between the old and new results is that the old result

applied to axiomatized theories generally, and the new result is so far only about
p.r. axiomatized theories in particular. But that’s minor. We’ve just noted that
we are normally interested in axiomatized theories that are presented as being
p.r. axiomatized: and, as we’ll see in Section 19.1, any decidably axiomatized
theory can in fact be recast as a p.r. axiomatized one.

So the key point of difference between the old and new results is this. The
old theorem told us about theories with ‘sufficiently expressive’ languages (i.e.
languages that can express all decidable two-place numerical relations), but it
didn’t tell us anything at all about what such languages look like. The possibility
was left open that sufficiently expressive languages would have to be quite rich.1

And that in turn left open the possibility that – even though a theory with a
richly expressive language can’t be complete – weaker theories covering e.g. basic

1Though we did say something to motivate the thought that sufficiently expressive lan-
guages don’t have to be very rich in Section 5.1, fn. 1.
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arithmetic could be complete. For remember: you can have incomplete theories
which extend complete sub-theories (e.g., Q extends BA, which is a complete
theory of the truths in its cut-down language LB .) Our new result closes off
those possibilities: even theories built in LA must be incomplete.

(b) So much for Gödel’s semantic route to his incompleteness result. Now sup-
pose, however, we take the other fork in the path, and don’t assume that T is
sound. We make life rather harder for ourselves. But we can still prove that T
must be incomplete, given weaker assumptions. We can put one version of the
syntactic argument as follows:

1′. Assume T contains at least as much arithmetic as Q. Then every p.r.
function and relation can be captured in T . (Theorem 13.6, which rests
on two other results: (i) every p.r. function is expressible using a Σ1 wff
of LA; and (ii) Q can capture any function expressible by a Σ1 wff.)

2′. As before, assuming that T is p.r. axiomatized, PrfT and so GdlT (m,n)
are primitive recursive.

3′. Again, we can construct the wff GT in the now familiar way, starting from
a wff that captures GdlT .

4′. We can then show: if T is consistent, T � GT ; and if T is ω-consistent,
T � ¬GT . (Generalizing the arguments of Sections 16.5 and 16.7.)

Note that the stages 1′ and 4′ of the syntactic argument are a bit trickier than
their counterparts in the semantic argument.2 That’s the price we pay for man-
aging without the strong assumption of soundness. But we get a benefit, for
we of course get an incompleteness result that now applies irrespective of the
soundness of the theory in question:

Theorem 17.2 If T is a nice theory – is a consistent, p.r. axiom-
atized theory which extends Q – then there is an LA-sentence ϕ of

2Trickier, yes. But still not that difficult. And it was very important to Gödel’s overall
conception of his enterprise that this was so. Georg Kreisel puts it like this in his memoir of
Gödel:

Without losing sight of the permanent interest of his work, Gödel repeatedly
stressed – at least, during the second half of his life – how little novel mathe-
matics was needed; only attention to some quite commonplace (philosophical)
distinctions; in the case of his most famous result: between arithmetic truth
on the one hand and derivability by (any given) formal rules on the other. Far
from being uncomfortable about so to speak getting something for nothing,
he saw his early successes as special cases of a fruitful general, but neglected,
scheme:

By attention to or, equivalently, analysis of suitable traditional philosoph-
ical notions and issues, adding possibly a touch of precision, one arrives
painlessly at appropriate concepts, correct conjectures, and generally easy
proofs. (Kreisel, 1980, p. 150)
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Goldbach type such that T � ϕ and (assuming T is ω-consistent)
T � ¬ϕ.

Let’s again quickly compare this result with the upshot of an earlier incom-
pleteness argument, this time the ‘syntactic’ proof that:

Theorem 6.2 A consistent, sufficiently strong, axiomatized for-
mal theory of arithmetic cannot be negation complete.

What has all our hard work since Chapter 6 bought us this time?
Well, one point of difference between the old and new results is again that

the old one applied to axiomatized formal theories while the new result so far
applies only to p.r. axiomatized theories. But that’s not important: and, as we
said, we’ll soon be closing this gap anyway.

Another, more significant, point of difference is that the old result required
only the assumption that our theory T is consistent, while half the new result
requires the stronger assumption that T is ω-consistent. But in fact, this too is a
difference which we can with some effort massage away. We can replace GT with
a cunningly designed sentence RT , and replace the relatively easy argument for
GT ’s undecidability (assuming T ’s ω-consistency) with a correspondingly more
complex argument for RT ’s undecidability (assuming only that T is consistent).
This will enable us to show that nice theories are always incomplete, whether
ω-consistent or not. (For more on this, see the Gödel-Rosser Theorem in Sec-
tion 19.3.)

The critical difference between our old and new syntactic arguments for in-
completeness is therefore this. The old theorem told us about theories which are
‘sufficiently strong’ (i.e. theories which can capture all decidable properties of
numbers), but it didn’t tell us what such theories look like. So the possibility was
left open that such incomplete theories have to be immensely rich if they are to
capture all decidable properties. Our new result has foreclosed that possibility
too. It tells us that to get incompleteness via the syntactic route it is enough to
be working with a theory which captures all p.r. properties and relations – and
it suffices that the theory includes Q.

(c) Let’s summarize the summary! Beginning with the First Interlude, we have
repeatedly stressed that there are two routes to incompleteness results. One
route goes via the semantic assumption that we are dealing with sound theories,
and otherwise uses a weak result about what certain theories can express: the
other route goes via the syntactic assumptions of consistency/ω-consistency, and
has to combine that with a stronger result about what theories can prove.

In his 1931 paper, Gödel downplays the semantic route to incompleteness.
In fact, it is indicated only at the outset, in his informal introduction, where he
‘sketch[es] the main idea of the proof . . . without any claim to complete precision’.
In Chapter 28, we will say something about why Gödel wants officially to avoid
relying on the notion of truth in his paper, and why he highlights the syntactic
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route. But it is worth bearing in mind that there really is a matching pair of
results here.

18.2 The reach of Gödelian incompleteness

Our generalized theorems talk about theories T whose language ‘includes’ LA.
We now need to be a bit more explicit about that notion.

Suppose T ’s ‘native’ language initially contains no arithmetical vocabulary. In
that case, for the theorems to apply, T needs to be able to define equivalents to
LA-wffs. But that involves two things. First, T must of course be able to define
the basic arithmetical vocabulary ‘0’, ‘S’, ‘+’ and ‘×’. But also T needs to be
able to define a predicate ‘Nat’ (satisfied by whatever play the role of natural
numbers in T ’s domain of quantification): that’s to enable T to replicate LA’s
arithmetical quantifications.

Take, for example, an LA-wff of the form ∀xϕ(x), where ϕ involves no quanti-
fiers. It plainly won’t do to take the equivalent claim in T just to be something
of the form ∀xϕ′(x), where ϕ′ is T ’s equivalent to ϕ according to T ’s definition
of the arithmetical vocabulary. That’s because T ’s quantifiers might range more
widely that LA’s. To get the ‘native’ equivalent of the LA quantified claim, we
need to restrict the T ’s quantifiers to the domain of numbers: so T ’s version of
the LA claim will unpack into something of the form ∀x(Nat(x) → ϕ′(x)).

And now the point to emphasize is that even if the theory T talks about a
domain which contains (an analogue of) the natural numbers, T may lack a way
of picking them out, i.e. T may lack a way of defining a suitable predicate Nat.
In that case, T won’t be able to prove or even express e.g. the analogues of Q’s
quantified theorems, and then version of the incompleteness theorem can get a
grip.

Here’s an illustration of the point (don’t worry if the example is unfamiliar: for
our purposes, it’s only the general moral that matters). CompareQ, an axiomatic
theory of rational fields (‘fractions’), and R, the textbook axiomatic theory of
real closed fields (‘real numbers’). Both theories are only true of domains big
enough to contain a ‘0’, a ‘1’, and all their successors; i.e. both theories are only
true of domains which contain (something that looks like) the natural number
series. Now, Julia Robinson (1949) showed that you can indeed construct a Q-
predicate Nat which is only true of the natural numbers – though doing this
takes some surprisingly sophisticated ideas. Hence, you can construct a theory
of the natural numbers inside Q: so Q extends Q and must be incomplete and
incompletable too. On the other hand, Alfred Tarski had earlier proved that R
is a complete theory – which means that there can’t be a predicate of R which
picks out the natural numbers. Put it this way: while the real numbers contain
the natural numbers, the pure theory of real numbers doesn’t contain the theory
of natural numbers.3 The moral? Even if a theory T deals with a more complex

3For more on Tarski’s theorem here, see e.g. Hodges (1997, Sections 2.7, 7.4).
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18 Interlude: About the First Theorem

structure than the natural numbers, the incompleteness of arithmetic doesn’t by
itself entail the incompleteness of T .

18.3 Some ways to argue that GT is true

The Gödelian arguments show that if a rich enough arithmetical theory T is
sound, or indeed if it is just consistent, then there will be a canonical Gödel
sentence GT which is unprovable in T , and – because it indirectly ‘says’ it is
unprovable – GT will be true. It is now worth pausing to think just a bit about
the variety of situations in which we might come to recognize that GT is true.

Start with the most humdrum case. (1) I believe that GQ is true. Why? Well,
I endorse Q as a good (though very partial) arithmetical theory. I’m very happy
to assert its theorems. And standing back from my cheerful willingness to follow
derivations in Q where they lead, I recognize that I accept the theory as sound.
Then the semantic argument for incompleteness tells me that GQ is unprovable
and hence true.

(2) A fancier case. Continue to assume that Q is sound, and now consider the
theory QG that we introduced in Section 9.8, which is the theory we get by adding
Goldbach’s conjecture as an additional axiom to Q. Then QG is consistent if and
only if Goldbach’s conjecture is true of the natural numbers (the ‘if’ direction is
trivial, for if the conjecture is true all QG axioms are true; the ‘only if’ direction
is – as we noted – a corollary of Theorem 9.4). We should therefore accept the
canonical Gödel sentence for QG as being true if and only if we in fact accept
Goldbach’s conjecture itself as true. And why do we accept that, if we do? In
part because of our failure ever to find any counterexamples to the conjecture.
And in part, perhaps, because of some probabilistic considerations concerning
the distribution of primes, and other ‘almost-proofs’ for the conjecture.

Here’s a variant example (2′). This time take the theory QF which we get by
adding a statement of Fermat’s Last Theorem as an additional axiom to Q. Since
we can regiment Fermat’s Last Theorem as a Π1 wff, then – by Theorem 9.4
again – QF is consistent if and only if Fermat’s Last Theorem is true. We more
confidently believe this theory is consistent because we have Andrew Wiles’s
(highly infinitary) proof of the Theorem. And that proof then grounds our belief
that QF ’s canonical Gödel sentence must be true.

Consider next (3) the case of the theory PA† which you get by adding ¬G to
PA as a further axiom. This theory is unsound on the interpretation built into its
language LA. But it must be consistent, assuming PA is, for otherwise we’d have
PA � G, contrary to the Incompleteness Theorem for PA. So, given we accept
that PA is consistent and know about Gödel’s syntactic incompleteness proof,
we’ll accept that PA† is consistent, and hence also accept the canonical Gödel
sentence for PA† as true.

And for a final example, take (4) the theory Q† which we get by adding to Q the
negation of ∀x(0 + x = x) as an additional axiom. Like PA†, Q† is also unsound.
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But in Section 8.4 we described a re-interpretation of Q’s language in which
we took the domain of quantification now to be the numbers plus a couple of
rogue elements, and then we redefined the successor, addition and multiplication
functions for this augmented domain. We can easily see that Q†’s axioms and
hence all its theorems are true on this reinterpretation, and it follows that Q†

can’t prove any contradiction (for contradictions would still be false on the new
interpretation). In this case, therefore, we have an interpreted theory which
speaks (falsely) about one structure; but we prove it consistent by reinterpreting
it as if it described another structure. And on that ground we’ll accept Q†’s
canonical Gödel sentence as true.4

Why note our different examples (1) to (4)? Two reasons. First, we want to
drive home the message that, given a particular canonical Gödel sentence GT ,
we might have various kinds of grounds for believing it true. But second, our ex-
amples also reveal that while our grounds for accepting Gödel sentences may be
various, they are – so to speak – perfectly ordinary mathematical reasons. When
we met the idea of incompleteness at the very outset, we speculated whether we
must have some special, rule-transcending, cognitive grasp of the numbers under-
lying our ability to recognize (canonical) Gödel sentences as correct arithmetical
propositions (see Section 1.4). That speculation should now perhaps begin to
seem unnecessarily fanciful.

18.4 What doesn’t follow from incompleteness

What follows from our incompleteness theorems so far? In this section, we’ll
highlight a few claims that someone might carelessly think are justified by the
theorems, but which certainly aren’t.

(a) ‘For any nice theory T, T can’t prove its Gödel sentences but we always
can.’ 5 Not so. Suppose GT is a canonical Gödel-sentence for theory T . Then,
true enough, we can show that, if T is indeed nice, then T � GT . And hence, if
we can assume that T is nice, we can conclude that GT is true.

But this line of thought, of course, doesn’t give us a truth-establishing proof of
GT , unless we do know that T is nice: and that requires in particular knowing that

4It is worth commenting on the contrast between the cases of PA† and Q†. We have a
proof that PA† is consistent if PA is, and we believe that PA is consistent: so, because it is a
standard metatheorem of first-order logic that any consistent first-order theory has a model
(i.e. an interpretation that makes all its theorems true – see Section 22.5), we will accept that
there must exist a model of PA†. So in this case, at least in the first instance, we believe that
there is such a model because we believe that the theory is consistent (it is quite a challenge
to describe a suitable model). In the case of Q† the inference goes exactly the other way about,
from the existence of a model to the consistency of the theory – and hence to the truth of its
Gödel sentence.

5This is the thought that underlies the related claim that, roughly, I can’t be a machine
because (i) no machine M can prove its own Gödel sentence GT (M) – i.e. the Gödel sentence
of the theory T (M) whose theorems are M ’s potential arithmetical output – but (ii) I can
always show that GT (M) is true. See Section 28.6 for more on this line of thought.
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T is consistent.6 But very often, we won’t be able to show that T is consistent.
And if we don’t get a handle on some way of establishing T ’s consistency, we
can’t use the proof that, if T is nice, then GT is true, to show that GT is true.

Take the theory QC , which is Q augmented by some unproven Π1 conjecture
C. By Theorem 9.4, to show QC is consistent is equivalent to proving C, which
we may have no clue how to do. So we may have no clue at all whether QC ’s
canonical Gödel sentence is true, even if in fact it is.

(b) ‘There are truths of LA – Gödel sentences – which are not provable in
any (nice) axiomatized theory.’ But again, plainly not so. Take any arithmetical
truth ϕ at all. Then this is trivially a theorem of the corresponding formal theory
Q +ϕ, i.e. of the theory we get by adding ϕ as a new axiom to Q. (And, assuming
Q is sound, Q +ϕ is also sound: hence Q +ϕ is a nice theory – for the theory
is consistent because sound, p.r. axiomatized because it still has a finite list of
axioms, and is p.r. adequate because it contains Q.)

There is a quantifier-shift fallacy lurking hereabouts: from the theorem that
for every nice T there is a truth ϕ such that T � ϕ it doesn’t follow that there
is a truth ϕ such that for every nice T , T � ϕ.

Of course, deriving a truth ϕ in some ad hoc formal theory in which we’ve
adopted ϕ as an axiom is of no interest: what we want are theories which we have
independent reasons to accept as sound. So let’s now bear that in mind, alongside
the observation that we can’t always ourselves prove the Gödel sentences for
consistent theories. You might wonder if Gödel’s First Theorem still gives us
reason to accept something along the following lines:

(c) ‘For some nice theories T , we can prove their Gödel sentences are true, even
though these truths can’t be derived in a formal theory we independently accept
as sound.’ But once again not so. Take a case where we can show that GT is
true, by arguing outside the theory T that T is consistent. Then there’s nothing
at all in the First Theorem to stop us reflecting on the principles involved in
this reasoning, and then constructing a richer formalized theory S (distinct from
T , of course) which encapsulates these principles, a formal theory in which we
prove GT to be true. And we will presumably have good reason to accept this
new formal theory S, since by hypothesis it just regiments some aspects of how
we reason anyway.7

6It is worth mentioning a famous historical episode here: towards the end of the first edition
of his Mathematical Logic (1940), W. V. Quine proves Gödel’s theorem for his proposed formal
theory. Should we then conclude that the relevant Gödel sentence is true? We go wrong if we do:
for it turns out that Quine’s theory in that edition is inconsistent! Every sentence is provable
so the system’s Gödel sentence which ‘says’ it is itself unprovable is false.

7Careful! All that is being claimed is that there is nothing in the First Theorem that would
stop us regimenting the reasoning we use to show GT is true – when we can show that – into
some axiomatized system S. It doesn’t follow, of course, that there could be some single master
system S∗ which wraps up any reasoning we might use in proving true any GT we can prove,
a master system which is itself axiomatizable in a way we can survey. That would be another
quantifier-shift fallacy.
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In sum, the claims (i), (ii) and (iii) are each fairly obviously wrong. Understand
why they are wrong, and you will be inoculated against many of the wilder claims
about Gödel’s First Theorem which are based on such misconceptions.8

18.5 What does follow from incompleteness?

So what can we infer from the theorem that if a theory is sound/nice, it can’t
be complete? Well, let’s stress here just one point about that simple but deep
Gödelian fact: it does sabotage, once and for all, any project of trying to show
that all basic arithmetical truths can be thought of as deducible, in some stan-
dard deductive system, from one unified set of fundamental axioms which can
be specified in a tidy, p.r., way. In short, arithmetical truth isn’t provability in
some single axiomatizable system.

The First Theorem therefore sabotages the logicist project in particular, at
least in its classic form of aiming to explain how we can deduce all arithmetic
from a tidy set of principles which are either logical axioms or definitions.9 Which
at first sight seems a major blow; for there surely remains something very deeply
attractive about the thought we expressed at the very beginning of the book, i.e.
the thought that in exploring the truths of basic arithmetic, we are just exploring
the deductive consequences of a limited set of axiomatic truths which we grasp
in grasping the very ideas of the natural number series and the operations of
addition and multiplication.

On the other hand, if the truths of even basic arithmetic run beyond what
is provable in any given formal system, then even arithmetic is – so to speak
– inexhaustible. Given any nice theory of arithmetic T we accept as sound, we
have to recognize that there are more truths that it cannot prove (there’s GT for
a start). Mathematicians are not going to run out even of arithmetical work, as
they develop ever richer formal settings in which to prove more truths. Which
is, perhaps, a rather more pleasing thought.

But that’s enough generalities for the moment: we need to move on. The next
three chapters explore more of the technicalities concerning the First Theorem
and its close relatives.

8We haven’t space to explode all the daft misconceptions about the Theorem: see Franzén
(2005) for a more wide-ranging demolition job. And also see our Section 28.6.

9For the philosophical prospects of non-classical forms of logicism, however, see e.g. Wright
(1983), the essays on Frege in Boolos (1998), and Hale and Wright (2001).
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We now start exploring further around and about our incompleteness theorems.
But do be careful! Don’t let the developments over these next three chapters
obscure the relatively simple lines of the classic Gödelian arguments which we
have already given in Chapters 16 and 17.

The main business of this chapter is to present two key ways of strengthening
our incompleteness theorems.

1. We show how to extend the reach of both the semantic and syntactic
versions of our incompleteness results, so that they apply not just to p.r.
axiomatized theories, but to any formal theory that counts as axioma-
tized in the intuitive sense. (We also draw an easy corollary of our newly
extended semantic theorem, and prove that the truths of basic arithmetic
can’t be axiomatized.)

2. We explain how we can do away with the assumption of ω-consistency
(as used in Gödel’s original First Theorem): we can prove that any nice
theory is incomplete and incompletable, whether it is ω-consistent or not.
That’s the Gödel-Rosser Theorem.

Then, after the main business, we explain another way of weakening the assump-
tion of ω-consistency, this time involving the idea of so-called ‘1-consistency’.

19.1 Broadening the scope of the incompleteness

theorems

Our intuitive characterization of a properly formalized theory T requires various
properties like that of being an axiom of T to be effectively decidable. Or, what
comes to the same given a sensible Gödel numbering scheme, the characteristic
functions of numerical properties like that of numbering a T -axiom should be
effectively computable (see Sections 3.3 and 11.6). But we now know that not
all computable functions are p.r. (Section 11.5). Hence we could in principle
have a formal axiomatized theory which isn’t p.r. axiomatized (in the sense
of Section 17.1). Does this give us wriggle room to get around the Gödelian
incompleteness theorems in the last chapter? Could there e.g. be a consistent
formalized theory of arithmetic containing Q which was complete because not
p.r. axiomatized?

Well, as we noted at the start of Section 18.1, a theory T that is formally
axiomatized but not p.r. axiomatized will be a rather peculiar beast: checking
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that a putative T -proof is a proof will then have to involve a non-p.r. open-ended
search, which will make T very unlike any familiar kind of axiomatized theory.
Still, you might say, an oddly axiomatized theory which is complete would be
better than no complete formal theory at all. However, we can’t get even that.

For consider the following result, which we’ll prove in just a moment:

Theorem 19.1 If T is an axiomatized theory, then there is a p.r.
axiomatized theory T ′ which has exactly the same theorems.

This is an informal version of what’s called Craig’s Re-axiomatization Theorem.1

And now suppose that T is any sound axiomatized theory whose language
includes LA. Craig’s Theorem tells us that there is a p.r. axiomatized theory T ′

which has the same theorems as T . But since T ′ shares the same theorems, this
theory is sound too, so Theorem 17.1 applies. There is therefore an LA-sentence
ϕ of Goldbach type such that T ′

� ϕ and T ′
� ¬ϕ. Hence, again since T and T ′

share their theorems,

Theorem 19.2 If a theory T, whose language includes LA, is
axiomatized and is sound, then there is an LA-sentence ϕ of Gold-
bach type such that T � ϕ and T � ¬ϕ.

Suppose likewise that T is any consistent axiomatized theory which extends
Q. Then Craig’s Theorem tells us that there is a p.r. axiomatized theory T ′

which has the same theorems, so is still consistent, still extends Q, and so is nice
(and also T ′ will be ω-consistent if and only if T is). So Theorem 17.2 applies,
and there is an LA-sentence ϕ of Goldbach type such that T ′

� ϕ and (assuming
T ′ is ω-consistent) T ′

� ¬ϕ. Hence, since T and T ′ share their theorems,

Theorem 19.3 If T is a consistent axiomatized theory which ex-
tends Q, then there is an LA-sentence ϕ of Goldbach type such that
T � ϕ and (assuming T is ω-consistent) T � ¬ϕ.

In summary: Given Craig’s Theorem, Gödelian incompleteness infects any
suitable sound/nice axiomatized theory, whether it is p.r. axiomatized or not. So
it just remains to explain why Craig’s Theorem holds:

Proof sketch If T is a formalized theory, its theorems can be effectively enu-
merated, by Theorem 3.1 (Section 3.5). So imagine stepping through some algo-
rithmic procedure Π which effectively lists T ’s theorems as ϕ0, ϕ1, ϕ2, . . .. We’ll
now count the computational steps as we go along, executing one minimal step
of the procedure at a time. Most of these steps are interim computations; but
very occasionally, the next theorem on the list will be printed out. Suppose that
the theorem ϕj is produced at step s(j) as we go through procedure Π.

1Equivalently, it says that if a body of wffs is axiomatizable at all, then we can find a p.r.
axiomatization of it – where, amplifying the definition of Section 5.4, a set of wffs Γ is (p.r.)
axiomatizable if there is a (p.r.) axiomatized formal theory T such that, for any wff ϕ, ϕ ∈ Γ
if and only if T � ϕ. For the original theorem, see Craig (1953).

163



19 Strengthening the First Theorem

Now for Craig’s ingenious trick. Consider the derivative theory T ′ defined as
follows: (i) for each T -theorem ϕj , T ′ has the axiom (ϕj ∧ ϕj ∧ ϕj ∧ . . . ∧ ϕj),
where this is an n-fold conjunction with n = s(j) conjuncts; (ii) T ′’s sole rule of
inference is ∧-elimination.

Trivially, every T -theorem is a T ′-theorem. And equally trivially, making the
sole assumption that T has the usual rule of ∧-introduction, every T ′-theorem
is a T -theorem. (Exercise: tweak the definition of T ′ so that we no longer need
even to assume that T has ∧-introduction.)

Given an arbitrary wff ψ, here’s how to tell whether it is a T ′-axiom:

1. Read in ψ and see if it is the n-fold conjunction of some wff ϕ (that can
be done with a search bounded by the length of ψ, i.e. by routines using
‘for’ loops). If it passes that test, count the number of conjuncts n, and
then move on to . . .

2. Run through n steps of the procedure Π which lists off the theorems of
T (think of that as executing one big ‘for’ loop counting from 1 to n).

3. Check to see if at the end of these n steps, Π prints out the same wff ϕ
(you can do that with another ‘for’ loop).

Evidently, if the final check confirms that ϕ is indeed printed out, its n-fold
conjunction ψ is a T ′-axiom; otherwise ψ isn’t an axiom. Which shows, therefore,
that testing whether ψ is a T ′-axiom can be done by a computational procedure
which uses ‘for’ loops, without open-ended searches. Hence the characteristic
function of the property of numbering a T ′-axiom will be primitive recursive.
And therefore T ′ is p.r. axiomatized. �

Here’s an immediate corollary worth noting:

Theorem 19.4 If Σ is a set of wffs which can be effectively enu-
merated, then there is a p.r. axiomatized theory T ′ whose theorems
are exactly the members of Σ.

Proof As before, starting from the second line! �

To be sure, that’s a bit quick-and-dirty. However we won’t pause to tidy things
up now. That’s because in Chapter 30 – when we at last have a general account
of computation and decidability to hand – we’ll be returning again to our more
encompassing Theorems 19.2 and 19.3, and we will then be able to prove them
without going via Craig’s Theorem. But still, even before we go into that more
general account of computation, it has been well worth noting that there is an
intuitively compelling argument that our Gödelian arguments which officially
apply just to p.r. axiomatized theories in fact apply more generally.
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19.2 True Basic Arithmetic can’t be axiomatized

We now extract an immediate corollary of Theorem 19.2. Let True Basic Arith-
metic be TA, the set of truths of LA, i.e. the set of sentences which are true on
the standard interpretation built into LA. Then we have

Theorem 19.5 TA, True Basic Arithmetic, is not axiomatizable.

Proof Suppose otherwise, i.e. suppose T is an axiomatized theory which proves
exactly the truths in TA. Then T ’s theorems are all true, so T is sound; its
language includes LA; so Theorem 19.2 applies. Hence there is an LA-sentence
ϕ such that T � ϕ and T � ¬ϕ. But one of ϕ and ¬ϕ must be true, which means
that T doesn’t prove all the truths in TA. Contradiction. �

Compare this result with Theorem 5.6, which tells us the truths of a ‘suf-
ficiently expressive’ language are not axiomatizable. It is plain what we have
gained. The old theorem didn’t tell us anything about what a sufficiently expres-
sive language is like; it left open the possibility that the theorem only applied
to very rich languages. Now we see that non-axiomatizability applies even down
at the lowly level of the truths of LA.

19.3 Rosser’s improvement

(a) Moving on to our second main topic of the chapter, recall that one half of
the First Theorem requires the assumption that we are dealing with a theory T
which is not only nice but is ω-consistent. But we can improve on this in two
different ways:

1. We can keep the same undecidable sentence GT while invoking the weaker
assumption of ‘1-consistency’ in showing that T � ¬GT .

2. Following Barkley Rosser (1936), we can construct a different and more
complex sentence RT such that we only need to assume T is plain consis-
tent in order to show that RT is formally undecidable.

Since Rosser’s clever construction yields the better result, we’ll start with that.

(b) How does Rosser construct an undecidable sentence RT for T? Well, essen-
tially, where Gödel constructs a sentence GT that indirectly says ‘I am unprovable
in T ’, Rosser constructs a sentence RT which indirectly says ‘if I am provable in
T , then my negation is already provable’ (i.e. it says that if there is a proof of
RT with super g.n. n, then there is a proof of ¬RT with a smaller code number).

This sentence turns out to be Π1, And another semantic incompleteness result
is immediate: if T is a nice sound theory (and hence consistent), neither RT nor
¬RT can be provable:

Proof Assume T soundness. And suppose RT were a theorem. Then it would be
true. In other words, ‘if RT is provable, ¬RT is already provable’ would be true,
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and also this conditional would have a true antecedent. So we can infer that ¬RT
is provable. Which makes T inconsistent, contrary to hypothesis. Therefore RT
is unprovable. Which shows that the material conditional ‘if RT is provable, ¬RT
is already provable’ has a false antecedent, and hence is true. In other words, RT
is true. Hence its negation ¬RT is false, and is therefore unprovable. �

(c) As we said, however, in order to show that neither RT nor ¬RT is provable
we don’t need the semantic assumption that T is sound. The syntactic assump-
tion of T ’s consistency is enough. So we get the Gödel-Rosser Theorem:

Theorem 19.6 If T is a nice theory, then there is an LA-sentence
ϕ of Goldbach type such that neither T � ϕ nor T � ¬ϕ.

Up to now, then, the two halves of our syntactic incompleteness theorem have
been asymmetric: we used the weak condition of consistency in one half, and
then a stronger condition of ω-consistency in the other half. Rosser restores
symmetry.

However, we’ll hang fire just for the moment on spelling out how to find a
Rosser sentence and so give a proof of the pivotal Theorem 19.6. For things
go perhaps just a little bit more cleanly if we wait until after we’ve met the
Diagonalization Lemma in the next chapter (the proof therefore comes in Sec-
tion 21.3).2 Be patient!

19.4 1-consistency and Σ1-soundness

(a) Rosser improves on Gödel’s original Theorem by replacing the neatly de-
fined GT by a more complex undecidable sentence RT ; the ensuing argument that
RT is undecidable, assuming T is consistent, is correspondingly more intricate.
But two decades after Rosser, Georg Kreisel (1957) noted that we can in fact
keep Gödel’s own argumentation for the First Theorem in place, while weakening
the assumption of ω-consistency to 1-consistency or equivalently Σ1-soundness.

Since those twin notions involve something stronger than mere consistency,
Kreisel’s observation doesn’t give us as good a result as Rosser’s. Still, we’d better
pause to explain what’s going on, if only because so many modern presentations
of Gödel’s First Theorem do in fact state it in terms of 1-consistency and/or
Σ1-soundness. (You are, however, very welcome to skip the following slightly
fiddly discussion.)

(b) If you are still reading, then we’ll begin with a reminder and two new
definitions:

i. T is ω-consistent if there is no ϕ(x) such that T � ∃xϕ(x) while, for each
m, T � ¬ϕ(m).

2Enthusiasts who want to scale the Gödel-Rosser Theorem by the direct route can consult
e.g. Mendelson (1964, pp. 145–146), or the slightly less tractable Mendelson (1997, pp. 209–
210).
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ii. T is 1-consistent iff there is no Δ0 wff ϕ(�x) such that T � ∃�xϕ(�x) while,
for each �m, T � ¬ϕ(�m).3

iii. T is Σ1-sound iff, for any Σ1 sentence ϕ such that T � ϕ, ϕ is true. (Cf.
Section 9.7)

(c) Now take another quick look at our demonstration in Section 16.7 that, if
PA is ω-consistent, it can’t prove ¬G. Assume that PA is ω-consistent. We then
noted that if PA did prove G, we’d have both (1) PA � ∃xGdl(x, �U�) yet also
(2) PA � ¬Gdl(m, �U�) for eachm, contradicting the assumption of ω-consistency.
A little reflection, however, shows that we don’t need to appeal to ω-consistency
to get a contradiction here: if PA is 1-consistent, it can’t prove ¬G.

Proof Remember that Gdl(x, �U�) is Σ1: so it is equivalent to something of the
form ∃�zψ(x,�z), where ψ is Δ0. So the conditions (1) and (2) come to this, where
ψ is Δ0: (1) PA � ∃x∃�zψ(x,�z) and (2) PA � ¬∃�zψ(m,�z) for each m. And (2)
elementarily implies (3) PA � ¬ψ(m,�n) for every sequence of numbers �n.

So suppose PA is 1-consistent. Then you can’t have (1) and (3); so you can’t
have (1) and (2); so PA � ¬G. �

(d) Here are two more very easy lemmas:

1. If T is Σ1-sound it is consistent.

2. If T is nice, T is Σ1-sound if and only if it is 1-consistent.

Proof for (1) If T is inconsistent, we can derive anything in T – including
e.g. 0 = 0 and 0 �= 0, which are both trivially Σ1. But those two sentences can’t
both be true. Hence, if T is inconsistent, it can’t be Σ1-sound. Contraposing,
Σ1-soundness implies consistency. �

Proof for (2) Suppose that T is (i) Σ1-sound but (ii) 1-inconsistent. Then by
(ii) there is a Δ0 wff ϕ(�x) such that T � ∃�xϕ(�x), but for each �m, T � ¬ϕ(�m).
But by (i), if T � ∃�xϕ(�x), then ∃�xϕ(�x) is true. And so for some �m, ϕ(�m) must
be true. But being Δ0, that will be provable in T (since T contains Q, and Q
correctly decides every Δ0 wff). So for some �m, T � ϕ(�m). So T is inconsistent,
contradicting the assumption of Σ1-soundness. So if (i), then not-(ii), which gives
us one direction of the biconditional.

For the other direction (contraposed), suppose T is not Σ1-sound, i.e. proves
some false strictly Σ1 wff. So for some Δ0 wff ϕ, T � ∃�xϕ(�x) yet ∃�xϕ(�x) is false.

3Or at least, let that be our official definition – where, of course, �x is a tuple of variables,
∃�x is a bunch of quantifiers, one for each variable, and �m is a tuple of numbers of matching
length.

Equally often, 1-consistency is defined in terms of there being no Δ0 wff ϕ(x) such that
T � ∃xϕ(x) while, for each m, T � ¬ϕ(m). In virtue of Theorem 10.1, this one-quantifier
version is equivalent to our official multi-quantifier version in the presence of a smidgin of
induction. And the one-quantifier version does have the nice feature of being transparently a
weaker condition than ω-consistency.
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19 Strengthening the First Theorem

So each instance of ¬ϕ(�m) will be true and – being Δ0 – will be provable in T .
Then T is 1-inconsistent. �

(e) Generalizing the argument in (c) and putting everything together, we there-
fore get the following revised versions of the First Theorem, which (unlike the
stronger Gödel-Rosser Theorem) are still proved essentially via Gödel’s original
construction:

Theorem 19.7 If T is a nice Σ1-sound theory, then there is an
LA sentence ϕ of Goldbach type which is formally undecidable by
T .

Theorem 19.8 If T is a nice 1-consistent theory, then there is an
LA sentence ϕ of Goldbach type which is formally undecidable by
T .

If we want to stress the naturalness of the weak condition which suffices for prov-
ing incompleteness via Gödel’s construction, then we might want to emphasize
Σ1-soundness. If we want to stress that the condition in question can in fact be
characterized entirely syntactically, without using the notion of truth, then we’ll
emphasize 1-consistency instead.
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20 The Diagonalization Lemma

In this short but pivotal chapter, we now show how a version of Gödel’s trick
in constructing GT can be generalized to give us a proof of the so-called Diago-
nalization Lemma. This Lemma will then be used in the next chapter to prove
some key theorems, including the Gödel-Rosser Theorem and Tarski’s Theorem.

So, in this chapter,

1. We first introduce the provability predicate ProvT which applies to a
number if it numbers a T -theorem . . .

2. . . . and we prove a simple theorem about provability predicates.

3. We then use ProvT in constructing a wff equivalent to T ’s canonical Gödel
sentence GT .

4. That leads to a quick proof that if T is nice, T � GT ↔ ¬ProvT (�GT �).
Which means that not only is T ’s canonical Gödel sentence true if and
only if it is unprovable, but we can derive that claim inside T itself.

5. Put ϕ(x) =def ¬ProvT (x). We have just said that if T is a nice theory,
then there is a sentence γ such that T � γ ↔ ϕ(�γ�). We now generalize
this observation to get the full Diagonalization Lemma. Let ϕ(x) be any
open wff with one free variable: it will always be the case that, if T is
nice, there is some sentence γ such that T � γ ↔ ϕ(�γ�).

20.1 Provability predicates

Recall: Prf (m,n) holds when m is the super g.n. for a PA-proof of the sentence
with g.n. n. So Prov(n) =def ∃vPrf (v, n) will hold when some number codes
a proof of the sentence with g.n. n – i.e. when n numbers a PA-theorem. (See
Sections 15.2, 15.3, and also the very end of Section 15.9.)

Since the relation Prf is p.r., we know it can be captured in PA by a Σ1 wff
that perspicuously recapitulates the p.r. definition of Prf (see Section 13.8). So
let’s adopt the following notational convention:

Prf(x, y) stands in for a Σ1 wff which canonically captures Prf .

And now here’s another definition. We put

Prov(x) =def ∃v Prf(v, x).1

1We will assume, as we can without loss of generality, that we can quantify using ‘v’ without
clash of variables.
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20 The Diagonalization Lemma

Evidently, this wff is also Σ1; and it is true of n just when n numbers a PA-
theorem. We’ll call Prov(x) a (canonical) provability predicate for PA. It evidently
expresses the provability property Prov . But be careful! – we mustn’t assume
that it captures that property: in fact, we’ll soon prove that it doesn’t (see
Theorem 21.3).

Next, we generalize in the now familiar way. For any theory T , there is similarly
a relation Prf T (m,n) which holds when m is the super g.n. for a T -proof of the
sentence with g.n. n.2 If T is a nice theory, then Prf T will again be a p.r.
relation. Hence there will be a corresponding Σ1 wff PrfT (x, y) which captures
this relation in T (and again captures it in a perspicuous way, by recapitulating
the p.r. definition of Prf T ). So we can define ProvT (x) =def ∃v PrfT (v, x), where
this new provability predicate expresses the property of numbering a T -theorem.

20.2 An easy theorem about provability predicates

(a) Here’s a straightforward result about provability predicates:

Theorem 20.1 Let T be a nice theory. Then for any sentence ϕ:

C1. If T � ϕ, then T � ProvT (�ϕ�);
Cω. Suppose T is ω-consistent: then if T � ProvT (�ϕ�),

T � ϕ.

Proof for (C1) First assume T � ϕ. Then there is a T proof of the wff with g.n.
�ϕ�. Let this proof have the super g.n. m. Then, by definition, Prf T (m, �ϕ�).
Hence, since Prf T is captured by PrfT , it follows that T � PrfT (m, �ϕ�). Hence
T � ∃v PrfT (v, �ϕ�), i.e. T � ProvT (�ϕ�). �

An even quicker proof for (C1) If T � ϕ, then ProvT (�ϕ�) will be true. But
ProvT (�ϕ�) is Σ1; hence, since Q is Σ1 complete, i.e. proves all true Σ1 sentences
(by Theorem 9.2), Q � ProvT (�ϕ�). Hence T � ProvT (�ϕ�). �

Proof for (Cω) Now assume T is ω-consistent and also that T � ProvT (�ϕ�),
i.e. T � ∃v PrfT (v, �ϕ�). Suppose, for reductio, that T � ϕ. Then, for all m, it
isn’t the case that Prf T (m, �ϕ�). Therefore, since T is nice and captures Prf T ,
for all m, T � ¬PrfT (m, �ϕ�). But that makes T ω-inconsistent, contrary to
hypothesis.3 �

(b) Two quick comments on our easy theorem. First, suppose that we are given
only that T is nice, this time without the further assumption of something like

2Of course, we are now talking in the context of some appropriate scheme for Gödel-
numbering expressions of T – see the second remark towards the end of Section 15.1.

3If you delved into Section 19.4, then you will guess that the condition of ω-consistency in
our theorem can be weakened to 1-consistency or to Σ1-soundness. And you’d be right. It is
just trivial that if T is Σ1-sound and T � ProvT (�ϕ�), then – since ProvT is Σ1 – ProvT (�ϕ�)
is true, i.e. T � ϕ.
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G and Prov

ω-consistency. Then it won’t always be the case that if T � ProvT (�ϕ�) then
T � ϕ. Why? Roughly: if T is ω-inconsistent, then T is not sound, i.e. it has
false theorems on the standard interpretation (see Section 16.6 (b)). But if T is
not sound, then among the things that T can get wrong are facts about what it
can prove.

Second, with the additional assumption of ω-consistency back in place, it
follows from (Cω) that if T � ϕ then T � ProvT (�ϕ�). But this fact needs to be
very sharply distinguished from the claim that, if T � ϕ, then T � ¬ProvT (�ϕ�).
That second claim is in fact plain false.

For suppose otherwise. Then this supposition, combined with (C1), implies
that ProvT captures the provability property ProvT . However, as we’ll soon see
in Section 21.4, no wff can do that if T is nice. So, even in nice theories, it
isn’t always true that if T � ϕ, then T � ¬ProvT (�ϕ�). But there’s more: in
Section 25.2 (d), we’ll see that in typical nice theories, T � ¬ProvT (�ϕ�) is
never true. To put it vividly, such theories may know about what they can
prove, but they know nothing about what they can’t prove!

20.3 G and Prov

We saw that our Gödel sentence G for PA is constructed in such a way that it is
true if and only if it is unprovable. Using the provability predicate Prov, we can
now express this fact about G inside PA by the sentence

G ↔ ¬Prov(�G�).

But we can do better: we can actually prove this very sentence inside PA.
To show this, our next target theorem, let’s start by thinking again about how

our Gödel sentence for PA was constructed in Section 16.2. We’ll then do some
manipulation to find a sentence which is provably equivalent to G and which
explicitly involves Prov. So, recall,

G =def ∃y(y = �U� ∧ U).

Here, ‘�U�’ stands in for the numeral for U’s g.n., and

U =def ∀x¬Gdl(x, y)

where Gdl(x, y) captures our old friend, the relation Gdl .
Now, by definition,

Gdl(m,n) =def Prf (m, diag(n)).

But the one-place p.r. function diag can be captured as a function in PA by some
open wff Diag(x, y). We can therefore give the following definition:

Gdl(x, y) =def ∃z(Prf(x, z) ∧ Diag(y, z)).

And now let’s do some elementary manipulations:
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20 The Diagonalization Lemma

U =def ∀x¬Gdl(x, y)
=def ∀x¬∃z(Prf(x, z) ∧ Diag(y, z)) (definition of Gdl)
↔ ∀x∀z¬(Prf(x, z) ∧ Diag(y, z)) (pushing in the negation)
↔ ∀z∀x¬(Prf(x, z) ∧ Diag(y, z)) (swapping quantifiers)
↔ ∀z(Diag(y, z) → ¬∃x Prf(x, z)) (rearranging after ‘∀z’)
↔ ∀z(Diag(y, z) → ¬∃v Prf(v, z)) (changing variables)
=def ∀z(Diag(y, z) → ¬Prov(z)) (definition of Prov)
=def U′ (new abbreviation)

Since the U/U′ equivalence is proved by simple logical manipulations, that means
we can prove the equivalence inside the formal first-order logic built into PA.

A quick comment. Since U and U′ are trivially equivalent, it can’t matter
whether we work with G, the diagonalization of U, or G′, the diagonalization of
U′. These are distinct wffs involving different numerals introduced when we do
the diagonalization: but it is an easy exercise to check that G′ will do just as
well as G for proving Gödel’s theorem. We won’t pause over this.

20.4 Proving that G is equivalent to ¬Prov(�G�)

To take us up to the theorem we want, note that first-order logic can of course
prove the trivial equivalence of G ↔ U(�U�); and we’ve just said that it can also
prove the U/U′ equivalence. So it can prove G ↔ U′(�U�). Since PA includes the
necessary first-order logic we therefore get, unpacking just a bit,

PA � G ↔ ∀z(Diag(�U�, z) → ¬Prov(z)).

Now, diagonalizing U yields G. Hence, just by the definition of diag , we have
diag(�U�) = �G�. Since by hypothesis Diag captures diag as a function, it follows
from the definition in Section 12.2 that

PA � ∀z(Diag(�U�, z) ↔ z = �G�).

Putting those two results together, we immediately get

PA � G ↔ ∀z(z = �G� → ¬Prov(z)).

But the right-hand side of that biconditional is trivially equivalent to ¬Prov(�G�).
So we’ve proved our first desired result:

Theorem 20.2 PA � G ↔ ¬Prov(�G�).

To repeat, what this shows is that the informal claim ‘G is true if and only if it
is unprovable’ can itself be formally proved within PA. Very neat!

And the same reasoning applies to other theories which contain first-order logic
and which can capture p.r. functions and relations. In other words, if ProvT is
the provability predicate for T constructed analogously to the predicate Prov for
PA, and if GT is a Gödel sentence constructed analogously to G, then by exactly
the same argument we have

Theorem 20.3 If T is a nice theory, T � GT ↔ ¬ProvT (�GT �).
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20.5 Deriving the Lemma

(a) A little more reflection, however, shows that this last result is just an il-
lustration of a quite general Diagonalization Lemma which is the main target of
this chapter: 4

Theorem 20.4 If T is a nice theory and ϕ(x) is any wff of its
language with one free variable, then there is a sentence γ of T ’s
language such that T � γ ↔ ϕ(�γ�).

That’s wonderful! The original Gödel construction gives us a sentence that T
shows is true if and only if it satisfies the condition of being unprovable-in-T .
Now it turns out that it doesn’t matter what condition we take, so long as it
is appropriately expressible in T ’s language: there will be a sentence which T
shows is true if and if only if it satisfies that condition.

Proof We use the same basic proof idea as before. In other words, we do to the
generic ‘ϕ’ pretty much what our Gödelian construction above did to ‘¬Prov’.
So, first step, put ψ(y) =def ∀z(DiagT (y, z) → ϕ(z)) where DiagT captures the
diagonalization function as a function in T .

Next, of course, we do some diagonalization! So construct γ, the diagonaliza-
tion of ψ(y). This is trivially equivalent to ψ(�ψ�), and this trivial equivalence
can be proved in T . So T � γ ↔ ∀z(DiagT (�ψ�, z) → ϕ(z)).

Our theorem now follows very speedily. For note that diagT (�ψ�) = �γ�.
Hence, T � ∀z(DiagT (�ψ�, z) ↔ z = �γ�), since by hypothesis DiagT captures
diagT .

It follows that T � ∀z(DiagT (�ψ�, z) → ϕ(z)) ↔ ∀z(z = �γ� → ϕ(z)), since
we have just shown that the antecedents of the conditionals on either side are
provable equivalents.

But we’ve already seen that the left-hand side of our biconditional is provably
equivalent to γ; and the right-hand side is in turn trivially equivalent to ϕ(�γ�).
So T � γ ↔ ϕ(�γ�). �

Alternative proof Reviewing that first proof, it is quite easy to spot that a
variant construction is possible; and it is worth quickly spelling this out. So now
put ψ′(y) =def ∃z(DiagT (y, z) ∧ ϕ(z)). Redefine γ to be the diagonalization of
ψ′(y). Then T � γ ↔ ∃z(DiagT (�ψ′�, z) ∧ ϕ(z)).

Since diagT (�ψ′�) = �γ�, we have T � ∀z(DiagT (�ψ′�, z) ↔ z = �γ�).
Hence T � ∃z(DiagT (�ψ′�, z) ∧ ϕ(z)) ↔ ∃z(z = �γ� ∧ ϕ(z)), since the first

conjuncts on either side are equivalents. But the left-hand side of our bicon-
ditional is provably equivalent to γ, and the right-hand side is equivalent to
ϕ(�γ�). So again T � γ ↔ ϕ(�γ�). �

4This conventional name is apt given the role of diagonalization in its proof. However,
‘lemma’ usually connotes a minor result or interim result: this Lemma is assuredly more
important than that! In a footnote added to later reprintings of Gödel (1934), Gödel says
that this Lemma ‘was first noted by Carnap (1934)’: first noted in print, yes; but it has been
suggested that Gödel himself had already got there in 1930.
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20 The Diagonalization Lemma

(b) A quick remark about jargon. Suppose that the function f maps the argu-
ment a back to a itself, so that f(a) = a: then a is said to be a fixed point for f.
And a theorem to the effect that, under certain conditions, there is a fixed point
for f is a fixed-point theorem. By a slightly strained analogy, the Diagonalization
Lemma is also standardly referred to as a fixed point theorem, with γ behaving
like a ‘fixed point’ for the predicate ϕ(x).

(c) We’ll end the chapter by noting two easy corollaries for later use.

1. If T is a nice theory, and ϕ(x) is a Π1 open wff of its language with one
free variable, then there is a Π1 fixed point for ϕ(x).

2. If T is nice but an unsound theory, and ϕ(x) is any wff of its language
with one free variable, then ϕ(x) has a false fixed point.

Proof for (1) Look again at the first proof for the Lemma. Note that the wff
DiagT which captures the p.r. diagT function in the standard way will be Σ1.
Then it is easy to see that if ϕ is Π1, then ψ(y) =def ∀z(DiagT (y, z) → ϕ(z)) will
also be Π1. Hence the fixed point γ which is equivalent to ψ(�ψ�) is also Π1. �

Proof for (2) Pick θ to be a false theorem of the theory T (it has some, being
unsound). Suppose DiagT (x, y) captures diagT . Then so does Diag′T (x, y) =def

[DiagT (x, y) ∧ θ], by the general point we noted in Section 4.6 (b).
Now our proofs of the Diagonalization Lemma don’t depend on which par-

ticular wff serves to capture diagT . So Diag′T will do just as well as DiagT . In
particular the second proof above will go through with the fixed point γ iden-
tified as the diagonalization of ∃z(Diag′T (y, z) ∧ ϕ(z)), i.e. the diagonalization of
∃z([DiagT (y, z) ∧ θ] ∧ ϕ(z)).

So γ is of the form ∃y(y = �. . .� ∧ ∃z([DiagT (y, z) ∧ θ] ∧ ϕ(z))). Hence γ has θ
as an embedded conjunct, and will therefore be false if θ is false. �
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In this chapter, we use the really rather beautiful Diagonalization Lemma a
number of times over. Here’s a quick guide through the sections:

1. First, it is worth seeing how we can use the Lemma to prove Gödel’s
First Theorem again. We can think of the Theorem as in fact generated
by putting together two separate strands of thought – (i) the general
Diagonalization Lemma which tells us that the wff ¬Prov(x) in particular
has a fixed point, plus (ii) reflections on the logical behaviour of Prov(x).

2. After a brief aside on the very idea of a Gödel sentence . . .

3. . . . we then use the Diagonalization Lemma again to derive the Gödel-
Rosser Theorem which previously we left unproved.

4. Next, we show that no nice theory T can capture its own provability
property ProvT .

5. Then we prove Tarski’s key Theorem about the ‘indefinability’ of truth.

6. We note that this gives us what in a sense might be thought of as the
master argument for incompleteness.

7. Finally, as a coda, we show some results that concern how long the proofs
have to be.

What follows is inevitably an action-packed chapter: take it slowly!

21.1 The First Theorem again

Theorem 20.1 established that the following two conditions obtain for provability
predicates for nice theories T :

C1. If T � ϕ, then T � ProvT (�ϕ�);

Cω. If T is ω-consistent then, if T � ProvT (�ϕ�), T � ϕ.

And these two principles immediately imply

Theorem 21.1 Let T be a nice theory, and let γ be any fixed point
for ¬ProvT (x). Then T � γ; and if T is ω-consistent, then T � ¬γ.
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21 Using the Diagonalization Lemma

Proof For readability, let’s start dropping subscript ‘T ’s when context readily
supplies them. By hypothesis, T � γ ↔ ¬Prov(�γ�). So if T � γ then T �
¬Prov(�γ�). But, by (C1), if T � γ then T � Prov(�γ�). So, given T is consistent,
we can’t have T � γ.

Now assume T is ω-consistent and hence plain consistent, and suppose T � ¬γ.
Since T � γ ↔ ¬Prov(�γ�), it follows T � Prov(�γ�). But by consistency, if
T � ¬γ, then T � γ. Hence by (Cω), T � Prov(�γ�). Contradiction. So, assuming
T is ω-consistent, we can’t have T � ¬γ. �

In sum, Theorem 21.1 tells us that if there is a fixed point for ¬ProvT , then
T can’t be negation complete, assuming it is nice and ω-consistent. But Theo-
rem 20.4 tells us that such a fixed point must exist; and its first corollary tells
us that the fixed point will be of Goldbach type since ¬ProvT is Π1. Put the
results together and we’ve got the First Theorem again.1

21.2 An aside: ‘Gödel sentences’ again

Theorem 20.3 tells us what one kind of fixed point for ¬ProvT looks like, for it
shows that a canonical Gödel sentence fits the bill. But in a number of modern
presentations, this is not spelt out. Rather the preferred proof for the First Theo-
rem goes as just sketched, i.e. via the general Diagonalization Lemma, which tells
us that there are fixed points for ¬ProvT , combined with the general principles
(C1) and (Cω).

Which is technically just fine, of course. But if you do go via this route, you do
need to be a bit careful about your commentary. In particular, you will get into
trouble if (i) you call any fixed point for ¬ProvT which is therefore undecidable
by T a ‘Gödel sentence’, but (ii) you also claim that the Gödel sentences for T
are true-if-and-only-if-unprovable-in-T , and hence (since unprovable) are true.
For look again at the second corollary of Theorem 20.4. That shows that if T is
an unsound theory, there will be some false fixed points for ¬ProvT . So if T is
unsound it will have false Gödel sentences in the wide sense of (i).2

We’ve already touched on this theme in Section 16.8. It is canonical Gödel
sentences – built up in something like Gödel’s original way from a wff that
perspicuously recapitulates a p.r. definition of the relation GdlT – that indirectly
say of themselves that they are unprovable and hence must be true if unprovable
(whether T is sound or not). But, once we move away from the canonical cases
and start using the idea of a Gödel sentence more generously, then we can’t
assume that such undecidable sentences always have to be true.3

1And, for the record, we can of course improve the result in the spirit of Section 19.4,
e.g. by using the fact that (Cω) can be weakened to assume only that T is Σ1 sound. Cf.
Section 20.1, fn. 3. We won’t pause to spell this out.

2So, T entails a wff that says that such a fixed point is true iff unprovable, but – being
unsound – it entails a false biconditional: the rogue fixed points are unprovable but false!

3The need for care on this point has been pressed by Peter Milne: I’m grateful to him for
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21.3 The Gödel-Rosser Theorem again

(a) Back to the technicalities! Our next major task is to fulfil our promise to
prove the Gödel-Rosser Theorem: we’ll show that nice theories are incomplete
without using the assumption of ω-consistency (or weaker versions of it like 1-
consistency).

As we noted in Section 19.3, Rosser’s basic trick is to construct a sentence
which ‘says’ If I’m provable, there’s already a proof of my negation. Here’s one
way of developing that idea.

Consider the relation Prf T (m,n) which holds when m numbers a T -proof of
the negation of the wff with number n. This relation is obviously p.r. given that
Prf T is; so assuming T is nice it will be captured by a wff PrfT (x, y).4 So now
consider the Rosser provability predicate defined as follows:

RProvT (x) =def ∃v(PrfT (v, x) ∧ (∀w ≤ v)¬PrfT (w, x)).

Then a sentence is Rosser-provable in T – its g.n. satisfies the Rosser provability
predicate – if it has a proof (in the ordinary sense) and there’s no ‘smaller’ proof
of its negation.

(b) So now we apply the Diagonalization Lemma, not to the negation of a regu-
lar provability predicate (which is what we just did to get Gödel’s First Theorem
again), but to the negation of a Rosser provability predicate. The Lemma then
tells us that there’s a sentence RT which is a fixed point for ¬RProvT (x). That
is to say, assuming T is nice,

T � RT ↔ ¬RProvT (�RT �).

So if T is sound and its theorems are true, then RT will indeed be true just so
long as it isn’t Rosser-provable. In other words, RT is true just if, if it’s provable,
there is already a proof of its negation. (So by the argument of Section 19.3, if
T is sound, T � RT and T � ¬RT .)

(c) We will next prove the following general result, which is the analogue of
Theorem 21.1:

Theorem 21.2 Let T be a nice theory, and let γ be any fixed point
for ¬RProvT (x). Then T � γ and T � ¬γ.

showing me pre-publication version of Milne (2007), in which he gives chapter and verse on
the sins of various textbooks!

4Consider the p.r. function defined by neg(x) =def �¬� � x, where ‘�’ is the concatenation
function from Section 15.6. We have neg(�ϕ�) = �¬�� �ϕ� = �¬ϕ�. So neg takes the g.n. of a
wff and returns the g.n. of its negation.

Now let’s suppose we can introduce a function-symbol into T ’s language to capture this func-
tion (see the end of Section 12.2). We’ll use the symbol ‘¬̇’ to do the job. (So now ‘¬’ has a dou-
ble use: ‘undotted’ and attached to a wff, it is a truth-functional operator; ‘dotted’ and attached
to a term, it is expresses a corresponding numerical function. The dotting convention will stop
us getting confused.) With this neat new notation, we can put PrfT (x, y) =def PrfT (x, ¬̇y).
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21 Using the Diagonalization Lemma

The proof is inevitably a bit messy, so feel free to skip: but, if you want the
details, here goes:

Proof for first half Suppose γ is a provable fixed point for RProvT . Then –
again dropping subscripts for readability – because γ is provable, for some m,
Prf (m, �γ�). Since Prf captures Prf , T � Prf(m, �γ�).

Also, by T ’s consistency, ¬γ is unprovable, so for all n, not-Prf (n, γ). Since
Prf captures Prf , then for all n ≤ m in particular, T � ¬Prf(n, �γ�). Using the
result (O4) of Section 9.9, that shows T � (∀w ≤ m)¬Prf(w, �γ�).

Putting these results together, T � Prf(m, �γ�) ∧ (∀w ≤ m)¬Prf(w, �γ�). So
T � RProvT (�γ�). But by hypothesis, T � γ ↔ ¬RProvT (�γ�). Therefore if γ is
provable, we also have T � ¬RProvT (�γ�). Contradiction. So T � γ. �

Proof for second half Now suppose ¬γ is provable. For some m, Prf (m, �¬γ�),
so T � Prf(m, �γ�).

But, by hypothesis, we still have T � γ ↔ ¬RProvT (�γ�), so since ¬γ
is provable, it follows that T � RProvT (�γ�). Hence, unpacking that, T �
∃x Prf(x, �γ�) ∧ (∀w ≤ x)¬Prf(w, �γ�).

Arguing inside T there must be a witness a to this existential quantification,
so Prf(a, �γ�)∧(∀w ≤ a)¬Prf(w, �γ�). But T proves that a ≤ m ∨ m ≤ a by (O8)
of Section 9.9. So now consider cases.

Suppose a ≤ m. Then since Prf(a, �γ�), we’ll get Prf(0, �γ�) ∨ Prf(1, �γ�) ∨
. . .∨ Prf(m, �γ�), using (O3) of Section 9.9. But by consistency T � γ, so for all
n, not-Prf (n, �γ�), so for all n, T � ¬Prf(n, �γ�). Contradiction.

Suppose m ≤ a. Then since (∀w ≤ a)¬Prf(w, �γ�), it follows that ¬Prf(m, �γ�),
and again contradiction.

So the initial supposition that ¬γ is provable leads to contradiction either
way, and T � ¬γ. �

(d) As we said, proving Theorem 21.2 is – if not exactly harder – a lot messier
than proving Theorem 21.1. However, we now know that any fixed point for
¬RProvT must be formally undecidable in T . But the Diagonalization Lemma
has already told us that there has to be such a fixed point, RT . So RT is formally
undecidable (assuming no more than T ’s niceness).

To complete our proof of the Gödel-Rosser Theorem, we just need to confirm
that RT can be Π1. By the first corollary to Theorem 20.4, that will be the case
if ¬RProvT is Π1, i.e. RProvT is Σ1. But it is:

Proof sketch Given the way that Prf and hence Prf are built up by tracking
the definition of Prf , it will be quite easy to prove that the Σ1 wff Prf(w, x) is
equivalent to the Π1 wff ∀z(Prf(w, z) → z = x). And then – using the quantifier
shift trick of Section 13.6 – it follows that (∀w ≤ v)¬PrfT (w, x)) is Σ1, and so
RProvT is too. �

(e) So, putting everything together gives us, at last, the promised Gödel-Rosser
Theorem:
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Theorem 19.6 If T is a nice theory, then there is an LA-sentence
ϕ of Goldbach type such that neither T � ϕ nor T � ¬ϕ.

Phew!

21.4 Capturing provability?

Having backtracked to the Diagonalization Lemma, we have re-established the
First Theorem and have now proved the stronger Gödel-Rosser Theorem. Now
we strike out to get a range of new theorems.

First, consider again the T -wff ProvT (x) which expresses the property ProvT
of being the g.n. of a T -theorem. The obvious next question to ask is: does this
wff also case-by-case capture that property?

No, it doesn’t, because in fact

Theorem 21.3 No open wff in a nice theory T can capture the
corresponding numerical property ProvT .

Proof Suppose for reductio that P(x) abbreviates an open wff – not necessarily
identical to ProvT (x) – which captures ProvT . By the Diagonalization Lemma
applied to ¬P(z), there is some wff γ such that

1. T � γ ↔ ¬P(�γ�).

By the general assumption that P captures ProvT , we have in particular

2. if T � γ, i.e. ProvT (�γ�), then T � P(�γ�),
3. if T � γ, i.e. not-ProvT (�γ�), then T � ¬P(�γ�).

Contradiction quickly follows. By (3) and (1), if T � γ, then T � γ. Hence
T � γ. So by (2) and (1) we have both T � P(�γ�) and T � ¬P(�γ�) making T
inconsistent, contrary to hypothesis. �

Hence ProvT cannot be captured in T : and so – answering our original question
– Prov(x)T in particular doesn’t capture that property.

And here’s a quick corollary of our theorem. If T is nice, it includes Q and is
p.r. adequate, and so can capture any p.r. property. So it immediately follows
that the provability property ProvT for any nice theory is not primitive recursive,
which is to say that there is no p.r. function of n which returns 0 if ProvT (n) is
true, and 1 otherwise. (Later, we’ll show that ProvT is not a decidable property
at all – see Section 30.4; but of course we can’t do that now, as haven’t yet got
a general theory of what makes for a decidable property.)

Which all establishes two general points. (i) There can be properties like ProvT
which are expressible in a given theory T but not capturable. (ii) And although
every p.r. property and relation can be expressed by an open Σ1 wff, there are
open Σ1 wffs like Prov(x) which don’t express p.r. properties or relations.
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21 Using the Diagonalization Lemma

21.5 Tarski’s Theorem

Next, we visit twin peaks which can also be reached via the Diagonalization
Lemma. The path is very straightforward, but it leads to a pair of rather spec-
tacular results that are usually packaged together as Tarski’s Theorem.5

(a) Recall a familiar thought: ‘snow is white’ is true iff snow is white. Likewise
for all other sensible replacements for ‘snow is white’. In sum, every instance
of ‘ϕ’ is true iff ϕ is true. And that’s because of the meaning of the informal
truth-predicate ‘true’.

Now suppose we have fixed on some scheme for Gödel numbering wffs of
the interpreted arithmetical language L. Then we can define a corresponding
numerical property True as follows:

True(n) is true iff n is the g.n. of a true sentence of L.

Suppose that the open wff T(x) – which belongs to an arithmetical language
L′ which includes L – expresses this numerical property True. Then, for any
L-sentence ϕ,

ϕ is true iff True(�ϕ�) iff T(�ϕ�) is true.

Hence, for any L-sentence ϕ, every corresponding L′-sentence

T(�ϕ�) ↔ ϕ

is true.
So this motivates our first main definition:

i. An open L′-wff T(x) is a formal truth-predicate for L iff for every L-
sentence ϕ, T(�ϕ�) ↔ ϕ is true.

Here’s a companion definition:

ii. A theory T (with language L′ which includes L) is a truth-theory for L
iff for some L′-wff T(x), T � T(�ϕ�) ↔ ϕ for every L-sentence ϕ.

Equally often, a truth-theory for L is called a ‘definition of truth for L’.

(b) Suppose T is a nice arithmetical theory with language L. An obvious ques-
tion arises: could T be competent to define truth for its own language (i.e., can
T include a truth-theory for L)? And the answer is immediate:

Theorem 21.4 No nice theory can define truth for its own lan-
guage.

5Alfred Tarski investigated these matters in his classic (1933); though Gödel again had
already noted the key point, e.g. in a letter to Zermelo written in October, 1931 (Gödel,
2003b, pp. 423–429). Also see the quotation later in the next section.
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Proof Assume T defines truth for L, i.e. there is an L-predicate T(x) such that
T � T(�ϕ�) ↔ ϕ for every L-sentence ϕ. Since T is nice, the Diagonalization
Lemma applies, so applying the Lemma to the negation of T(x), we know that
there must be some sentence L – a Liar sentence! – such that

1. T � L ↔ ¬T(�L�).

But, by our initial assumption, we also have

2. T � T(�L�) ↔ L.

It is immediate that T is inconsistent and so not nice, contrary to hypothesis.
So our assumption must be wrong: T can’t define truth for its own language. �

(c) That first theorem puts limits on what a nice theory can prove about truth.
But with very modest extra assumptions, we can put limits on what a theory’s
language can even express about truth.

Consider LA for the moment, and suppose that there is an LA truth-predicate
TA that expresses the corresponding truth property TrueA. Since Q is nice, the
Diagonalization Lemma applies, in particular to the negation of TA(x). So we
know that for some LA sentence L,

1. Q � L ↔ ¬TA(�L�).

But (and here comes the extra assumption we said we were going to invoke!)
everything Q proves is true, since Q’s axioms are of course true and its logic is
truth preserving. So

2. L ↔ ¬TA(�L�)

will also be a true LA wff. But, by the assumption that TA is a truth-predicate
for LA,

3. TA(�L�) ↔ L

must be true too. (2) and (3) immediately lead to contradiction again. There-
fore our supposition that TA is a truth-predicate has to be rejected. Hence no
predicate of LA can even express the numerical property TrueA.

The argument evidently generalizes. Take any language L rich enough for
us to be able to formulate in L something equivalent to the very elementary
arithmetical theory Q (that’s so we can prove the Diagonalization Lemma again).
Call that an arithmetically adequate language. Then by the same argument,
assuming Q is a correct theory,

Theorem 21.5 No predicate of an arithmetically adequate lan-
guage L can express the numerical property TrueL (i.e. the prop-
erty of numbering a truth of L).

This tells us that while you can express syntactic properties of a sufficiently rich
formal theory of arithmetic (like provability) inside the theory itself via Gödel
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21 Using the Diagonalization Lemma

numbering, you can’t express some key semantic properties (like arithmetical
truth) inside the theory.

(d) Suppose T is a nice theory. Then (1) there are some numerical properties
that T can capture (the p.r. ones for a start); (2) there are some properties that
T can express but not capture (for example ProvT ); and (3) there are some
properties that T ’s language L cannot even express (for example TrueL, the
numerical property of numbering-a-true-L-wff).

It is not, we should hasten to add, that the property TrueL is mysteriously
ineffable, and escapes all formal treatment. A richer theory T ′ with a richer
language L′ may perfectly well be able to capture TrueL. But the point remains
that, however rich a given theory of arithmetic is, there will be limitations, not
only on what numerical properties it can capture but even on which numerical
properties that particular theory’s language can express.

21.6 The Master Argument

Our results about the non-expressibility of truth of course point to another,
particularly illuminating, take on the argument for incompleteness.

For example: truth in LA isn’t provability in PA, because while PA-provability
is expressible in LA, truth-in-LA isn’t. So assuming that PA is sound and every-
thing provable in it is true, this means that there must be truths of LA which it
can’t prove. Similarly, of course, for other nice theories.

And in a way, we might well take this to be the Master Argument for in-
completeness, revealing the roots of the phenomenon.6 Gödel himself wrote (in
response to a query)

I think the theorem of mine that von Neumann refers to is . . . that
a complete epistemological description of a language A cannot be
given in the same language A, because the concept of truth of sen-
tences in A cannot be defined in A. It is this theorem which is the
true reason for the existence of undecidable propositions in the for-
mal systems containing arithmetic. I did not, however, formulate
it explicitly in my paper of 1931 but only in my Princeton lectures
of 1934. The same theorem was proved by Tarski in his paper on
the concept of truth [Tarski (1933)].7

In sum, as we emphasized before, arithmetical truth and provability in this or
that formal system must peel apart.

6Or if not the argument, at least one of the proofs which belongs in The Book: see Sec-
tion 5.4.

7The emphasis is mine. Gödel’s letter is quoted in Feferman (1984), which also has a very
interesting discussion of why Gödel chose not to highlight this line of argument for incomplete-
ness in his original paper, a theme we’ll return to in Chapter 28. The passage in the Princeton
lectures to which Gödel refers is at Gödel (1934, p. 363).
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21.7 The length of proofs

Finally in this action-packed chapter, I can’t resist adding a couple of rather nice
related results about the length of proofs. However, these are results which you
can certainly skip at a first reading – even though it would be good to return to
them at some point, because they are ingenious and instructive.

(a) We can crudely indicate the length of a wff ϕ by its g.n.; and likewise
we can indicate the length of a proof Π by its (super) Gödel number. To be
sure, those aren’t the most natural measures: counting the symbols in ϕ and the
number of symbols or the number of wffs in Π would be better. However our
rough-and-ready indicators are particularly simple to work with.8

Take a specific theory T . As a general tendency, we’ll expect that the longer
a wff, the longer its T -proof (if it has one). But is there any tidy order in this
relationship? Suppose f is some function: then we’ll say that a proof for ϕ is
f-bounded if the proof’s g.n. is less than f(�ϕ�). Then it would indeed be rather
tidy if, for a given theory T , there were some corresponding p.r. function lenT
which puts a general ceiling on the length of T -proofs – meaning that, for any
ϕ, if it is a provable at all, it has a lenT -bounded proof. However, unfortunately,

Theorem 21.6 If T is nice theory, then for any p.r. function f ,
there is a provable wff ϕ which has no f-bounded proof.

Proof sketch Suppose the theorem is false, i.e. suppose that there is a p.r. ceiling
function lenT such that for any ϕ, if it is T -provable at all, it has a lenT -bounded
proof. Then there would be a p.r. procedure for testing whether ϕ has a proof
in T . Just calculate lenT (�ϕ�), and do a bounded search using a ‘for’ loop to
run through all the possible proofs up to that size to see if one of them is in fact
a proof of ϕ. But the easy corollary to Theorem 21.3 tells us that there can be
no p.r. procedure for deciding whether ϕ is a theorem. So there can be no such
function lenT . �

But now note that some p.r. functions f(n) grow fantastically fast and soon have
huge values even for low values of n. So our theorem means, roughly speaking,
that there will inevitably be theorems which can be stated briefly but which only
have relatively enormous proofs.

(b) Our result that some short wffs have relatively enormous proofs is not too
surprising. But our next result is perhaps more exciting.

Let’s say that a theory T1 exhibits speed-up over T2 iff for any p.r. function
f , there is some wff ϕ such that (i) both T1 � ϕ and T2 � ϕ but (ii) while there
is a T1-proof of ϕ with g.n. p, there is no T2-proof with g.n. less than or equal to

8And it is reasonably easy to check that, at the price of some minor complications, the
arguments we are going to use in order to establish results about the length of proofs on our
somewhat unnatural measuring scheme can be carried over to establish parallel results about
the length of proofs as measured in more natural ways.
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f(p). In other words, there are indefinitely many wffs for which T1 gives ‘much
shorter’ proofs than T2. Then we have the following:

Theorem 21.7 If T is nice theory, and γ is some sentence such
that neither T � γ nor T � ¬γ, then the theory T +γ got by adding
γ as a new axiom exhibits speed-up over T .

This means that adding a previously undecidable wff γ to a nice theory T as a
new axiom not only enables us to prove new theorems (γ, for a start) but it also
radically shortens the proofs of old theorems. The general phenomenon was first
noted in an abstract by Gödel (1936).9

Number theorists have long been familiar with cases where arithmetical the-
orems seem only to have very long and messy proofs in ‘pure’ arithmetic even
though there are relatively nice proofs if we are allowed to extend arithmetic by
e.g. the theory of complex analysis. What our theorem shows is that there is an
inevitability about this kind of situation.

Proof sketch Suppose the theorem is false. So there is a sentence γ which is
undecided by T , and there is also a p.r. function f such that for every wff ϕ, if
ϕ has a proof in T +γ with g.n. p, then it has a proof in the original T with g.n.
number no greater than f(p).

Now, for any wff ϕ, (γ ∨ ϕ) is trivially provable in T + γ. And there will be a
very simple computation, with no open-ended searching, that takes us from the
g.n. of ϕ to the g.n. of the trivial proof of (γ ∨ϕ). In other words, the g.n. of the
proof will be h(�ϕ�), for some p.r. function h.10 So, by our supposition, (γ ∨ ϕ)
must have a proof in T with g.n. no greater than f(h(�ϕ�)).

Next consider the theory T + ¬γ. Trivially again, for any ϕ, T + ¬γ � ϕ iff
T � (γ∨ϕ). So we have a p.r. decision procedure for telling whether an arbitrary
ϕ is a theorem of T +¬γ. Just run a ‘for’ loop examining in turn all the T -proofs
with g.n. up to f(h(�ϕ�)) and see if a proof of (γ ∨ ϕ) turns up.

But T+¬γ is still a nice theory: it is consistent (else we’d have T � γ, contrary
to hypothesis), it is p.r. axiomatized, and it contains Q since T does. So there
can’t be a p.r. procedure for testing theoremhood in T + ¬γ. Contradiction. �

(c) The informal arguments above for our two theorems in this section are fine
as far as they go. However, there is some interest in noting that we can use the
Diagonalization Lemma to prove the first of them ‘constructively’. That is to
say, we can actually give a recipe which takes an arbitrary p.r. function f , and
constructs a wff ϕ which is provable but has no f -bounded proof. (To be quite

9See also Section 22.8.
10To take the simplest case, imagine T + γ’s logical system is set up with the rule of ∨-

introduction, so the little sequence γ, (γ ∨ ϕ) will serve as the needed proof. Then the super
g.n. of this proof is

2�γ� · 3�(γ∨ϕ)� = 2�γ� · 3�(���γ���∨���φ���)� .

Evidently the proof’s g.n. is then a p.r. function of �φ�.
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honest, these details are more than you can really need to know: but they’re just
too pretty to miss out!)

Suppose then that the Prf relation for T is captured by the open wff Prf(x, y),
and that our arbitrary p.r. function f is captured by F(x, y). Now form the wff

∀v{F(z, v) → (∀u ≤ v)¬Prf(u, z)}.

By the Diagonalization Lemma, there is a wff ϕ such that

T � ϕ↔ ∀v{F(�ϕ�, v) → (∀u ≤ v)¬Prf(u, �ϕ�)}.

We’ll show that (i) T � ϕ, but also (ii) the g.n. of the ‘smallest’ proof of ϕ is
greater than f(�ϕ�).

Suppose, for reductio, that there is a proof of ϕ with g.n. p ≤ f(�ϕ�) = k.
Then we are assuming

1. T � ϕ;

2. for some p ≤ k, Prf (p, �ϕ�), so T � Prf(p, �ϕ�).

By (1), T � ∀v{F(�ϕ�, v) → (∀u ≤ v)¬Prf(u, �ϕ�)}. So instantiating the quanti-
fier we get T � F(�ϕ�, k) → (∀u ≤ k)¬Prf(u, �ϕ�).

But since f(�ϕ�) = k and we’re assuming F captures f , T � F(�ϕ�, k). Hence
T � (∀u ≤ k)¬Prf(u, �ϕ�). And now we can manipulate Result 3 about Q (and
hence T ) proved in Section 9.9 to deduce that for any p ≤ k, T � ¬Prf(p, �ϕ�).
Which contradicts (2).

That establishes (ii), i.e. there is no proof of ϕ with g.n. p ≤ f(�ϕ�) = k.
So, for each p ≤ k, Prf (p, �ϕ�) is false, hence T � ¬Prf(p, �ϕ�). So by Result
5 from Section 9.9, T � (∀u ≤ k)¬Prf(u, �ϕ�). But since F captures f , T �
∀v(F(�ϕ�, v) ↔ v = k), whence T � ∀v{F(�ϕ�, v) → (∀u ≤ v)¬Prf(u, �ϕ�)} and
thus finally (i) T � ϕ. �
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As we noted in Section 10.1, the intuitive principle of mathematical induction
looks to be a second-order principle that quantifies over numerical properties,
and which can’t be directly expressed in a first-order theory that only quantifies
over numbers. So you might well be wondering: why not work with a second-
order arithmetic, rather than hobble ourselves by artificially forcing our formal
arithmetic into a first-order straightjacket? True, we now know that – so long
as it stays consistent and properly axiomatized – a richer theory won’t entirely
escape the reach of the Gödel-Rosser Theorem, any more than a first-order theory
can. But still, we ought to say at least a little about second-order arithmetics.

Indeed, there is a pressing issue about such theories which really needs to be
addressed head on at this point. For if you have done a standard university alge-
bra course, you might very well be feeling pretty puzzled by now. Such a course
typically introduces axioms for some version of ‘Second-order Peano Arithmetic’,
and there is an elementary textbook proof that these axioms pin down a unique
type of structure. But if this second-order arithmetic does pin down the struc-
ture of the natural numbers, then – given that any arithmetic sentence makes
a determinate claim about this structure – it apparently follows that this the-
ory does enough to settle the truth-value of every arithmetic sentence. Which
makes it sound as if there can after all be a (consistent) negation-complete ax-
iomatic theory of arithmetic richer than first-order PA, flatly contradicting the
Gödel-Rosser Theorem.

So just what is going on here? In this chapter, we say enough to sort things
out (though, in order not to take us too far from the main concerns of this book,
a number of relevant results will just be stated rather than proved).

22.1 Second-order arithmetical languages

As a preliminary, we need to characterize some suitable language(s) for second-
order arithmetics.

Start from our familiar first-order language LA, i.e. 〈LA, IA〉. We first extend
the syntax LA by adding second-order quantifiers to get L2A. We then augment
the semantics IA to deal with the new quantifiers: doing this in the most obvious
and natural way gives us the so-called ‘full’ second-order interpretation I2A. So
we’ll define L2A to be the resulting language 〈L2A, I2A〉. But as we’ll also note,
there are other ways of giving a semantics to L2A: we’ll briefly mention just one.

Now for some details.
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(a) Syntax first. The key new idea is as follows. In LA, the first-order vari-
ables x, y, z, . . . can appear in the place of names; in L2A we also have second-
order variables X,Y,Z, . . ., where these can replace predicates. We’ll concentrate
here on the case of second-order variables that act like monadic, i.e. one-place,
predicates.1 Both sorts of variable will have associated quantifiers.

In LA, there is just one type of atomic wff, of the form σ = τ , where σ and
τ are terms. But now L2A also has a second type of atomic wff. The new rule
is: if Ξ stands in for some second-order variable and τ is a term, then Ξτ is an
atomic wff. For example,

X0,Xx,XSSSx,Y(S0 + z),Z((x + y) × SS0)

are all atomic wffs of the new type.
More complex wffs of LA are built up from atomic wffs by using connectives

and/or prefixing first-order quantifiers like ∀x, ∃y. And the sentences of LA are
the closed wffs, i.e. wffs without unquantified variables dangling free. Similarly,
more complex wffs of L2A are built up from atomic wffs by using connectives
and/or prefixing first-order quantifiers and/or prefixing second-order quantifiers
like ∀X, ∃Y (note then that every old LA wff is also an L2A wff). And the
sentences of L2A are the closed wffs, i.e. wffs without unquantified variables of
either type dangling free. For example, the following are sentences of L2A:

∃X X0, ∀X(∀xXx → X0), ∃X(¬XS0 ∧ ∀x(Xx → XSSx)).

(b) Now for the semantics, again just giving the headline news and concentrat-
ing on the quantifiers. When ξ is a first-order variable, an L2A-sentence of the
form ∀ξϕ(ξ) says that every number satisfies the condition expressed by ϕ(ξ);
and a sentence of the form ∃ξϕ(ξ) says that at least one number satisfies the
condition expressed by ϕ(ξ). Similarly, when Ξ is a second-order variable, an
L2A-sentence of the form ∀Ξψ(Ξ) says that every numerical property satisfies
the condition expressed by ψ(Ξ); and a sentence of the form ∃Ξψ(Ξ) says that
at least one numerical property satisfies the condition expressed by ψ(Ξ).

For example: ∃X X0 says that at least one property is had by the number zero.
∀X(∀xXx → X0) says that, for any property, if every number has it, then zero in
particular has it – another trivial truth. And ∃X(¬XS0 ∧ ∀x(Xx → XSSx)) says
that there is a property lacked by 1 such that, if any number n has it, so does
n+ 2. That’s a third truth: the property of being even is an obvious instance.

1For more details see e.g. Shapiro (1991, Ch. 3). If we were doing all this properly, we’d
follow Shapiro by also including at the outset dyadic, triadic, etc. variables than can stand in
for two-place, three-place, etc. relational predicates, with all their associated quantifiers too.
Next we’d prove that even a very modest arithmetical theory can handle numerical codes for
ordered pairs, triples etc. of numbers (cf. Section 2.5). We can then replace two-place predicates
with one-place predicates that apply to codes-for-pairs, and n-place predicates with one-place
predicates that apply to codes-for-n-tuples. So, in fact, we can then show that an arithmetic
with the full apparatus of quantifiers running over n-place relations for any n is equivalent to
one with just monadic second-order quantifiers. Which is why it is legitimate to cut corners
here and concentrate on the monadic case, ignoring the rest.
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(c) Note, however, that our initial semantic story doesn’t yet fully pin down the
interpretation of L2A. For just which numerical properties are we quantifying
over here? As before, we are thinking of properties extensionally (see Section 4.2).
So quantifying over properties is in effect quantifying over their extensions, where
property-extensions are subsets of the domain of objects – i.e., in the present
case, subsets of the domain N. Our question therefore comes to this: which
extensions should we recognize as being available for us to quantify over when
we use second-order numerical quantifiers? In other words, which subsets of N

do we want to be in the range of the second-order variables?2

Well, now the question has been raised, the obvious answer is: every arbitrary
finite or infinite subset of the numbers. And that’s the answer we’ll take to be
built into the interpretation I2A.

Yet we might well hesitate over the idea of arbitrary infinite sets of numbers –
sets which are supposedly perfectly determinate but are in the general case be-
yond any possibility of our specifying their members. We can readily make sense
of the membership of a set of numbers being determined by possession of some
characterizing property which gives a recipe for picking out the numbers; and we
can readily make sense of the membership being merely stipulated (more or less
arbitrarily). However, the first idea gives us infinite sets but not arbitrary ones;
and the second idea may give us arbitrary sets (whose members share nothing
but the gerrymandered property of having being selected for membership) but
not infinite ones – unless we are prepared to conceive of a completed infinite
series of arbitrary choices. Neither initial way of thinking of sets uncontentiously
makes sense of the classical idea of arbitrary infinite sets of numbers.

Now, in pointing this out, I’m not arguing that we should be sceptical about
the classical idea we’ve just built into I2A. Rather, for present purposes, the
moral is simply this: if we do interpret the second-order quantifiers as ranging
over all arbitrary subsets of the domain of numbers, then this commits us to
making sense of a clearly infinitary conception, one that goes beyond anything
that is given just in our ordinary understanding of elementary arithmetic.

But let’s suppose we are happy with this. Then, in sum, the corresponding
‘full’ interpretation I2A for our second-order arithmetical language L2A starts
from IA again – i.e. the domain of (first-order) quantification remains N, and
‘0’, ‘S’, ‘+’ and ‘×’ get the same interpretation as before. And now we add the
crucial stipulation that the second-order quantifiers run over the full collection
of all arbitrary subsets of the domain.

(d) What about semantic entailments between sentences of L2A?
Recall the general definition of semantic entailment. For sentences in the lan-

guage L, Σ � ϕ (the sentences in Σ entail ϕ) iff every admissible (re)interpretation
which makes all the sentences in Σ true makes ϕ true too. Here, the admissible

2As we noted before, in Section 10.8, fn. 11, the term ‘set’ is now rather firmly linked
to a particular industrial-strength iterative conception of sets. So let’s stress that we are not
committed to thinking of property-extensions as sets in any such heavy-duty sense.
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interpretations are those which keep fixed the meanings of the logical apparatus
of L, while varying the non-logical aspects of the interpretation.

So, in particular, Σ �2 ϕ (the L2A sentences in Σ entail ϕ) iff every admissible
interpretation which makes all the sentences in Σ true makes ϕ true too. As
we move from I2A to other admissible (re)interpretations of L2A, we vary the
domain of quantification and/or the interpretations of the non-logical symbols
but keep fixed the interpretations of the connectives, first-order quantifiers and
the identity sign. We also keep fixed I2A’s interpretation of the second-order
quantifiers as running over the full collection of all arbitrary subsets of the
domain, whatever the domain now is.

(e) If the interpretation I2A makes play with the infinitary idea of arbitrary
subsets of the numbers, is there some alternative, less infinitary, way of under-
standing the second-order quantifiers? Well, if we want to stick closer to the
conceptual resources of ordinary elementary arithmetic, one way to go would be
to adopt what we’ll label I2a, which interprets the second-order quantifiers as
ranging only over those non-arbitrary sets of numbers that can be characterized
in purely arithmetical terms (more precisely, as ranging over the arithmetical sets
which can be given as the extensions of purely arithmetical predicates which lack
second-order quantifiers). We can’t say much more about this sort of interpre-
tation here: but we mention it to highlight the very important point that there
are choices to be made in how we understand the second-order quantifiers.

22.2 The Induction Axiom

Once we are using a language with second-order quantifiers, we can render the
intuitive induction principle as a single sentence which looks like this:

Induction Axiom ∀X({X0 ∧ ∀x(Xx → XSx)} → ∀xXx)

But – to take up again the point we’ve just highlighted – note that a sentence
like this does not wear its meaning on its face.

There’s a famous, often quoted, remark due to Georg Kreisel:

A moment’s reflection shows that the evidence of the first-order
schema derives from the second-order [axiom]. (Kreisel, 1972, p. 148)

And this much may be right: we are prepared to give a blanket endorsement to all
the instances of the first-order Schema because we accept the intuitive thought
that if zero has some property, and if that property is passed down from one
number to the next, then all numbers have that property, whatever property
that is (compare our introduction of the Induction Schema in Section 10.1).
However, there is no obvious reason to suppose that our intuitive thought here
aims to generalize over more than some ‘natural’ class of arithmetical properties
(e.g. those with arithmetical sets as extensions), or that it already involves the
extended conception of properties whose extensions are quite arbitrary subsets
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of the numbers.3 In other words, the intuitive thought arguably falls well short
of the content of the formal Induction Axiom when interpreted as a sentence of
L2A, i.e. when interpreted as quantifying over the full collection of arbitrary sets
of numbers. We shouldn’t slide without comment from the intuitive induction
principle to the formal Induction Axiom interpreted in that strong way.

22.3 Neat arithmetics

(a) Let’s put questions of semantics on hold for the moment, and consider next
what happens if we add the second-order Induction Axiom to Q to give us an
axiomatized second-order arithmetic whose syntax is L2A. But of course, we
won’t get far with this axiomatized theory unless we now add some formal proof
apparatus to handle our new second-order quantifiers! In particular, we’ll need
to be able to move from the general Induction Axiom

∀X({X0 ∧ ∀x(Xx → XSx)} → ∀xXx)

to various particular truths of the form

({ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx))} → ∀xϕ(x)).

How are we going to effect this?
Informally, we can think of this move as involving two steps. (1) We assume

that the wff ϕ(x) expresses some property. Then (2) we use the Induction Axiom
which applies to all properties, and derive the instance for this property.

Formally, step (1) amounts to accepting an instance of the so-called

Comprehension Schema ∃X∀x(Xx ↔ ϕ(x))

which says that there is a property which is had by just the things which satisfy
the condition ϕ.

Now, in the first-order case, the (basic or derived) ‘elimination’ rule for ex-
tracting information from an existential quantification has the form

from ∃ξψ(ξ) and ψ(ζ) → χ, infer χ,

where χ doesn’t involve the first-order variable/parameter ζ.4 The rule for
extracting information from a second-order existential quantification like an in-
stance of Comprehension is exactly parallel:

from ∃Ξψ(Ξ) and ψ(Z) → χ, infer χ

3More careful mathematicians are alert to this point. For example, in his classic survey of
modern mathematics, Saunders Mac Lane quite explicitly first presents the second-order prin-
ciple of induction as an induction over the natural arithmetical properties that can be identified
by first-order formulae. And he then distinguishes this intuitive ‘induction over properties’ (as
he calls it) from the stronger ‘induction over [arbitrary] sets’. See Mac Lane (1986, p. 44).

4Let’s not fuss too much about restrictions needed to avoid clash of variables!
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where χ doesn’t involve the second-order variable/parameter Z. Hence, in order
to make use of instances of Comprehension, we need to be able to reason with
wffs which have free second-order variables. In particular – and this is what step
(2) amounts to – we need to be able to instantiate the Induction Axiom with a
free variable Z. So the added rule we want is the universal ‘elimination’ rule:

given ∀Ξψ(Ξ) (e.g. the Induction Axiom), we can infer ψ(Z)

where Z is a second-order variable.

(b) Given those brisk remarks by way of motivation, we can now helpfully
present deductive systems for second-order arithmetic as having two parts.

To start with, we set down core logical principles which stay in place across
various possible alternative systems. These will include the familiar principles
for dealing with connectives and the first-order quantifiers. And we’ll add some
parallel rules for the second-order quantifiers too – including the two ‘elimination’
rules we’ve just mentioned.

Then, crucially, we add a separate comprehension principle: its exact formula-
tion will reflect our view about which expressions express properties/extensions
that really are in the intended range of the second-order variables. But, putting
it generally, first we fix on a class C of open L2A wffs. Then we can say that (the
universal closures of) instances of the Comprehension Schema are to be axioms,
when ϕ(x) belongs to the class C.5 That tells us that there is a genuine property
which applies to just those things which satisfy any given condition ϕ in C: and
as we vary the class C of wffs that are permitted to appear in the comprehension
scheme, we get different levels of commitment to properties/extensions.

Putting the ingredients together, here’s the key definition we want:

A neat formal system of second-order arithmetic is an axiomatized
theory which satisfies the following conditions. (1) Its syntax is
L2A. (2) Its basic general logic is a standard deductive system with
the usual first-order logical axioms and rules plus their second-
order counterparts (but restricted so that we can only instantiate
universal second-order quantifications with variables). And (3) the
special additional axioms are the axioms of Q, plus the Induction
Axiom, plus (the universal closures of) instances of the Compre-
hension Schema for wffs ϕ(x) belonging to some class C – where
it is decidable which wffs belong to C (in order to ensure that a
neat theory remains properly axiomatized).

22.4 Introducing PA2

We’ll now introduce one version of Second-Order Peano Arithmetic, PA2, which
is the strongest neat theory in the language L2A.

5And, to avoid clash of variables, where ϕ(x) does not already contain ‘X’ free.
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So its syntax is L2A; and the theory’s built-in interpretation is I2A – its
quantifiers are to be read as running over the full collection of subsets of N.
It has the logical rules shared by any neat arithmetic. And its comprehension
principle is maximally generous; it allows us to substitute any wff ϕ(x) of L2A

into the Comprehension Schema.6

Now, you might wonder whether we can really make sense of the formal theory
PA2. For its comprehension principle allows us to define a numerical property by
reference to a wff ϕ(x) which itself might involve second-order quantifiers: and
those quantifiers are supposed to range over the totality of numerical proper-
ties, including the one we are defining by the comprehension principle! Can this
be legitimate? How can we define something in terms of a collection which is
supposed already to include the very item we are trying to define?

Russell famously thought that this involves a vicious circle.7 The obvious re-
sponse, however, is Gödel’s, which echoes an earlier discussion by Frank Ramsey.
This sort of apparently circular definition is in fact unproblematic if we assume
that ‘the totality of all properties [of numbers] exists somehow independently
of our knowledge and our definitions, and that our definitions merely serve to
pick out certain of these previously existing properties’.8 Putting it in terms of
property-extensions, if we assume that there already exists a fixed totality of
arbitrary infinite subsets of the domain, there is no problem about the idea that
we might locate a particular member of that totality by reference to a quantifi-
cation over it – any more than there is a problem about the idea that we might
locate a particular man as the tallest of all the men in the room (including him!).

Now, the official semantic interpretation I2A that we have built into PA2’s
language in effect embodies this Ramsey/Gödel line. For, as we saw, I2A assumes
that there is already a fixed totality of all the arbitrary sets of numbers for
the second-order quantifiers to run over. Given this semantics, an expression
ϕ(x) that embeds second-order quantifications does have a determinate sense.
And, because we are assuming the existence of every possible extension, PA2’s
generous comprehension principle is true on I2A. So, in sum, I2A intuitively
makes all PA2’s theorems true.

Since PA2 can quantify over arbitrary numerical sets, it can handle the stan-
dard sort of construction of the real numbers in terms of suitable infinite sets
of numbers: we can therefore do a great deal of classical analysis in this theory
(which is why the theory is sometimes just called analysis). But let that pass,
for we are interested here in the arithmetical strength of PA2 – i.e. the question
of what it can prove by way of first-order arithmetical truths (true sentences of
LA). And the important headline news is this:

6So long as ‘x’ is free in ϕ(x) and ‘X’ isn’t, so we don’t get into tangles. Incidentally, this
theory is at least equally often called Z2, the name given it in Hilbert and Bernays (1934).

7‘Whatever involves all of a collection must not be one of the collection’ Russell (1908, p.
63). For discussion see Chihara (1973, esp. Ch. 1) and Potter (2000, esp. Ch. 5).

8The quotation is from Gödel (1933, p. 50); compare the remark on the supposed vicious
circle in Ramsey (1925, p. 204).

192



Categoricity

Theorem 22.1 PA2 can prove every LA wff that PA can prove,
and some that PA can’t prove.

The first half of that theorem is, of course, trivial (because PA2 includes Q,
and PA2’s Induction Axiom together with its comprehension principle gives us
all the first order instances of induction, i.e. gives us the other axioms of PA).

As for the second half, we just report e.g. that PA’s canonical Gödel sentence
G which is unprovable in PA is provable in PA2.9 Of course, PA2 is not only ‘neat’
but ‘nice’ (assuming that the theory is consistent). Hence, while PA2 can prove
PA’s Gödel sentence G, it can’t prove its own canonical Gödel sentence G2.10

22.5 Categoricity

PA and PA2 are both intuitively sound theories, both incomplete. There are, how-
ever, deep differences between these two theories which we now need to highlight
over the next two sections. To introduce them, we need some preliminary defi-
nitions (entirely familiar ones if you have done any serious logic at all).

i. Suppose T is a theory built in the language L =def 〈L, I〉. Echoing what
we just said in Section 22.1, an admissible (re)interpretation J for theory
T is an interpretation of the syntax L which keeps the same interpretation
of the logical vocabulary as is given by I but perhaps varies the interpre-
tation of the non-logical vocabulary of T . If J makes all the axioms of a
theory T true (and hence all T ’s theorems true too, assuming T ’s logic is
a sound one), then we’ll say that J is a model for T .

ii. Two admissible interpretations are isomorphic iff they structurally look
exactly the same.

More carefully: I and J are isomorphic iff (i) there’s a one-to-one
correspondence f between the domain of I and the domain of J (see
Section 2.3); (ii) if I assigns the object o as referent to the name a,
then J assigns the corresponding object f(o); (iii) if I assigns the set
E as the extension to the predicate F, then J assigns the corresponding
extension f(E) =def {f(o) | o ∈ E}; and so on, and so forth. This means
that Fa is true on I iff o is in E, which holds iff f(o) is in f(E) (since
f is a one-one correspondence), and that holds just if Fa is true on J .
And the point obviously generalizes. In other words, a closed wff ϕ is

9We will see in Section 24.2 that even PA can prove Con → G, where Con is a formal
sentence that expresses the claim that PA is consistent: so certainly PA2 can prove that too.
But PA2 is more than strong enough to prove Con. In fact it can prove e.g. the consistency
of the richer theory ACA0 which we’ll meet in a moment; and if the stronger theory ACA0 is
consistent then the weaker theory PA which it extends must be consistent too: see Simpson
(1991, Sec. VIII.1). Hence, by modus ponens, PA2 can prove G.

10Note, by the way, that like any Gödel sentence built in the now familiar way, G2 is a
purely arithmetic Π1 sentence that lacks second-order quantifiers.
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true on interpretation I if and only if it is also true on any isomorphic
interpretation J .

iii. A theory is categorical iff it has models but all its models are isomorphic
– i.e. the theory has just one model ‘up to isomorphism’, as they say.

And with that jargon to hand, we can state the first key contrast between PA
and PA2 like this:

Theorem 22.2 Assuming both theories do have models, PA isn’t
categorical, but PA2 is.

Proof sketch: PA isn’t categorical Assume PA has a model so is consistent. We
then know that both of the expanded theories PA + R and PA + ¬R must also
be consistent (where R is the undecidable Gödel-Rosser sentence). Hence, by the
familiar theorem that any consistent first-order theory has a model, indeed a
model with an enumerable domain, both these expanded theories have models.
Since one of these models makes R true and the other makes ¬R true, these
models can’t be isomorphic replicas. But any model for PA + R and equally any
model for PA + ¬R is a fortiori a model for plain PA. So PA has non-isomorphic
models (with enumerable domains). In other words, PA is not categorical.11 �

Proof sketch: PA2 is categorical Suppose M is a model for PA2. M will need to
pick out some object o to be the reference of ‘0’, and to pick out some function ς
which satisfies the successor axioms for ‘S’ to denote. And then, according to M,
the numerals 0,S0,SS0,SSS0, . . . must pick out the objects o, ςo, ςςo, ςςςo, . . ..
Let’s abbreviate ‘ςς . . . ςo’ with m occurrences of ‘ς’ by ‘m’. Then we can put it
this way: according to M, the numeral ‘m’ picks out m.

We’ll denote the set of all the elements m by M. And let’s say that a model M
is slim iff its domain is just the corresponding set M – i.e. iff its domain contains
just the ‘zero’ element o, the ‘successors’ of this ‘zero’, and nothing else.

We now argue in two stages. (i) We’ll show that any two slim models of PA2

are isomorphic. Then (ii) we’ll show that PA2 can only have slim models. It
will then follow that, if PA2 has a model at all, it is a slim one, unique ‘up to
isomorphism’ – a result essentially first shown by Richard Dedekind (1888).12

11For ‘the familiar theorem’, see any standard logic text, e.g. Mendelson (1997, p. 90, Prop.
2.17). But note also that, in order to show that PA isn’t categorical, we don’t in fact need
to appeal to Gödelian incompleteness: the so-called ‘Upward Löwenheim-Skolem Theorem’
already tells us that any first-order theory like PA which has a model whose domain is the size
of the natural numbers N has other, differently structured, models with bigger, non-enumerable,
domains. What our Gödelian argument adds is that there are also non-isomorphic models of
PA with enumerable domains. However, we haven’t space in this book to pursue issues in
model theory, so we can’t here pause over the intriguing question of the fine structure of all
the whacky, quite unintended, models that PA inevitably has.

For the general L-S theorem, see e.g. Mendelson (1997, p. 128), or perhaps more accessibly
Bridge (1977, Ch. 4). For a wonderful exploration of the non-standard-but-enumerable models
of arithmetic see the classic Kaye (1991).

12For a full-dress modern proof see e.g. Shapiro (1991, pp. 82–83). A technical note: it is
crucial for Stage (ii) that the second-order quantifiers are required to run over the full collection
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Stage (i) Suppose M is a slim model. We know that if m �= n, then even BA
� m �= n, and hence PA2 � m �= n. But M is a model and hence makes all PA2’s
theorems true. So if m �= n, then M must make m �= n true, and that requires
m �= n. Since m and n were arbitrary, it immediately follows that the objects
0, 1, 2, . . .must all be different. By hypothesis, M’s domain M contains just those
objects and nothing else; so M must look just like a copy of N.

M will also pick out some function +M for ‘+’ to denote. It is easy to show
that +M, when applied to the objects m and n, also behaves ‘just like addition’:
in other words, if m+ n = k, then m+M n = k. Similarly for multiplication. So
again, there’s only one way that ‘addition’ and ‘multiplication’ in a slim model
can work: just like addition and multiplication of natural numbers.

So all the slim models must ‘look the same’, i.e. be isomorphic.

Stage (ii) Now consider the wff

σ(x) =def ∀Z{(Z0 ∧ ∀y(Zy → ZSy)) → Zx}.

PA2’s generous comprehension principle will apply to σ(x) in particular. In other
words, PA2 treats σ(x) as a kosher predicate expression that picks out a real
property. So this property can figure in an instance of induction, and we have:

({σ(0) ∧ ∀x(σ(x) → σ(Sx))} → ∀xσ(x)).

But σ(0) and ∀x(σ(x) → σ(Sx)) hold trivially (check that!). So it is a PA2 theorem
that ∀xσ(x).

From which it follows that any model of PA2, i.e. any interpretation M that
makes all its theorems true, must make ∀xσ(x) true in particular. But, by defi-
nition, something satisfies σ(x) on a given interpretation M just if it belongs to
every subset Z of the domain which contains o and which if it contains x con-
tains ςx (where o and ς are the zero and the successor function according to M).
Hence, in particular, something satisfies σ(x) just if it belongs to the smallest
subset of the domain which contains o and which if it contains x contains ςx.
Hence something satisfies σ(x) if it is the zero or one of its successors. So given
M makes ∀xσ(x) true, every element of this model’s domain must be either the
zero or one of its successors. Therefore the model M is slim. �

The paradigm slim model for PA2 is, of course, I2A (assuming that that inter-
pretation is a model).

Note, incidentally, that the Stage (i) argument equally well shows that every
slim model of first-order PA is isomorphic to the standard model IA. But we can’t
then run the Stage (ii) argument to show that PA is categorical and only has slim
models; that’s because the property of being a-zero-or-one-of-its-successors can’t
be expressed in LA, and PA’s Induction Schema can only deal with properties
that can be expressed by LA predicates.

of subsets of the domain. Versions of second-order arithmetic which lift that requirement – e.g.
the theories which are in effect built in a two-sorted first-order language, explored in Simpson
(1991) – aren’t categorical.
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22.6 Incompleteness and categoricity

(a) The fact that PA2 is categorical and PA isn’t entails another key difference
between the first-order and second-order theory. Starting with the first-order
case, suppose ϕ is some LA truth that PA can’t prove, e.g. a Gödel sentence
like G. Then the axioms of PA don’t semantically entail ϕ either. In standard
symbols, if PA � ϕ, then PA � ϕ. That’s because the built-in first-order deductive
system is (sound and) complete; and hence for any ϕ, PA � ϕ iff PA � ϕ.

Now for the contrasting second-order case: suppose ϕ is some L2A truth which
PA2 can’t prove, e.g. its true canonical Gödel sentence G2. This time, however,
PA2 will still semantically entail ϕ. That’s because we have:

Theorem 22.3 Assuming I2A is in fact a model for PA2, PA2

semantically entails all L2A-truths.

Proof sketch PA2 semantically entails ϕ – in symbols, PA2 �2 ϕ – if any admis-
sible interpretation which makes the axioms of PA2 true makes ϕ true. In other
worlds, any model for PA2 makes ϕ true.

However, we’ve just seen that PA2 is a categorical theory. So given I2A is a
model for PA2, all its models are isomorphic to I2A. But, trivially, if ϕ is true on
I2A (i.e. is an L2A-truth), it will be true on all the isomorphic interpretations. It
immediately follows that all interpretations which make the axioms of PA2 true
make ϕ true. So PA2 �2 ϕ, for any wff ϕ that is true on I2A. �

Hence, in particular, although PA2 � G2, PA2 �2 G2. Which immediately re-
veals that PA2’s deductive system isn’t complete – there are semantic entailments
which it can’t prove. And this isn’t because we have rather dimly forgotten to
give PA2 enough logical deduction rules: the incompleteness can’t be repaired,
so long as we keep to a properly axiomatized logical system. For adding new
logical axioms and/or inference rules to PA2 will – so long as we stay consistent
and decidably axiomatized – just give us a new theory which is still categorical
and still subject to Gödel’s incompleteness theorem. There can be no sound and
complete logical deductive system for second-order logical consequence.

(b) In summary, then, while the claim ‘PA settles all arithmetical truths’ is
false however we interpret it, the situation with the corresponding claim ‘PA2

settles all arithmetical truths’ is more complex.
Assuming I2A is a model for PA2 (so the theory is consistent), the axioms

of PA2, interpreted as L2A sentences, are enough to semantically entail all true
sentences of L2A. But the Gödel-Rosser Theorem tells us this formal deductive
theory is not strong enough to prove all true L2A sentences – and it can’t be
expanded to entail them all either, so long as the resulting formal theory remains
consistent and properly axiomatized. Make the distinction between what is se-
mantically entailed and what is proved, and we reconcile the apparent conflict
between the implication of Dedekind’s categoricity result (‘PA2 settles all the
truths’) and Gödelian incompleteness (‘PA2 leaves some truths undecided’).
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For vividness, let’s put that symbolically. We’ll use {PA,�} to denote the
set of theorems that follow in PA’s formal proof system, and {PA,�} to mean
the set of sentences semantically entailed by PA’s axioms (given the standard
semantics of LA). Similarly, we’ll use {PA2,�} to mean the set of theorems that
follow in PA2’s formal proof system, and {PA2,�2} to mean the set of sentences
semantically entailed by PA2’s axioms (given the ‘full’ semantics built into L2A).
Finally – as before, in Section 19.2 – we’ll use TA to denote the set of truths
of LA (True Basic Arithmetic); and we’ll now use T2A, the set of truths of L2A

(True Second-Order Arithmetic). Then we can very perspicuously display the
relations between these sets as follows, using ⊂ to indicate strict containment
(i.e. X ⊂ Y when Y contains every member of X and more besides):

{PA,�} = {PA,�} ⊂ TA
{PA2,�} ⊂ {PA2,�2} = T2A.

22.7 Another arithmetic

The main business of this chapter is done. But we’ll add a couple of brief sections
on related topics, one to link up with the theme of the following Interlude, the
other to link up with remarks about speed-up at the end of the previous chapter.

As we saw, understanding the semantics I2A built into PA2 requires us to
get our head around the infinitary concept of quantifying over all arbitrary sets
of numbers. Suppose we want to restrict ourselves instead to the conceptual
resources of non-infinitary pure arithmetic itself, and so adopt e.g. the interpre-
tation I2a (see the end of Section 22.1). Then we’ll be interested in the corre-
sponding weaker ‘neat’ arithmetic whose quantifiers in effect run over only those
sets of numbers that we can pick out arithmetically.13 Putting that formally, this
involves requiring that any wff ϕ(x) which we substitute into the Comprehension
Scheme must already belong to LA, i.e. be purely arithmetic and lack second-
order quantifiers. The resulting neat axiomatized theory with this arithmetical
comprehension principle is known in the trade as ACA0.

Arguably, this theory doesn’t go beyond what is given by our understanding
of basic arithmetic (together with general logical ideas) – though despite its
apparently unambitious character, we can still reconstruct a surprising amount
of analysis and other applicable mathematics inside ACA0. However, this time –
by contrast with PA2 – we get no new purely arithmetical truths:

Theorem 22.4 ACA0 is conservative over first-order PA.

13‘Neat’ is our informal term: there isn’t a standard one. We should note, by the way,
that not every interesting formal theory of second-order arithmetic is ‘neat’ in our sense: still,
these neat theories – ordered by the increasing generosity of C, the class of wffs we can put
into the Comprehension Scheme – do form a spine running through the class of second-order
arithmetics. For an encyclopedic survey of theories of second-order arithmetic see Simpson
(1991), whose first chapter gives a wonderfully helpful overview.
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In other words, for any LA sentence ϕ such that ACA0 � ϕ, it is already the case
that PA � ϕ.14

So we have the following suggestive contrast. We can derive more LA sentences
in PA2 than in PA. But if we are to accept these formal derivations as proofs which
give us reason to accept their conclusions, then we will need to accept the axioms
of PA2 as true. And to accept the axioms as true – including all those instances
of Comprehension for formulae ϕ which quantify over subsets of the domain –
will involve accepting infinitary ideas that go beyond those essential to a grasp
of elementary arithmetic. By contrast, accepting the weaker formal theory ACA0

doesn’t involve more than a grasp of arithmetic together with some very general
logical ideas; but then the theory doesn’t give us any more basic arithmetic than
PA. We’ll return to this point in the next chapter.

22.8 Speed-up again

Finally, let’s very briefly make a connection with Section 21.7, on the general
topic of the length of proofs. We’ve said that ACA0 proves just the same LA wffs
as PA; but interestingly it does massively speed up some proofs. Define

2 � k = 222··
·2

where the stack of 2s is k high.

Then Robert Solovay has shown that there is a family of LA wffs ϕ0, ϕ1, ϕ2, . . .,
such that (i) PA proves each ϕn; (ii) the PA proof of ϕn requires at least n bits,
so in particular the PA proof of ϕ2�k is at least 2 � k bits long; but (iii) there is
a constant c such that, for any k, there is an ACA0 proof of ϕ2�k less than ck2

bits long. Hence, for all large enough values of n, there is an ACA0 proof of ϕn
which is radically shorter than the shortest proof for ϕn in PA.15 And since any
ACA0 proof is also a PA2 proof, the result carries over. There are PA theorems
which have radically shorter proofs in PA2.

Gödel himself noted this phenomenon long ago:

[P]assing to the logic of the next higher order [e.g. moving from
a first-order to a second-order setting] has the effect, not only of
making provable certain propositions that were not provable be-
fore, but also of making it possible to shorten, by an extraordinary
amount, infinitely many of the proofs already available. (Gödel,
1936, p. 397)

But a full proof of this Gödelian speed-up claim wasn’t in fact published until
Buss (1994).16

14For the proof, see Simpson (1991, Sec. IX.1).
15Solovay notes his result in http://www.cs.nyu.edu/pipermail/fom/2002-July/005680.html.
16For more, see Pudlák (1998).
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23 Interlude: Incompleteness and
Isaacson’s conjecture

This Interlude discusses a couple of further questions about incompleteness that
might well have occurred to you as you have been reading through recent chap-
ters. But, given that the chapters since the last Interlude have been quite densely
packed, we should probably begin with a quick review of where we’ve been.

23.1 Taking stock

Here’s some headline news which is worth highlighting again:

1. First, we showed that the restriction of the First Theorem to p.r. axiom-
atized theories is in fact no real restriction. Appealing to a version of
Craig’s Theorem, we saw that the incompleteness result applies equally
to any consistent axiomatized theory which contains Q (or, indeed, is
otherwise p.r. adequate). (Section 19.1)

2. But our pivotal new result was Theorem 20.4, the general Diagonalization
Lemma: if T is a nice theory and ϕ(x) is any wff of its language with one
free variable, then there is a ‘fixed point’ γ such that T � γ ↔ ϕ(�γ�).
And further, if ϕ(x) is Π1, then it has a Π1 fixed point. (Section 20.5)

3. We then proved the rather easy Theorem 21.1: if γ is any fixed point for
¬ProvT (x), then, if T is nice, T � γ, and if T is also ω-consistent, then
T � ¬γ. Since the Diagonalization Lemma tells us that there is a fixed
point for ¬ProvT (x), that gives us the standard incompleteness theorem
again. (Section 21.1)

4. We also proved the significantly messier Theorem 21.2: if T is a nice the-
ory, and γ is any fixed point for ¬RProvT (x), then T � γ and T � ¬γ –
where the ‘Rosserized’ proof predicate RProvT (x) says ‘there’s a proof of
the wff with g.n. x, and no ‘smaller’ proof of its negation’. Since the Diag-
onalization Lemma also tells us that there is a fixed point for ¬RProvT (x),
we now get a proof of Theorem 19.6, the Gödel-Rosser Theorem. This al-
lows us to drop talk of ω-consistency, and say simply: if T is a nice theory,
then there is an LA-sentence ϕ of Goldbach type such that neither T � ϕ
nor T � ¬ϕ. (Sections 19.3, 21.3)

This all reinforces our earlier remarks on incompletability. Suppose T is a
nice theory. It’s incomplete. Throw in some unprovable sentences as new axioms.
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23 Interlude: Incompleteness and Isaacson’s conjecture

Then, by the Gödel-Rosser Theorem the resulting T+ will still be incomplete,
unless it stops being nice. But adding new axioms can’t make a p.r. adequate
theory any less adequate. So now we know the full price of T ’s becoming com-
plete. Either (i) our theory ceases to be p.r. axiomatized because you’ve added
too disordered a heap of new axioms, or (ii) it becomes flatly inconsistent. Out-
come (i) is bad (for we now know that retreating to an axiomatized-but-not-p.r.-
axiomatized theory won’t let us escape the incompleteness results: a complete
theory will have to stop being properly axiomatized at all). Outcome (ii) is worse.
Keep avoiding those bad outcomes, and T is incompletable.

5. We then moved on to use the Diagonalization Lemma to prove Tarski’s
Theorem that, if the theory’s language L is arithmetically rich enough
to formulate a theory like Q, then L can’t even express the numerical
property of numbering a truth of L. (Section 21.5)

6. We also proved some results about the length of proofs. For example, if T
is nice, then there are always some wffs which have relatively enormous
proofs – take any p.r. function f at all, as fast growing as you like: there
will be always be some wff with g.n. n whose proof has a g.n. greater than
f(n). (Section 21.7)

7. Finally, we explained how the incompleteness of even a nice theory like
PA2 is compatible with its categoricity (even though categoricity implies
that – in one good sense – PA2 does settle all arithmetical truths). In the
second-order case, we crucially need to distinguish questions about what
is provable in a theory from questions about what is semantically entailed
by its axioms.

But, despite all that, our technical elaborations around and about the First
Incompleteness Theorem still leave a number of unsettled questions. Here are
two that might have occurred to you:

1. Back in Chapter 10, we said that PA is the benchmark first-order theory
of basic arithmetic, and that – unlike Q, for example – it is not obvi-
ously incomplete. Since then, PA has turned out to be in fact incomplete,
perhaps contrary to expectation. But our only specific examples of basic
arithmetical truths that are unprovable-in-PA are Gödel sentences like
G which are constructed using coding tricks; and, as we noted before,
spelt out in all their detail, with all the abbreviations unpacked, these
will be quite horribly long and messy sentences. Looked at purely as sen-
tences of arithmetic, they have no intrinsic mathematical interest. Only
someone who already knows about a particular, quite arbitrary, Gödel
coding scheme will be in a position to recognize G as ‘saying’ that it is
unprovable. Which raises the question: are there true sentences of basic
arithmetic which are of intrinsic mathematical interest but which are not
derivable in PA? Is PA, so to speak, interestingly incomplete; or are the
gaps just Gödelian oddities?
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2. If the ideas regimented by PA don’t suffice to pin down the structure
of the natural numbers, how come we all seem to arrive at a shared
understanding of that structure (and apparently without making play
with the infinitary ideas encapsulated in PA2)? What further idea have
we all got our heads around which pins down that structure?

In this Interlude, we will say something about these questions. However, the
results we mention aren’t taken up much in later chapters: so don’t get bogged
down, and do feel free to skim, or even to skip straight on to the discussion of
the Second Theorem in the next chapter.

23.2 Goodstein’s Theorem

(a) The first example of a more natural, non-Gödelian, arithmetical statement
which is true, statable in the language of basic arithmetic, yet demonstrably not
provable in PA, was found by Jeff Paris and Leo Harrington in 1977. However,
the statement in question – a cunningly tweaked version of the so-called finite
Ramsey Theorem – probably wouldn’t strike you as that natural: and indeed it
was, so to speak, cooked up for the occasion rather than being an interesting
arithmetical truth known in advance. So let’s concentrate instead on another
arithmetical statement which was shown to be undecidable by PA a few years
later by Paris and Laurence Kirby; it’s a bit easier to explain, intriguing, and
was already well known to be true.

(b) To set things up, we need an initial definition, the first of three:

i. The pure base k representation of n is the result of writing n as a sum of
powers of k, then rewriting the various exponents of k themselves as sums
of powers of k, then rewriting these new exponents as sums of powers of
k, etc., . . . .

For example,

266 = 28 + 23 + 21.

So the pure base 2 representation of 266 is

266 = 22(22
0
+20)

+ 2(220+20) + 220
.

Similarly,

266 = 35 + 32 + 32 + 31 + 30 + 30.

And its pure base 3 representation is

266 = 3330+30+30
+ 330+30

+ 330+30
+ 330

+ 30 + 30.

Now for our second definition:
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23 Interlude: Incompleteness and Isaacson’s conjecture

ii. To evaluate the bump function Bk(n), take the pure base k representation
of n; bump up every k to k + 1; and then subtract 1 from the resulting
number.

Let’s calculate, for example, B2(19):

Start with the pure base 2 representation of 19: 2222
0

+ 220
+ 20;

Bump up the base: 3333
0

+ 330
+ 30;

Subtract 1 to get B2(19) = 3333
0

+ 330
= 7625597484990.

Here’s our third definition:

iii. The Goodstein sequence for n is: n, B2(n), B3(B2(n)), B4(B3(B2(n))),
etc.

In other words, start with n; then keep applying the next bump function to the
last term in the sequence.

Let’s give a couple of examples, the Goodstein sequences starting with 3 and
19 respectively. For brevity, we’ll denote the k-th term of the sequence starting
with m by ‘mk’.

31 = 3: i.e. 220
+ 20

32 = B2(31) = 330
+ 30 − 1 = 330

33 = B3(32) = 440 − 1 = 40 + 40 + 40

34 = B4(33) = 50 + 50 + 50 − 1 = 50 + 50

35 = B5(34) = 60 + 60 − 1 = 60

36 = B6(35) = 70 − 1 = 0.

191 = 19 = 2222
0

+ 220
+ 20

192 = B2(191) = 3333
0

+ 330
+ 30 − 1 = 3333

0

+ 330 ≈ 7 · 1013

193 = B3(192) = 4444
0

+440 − 1 = 4444
0

+40 +40 +40 ≈ 1.3 · 10154

194 = B4(193) = 5555
0

+ 50 + 50 ≈ 2 · 102184

195 = B5(194) = 6666
0

+ 60 ≈ 2.6 · 1036305

196 = B5(195), etc., etc.

Which no doubt suggests that, while the Goodstein sequence for n might eventu-
ally hit zero for very small n, for later values of n the sequence, which evidently
starts off wildly inflationary, must run away for ever.

(c) But not so! In his (1944), R. L. Goodstein showed that

Theorem 23.1 For all n, the Goodstein sequence eventually ter-
minates at zero.

And very surprisingly, the proof is actually quite straightforward – or at least
it is straightforward, if you know just a little of the theory of ordinal numbers.
Let’s quickly outline the proof:
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Sketch of a proof sketch Take the Goodstein sequence for n. Render its k-th
term into its pure base k + 1 representation as in our examples above (with
each sum presented in descending order of exponents). Now consider the parallel
sequence that you get by going through and replacing each base number by ω
(the first infinite ordinal). For example, the parallel sequence to the Goodstein
sequence for 19 starts

ωω
ωω0

+ ωω
0
+ ω0

ωω
ωω0

+ ωω
0

ωω
ωω0

+ ω0 + ω0 + ω0

ωω
ωω0

+ ω0 + ω0

ωω
ωω0

+ ω0

...

It isn’t hard to show that this parallel sequence of ordinals will in every case be
strictly decreasing.

But there can’t be an infinite descending chain of such ordinals – that’s a basic
result in the theory of ordinals. Hence the ordinal sequence must terminate. And
therefore the parallel Goodstein sequence for n must terminate too!1 �

Don’t worry at all, however, if you find that proof-sketch baffling: all you need
to take away is the idea that Goodstein’s Theorem can easily be proved, if we
invoke ideas from the theory of infinite ordinals, i.e. if we invoke ideas that go
beyond the basic arithmetic of finite numbers.

(d) Note next that the sequence-computing function g(m, k) = mk is evidently
primitive recursive (to calculate the k-th value of the Goodstein sequence start-
ing at m, we can write a program just using ‘for’ loops). Hence this two-place
function is expressible in LA by a three-place Σ1 wff S(x, y, z).

Goodstein’s theorem is therefore itself expressible in PA by the corresponding
Π2 sentence ∀x∃y S(x, y, 0). It is certainly not obvious, however, how we might
go about proving Goodstein’s theorem in PA, using only the arithmetic of finite
numbers. Still, Theorem 21.7 has prepared us for the thought that there can
be results which are very easily proved in stronger theories yet which only have
horribly long proofs in PA. So might Goodstein’s theorem be a case in point?

No. For here’s the Kirby-Paris Theorem:2

Theorem 23.2 Goodstein’s Theorem is undecidable in PA (as-
suming PA is consistent).

So even though the arithmetical proposition ∀x∃y S(x, y, 0) has an easy proof
using just a light touch of the theory of ordinals, it can’t be derived in PA itself.

1For a relatively gentle introduction to the ordinals, see e.g. Goldrei (1996). For a modern
presentation of the theorem and its set-theoretic proof, see Potter (2004, pp. 212–218).

2For the original proof, see Kirby and Paris (1982); and for elaboration of the background
Kaye (1991, Ch. 14). For a different method of proof, see Fairtlough and Wainer (1998).
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For those who do know a bit about ordinals, we’ll gesture at a proof of the
Kirby-Paris Theorem, a proof that links it to a couple of key results which we’ll
be discussing later (again, don’t worry if you find this mystifying!).

Sketch of a proof sketch Goodstein’s Theorem depends on showing that there
can’t be an infinite decreasing chain of ordinals which are sums of powers of ω,
i.e. there can’t be an infinite decreasing chain of ordinals less than ε0.3 That
depends in turn on supposing that transfinite induction up to ε0 is sound.4

However, there are natural Gödel-numberings for the ordinals which are sums
of powers of ω; so we can transmute claims about these ordinals into arithmeti-
cal claims about their numerical codes. And being able to prove Goodstein’s
theorem inside PA would be tantamount to PA’s being able to handle (via cod-
ing) transfinite induction up to ε0. But now we appeal to two future results.
First, that kind of transfinite induction is in fact strong enough to prove the
consistency of PA by Gentzen’s method (see Section 24.7). So, if PA could prove
Goodstein’s theorem, it could prove its own consistency. But second, PA can’t
prove its own consistency, by Gödel’s Second Theorem (see Section 24.3). So PA
can’t prove Goodstein’s theorem. �

So, in summary, the case of Goodstein’s Theorem gives us an answer to the
first question we posed at the beginning of this Interlude: there are indeed some
non-Gödelian truths of basic arithmetic which have at least some intrinsic math-
ematical interest but which are provably independent of PA.

23.3 Isaacson’s conjecture

The next key point to note is that the other known cases of mathematically
interesting LA truths which are provably independent of PA share an important
feature with Goodstein’s Theorem. The demonstrations that they are LA truths
likewise use conceptual resources which go beyond those which are required for
understanding the basic arithmetic of finite natural numbers.

For example, we mentioned the Paris-Harrington result: proving it requires
König’s Lemma, which says that an infinite tree that only branches finitely at
any point must have an infinite path through it.5

3ε0 = ωωωω
.. .

is the first ordinal that comes after all the sums of powers of ω.
4‘Transfinite induction up to ε0’? One version of ordinary induction is this principle: sup-

pose (i) 0 is F ; and suppose (ii) if all numbers less than n are F , then n is F ; then (iii) all
numbers are F . Transfinite induction up to ε0 is the parallel principle: suppose (i) 0 is F ; and
suppose (ii) if all ordinals less than α are F , then α is F (where α is a sum of powers of ω);
then (iii) all ordinals which are sums of powers of ω are F .

5For details, see Kaye (1991, Ch. 14) again; the proofs of the variant Ramsey theorem
and of its independence from PA were first given in Paris and Harrington (1977). For a gentle
introduction see Kolata (1982) which also touches on Harvey Friedman’s finite version of
Kruskal’s theorem, another truth which can be expressed in PA but is independent of it.
Friedman’s result is also discussed in Smoryński (1982) and Gallier (1991).
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And – in a rather different way – appreciating the truth of undecidable Gödel
sentences for PA also seems to involve conceptual abilities that go beyond a grasp
of elementary operations on the finite numbers. Maybe in this case we don’t need
to get our head around highly infinitary ideas; but we surely have to be able to
reflect on our own arithmetical theorizing in order to recognize e.g. that canonical
Gödel sentences are true (see Section 27.8). We have to be able to make the move
from (i) implicitly assuming in our unreflective mathematical practice that (say)
every natural number has a unique successor to (ii) explicitly accepting that a
certain theory which has that proposition as an axiom is sound/consistent. And
this is a move, because knowing your way around the numbers doesn’t in itself
entail the capacity to be able to reflect on that ability.

Putting these points about the Gödelian and non-Gödelian cases together
suggests an interesting speculation:

Isaacson’s conjecture If we are to give a rationally compelling
proof of any true sentence of LA which is independent of PA, then
we will need to appeal to ideas that go beyond those which are
constitutive of our understanding of basic arithmetic.6

If that’s right, then PA in fact reaches as far into the truths of basic arithmetic
as any properly axiomatized theory can reach, at least if it aims to encapsulate
no more than what follows from our purely arithmetical knowledge.

But is the conjecture right? After all, it isn’t exactly clear what is involved
in ‘purely arithmetical’ knowledge. And you might initially have thought that
it faces an immediate and very obvious challenge: for isn’t there an evident way
of going beyond first-order PA while still keeping within the confines of what
is given to us in our understanding of elementary arithmetic – for can’t we
exploit our informal understanding of induction which seems to involve grasp of
a second-order principle?

However, what we discovered about second-order arithmetics in the last chap-
ter is in fact entirely in conformity with Isaacson’s conjecture. To repeat, there
are indeed LA sentences which we can derive in PA2 but which aren’t derivable
in PA. But if we are to accept these formal derivations as genuine proofs which
do give us reason to accept their conclusions, then we must make sense of PA2’s

6Compare Daniel Isaacson’s (1987), where he suggests that the truths of LA that can’t
be proved in PA ‘are such that there is no way that their truth can be perceived in purely
arithmetical terms’ (p. 203).

However, Isaacson goes further, adding – by way of explanation? – that ‘via the phenomenon
of coding [such truths] contain essentially hidden higher-order, or infinitary, concepts’ (pp.
203–204). But that seems certainly wrong for the non-Gödelian cases. Take the unprovable
wff ∀x∃y S(x, y, 0), where S is as before the Σ1 wff that expresses the p.r. function which
computes the k-th member of the Goodstein sequence starting from m. In so far as there
is any coding associated with this wff, it is the coding of the steps in an entirely finitary
arithmetical computation. So although the proof of Goodstein’s theorem involves infinitary
concepts, the content of the theorem doesn’t. But we won’t pursue this point: for we can
cleanly separate Isaacson’s interesting conjecture from the rather contentious additional gloss
he puts on it.
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non-arithmetic, infinitary, idea of quantifying over arbitrary subsets of N. By
contrast, accepting e.g. the weaker formal theory ACA0 doesn’t seem to involve
more than a grasp of arithmetic together with some very general logical ideas;
but that theory doesn’t give us any more basic arithmetic than PA does.

There is, to be sure, a whole range of neat (and not-so-neat) theories of inter-
mediate strength worth considering, with comprehension axioms stronger than
ACA0’s and weaker than PA2’s – and there is a lot of interesting work to be done
to see, for example, exactly what strength of comprehension principle is required
to prove various results like Goodstein’s Theorem or the Gödel sentence for PA.
However, the headline news is that these additional technicalities don’t seem to
change the basic picture as far as Isaacson’s conjecture is concerned.

23.4 Ever upwards

Going second-order, we’ve noted, enables us to prove new first-order arithmetical
sentences that we couldn’t prove before. And we get the same phenomenon
appearing again as we push on further up the hierarchy, and allow ourselves to
talk not just of numbers and sets of numbers, but of sets of sets, sets of sets
of sets, and so on. Embracing each new level up the hierarchy of types of sets
allows us to prove some truths at lower levels which we couldn’t prove before,
including more ground-level LA truths: richer theories can prove Gödel sentences
for weaker theories (as PA2 proves the canonical Gödel sentence for PA). Gödel
himself remarked on this phenomenon even in his original paper:

[I]t can be shown that the undecidable propositions constructed
here become decidable whenever appropriate higher types are ad-
ded. (Gödel, 1931, p. 181, fn. 48a)7

And what about non-Gödelian cases? Are there intrinsically interesting arith-
metical truths which are formally undecided by PA, also formally undecided by
PA2, and essentially require higher-order theories to prove them? Well, there is
work by Harvey Friedman which aims to produce ‘natural’ arithmetical state-
ments whose proof is supposed essentially to require the existence of ‘large car-
dinals’ – i.e. sets very high up the transfinite hierarchy. The jury is still out,
however, both on the question of the naturalness of the results, and on the sense
in which they really presuppose the existence of large cardinals.8

7If you know any set theory at all, then you’ll know that the hierarchy of types of sets
continues into the transfinite (so after all the finite types at levels 1, 2, 3, . . ., we take their union
at level ω and keep on going through levels ω + 1, ω + 2 and up through the ordinals). And
as we go further up, yet more ground-level arithmetical sentences become provable. Indeed, in
his rather enigmatic footnote, Gödel suggests that the fact that ‘the formation of ever higher
types can be continued into the transfinite’ – which means that there is an ever growing list
of new arithmetic truths that become provable as we go up the hierarchy – is ‘the true reason’
for the incompleteness in any particular formal theory of arithmetic.

8Friedman’s recent work is mostly announced in his many postings to the Foundations of
Mathematics list: see http://www.cs.nyu.edu/mailman/listinfo/fom for a searchable archive. For
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23.5 Ancestral arithmetic

(a) We have now responded to the first question we posed at the beginning of
this Interlude. But our responses raise further issues: in particular, there’s our
second question, about the very business of understanding arithmetic.

As we said at the very outset (Section 1.1), it seems that anyone who comes
to understand basic arithmetic gets to share an informal yet quite determinate
conception of the structure of the natural number series ordered by the successor
relation, and has an equally determinate conception of the operations of addition
and multiplication for numbers. And in virtue of this shared grasp of these
intuitive conceptions, it seems that we have a shared understanding of the idea
of the standard, intended, interpretation for first-order PA. (We hope and believe,
of course, that this standard interpretation is a model!)

However, assuming it is consistent, PA has non-isomorphic models. Which
means that accepting its axioms as correct is quite compatible with understand-
ing the theory as talking about some deviant, unintended model. So what more,
beyond accepting PA’s axioms as correct, is involved in understanding the stan-
dard structure of the natural numbers: what more is involved in fixing on the
intended ‘slim’ model (whose domain comprises just a zero and its successors)?

It might have been tempting to conclude – given that the second-order Peano
Arithmetic PA2 is categorical and does pin down a unique structure (up to iso-
morphism) – that our everyday understanding must involve the sort of second-
order ideas built into PA2. But our discussion hasn’t really favoured that sug-
gestion. For that suggestion amounts to the idea that we need to understand the
infinitary idea of quantifying over quite arbitrary subsets of the numbers in order
to understand elementary arithmetic: and that surely overshoots. However, if we
deploy instead some weaker and more tractable second-order ideas, like that of
quantifying just over arithmetical properties, we end up with a theory which in
crucial ways is no stronger than PA. So what to do?

(b) To pin down the intended ‘slim’ model of PA, we need the idea that the
numbers comprise zero, the successors of zero (all different, and never circling
round to zero again), and nothing else. In other words, the numbers are what
you can reach by repeated moves from a number to its successor.

Here’s a similar idea at work. We familiarly define the class of wffs of an
formal language by specifying a class of atomic wffs, and then saying e.g. that
any wffs you can build up from these using connectives and quantifiers are wffs,
and nothing else is a wff. So in this case we are saying that the wffs are what
you can get by repeated applications of the wff-building operations.

Or take an even simpler case, the notion of an ancestor. An ancestor is someone
you can reach by repeated moves back from a person to one of their parents.
Now, to be sure, we can define the idea of ancestor from the idea of a parent

a programmatic outline of his overall approach, see Friedman (2000). For a critical response,
see Feferman (2000).
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by invoking second-order ideas (i.e., in this case, by talking not just of people
but of sets of people). Thus someone is one of my ancestors if they belong to
every set of people which includes me and which, if it includes N , also includes
N ’s parents. Further, we can’t define the idea of an ancestor from the idea of a
parent using just first-order quantifiers, identity and the connectives.9

However, although we can define the idea of an ancestor from the idea of a
parent in second-order terms, and can’t do it first-order terms, it surely doesn’t
follow that the child who so easily grasps the concept ancestor must already in
effect be quantifying over arbitrary sets of people.

Likewise we can define the idea of a wff in second-order terms. For example,
an expression is a wff of LA iff it belongs to every collection of expressions which
contains certain atoms, and which, if it contains ϕ and ψ, contains ¬ϕ, (ϕ∧ψ),
∀ξϕ, etc. But the availability of this sort of definition again doesn’t show that the
humdrum notion of an LA-wff – something that we need to grasp to understand
the Induction Schema of first-order PA – is already essentially second-order.
Here’s a comparison. We can define identity in second-order terms by putting
x = y =def ∀X(Xx ↔ Xy); but that doesn’t show that understanding identity is
to be explicated in terms of understanding quantification over arbitrary subsets
of the domain. It can’t show that, because understanding the idea of arbitrary
sets of objects of some kind presupposes an understanding of what makes for an
object, and that involves an understanding of what makes candidates the same
or different objects, i.e. it already involves an understanding of identity.

So, in sum, to pin down the intended domain of numbers (to keep it slim,
banning extraneous objects) requires deploying the general idea of something
being one of the things we can reach by repeating a certain operation indefinitely
often, the same idea that is involved in specifying what it is to be a wff or an
ancestor. And the suggestion is that, although this idea isn’t definable in first-
order terms, it is not second-order in the full sense either.

(c) So the child learns that her parents have parents, and that they have parents
too. In sepia tones, her great-grandparents have parents in their turn. And she
learns that other children have parents and grandparents too. The penny drops:
she realizes that in each case you can keep on going. And the child gets the
idea of an ancestor, i.e. the idea of being someone who turns up eventually as
you trace people back through their parents. Similarly, she learns to count; the
hundreds are followed by the thousands, and the tens of thousands, and the
hundreds of thousands and the millions. Again the penny drops: you can keep
on going. And she gets the idea of being a natural number, i.e. of turning up
eventually as you keep on moving to the next number.

Generalizing, then, these are cases where the child moves from a grasp of a

9For a proper proof, see Shapiro (1991, pp. 99–100). But the following thought is suggestive.
If R stands for the relation of being a parent to, then we could express ‘m is an ancestor of
n’ by Rmn ∨ ∃x(Rmx ∧ Rxn) ∨ ∃x∃y(Rmx ∧ Rxy ∧ Ryn) ∨ ∃x∃y∃z(Rmx ∧ Rxy ∧ Ryz ∧ Rzn) ∨ . . .,
if we were allowed infinitely long sentences. But a first-order language doesn’t allow unending
disjunctions, nor in general does it allow us to construct equivalent wffs.
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relation to a grasp of the ancestral of that relation – where the ancestral R* of a
relation R is that relation such that R*ab holds just when there is an indefinitely
long chain of R-related things between a and b. Now, we don’t want to be
multiplying conceptual primitives unnecessarily. But the concept of the ancestral
of a relation doesn’t seem a bad candidate for being a fundamental logical idea:
grasping this concept seems a distinctive level of cognitive achievement. So what
happens if we try to build this idea into a formal theory of arithmetic which is
otherwise basically first order? – which is an old question that goes back at least
to R. M. Martin and John Myhill over fifty years ago.10

(d) To begin, we need to expand our first-order logical vocabulary with an
operator – we’ll symbolize it with a star – which attaches to two-place expressions
ϕ(x, y): ϕ*(x, y) is to be interpreted as expressing the ancestral of the original
relation expressed by ϕ(x, y).11

Suppose that we augment the language LA with such an operator; and for
brevity we’ll write the result of applying the star operator to Sx = y as S*xy. So
consider then what happens when you take the familiar axioms of PA but add
in the new axiom

S. ∀x(x = 0 ∨ S*0x)

which says – as we want – that every number is zero or one of its successors.
Any interpretation of this expanded set of axioms which respects the fixed logical
meaning of the ancestral-forming operator evidently must be slim. So, by the
argument for Theorem 22.2, a theory with these axioms will be categorical. Let’s
define, then, the related semantic entailment relation Γ �* ϕ, which obtains if
every interpretation which makes all of Γ true makes ϕ true – where we are now
generalizing just over interpretations which give the star operator its intended
meaning (and otherwise treats the logical vocabulary standardly). Then, because
of categoricity, our expanded axioms semantically entail any true sentence of the
expanded language, and hence any true LA sentence.

There can’t, however, be a complete axiomatization of this ‘ancestral arith-
metic’. The argument is as before. Take any formally axiomatized theory A*
which extends PA plus (S) by adding rules for the star operator. The incomplete-
ness theorem still applies (assuming consistency), so there will be an unprovable-
yet-true LA sentence G* for this theory. In other words, A* � G*, although
A* �* G*. So our theory’s deductive system can’t be complete.

However, there can of course be partial axiomatizations of ancestral arith-
metic. We can lay down various rules for handling the ancestral operator. Sup-
pose, for brevity, that we write H(ψ,ϕ) as short for ∀x∀y((ψ(x) ∧ ϕ(x, y)) → ψ(y))
– i.e. the property expressed by ψ is hereditary with respect to the relation ϕ

10See Martin (1943) and the follow-up note (1949) where Martin urges that his construction
is ‘nominalistic’, i.e. doesn’t commit you to the existence of sets. This work was then developed
in the rather more accessible Myhill (1952).

11We are being forgivably careless about the syntactic details here.
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(i.e. is passed down a chain linked by ϕ). Then Myhill’s proposed axioms for the
star operator are tantamount to the following schematic rules:

From ϕ(a, b) infer ϕ*(a, b).
From ϕ*(a, b), ϕ(b, c) infer ϕ*(a, c).
From H(ψ,ϕ), infer H(ψ,ϕ*).

These first two rules are ‘introduction’ rules for the star operator; and the third
rule is easily seen to be equivalent to the following ‘elimination’ rule:

From ϕ*(a, b) infer {ψ(a) ∧ H(ψ,ϕ)} → ψ(b).

This is a kind of generalized inductive principle which says that given that b
is a ϕ descendant of a then if a has some property which is passed down from
one thing to another if they are ϕ related, then b has that property too. And
taking the particular case where ϕ(x, y) is Sx = y, having this rule will enable us
to derive all the instances of the familiar first-order induction schema.

So let’s now briefly consider the formal system PA* which extends Q by adding
our new axiom (S) plus Myhill’s rules for handling the ancestral operator. The
obvious next question is: what is the deductive power of this system? Is this
another case like PA2 where we also only had a partial axiomatization of the
relevant semantic relation, though PA2 could prove more LA sentences than PA.
Or is PA* another extension of PA like ACA0, which is conservative over PA?

If the first case held, then we’d have a very interesting challenge to Isaacson’s
conjecture. For the ancestral arithmetic PA* is arguably within the conceptual
reach of someone who has fully understood basic arithmetic; and so, if we could
use it to prove new sentences of basic arithmetic not provable in PA, then Isaac-
son’s conjecture would fall. But in fact, the issue doesn’t arise:

Theorem 23.3 PA* is conservative over PA.

In other words, for any LA sentence ψ such that PA* � ψ, it is already the case
that PA � ψ.

Proof sketch Recall that we can express facts about sequences of numbers in
PA by using a β-function (see Section 13.4). So suppose R is some relation. Then

A. R*ab is true just so long as, for some x, there is a sequence of numbers
k0, k1, . . . , kx such that: k0 = a, and if u < x then RkukSu, and kx = b.

Using a three-place β-function, that means

B. R*ab is true iff for some x, there is a pair c, d such that: β(c, d, 0) = a,
and if u < x then R(β(c, d, u), β(c, d, Su)), and β(c, d, x) = b.

So consider the following definition:

C. ϕ**(a, b) =def ∃x∃c∃d{B(c, d, 0, a) ∧
(∀u ≤ x)[u �= x → ∃v∃w{(B(c, d, u, v) ∧ B(c, d,Su,w)) ∧ ϕ(v,w)}] ∧

B(c, d, x, b)}
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where B captures e.g. the now familiar three-place Gödelian β-function.
It is easy to check that the Myhill inference rules for single-starred ϕ* apply

equally to our defined double-starred construct ϕ** in PA (that’s essentially be-
cause the moves are then valid semantic entailments within PA, and the theory’s
deductive system is complete). And the double-starred analogue of axiom (S)
is also a theorem of PA. So corresponding to any proof involving starred wffs
in PA* there is an exactly parallel proof in plain PA involving double-starred
wffs. Hence in particular, any proof using starred wffs whose conclusion is a
pure (unstarred) LA wff in PA* will have a parallel proof in plain PA going via
double-starred wffs. Which establishes what we needed to show.12 �

(e) Let’s summarize this last section. Our everyday understanding of basic
arithmetic pins down a unique structure for the natural numbers, at least up to
isomorphism. Hence our grasp of basic arithmetic involves more than is captured
by first-order PA. But what more? It is enough that we have the idea that the
natural numbers are zero and its successors and nothing else. And getting our
head round this idea, we suggested, involves the general idea of the ancestral:
the numbers are what stand in the ancestral of the successor relation to zero.

Now, the ancestral of a relation can be defined in second-order terms, but it
seems overkill to suppose that our understanding of ordinary school arithmetic
is essentially second-order. Why not treat the operation that takes a relation
to its ancestral to be a (relatively unmysterious, even though not purely first-
order) logical primitive? If we do, we can construct a theory PA* which naturally
extends PA in a way that arguably still reflects our everyday understanding of
arithmetic. And PA* has the semantic property of categoricity – it pins down
the structure of the natural numbers in exactly the way we want.

Since PA* is still properly axiomatized, however, we know that it will be
incomplete (assuming it is consistent). But we might have hoped that it would
at least have proved more than PA: but not so. PA* is deductively conservative
over PA for LA sentences: so we can’t in fact use this expanded theory to deduce
new truths of basic arithmetic that are left unsettled by PA.

Hence, to put it the other way around, it seems that if we are to come up
with formal proofs of LA truths unsettled by PA, then we’ll have to deploy
premisses and/or logical apparatus that go beyond PA* (or simple variants).
Which arguably implies that we’ll need to invoke ideas which go beyond those
essential to our ordinary understanding of basic arithmetic – for the idea that
all the numbers can be reached from zero by repeatedly adding one, i.e. the idea
that all numbers are related to zero by the ancestral of the successor relation, is
very plausibly at the limit of what is necessary to ground a grasp of the natural
number structure and arithmetic concepts which can be defined over it. Which
gives us Isaacson’s conjecture again.

12Thanks to Andreas Blass and Aatu Koskensilta for discussion of this. The argument would
seem evidently to generalize to any natural first-order variant of PA*. For something on richer,
second-order, ancestral logics, see Heck (2007).
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24 Gödel’s Second Theorem for PA

We now, at long last, turn to considering the Second Incompleteness Theorem
for PA.

We worked up to the First Theorem very slowly, spending a number of chap-
ters proving various preliminary technical results before eventually taking the
wraps off the main proofs in Chapters 16 and 17. But things seem to go rather
more smoothly and accessibly if we approach the Second Theorem the other
way about, working backwards from the target Theorem to proofs of the tech-
nical results needed to demonstrate it. So in this chapter, we simply assume a
background technical result about PA which we will call the ‘Formalized First
Theorem’: we then show that it immediately yields the Second Theorem for PA
when combined with Theorem 20.2.

In the next chapter, we show that the Formalized First Theorem and hence
the Second Theorem can similarly be derived in any arithmetic theory T for
which certain ‘derivability conditions’ hold (or rather, hold in addition to the
Diagonalization Lemma). Then in Chapter 26 we finally dig down to discover
what it takes for those derivability conditions to obtain.

24.1 Defining Con

We begin with four reminders, and then motivate a pair of new definitions:

1. Recall, Prf (m,n) holds when m is the super g.n. of a PA-proof of the wff
with g.n. n. And we defined Prov(n) to be true just when n is the g.n. of
a PA theorem, i.e. just when ∃mPrf (m,n). Thus, Prov(�ϕ�) iff PA � ϕ.
(See Sections 15.2, 15.9 and 20.1.)

2. Recall, we used Prf(x, y) as an abbreviation for a Σ1 wff of PA’s language
that canonically captures the relation Prf by perspicuously recapitulating
its p.r. definition. (Again, see Section 20.1: note that previously we didn’t
actually make much use of the fact that Prf(x, y) canonically captures Prf .
But now this becomes rather crucial – as we will explain, particularly in
Section 26.2.)

3. Recall, we went on to define Prov(x) =def ∃v Prf(v, x). This complex pred-
icate is also Σ1, and it expresses the numerical property Prov . Hence
Prov(�ϕ�) is true iff PA � ϕ. (See Section 20.1.)

4. Recall, finally, that we showed that PA � G ↔ ¬Prov(�G�). (That was
Theorem 20.2.)
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5. Now to move on to our new definitions. Suppose that we have set up the
first-order logic of PA using the familiar absurdity constant ‘⊥’. Then, of
course, PA is consistent if and only if PA � ⊥.

Suppose on the other hand that the absurdity constant isn’t built into
PA’s logic. But PA’s Axiom 1 immediately proves the wff 0 �= 1; so if PA
also proved 0 = 1, it would be inconsistent. And conversely, since PA has
a classical logic, if it is inconsistent we can derive anything, including
0 = 1. So, when ‘⊥’ isn’t built in, let’s put ⊥ =def 0 = 1. Again, PA is
consistent if and only if PA � ⊥.

6. Henceforth, then, we’ll take the absurdity constant ‘⊥’ to be available in
PA, either built in or by definition (and similarly in other theories).

But PA is consistent, i.e. PA � ⊥, just when it isn’t the case that
Prov(�⊥�), i.e. just when ¬Prov(�⊥�) is true. So that motivates the fol-
lowing abbreviation:

Con =def ¬Prov(�⊥�).

Being the negation of a Σ1 sentence, Con is Π1.

So, the sentence Con is true if and only if PA is consistent. But more than that,
given the background Gödel coding scheme in play, we can immediately see,
without need for any further argument, that Con is constructed in such as way
as to make it true if and only if PA is consistent. Or, as we might perhaps say,
the sentence Con indirectly says that PA is consistent.1

24.2 The Formalized First Theorem in PA

In Section 16.5 we proved the following (it’s the easier half of the First Theorem):

If PA is consistent, then G is not provable in PA.

We now know that one way of representing the antecedent of this conditional in
LA is by the formal wff we are abbreviating as Con, while the consequent can of
course be represented by ¬Prov(�G�). So, in sum, the wff

Con → ¬Prov(�G�)

expresses one half of the incompleteness theorem for PA inside PA itself.
But that point by itself isn’t particularly exciting. The novel and interesting

claim is the next one, call it the Formalized First Theorem:

F. PA � Con → ¬Prov(�G�).

In other words, (half of) the incompleteness theorem is not merely expressible
in PA but is actually provable in PA too.

1Compare our remarks about what G ‘indirectly says’ at the end of Section 16.8.
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24 Gödel’s Second Theorem for PA

Of course, we’ve seen this sort of thing before. Remember how we initially
constructed G in Section 16.2, and then immediately noted that G is true if and
only if it is unprovable. That informally derived biconditional (which we reached,
so to be speak, while looking at PA ‘from the outside’) can readily be expressed
in the language of PA, by the wff G ↔ ¬Prov(�G�). And, as we’ve just reminded
ourselves, Theorem 20.2 tells us that this biconditional can be formally proved
inside PA:

D. PA � G ↔ ¬Prov(�G�).

We now have a very similar situation. Informal reasoning (looking at PA ‘from the
outside’) leads to Gödel’s result that PA’s consistency entails G’s unprovability.
And now we are saying that this result can in fact be formally derived within
PA itself: so (F) holds.

Gödel doesn’t actually prove (F) or anything like it in his paper.2 He just
invites us to observe the following:

All notions defined or statements proved [in establishing the First
Theorem] are also expressible or provable in P [the formal system
Gödel is working with]. For throughout, we have used only the
methods of definition and proof that are customary in classical
mathematics, as they are formalizable in P . (Gödel, 1931, p. 193)

Gödel could very confidently assert this because P , recall, is his version of Rus-
sell and Whitehead’s theory of types; it is a higher-order theory which is a lot
richer than either first-order PA or second-order PA2, and which was already well
known to be sufficient to formalize great swathes of mathematics. So, agreed, it is
entirely plausible that P has the resources to formalize the very straightforward
mathematical reasoning that leads to the First Theorem for P .

It isn’t so obvious, however, that all the reasoning needed for the proof of the
First Theorem for PA can be formally reflected in a relatively low-power theory
like PA itself. Checking that we can formalize the proof inside PA (indeed, inside
weak subsystems of PA) requires some hard work. But let’s take it for the moment
that the work has been done – that’s the big technical assumption on which the
rest of this chapter proceeds. Then we will have arrived at the result (F), the
Formalized First Theorem.

24.3 The Second Theorem for PA

Suppose now (for reductio) that

1. PA � Con.

Then, given the Formalized First Theorem, modus ponens yields

2It seems that he intended to make good the deficit in a never-written Part II of his paper.
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2. PA � ¬Prov(�G�).

But (D) tells us that ¬Prov(�G�) and G are provably equivalent in PA. Whence

3. PA � G.

However, that contradicts the First Theorem. Therefore our supposition (1) must
be false, unless PA is inconsistent.

Hence, still assuming we can establish the Formalized First Theorem, that
shows

Theorem 24.1 If PA is consistent, PA � Con.

Call this result Gödel’s Second Incompleteness Theorem for PA. If we assume
that the axioms of PA are true on the standard interpretation and hence all its
theorems are true (so PA is consistent), Con will be another true-but-unprovable
Π1 wff.

24.4 On ω-incompleteness and ω-consistency again

(a) Assume PA is consistent. Then ⊥ isn’t a theorem. So no number is the
super g.n. of a proof of ⊥ – i.e. for all n, it isn’t the case that Prf (n, �⊥�). Since
Prf captures Prf , we therefore have

1. for any n, PA � ¬Prf(n, �⊥�).

Now, if we could prove Con then – unpacking the abbreviation – we’d have

2. PA � ∀v¬Prf(v, �⊥�).

The unprovability of Con means, however, that we can’t get from (1) to (2).
So this is another example of PA’s ω-incompleteness (see Section 16.6). In fact,
since Con is Π1, i.e. of Goldbach type in the sense of Section 16.4, this is another
example of the failure of ω-completeness for wffs of Goldbach type.

The situation, then, is this. We know that – once we have introduced Gödel
numbering – lots of arithmetical truths coding facts about provability-in-PA can
themselves be proved in PA. And in so far as we might originally have expected
PA to be ω-complete, we might reasonably have expected Con in particular to be
provable. But now that we know that examples of ω-incompleteness are endemic
in otherwise nice theories, Theorem 24.1 is perhaps not such a surprise.

(b) Suppose that PA � ¬Con. In other words, suppose that PA � ∃vPrf(v, �⊥�).
This, given (1) above, would make PA ω-inconsistent. Which immediately gives
us the following very easy companion result to Theorem 24.1 (this one doesn’t
depend on the Formalized First Theorem):

Theorem 24.2 If PA is ω-consistent, then PA � ¬Con.
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24.5 How should we interpret the Second Theorem?

So much for the initial technical results. In the rest of this chapter we say some
introductory things about how we should interpret the Second Theorem for PA
and about why the Theorem might be interesting. You might want to skim lightly
on a first reading.

(a) Looking at it one way, all we’ve actually done so far in this chapter is to
locate another wff which exemplifies Gödel’s First Incompleteness Theorem as
applied to PA. That theorem (Theorem 16.5) states that there is an LA-sentence
ϕ of Goldbach type such that, if PA is consistent then PA � ϕ, and if PA is
ω-consistent then PA � ¬ϕ. Our first sample case of such an undecidable ϕ
was PA’s canonical Gödel sentence G: now we’ve found another such ϕ, namely
the sentence Con. Which raises the question: what is the special significance of
locating this new undecidable sentence?3

Gödel interprets his generalized version of the Second Theorem in the following
terms:

[For a suitable consistent theory κ] the sentential formula stating
that κ is consistent is not κ-provable; in particular, the consistency
of P is not provable in P , provided P is consistent. (Gödel, 1931,
p. 193)

So the analogous gloss on our Second Theorem for PA would be: the consistency
of PA is not PA-provable, assuming PA is consistent.

But is that quite right? For when we introduced it, we said that Con is one
natural way of ‘indirectly saying’ that PA is consistent. But we haven’t shown
that it is the only way of expressing PA’s consistency in LA. So although PA can’t
prove Con, the question remains: couldn’t it still prove some other sentence which
states that PA is consistent?

(b) Here are two obvious alternative ways of expressing PA’s consistency in LA.
First, we could define

Con′ =def ¬∃x(Prov(x) ∧ Prov(¬̇x)).

Here, ‘¬̇x’ expresses the p.r. function that maps the g.n. of a wff ϕ to the g.n.
of its negation ¬ϕ (see Section 21.3, fn. 4 for more explanation of our dotting
notation). Second, relying on the fact that inconsistent classical theories ‘prove’
every sentence, we could define

Con′′ =def ∃x(Sent(x) ∧ ¬Prov(x)),

3Note that Con, like G, unpacks into pure LA as just another horribly complicated arith-
metical sentence, whose cumbersome details will be contingent on the vagaries of our choice
of coding. This unpacked LA sentence will have no more intrinsic mathematical interest than
the unpacked version of G. It is only when we look at it through the lens of coding that Con
becomes interesting.
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where Sent(x) captures the p.r. property of being a closed wff of PA’s language
(this happens to be Gödel’s own preferred type of consistency sentence).

Still, as you’d probably expect, we can show without too much effort that
PA � Con ↔ Con′, and PA � Con ↔ Con′′. Likewise for the other most obvious
ways of expressing PA’s consistency in LA. And being provably equivalent to
Con, these alternative consistency sentences are of course all equally unprovable
in PA. It is therefore reasonable to think of Con as the canonical consistency
statement for PA, unique up to provable equivalence.

(c) But could there perhaps be other, more oblique and less obvious, ways of
expressing PA’s consistency in LA? Well, there is a genuine issue here. But let’s
not get tangled up in this further question now: instead, we will return to the
topic in Section 27.2. For the moment we’ll just announce that the headline news
is this: if we care about informative consistency proofs, the canonical consistency
statement Con (or an equivalent) is what we’ll want to prove. And while we
might well have expected an arithmetically rich consistent theory like PA to
‘know about’ its own consistency (when we code up that claim), it can’t. In fact
– as the next chapter’s generalized version of the Second Theorem shows – if
any such theory ‘proves’ its own consistency, it must be inconsistent.

24.6 How interesting is the Second Theorem for PA?

You might well think: ‘OK, so we can’t derive Con in PA: but that fact is of
course no evidence at all against PA’s consistency, since we already know from
the First Theorem that lots of true claims about provability are underivable
in PA. While if, per impossibile, we could have given a PA proof of Con, that
wouldn’t have given us any special evidence for PA’s consistency – we could
simply reflect that even if PA were inconsistent we’d still be able to derive Con,
since we can derive anything in an inconsistent theory! Hence the derivability
or otherwise of a canonical statement of PA’s consistency inside PA itself can’t
show us a great deal.’

But, on reflection, the Theorem does yield three plainly important and sub-
stantial corollaries. The Theorem tells us (a) that even PA isn’t enough to derive
the consistency of PA, so we certainly can’t derive the consistency of PA using
a weaker theory. It tells us (b) that PA isn’t enough to derive the consistency
of even PA, so we certainly can’t use PA to demonstrate the consistency of a
stronger theory. And it tells us (c) that if we are going to produce any inter-
estingly informative consistency proof for PA then, since a weaker theory isn’t
up to the job and using a stronger theory which fully subsumes PA would be
question-begging, we’ll need to use a theory which is weaker in some respects
and stronger in others.

In the rest of this section, we comment briefly on the first two points. We’ll
develop point (c) in the final section.
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(a) Since we are now going to be talking about different theories let’s use
subscripts to keep track: so ConT is the canonical consistency statement for T ,
constructed on the lines of ConPA (our original sentence Con for PA). In other
words, ConT =def ¬ProvT (�⊥�), where ProvT is a canonical provability predicate
for T constructed along the lines of Prov for PA.

Here then is an immediate corollary of our key Theorem:

Theorem 24.1* If T is a consistent sub-theory of PA then T �

ConPA.

A sub-theory of PA is any theory whose theorems are a subset of the theorems
of PA.

Evidently, if the sub-theory T doesn’t have enough of the language of basic
arithmetic, then it won’t even be able to frame the PA-wff we’ve abbreviated
ConPA; so it certainly won’t be able to prove it. The more interesting case is
where T is a theory which does share the language of PA but doesn’t have all
the induction axioms and/or uses a weaker deductive system than classical first-
order logic. Such a theory T can’t prove more than PA. So, by Theorem 24.1,
assuming T is consistent, T can’t prove ConPA either.

Recall our brief discussion in Section 10.8, where we first raised the issue of
PA’s consistency. We noted that arguing for consistency by appealing to the ex-
istence of a putative interpretation might perhaps be thought risky (we might
worry that the appeal is potentially vulnerable to the discovery that our intu-
itions are deceptive and that there is a lurking incoherence in the interpretation).
So the question naturally arises whether we can give a demonstration of PA’s
consistency that depends on something supposedly more secure. And once we’ve
got the idea of coding up facts about provability using Gödel numbering, we
might wonder whether we could, so to speak, lever ourselves up to establishing
PA’s consistency (not its truth, but at least its consistency) by assuming the
truth of some weaker and supposedly less problematic arithmetic4 and trying to
prove ConPA. Theorem 24.1* shows that this can’t be done.

(b) Here’s another corollary of our Theorem:

Theorem 24.1** If T extends PA, then PA � ConT .

That’s because, if PA could establish the consistency of the stronger theory T , it
would thereby establish the consistency of PA as part of that theory, contrary to
the Second Theorem. (To prove Theorem 24.1** properly, we could use lemma
(L) of Section 25.6.)

We’ll be returning to consider the significance of this second corollary in the
next Interlude. It matters crucially for the assessment of Hilbert’s Programme,
which we briefly mentioned in Section 1.6. But the key point is already clear: we
can’t take some problematic rich theory which extends arithmetic (set theory,

4Such as the minimally inductive theory IΔ0 which we defined in Section 10.4, fn. 3.
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for example) and show that it is consistent by (i) talking about its proofs using
coding tricks and then (ii) using uncontentious reasoning already available in
some relatively weak, purely arithmetical, theory.

24.7 Proving the consistency of PA

Trying to prove the consistency of PA by appeal to a stronger theory which
already contains PA might well not seem to be a good strategy if we want to
quiet doubts about PA’s consistency (for doubts about PA will carry over to
become doubts about the stronger theory). And the Second Theorem shows that
it is impossible to prove PA’s consistency by appeal to a weaker theory which is
contained inside PA. But, as we noted, there’s another possibility: maybe we can
prove PA’s consistency by appeal to an attractive theory which is weaker than
PA in some respects but even though stronger in others.

And this is, in effect, what Gerhard Gentzen did in his consistency proof for
arithmetic.5 However, to explore his type of argument at any length would sadly
take us far too far away from our main themes. So here’s just a very sketchy out-
line, due to Gentzen himself. As with our sketched proof of Goodstein’s Theorem
in Section 23.2, if you don’t know much about the ordinals, you’ll probably get
little from these few brief hints. But don’t worry. It is only the overall structure
of the argument that matters.

We start with a ‘sequent proof’ formulation of PA, a formulation which can
easily seen to be equivalent to our official Hilbert-style version.

The ‘correctness’ of a proof [in particular, the lack of contradic-
tion] depends on the correctness of certain other simpler proofs
contained in it as special cases or constituent parts. This fact mo-
tivates the arrangement of proofs in linear order in such a way
that those proofs on whose correctness the correctness of another
proof depends precede the latter proof in the sequence. This ar-
rangement of the proofs is brought about by correlating with each
proof a certain transfinite ordinal number.

But why is the relevant linear ordering of proofs transfinite (in other words, why
must it allow an item in the ordering to have an infinite number of predecessors)?
Because

[it] may happen that the correctness of a proof depends on the
correctness of infinitely many simpler proofs. An example: Sup-
pose that in the proof a proposition is proved for all natural num-
bers by complete induction. In that case the correctness of the

5Gentzen’s key papers (1936, 1938) are difficult: but the headline news is given wonderfully
clearly in his wide-ranging lecture on ‘The concept of infinity in mathematics’ (Gentzen, 1937,
pp. 230–233, from which we are quoting here). For later variants on Gentzen’s proof, see
Mendelson (1964, Appendix), or – at greater length – Pohlers (1989, Ch. 1), Takeuti (1987,
Ch. 2).
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proof obviously depends on the correctness of every single one of
the infinitely many individual proofs obtained by specializing to a
particular natural number. Here a natural number is insufficient
as an ordinal number for the proof, since each natural number is
preceded by only finitely many other numbers in the natural or-
dering. We therefore need the transfinite ordinal numbers in order
to represent the natural ordering of the proofs according to their
complexity.

And now the key step is to argue by an induction along the transfinite ordering of
proofs. The very simplest proofs at the beginning of the ordering transparently
can’t lead to contradiction. Then it is easy to see that

once the correctness of all proofs preceding a particular proof in the
sequence has been established, the proof in question is also correct
precisely because the ordering was chosen in such a way that the
correctness of a proof depends on the correctness of certain earlier
proofs. From this we can now obviously infer the correctness of
all proofs by means of a transfinite induction, and we have thus
proved, in particular, the desired consistency.

More precisely, the ordering of possible proof-trees that we need to use to prove
the consistency of PA turns out have the order type of the ordinals less than
ε0 (i.e. the ordinals which are sums of powers of ω). So, what Gentzen’s proof
needs is the assumption that transfinite induction up to ε0 is legitimate.

Now, the procedure for listing the simpler proofs on which a more complex
proof depends is such that a computer could do it using only ‘for’ loops. If we code
up the proofs by Gödel numbers, then this sort of ‘reduction’ task can be handled
by p.r. functions. But PA can deal with p.r. functions and deal with codings of
facts about proofs: so the one place that the Gentzen-style proof invokes an idea
that isn’t available in PA is where it appeals to transfinite induction up to ε0.
So a minimal theory in which we can carry out the proof is one in which we can
handle primitive recursive functions and handle enough transfinite induction,
maybe via coding tricks. For example, it turns out to be enough to take the
simple theory PRA0 (that we met back in Section 12.4) and add on enough to
deal with transfinite induction for quantifier-free formulae. This theory is neither
contained in PA (since it can prove ConPA by Gentzen’s method, which PA can’t),
nor does it contain PA (since it can’t prove more complex, quantifier-involving,
instances of the Induction Schema).

Of course, is a very moot point whether – if you were actually worried about
the consistency of PA – this proof when fully spelt out would help resolve your
doubts. For, if you were worried whether the use of induction in general could
lead to contradiction, then appealing to an argument which deploys an induction
principle can hardly help! But perhaps your worry was about our ‘in for a penny,
in for a pound’ argument in Section 10.4 (we argued, recall, that the basic
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motivation for induction should encourage us to generously allow instances of
the Schema of arbitrary complexity): perhaps you thought that induction over
arbitrarily complex wffs might engender trouble. In that case, the fact that we
can show that PA is consistent using an induction principle which is only applied
to low-complexity wffs (even though the induction runs over more than just the
natural numbers) could possibly soothe your worries.

Be that as it may: the Gentzen proof is a fascinating achievement, containing
the seeds of wonderful modern work in proof theory. But the full story will have
to be left for another occasion.
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In the last chapter, we gave some headline news about the Second Theorem for
PA, and about how it rests on the Formalized First Theorem. In this action-
packed chapter, we’ll say something about how the Formalized First Theorem
is proved. More exactly, we state the so-called Hilbert-Bernays-Löb derivability
conditions on the provability predicate for theory T and show that these suffice
for proving the Formalized First Theorem for T , and hence the Second Theorem.
We’ll also prove a very nice theorem due to Löb.

25.1 More notation

To improve readability, let’s introduce some neat notation. We will henceforth
abbreviate ProvT (�ϕ�) simply by �Tϕ.1 So ConT can now alternatively be ab-
breviated as ¬�T⊥.

Two comments. First, note that our box symbol actually does a double job:
it further abbreviates the long predicative expression already abbreviated by
ProvT , and it absorbs the corner quotes that turn a wff into the standard numeral
for that wff’s Gödel number. If you are logically pernickety, then you might be
rather upset about introducing a notation which in this way rather disguises the
complex logical character of what is going on.2 But my line is that abbreviatory
convenience here trumps notational perfectionism.

Second, we will very often drop the explicit subscript from the box symbol,
and let context supply it. We’ll also drop other subscripts in obvious ways. For
example, here’s the Formalized First Theorem for theory T in our new notation:

T � Con → ¬�G.

The turnstile signifies the existence of a proof in T ’s deductive system. And
the box in this statement is then to be understood by default as expressing

1If you are familiar with modal logic, then you will immediately recognize the conventional
symbol for the necessity operator. And the parallels and differences between ‘“1 + 1 = 2” is
provable (in T )’ and ‘It is necessarily true that 1+1 = 2’ are highly suggestive. These parallels
and differences are the topic of ‘provability logic’, the subject of a contemporary classic (Boolos,
1993).

2The beef is this. The notation ‘�ϕ’ looks as if it ought to be a complex wff embedding ϕ,
so that as ϕ increases in logical complexity, so does �ϕ. But not so. However complex ϕ is,
�ϕ� is just a numeral and �ϕ, i.e. ProvT (�ϕ�), stays resolutely a Σ1 wff.

Perhaps the logically kosher approach is not to regard the box as an abbreviation, but
to introduce a new modal language, and then explore a mapping relation that links modal
sentences to arithmetical ‘realizations’ via a �/Prov link. For a properly careful treatment of
this, see Boolos (1993) again.
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provability in T, while Con and G are (of course) respectively the canonical
consistency sentence ConT and the Gödel sentence GT for that same theory.

25.2 The Hilbert-Bernays-Löb derivability conditions

(a) We haven’t yet proved the Formalized First Theorem for PA. And, as we
remarked before, Gödel himself didn’t prove the corresponding result for his
particular formal theory P. The hard work was first done by David Hilbert and
Paul Bernays in their Grundlagen der Mathematik (1939): the details of their
proof are in fact due to Bernays, who had discussed it with Gödel during a
transatlantic voyage.

Hilbert and Bernays helpfully isolated three conditions on the predicate ProvT ,
conditions whose satisfaction is enough for a nice theory T to prove the Formal-
ized First Theorem. Later, Martin H. Löb (1955) gave a rather neater version of
these conditions. Here they are in Löb’s version, and in our snappy notation:

C1. If T � ϕ, then T � �ϕ,

C2. T � �(ϕ→ ψ) → (�ϕ→ �ψ),

C3. T � �ϕ→ ��ϕ,

where ϕ and ψ are, of course, any sentences. Henceforth, we’ll call these the
derivability conditions. We’ll see in the next chapter that they hold for PA.

(b) Why are these a very natural set of conditions to propose? Well, think
about our (re)proof of the first part of the First Theorem in Section 21.1. We
started from the special case of the Diagonalization Lemma

D. T � G ↔ ¬�G.

Or rather, we started from one half that result,

D′. T � G → ¬�G,

and we put that together with the principle (C1) in order to derive T � GT .
Now, given that (D′) and (C1) imply half of the First Theorem, we might

reasonably expect to be able to argue from the claims that T ‘knows’ that (D ′)
holds and T ‘knows’ that (C1) holds to the conclusion T ‘knows’ that half the
First Theorem holds.

Let’s put that more carefully! The thought that T ‘knows’ that (D′) holds is
tantamount to

K. T � �(G → ¬�G),

And that follows from (D′) by (C1). The thought that T ‘knows’ that (C1) holds
is captured by (C3). The hoped for inference is therefore from (K) and (C3) to
the Formalized First Theorem. That should go through so long as T is able
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to cope with the idea that if ϕ→ ψ and ϕ are both provable, then so is their
consequence ψ. Which is just what (C2) requires.

So, putting everything together, the three derivability conditions – together
with the special case of the Diagonalization Lemma which is provable for any
nice theory – look as if they ought to give us the Formalized First Theorem.

(c) And indeed they do, as we’ll now prove.

Theorem 25.1 If T is nice and the derivability conditions hold,
then T � Con → ¬�G.

Proof First, if T is nice, (D) is true by Theorem 20.3. And second, note that
for any nice theory T , T � ¬⊥ (either by the built-in logic, or because we’ve put
⊥ =def 0 = 1). So simple logic shows that, for any wff ϕ, we have

T � ¬ϕ→ (ϕ→ ⊥).

Given the latter and (C1), this means

T � �(¬ϕ→ (ϕ→ ⊥)).

So given (C2) and using modus ponens, it follows that for any ϕ

A. T � �¬ϕ → �(ϕ→ ⊥).

We now argue as follows:

1. T � G → ¬�G Half of D
2. T � �(G → ¬�G) From 1, given C1
3. T � �G → �¬�G From 2, given C2
4. T � �¬�G → �(�G → ⊥) Instance of A
5. T � �G → �(�G → ⊥) From 3 and 4
6. T � �G → (��G → �⊥) From 5, given C2
7. T � �G → ��G Instance of C3
8. T � �G → �⊥ From 6 and 7
9. T � ¬�⊥ → ¬�G Contraposing

10. T � Con → ¬�G Definition of Con

Which gives us our general version of the Formalized First Theorem. �

(d) We can now immediately derive a version of the Second Theorem for T :

Theorem 25.2 If T is nice and the derivability conditions hold,
then T � ConT .

Proof The argument goes as before:

1. T � Con → ¬�G Just proved
2. T � ¬�G → G Other half of D
3. T � Con → G From 1 and 2
4. T � G The First Theorem!
5. T � Con From 3 and 4 �
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(e) Before proceeding, let’s also note another simple result:

Theorem 25.3 If T is nice and the derivability conditions hold,
then for any sentence ϕ, T � ¬�ϕ → Con.

So T knows that, if it can’t prove ϕ, it must be consistent.

Proof We argue as follows:3

1. T � ⊥ → ϕ Logic!
2. T � �(⊥ → ϕ) From 1, given C1
3. T � �⊥ → �ϕ From 2, given C2
4. T � ¬�ϕ → ¬�⊥ Contraposing
5. T � ¬�ϕ → Con Definition of Con �

So, since T can’t prove Con, T doesn’t entail ¬�ϕ for any ϕ at all. Hence T
doesn’t ever ‘know’ that it can’t prove ϕ, even when it can’t.

In sum, suppose that T is nice and the derivability conditions hold: by (C1), T
knows all about what it can prove; but we’ve now shown that it knows nothing
about what it can’t prove.

25.3 G, Con, and ‘Gödel sentences’

Suppose T is nice and the derivability conditions hold. Then Theorem 25.1 tells
us that T � Con → ¬�G; and, from Theorem 25.3, it immediately follows that
T � ¬�G → Con. Put those two results together with (D), the special case of
the Diagonalization Lemma, and we get:

Theorem 25.4 If T is nice and the derivability conditions hold,
then T � Con ↔ G.

Now consider the following argument:

1. T � Con → G Just shown
2. T � �(Con → G) From 1, by C1
3. T � �Con → �G From 2, by C2
4. T � Con → ¬�G Thm. 25.1 again
5. T � Con → ¬�Con From 3 and 4

But Theorem 25.3 tells us that T � ¬�Con → Con. Which establishes

Theorem 25.5 If T is nice and the derivability conditions hold,
then T � Con ↔ ¬�Con.

In other symbols, T � Con ↔ ¬Prov(�Con�). Hence, on the same assumptions
about T , Con is also a ‘fixed point’ for ¬Prov(x) in the sense of Section 20.4.

3In fact, the only aspect of T ’s ‘niceness’ that we use is that it contains enough logic.
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Two comments. First, suppose we use the phrase ‘Gödel sentence’ in a wide
sense to refer to any fixed point for ¬ProvT (see Section 21.2). Then we’ve just
shown that there are Gödel sentences like Con which are not self-referential in
any way, however loosely interpreted. But, as we noted in Section 21.1, any fixed
point for ¬ProvT will be formally undecidable (assuming T is ω-consistent). So
there are formally undecidable sentences which aren’t self-referential. That ob-
servation should scotch once and for all any lingering suspicion that the incom-
pleteness phenomena are somehow inevitably tainted by self-referential paradox.

Second, note that our demonstration that T � Con → ¬�Con tells us that T
can itself prove a wff that expresses the Second Theorem, i.e. a wff that says ‘If
T is consistent, then it cannot prove Con’. We can call this result the Formalized
Second Theorem.

And that’s the main business of this chapter done. However, it’s worth adding
four more sections on related matters. The next section uses Theorem 25.4 to
make an observation about sequences of ever-richer but still incomplete theories.
The following section says more about fixed points for ¬Prov. The one after that
is about theories that ‘prove’ their own inconsistency. And the final section of
this chapter presents Löb’s elegant Theorem. But you can skip them all on a
first reading. Don’t get bogged down in these additional details!

25.4 Incompletability and consistency extensions

As we’ve noted before, if we start from PA, and add its canonical Gödel sentence
G as a new axiom, the resulting theory PA + G trivially proves PA’s Gödel sen-
tence. But the new theory has its own canonical Gödel sentence GPA+G, and so
must remain incomplete. We can then, of course, construct a yet richer theory
PA + G + GPA+G, which can prove the Gödel sentences of both the two preced-
ing theories: but this theory too has its own Gödel sentence and is incomplete.
And so it goes. We can continue in the same vein, forming an infinite sequence
of theories, each theory trivially proving the canonical Gödel sentences of its
predecessors but remaining incomplete and incompletable.

Now, we’ve just shown that, if T is nice and the derivability conditions hold,
ConT and GT are provably equivalent in T . And we’ll later be showing that the
derivability conditions indeed hold for theories extending PA. So our sequence
of theories got by adding Gödel sentences is equivalent to the sequence PA,
PA + Con, PA + Con + ConPA+Con, . . . , where the n + 1-th theory on the list
adds the canonical consistency sentence of the n-th theory as a new axiom. So,
each theory in the sequence proves the canonical consistency sentences of its
predecessors, but still remains incomplete and incompletable.

The interest in putting things in terms of ‘consistency extensions’ rather than
in terms of the addition of Gödel sentences lies in the following thought. Suppose
we accept that PA is sound. Then, reflecting on this, we’ll readily come to accept
that PA + Con is sound too – and we don’t need to go through any intricate
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Gödelian arguments to get to that realization (the argument is elementary al-
though it does involve us in more than purely arithmetical reasoning because we
have to think about our own theorizing). And reflecting on that, we’ll readily
come to accept that PA + Con + ConPA+Con is sound too. And so on. So starting
from our initial thought that PA is sound, reflection can very naturally drive us
along the sequence of consistency extensions. But still the theories we arrive at
by pursuing this natural line of thought remain incomplete and incompletable.

And what if we consider ‘consistency extensions’ of PA which add not just a
finite number of such consistency statements, but all of them together? What if
we now add the consistency statement for that infinitely augmented theory, and
keep on going again after that? No matter. So long as our theory remains p.r.
axiomatized, it must remain incomplete.4

25.5 The equivalence of fixed points for ¬Prov

G and Con are both fixed points for ¬Prov(x). They are also provably equivalent.
We might wonder: are all the fixed points for ¬Prov(x) provably equivalent? The
answer is given by

Theorem 25.6 Given that the derivability conditions hold for T ,
all the fixed points for ¬ProvT (x) are provably equivalent in T to
ConT .

Proof We assume T � γ ↔ ¬�γ and need to derive T � γ ↔ ¬�⊥. The
derivation is straightforward: try it as a brainteaser before reading on!

1. T � γ ↔ ¬�γ Premiss
2. T � γ → (�γ → ⊥) From 1, by logic
3. T � �(γ → (�γ → ⊥)) From 2, given C1
4. T � �γ → (��γ → �⊥) From 3, given C2
5. T � �γ → ��γ From C3
6. T � �γ → �⊥ From 4 and 5
7. T � ⊥ → γ Logic
8. T � �(⊥ → γ) From 7, given C1
9. T � �⊥ → �γ From 8, given C2

10. T � �γ ↔ �⊥ From 6 and 9
11. T � γ ↔ ¬�⊥ From 1 and 10 �

One quick comment to link this little result to an important observation we
made in Section 21.2. You might momentarily be tempted to think: ‘Assuming
T is nice, its canonical consistency sentence ConT is true, as is its canonical

4Which is not at all to say that the general theory of consistency extensions isn’t interesting,
for there are troublesome complications, classically explored in Feferman (1960). For a recent
discussion, see Franzén (2004).
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Gödel sentence GT . But we’ve just seen that all of T ’s other Gödel sentences –
in the sense of all the fixed points for ¬Prov(x)T – are provably equivalent to
these truths. So these other Gödel sentences must be true too.’ But not so: that
forgets that a nice T may be a consistent-but-unsound theory. Such a T will
have some false Gödel sentences mixed in with the true ones (and hence some
false biconditional theorems relating the false ones to the true ones).

25.6 Theories that ‘prove’ their own inconsistency

An ω-consistent T can’t prove ¬ConT (that was Theorem 24.2). By contrast, a
consistent but ω-inconsistent T might well have ¬ConT as a theorem.

The proof is pretty trivial, once we note a simple lemma. Suppose S and R are
two p.r. axiomatized theories, which share a deductive logic; and suppose every
axiom of the simpler theory S is also an axiom of the richer theory R. Evidently,
if the richer R is consistent, then the simpler S must be consistent too. And the
arithmetical claim that encodes this fact can be formally proved. Contraposing,

L. PA � ¬ConS → ¬ConR.

Proof sketch Suppose ¬ConS , i.e. suppose ∃v PrfS(v,⊥). Hence for some a,
PrfS(a,⊥). And that implies PrfR(a,⊥). Why? Because the difference between
the unpacked definitions of PrfS and PrfR – the definitions which formally re-
flect what counts as (the code for) an S proof and an R proof – will just be
that the latter needs some more disjuncts to allow for the extra axioms that can
be invoked in an R proof. So it follows that ∃v PrfR(v,⊥), i.e. ¬ConR. And the
inferences here only uses the first-order logic built into PA. �

Now let’s put lemma (L) to use. Take the simpler theory S to be PA and let the
richer theory R be PA augmented by the extra axiom ¬ConPA. By definition, R �
¬ConPA. So using our lemma we can conclude R � ¬ConR. R is ω-inconsistent
(why? cf. Theorem 24.2). But it is consistent if PA is (why? because we know from
the Second Theorem that if R proved a contradiction, and hence PA � ConPA,
then PA would be inconsistent). So, assuming PA is consistent,

1. R is a consistent theory which ‘proves’ its own inconsistency.

And since R proves ¬ConR,

2. there is a consistent theory R such that R+ ConR is inconsistent.

What are we to make of these apparent absurdities? Well, giving the language
of R its standard arithmetical interpretation, the theory is just wrong in what
it says about its inconsistency! But on reflection that shouldn’t be much of a
surprise. Believing, as we no doubt do, that PA is consistent, we already know
that the theory R gets things wrong right at the outset, since it has the false ax-
iom ¬ConPA. So R doesn’t really prove (establish-as-true) its own inconsistency,
since we don’t accept the theory as correct on the standard interpretation.
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By the way, we will see in the next chapter that the derivability conditions
hold for theories that contain PA, so they will hold for R. Hence by Theorem 25.4,
R � ConR ↔ GR. So since R � ¬ConR, R � ¬GR. Hence the ω-inconsistent R also
‘disproves’ its own true canonical Gödel sentence. That’s why the requirement
of ω-inconsistency – or at least 1-consistency – has to be assumed in the proof
that arithmetic is incomplete, if we are prove it by constructing an original-style
Gödel sentence like GR.

25.7 Löb’s Theorem

(a) Finally in this busy chapter, let’s think about the following issue. Suppose
T is a nice sound theory. Then if ϕ is a provable sentence, ϕ is true. So each
instance of the so-called reflection schema for T , i.e. each instance of

�Tϕ→ ϕ,

will be true. Hence we would like T to be able to prove all such instances – since
we’d like a nice sound theory T to prove as many arithmetic truths as possible.
The question is: can it?

It is easy to see that the answer must be ‘no’:

Theorem 25.7 If T is nice, then T cannot prove all instances of
the reflection schema for T .

Proof Suppose T � �G → G (for a canonical Gödel sentence G). Theorem 20.3
tells us that if T is nice, then it is also true that T � G ↔ ¬�G. So, given T
is nice, T � �G → ¬�G, hence T � ¬�G, hence T � G, contradicting the First
Theorem. Therefore, if T is nice, T � �G → G. �

Two corollaries of this result are worth mentioning for future use. (1) Since G
is Π1, we’ve shown that T can’t prove even just all instances of the reflection
schema where ϕ is Π1. And (2), if T ′ is a richer theory that extends T , then T
certainly can’t prove all instances of the reflection schema for the richer T ′, i.e.
all instances of �T ′ϕ→ ϕ, even just those where ϕ is Π1.

But have we just noted a rather special blind spot for theories? Can they oth-
erwise prove all the instances of their own reflection principle for non-Gödelian
ϕ? This question is answered, in the negative again, by Löb’s Theorem:

Theorem 25.8 If T is nice and the derivability conditions hold,
then if T � �ϕ→ ϕ then T � ϕ.

So for any ϕ that T can’t prove, T can’t prove �ϕ→ ϕ either.

(b) Löb’s theorem also settles another question, one asked by Henkin (1952).
By the Diagonalization Lemma applied to the unnegated wff Prov(z), there is a
sentence H such that T � H ↔ Prov(�H�) – i.e., we can use diagonalization again
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to construct such a sentence H that ‘says’ that it is provable.5 Henkin asked: is
H provable?

It is. For by hypothesis, T � Prov(�H�) → H, i.e. T � �H → H; so T � H by
Löb’s Theorem.

(c) We can easily derive Löb’s Theorem as a consequence of the Second Incom-
pleteness Theorem as follows (the argument is due to Kreisel):

Proof sketch Assume we are dealing with arithmetics to which the Second The-
orem applies. We’ll suppose T � �Tϕ→ ϕ, and derive T � ϕ.

So make that supposition and now consider the theory T ′ you get by taking
T and adding ¬ϕ as a new axiom. Then trivially T ′ � ¬ϕ and T ′ � �Tϕ → ϕ,
so T ′ � ¬�Tϕ. But to prove that ϕ is unprovable in T is to prove that adding
¬ϕ to T doesn’t lead to contradiction, i.e. is to prove that T ′ is consistent. So
for T ′ to prove ¬�Tϕ is tantamount to proving its own consistency. But by the
Second Incompleteness Theorem, T ′ can’t prove its own consistency if it is itself
consistent. So T ′ is inconsistent. Maybe T is already inconsistent. Else adding
¬ϕ to T leads to inconsistency. So either way T � ϕ. �

(d) However, it is a lot more fun to proceed the other way around; so now we
are going to use the derivability conditions to prove Löb’s Theorem directly. We
will then re-establish the Second Incompleteness Theorem as a corollary.

Proof Assume that, for a given ϕ,

1. T � �ϕ→ ϕ.

Now consider the wff (Prov(z) → ϕ). By hypothesis, T is nice, so we can invoke
the general Diagonalization Lemma and apply it to this wff. Hence for some γ,
T proves γ ↔ (Prov(�γ�) → ϕ). Or, in our new notation,

2. T � γ ↔ (�γ → ϕ)
3. T � γ → (�γ → ϕ) From 2
4. T � �(γ → (�γ → ϕ)) From 3, by C1
5. T � �γ → �(�γ → ϕ) From 4, by C2
6. T � �γ → (��γ → �ϕ) From 5, by C2
7. T � �γ → ��γ By C3
8. T � �γ → �ϕ From 6 and 7
9. T � �γ → ϕ From 1 and 8

10. T � γ From 2 and 9
11. T � �γ From 10, by C1
12. T � ϕ From 9 and 11

Hence, if T � �ϕ→ ϕ, then T � ϕ. But ϕ was an arbitrarily selected wff; so we
are done. �

5If the Gödel sentence G is reminiscent of the Liar sentence ‘This sentence is false’, then
Henkin’s sentence H is reminiscent of the Truth-teller sentence ‘This sentence is true’. For
discussion of the Truth-teller, see e.g. Simmons (1993) or Yaqub (1993).
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And as we said, we can now get from Löb’s Theorem back to the Second
Incompleteness Theorem. The argument is swift:

Proof If T � Con then, as trivial consequence, T � ¬Con → ⊥, i.e. T � �⊥ → ⊥
Then, by Löb’s Theorem, we can conclude T � ⊥. Hence, if T � Con, T is
inconsistent. �

(e) Now, we noted at the very outset that the reasoning for Gödel’s First The-
orem has echoes of the Liar paradox. Let’s finish this chapter by noting that
the proof of Löb’s theorem (which we’ve just seen is tantamount to the Second
Theorem) echoes another logical paradox.

Suppose first we temporarily reinterpret the symbol ‘�’ as expressing the
truth-predicate, so we read �S as ‘S’ is true. Second, let ϕ express any propo-
sition you like, e.g. The moon is made of green cheese. Then

1′. �ϕ→ ϕ

is a truism about truth. Third, suppose that the sentence γ says: if γ is true,
then the moon is made of green cheese. Then we have by definition

2′. γ ↔ (�γ → ϕ).

From here on, we can argue as before (deleting the initial ‘T �’), appealing
to conditions (C1) to (C3) now reinterpreted as intuitive principles about truth:

C1′. if ϕ then ϕ is true;

C2′. if ϕ→ ψ is true, then if ϕ is true, ψ is true too;

C3′. if ϕ is true, then it is true that ϕ is true.

Using these evidently sound principles we again arrive by exactly the same route
at

12′. ϕ.

So, from truisms about truth and a definitional equivalence like (2′) we can, it
seems, prove that the moon is made of green cheese. Or prove anything else you
like, since the interpretation of ϕ was arbitrary. (Exercise: check through the
details.)

This line of reasoning is nowadays usually known as ‘Curry’s Paradox’ – after
Haskell B. Curry who presented it in Curry (1942) – though close relations of it
were certainly known to medieval logicians such as Albert of Saxony.6 It isn’t
obvious what the best way is to block Curry’s paradox, any more than it is
obvious what the best way is to block the Liar. There is no doubt something
fishy about postulating a sentence γ such that (2′) holds: but what exactly?

Fortunately answering that last question is not our business. We merely re-
mark that Löb’s Theorem, like Gödel’s, is not a paradox but a limitative result,
a result about a theory’s inability to prove certain propositions about its own
provability properties.

6See his terrific Insolubilia of 1490, translated in Kretzmann and Stump (1988).
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26 Deriving the derivability conditions

We have seen that the Second Theorem obtains for any nice theory T which also
satisfies the Hilbert-Bernays-Löb derivability conditions

C1. if T � ϕ, then T � �ϕ,

C2. T � �(ϕ→ ψ) → (�ϕ→ �ψ),

C3. T � �ϕ→ ��ϕ,

where ϕ, ψ are any T -sentences. But we already know from Theorem 20.1 that
(C1) holds for any nice theory: indeed, if T � ϕ, even Q � �Tϕ. So the obvious
next question is: what does it take for conditions (C2) and (C3) to obtain as
well?

26.1 Nice* theories

�ϕ – i.e. �Tϕ – abbreviates ∃v PrfT (v, �ϕ�). By definition, PrfT canonically
captures the relation Prf T . So statements involving �T make claims about the
Prf T relation in a very direct way. And it looks quite plausible that T will be able
to prove enough facts about Prf T to make (C2) and (C3) true if T is sufficently
rich, and in particular if it has sufficient inductive strength.

Whatever the details, however, in order to prove (C2) and (C3) we are surely
not going to need to invoke anything like the full range of induction axioms that
are available in e.g. PA. For PrfT is a Σ1 predicate, that is built up using other Σ1

predicates which capture the simpler functions involved in Prf T ’s p.r. definition.
It therefore seems quite a good bet that the derivability conditions for T will
hold even if T only has Σ1-induction – meaning that T ’s axioms include (the
universal closures of) all instances of the first-order Induction Schema where the
induction predicate ϕ is Σ1.

If T is consistent, p.r. axiomatized, and contains Q, we said it is ‘nice’. Let’s
now say:

A nice* theory T is one which is nice and also includes induction
at least for Σ1 wffs.

Let IΣ1 be the theory you get by augmenting Q with Σ1-induction. Then, equiv-
alently,

A nice* theory T is a consistent, p.r. axiomatized, theory which
extends IΣ1.
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The second derivability condition

So, given what we’ve just said, the rather natural conjecture is that we can
establish the following:

Theorem 26.1 The Hilbert-Bernays-Löb derivability conditions
hold for any nice* theory.

But Theorem 25.2 tells us that if T is nice and satisfies the derivability conditions
then T � ConT . Hence, if we can establish our conjectured new theorem, we
can immediately derive an attractively neat generalized version of the Second
Incompleteness Theorem:

Theorem 26.2 If T is nice*, then T � ConT .

26.2 The second derivability condition

To establish Theorem 26.1, we first need to see – at least in outline – how
to confirm that if T is nice* then (C2) holds. In fact, we’ll outline a proof of
something rather stronger. So long as T has a standard logic, we have:

Theorem 26.3 IΣ1 � �T (ϕ→ ψ) → (�Tϕ→ �Tψ).

Since a nice* T proves everything IΣ1 proves, (C2) follows.

Sketch of a proof sketch Assume that T has a Hilbert-style linear proof sys-
tem (for other kinds of proof structure the following argument just gets more
complicated in fiddly ways). And start with the following observation:

MP. If Prf T (m, �(ϕ→ ψ)�) and Prf T (n, �ϕ�), then Prf T (m � n � 2�ψ�, �ψ�).

That holds because, if m numbers a T -proof of the sentence (ϕ → ψ), and n
numbers a T -proof of ϕ, then m�n � 2�ψ� numbers the sequence of wffs you get
by writing down the proof of (ϕ → ψ) followed by the proof of ϕ followed by
the one-wff sequence ψ. But this longer sequence is, of course, a T -proof of the
sentence ψ by modus ponens.

What we now need to show is that this line of reasoning can be reflected inside
IΣ1. In other words,

MP′. We can argue inside IΣ1 from premisses of the form PrfT (a, �(ϕ→ ψ)�)
and PrfT (b, �ϕ�) to the corresponding conclusion PrfT (a ∗ b ∗ 2�ψ�, �ψ�),

where the star sign holds the place for a formal treatment of the p.r. concate-
nation star function (see Section 21.3, fn. 4). Given (MP′), our theorem is then
immediate.

Why? Because – dropping subscript T s for readability – our target theorem
unpacks as the following claim: we can argue inside IΣ1 from premisses of the
form ∃v Prf(v, �(ϕ→ ψ)�) and ∃v Prf(v, �ϕ�) to the corresponding conclusion
∃v Prf(v, �ψ�). And to establish that that holds, it is enough to argue inside
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26 Deriving the derivability conditions

IΣ1 by (the Hilbert-style equivalent of) instantiating those two existential pre-
misses to get Prf(a, �(ϕ→ ψ)�) and Prf(b, �ϕ�), using (MP′), then existentially
generalizing the result.

So how do we show that (MP′) is actually true? Well, remember again that
PrfT canonically captures the p.r. relation Prf T . This means that PrfT is ulti-
mately built up from component wffs which reflect the components of the p.r.
definition of Prf T . But a p.r. definition of Prf T will have a clause that covers
inferences by modus ponens (see Section 15.9 for our definition of the relation
Prf for PA). Hence our canonical PrfT will likewise ‘know about’ modus ponens
proofs. And we can now exploit this fact: basically, we can extract component
wffs buried inside Prf(a, �(ϕ→ ψ)�) and Prf(b, �ϕ�), and go on to deduce the
various wffs which can be recombined to give us Prf(a ∗ b ∗ 2�ψ�, �ψ�).

Now, in order to be able to do all this, we will have to be working in a formal
theory which can prove the requisite properties of the Σ1 wff that captures the
concatenation star function, and also proves the requisite properties of the Σ1 wff
that captures the decoding function exp, since both wffs are involved in defining
Prf. Σ1-induction will (more than) suffice to establish those properties. So IΣ1

is enough to prove (MP′) and hence we get our theorem as claimed.
And let’s not get bogged down in the further details!1 �

26.3 The third derivability condition

To complete the proof of Theorem 26.1, we now need to confirm – though in even
rougher outline – that if T is nice* then (C3) holds. And again, we’ll gesture
towards a proof of a more general result. So suppose T extends Q: then,

Theorem 26.4 For any Σ1 sentence ψ, IΣ1 � ψ → �Tψ.

But �ϕT is, of course, a Σ1 sentence whatever ϕ is (see Section 25.1, fn. 2). So
if we put �Tϕ for ψ in our theorem, we get

For any ϕ, IΣ1 � �Tϕ→ �T�Tϕ.

Remembering that a nice* theory includes IΣ1, we then get what we want:

If T is nice* then, for any sentence ϕ, T � �ϕ→ ��ϕ.

1There’s no way of making the proof pretty – especially given the twists in our official
story in Section 13.8 about how to construct a canonical Prf – which is the main reason I
draw the line at spelling things out any further.

Masochists who want to complete the story for themselves can start by looking at Grandy
(1977, p. 75) to get an idea of the sorts of core moves we need. Be warned, however, Grandy’s
construction of Bew – his version of our Prf – is simpler in its details. See also Rautenberg
(2006, Sec. 7.1).

Let’s emphasize: filling in the details does require a bit of work, as e.g. Smoryński (1977,
p. 839) also emphasizes and as Grandy’s and Rautenberg’s treatments reveal. The very brief
gestures towards proofs in e.g. Boolos (1993, p. 54) and Takeuti (1987, p. 86) are therefore
slightly misleading.
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Sketch of a proof sketch Recall from Section 9.7 that we showed that any theory
T which includes Q is Σ1-complete: if ϕ is a Σ1 sentence which is true on the
standard interpretation, then T � ϕ. So what our new theorem says is essentially
that IΣ1 ‘knows’ that T is Σ1-complete. In other words, when ψ is Σ1, IΣ1 ‘knows’
that ψ → �Tψ.

And that gives us the key to proving Theorem 26.4. We just need to show
that the argument for T ’s Σ1-completeness can be formalized inside IΣ1. Which,
needless to say, is a great deal easier said than done!

The original argument for Q’s Σ1-completeness works by an informal induction
on the complexity of the relevant wffs. In other words, we first showed that Q
can prove the simplest true Σ1-wffs; and then we showed that Q can prove more
complex Σ1 truths built up using the connectives and bounded quantifiers, given
that it can prove all simpler Σ1 truths.

We now need to run the same kind of induction again. We first show that
IΣ1 can prove ψ → �Tψ for the simplest Σ1-wffs ψ. Then we show that IΣ1

can prove ψ → �Tψ for more complex Σ1-wffs so long as it can prove all the
instances for simpler Σ1-wffs. This is messy work but not particularly difficult:
again, we need to dig inside the box – i.e. inside ∃vPrfT (v, x) – and rely on the
fact that PrfT recapitulates the definition of the p.r. relation PrfT . Again we’ll
not get bogged down by following through all the details here.2 �

Assuming that our argument-strategy really can be made good, that completes
the proof of Theorem 26.1, and hence establishes Theorem 26.2.

26.4 Useful corollaries

That’s the main business of this chapter done: but we’ll add another three sec-
tions (which can be skimmed or skipped). First, in this section, we’ll briskly
mention some useful corollaries of our arguments so far. In the next section,
we’ll say something about the Second Theorem for systems of arithmetic that
are even weaker than IΣ1. Finally, in the last section, we’ll explain a slightly
different way of proving the Second Theorem.

The fact that IΣ1 suffices to establish all three derivability conditions for any T
extending Q means that we can improve some earlier results in easy ways. Let’s
highlight just three cases for future reference.

To keep things clear, we’ll make subscripts explicit. Then Theorem 25.3 tells us
that, if T is nice and satisfies the derivability conditions, T � ¬�Tϕ → ConT
(where ϕ is any sentence). Second, recall Theorem 25.1, the Formalized First
Theorem: T � ConT → ¬�GT . Third, Theorem 25.4 tells that that T � ConT ↔
GT . We can now sharpen these results:

2Those whose mathematical masochism wasn’t sated by following up the last footnote can
get a fuller story in Boolos (1993, pp. 44–49). Needless to say, Boolos’s notation is different
again. Alternatively, see Rautenberg (2006, Sec. 7.1).
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26 Deriving the derivability conditions

Theorem 26.5 If T extends Q, then (i) IΣ1 � ¬�Tϕ→ ConT for
any sentence ϕ, (ii) IΣ1 � ConT → ¬�GT , (iii) IΣ1 � ConT ↔ GT .

Proof For the first part, simply re-run our argument for T � ¬�Tϕ → ConT ,
replacing ‘T �’ throughout by ‘IΣ1 �’.

Next, reviewing steps (1) to (10) of the proof of Theorem 25.1, we see that
we can again replace each ‘T �’ by ‘IΣ1 �’ to get IΣ1 � ConT → ¬�GT .

For the third part, reviewing the proof leading up to Theorem 20.3, we can
see that IΣ1 � GT ↔ ¬�TGT (for IΣ1 can capture the diag function). Putting
that result together with (ii) gives us one direction of the biconditional (iii):
IΣ1 � ConT → GT .

As a special case of (i), we also have IΣ1 � ¬�GT → ConT . Combined with
IΣ1 � GT ↔ ¬�GT again, that gives us the other direction of the biconditional
(iii): IΣ1 � GT → ConT . �

26.5 The Second Theorem for weaker arithmetics

(a) We noted that PrfT is a Σ1 wff. That led us to conjecture that, if T has at
least Σ1-induction, then T will be able to prove the required facts about PrfT
to make the derivability conditions hold.

But in fact, even full Σ1-induction is more than we need to get the derivability
conditions. What is crucial in handling PrfT is that T can deal with exponentia-
tion which plays such a crucial role in our arithmetization of syntax. So consider
the following theory, known as Elementary Arithmetic, which knows more about
exponentiation than does Q but is less powerful that IΣ1:

EA is Q plus Δ0-induction plus the axiom that exponentiation
is always defined – i.e. the axiom ∀x∀y∃!z Exp(x, y, z) where Exp
captures the exponentiation function.3

If a theory T contains at least EA, then in fact that’s enough for the derivability
conditions to hold: which gives us one way of sharpening Theorem 26.2.

This isn’t just a technical curiosity. As its standard label ‘elementary arith-
metic’ suggests, EA is a very interesting theory in its own right.4 However, we
haven’t space to pursue the matter here.

(b) And what about theories even weaker than EA? What about IΔ0 – which
we defined in Section 10.4, fn. 3. – which is what you get by adding just induction
for Δ0 wffs to Q. Or what about our old friend Q itself?

3The new final axiom here implies that it is legitimate to add to EA a function symbol
for exponentiation (see Section 12.2, (b)). And that point indicates another way of presenting
EA. Simply take Q+ – the theory mentioned in Section 13.4, fn. 5, which adds the exponential
function with its obvious formal recursion equations to Q – and then also add the universal
closures of all instances of the Induction Schema for wffs, including those with the new function
symbol, which have no more than bounded quantifiers.

4For an intriguing discussion of the significance of EA, see Avigad (2003).
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Given the weakness of these theories, it will be no surprise at all to learn
that the Second Theorem applies here too: i.e. IΔ0 � ConIΔ0 , Q � ConQ. But the
proofs for these cases do have to go quite differently, because IΔ0, and so Q, isn’t
strong enough for e.g. the third derivability condition to hold.5

26.6 Jeroslow’s Lemma and the Second Theorem

(a) Finally in this chapter, we’ll introduce a different version of our generalized
Second Theorem which is due to R. G. Jeroslow (1973), in part because it is
intriguing, in part because it is mentioned from time to time in the secondary
literature. Let’s start by proving what can be called Jeroslow’s Diagonalization
Lemma.

Here’s the classic version of the Diagonalization Lemma that underlies our
previous incompleteness proofs:

Theorem 20.4 If T is a nice theory and ϕ(x) is any wff of its
language with one free variable, then there is a sentence γ such
that T � γ ↔ ϕ(�γ�).

And now here’s the variant Lemma due to Jeroslow:

Theorem 26.6 If T is a theory which has a function symbol to
capture each p.r. function, and ϕ(x) is any wff of its language with
one free variable, then there is a term τ such that T � τ = �ϕ(τ)�.

Note that the assumption in this theorem is in fact easily satisfied. If a theory
contains Q and a smidgin of induction, it can fully capture each p.r. function as
a function (it will be strongly p.r. adequate): there will then be a definitional
extension of the theory which contains a function symbol for each p.r. function.

Proof Given an open wff ϕ(x), we can define a corresponding diagonalizing
function d which takes the g.n. of a function symbol f, and returns the g.n. of the
wff ϕ(f(�f�)) (for arguments which aren’t codes for monadic function symbols,
the value of d can default to zero). This function is evidently p.r. because its
value can be computed without unbounded loopings.

Since d is p.r., it is captured in T by some function symbol d. Hence by its
definition, d(�d�) = �ϕ(d(�d�))�. And therefore, by the definition of capturing,
T � d(�d�) = �ϕ(d(�d�))�. Put τ = d(�d�) and Jeroslow’s Lemma is proved. �

(b) For a preliminary application of this Lemma, take the instance of our new
theorem where ϕ(x) =def ¬Prov(x). So, assuming T satisfies the condition in the
Lemma, there’s a term τ such that

5See Wilkie and Paris (1987) and Bezboruah and Shepherdson (1976) respectively for the
proofs of the Second Theorem for IΔ0 and Q. See Willard (2001) for an extended exploration
of some hobbled and perhaps not-very-natural arithmetics which can prove (some of) their
own consistency sentences.
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26 Deriving the derivability conditions

1. T � τ = �¬Prov(τ)�

Now define the sentence G′ =def ¬Prov(τ), and let’s suppose

2. T � G′

That means that for some number m, Prf (m, �¬Prov(τ)�) is true (just by the
definition of the Prf relation). Hence, since Prf captures Prf in T , we have

3. For some m, T � Prf(m, �¬Prov(τ)�).

Whence, using (1), we get

4. For some m, T � Prf(m, τ).

But since G′ is equivalent to ∀v¬Prf(v, τ), (4) contradicts (2). So, given that T is
consistent, (2) must be false: T cannot prove G′. Similarly, we can show that T
cannot prove ¬G′, on pain of being ω-inconsistent (exercise: check that claim).
In sum, a version of the First Theorem quickly follows again from Jeroslow’s
version of the Diagonalization Lemma.

(c) That was mildly diverting, but doesn’t tell us anything novel. However,
we’ll now use Jeroslow’s Lemma to derive a version of the Second Theorem, and
this time there is a new twist.

First, recall that ‘¬̇x’ captures the function which maps the g.n. of a wff ϕ
to the g.n. of its negation: thus ¬̇�ϕ� = �¬ϕ� (see Section 21.3, fn. 4 for more
explanation). And, as we noted in Section 24.5, one natural way of expressing a
theory’s consistency is

Con′T =def ¬∃x(ProvT (x) ∧ ProvT (¬̇x))

Let’s suppose for reductio that

1. T � Con′T

And now take the wff ϕ(x) in Jeroslow’s Lemma to be ProvT (¬̇x). So, dropping
subscripts again, for some term τ ,

2. T � τ = �Prov(¬̇τ)�

We can then argue as follows, assuming that conditions (C1) and (C3) apply to
T and that T has some basic logic.

3. T � Prov(¬̇τ) → Prov(¬̇τ) Logic!
4. T � Prov(¬̇τ) → Prov(¬̇�Prov(¬̇τ)�) From 2, 3
5. T � Prov(¬̇τ) → Prov(�Prov(¬̇τ)�) Instance of C3
6. T � Prov(¬̇τ) →

(Prov(�Prov(¬̇τ)�) ∧ Prov(¬̇�Prov(¬̇τ)�)) From 4 and 5
7. T � Prov(¬̇τ) → ¬Con′ From 6, defn. Con′

8. T � ¬Prov(¬̇τ) From 1, 7
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9. T � Prov(�¬Prov(¬̇τ)�) From 8, by C1
10. T � Prov(¬̇�Prov(¬̇τ)�) Defn. of ¬̇ fn.
11. T � Prov(¬̇τ) From 2, 10
12. Contradiction! From 8, 11.

So we can conclude that (1) can’t be true: T � Con′T .6

(d) Which all goes to establish the following theorem (assuming T has the
modicum of logic needed in the argument above):

Theorem 26.7 If T proves the Jeroslow Diagonalization Lemma,
and the derivability conditions (C1) and (C3) hold, then T � Con′T .

Hence (C2) doesn’t always have to hold for a provability predicate ProvT for
the corresponding sentence Con′T to be unprovable in T : it isn’t an essential
derivability condition for a version of the Second Theorem to apply.

(e) But is this tweaked result of much interest? Usually not! For we’ve al-
ready seen that in any normal theory with a standard first-order logic and
which includes the weak theory EA, all three derivability conditions will hold
for the canonical proof predicate. So Jeroslow’s result only really kicks in when
we are either dealing with extraordinary theories (e.g. with a cut-down logic), or
with extraordinary provability predicates (about which a little more in the next
chapter).

However, it has been quite fun to see Jeroslow’s neat trick for finding a new
version of the Diagonalization Lemma which uses identity rather than the bi-
conditional. And it justifies the following decidedly neat summary thought:

What it fundamentally takes to prove the First Incompleteness
Theorem is that we are dealing with a theory which is Σ1-complete;
if the theory knows that it is Σ1-complete then the Second Theo-
rem applies.

Why? Well, Σ1-completeness is the basic ingredient in our proof that Q and
richer nice theories T capture all the p.r. functions and relations. And that fact
in turn underpins the argument for the First Incompleteness Theorem. Now,
further, if T is Σ1-complete, then (C1) holds by the argument in Section 20.1.
And for T to ‘know’ it is Σ1-complete is for T to be able to prove ψ → �ψ for
every Σ1 sentence ψ, and that as we noted in Section 26.3 is enough for (C3)
to hold too. But Jeroslow has now shown us that – so long as we are dealing
with a theory with function symbols for every p.r. function – that’s enough for
a version of the Second Theorem to hold.

6An exercise to check your understanding: why haven’t we made our argument look prettier
by using our abbreviatory � symbol?
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27 Reflections

After the glory days of the 1930s, Gödel’s comments on the details of his in-
completeness theorems were few and far between. However, he did add a brief
footnote to the 1967 translation of a much earlier piece on ‘Completeness and
consistency’. And Gödel thought that his brisk remarks in that footnote were
sufficiently important to repeat them in a short paper in 1972, in a section en-
titled ‘The best and most general version of the unprovability of consistency in
the same system’.1

Gödel makes two main points. We explain the first of them in Section 27.2.
We then go on to prove some results about reflection principles which hopefully
throw light on his second point. And we’ll return to develop that second point
further in the next chapter, where we touch on Hilbert’s Programme.

It will do no harm at all, however, to begin with a summary of . . .

27.1 The Second Theorem: the story so far

(a) Start with the p.r. relation Prf T (m,n), which obtains when m is the super
g.n. of a T -proof of the wff with g.n. n. Assuming T is p.r. adequate, this relation
can be canonically captured in T by an open wff PrfT (x, y) whose components
recapitulate step by step the natural p.r. definition of Prf T (along the lines we
gave for the case of PA back in Section 15.9). Of course, PrfT won’t be unique
(see Section 13.8): there can be minor variations among natural p.r. definitions
of Prf T , and then we can always re-order conjuncts and change variables when
we come to form PrfT . We needn’t fuss about such differences.

Given PrfT , we then define a corresponding proof predicate ProvT (x) =def

∃vPrfT (v, x). And we can use this proof predicate to define a number of natural
consistency sentences for T , ConT , Con′T , Con′′T , which ‘indirectly say’ respec-
tively that T can’t prove absurdity, that T can’t prove a contradictory pair of
wffs, and that T can’t prove every sentence. In normally set-up theories with
a classical logic, these consistency sentences will be provably equivalent so we
again needn’t fuss about the differences.

A nice theory, recall, is one that is consistent, p.r. axiomatized, and contains
Q. Now define a nice* theory to be one which is nice and which also includes
induction for (at least) Σ1 wffs. Nice* theories are strong enough for the so-called
derivability conditions to apply to the canonical provability predicate ProvT . In
fact, being nice* is rather more than enough, as we noted in Section 26.5: but

1The original note ‘Completeness and consistency’ is Gödel (1932). The added material
first appears in van Heijenoort (1967, pp. 616–617) and is then reused in Gödel (1972).
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that’s one more thing we aren’t going to fuss about. And when the derivability
conditions apply, T can’t prove ConT . Which gives us the generalized Second
Theorem in the form of Theorem 26.2: if T is nice*, then T � ConT .

(b) But now let’s emphasize again that, in showing that the derivability condi-
tions hold for ProvT , we have to rely on the fact that ProvT is defined in terms of
a predicate expression PrfT which canonically captures Prf T . Putting it roughly,
we need PrfT (m, n) to reflect the details of what it takes for m to code a proof
of the wff with g.n. n. Putting it even more roughly, we need PrfT to have the
right intended meaning.

Recall our discussion in Section 4.6 (and also cf. Section 16.8). If PrfT (x, y)
captures Prf T , then so does PrfT (x, y) ∧ θ, for any and every T -theorem θ; but
in most cases, such a wff won’t canonically capture Prf T . Likewise for most wffs
Prf†T which capture the desired relation; these too won’t canonically capture it.
And while the derivability conditions hold for ProvT =def ∃vPrfT (v, x) (at least if
T has a smidgin of induction), they in general won’t hold for the corresponding
predicates Prov†T (x) =def ∃vPrf†T (v, x). Hence, we won’t necessarily be able to
derive the corresponding results that, if T is nice*, then T � Con†T (where Con†T
is defined in the obvious way from Prov†T ).

(c) So, in summary, there’s an important contrast between what it takes to
prove the First Theorem and the Second Theorem.

Take any old wff Prf†T which captures Prf T ; form the corresponding proof
predicate Prov†T ; take a fixed point γ for ¬Prov†T (x); and we can show T � γ
(assuming T is nice).

By contrast, if we want to prove T � ConT (assuming T is nice*), we have to be
more picky. We need to start with a wff PrfT which ‘has the right meaning’, which
canonically captures Prf T , and then form the canonical consistency sentence
ConT from that.2

27.2 There are provable consistency sentences

(a) Those last remarks raise again a question which we left hanging at the
end of Section 24.5, which is also touched on by Gödel in his 1967/1972 note. So
let’s now pause over it. Can there be a non-canonical sentence Con†T – a sentence
built from a non-canonical proof predicate – which in some fairly natural way
still ‘says’ that T is consistent but which is provable in T?

The answer is ‘yes’. As Gödel puts it in his note:

. . . the consistency (in the sense of non-demonstrability of both a
proposition and its negation), even of very strong systems S, may
be provable in S. (Gödel, 1972, p. 305)

2Feferman (1960) – perhaps a bit dangerously – describes results like the Second Theorem
which depend on PrfT ‘more fully express[ing] the notion involved’ as ‘intensional’.
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There are a number of possibilities, using various non-canonical consistency sen-
tences. We’ll concentrate here on the construction that – at least at the outset
– looks least like a cheap trick.

(b) Start with the following thought. When trying to establish an as-yet-
unproved conjecture, mathematicians will use any tools to hand, bringing to
bear any background assumptions that they are prepared to accept in the con-
text.3 The more improvisatory the approach, the less well-attested the assump-
tions, then the greater the risk of lurking inconsistencies emerging, requiring
our working assumptions to be revised. A check needs to be kept that apparent
new results cohere with secure background knowledge. Only a derivation which
passes the coherence test has a chance of being accepted as a proof.

Here, then, is a possible way of capturing just something of the idea that a
genuine proof should involve checking consistency with what’s gone before. Say
that ψ simply contradicts ϕ if one is the negation of the other. Then there is a
consistency-minded proof of ϕ in the formal system T iff (i) there is an ordinary
T -derivation of ϕ with super g.n. m, while (ii) there isn’t already a T -derivation
with a code number less than m of a sentence which simply contradicts ϕ.

So, take the numerical relation Contr defined as follows:

i. Contr(m,n) =def (m = �¬� � n ∨ n = �¬� � m).

This is the p.r. relation which holds between two numbers when one codes for
the negation of the wff coded for by the other. And we can use this to define the
relation

ii. CPrf T (x, y) =def Prf (x , y)T ∧
¬(∃u ≤ x )(∃w ≤ u)(PrfT (u,w) ∧ Contr(y ,w))

where, to give a nice bound to the second quantifier, we rely on the fact that
on our coding scheme, if u codes for a proof of the wff with g.n. w, then w < u.
Evidently, CPrf T (m,n) holds when m numbers an ordinary T -proof of ϕ and
there is no earlier proof of a wff which simply contradicts ϕ. In other words, m
codes for a consistency-minded proof of the sentence numbered n.

The p.r. relation Contr can, of course, be captured in a nice theory by a
corresponding wff Contr(x, y). So if we define

ii. CPrfT (x, y) =def Prf(x, y)T∧¬(∃u ≤ x)(∃w ≤ u)(PrfT (u,w) ∧ Contr(y,w)).

this wff will in fact capture the p.r. relation CPrf T . And now, just as we defined
the provability predicate ProvT in terms of PrfT , we can define the consistency-
minded provability predicate

iii. CProvT (x) =def ∃v CPrfT (v, x).

3See the classic Lakatos (1976) for a wonderfully lively exploration of the process of the
growth of mathematical knowledge.
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CProvT (�ϕ�) will therefore be true just so long as there is a consistency-minded
proof of ϕ.

(c) Two remarks about our definitions. First, CProvT is, of course, a very close
cousin of RProvT , the Rosser provability predicate which we met in Section 21.3.
But Rosser provability is, so to speak, lopsidedly consistency-minded: ϕ is only
Rosser-provable so long as there is no ‘smaller’ proof of ¬ϕ (but ¬ϕ can be
Rosser-provable even if there is a ‘smaller’ proof of plain ϕ). By contrast, the
property expressed by CProvT is symmetrically consistency-minded.

Second, suppose we are dealing with a theory T which actually is consistent:
then every T -proof is de facto consistency-minded. In this case, the relation
CPrf T is extensionally the same relation as Prf T , so CPrfT captures Prf T too.
Moreover, CProvT (n) will be true just when ProvT (n) is true. So, for a consis-
tent theory, CProvT in fact expresses the same familiar provability property as
ProvT – or at any rate, it expresses the same property by our official extensional
standards. Let’s say, though, that CProvT expresses this obliquely, because the
predicate doesn’t, as it were, reveal on its face that it is expressing just that
property.

(d) So, at least at first sight, there seems to be some interest in the consistency-
minded proof-predicate CProvT . Let’s now put

iv. CConT =def ¬∃x∃y(CProvT (x) ∧ CProvT (y) ∧ Contr(x, y)).

This might seem to be a natural enough way of defining a consistency sentence
in terms of consistency-minded provability. Note again that, if the theory we are
dealing with is consistent, then since CProvT in such a case obliquely expresses
the property of plain provability, then we might say that CConT obliquely ex-
presses the claim that the theory is consistent.

(e) And now for the result we’ve been working up to. It is quite straightforward
to show that

Theorem 27.1 For any T , IΣ1 � CConT ; hence for any nice* T ,
T � CConT .

Proof sketch Argue inside IΣ1 and let’s drop subscript T ’s for readability. We’ll
suppose ¬CCon, that is to say ∃x∃y(CProv(x) ∧ CProv(y) ∧ Contr(x, y)), and de-
rive a contradiction.

For some c and d, therefore, we have ∃v CPrf(v, c)∧∃v CPrf(v, d)∧Contr(c, d).
Hence, for some a, b, CPrf(a, c) ∧ CPrf(b, d) ∧ Contr(c, d).

However, Σ1-induction is (more than) enough to prove ∀x(x ≤ y ∨ y ≤ x) – see
Section 10.3. Hence we can prove that (a ≤ b ∨ b ≤ a).

Now argue by cases. Let a ≤ b. By hypothesis, we have CPrf(a, c); which by
definition implies Prf(a, c). But by construction of Prf, that in turn implies c ≤ a.
Put together our two ordering claims with Prf(a, c) and Contr(c, d) and we can de-
rive (∃u ≤ b)(∃w ≤ u)(Prf(u,w) ∧ Contr(w, d)). But by definition CPrf(b, d) im-
plies the negation of that. Contradiction.
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In the same way, b ≤ a also leads to contradiction. So we are done: our initial
supposition leads through to contradictions so the first part of the theorem is
proved. The second part of the theorem then follows trivially. �

But IΣ1 is of course a sound theory; so CConT is always true, for any T . Which,
as we’ll see in a moment, immediately deprives its provability of any interest!

27.3 What does that show?

Gödel is right. Suppose T is nice*. Then, being consistent, all T ’s proofs are
consistency-minded. And it can, in particular, prove a sentence which – in a
slightly oblique way – claims the ‘non-demonstrability of both a proposition and
its negation’ in that system itself. But now note the following two points:

(a) Whether ϕ has a consistency-minded proof in some given theory T doesn’t
depend just on the axioms and basic rules of inference of T , but also on the quite
extraneous question of how we order derivations in T by their Gödel numbers.
Take an ordinarily inconsistent theory T ; then on one numbering of proofs, there
could be a consistency-minded T -proof of ϕ but not of ¬ϕ (the derivation of ϕ
has the lower g.n. on the chosen numbering scheme), while on another equally
legitimate numbering system, there could be a consistency-minded T -proof of
¬ϕ but not of ϕ. But a notion of ‘proof’ where what can be demonstrated by
that kind of proof depends on a quite arbitrary choice, entirely extraneous to
the axioms and basic rules of inference (and not settled by any considerations
of truth and truth-transmission), is surely not a notion of proof worth having.

(b) More fundamentally, the truth of CConT tells us nothing about T (for as
we said, that sort of wff is true indiscriminately, for any T ). For example, it is
perfectly possible that there are consistency-minded proofs in T of ϕ, ϕ→ ψ,
and ¬ψ. That’s because the smallest-numbered putative T -derivation of ψ – e.g.
the result of chaining a proof of ϕ after a proof of ϕ→ ψ and then using modus
ponens – could have a g.n. greater than a proof of ¬ψ.4

Which goes to show that the truth of CConT leaves wide open the possibility
that T ’s set of consistency-minded theorems is semantically inconsistent (i.e.
there is no interpretation respecting the meaning of the logical apparatus which
makes those consistency-minded theorems all true).

Hence, to take an extreme example, showing that IΣ1 � CConZFC and – there-
fore that CConZFC is true – goes no way at all towards settling whether the
standard set theory ZFC is semantically consistent. Yet semantic consistency is

4Since T � CConT , we know that the derivability conditions can’t all hold for the
consistency-minded provability predicate CProvT (else we’d be able to show T � CConT ).
We now see that, for a start, the condition (C2) can’t hold.

Let’s be clear about this. CPrfT captures the relation CPrf T ; and if T is consistent, that
means it captures Prf T . But it doesn’t capture Prf T canonically. Because of that, the predicate
CProvT defined in terms of CPrfT can fail to satisfy the derivability conditions.
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surely what we really most care about in seeking proofs of consistency in the
first place.

So: even though the initial motivating idea was not implausible, it has turned
out that proving ‘symmetrically Rosserized’ consistency sentences doesn’t settle
anything. So we won’t discuss this or related bits of trickery any further.5

27.4 The reflection schema: some definitions

Our next main topic concerns what happens if you add instances of a reflection
schema to a theory.

We need to introduce some jargon for use over the coming few sections; so
let’s gather the various definitions we need into one place. We start with four
generic definitions.

i. As we said in Section 25.7, the reflection schema for a theory T is

�Tϕ→ ϕ

where ϕ holds the place for any sentence of T ’s language. For example, if
we put ‘1 + 1 = 2’ for ϕ, then the corresponding instance of the schema
says that if T proves ‘1 + 1 = 2’, then 1 + 1 = 2.

ii. We’ll also say that the Π1 reflection schema for T is the reflection schema
restricted to cases where ϕ is a Π1 sentence of T ’s language.

iii. A theory S proves Π1 reflection for T iff, for every Π1 sentence ϕ belonging
to T ’s language, S � �Tϕ→ ϕ.

iv. Following our definition at the beginning of Section 9.7, we’ll say that a
theory T is Π1-sound when, for every Π1 sentence ϕ, if T � ϕ then ϕ is
true. It is immediate that a theory T is Π1-sound when every instance of
its Π1 reflection schema is true.

Now we add two more specific definitions, concerning ways to extend the theory
PA:

v. The theory PAC is the theory you get by adding PA’s canonical consistency
sentence Con as a new axiom to PA.

vi. The theory PAΠ is the theory you get by adding to PA all instances of its
Π1 reflection schema as additional axioms.

In the next section we’ll work up to a proof that PAC and PAΠ are equivalent
theories (i.e. every theorem of one is a theorem of the other).

5The idea of using a Rosserized predicate like CProvT to form a provable consistency
statement seems to be due to Kreisel. He mentions it in passing in Kreisel (1965, p. 154), and
there are some more comments in his quirky but illuminating memoir of Gödel (Kreisel, 1980,
p. 173). Feferman’s introduction in Gödel (1990, pp. 282–287) also notes some more ways in
which theories can in one sense or another prove their own consistency.

For a more advanced discussion, see e.g. Visser (1989).
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27.5 Reflection and PA

(a) We can slightly sharpen Theorem 25.7:

Theorem 27.2 If T is nice, then T cannot prove all instances of
the Π1 reflection schema for T .

Proof GT is Π1 and so if T proved all instances of its Π1 reflection schema,
then T � �G → G. But, being nice, T � G ↔ ¬�G. From which it would follow
that T � G contrary to the first incompleteness theorem. �

This result applies to PA in particular. However, if we believe that PA is sound
– as we surely do! – then we’ll believe that whatever it proves is true. So we’ll
think that every instance of its reflection schema is in fact true. In particular the
instances of PA’s Π1 reflection schema are all true. So let’s consider the extended
theory PAΠ which we get by adopting all those instances as further axioms.

That’s still a p.r. axiomatized theory, since we can test whether a wff is one
of the new axioms without an unbounded search. Given that PA is sound, PAΠ
is also sound, so must be consistent.6 So PAΠ is another nice theory, assuming
PA is.

(b) We’ll now show that, still assuming PA is nice, PAΠ proves Con, the consis-
tency sentence for PA, and hence proves PA’s canonical Gödel sentence G. (For
the rest of this section, the unadorned box indicates provability in PA.)

Proof ⊥ is Π1 (why?); so since PAΠ proves all instances of PA’s Π1 reflection
schema, PAΠ � �⊥ → ⊥, hence PAΠ � ¬�⊥. In other symbols, PAΠ � Con.

But we’ve shown that, being nice, PA � Con → G (see the proof for Theo-
rem 25.2). Hence PAΠ � Con → G. Hence PAΠ � G. �

(c) Conversely: the theory PAC which has Con as an additional axiom proves
all instances of Π1 reflection for PA:

Proof PAC extends IΣ1 and the derivability conditions apply. Suppose ϕ is some
Π1 sentence. Then ¬ϕ is Σ1, so we can apply Theorem 26.4 to this wff, to get

1. PAC � ¬ϕ→ �¬ϕ
2. PAC � ¬ϕ→ (ϕ→ ⊥) Logic
3. PAC � �(¬ϕ→ (ϕ→ ⊥)) From 2, by C1
4. PAC � �¬ϕ→ �(ϕ→ ⊥) From 3, using C2
5. PAC � �(ϕ→ ⊥) → (�ϕ→ �⊥) By C2
6. PAC � ¬ϕ→ (�ϕ→ �⊥) From 1, 4, 5
7. PAC � ¬�⊥ Con is an axiom!
8. PAC � �ϕ→ ϕ From 6, 7

6NB: Löb’s Theorem shows that a nice theory T can’t prove all the instances of T ’s own
reflection schema: there’s nothing to stop a richer theory T ′ proving all the instances of T ’s
reflection schema.
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Since ϕ was an arbitrary Π1 sentence, that shows that PAC proves any instance
of Π1 reflection for PA. So we are done. �

(d) In sum, we’ve just shown that the result of adding to PA all the instances
of Π1 reflection entails Con; and the result of adding Con to PA entails each
instance of Π1 reflection for PA. Which evidently is enough to establish the
promised result:

Theorem 27.3 The theories PAΠ and PAC are equivalent.

27.6 Reflection, more generally

It will be no surprise at all to learn that we can now generalize our results linking
the provability of Con and the provability of Π1 reflection.

Recall our neat little theorem:

Theorem 9.4 If T extends Q, T is consistent iff it is Π1-sound.

So this tells us, equivalently, that for theories which extend Q, ConT is true iff
all the instances of its Π1 reflection schema are true. And now we can formally
prove that fact inside suitable theories:

Theorem 27.4 Suppose T extends Q, and suppose that the theory
S extends IΣ1: then S � ConT iff S proves Π1 reflection for T .

Proof Just generalize the arguments in the last section. For the ‘if’ direction,
suppose S proves Π1 reflection for T , i.e. for every Π1 sentence ϕ, S � �Tϕ→ ϕ.
Then in particular, S � �T⊥ → ⊥. Whence S � ¬�T⊥, i.e. S � ConT .

For the ‘only if’ direction, suppose ϕ is a Π1 sentence. We note that we can
argue as in (d) in the last section to get as far as

6. S � ¬ϕ→ (�Tϕ→ �T⊥)

since S contains IΣ1 (and that’s enough to work with T ’s derivability conditions).
Then we can continue

7. S � ¬�T⊥ By hypothesis
8. S � �Tϕ→ ϕ From 6, 7

So we are done. �

Now, by Theorem 26.5, IΣ1 � ConT ↔ GT . So our new theorem again links
the provability of Π1 reflection for T to the provability of GT . But in fact we can
easily make this connection more directly:

Theorem 27.5 If S extends Q and proves Π1 reflection for T ,
then S � GT .

Proof Q � GT ↔ ¬�GT , since the proof of Theorem 20.3 calls on no more
than the resources of Q (why?). Hence S � GT ↔ ¬�GT too. By hypothesis,
S proves Π1 reflection for T ; but GT is Π1; so S � �GT → GT . But then
S � �GT → ¬�GT , so S � ¬�GT , and therefore S � GT . �
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27.7 ‘The best and most general version’

Suppose we are interested in Hilbert’s project of trying to use uncontentious
reasoning to show that the wilder reaches of mathematics are still ‘safe’ (see
Section 1.6). What does ‘safety’ consist in? Well, you might very reasonably
suppose that one condition any acceptable theory T should satisfy is this: it
shouldn’t actually get things wrong about the Π1 truths of arithmetic. After all,
those are essentially just the true equations involving particular numbers, and
universally quantified versions of such equations. So we’ll certainly want it to be
the case that if T � ϕ and ϕ is Π1, then ϕ is true.

Thus, being Π1-sound looks to be a natural minimal condition for being a
‘safe’ theory. Gödel calls in effect this same condition ‘outer consistency’ (though
the label hasn’t caught on). And he remarks that ‘for the usual systems [outer
consistency] is trivially equivalent with consistency’, which is just Theorem 9.4
again (Gödel, 1972, p. 305).

To establish formally that a theory T is Π1-sound and hence to that extent
‘safe’ is a matter of proving Π1 reflection for T . But Theorem 27.2 tells us that
a nice T can’t prove Π1 reflection for itself, and it follows that an arithmetic
like PA certainly can’t prove Π1 reflection for a stronger, more infinitary, theory
T either, unless T is inconsistent and proves everything. In sum, we can’t use
relatively modest arithmetical reasoning to prove even the Π1-soundness of a
(consistent) infinitary theory T .

As we’ll see in the following Interlude, if we are interested in the Hilbertian
project of certifying the safety of some infinitary theory T , then this result that
we can’t establish T ’s Π1-soundness using non-infinitary reasoning is arguably
the crucial one. It is already enough to undermine the project. Yet note that the
unprovability of ‘outer consistency’, as Gödel calls it, is an easier result than the
unprovability of ‘inner consistency’, i.e. the unprovability of ConT . For the former
result holds given that the Diagonalization Lemma and hence the First Theorem
hold for T . So, to show the unprovability of outer consistency/Π1-soundness for
T , we don’t have to do the hard work of showing that the derivability conditions
hold. By contrast, showing the unprovability of inner consistency is tougher.

Which is why the result that a theory T can’t prove Π1 reflection for T (if the
conditions for the First Theorem apply to T ) might be said to be ‘the best and
most general version of the unprovability of consistency in the same system’.

And that is almost, but not quite, what Gödel says in his 1967/1972 note.
What he actually asserts to be the best result is this (with a trivial change):

[W]hat can be shown to be unprovable in T is the fact that the
rules of the equational calculus applied to equations demonstrable
in T between primitive recursive terms yield only correct numerical
equations (provided only that T possesses the property which is
asserted to be unprovable).

Here Gödel’s T is a properly axiomatized theory which includes enough arithmetic
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to be p.r. adequate. But ‘equations between primitive recursive terms’ are ex-
pressions of the form ∀x(fx = gx), where fx and gx express p.r. functions, so
fx = gx expresses a p.r. property. And, assuming T contains enough arithmetic
to know about p.r. functions, such expressions will be provably equivalent to Π1

sentences (cf. Section 16.4).
So what Gödel is saying is in effect that T can’t prove Π1 reflection for T . And

he claims that the key condition under which this holds is that Π1 reflection is
actually true for T , i.e. T is Π1-sound, which – given T includes Q – is equivalent
to T ’s being consistent. But T ’s being consistent is just what is essential to the
First Theorem holding for T (given that T is properly axiomatized and contains
enough arithmetic). Hence Gödel’s remark seems to be making a version of our
point above: so long as the conditions for the First Theorem applying to T hold,
T can’t prove Π1 reflection for T .7

27.8 Another route to accepting a Gödel sentence?

We’ll return to say more about Hilbert’s Programme in the next chapter. But
before moving on, let’s pause to consider whether our recent discussions throw
any further light on the question we raised in Section 18.3: what routes are there
that can lead us to accept a canonical Gödel sentence GT as true?

We know that one kind of route goes via an explicit judgement that T is
consistent: and we stressed in our discussion before that there is quite a variety
in the reasons we might have for forming that judgement. But now let’s ask:
do we have to go via explicit reflections about consistency? Can we perhaps
go instead via thoughts about Π1 reflection and rely on results such as that
PAΠ � G?

Let me spin a just-so story. Imagine someone (we’ll call him Kurt) who is a
devotee of mathematical rigour and who delights in regimenting his knowledge
into systems of Bauhaus austerity. Kurt’s explorations, let’s suppose, lead him
to work within PA as an elegantly neat framework in which he can deduce all
the familiar facts about the basic arithmetic of addition and multiplication, and
lots of the less familiar facts too. Moreover, Kurt discovers the β-function trick
which allows him to introduce definitions for all the other p.r. functions he
knows about; so he can deduce what he knows about those p.r. functions too.
Thoroughly immersed in the theory, Kurt enthusiastically follows deductions in
PA wherever they take him: whenever he can derive ϕ in PA, then he adds ϕ to
his stock of arithmetical beliefs – that is how he likes to do arithmetic. Compare:

7Feferman’s introduction in Gödel (1990, pp. 282–287) seems to attribute to Gödel a more
complex line of argument, and he briefly suggests using Jeroslow’s variant version of the Second
Theorem to throw light on Gödel’s thinking. Michael Potter follows Feferman and attempts to
develop this interpretation at greater length in Potter (2000, Section 10.3); however Richard
Zach has shown that Potter’s treatment is technically flawed (Zach, 2005). Which makes me
hesitate to go beyond the simple reading of Gödel’s remarks that I’ve given. And those remarks
are surely interesting enough even on the simple reading.
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Kurt also follows where his eyes take him – in the sense that, if he takes himself
to see that ψ, he (generally) comes to believe that ψ.

Kurt, let’s suppose, now gets reflective about his fact-gathering. He comes to
realize that, for lots of instances, when he seems to see that ψ, then it is the case
that ψ (at least, that’s how he supposes the world to go – and what other vantage
point can he take?). And he finds no reason not to continue generally trusting
his eyes, meaning that he is prepared more generally to endorse instances of the
schema: when he seems to see that ψ, then ψ.

Similarly, Kurt reflects that when he can derive ϕ in PA, then it is the case
that ϕ (at least, that’s how he takes the arithmetical world to go). When it isn’t
the case that ϕ, he can’t ever derive ϕ in PA: and so he finds no reason not to
endorse his own continuing confidence in PA. So he is disposed to accept the
conditional: when PA entails ϕ, then ϕ. Suppose that, for whatever reason, Kurt
is especially interested in Π1 arithmetical claims. Then, in particular, Kurt is
disposed to accept instances of that conditional when ϕ is Π1.

Next, Kurt hits one day on the idea of systematically introducing a code-
numbering scheme which associates wffs and sequences of wffs with numbers (he
discovers how to arithmetize syntax). And he realizes that the relation Prf (m,n)
which holds when m codes for a PA derivation of the wff with number n can be
captured in PA by a long and complicated wff Prf(x, y); and hence Kurt comes to
see that there is a wff Prov(x) =def ∃v Prf(v, x) which expresses provability in PA.
Since for any Π1 sentence ϕ, Kurt will happily accept that if PA entails ϕ then
ϕ, he will now equally happily accept its arithmetical correlate Prov(�ϕ�) →
ϕ. Kurt, however, although bold in his enthusiasm for PA, is fundamentally
a cautious man, as befits someone with his concern for rigour: so he doesn’t
suppose that all these instances of the reflection schema are themselves already
proved by PA (which is a good thing, since we know from Löb’s Theorem that
PA doesn’t prove such an instance unless it also proves ϕ itself). In other words,
Kurt cheerfully allows that what follows from his original theory PA alone might
be less than what follows from PA plus an arithmetization of his new thought
that PA is reliable for Π1 sentences: he never supposed that PA had to be the
last word about the truths of LA.

So Kurt is now in the position of accepting the axioms of PAΠ, i.e. the axioms
of PA plus all instances of its reflection schema �ϕ→ ϕ where ϕ is a Π1 sentence.
Hence, Kurt has come to accept a theory in which he can produce a derivation
of PA’s canonical Gödel sentence as in our proof of Theorem 27.5 (if and when
he gets round to spotting the construction). And such a derivation will, for him,
count as a proof of G, as it is done within the framework of PAΠ which he now
accepts.

We could even, if we like, give the story a fanciful dramatic twist if we imagine
Kurt proceeding as follows. We could imagine him first proving PA’s canonical
Gödel sentence in PAΠ, before he slaps his forehead in surprise as he sees that
he also has a simple argument that PA doesn’t prove G – thus showing that his
earlier caution in not assuming that PA was the last word about arithmetic was
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well placed. (Though perhaps, like Isaacson, he still thinks that PA is the last
word on purely arithmetical reasoning about numbers, for he recognizes that his
new assumption which takes him beyond PA comes from reflections not just on
numbers but on a formal arithmetical theory.)

So we seem to have got to the following point: Kurt could come to accept G
without going via a semantic theory for the language of PA. He needs, it seems,
no explicit thoughts about models for PA, or about PA’s consistency. Rather, he
just notes his own confidence in PA’s arithmetical reliability, and endorses it.

You might protest: ‘Hold on! Kurt wouldn’t accept that 0 = 1 should it turn
out that PA is inconsistent and proves 0 = S0, would he? So it is only reasonable
for him to be confident in instances of PA’s reflection schema if he has a reason
for thinking he isn’t in for a really nasty surprise, i.e. if he already has a reason
for thinking that PA is at least consistent. In other words, to follow through the
suggested line of reasoning to the conclusion that G is true, Kurt after all does
have to engage with some sort of argument – e.g. the specification of a model
for PA – that could justify a belief in PA’s consistency.’

But while this protest at first sight looks compelling, on reflection it is based
on what is – to say the least – a deeply problematic epistemological assump-
tion. To be sure, were it turn out that PA ‘proves’ 0 = S0, Kurt would abandon
his confidence in PA. But why should we assume that it follows from that that
Kurt needs some guarantee that PA won’t deliver a nasty surprise if he is to be
reasonable in moving from accepting PA (as he does) to accepting instances of
its reflection schema? Compare: should I suddenly start seeing a crazy world of
flying pigs and talking donkeys, I’ll stop believing my eyes. But why should we
assume that it follows from that that I need some guarantee in advance that
things won’t go crazy and that my eyes are (generally) reliable when I endorse
the thought that in fact what my eyes tell me is the case (generally) is the case?
In the world as it actually is, it is reasonable for me to reflectively endorse the
presumption that my eyes are reliable, in the absence of countervailing consid-
erations (‘reasonable’ in the sense that it is quite appropriate default behaviour
for a responsible cognitive agent): it is similarly reasonable for Kurt to put his
continued trust in PA in the absence of nasty surprises.

Of course, the route we’ve described which ends up with Kurt believing G,
starting from an acceptance of PA’s reflection principle, isn’t available to get
Kurt to endorse a canonical Gödel sentence for a theory he doesn’t accept (like
the theory Q† which we defined in Section 18.3): in that sort of case, Kurt has
to have sophisticated ideas about truth-in-a-model, or some such. The point we
are making here is that this isn’t how it has to be across the board.8

8We have been touching on themes discussed by Ketland (1999, 2005) and Tennant (2002,
2005).
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The title of Gödel’s great paper is ‘On formally undecidable propositions of Prin-
cipia Mathematica and related systems I’. And as we noted in Section 18.5, his
First Incompleteness Theorem does indeed undermine Principia’s logicist ambi-
tions. But logicism wasn’t really Gödel’s main target. For, by 1931, much of the
steam had already gone out of the logicist project. Instead, the dominant project
for showing that classical infinitary mathematics is in good order was Hilbert’s
Programme, which we have already mentioned a few times. This provided the
real impetus for Gödel’s early work; it is time we filled out just a bit more of
the story.

However, this book certainly isn’t the place for a detailed treatment of the
changing ideas of Hilbert and his followers as their ideas developed pre- and
post-Gödel; nor is it the place for an extended discussion of the later fate of
Hilbertian ideas.1 So our necessarily brief remarks will do no more than sketch
the logical geography of some broadly Hilbertian territory: those with more of a
bent for the history of logic can be left to fight over e.g. the question of Hilbert’s
precise path through the landscape.

Another topic we’ll take up in this Interlude is the vexed one of the impact
of the incompleteness theorems, and in particular the Second Theorem, on the
issue of mechanism: do Gödelian results show that minds cannot be machines?

28.1 ‘Real’ vs ‘ideal’ mathematics

What does it take to grasp the truths of arithmetic – what does it take, for
example, to grasp that every number has a successor? Kant famously thought
that it involves the exercise of ‘intuition’, whatever exactly that is: it requires
some cognitive source that goes beyond what is given by analytic reflection on
the logical concepts which we deploy in thinking about any subject matter at
all. Frege equally famously disagreed. His fundamental claim is that

Pure thought (irrespective of any content given by the senses or
even by an intuition a priori) can, solely from the content that
results from its own constitution, bring forth judgements that at
first sight appear to be possible only on the basis of some intuition.
(Frege, 1972, §23)

But sadly, as we’ve already noted, his logicist attempt to derive all of arithmetic
from logic-plus-definitions became tangled in contradiction (Section 10.8). And

1For more, see Zach (2003), much expanded to Zach (2006).
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Russell and Whitehead’s attempt to develop a paradox-free foundation for arith-
metic is also highly problematic when regarded as an attempt to vindicate the
logicist project: for example, how can Principia’s Axiom of Infinity genuinely be
counted as a logical axiom?

However, even if we don’t regard it as a purely logical system, it is still highly
interesting that Principia gives us a unified framework in which we can regiment
not just arithmetic but a great deal of mathematics. Though standard Zermelo-
Fraenkel set theory plus the Axiom of Choice turns out in fact to be a much
neater framework to use.

But hold on! If neither Principia’s system nor ZFC can now be advertised as
belonging to pure logic, how can we choose which to use? Which is ‘true’? Both?
Or should we perhaps use neither, but adopt some other kind of set theory?

Faced with puzzling questions like that, it is rather tempting to suppose that
they are intractable because misguided. Perhaps we just shouldn’t think of in-
finitary set theories and other mathematical exotica as being in the business of
truth or falsity. Rather, to put it in Hilbertian terms, we should divide math-
ematics into a core of uncontentious real mathematics and a superstructure of
ideal mathematics. ‘Real’ mathematics is to be taken at face value (it expresses
contentful propositions, or is ‘contentual’ for short); and the propositions of real
mathematics are straightforwardly true or false. So, for example, very elementary
arithmetic is ‘real’ – it really is the case that two plus three is five, and it really
isn’t the case that two plus three is six. Perhaps more generally, Π1-statements of
arithmetic are ‘real’. By contrast, ‘ideal’ mathematics shouldn’t be thought of as
having representational content, and its sentences aren’t strictly speaking true or
false at all – perhaps some parts of ideal mathematics are instrumentally useful
tools, helping us to establish ‘real’ truths, while other parts are just intellectual
jeux d’esprit. Of course, there will be straightforward truths about what follows
from what in a particular ideal mathematical game: the claim, though, is that
the statements made within the game are like statements within a fiction, not
themselves straightforwardly either true or false. So, for example, perhaps the
more ambitious parts of arithmetic, and certainly the wilder reaches of infinitary
set theory, are to be treated as ‘ideal’ in this sense.

In pursuing this idea, Hilbert himself was inclined to take a very restricted
view of ‘real’ mathematics. In part, that was a strategic ploy: the idea is to
count as real mathematics only some uncontroversial core of arithmetic which
even the most stringent critic of infinitary mathematics is happy to accept. But
Hilbert was mainly swayed by Kantian ideas. He thinks of the most certain core
of arithmetic as grounded in ‘intuition’, in our apprehension of finite sequences
and of the results of manipulating these. And he thinks that ‘intuition’ is enough
to give us knowledge of the results of simple arithmetic operations on particular
numbers, and also of Π1 generalizations about these operations. But we can’t
pursue here the vexed question of how far ‘intuition’ can take us,2 and so we’ll

2For discussion, see for example Parsons (1980, 1998), Tait (1981, 2002).
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put on hold the question of where exactly we might want to place the dividing
line between core ‘real’ mathematics and ‘ideal’ mathematics. We’ll soon see,
however, that given his wider purposes Hilbert needs to be right on one thing:
‘real’ mathematics needs to include at least the arithmetic of Π1 statements.

28.2 A quick aside: Gödel’s caution

Hilbertians, then, thought that the status of most mathematics is to be sharply
distinguished from that of some small central core of ‘real’, true, elementary
arithmetic. Most mathematics is merely ‘ideal’: we can talk about what demon-
strably follows from what within the game, but shouldn’t talk of the statements
made in the game as being true. At least in part for that reason, as Gödel put
it in a letter, at the time

. . . a concept of objective mathematical truth as opposed to demon-
strability was viewed with greatest suspicion and widely rejected
as meaningless. (Gödel, 2003a, p. 10, fn. c)

Which probably explains why – as we’ve remarked before – Gödel in 1931 very
cautiously downplayed the version of his incompleteness theorems that depended
on the assumption that the theories being proved incomplete are sound (i.e.
have true theorems), and instead put all the weight on the purely syntactic
assumptions of consistency or ω-consistency. For more on this historical point,
see Feferman (1984).

28.3 Relating the real and the ideal

Let’s now ask: what relations might hold between Hilbert’s two domains of math-
ematics? For brevity, we’ll use the following symbols:

i. I is a particular ideal theory (‘ideal’ need not mean ‘purely ideal’: an ideal
theory can extend a contentual one).

ii. C is our best correct theory of contentual real mathematics. Being correct,
C is consistent, and all its deductive consequences are true. (We can leave
it open whether C is a tidily axiomatizable theory.)

So here are four relations that an ideal theory I might have to real mathematics.
In each case we are generalizing only over real, contentual, propositions ϕ:

1. If I � ϕ, then C � ϕ.

2. If I � ϕ, then ϕ is true.

3. If I � ϕ, then C � ¬ϕ.

4. If I � ϕ and C decides ϕ, then C � ϕ.
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In the first case, we’ll say that I is real-conservative: the ideal theory can only
prove real propositions that we can already prove in our core contentual theory.
In the second case, I is real-sound: the ideal theory can only prove true contentual
propositions. In the third case, we’ll say that I is real-consistent – i.e. I can’t
prove anything inconsistent with theorems of core real mathematics. Finally, in
the fourth case, I is weakly-conservative – i.e. I agrees with C at least on the
contentual real propositions that C can decide one way or the other.

Trivially, all four conditions require I to be consistent. And the relations
between the conditions are now easily seen to be as follows:

(1) → (2) → (3) ↔ (4)

Proof If I is real-conservative it must be real-sound (since all C’s entailments
are true). But not vice-versa. For C might well be sound but not complete.

If I is real-sound it is evidently real-consistent. But again not necessarily
vice-versa. For suppose that C isn’t negation complete, and doesn’t decide the
contentual proposition ϕ. If we merely know that I is real-consistent, then dis-
covering that I � ϕ by itself leaves it open that we might equally have I ′ � ¬ϕ
for some other ideal theory I ′: and I and I ′ can’t both be real-sound.

Finally, if I is real-consistent it is weakly-conservative. Assume that C � ¬ϕ if
I � ϕ; then if C decides ϕ, that means C � ϕ. While for the reverse implication,
suppose that I is weakly-conservative. Suppose too that I � ϕ but also C � ¬ϕ
for some contentual ϕ. Then C decides ϕ; so by weak conservativeness C � ϕ
making C inconsistent, contrary to the assumption that C is correct. Hence, if
I � ϕ, then C � ¬ϕ, and so I is real-consistent. �

28.4 Proving real-soundness?

(a) Suppose that you are attracted by this plan of distinguishing a core of ‘real’,
straightforwardly true, mathematics from the great superstructure of ‘ideal’
mathematics. Then you’ll want to know which bits of ideal mathematics are
safe to use, i.e. don’t lead you to false real beliefs, i.e. are real-sound. And, to
the extent that you can ratify theories as real-sound, you will then have vindi-
cated the practice of infinitary mathematics. Even though, sotto voce, you’ll say
to yourself that only real mathematics is genuinely true, you can plunge in and
play the ratified games of ideal mathematics with a clear conscience, knowing
that they can’t lead you astray.

Which suggests a Hilbertian programme, very different from the logicist pro-
gramme of trying to derive everything, including standard infinitary mathemat-
ics, from logic-plus-definitions. The new programme is: seek to defend those parts
of ideal mathematics we take to be useful in extending our contentual knowledge
by showing them to be real-sound.3

3Those bits of ideal mathematics which are hermetically sealed games, with no contentual
implications, can be left to look after themselves!
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Now, we have already seen in Sections 27.5 and 27.7 that there are Gödelian
limitations on the provability of real-soundness. But rather than jump straight
to pressing that point, let’s proceed more slowly, pretending for a moment that
we are still in a state of pre-Gödelian innocence.

(b) Even prescinding from Gödelian considerations, it might seem that the
Hilbertian project is doomed from the very outset. For how can we possibly
show that an ideal theory I has true contentual consequences without assuming
that the relevant axioms used in deriving these consequences are true and hence
are contentual and hence are not really ideal after all?

But in fact, there are a couple of routes by which we could in principle lever
ourselves up from a belief that I is consistent and has some correct real content to
the conclusion that I is overall real-sound. We rely on a couple of easy theorems:

Theorem 28.1 If I is consistent and extends C, and C is negation-
complete, then I is real-sound.

Proof Suppose ϕ is a contentual proposition and I � ϕ but ϕ is false. Since
C by hypothesis is correct, C � ϕ. Since C is negation-complete, that implies
C � ¬ϕ. But by the definition of ‘extends’, if C � ¬ϕ, I � ¬ϕ. So I is inconsistent
contrary to hypothesis. So if I � ϕ then ϕ is true. �

Theorem 28.2 If I is consistent and extends Q, and if contentual
mathematics extends no further than Π1 propositions of arithmetic,
then I is real-sound.

Proof This is just half of Theorem 9.4 in our new jargon, since Π1-soundness
implies real-soundness if contentual mathematics extends no further than the
Π1 propositions of arithmetic. �

Given these mini-theorems, we can immediately discern the shape of two pos-
sible lines of argument for defending the use of an ideal theory in establishing
contentual truths. We won’t worry too much about whether either is the histor-
ical Hilbert’s own mature programme for defending the useful branches of ideal
mathematics: but they are surely both Hilbertian arguments in a broad sense.

H1. First option. We start by characterizing real contentual mathematics
(perhaps quite generously). We then establish (i) that there is in fact
a negation-complete theory C for this real mathematics, and also estab-
lish (ii) that our favourite useful theories of ideal mathematics like ZF
set theory both extend C and are consistent. Then by Theorem 28.1 we’ll
be entitled to believe the contentual implications of ZF (or whatever) be-
cause we’ll have a warrant for the claim that they are already entailed by
C and so are true.4 (The ideal theories can’t prove anything that wasn’t
already provable in C: but going via the ideal theories might offer much
shorter and/or much clearer proofs.)

4Here is Hilbert, seemingly endorsing a general argument from consistency to real-
soundness:
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H2. Second option. We restrict real mathematics to Π1 claims of arithmetic –
as it seems did Hilbert himself. Establish that favourite theories in ideal
mathematics like ZF set theory both extend Q and are consistent. Then
by Theorem 28.2 we’ll be entitled to believe the contentual implications of
ZF (even though, in this case, we won’t always already be able to deduce
them in a restricted contentual theory).

(c) Now, both these lines of argument require us to establish the consistency
of axiomatized theories in ideal maths in order to prove that they are ‘safe’.5

But what does ‘establish’ mean here? Given that the overall project is to find a
respectable place for ideal mathematics (in particular, infinitistic mathematics)
as an instrumentally useful supplement to real mathematics, ‘establishing’ can’t
involve appeal to the very same infinitary ideas which we are trying to legitimate.
So consistency will have to be established by appeal to nothing more exotic than
the kosher ‘safe’ reasoning already involved in contentual mathematics.

But how can we get common-or-garden contentual mathematics to touch di-
rectly on questions of the consistency of formal axiomatized theories? By the
arithmetization of syntax, of course. But recall, a consistency claim about an
ideal theory I is canonically expressible by a Π1 sentence ConI . So if consis-
tency proofs are to be within reach of contentual mathematics, then contentual
mathematics must – as we said – be able to cope at least with some Π1 claims
of arithmetic (so presumably must include at least Q).

28.5 The impact of Gödel

(a) Now trouble! First, if our contentual mathematics is to be regimented suffi-
ciently well for the question of establishing that it is negation-complete to arise,
then it will need to be a properly axiomatized theory C. But no properly axiom-
atized contentual theory C including Q can be negation-complete, by Gödel’s
First Theorem. So the First Theorem is already enough to sabotage the first
Hilbertian programme (H1).

For there is a condition, a single but absolutely necessary one, to which the use of
the method of ideal elements is subject, and that is the proof of consistency; for,
extension by the addition of ideals is legitimate only if no contradiction is thereby
brought about in the old, narrower domain, that is, if the relations that result
for the old objects whenever the ideal objects are eliminated are valid in the old
domain. (Hilbert, 1925, p. 383)

Hilbert doesn’t there fully explain his thought, nor does he explicitly assert the negation-
completeness of real mathematics which is needed for the obvious argument to go through.
However, his pupil and collaborator Paul Bernays does:

In the case of a finitistic proposition . . . the determination of its irrefutability is
equivalent to determination of its truth. (Bernays, 1930, p. 259)

It seems quite a reasonable bet that Hilbert agreed. See Raatikainen (2003).
5In fact, Gödel discovered his incompleteness theorems while trying to prove the consistency

of classical analysis.
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That leaves the second programme (H2) still in the hunt, as that doesn’t re-
quire any assumptions about completeness. However we now know from Gödel’s
Second Theorem that no modest formal arithmetic can establish the consistency
of a fancy ideal theory. So the second programme (H2) must fail too as the de-
sired ‘contentual’ consistency proofs for branches of ideal mathematics won’t be
forthcoming.

Or at least, those are the obvious claims about the impact of Gödel’s Theorems
on the general Hilbertian project of trying to establish the real-soundness of ideal
theories by giving consistency proofs. Is there any wriggle room left?

(b) Michael Detlefsen (1986) has mounted a rear-guard defence of Hilbert that,
in part, plays with the thought that we should consider Rosserized ideal theories
where we ensure that the proofs are consistency-minded – i.e. a sequence of wffs
counts as a proof of ϕ only if there is no ‘earlier’ proof of ¬ϕ, etc. But we have
already noted that, while we can trivially prove such theories to be consistent,
the idea of making play with consistency-minded proofs is beset with difficulties
(Section 27.2). And in any case, the idea can’t in fact be used to rescue a version
of our second Hilbertian programme, for the following reason.

(H2) depends on Theorem 28.2, which tells us that if I is consistent and
extends Q, then I is real-sound – assuming real mathematics goes no further
than Π1 truths. Now, for normal theories, it can of course be easy to show that
I extends Q (just show that I proves Q’s axioms). If, however, IR is a Rosserized
theory, then – while we can trivially see that it can’t Rosser-prove contradictions
– we can’t in general effectively decide whether it extends Q. For suppose Q � ϕ.
Then even if IR proves Q’s axioms, it doesn’t follow that there is a consistency-
minded proof of ϕ, because for all we know there could be an IR proof of ¬ϕ
which is shorter than the shortest Q proof of ϕ. So if we Rosserize our theories –
or fiddle with proof predicates in similar ways – then we can’t make use of (H2)
to show that our ideal theories are real-sound.

(c) So, is there any other route to establishing real-soundness for ideal theories,
using only relatively modest arithmetic reasoning? Well, if we continue to sup-
pose that real mathematics must be able to do Π1 arithmetic, so real-soundness
embraces Π1-soundness, then we know that there can’t be. That is, of course,
what is shown by Gödel’s ‘best and most general version of the unprovability
of consistency in the same system’ (see Section 27.7). Modest arithmetic rea-
soning can’t even prove the Π1-soundness of modest arithmetics, let alone the
Π1-soundness of more fancy theories.

So the ‘best version’ would seem to mark the end of the story. But not quite.
For remember, in Section 24.7 we very briefly outlined Gentzen’s consistency
proof for PA. To be sure, that uses reasoning which goes beyond the narrowly
finitary; but it might perhaps still be defended as belonging to ‘safe’ real math-
ematics. Exploring such prospects for limited consistency proofs using safe-but-
not-strictly-finitary methods would, however, take us far too far afield.

And let’s not complicate matters. Whatever the options for descendants of
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Hilbert’s programme, the headline news remains this: the Hilbertian project in
anything very close to its original form is sunk by Gödel.6

28.6 Minds and computers

(a) We now turn to another matter on which Gödel’s Theorems impact. Con-
sider the following first-shot argument:

Call the set of mathematical sentences which I accept, or at least
could derive from what I accept, my mathematical output O. And
consider the hypothesis that there is some kind of computing ma-
chine which can in principle list off my mathematical output – i.e.,
it can effectively enumerate (the Gödel numbers for the sentences
in) O. Then O is effectively enumerable, and by Theorem 19.4 it
follows that there is a p.r. axiomatized theory M whose theorems
are exactly my mathematical output. Since I accept the axioms of
Q plus, indeed, some induction, O is at least as strong as IΣ1, and
so M is p.r. adequate. So I can now go on to prove that M can’t
prove its canonical Gödel sentence GM . But in going through that
proof, I will come to establish by mathematical reasoning that GM
is true. Hence M does not, after all, entail all my mathematical
output. Contradiction. So no computer can effectively generate my
mathematical output. Even if we just concentrate on my mathe-
matical abilities and potential mathematical output, I can’t be
emulated by a mere computer!

This style of argument is often presented as leading to the conclusion that I can’t
be emulated by a ‘Turing machine’ in particular (see Section 2.2, (c)). But note
that if there is any force to the sketched argument, it will apply to computing
devices more generally – which is why we can discuss it here, before we get round
to explaining the special notion of a Turing machine.

One immediate problem with this kind of argument, of course, is the unclarity
of the idea of my ‘mathematical output’. Is it to contain just what I could derive,
given my limited cognitive abilities, my limited life, etc? In that case, my output
is finite; and then quite trivially we know the argument goes wrong – because
for any finite set of Gödel numbers, there will trivially be a computer that can
enumerate it, given enough memory storage (just build the finite list into its
data store). So to get an argument going here, we’ll have to radically idealize my
mathematical abilities, for a start by allowing me to follow a proof of arbitrary
length and complexity. But what other idealizations are allowed? That’s unclear.

6From the start, Gödel himself left open the possibility that there could be a Hilbertian
project which relied on a richer kind of consistency proof: see Gödel (1931, p. 195). For some
relevant later investigations, see Gödel (1958). And for general discussion see also Giaquinto
(2002, Part V, Ch. 2), as well as Zach (2003, 2006).
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However, even setting aside that point, the argument is in bad shape, ulti-
mately for a very simple reason already prefigured in Section 18.4 (a). Grant
that I can in general establish that if the axiomatized theory T is consistent
and contains enough arithmetic, then GT is true. But of course, assuming T has
enough induction, T itself can also prove ConT → GT (see Theorem 25.4). Apply
that to the particular case where T is the theory M that generates my mathe-
matical output. Then even if I can establish that if M is consistent, then GM is
true, M can prove that too (since it will contain IΣ1): there is no difference yet
between my output and M ’s.

Now, if I could now go on to establish that M is consistent, then that would
indeed distinguish me from M , because I can then establish M ’s canonical Gödel
sentence is true, and M can’t. But we’ve so far been given no reason to suppose
that I can show that M is consistent, even if idealized. In fact, we’ve been given
no reason to suppose that I’ll even know what theory M is.7

(b) Can we improve the first-shot argument? To make progress, we need to be
entitled to the thought that the relevant M is consistent. Of we course, we hope
that our mathematical output O is consistent, and so correspondingly we will
hope that M is consistent. But wishful thinking isn’t an argument.8 However,
perhaps we can get somewhere if we think of our mathematical output not as
defined in terms of what we accept and can derive from what we accept, but in
terms of what we know because we can prove it true (since every sentence we
can prove true must be consistent with every other sentence we can prove true).

So let’s consider the following argument, which is essentially due to Paul
Benacerraf (1967). Let’s now use K for the set of mathematical truths that
are knowable by me (idealizing, take it to be the deductive closure of what I

7The locus classicus for this point is Putnam (1960).
8John Lucas has urged that the hypothesis that there is a machine that emulates me is

only worth considering given that the mechanist makes a consistency assumption:

Putnam’s objection fails on account of the dialectical nature of the Gödelian
argument. . . . [T]here is a claim being seriously maintained by the mechanist
that the mind can be represented by some machine. Before wasting time on
the mechanist’s claim, it is reasonable to ask him some questions about his
machine to see whether his seriously maintained claim has serious backing.
It is reasonable to ask him not only what the specification of the machine is,
but whether it is consistent. Unless it is consistent, the claim will not get off
the ground. If it is warranted to be consistent, then that gives the mind the
premiss it needs. The consistency of the machine is established not by the
mathematical ability of the mind but on the word of the mechanist. (Lucas,
1996, p. 113)

But the issue isn’t whether the machine which is supposed to be emulating my mathematical
output is consistent – it churns away, effectively enumerating a set of Gödel numbers, and it
can be in as good order as any other computing machine. The question is whether the sentences
which the Gödel numbers encode form a consistent set. Even if they don’t, that set could still
be my idealized mathematical output: for example, perhaps the ZFC set theory I accept is
inconsistent, but the shortest proof of inconsistency is far too long for anyone actually to grasp
– which is why, as real-world unidealized mathematicians, we haven’t noticed the contradictions
which lurk over the horizon, far down the road.
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can prove true by mathematical argument). And again suppose that there is a
computer which emulates me in the sense that it effectively enumerates K. By
the same argument as before that entails the assumption

1. There is a p.r. axiomatized theory N such that, for all ϕ, ϕ ∈ K ↔ N � ϕ.

where ϕ is N ’s formal counterpart for the informal claim ϕ. And now let’s also
assume that one of the broadly mathematical things that I know is that the
theory N indeed generates my output of mathematical knowledge. Equivalently,

2. ‘for all ϕ, ϕ ∈ K ↔ N � ϕ’ ∈ K

We can then continue as follows:

3. By hypothesis, everything in K is true: so K is consistent – or ConK for
short. And since that’s a mini-proof of ConK , then ‘ConK ’ ∈ K.

4. Since ConK , and a sentence is in K if and only if its formal counterpart
is provable in N , then N is consistent too, i.e. ConN for short. So, since
we’ve just proved that, ‘ConK ∧ (for all ϕ, ϕ ∈ K ↔ N � ϕ) → ConN ’
∈ K.

5. SinceK by hypothesis is deductively closed, (2), (3) and (4) imply ‘ConN ’
∈ K.

6. So by (1) again, N � ConN , where ConN formally expresses the consis-
tency of N .

7. But since I know quite a bit of arithmetic to be true (more than IΣ1),
enough arithmetic must be built into N for the Second Theorem to apply.
Hence N � ConN . Contradiction!

8. So either assumption (1) or assumption (2) has to be false.

In other words, either my (idealized) mathematical knowledge isn’t capturable
in a theory describing the potential output of a computing machine or, if it is,
I don’t know which theory, and hence which machine, does the trick. Which is
quite neat,9 but also perhaps fairly unexciting. After all, it isn’t exactly easy
to tell which bits of my putative mathematical knowledge really are knowledge
(perhaps ZFC is inconsistent after all!): so why on earth suppose that I’d have
the god-like ability to correctly spot the computer program that actually gets
things right in selecting out (the deductive closure of) what I truly know? So we
can and should cheerfully embrace the second limb of the disjunctive conclusion.

(c) In his Gibbs lecture, Gödel himself considered the impact of the Second
Theorem on issues about minds and machines (Gödel, 1951). Like Benacerraf,

9If it is indeed legitimate to assume that it is the same formal consistency statement that
is involved at steps (6) and (7): but let’s grant that it is.
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he reaches a disjunctive conclusion.10 Gödel starts by remarking that the Second
Theorem

. . . makes it impossible that someone should set up a certain well-
defined system of axioms and rules and consistently make the fol-
lowing assertion: All of these axioms and rules I perceive (with
mathematical certitude) to be correct, and moreover I believe that
they contain all of mathematics. If someone makes such a state-
ment he contradicts himself. For if he perceives the axioms un-
der consideration to be correct, he also perceives (with the same
certainty) that they are consistent. Hence he has a mathematical
insight not derivable from his axioms. (Gödel, 1951, p. 309)

So this is the now familiar thought that we can keep on extending sound theo-
ries to get new ones by adding their consistency sentences as new axioms (see
Section 25.4). But how far can we follow through this process? Either we say ‘in-
finitely far’: at least in principle, idealizing away from limitations on memory and
time and so forth, we can keep on going for ever, grasping ever more extensive
systems of arithmetic as evidently correct, but never completing the task. Or we
say ‘the human mind (even if we bolt on more memory and abstract from time
constraints etc.) loses its grip at some point: and then there are further truths
that remain for ever beyond the reach of proof’. Gödel puts the alternatives this
way:

Either mathematics is incompletable in this sense, that its evident
axioms can never be comprised in a finite rule, that is to say,
the human mind (even within the realm of pure mathematics)
infinitely surpasses the powers of any finite machine, or else there
exist absolutely [unprovable Π1 sentences] . . . where the epithet
‘absolutely’ means that they would be [unprovable], not just within
some particular axiomatic system, but by any mathematical proof
the human mind can conceive.11

Now, there are questions which can be raised about this argument:12 but
perhaps the principal point to make is that, even if the argument works, its
disjunctive conclusion is again anodyne. Anyone of naturalist inclinations will
be happy enough to agree that there are limits on the possibilities of human
mathematical cognition, even if we abstract from constraints of memory and
time. Gödel himself was famously not naturalistically inclined and, according
to Hao Wang, he was inclined to reject the second disjunct Wang (1974, pp.
324–326): but for once there seems no evident good reason to follow Gödel here.

10An outline of Gödel’s position was reported by Wang (1974, pp. 324–326); but the lecture
wasn’t published until 1995.

11From Gödel (1951, p. 310). I’ve reversed the order of the passages either side of the
lacuna. Also, Gödel talks of ‘unsolvable diophantine equations’ rather than, equivalently, about
unprovable Π1 sentences: see Gödel (1951, p. 157) for an explanation of the connection.

12See, for example, the discussion in Feferman (2006).
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(d) So are there other arguments that lead from thoughts about Gödelian in-
completeness to more substantial, and non-disjunctive, conclusions?

Well, there is indeed a battery of attempts to find such arguments, starting
with a much-cited paper by John Lucas (1961) and latterly continuing in books
by Roger Penrose (1989, 1994). We certainly haven’t space to follow all the twists
and turns in the debates here. But it is fair to say that these more intricate anti-
mechanist arguments based on the incompleteness theorems have so far produced
very little conviction. If you want to explore further, Stewart Shapiro’s rich
(1998) makes an excellent place to start.

28.7 The rest of this book: another road-map

We have now proved Gödel’s First Incompleteness Theorem and outlined a proof
of his Second Theorem.

And it is worth stressing that the ingredients used in our discussions so far
have really been extremely modest. We introduced the ideas of expressing and
capturing properties and functions in a formal theory of arithmetic, the idea of
a primitive recursive function, and the idea of coding up claims about relations
between wffs into claims about relations between their code-numbers. We showed
that some key numerical relations coding proof relations for sensible theories are
p.r., and hence can be expressed and indeed captured in any theory that includes
Q. Then, in the last dozen chapters, we have worked Gödelian wonders with these
very limited ingredients. We haven’t need to deploy any of the more sophisticated
tools from the logician’s bag of tricks. Note, in particular, that in proving our
formal theorems, we haven’t yet had to call on a general theory of computable
functions or (equivalently) on a general theory of effectively decidable properties
and relations.

Compare our incompleteness theorems in Chapters 5 and 6. Theorem 5.7 says:
if T is a sound axiomatized theory whose language is sufficiently expressive,
then T cannot be negation complete. Theorem 6.2 says: a consistent, sufficiently
strong, axiomatized formal theory of arithmetic cannot be negation complete. A
‘sufficiently expressive language’, remember, is one which could express at least
every effectively decidable two-place numerical relation, and a ‘sufficiently strong
theory’ is one which can capture at least all effectively decidable numerical prop-
erties. So those informal theorems do deploy the notion of effective decidability.
And to get the introductory part of the book and its informal completeness the-
orem to fit together nicely with our later official Gödelian proofs, we’ll therefore
need to give a formal treatment of decidability.

So that’s our main task in the remaining chapters. Of course, we are not aiming
here for a very extensive coverage of the general theory of computability (that
would require a book in itself); we’ll just be concentrating on a handful of central
topics which are most immediately relevant to developing our understanding of
incompleteness theorems. So, in more detail, here’s what lies ahead:
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28 Interlude: About the Second Theorem

1. We first extend the idea of a primitive recursive function in a natural
way, and define a wider class of intuitively computable functions, the μ-
recursive functions. We give an initial argument for Church’s Thesis that
these μ-recursive functions comprise all total numerical functions which
are effectively computable. (Chapter 29)

2. We already know that Q, and hence PA, can capture all the p.r. functions:
we next show that they can capture all the μ-recursive functions. The fact
that Q and PA are recursively adequate immediately entails that neither
theory is decidable – and it isn’t mechanically decidable either what’s a
theorem of first-order logic. We can also quickly derive the formal coun-
terpart of the informal syntactic incompleteness theorem of Chapter 6.
(Chapter 30)

3. We then turn to introduce another way of defining a class of intuitively
computable functions, the Turing-computable functions: Turing’s Thesis
is that these are exactly the effectively computable functions. We go on
to outline a proof that the Turing-computable (total) functions are in fact
just the μ-recursive functions again. (Chapters 31, 32)

4. Next we prove another key limitative result (i.e. a result, like Gödel’s,
about what can’t be done). There can’t be a Turing machine which solves
the halting problem: there is no general effective way of telling in advance
whether an arbitrary machine with program Π ever halts when it is run
from input n. We show that the unsolvability of the halting problem gives
us another proof that it isn’t mechanically decidable what’s a theorem
of first-order logic, and it also entails Gödelian incompleteness again.
(Chapter 33)

5. The fact that two independent ways of trying to characterize the class of
computable functions coincide supports what we can now call the Church-
Turing Thesis, which underlies the links we need to make e.g. between
formal results about what a Turing machine can decide and results about
what is effectively decidable in the intuitive sense. We finish the book
by discussing the Church–Turing Thesis further, and consider its status.
(Chapters 34, 35)
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29 μ-Recursive functions

This chapter introduces the notion of a μ-recursive function – which is a very
natural extension of the idea of a primitive recursive function. Plausibly, the
effectively computable functions are exactly the μ-recursive functions (and like-
wise, the effectively decidable properties are those with μ-recursive characteristic
functions).

29.1 Minimization and μ-recursive functions

The primitive recursive functions are the functions which can be defined using
composition and primitive recursion, starting from the successor, zero, and iden-
tity functions. These functions are computable. But they are not the only com-
putable functions defined over the natural numbers (see Section 11.5 for the neat
diagonal argument which proves the point). So the natural question to ask is:
what other ways of defining new functions from old can we throw into the mix
in order to get a broader class of computable numerical functions (hopefully, to
get all of them)?

As explained in Section 11.4, p.r. functions can be calculated using bounded
loops (as we enter each ‘for’ loop, we state in advance how many iterations
are required). But as Section 3.6 already reminds us, we also count unbounded
search procedures – implemented by ‘do until’ loops – as computational. So, the
obvious first way of extending the class of p.r. functions is to allow functions to
be defined by means of some sort of ‘do until’ procedure. We’ll explain how to
do this in four steps.

(a) Here’s a simple example of a ‘do until’ loop in action. Suppose that G is
a decidable numerical relation. And suppose that for every x there is a y such
that Gxy. Then, given a number x, we can find a G-related number y by the
brute-force algorithmic method of running through the numbers y from zero up
and deciding in each case whether Gxy, until we get a positive result.

Suppose that G’s characteristic function is the function g (so Gxy holds just
when g(x, y) = 0). Then the algorithm can be presented like this:

1. y := 0
2. Do until g(x, y) = 0
3. y := y + 1
4. Loop
5. f(x) := y
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29 μ-Recursive functions

Here, we set y initially to take the value 0. We then enter a loop. At each
iteration, we do a computation to decide whether the Gxy holds, i.e. whether
g(x, y) = 0. If it does, we exit the loop and put f(x) equal to the current value
of y; otherwise we increment y by one and do the next test. By hypothesis, we
do eventually hit a value of y such that g(x, y) = 0: the program is bound to
terminate. So this ‘do until’ routine calculates the number f(x) which is the
least y such that g(x, y) = 0, i.e. the least number to which x is G-related. This
algorithm, then, gives us a way of effectively calculating the values of a new total
function f , given the function g.

(b) Now let’s generalize this idea. Let �x stand in for n variables. Then we’ll
say that

The (n+1)-place function g(�x, y) is regular iff it is a total function
and for all values of �x, there is a y such that g(�x, y) = 0.

Suppose g is a regular computable function. Then the following routine will
effectively compute another function f(�x):

1. y := 0
2. Do until g(�x, y) = 0
3. y := y + 1
4. Loop
5. f(�x) := y

By hypothesis g is a total computable function, so at the k-th loop checking
whether g(�x, k) = 0 is a mechanical business which always delivers a verdict. By
hypothesis again, g is regular, so the looping procedure eventually terminates
for each �x. Hence f is a total computable function, defined for all arguments �x.

Here’s another definition:

Suppose g(�x, y) is an (n + 1)-place regular function. Let f(�x) be
the n-place function which, for each �x, takes as its value the least
y such that g(�x, y) = 0. Then we say that f is defined by regular
minimization from g.

Then what we’ve just shown is that if f is defined from the regular computable
function g by regular minimization, then f is a total computable function too,
with values of f effectively computable using a ‘do until’ routine.1

(c) Now some notation. Recall, in Section 11.8 we introduced the symbolism
‘μy’ to abbreviate ‘the least y such that . . . ’. So now, when f is defined from g
by regular minimization, we can write:

1If we drop the requirement that g is regular, the ‘do until’ procedure may sometimes,
or even always, fail to produce an output: it will at most compute a partial function f(�x)
which is defined perhaps for only some or even for no values. The theory of partial computable
functions is a very important rounding out of the general theory of computable functions. But
we don’t need to tangle with it in this book. All the functions we’ll be talking about are total
functions, as we’ll keep emphasizing from time to time.
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Another definition of μ-recursiveness

f(�x) = μy[g(�x, y) = 0]

(The square brackets here are strictly speaking unnecessary, but are fairly stan-
dard, and greatly aid readability.) When g(�x, y) is the characteristic function of
the relation G(�x, y), we will occasionally write, equivalently,

f(�x) = μy[G(�x, y)]

Compare, then, the operation of bounded minimization which we met in Sec-
tion 11.8: we are now concerned with a species of unbounded minimization.

(d) Summarizing so far: we said that we can expect to expand the class of
computable functions beyond the p.r. ones by considering functions that are
computed using a ‘do until’ search procedure. We’ve just seen that when we de-
fine a function by regular minimization, this in effect specifies that its value is to
be computed by just such a search procedure. Which suggests that a third mode
of definition to throw into the mix for defining computable functions, alongside
composition and primitive recursion, is definition by regular minimization.

With that motivation, let’s say:

The μ-recursive functions are those that can be defined from the
initial functions by a chain of definitions by composition, primitive
recursion and/or regular minimization.2

Or putting it more carefully, we can say

1. The initial functions S,Z, and Iki are μ-recursive;
2. if f can be defined from the μ-recursive functions g and h by

composition, then f is μ-recursive;
3. if f can be defined from the μ-recursive functions g and h by

recursion, then f is μ-recursive;
4. if g is a regular μ-recursive function, and f can be defined

from g by regular minimization, then f is μ-recursive;
5. nothing else is a μ-recursive function.

Since regular minimization yields total functions, the μ-recursive functions are
always total computable functions. Trivially, all p.r. functions also count as μ-
recursive functions.

29.2 Another definition of μ-recursiveness

This little section is just to forestall a query which might already have occurred
to you!

2Many, perhaps most, writers nowadays use plain ‘recursive’ instead of ‘μ-recursive’. But
the terminology hereabouts can be confusingly variable. It will do no harm, then, to stick to
our explicit label.
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29 μ-Recursive functions

A ‘for’ loop – i.e. a programming structure which instructs us to iterate some
process as a counter increments from 0 to n – can of course be recast as a ‘do until’
loop which tells us to iterate the same process while incrementing the counter
until its value equals n. So it looks as if definitions by primitive recursion, which
call ‘for’ loops, could be subsumed under definitions by minimization, which call
‘do until’ loops. Hence you might well suspect that clause (3) in our definition
is redundant. And you’d be almost though not quite right. By a theorem of
Kleene’s (1936c), you can indeed drop (3) if you add addition, multiplication and
the characteristic function of the less-than relation to the list of initial functions.
And some books define recursive functions this way; see e.g. Shoenfield (1967,
p. 109).

Still, I for one don’t find this approach nearly as natural or illuminating, so
let’s stick to the more conventional mode of presentation given in the previous
section.

29.3 The Ackermann-Péter function

Since μ-recursive functions can be defined using unbounded searches and p.r.
functions can’t, we’d expect there to be μ-recursive functions which aren’t prim-
itive recursive. But can we give some examples?

Well, the computable-but-not-p.r. function d(n) that we constructed by the
diagonalization trick in Section 11.5 is in fact an example. But it isn’t immedi-
ately obvious why the diagonal function is μ-recursive. So in this section and the
next we’ll look at another example, which is both more tractable and also math-
ematically more natural. The basic idea is due to Wilhelm Ackermann (1928).

Let’s begin with a simple observation. Any p.r. function f, recall, can be
specified by a chain of definitions in terms of primitive recursion and composition
leading back to initial functions. This definition won’t be unique: there will
always be various ways of defining f (for a start, by throwing in unnecessary
detours). But take the shortest definitional chain – or, if there are ties for first
place, take one of the shortest. Now, the length of this shortest definitional
chain for f will evidently put a limit on how fast f(n) can grow as n grows.
That’s because it puts a limit on how complicated the computation can be –
in particular, the number of loops-within-loops-within-loops that we have to
play with. And so it limits the number of times we ultimately get to apply the
successor function, depending on the initial input argument n. A similar point
applies to two-place functions, etc.

That’s a bit abstract, but the point is easily seen if we consider the two-
place functions f1, i.e. sum (repeated applications of the successor function), f2,
i.e. product (repeated sums), f3, i.e. exponentiation (repeated products). These
functions have increasingly long full definitional chains; and the full programs
for computing them involve ‘for’ loops nested increasingly deeply. And as their
respective arguments grow, the value of f1 of course grows comparatively slowly,
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f2 grows faster, f3 faster still.
This sequence of functions can obviously be continued. Next comes f4, the

super-exponential, defined by repeated exponentiation:

x ⇑ 0 = x

x ⇑ Sy = xx⇑y

Thus, for example, 3 ⇑ 4 is 3333
3

with a ‘tower’ of 4 exponents. Similarly, we can
define f5 (super-duper-exponentiation, i.e. repeated super-exponentiation), f6
(repeated super-duper-exponentiation), and so on. The full chain of definitions
for each fk gets longer and longer as k increases – and the values of the respective
functions grow faster and faster as their arguments are increased.3

But now consider the function a(x) = fx(x, x). The value of a(x) grows explo-
sively, running away ever faster as n increases. Indeed, take any given one-place
p.r. function: this has a maximum rate of growth determined by the length of
its definition, i.e. a rate of growth comparable to some fn(x, x) in our hierarchy;
but a(x) eventually grows faster than any particular fn(x, x). Hence a(x) isn’t
primitive recursive. Yet it is evidently computable.

This idea of Ackermann’s is very neat, and is worth pausing over and devel-
oping a bit. So consider again the recursive definitions of our functions f1 to f4
(look again at Section 11.1, and at our definition of ‘⇑’ above). We can rewrite
the second, recursion, clauses in each of those definitions as follows:

f1(y, Sz) = Sf1(y, z)
= f0(y, f1(y, z)) – if we cunningly define f0(y, z) = Sz

f2(y, Sz) = f1(y, f2(y, z))
f3(y, Sz) = f2(y, f3(y, z))
f4(y, Sz) = f3(y, f4(y, z))

There’s a pattern here! So now suppose we put

f(x, y, z) =def fx(y, z)

Then the value of f gets fixed via a double recursion:

f(Sx, y, Sz) = f(x, y, f(Sx, y, z))

However, nothing very exciting happens to the second variable, ‘y’. So we’ll
now let it just drop out of the picture, and relabel the remaining variable to get
a variant on the Ackermann’s construction due to Rósza Péter (1935). Consider,
then, the function p governed by the clause

p(Sx, Sy) = p(x, p(Sx, y))

Of course, this single clause doesn’t yet fully define p – it doesn’t tell us, e.g., the
value of p(0, 0). So we need somehow to round out the definition, e.g. to yield
the following three equations:

3The claim, of course, isn’t that longer definitions always entail faster growth, only that
our examples show how longer definitions permit faster growth.
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p(0, y) = Sy
p(Sx, 0) = p(x, S0)
p(Sx, Sy) = p(x, p(Sx, y))

To see how these equations work together to determine the value of p for given
arguments, work through the following calculation:

p(2, 1)= p(1, p(2, 0))
= p(1, p(1, 1))
= p(1, p(0, p(1, 0)))
= p(1, p(0, p(0, 1)))
= p(1, p(0, 2))
= p(1, 3)
= p(0, p(1, 2))
= p(0, p(0, p(1, 1)))
= p(0, p(0, p(0, p(1, 0))))
= p(0, p(0, p(0, p(0, 1))))
= p(0, p(0, p(0, 2)))
= p(0, p(0, 3))
= p(0, 4)
= 5

To evaluate the function, the recipe is as follows. At each step look at the inner-
most occurrence of p, and apply whichever of the definitional clauses pertains
– it’s trivial to check that only one can. Keep on going until at last you reach
something of the form p(0,m) and then apply the first clause one last time and
halt.

A little reflection will convince you that this procedure does always terminate
(hint: look at the pattern of numbers in vertical columns, and also along diago-
nals). And note that our informal recipe in effect involves a do until procedure.
So – given everything we’ve said – it shouldn’t be a surprise to hear that we
have the following:

Theorem 29.1 The Ackermann-Péter function is μ-recursive but
not primitive recursive.

We’ll outline a proof of the first half of this double-barrelled claim in the next
section. We won’t pause so long over the second half, however, as we’ve already
indicated the main proof idea: here it is again . . .

Sketch of a proof sketch: p(x, y) is not p.r. Given p’s origin in the sequence of
functions sum, product, exponential, . . . , it is evident that the functions p(0, y),
p(1, y), p(2, y), . . . grow ever faster as y increases. And so if y > 0, and n > m,
p(n, y) > p(m, y).

We can also fairly easily confirm that, for any primitive recursive function
f(y) – whose rate of growth is capped by the length of its shortest p.r. definition
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The Ackermann-Péter function is μ-recursive

– there is a corresponding n such that p(n, y) grows faster.4 In other words, after
some threshold d, then for all y > d, f(y) < p(n, y). Hence p can’t be primitive
recursive.

For suppose p is p.r., and then put f(y) = p(y, y). Evidently, f will be p.r. too.
Hence there is some n and some d such that, if y > d, then f(y) < p(n, y). So now
chose some y′ such that y′ > d, y′ > n: then f(y′) < p(n, y′) < p(y′, y′) = f(y′).
Contradiction! �

29.4 The Ackermann-Péter function is μ-recursive

We’ll take longer over proving the first half of Theorem 29.1; that’s because the
proof introduces a neat strategy which we’ll later make use of a number of times.
So it’s worth getting the hang of the argument.

Proof sketch: p(x, y) is μ-recursive Our outline proof has three stages, the first
two just setting up some coding and defining a couple of coding functions.

(i) Introducing more coding Consider the successive terms in our calculation of
the value of p(2, 1). We can introduce code numbers representing these terms by
a simple, two-step, procedure:

α. Transform each term like p(1, p(0, p(1, 0))) into a corresponding sequence
of numbers like 〈1, 0, 1, 0〉 by the simple expedient of deleting the brackets
and occurrences of the function-symbol ‘p’. (We can uniquely recover
terms from such sequences in the obvious way.)

β. Code the resulting sequence 〈1, 0, 1, 0〉 by Gödel numbering, e.g. by using
powers of primes. So we put e.g.

〈l,m, n, o〉 ⇒ 2l+1 · 3m+1 · 5n+1 · 7o+1

(where we need the +1 in the exponents to handle the zeros).

Hence we can think of our computation of p(2, 1) as generating in turn the
α-sequences

〈2, 1〉, 〈1, 2, 0〉, 〈1, 1, 1〉, 〈1, 0, 1, 0〉, . . .

Then we code up each such α-sequence; so the successive steps in the calculation
of p(2, 1) will respectively receive the β-code numbers

72, 540, 900, 2100, . . .

(ii) Coding/decoding functions So far, that’s just routine coding. Now we put it
to work by defining a couple of coding/decoding functions as follows:

4The details get rather tiresome however, and we won’t give them here. See e.g. Cohen
(1987, §3.6).
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i. c(x, y, z) is the β-code of the α-sequence corresponding to the output
of the z-th step (counting from zero) in the calculation of p(x, y) if the
calculation hasn’t yet halted by step z; and otherwise c(x, y, z) = 0. So,
for example, c(2, 1, 0) = 72, c(2, 1, 3) = 2100, and c(2, 1, 20) = 0.

ii. fr(x) = one less than the exponent of 2 in the prime factorization of x.
Hence, if n is a β-code for a sequence of numbers, fr(n) recovers the first
member of the sequence.

(iii) Facts about our coding functions Next, here is a number of claims about our
coding functions, which together establish the desired result that the Ackermann-
Péter function is μ-recursive.

1. The coding function c(x, y, z) is primitive recursive. That’s because the
evaluation of c for arguments l,m, n evidently involves a step-by-step nu-
merical computation tracking the first n steps in the calculation of p(l,m),
using the very simple rules that take us from one step to the next. No
step-to-step move involves flying off on an open-ended search. So ‘for’
loops will suffice to construct an algorithm for the computation of c. And
such an algorithm will always determine a p.r. function.

That’s quick-and-dirty: making the argument watertight is pretty te-
dious though not difficult. There’s nothing to be learnt from spelling out
the details here: so we won’t.

2. The calculation of the function p for given arguments x, y eventually halts
at the z-th step for some z, and then c(x, y, Sz) = 0. Hence c is regular.

3. μz[c(x, y, Sz) = 0] is therefore the step-number of the final step in the
calculation which delivers the value of p(x, y). Since c is regular, it follows
that μz[c(x, y, Sz) = 0] defines a μ-recursive function.

4. Hence c(x, y, μz[c(x, y, Sz) = 0]) gives the code number of the final value
of p(x, y). Since this compounds a p.r. (hence μ-recursive) function with
a μ-recursive one, it is also μ-recursive.

5. Hence, decoding, p(x, y) = fr(c(x, y, μz[c(x, y, Sz) = 0])).

6. But the function fr is primitive recursive (in fact fr(x) =def exp(x, 0) −· 1,
where exp is as introduced in Section 11.8).

7. Thus fr(c(x, y, μz[c(x, y, Sz) = 0])) is the composition of a p.r. function
and a μ-recursive function. Hence it, i.e. p(x, y), is μ-recursive. �

29.5 Introducing Church’s Thesis

(a) That was a delightful argument! And the strategy it deploys is evidently
a powerful one. For example – although we won’t give the details here – the
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computable-but-not-p.r. diagonal function d(n) from Section 11.5 can similarly
be shown to be μ-recursive by a broadly similar proof.5

And now generalizing, we might reasonably expect to be able to code up the
step-by-little-step moves in any well-defined calculation by a primitive recursive
coding function like c (primitive recursive because, when broken down to minimal
steps, there again won’t be any flying off on open-ended searches). If the output
of the calculation is defined for every input, then exactly the same style of
argument will be available to show that the mapping from input to output must
be a μ-recursive function.

This line of thought – which has its roots in Church (1936b) – very strongly
encourages the conjecture that in fact all effectively computable total functions
will turn out to be μ-recursive.

Reflections on modern programming languages point in the same direction.
For when things are reduced to basics, we see that the main programming struc-
tures available in such languages are (in effect) ‘for’ loops and ‘do until’ loops,
which correspond to definitions by primitive recursion and minimization. Hence
– given that our modern general-purpose programming languages have so far
proved sufficient for specifying algorithms to generate any computable function
we care to construct – it doesn’t seem a very big leap to conjecture that every
algorithmically computable total function should be definable in terms of compo-
sition (corresponding to the chaining of program modules), primitive recursion,
and minimization.

In sum, such considerations certainly give a very high initial plausibility to
what’s called

5See Péter’s classic (1951), with a revised edition translated as her (1967). The key idea
is to use a double recursion again to define a function ϕ(m,n) such that, for a given m,
ϕ(m,n) = fm(n), where running through the fi gives us our effective enumeration of the p.r.
functions. And since ϕ is definable by a double recursion it can be shown to be μ-recursive by
the same kind of argument which showed that the Ackermann-Péter function is μ-recursive.
Hence d(n) = ϕ(n, n) + 1 is μ-recursive too.

Just for enthusiasts: it is perhaps worth footnoting that it would be quite wrong to take
away from our discussion so far the impression that μ-recursive-but-not-p.r. functions must all
suffer from explosive growth. Péter gives a beautiful counter-example. Take our enumeration
fi of p.r. functions, and now consider the functions gi(n) =def sg(fi(n)), where sg is as defined
in Section 11.8 (i.e. sg(k) = 0 for k = 0, and sg(k) = 1 otherwise). Evidently, running through
the gi gives us an effective enumeration – with many repetitions – of all the p.r. functions which
only take the values 0 and 1. Now consider the μ-recursive function ψ(n) = sg(ϕ(n, n)) = |1−
sg(ϕ(n, n))| (where ϕ is as above). This function too only takes the values 0 and 1; but it can’t
be primitive recursive. For suppose otherwise. Then for some k, ψ(n) = gk(n) = sg(ϕ(k, n)).
So we’d have

sg(ϕ(k, n)) = ψ(n) = |1 − sg(ϕ(n, n))|
and hence

sg(ϕ(k, k)) = ψ(k) = |1 − sg(ϕ(k, k))|
Which is impossible. Therefore there are μ-recursive-but-not-p.r. functions which only ever
take the values 0 and 1, and hence do not suffer value explosion. However, while values of such
functions can remain tame, lengths of computations don’t, as we’ll see in Section 33.6, fn. 5.
There remains a sense, then, in which μ-recursive-but-not-p.r. functions are wild.
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29 μ-Recursive functions

Church’s Thesis The total numerical functions that are effec-
tively computable by some algorithmic routine are just the μ-
recursive functions.6

And certainly all the evidence supports this Thesis. For a start, no one has ever
been able to define an intuitively computable numerical total function which
isn’t μ-recursive.

We’ll be saying a lot more about all this later. Pending further discussion,
however, we’ll for the moment just assume that Church’s Thesis is true. Given
this assumption, the class of μ-recursive functions is indeed of very special in-
terest as it just is the class of effectively computable numerical functions.

29.6 Why can’t we diagonalize out?

You might find that last claim very puzzling (in fact, if you’ve been follow-
ing, perhaps you ought to find it puzzling!). For don’t we already have all the
materials to hand for a knock-down argument against Church’s Thesis? Back in
Section 11.5, we proved that not every computable function is primitive recursive
by the trick of ‘diagonalizing out’. That is to say, we used a diagonal construc-
tion which took us from a list of all the p.r. functions to a further computable
function which isn’t on the list. Why shouldn’t we now just use the same trick
again to diagonalize out of the class of μ-recursive functions?

Well, the argument would have to go:

Take an effective enumeration of the μ-recursive functions, f0, f1,
f2, . . . , and define the diagonal function d(n) = fn(n) + 1. Then
d differs from each fj (at least for the argument j). But d is com-
putable (since to evaluate it for argument n, you just set a com-
puter to enumerate the fj until it reaches the n-th one, and then
by hypothesis the value of fn(n) + 1 is computable). So d is com-
putable but not μ-recursive.

But this argument fails, and it is very important to see why. The crucial point
is that we are not entitled to its initial assumption. While the p.r. functions are
effectively enumerable, we can’t assume that there is an effective enumeration of
the μ-recursive functions.

What makes the difference? Well, remind yourself of the informal argument
(in Section 11.5) that shows that we can mechanically list off the recipes for the
p.r. functions. If we now try to run a parallel argument for the claim that the
μ-recursive functions are effectively enumerable, things go just fine at the outset:

6The reason for the label will emerge in Chapter 34. Compare Turing’s Thesis which we
very briefly introduced in Section 2.2: that says that the (total) numerical functions that are
effectively computable by some algorithmic routine are just those functions that are computable
by a Turing machine (which is a computer following a very simple-minded type of program: for
more explanation, see Chapter 31). It turns out that our two Theses are equivalent, because
the μ-recursive functions are exactly the Turing computable ones, as we’ll show in Chapter 32.
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Every μ-recursive function has a ‘recipe’ in which it is defined by
primitive recursion or composition or regular minimization from
other functions which are defined by recursion or composition or
regular minimization from other functions which are defined ul-
timately in terms of some primitive starter functions. So choose
some standard formal specification language for representing these
recipes. Then we can effectively generate ‘in alphabetical order’ all
possible strings of symbols from this language . . .

But at this point the parallel argument breaks down, since we can’t continue

. . . and as we go along, we can mechanically select the strings that
obey the rules for being a recipe for a μ-recursive function.

That’s because, in order to determine mechanically whether a series of defini-
tions obey the rules for being the recipe for a μ-recursive function, we’d need
an effective way of determining whether each application of the minimization
operator is an application to a regular function. We’d need a way of effectively
determining whether e.g. a p.r. function g(x, y) is such that for each x there is
a y such that g(x, y) = 0. And there is in general no effective way of doing that.

It’s worth adding another observation. For note that we know that there can’t
be an effective enumeration of the effectively computable total functions f0, f1,
f2, . . . . For if there were one, we could define d(n) = fn(n)+1 which would then
evidently be an effectively computable function not on the list. Contradiction.

Since we know the effectively computable total functions are not effectively
enumerable, we certainly can’t just assume that there is an effective enumeration
of the μ-recursive functions. To use the ‘diagonalizing out’ argument against
Church’s Thesis, we’d already need some independent reason for thinking the
enumeration can be done. There isn’t any.

In sum: Church’s Thesis that the μ-recursive functions are all the (total,
numerical) computable functions lives to fight another day.7

29.7 Using Church’s Thesis

Church’s Thesis, to repeat, is a biconditional: a total numerical function is μ-
recursive if and only if it is effectively computable in the intuitive sense. Half
the Thesis is quite unexciting – if a function is μ-recursive, then it is certainly
computable. It is the other half which is the interesting claim, the half which says
that if a total numerical function is not μ-recursive then it is not computable in
the intuitive sense.

Over the coming chapters, we’ll repeatedly be appealing to Church’s Thesis,
but in two quite different ways which we need to distinguish very clearly. Let’s
call these the interpretive and the labour-saving uses respectively.

7Let’s stress again: it is important that we have been talking throughout about total
computable functions.
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The interpretive use relies on the Thesis to pass from technical claims about
what is or isn’t μ-recursive to claims about what is or isn’t effectively com-
putable. Here, then, the Thesis is being used to justify an informal gloss on
our technical results. And if we are in general to interpret formal results about
μ-recursiveness as telling us about computability in the intuitive sense, then
necessarily we have to appeal to the Thesis.

The labour-saving use relies on the Thesis to pass in the opposite direction,
from informal claims about what is or isn’t computable in the intuitive sense
to formal claims about μ-recursiveness. So in particular, it allows us to jump
from a quick-and-dirty informal proof that something is effectively computable
to conclude that a corresponding function is μ-recursive. This kind of fast-track
argument for some technical claim is fine, given that Church’s Thesis is entirely
secure. However, any formal result which can be established this way by appeal
to the Thesis must be provable directly, the hard way (otherwise we would
have located a disconnect between the informal notion of computability and its
claimed formal equivalent, contradicting the Thesis). Hence this second sort of
use of the Thesis is labour-saving but is always inessential.

For clarity’s sake, we’ll adopt the following convention in the rest of this book.
When we simply say ‘by Church’s Thesis . . . ’, or ‘given Church’s Thesis . . . ’,
etc. we’ll always be appealing to Church’s Thesis in the first way, to make a con-
nection between a formal claim and a claim about computability in the intuitive
sense. When we occasionally make use of Church’s Thesis in the second way, to
support a technical claim that some function is μ-recursive, then we’ll explic-
itly signal what we are doing: we’ll say ‘by a labour-saving appeal to Church’s
Thesis’ or some such.
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Theorem 13.6 tells us that Q can capture all p.r. functions. Our next theorem
shows that Q can in fact capture all μ-recursive functions. With a bit of help from
Church’s Thesis, our new stronger theorem enables us very quickly to prove two
new Big Results: first, any nice theory is undecidable; and second, theoremhood
in first-order logic is undecidable too.

The old Theorem 13.6 is, of course, the key result which underlies incom-
pleteness theorems like Theorem 17.2 (if T is nice and ω-consistent, then T is
incomplete). Our new theorem correspondingly underlies some easy variations on
that earlier incompleteness theorem and its relatives. We’ll also prove a formal
counterpart to the informal theorem of Chapter 6.

30.1 Q is recursively adequate

Recall that we said that a theory is p.r. adequate if it captures each p.r. function
as a function (Section 12.4). Let’s likewise say that

A theory is recursively adequate iff it captures each μ-recursive
function as a function.

We showed that Q is p.r. adequate in Chapter 13. Overall that took some inge-
nuity; but given the work we’ve already done, it is now very easy to go on to
establish

Theorem 30.1 Q is recursively adequate.

Proof Theorem 13.3 tells us that Q can capture any Σ1 function as a function.
To establish that Q is recursively adequate, it therefore suffices to show that
recursive functions are Σ1 (i.e. are expressible by Σ1 wffs).

And to show that, it suffices to prove that (a) the initial functions are Σ1, and
that if the functions g and h are Σ1, so are the functions derived from these by
repeated steps of (b) substitution, (c) primitive recursion and (d) regular mini-
mization. But we know that (a) to (c) are true from the proof of Theorem 13.5.
So we just need to check that the extra condition (d) also obtains.

Take the case where the one-place function f is defined by regular minimiza-
tion from the two-place function g, so f(x) = μy[g(x, y) = 0]. And suppose that
g(x, y) is expressed by the strictly Σ1 predicate G(x, y, z). Then f is evidently
expressed by

F(x, y) =def G(x, y, 0) ∧ (∀u ≤ y)(u �= y → ∃z(G(x, u, z) ∧ z �= 0))
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Now recall the quantifier-shifting trick that we used in Section 13.6. So, first
step, we see that the following expresses the same function:

F′(x, y) =def G(x, y, 0) ∧ ∃w(∀u ≤ y)(u �= y → (∃z ≤ w)(G(x, u, z) ∧ z �= 0))

Now use the same trick again to take any initial unbounded existential quantifiers
in G and drag them forward past the bounded quantifiers, leaving behind their
bounded ‘shadows’. Then we’ll get another wff F′′ that is strictly Σ1, but still
expresses the same function. So f is Σ1.

The generalization to many-place functions is immediate: so we are done. �

Recall the idea of a ‘sufficiently strong’ theory, i.e. the idea of a theory that
captures all intuitively decidable one-place properties of numbers, i.e. the idea of
a theory that captures all effectively computable two-place characteristic func-
tions. By Church’s Thesis (used in interpretive mode), a theory which is recur-
sively adequate is sufficiently strong. So Theorem 30.1 (at long last) redeems our
promise to vindicate the intuitive notion of a sufficiently strong theory. Such a
theory need be no richer than our old friend, the decidedly tame theory Q!

Finally, given that Q captures all μ-recursive functions as functions, so does
any nice theory, including PA of course. And such theories will also capture all
μ-recursive properties, i.e. properties with μ-recursive characteristic functions –
compare the little connecting result in Section 12.4 (b).

30.2 Nice theories can only capture recursive functions

The result that Q, and hence PA, can capture all recursive functions is the one
which we will be repeatedly using. But there’s also a converse result:

Theorem 30.2 If T is nice, any total function which can be cap-
tured in T is μ-recursive.

A proof using Church’s Thesis Take the monadic case (it will be obvious how
to generalize). Suppose the total function f(m) can be captured as a function
in T . Then, by definition, there is a two-place open wff ϕ(x, y) which is such
that if f(m) = n, T � ϕ(m, n); and if f(m) �= n, T � ¬ϕ(m, n), so – since T is
consistent by assumption – T � ϕ(m, n). Trivially, then, the value of f(m) is the
least number n (indeed, the only number n) such that T � ϕ(m, n).

So, for given m, we can effectively compute the value of f(m) using an open-
ended search. Start effectively enumerating the T -theorems, and keep on going
until one of the form ϕ(m, n) turns up. The value of f(m) is the resulting value
of n. (We know we can effectively enumerate the T -theorems by Theorem 3.5;
and because f is total, the search for an instance of ϕ(m, n) always terminates).

Since there is therefore an algorithm for computing the value of f , it follows
by Church’s Thesis (used in labour-saving mode) that f is μ-recursive. �

One quick comment. If Q and PA can capture all the μ-recursive functions
but no more, it follows that Q and PA capture exactly the same functions. Is
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that surprising? After all, PA can prove a lot more than Q! Why can’t it prove
more function-capturing wffs? Well, it can prove lots more function-capturing
wffs: but they will at most give us more complex ways of capturing the same old
functions for which Σ1 wffs suffice.

30.3 Some more definitions

Let’s pause for some reminders about old bits of jargon, interlaced with defini-
tions for some fairly self-explanatory bits of new jargon.

i. First recall from Sections 2.2 and 11.6 the informal idea of a decidable
property, i.e. a property P whose characteristic function cP is computable.

We’ll now say that a numerical property P is recursively decidable iff
its characteristic function cP is μ-recursive – i.e. iff there is a μ-recursive
function which, given input n, delivers a 0/1, yes/no, verdict on whether
n is P . The definition obviously extends in a natural way to cover recur-
sively decidable numerical relations.

We will say that a non-numerical property is recursively decidable iff
some acceptable Gödel-style coding associates the property with a recur-
sively decidable numerical property (and again similarly for relations).1

We’ll also say that a set is recursively decidable iff the property of be-
ing a member of the set is recursively decidable.

Church’s Thesis implies, of course, that the intuitively decidable prop-
erties/relations/sets are just the recursively decidable ones.

ii. Here’s some equally standard alternative jargon. A (numerical) decision
problem takes the form: to tell of any arbitrary number n whether it is P
(or to tell of an arbitrary pair of numbers m,n, whether m has relation
R to n, etc.). Such a decision problem is said to be recursively solvable iff
there is a μ-recursive function which, given any input n, delivers a verdict
on whether n is P (likewise for relations). To say that the decision problem
for P is recursively solvable is therefore just to say that the property P
is recursively decidable.

iii. When we very first characterized the idea of a formal theory, we said
that for a properly constructed theory it must be decidable what’s a wff,
what’s an axiom, and what’s a well-constructed logical derivation. If we
use the Gödel-numbering trick, then the requirement becomes that the
properties of numbering a wff, axiom or correct derivation must be decid-
able. Previously, we introduced the notion of a p.r. axiomatized theory,
which is one for which those three numbering properties are primitive re-
cursive (are decidable by p.r. functions). So now let’s correspondingly say

1By the argument of Section 15.1 (b), whether a non-numerical property is recursively
decidable does not depend on our choice of Gödel coding. (Exercise: check this!)
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that a theory is recursively axiomatized when the same three properties
meet the less stringent requirement of being recursively decidable.

By Church’s Thesis, the formalized theories in the intuitive sense are
exactly the recursively axiomatized ones.

iv. We said in Section 3.4 (ii) that a theory is decidable iff the property
of being a theorem of that theory is decidable. So we’ll correspondingly
define a theory to be recursively decidable iff it is recursively decidable
what’s a theorem.

v. Finally, recall from Section 2.4 that we said that a set is effectively enu-
merable iff it is either empty or there is an effectively computable (total)
function which enumerates it. Putting that more carefully, Σ is effectively
enumerable iff it is either empty or there is a surjective2 effectively com-
putable (total) function f : N → Σ. In other words, Σ is either empty or
the range of an effectively computable function.

Similarly, then, we’ll now say that a numerical set Σ ⊆ N is recursively
enumerable iff it is either empty or there is a μ-recursive function which
enumerates it – i.e. iff Σ is either empty or it is the range of a μ-recursive
function. And by extension, a non-numerical set Σ is recursively enumer-
able iff, under an acceptable system of Gödel coding, the set Σ′ which
contains the code numbers of members of Σ is recursively enumerable.

It is standard to abbreviate ‘recursively enumerable’ just by ‘r.e.’. And
Church’s thesis tells us, of course, that a set is r.e. if and only if it is
effectively enumerable in the intuitive sense.

30.4 Q and PA are undecidable

Now down to new business again! We start with a Big Result which is immediate,
given what we’ve already shown:

Theorem 30.3 If T is a nice theory, it isn’t recursively decidable.

Proof To say that T is recursively decidable is to say that the property ProvT
of numbering a T -theorem is μ-recursive (i.e. has a μ-recursive characteristic
function). Suppose, then, that ProvT is μ-recursive. Then ProvT would be cap-
turable in T since, being nice, T contains Q and so is recursively adequate by
Theorem 30.1. However, Theorem 21.3 tells us that no open wff in a nice theory
T can capture ProvT . Contradiction. �

If Q is consistent, it is nice. Hence if Q is consistent, it isn’t recursively decid-
able. Likewise, if PA is consistent, it isn’t recursively decidable. And assuming
Church’s Thesis as well, Q and PA are therefore undecidable in the intuitive sense
(compare Section 6.2).

2In case you’ve forgotten: a function f : N → Σ is surjective iff the range of f is the whole
of Σ, i.e. for every y ∈ Σ there is some x ∈ N such that f(x) = y. See Section 2.3.
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30.5 The Entscheidungsproblem

Q is such a very simple theory we might quite reasonably have hoped that there
would be some mechanical way of telling which wffs are and which aren’t its
theorems. But we now know that there isn’t. And in a sense, you can blame
the underlying first-order logic. For, assuming Q’s consistency, we get Church’s
Theorem as an immediate corollary of Q’s recursive undecidability:

Theorem 30.4 The property of being a theorem of first-order logic
is recursively undecidable.

Proof Suppose first-order theoremhood is recursively decidable. In other words,
suppose that the property of numbering a logical theorem is μ-recursive. Let Q̂ be
the conjunction of the seven non-logical axioms of Q, and let ϕ be any sentence
of LA. By our supposition, there is therefore a μ-recursive function which decides
whether (Q̂ → ϕ) is a logical theorem. But (Q̂ → ϕ) is a logical theorem just if
ϕ is a Q-theorem. So our supposition implies that there is a μ-recursive function
which decides what’s a theorem of Q. But we’ve just shown there can be no such
function, given Q’s consistency. So the supposition must be false.3 �

The so-called Entscheidungsproblem, the problem of coming up with an effec-
tive method for deciding of an arbitrary sentence of first-order logic whether it
is valid or not, was famously posed by Hilbert and Ackermann in §11 of their
Grundzüge der theoretischen Logik (1928), the first recognizably modern logic
textbook. Our new Big Result says that there is in fact no recursive function
that takes (the g.n. of) a sentence and returns a 0/1, yes/no, verdict on theorem-
hood. So given Church’s Thesis, it follows that the problem of deciding first-order
theoremhood is not just recursively unsolvable but unsolvable, period.4

30.6 Incompleteness theorems again

Next, let’s very quickly revisit some earlier Gödelian incompleteness results
(which we established without any reference to a general theory of computable
functions) in order to link them to the versions which are found in many mod-
ern treatments (where computability and the theory of μ-recursive functions are
often discussed first).

3And now we see the very particular interest in finding a recursively adequate (and hence
undecidable) arithmetic like Q which has only a finite number of axioms. We couldn’t have
similarly shown the undecidability of first-order logic by invoking the undecidability of PA, for
example, because we couldn’t start ‘Let P be the conjunction of the axioms of PA’. PA has an
infinite number of axioms: remember all those instances of the induction schema! And indeed
– although we can’t prove it here – PA essentially has an infinite number of axioms: there is
no equivalent theory with the same theorems which only has a finite number of axioms (Kaye,
1991, p. 132).

4This was first shown, independently, by Church (1936a, b) and Turing (1936), by different
routes: see also Section 33.3.
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The formal analogue of the intuitive notion of a formalized theory is the idea
of a recursively axiomatized theory. However, when we proved Gödel’s results
about the limitations of formal arithmetics, we didn’t discuss recursively axiom-
atized theories of arithmetic but – rather more narrowly – primitively recursively
axiomatized theories. Does that matter?

Well, as we’ve already noted in Section 19.1, focusing on p.r. axiomatized
theories isn’t really a restriction either in practice or in principle. That’s because
recursively but not p.r. axiomatized theories will in practice be very peculiar
beasts (for example: to set things up so we have to check that a putative axiom
is an axiom by an open-ended ‘do until’ search is just not a natural way of
constructing an axiomatized theory). And a version of Craig’s Theorem tells us
that, in any case, an axiomatized theory T can in principle always be given a
p.r. re-axiomatization (i.e. there’s a p.r. axiomatized theory T ′ which will have
the same theorems as T , and so T ′ will be negation-complete iff T is). So the
First Theorem which proves the incompleteness of consistent, rich enough, p.r.
axiomatized theories thereby proves the incompleteness of any consistent, rich
enough, formalized theory. We could therefore very well leave matters as they
were, happily concentrating on p.r. axiomatized theories, without missing out
on anything very important.

But for the record, let’s now note that the key theorems we proved e.g. for
nice theories (i.e. consistent p.r. axiomatized theories which include Q) can be
extended – without appealing to Craig’s Theorem – to apply directly to the
wider class of nice+ theories, i.e. consistent recursively axiomatized theories
which include Q. For just one example, corresponding to Theorem 17.2 we have

Theorem 17.2* If T is a nice+ theory then there is an LA-
sentence ϕ of Goldbach type such that T � ϕ and (if T is also
ω-consistent) T � ¬ϕ.

Proof sketch We essentially replicate the arguments for the original theorem.
The crucial point of difference will be that, if we are only told that T is recur-
sively axiomatized (as opposed to p.r. axiomatized), then we can only show that
the corresponding relation GdlT is μ-recursive (as opposed to being primitive
recursive). That’s because GdlT is defined in terms of Prf T which is in turn
defined in terms of the likes of AxiomT , and we are now only given that such
basic properties are μ-recursive. But no matter. T includes the axioms of Q, so
T is recursively adequate by Theorem 30.1, so T can still capture GdlT . By the
proof of Theorem 30.1, a Σ1 wff suffices. And the rest of the argument runs on
exactly the same lines as before. �

In the same way, we can go on to show that e.g. the Diagonalization Lemma
and the Gödel-Rosser Theorem which we proved for nice theories apply equally to
nice+ ones. And, of course, since the requirement that a nice+ theory includes
Q is just there to ensure we are dealing with a recursively adequate theory,
our extended theorems can equally well be stated as applying to all consistent,
recursively axiomatized, recursively adequate theories. But we won’t pause to
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spell out any further all the obvious variant ways of reworking our old formal
theorems by replacing talk of p.r. axiomatization by recursive axiomatization,
and talk of p.r. adequacy by recursive adequacy. It isn’t a very illuminating task,
and it doesn’t lead to any interesting new discoveries.

30.7 Negation-complete theories are recursively decidable

(a) Part (iii) of Theorem 3.1 tells us that if T is an axiomatized formal theory
then the set of theorems of T is effectively enumerable. And from that we inferred
Theorem 3.2: any consistent, axiomatized, negation-complete formal theory T
is decidable. These results involved the informal ideas of an axiomatized theory,
of effective enumerability and of decidability. We can now prove counterpart
theorems involving the ideas of a recursively axiomatized theory, and of recursive
enumerability and recursive decidability.

The counterpart of Theorem 3.1 is evidently

Theorem 30.5 If T is a recursively axiomatized formal theory
then the set of theorems of T is r.e.

So we’ll now establish this, and then go on to deduce the formal counterpart of
Theorem 3.2, i.e.

Theorem 30.6 Any consistent, recursively axiomatized, negation-
complete formal theory T is recursively decidable.

Proof for Theorem 30.5 We could just take Theorem 3.1 and then use Church’s
Thesis in labour-saving mode to pass from the informal theorem to the formal
one. There is, however, some interest in showing how to do things the harder
way (though you are allowed to skip!).

As we said, since T is recursively axiomatized (so the likes of AxiomT are μ-
recursive), there’s a μ-recursive relation Prf T such that Prf T (m,n) holds when
m is the super g.n. of a T -proof of the wff with g.n. n. And we can now give the
following definition:5

code(0) = μz[(∃p < z)(∃w < z)(z = 2p · 3w ∧ Prf T (p, w)]
code(Sn) = μz[(∃p < z)(∃w < z)(z > code(n) ∧

z = 2p · 3w ∧ Prf T (p, w)]

The idea here is that, as we run through successive values of n, code(n) runs
through all the values of z (= 2p · 3w) which code up pairs of numbers p, w such

5For brevity, we will apply the minimization operator to a property rather than to its
characteristic function – see Section 29.1 (c). We’ll also assume without significant loss of
generality that T has an unlimited number of theorems: it’s left as a boring exercise to cover
the exceptional case where T is a hobbled theory with a non-standard logic and only a finite
number of consequences.
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that Prf (p, w). Assuming T has an infinite number of theorems, the minimiza-
tion operator in the clause defining code(Sn) always returns a value. So code is
properly defined by recursion from μ-recursive functions and is μ-recursive.

But now we use the familiar exp function from Section 11.8 to extract the
values of w from the code numbers z, i.e. to extract the Gödel numbers of
theorems. So put

enum(n) = exp(code(n), 1)

and enum(n), as we want, is μ-recursive, and it enumerates the Gödel numbers
of theorems. �

Proof for Theorem 30.6 Again, we could use Church’s Thesis in labour-saving
mode to pass from our old informal Theorem 3.2 to its formal counterpart. But
again we’ll do things the harder way (and by all means skip).

Assume T is consistent, recursively axiomatized, and negation complete. We’ve
just established that there is a μ-recursive function enum which enumerates the
Gödel numbers of T -theorems. Now recall that we can define a p.r. function

neg(n) = �¬� � n

Then if n numbers a wff ϕ, neg(n) numbers its negation ¬ϕ. Hence

if ϕ is a theorem, then for some j, enum(j) = �ϕ�;
if ¬ϕ is a theorem, then for some j, enum(j) = �¬ϕ� = neg(�ϕ�).

To determine whether the sentence ϕ is a theorem, we just start evaluating
enum(0), enum(1), enum(2), . . . , to see which of the values �ϕ�, neg(�ϕ�) turns
up first on the list of Gödel numbers of theorems. Since T is negation complete
and consistent, one and only one of those values will appear on the list. In
fact, it will appear at step μj[enum(j) = �ϕ� ∨ enum(j) = neg(�ϕ�)] in the
enumeration. And ϕ is a theorem just if �ϕ� (rather than neg(�ϕ�)) is the value
which is listed at that step.

Which means we can put

thm(m) = 0 if enum(μj[enum(j) = m ∨ enum(j) = neg(m)]) = m
thm(m) = 1 otherwise

And then thm is evidently the characteristic function of the property of number-
ing a T -theorem. But thm is easily seen to be μ-recursive (compare Section 11.7
(E)): so we are done. �

(b) Before moving on, let’s note an important but simple corollary of Theo-
rem 30.5:

Theorem 30.7 There are recursively enumerable sets which are
not recursively decidable.

Proof The Gödel numbers of the theorems of any recursively axiomatized the-
ory are r.e.; so the Gödel numbers of PA-theorems in particular are r.e. But
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Theorem 30.3 tells us that PA is recursively undecidable. So the set of Gödel
numbers of PA theorems is r.e. but not recursively decidable. �

30.8 Recursively adequate theories are not recursively

decidable

We are now, as promised, in a position to revisit the main argument of Chapter 6
and construct a formal counterpart for it. So recall: we took Theorem 3.2, the
claim that any consistent, axiomatized, negation-complete formal theory T is
decidable. We put that together with Theorem 6.1, which says that no consistent,
sufficiently strong, axiomatized formal theory of arithmetic is decidable. We then
deduced Theorem 6.2: a consistent, sufficiently strong, axiomatized formal theory
of arithmetic cannot be negation complete.

We have just proved the formal counterpart of Theorem 3.2, i.e.

Theorem 30.6 Any consistent, recursively axiomatized, negation-
complete formal theory T is recursively decidable.

And we can easily establish the formal counterpart of Theorem 6.1, i.e.

Theorem 30.8 If T is a consistent, recursively axiomatized, re-
cursively adequate theory, then it isn’t recursively decidable.

Proof sketch The argument is exactly parallel to the argument for our slightly
less general Theorem 30.3 earlier in this chapter, which said that nice theories
are recursively undecidable. The proof of that theorem invoked Theorem 21.3:
no open wff in a nice theory T can capture the corresponding numerical property
ProvT . So to prove our new theorem, we simply need to generalize the argument
underlying Theorem 21.3 in order to prove: no open wff in a consistent, recur-
sively axiomatized, recursively adequate theory T can capture ProvT . (It is a
useful reality check to make sure you understand how to do this, and hence how
to complete the proof.) �

Now just put these two theorems together, and we can derive the formal coun-
terpart of our old informal Theorem 6.2:

Theorem 30.9 A consistent, recursively adequate, recursively ax-
iomatized theory of arithmetic cannot be negation complete.

Which is, of course, just a version of the Gödel-Rosser Theorem minus any
information about what the undecidable sentences look like.

30.9 What’s next?

Finding a formal counterpart to our informal incompleteness argument of Chap-
ter 6 was straightforward, given what had gone before. So what about giving a
formal counterpart of the argument for incompleteness in Chapter 5?
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That argument depended on establishing Theorem 5.4: the set of truths of
a sufficiently expressive arithmetical language L is not effectively enumerable.
Since we now know that Q is recursively adequate, we certainly know that Q’s
language LA can express any recursively decidable two-place numerical relation,
and hence (by Church’s Thesis) is ‘sufficiently expressive’. Let True Basic Arith-
metic be the set of truths of LA. Then one formal counterpart to the informal
Theorem 5.4 is as follows:

Theorem 30.10 TA, True Basic Arithmetic, is not r.e.

How do we prove this? Well, there are two easy arguments, using materials
already to hand:

Proof using Church’s Thesis Just take Theorem 5.4 and appeal to Church’s
Thesis in labour-saving mode. �

Proof sketch using Gödel’s Theorem and Craig’s Theorem By the corollary of
Craig’s Theorem, Theorem 19.4, every effectively enumerable set of wffs can be
p.r. axiomatized. So an r.e. set of wffs, being effectively enumerable, can be p.r.
axiomatized.6 Hence if TA were r.e. it could be p.r. axiomatized by some sound
theory T . But then the semantic version of the incompleteness theorem would
apply to T , and there would after all be truths in TA that are independent of T .
Contradiction. �

But, of course, the second proof using the incompleteness theorem is not what
we need if we plan to run a counterpart of the Chapter 5 argument, and use
Theorem 30.10 itself to prove incompleteness! And suppose also that we want
a fully worked through proof that doesn’t appeal to Church’s Thesis as a short
cut. Well, looking at Chapter 5 again for a lead, we see that the proof there
depended on various intuitive claims about computer programs. Hence, if we are
going to sharpen up that line of argument and make it rigorous, we’ll have to
give some theoretical treatment of a general-purpose programming framework.

So let’s next make a start on doing this. In the last chapters of this book,
we’ll aim to say just enough about Alan Turing’s classic analysis of algorith-
mic computation to throw a little more light on incompleteness phenomena and
also to give crucial added support to Church’s Thesis which connects the for-
mal idea of μ-recursiveness with the informal ideas of computability/effective
enumerability/decidability.

6As you’d expect, that formal claim can in fact be proved without going via the informal
notion of effective enumerability.
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In this chapter, we introduce Turing’s classic analysis of algorithmic computabil-
ity.1 And then – in the next chapter – we will establish the crucial result that
the Turing-computable total functions are exactly the μ-recursive functions. This
result is fascinating in its own right; it is hugely important historically; and it
enables us later to establish some further results about recursiveness and incom-
pleteness in a particularly neat way. So let’s dive in without more ado.

31.1 The basic conception

Think of executing an algorithmic computation ‘by hand’, using pen and paper.
We follow strict rules for writing down symbols in various patterns. To keep
things tidy, let’s write the symbols neatly one-by-one in the squares of some
suitable square-ruled paper. Eventually – assuming that we don’t find ourselves
carrying on generating output for ever – the computation process stops and the
result of the computation is left written down in some block of squares on the
paper.

Now, Turing suggests, using a two-dimensional grid for writing down the com-
putation is not of the essence. Imagine cutting up the paper into horizontal strips
a square deep, and pasting these together into one long tape. We could use that
as an equivalent workspace.

Using a rich repertoire of symbols is not of the essence either. Suppose some
computational system uses 27 symbols. Number these off using a five-binary-
digit code (so the 14th symbol, for example, gets the code ‘01110’). Then divide
each of the original squares on our workspace tape into a row of 5 small cells.
Instead of writing one of the original symbols into one of the original big squares,
we could just as well write its binary code digit-by-digit into a block of 5 cells.

So – admittedly at some cost in user-friendliness – we can think of our original
hand computation as essentially equivalent to following an algorithm (a set of
instructions) for doing a computation by writing down or erasing binary digits
one-at-a-time in the cells on a linear tape, as in our diagram overleaf. The arrow-
head indicates the position of the scanned cell, i.e. the one we are examining as
we are about to apply the next computational instruction. (We’ll assume, by the
way, that we can paste on more blank workspace as and when we need it – so,
in effect, the tape is unlimited in length in both directions).

1See Turing (1936), which is handily reprinted with a very useful long introduction in
Copeland (2004).
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0 1 0 0 1 1 1 1 1 0

�

So much for our workspace. Let’s now consider the instructions which gov-
ern our computation when broken down into minimal steps. We will list these
instructions as labelled or numbered lines, where each line tells us what to do
depending on the contents of the scanned cell. So we can think of a single line
from our algorithm (our set of instructions) as having the form

q : if the scanned cell contains ‘0’, do action A0, then go to q0;
if the scanned cell contains ‘1’, do action A1, then go to q1;
if the scanned cell is blank, do action AB , then go to qB .

where q and the qj are line-numbers or labels. (That’s the general pattern: for
a particular line-number q, some of the conditional clauses could be absent.)

It is convenient to distinguish two special labels, 1 and 0: the first will be
used to mark the starting instruction of an algorithm, while the second is re-
ally a pseudo-label and ‘go to 0’ will actually mean ‘stop the execution of the
algorithm’.

What are the possible actions Aj here? There are two basic types. We can
write in the scanned cell – i.e. over-write any contents in the scanned cell with
‘0’ or ‘1’, or ‘write a blank’ (i.e. erase the current contents). Or else we can move
along the tape so that a new cell becomes the scanned cell. We’ll take it that
any moving is to be done step-wise, one cell at a time. So more complex actions
– like e.g. copying the contents of the scanned cell into the next four cells to the
right – are to be performed as a sequence of basic actions.

There are therefore five possible minimal actions A, which we can indicate as
follows:

0: write a ‘0’ in the scanned cell (overwriting any scanned content);
1: write a ‘1’;
B: write a blank;
L: make the next cell to the left the scanned cell;
R: make the next cell to the right the scanned cell.

So let’s now say, as a first shot, that a Turing program is just a collection
of instructions of the very simple three-clause form we illustrated, which tell us
which action to perform and which line to jump to next.

In executing such a program, we typically start with some number or numbers
written as input on the work-tape (written in binary digits, of course). And we
begin by following the relevant instruction given at the program line labelled
1. We then follow the further instructions we encounter as we are told to jump
from line to line. The execution of a set of instructions can then stop for two
reasons: we can reach the explicit ‘go to 0’ instruction to stop; or we can run out
of lines to tell us what to do next. In the first case, we’ll say that the execution
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halts gracefully or simply halts; in the second case, we’ll say that it freezes. If
and when the execution halts gracefully, we look at what’s left on the tape –
and in particular at the block of binary digits containing the scanned cell – and
those digits give the numerical output of our calculation.

Hence we can say, as a first shot, that a one-place total function f is computed
by a Turing program Π if, given n on the tape as input, executing the program
eventually yields f(n) as output.

The idea of a Turing computation, then, is extraordinarily simple – it’s basi-
cally a matter of running a program whose sole programming structure is the ‘go
to line q’ instruction. In Section 31.3, we’ll give some mini-examples of Turing
programs in operation. But first we really need to refine the ideas we’ve just
sketched. By the end of the next section, then, we will have introduced some
sharper terminology and also cleaned up some details. Along the way, there’s a
number of fairly arbitrary and entirely non-significant choices to be made. We
won’t comment on these, but don’t be surprised to find other choices made in
other treatments: the basic conception, however, always essentially the same.
(Suggestion: it might help to read the next two sections in parallel, using theory
and practice to illuminate each other.)

31.2 Turing computation defined more carefully

(i) I-quadruples We define an instruction-quadruple (or ‘i-quadruple’ for short)
to be an ordered quadruple of the form

〈q1, S,A, q2〉

whose elements are as follows:

1. q1 is a numeral other than ‘0’; we’ll refer to this first element of an i-
quadruple as its label – to emphasize the point that the numerals here
aren’t doing arithmetical work. An i-quadruple labelled ‘1’ is an initial
quadruple.

2. S – representing the contents of the scanned cell – is one of the symbols
‘0’, ‘1’, ‘B’. (‘B’, of course, represents a blank cell.)

3. A is one of the symbols ‘0’, ‘1’, ‘B’, ‘L’, ‘R’: these represent the five
possible minimal actions.

4. q2 is a numeral, pointing to the next instructions to execute.

An i-quadruple is to be read as giving a labelled, conditional, two-part instruction
as follows:

q1: if the scanned cell contains S, do the action indicated by A, then go to
the instructions with label q2 – unless q2 is ‘0’, in which case halt the
execution of the program.
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So we can now compress our verbose tri-partite instruction line

q: if the scanned cell contains ‘0’, do action A0, then go to q0;
if the scanned cell contains ‘1’, do action A1, then go to q1;
if the scanned cell is blank, do action AB , then go to qB

into three i-quadruples which share the same initial label, thus:

〈q, 0, A0, q0〉, 〈q, 1, A1, q1〉, 〈q,B,AB , qB〉.

(ii) Turing programs Our first shot at characterizing a Turing program there-
fore comes to this: it is a set of i-quadruples. But we plainly don’t want inconsis-
tent sets which contain i-quadruples with the same label which issue inconsistent
instructions. So let’s say more formally:

A set Π of i-quadruples is consistent if there’s no pair of i-quadruples
〈q1, S,A, q2〉, 〈q1, S,A′, q′2〉 in Π such that A �= A′ or q2 �= q′2.

Which leads to the following sharpened official definition:

A Turing program is a finite consistent set of i-quadruples.2

(iii) Executing Turing programs We execute a Turing program Π as follows:

1. We start with the work-tape in some initial configuration – i.e. with digits
occupying a finite number of cells, and with some particular cell being
scanned. Suppose the content of that initial scanned cell is S.

2. We then look for some appropriate initial quadruple to execute. That
is to say, we look for an i-quadruple in Π of the form 〈1, S,A, q2〉: by
consistency there is at most one distinct such i-quadruple. We perform
action A and jump to the instructions with label q2.

3. We next look for an i-quadruple in Π of the form 〈q2, S′, A′, q3〉, where
S′ is the content of the currently scanned cell. We perform action A′ and
jump to the instructions with label q3. And we keep on going . . .

4. . . . unless and until the execution stops because either (a) we are explicitly
told to halt – i.e. we encounter a ‘jump to 0’ instruction – or (b) the
program freezes because there is no relevant i-quadruple for us to apply
next.

We will be particularly interested in cases where we run a program starting and
finishing in what we’ll call standard modes. To explain:

2Each i-quadruple includes just one action instruction A, either a symbol-writing instruc-
tion from {0, 1, B}, or a head-moving instruction from {L,R}. An obviously equivalent and
perhaps neater alternative is to define a program as a set of i-quintuples, where each i-quintuple
includes both a symbol-writing instruction and a head-moving instruction.
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5. We start with the work-tape in a standard initial configuration. In other
words, the tape is blank except for containing as input one or more blocks
of binary digits, with the blocks separated by single blank cells: and the
initial scanned cell is the left-most cell of the left-most block.

6. A run of the program is said to halt standardly if (a) it reaches a ‘jump to
0’ instruction (so the program halts gracefully, rather than just freezes),
and (b) it leaves the work-tape blank apart from a single block of binary
digits, with (c) the scanned cell being the left-most cell of this block.

Note that if a program halts standardly, it finishes in a state which can serve
as a standard initial configuration for other suitable programs. So we can chain
together program-modules that start and stop in standard modes to form longer
programs.

(iv) Turing-computable functions Suppose that f : N → N, i.e. f is a one-place
total numerical function. Then we’ll say

The Turing program Π computes the function f just if, for all n,
when Π is executed starting with the tape in a standard initial
configuration with n in binary digits on the tape (and nothing
else), then the execution halts standardly with the output f(n) in
binary digits on the tape.

We can generalize to cover many-place functions. For example, suppose that
g: N

2 → N, i.e. g is a two-place function, which is defined for pairs of numbers.
Then,

The Turing program Π computes the function g just if, for all
m,n, when Π is executed starting with the tape in a standard
initial configuration with m in binary digits on the tape, followed
by a blank cell, followed by n in binary digits (and nothing else),
then the execution halts standardly with the output f(n) in binary
digits on the tape.

Finally, we say

A total function is Turing-computable if there is a Turing program
that computes it.3

Quite uncontroversially, every Turing-computable function is effectively com-
putable. The claim that the converse is also true, i.e. that every effectively com-
putable total function is Turing-computable is Turing’s Thesis, which we first
met in Section 2.2.

3There’s a very natural generalization of this definition, where we say that a partial function
f is Turing-computable if there is a Turing program which computes the right value for input
n whenever f(n) is defined and which doesn’t halt otherwise. But as we said, we’re not going
to discuss partial computable functions here.
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31.3 Some simple examples

In this section we’ll work through three simple example Turing programs, which
ought to be enough to illustrate at least the basic ideas. But do feel free to skim
through very lightly if you have no taste for this kind of thing.

(a) The successor function We’ll start with a program that computes the suc-
cessor function. So suppose the initial configuration of the tape is as follows

1 0 1 1 1

�

Then the program needs to deliver the result ‘11000’. The program task can be
broken down into three stages:

Stage A We need to make the scanned cell the last cell in the initial block of
digits. Executing the following i-quadruples does the trick:

〈1, 0, R, 1〉
〈1, 1, R, 1〉
〈1, B, L, 2〉

These initial instructions move the scanned cell to the right until we overshoot
and hit the blank at the end of the initial block of digits; then we shift back one
cell, and look for the instructions with label ‘2’:

1 0 1 1 1

�

Stage B Now for the core computation of the successor function. Adding one
involves putting a ‘1’ in the scanned final cell if it currently contains ‘0’; or else
putting a ‘0’ in the scanned cell if it currently contains ‘1’, and ‘carrying one’ –
i.e. moving the scanned cell one left and adding one again.

The following i-quadruples program for that little routine, and then tell us to
look for instructions labelled ‘4’ to finish up:

〈2, 0, 1, 4〉
〈2, 1, 0, 3〉
〈3, 0, L, 2〉
〈2, B, 1, 4〉

Note, the fourth quadruple is to deal with the case where we keep on ‘carrying 1’
until we hit the blank at the front of the initial block of digits. Executing these
instructions gets the tape in our example into the following state:
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1 1 0 0 0

�

And we now jump to execute the appropriate instruction with label ‘4’.

Stage C Finishing up. We need to ensure that the scanned cell returns to be at
the front of the block, so that the computation halts in standard configuration.
Analogously to Stage A, we can write:

〈4, 0, L, 4〉
〈4, 1, L, 4〉
〈4, B,R, 0〉

Following these instructions, the scanned cell moves leftwards until it overshoots
the block and then moves it right one cell, and finally the execution halts grace-
fully:

1 1 0 0 0

�

The scanned cell is now the first in the block of digits. There is nothing else
on the tape. So we have halted standardly. Our i-quadruples together give us a
program which computes the successor function.

(b) Another program for the successor function Note that our successor pro-
gram, applied to ‘111’, changes those digits to ‘000’, then prefixes a ‘1’ to give
the correct output ‘1000’. So in this case, the output block of digits starts one
cell to the left of the position of the original input block. We’ll now – for future
use (in Section 32.2) – describe a variant of the successor program, which this
time always neatly yields an output block of digits starting in exactly the same
cell as the original input block.

What we need to do, clearly, is to add a routine at the beginning of the
program which, if but only if it detects an unbroken block of ‘1’s, shifts that
block one cell to the right (by adding a ‘1’ at the end, and deleting a ‘1’ at
the beginning). The following will do the trick, and also – like Stage A of our
previous program – it moves the current cell to the end of the block:

〈1, 0, R, 12〉
〈1, 1, R, 1〉
〈1, B, 1, 10〉
〈10, 1, L, 10〉
〈10, B,R, 11〉
〈11, 1, B, 11〉
〈11, B,R, 12〉
〈12, 0, R, 12〉
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〈12, 1, R, 12〉
〈12, B, L, 2〉

The initial instructions start us off scanning through the input block to the right.
If we encounter a ‘0’ then we continue by following the instructions labelled ‘12’
which take the scanned cell to the end of the block. If all we meet are ‘1’s then we
put another ‘1’ at the end of the block, and then follow the instructions labelled
in the tens, which first take us back to the beginning of the block, then get us to
delete the initial ‘1’ and move one cell right, and then we follow the instructions
labelled ‘12’ to get us to the end of the block

You can check that running through the instructions labelled ‘1’, ‘10’ and ‘11’
changes the state of the tape from the first to the second state illustrated next:

1 1 1 1 1

�

1 1 1 1 1

�

We then just follow the instructions labelled ‘12’, so we end up scanning the cell
at the end of the block (and start looking for instructions labelled ‘2’).

We can now add on the same Stage B i-quadruples from our previous successor
program to perform the task of adding one, and the same Stage C i-quadruples
to get the scanned cell back to the beginning of the resulting block. Putting all
those together gives us the desired program.

That’s a lot of effort! — but then, programming at the level of ‘machine code’
(which is in effect what we are doing) is hard work. That’s why, of course, we
ordinarily use high-level programming languages and rely on compilers that work
behind the scenes to translate our perspicuous and manageable programs into
the necessary instructions for manipulating binary bits.

(c) A copying program Our remaining example is a simple program which takes
a block of input digits, and produces as output the same block (in the same
place), followed by a blank, followed by a duplicate of the original block.

We obviously need to keep track of where we are in the copying process. We
can do this by successively deleting a digit in the original block, going to the
new block, writing a copy of the deleted digit, returning to the ‘hole’ we made
to mark our place, replacing the deleted digit, and then moving on to copy the
next digit. A program for doing all this can be broken down into the following
four sub-programs:

1. Choosing what to do Examine the scanned cell. If it contains a ‘0’, delete
it, and go to sub-program (2). If it contains a ‘1’, delete it, and go to sub-
program (3). If it is blank, then we’ve got to the end of the digits in the
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original block, so we just need to call sub-program (4) to ensure that we
halt standardly.

2. Copying a ‘0’ This routine ‘remembers’ that we’ve just deleted a ‘0’.
We scan on to the right until we find the second blank – which marks
the end of our duplicate block (if and when it exists) – and write a ‘0’.
Then we scan back leftwards until we again find the second blank (the
blank created when we deleted the ‘0’). Rewrite a ‘0’ there, which finishes
copying that digit. So now move on to scan the next cell to the right, and
return to sub-program (1).

3. Copying a ‘1’ Just like sub-program (2), except that this routine ‘re-
members’ that we’ve just deleted a ‘1’.

4. Finish up Move the scanned cell back to the beginning of the original
block.

To illustrate, suppose the current state of the tape is like this:

1 0 0 1 1 1 0

�

Sub-program (1) instructs us to delete the currently scanned digit and start
executing sub-program (2):

1 0 1 1 1 0

�

Sub-program (2) then takes us through the following stages: (a) we scan to the
right to find the end of the second block), (b) we write ‘0’ there, (c) we scan
back to the left to find the ‘hole’ in the first block that we just created, (d) we
rewrite ‘0’ there, (e) we move one cell right. So these five stages produce these
successive states of the tape:

1 0 1 1 1 0

�

1 0 1 1 1 0 0

�

1 0 1 1 1 0 0

�
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1 0 0 1 1 1 0 0

�

1 0 0 1 1 1 0 0

�

And we’ve thereby copied another digit. We keep on going, until we run out of
digits in the first block to copy – and then run a ‘tidying up’ module (4).

Here – just for the fun of it, if that’s quite the right word – is how to code up
our outlined program strategy into i-quadruples (we’ve marked the beginnings
of the four sub-programs):

〈1, 0, B, 10〉 (1)
〈1, 1, B, 20〉
〈1, B, L, 30〉

〈10, B,R, 11〉 (2)
〈11, 0, R, 11〉
〈11, 1, R, 11〉
〈11, B,R, 12〉
〈12, 0, R, 12〉
〈12, 1, R, 12〉
〈12, B, 0, 13〉
〈13, 0, L, 13〉
〈13, 1, L, 13〉
〈13, B, L, 14〉
〈14, 0, L, 14〉
〈14, 1, L, 14〉
〈14, B, 0, 15〉
〈15, 0, R, 1〉

〈20, B,R, 21〉 (3)
〈21, 0, R, 21〉
〈21, 1, R, 21〉
〈21, B,R, 22〉
〈22, 0, R, 22〉
〈22, 1, R, 22〉
〈22, B, 1, 23〉
〈23, 0, L, 23〉
〈23, 1, L, 23〉
〈23, B, L, 24〉
〈24, 0, L, 24〉
〈24, 1, L, 24〉
〈24, B, 1, 25〉
〈25, 1, R, 1〉

〈30, 0, L, 30〉 (4)
〈30, 1, L, 30〉
〈30, B,R, 0〉

Which all just reinforces the point that writing Turing programs for perform-
ing even simple tasks very quickly becomes very painful. So we won’t give any
more detailed examples.4

But our concern here isn’t really with practical computing but rather with
Turing’s analysis of what a computation consists in when broken down to its
very smallest steps. If he is right that we can treat computations as ultimately
symbol manipulation on a ‘tape’, looking at one cell at a time, etc., then any
genuinely algorithmic step-by-step computation can be replicated using a Turing
program. More on this anon.

4Masochists can try their hands at programming one of the many on-line Turing machine
simulators which are available (though be careful to read the fine details of how programs are
to be specified). However, this is a game that quickly palls!
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31.4 ‘Turing machines’ and their ‘states’

We have so far imagined a human ‘computer’ executing a Turing program ‘by
hand’, writing and erasing symbols from a paper tape, mechanically following
the program’s instructions. Evidently, a machine could do the same job. And
any mechanism for running a Turing program might naturally be referred to as
a ‘Turing machine’ (at least if we pretend that its ‘tape’ is inexhaustible).

But the theory of Turing computations just doesn’t care about the hardware
implementation. What matters about a Turing machine is always its program.
Hence one standard practice is to think of a Turing machine as a type of idealized
machine individuated by the Turing program it is running (i.e. same program,
same Turing machine: different program, different Turing machine). Another,
equally standard, practice is simply to identify a Turing machine with its pro-
gram (it is common enough to read ‘A Turing Machine is a set of quadruples
such that . . . ’). Nothing at all hangs on this. When we occasionally talk of Tur-
ing machines we’ll in fact be thinking of them in the first way. But mostly – for
clarity’s sake – we’ll carry on talking about programs rather than machines.

A final remark. Suppose that a Turing machine (in the first sense) is in the
middle of executing a program. It is about to execute some i-quadruple in its
program, while scanning a particular cell on a tape which has some configuration
of cells filled with digits. We can think of this overall state-of-play as character-
ized by the ‘internal’ state of the machine (it is about to execute a quadruple
with label q) combined with the ‘external’ state of the tape (the configuration
of the tape, with one cell picked out as the ‘current’ cell). That’s why q-labels
are standardly said to identify (internal) states of the Turing machine.
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We are not going to write any more programs to show, case by case, that this or
that particular function is Turing-computable, not just because it gets painfully
tedious, but because we can now fairly easily establish that every μ-recursive
function is Turing-computable and, conversely, every Turing-computable func-
tion is μ-recursive.1 This equivalence between our two different characterizations
of computable functions is of key importance, and we’ll be seeing its significance
in the remaining chapters.

32.1 μ-Recursiveness entails Turing computability

Every μ-recursive function can be evaluated ‘by hand’, using pen and paper, pre-
scinding from issues about the size of the computation. But we have tried to build
into the idea of a Turing computation the essentials of any hand-computation.
So we should certainly hope and expect to be able to prove:

Theorem 32.1 Every μ-recursive function is Turing-computable.

Proof sketch We’ll say that a Turing program is dextral (i.e. ‘right-handed’) if

i. in executing the program – starting by scanning the leftmost of some
block(s) of digits – we never have to write in any cell to the left of the
initial scanned cell (or scan any cell more than one to the left of that
initial cell); and

ii. if and when the program halts standardly, the final scanned cell is the
same cell as the initial scanned cell (in other words, the input block(s) of
digits at the beginning of a computation and the final output block start
in the same cell).

The key point about a dextral program, then, is that we can run it while storing
other data safely on a leftwards portion of the tape, because the program doesn’t
touch that portion. So complicated computations can proceed by running a series
of dextral sub-programs using leftwards portions of the tape to preserve data
between sub-programs.

If a function is computable by a dextral Turing program, we’ll say it is dTuring-
computable. Suppose now that the following are all true:

1If you happen to be browsing through, not having read the preceding few chapters, or if
your attention flickered earlier, I’d better repeat: wherever you see bare talk of a ‘function’ it
means a total function. We are not going to be talking about partial computable functions.
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1. The initial functions are dTuring-computable.

2. If the total functions g and h are dTuring-computable, then so is a func-
tion f defined by composition from g and h.

3. If the total functions g and h are dTuring-computable, then so is a func-
tion f defined by primitive recursion from g and h.

4. If the recursive function g is dTuring-computable, so is the function f
defined from g by regular minimization.

Then take any μ-recursive function f . This can be defined by some chain of defi-
nitions by composition and/or primitive recursion and/or regular minimization,
beginning with initial functions. So as we follow through f ’s chain of definitions,
we start with initial functions which are dTuring-computable – by (1) – and
each successive definitional move takes us from dTuring-computable to dTuring-
computable functions – by (2), (3), and (4). So f must be dTuring-computable.
So a fortiori, the μ-recursive function f must be plain Turing-computable.

Hence to establish Theorem 32.1, it is enough to establish (1) to (4). But each
of those is in fact more or less easy to prove. �

If this overall proof strategy seems familiar, that’s because we used the same
proof idea e.g. in Chapter 13 when showing that Q is p.r. adequate. The details
needed to fill in the proof outline are given in the next section: however, although
those details are quite pretty, they are technicalities without much conceptual
interest, so by all means skip them.

32.2 μ-Recursiveness entails Turing computability: the

details

For enthusiasts, we’ll now explain how to fill in the details of our proof-sketch
for Theorem 32.1 by establishing points (1) to (4).

Proof sketch for (1) We proved in Section 31.3 (b) that the successor function
is not just Turing-computable but is dTuring-computable. It’s trivial that the
zero function Z(x) is computable by a dextral program – just write a program
that takes any block of digits, erases it from the right, and leaves a single ‘0’ on
the tape. It’s also easily seen that the identity functions are dTuring-computable
by erasing and moving blocks of digits. �

Proof sketch for (2) For simplicity, we’ll just consider the case of monadic
functions. More complex cases can be dealt with using the same basic idea plus
a few tricks.

Suppose the program Πg dTuring computes g, and the program Πh dTuring
computes h. Then to dTuring compute the composite function f(n) = h(g(n)),
we can just run Πg on the input n to give g(n), and then run Πh on that output
to calculate h(g(n)).
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How exactly do we chain together two programs Πg and Πh into one composite
program? We need to do two things. We first ensure that there is no clash of labels
by changing the q-numbers in the i-quadruples in Πh (doing it systematically, of
course, to preserve the all-important cross-references between quadruples). And
then we must just ensure that – rather than using the ‘halt’ label – Πg ends by
telling us to process the first instruction in our re-labelled Πh. �

Proof sketch for (3) We’ll suppose f is defined by the recursion clauses

f(x, 0) = g(x)
f(x, Sy) = h(x, y, f(x, y))

where both g and h are dTuring computable total functions. We need to show
that f is dTuring computable. (Simplifying the discussion for the case where the
x-variable drops out of the picture, or generalizing it to cover the case where we
have an array of variables �x, is straightforward.)

It is convenient to introduce an abbreviated way of representing the contents
of a tape. We’ll use n to indicate a block of cells containing the binary digits for
n, we’ll use ‘B’ to indicate a single blank cell, and then e.g. m B n represents
a tape which is blank except for containing m in binary followed by a blank
followed by n. So, what we need to describe is a dextral program that takes
m B n as input and delivers f(m,n) as output. Here’s a sketch:

1. Given the input m B n , use a combination of a copying program and a
program for subtracting one to get the tape eventually to read as follows:

m B n B m B n− 1 B m B n− 2 B . . .

. . .B m B 2 B m B 1 B m B 0 B m

2. Now move to scan the first cell of the last block of digits m . Run our
program for evaluating g starting in that position. Since this program is
by hypothesis dextral, it doesn’t visit the portion of the tape any further
left than the blank before that last block. So it is just as if the part of the
tape to the left of the last block is completely empty. Hence the program
for evaluating g will run normally on the input m, and it will calculate
g(m), i.e. f(m, 0). So after running g the tape will end up reading

m B n B m B n− 1 B . . . B m B 1 B m B 0 B f(m, 0)

3. Scan the first cell of the concluding three blocks m B 0 B f(m, 0) . Run
our program for evaluating h starting in that position. Since this program
too is by hypothesis dextral, it ignores the leftwards contents of the tape
and the program will run normally on the three inputs m, 0, f(m, 0) to
calculate h(m, 0, f(m, 0)) – i.e. calculate f(m, 1). So when we run h this
first time, the tape will end up reading

m B n B m B n− 1 B . . . B m B 1 B f(m, 1)
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Now repeat the same operation. So next, scan the first cell of the last three
blocks m B 1 B f(m, 1) ). Run the program for evaluating h again, and
the tape will end up containing the shorter row of blocks

m B n B m B n− 1 B . . . B f(m, 2)

Keep on going, each time running h using the last three blocks of digits
as input, and eventually we will – as desired – be left with just

f(m,n)

on the tape.

So we’ve outlined the shape of a program that gives a dTuring computation of
the recursively defined f . �

Proof sketch for (4) It remains to show that if the function g(x, y) is dTuring-
computable, then so is the function defined by f(x) = μy[g(x, y) = 0], assuming
g is regular. Hence we want to specify a program that takes m as input and
delivers the output μy[g(m, y) = 0] .

Our task is to run the program g with successive inputs of the form m B n ,
starting with n = 0 and incrementing n by one on each cycle; and we keep on
going until g(m,n) gives the output ‘0’, when we return the value of n. But note,
we need to do this while ‘remembering’ at each stage the current values of m
and n. So here’s a four-stage strategy for doing the job. (Again, simplifying to
cover the case where the x-variable drops out of the picture, or generalizing to
cover the case where we have an array of variables �x, is straightforward.)

1. We are given m on the tape. Use a modified copier to produce

0 B m B m B 0

starting at the same point on the tape as the original block. This tape
input is now to be fed into Stage (2).

2. Given any input of the kind

n B m B m B n

move to scan the first occupied cell of the second block m . Now run
the dextral program for g from that starting point, i.e. on the input
m B n . By our characterization of Turing programs for functions, g’s
halts standardly. See whether the output result is 0. If it isn’t, go to Stage
(3). If it is – and eventually it will be, since g is regular – we finish up
with Stage (4).

3. The state of the tape is now

n B m B g(m,n)
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Delete the final block, so we are left with just n B m on the tape. Next
increment the n block by one, and then use a modified copier to yield

Sn B m B m B Sn

And repeat Stage (2) on this input.

4. The state of the tape is now

n B m B 0

We just need to delete the blocks of digits after the first one and we are
done!

These stages can clearly be combined into a composite program, which will halt
standardly with μy[g(m, y) = 0] on the tape. The program is dextral. So the
composite program will indeed be a dTuring program for f(x) = μy[g(x, y) = 0],
and hence, once more, we are done. �.

Which is, all in all, a really rather elegant proof – which is why I just couldn’t
resist giving it here!

32.3 Turing computability entails μ-recursiveness

As we said, it was only to be hoped and expected that we could show that all
μ-recursive functions are Turing-computable. What about the converse claim
that the Turing-computable total functions are all μ-recursive?

This is in its way a much more substantial result. For Turing computability
involves utterly ‘free form’ unstructured computation (at the level of ‘machine
code’): we place no restrictions at all on the way we stack up i-quadruples into
a program, other than brute consistency. By contrast, μ-recursive functions are
defined in terms of the algorithms that can be described by a higher-level com-
puter language with just ‘for’ loops and ‘do until’ loops as the only programming
structures. So we might well wonder whether every function which is computable
using an arbitrarily organized Turing program can also be computed using only
those two types of looping structure. Experience with the versatility of standard
computer languages will probably lead us to expect a positive answer: but still,
we do need a proof.

So let’s now outline the needed argument for

Theorem 32.2 All Turing-computable functions are μ-recursive.

Proof strategy Take the case where f is a monadic Turing-computable function.
(The argument will generalize in the obvious way to many-place functions.)

Then, by hypothesis, some Turing program Π computes f. In other words, for
each n, when Π is run from a standard initial configuration with n on the tape,
it halts standardly with f(n) on the tape.
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So consider a run of program Π, where we execute the instructions in the
next applicable i-quadruple after each tick of the clock: the clock keeps ticking,
however, even if the program has halted.

At the j-th tick of the clock, and before the program has halted, the cur-
rent state-of-play of the Turing computation is given by (i) a description of the
contents of the tape; (ii) a specification of which cell is the currently scanned
cell; (iii) the label for the i-quadruple we will need to execute next. Note that
we start with only a finite number of occupied cells on the tape, and each step
makes only one modification; so at every step there are still only a finite number
of occupied cells; giving the description (i) is therefore always a finite task.

Suppose we use some kind of sensible Gödel-style numbering in order to encode
the state-of-play at any step while the program is still running by a single code-
number s (where s > 0). Then we define the state-of-play function for Π:

c(n, j) = s if the computation which starts with input n is still
running at time j; c(n, j) = 0 if the computation has halted at
time j.

Then we can show that the state-of-play function for a given Π is primitive
recursive. For just reflect that in running through the first j steps of a Turing
computation, any searches for the next instruction are bounded by the length of
the Turing program Π. So a computation evaluating c(n, j) won’t involve open-
ended searches, i.e. it can be programmed up using ‘for’ loops, hence it evaluates
a p.r. function. (We won’t pause, however, to formally prove this result: the
details are just horribly messy and there is neither pleasure nor enlightenment
to be had in hacking through them.)

To continue: if the computation halts at step h, then for all j ≤ h, c(n, j) > 0
and c(n, Sh) = 0. So c(n, μz[c(n, Sz) = 0]) gives the code describing the state-
of-play – and in particular the contents of the tape – at the point where the
computation halts (and by hypothesis, it always does). Therefore,

f(n) = decode(c(n, μz[c(n, Sz) = 0]))

where decode is a function that decodes a state-of-play description s and returns
the number encoded in the output block of binary digits on the tape at the end
of the computation. Assuming the Gödel numbering is sensible so that decode is
also primitive recursive, it follows immediately that f is μ-recursive. �

If the overall proof strategy here also seems familiar, that’s because we used the
same basic idea in Section 29.3 when sketching a proof that the Ackermann-Péter
function is μ-recursive.

32.4 Generalizing

We’ve defined a Turing machine as dealing with binary symbols (and blanks),
using a one-tape work-space, moving its focus of operations one cell at a time,
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and also reading/writing one cell at a time. Innumerable variations are evidently
possible! For example, we could use a larger repertoire of symbols, or we could
consider a machine with more than one tape, or machines than can move the
scanned cell by any given number of cells. But such changes don’t make any
difference to what our machines can compute – i.e. they don’t take us outside
the class of recursive functions. We’ve already argued for that informally in
the case of changing the size of the symbol set (see Section 31.1); and we can
similarly argue, case by case, that e.g. working with two tapes doesn’t make a
difference either, by sketching a way of transforming a program for a two-tape
Turing machine into an equivalent Turing program of the original type.

However, such program-transformations can be very messy to effect. So note
that the proof-strategy of the last section can be adapted to get us much nicer
equivalence proofs. For suppose we describe a fancy new machine T . Then, for
any sensible machine architecture, the corresponding coding function cT (n, j) =
s will still be primitive recursive (where s is now a suitable code for describing the
state-of-play at time j of the computation for input n on our modified machine
T ). Then by just the same reasoning it follows that the function computed is
still μ-recursive, and so what T computes is just what can be computed by some
regular Turing machine.
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Our first main theorem in this chapter establishes the ‘recursive unsolvability of
the self-halting problem’ for Turing machines. This is one of those pivotal results
like the Diagonalization Lemma which at first sight seems just an oddity, which
is fairly easy to prove, but which entails a whole raft of further key results.

We use this theorem to establish (or re-establish) various claims about in-
completeness and decidability. We also prove a version of Kleene’s Normal Form
Theorem: this leads to yet another proof of incompleteness.

33.1 Two simple results about Turing programs

(a) As a preliminary, let’s note

Theorem 33.1 We can effectively enumerate the Turing programs.

Proof sketch Use some system for Gödel-numbering sets of i-quadruples. For
example, use powers of primes to code up single i-quadruples; then form the super
g.n. of a sequence of codes-for-quadruples by using powers of primes again.

Now run through numbers e = 0, 1, 2, . . .. For each e, take prime factors of
e, then prime factors of their exponents; and if this reveals that e is the super
g.n. of a set of i-quadruples, then check that it is a consistent set and hence a
Turing program (that search is bounded by the size of the set of i-quadruples).
If e is the super g.n. of some Turing program Π, put Πe = Π; otherwise put
Πe = ∅ (i.e. the empty program with no i-quadruples in it). Then Π0,Π1,Π2, . . .
is an effectively generated list of all possible Turing programs (with repetitions
allowed). �

(b) In Section 32.3, we defined c(n, j) as giving a Gödel-style code-number for
the state-of-play at the j-th step of a run of a given function-computing program
Π with input n; c(n, j) defaults to zero once the run has halted gracefully.

Now we generalize, and introduce the function c′(e, n, j) which gives the code
for the state-of-play at the j-th step of a run of the program Πe in our standard
enumeration, where the run starts with input n. But note that previously we
were only considering programs that compute total functions, which deliver an
output for every input and never freeze. We now need to specify what happens
to c′(e, n, j) if the program runs out of instructions. So let’s say

c′(e, n, j) = s, where s > 0 is the code-number describing the state-
of-play as we enter the jth step in a run of the Turing program Πe

given the initial input n, unless either the computation has already
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halted gracefully in which case c′(e, n, j) = 0, or it has frozen in
which case c′(e, n, j) = c′(e, n, j − 1).

Note that, unlike c, the function c′ is not regular: for many values of e and n,
the program Πe run on input n will not halt gracefully, so c′(e, n, j) never hits
zero as j increases.

We saw, by a rough-and-ready argument, that our original state-of-play func-
tion is p.r.: similarly

Theorem 33.2 The generalized state-of-play function c′ is prim-
itive recursive.

Proof sketch Decoding e to extract the program Πe doesn’t involve any un-
bounded searches; tracking the execution of Πe on input n through j ticks of the
clock doesn’t involve any unbounded searches. So the computation involved in
evaluating c′(e, n, j) still involves no unbounded searches overall (the addition
of the clause to cope with freezing plainly doesn’t change that). So we are still
evaluating a p.r. function.1 �

33.2 The halting problem

(a) Let Π0,Π1,Π2, . . . be an effective enumeration of Turing machines (identi-
fied by their programs). And now let’s define

The self-halting problem: to find an effective procedure that will
decide, for any e, whether Πe halts when set to work with its own
index-number e as input.

As we’ll soon see, there is a whole family of interrelated halting problems. How-
ever, before we explain why such problems are interesting, let’s immediately
prove the following formal theorem:

Theorem 33.3 The self-halting problem is not recursively solv-
able.

Proof Let h(e) be the characteristic function whose value is 0 if the machine
number e halts with input e, and is otherwise 1. Then, by definition, the self-
halting problem is recursively solvable iff h is μ-recursive. Hence, by last chapter’s
equivalence theorem, the self-halting problem is recursively solvable iff there is
a Turing machine H for computing the function h. But there can be no such
machine H.

For suppose otherwise, and consider the result of ‘chaining together’ H with
a simple machine L which, when fed 0 on its input tape, goes into an infinite

1The difference between the original sort of state-of-play function c and our generalized
function c′ can be thought of like this. c is, in effect, a particular Turing program Π ‘compiled’
into a p.r. function: c′ is a p.r. interpreter for arbitrary Turing programs.
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loop and never halts but when fed 1 halts leaving the tape untouched. (Very
easy exercise: write a suitable program for L.) Call this composite machine D.

Like any Turing machine, D will appear in our enumeration of all the ma-
chines; it’s the machine with program Πd for some d. So next we ask the cunning
question: does D halt when fed its own index number d as input? (And off we
go on yet another ‘diagonal’ argument . . . !)

Suppose D does halt on input d. Then h(d) = 0. Since H, by hypothesis,
computes h, this means that H must halt on input d and output 0. So chaining
H together with the looper L gives us a composite machine which doesn’t halt
on input d. But that composite machine is D! So D doesn’t halt. Contradiction.

Suppose then that D does not halt on input d. That means h(d) = 1. Since H
computes h, this means that H must halt on input d and output 1. So chaining
H together with the looper L gives us a composite machine which halts on input
d. That composite machine is D again. So D halts after all. Contradiction.

Hence there can be no such composite machine as D. But L trivially exists.
Which means that there can be no such Turing machine as H. �

Now, proving that the self-halting problem is not recursively solvable isn’t quite
to prove that there is no algorithmic way of telling of an arbitrary Πe whether
it will halt on input e. But, of course, Church’s Thesis bridges the gap between
the formal and informal claims.

(b) Having proved that the self -halting problem isn’t solvable, we can go on
to deduce that various other halting problems are also unsolvable. The general
strategy is to suppose that the target problem P is recursively solvable; show
this entails that the self-halting problem is recursively solvable too; then use our
last theorem to deduce that P can’t be recursively solvable after all; and then we
appeal again to Church’s Thesis to legitimate interpreting this result as showing
that P isn’t effectively solvable at all.

To take the simplest but also most important example, consider the problem
which is usually simply called

The halting problem: to find an effective procedure that will de-
cide, for any e and n, whether Πe halts when given input n.

There can’t be such an effective procedure, however, because

Theorem 33.3* The halting problem is not recursively solvable.

Proof We know from Section 31.3 that there is a Turing copier which takes
input e and produces output e, e. Now suppose that there is a Turing machine
H ′ which takes the inputs e, n and delivers a verdict on whether Πe halts for
input n. Chain together the copier and H ′, and we’d get a composite machine
which takes input e and delivers a verdict on whether Πe halts for input e. But
we’ve just shown that there can be no such machine. So there is no such machine
as H ′. Hence, the characteristic function h(e, n) – whose value is 0 if the machine
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number e halts with input n, and is otherwise 1 – is not μ-recursive. Hence the
halting problem isn’t recursively solvable. �

(c) Why are halting problems interesting in general? Well, for a start, because
when we write Turing (or other) programs we’d like to be able to check that
they work as advertised: we’d like to be able to check they don’t get stuck in
never-ending loops when they are supposed to halt and deliver an output. So it
would be good if there were a general effective procedure for program-checking,
which can at least determine whether a program Πe halts when it is supposed
to halt. And we’ve just shown that that’s impossible.

33.3 The Entscheidungsproblem again

Next, here is a lovely result which shows another aspect of the importance of
the unsolvability of the halting problem:

Theorem 33.4 The recursive unsolvability of the halting prob-
lem entails that the Entscheidungsproblem is recursively unsolv-
able too.

Proof Like any p.r. function, c′ can be expressed and captured-as-a-function
by Q by a four-place open wff C(x, y, z,w).

So, for any e, C(e, e, j, 0) is true iff c′(e, e, j) = 0, i.e. just when Πe with input
e has halted by step j. Hence, since Q is p.r. adequate, Q � C(e, e, j, 0) whenever
Πe with input e has halted by step j. And for each j, Q � ¬C(e, e, j, 0) if Πe

never halts with input e.
So now put H(e) =def ∃zC(e, e, z, 0). It follows that, if Πe eventually halts

at some step j with input e, then Q � H(e): and if it doesn’t ever halt then –
assuming Q is ω-consistent (which it is!) – Q � H(e).

To put it another way. Let Q̂ again be the conjunction of the seven non-logical
axioms of Q. Then Q̂ → H(e) will be a logical theorem if and only if Πe eventually
halts with input e.

Now suppose we could recursively decide what’s a first-order theorem; then it
would follow that we could recursively decide whether Πe eventually halts with
input e, for arbitrary e. Contraposing gives us our theorem.2 �

33.4 The halting problem and incompleteness

We already knew from Theorem 30.4 that the Entscheidungsproblem is not re-
cursively unsolvable. But it is still worth highlighting our new Theorem 33.4,

2A link between the halting problem and the Entscheidungsproblem was first made by
Turing (1936, §11); see also Büchi (1962). However, the original version of the linking argu-
ment doesn’t go via Q’s p.r. adequacy, but depends upon more directly writing claims about
programs and halting states as first-order wffs. You can find a textbook presentation of this
line of proof in e.g. Boolos et al. (2002, Ch. 11).
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just to emphasize how our limitative theorems hereabouts are all so very closely
interconnected. This section notes another such interconnection, linking the re-
cursive unsolvability of the halting problem with the book’s main topic, Gödelian
incompleteness results.

(a) We’ve just seen that, using a Gödel-numbering scheme to code up facts
about Turing machines, there will be a purely arithmetical sentence H(e) which
‘says’ that the program Πe halts when run on input e.

Now let’s suppose, for reductio, that the truths of LA are recursively enumer-
able. Equivalently, suppose that there is a Turing program Πa – an ‘arithmetic
machine’ – that given successive inputs 0, 1, 2 . . . gives as output a listing of
(the Gödel numbers of) the truths of LA. And let’s set the following two com-
putational processes going in parallel:

1. Run program Πe on input e.

2. Set Πa going, feeding in increasing values of n until it spits out the g.n.
for ¬H(e).

If the first process halts, then indeed Πe halts on input e! And if the second
process halts, then the g.n. of ¬H(e) has been spat out by our arithmetic machine,
hence ¬H(e) is true, so Πe doesn’t halt on input e. Hence, if one or other of our
parallel processes must always halt, then running them together in parallel gives
us a way of effectively solving the self-halting problem – just wait to see which
verdict is delivered. And now we can either make a labour-saving appeal to
Church’s Thesis, or we can fairly easily rigorize this informal line of thought,
to get the result that if one of our processes always halts then the self-halting
problem would be recursively solvable.3

But we know that the self-halting problem isn’t recursively solvable. So at
least for some e, neither of our parallel processes halts. In other words, at least
sometimes, (1) Πe doesn’t halt on input e, so ¬H(e) is true; yet it’s also the
case that (2) Πa doesn’t ever spit out (the g.n. for) ¬H(e), i.e. ¬H(e) isn’t in
the assumed effective enumeration of all the LA truths. Contradiction. So there
can’t be a Turing machine Πa which enumerates the truths.

Hence, in sum,

Theorem 33.5 The recursive unsolvability of the self-halting prob-
lem entails that TA – True Basic Arithmetic, the set of truths of
LA – is not r.e.

(b) So, given that the self-halting problem isn’t solvable, that gives us the proof
we wanted for Theorem 30.10 – i.e. a proof that TA isn’t r.e. which depends

3Here’s one way to rigorize. If one of the processes always halts, then for any e there is a
least value of z = 2n · 3j such that either (1) c′(e, e, j) = 0 or (2) c′(a, n, j) = the code for
arriving at the halt state with the g.n. of ¬H(e) on the tape. Then we define a function h(e)
to be 0 if c′(e, e, j) = 0 for that least value of z = 2n · 3j and 1 otherwise, and h(e) will then
be a properly defined μ-recursive function which solves the self-halting problem.
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on considerations about step-by-step computations.4 Now combine this with
Theorem 30.5 which tells us that the theorems of a recursively axiomatized
sound formal theory are r.e. Then we can immediately derive

Theorem 33.6 The recursive unsolvability of the self-halting prob-
lem entails that a recursively axiomatized sound theory T whose
language is LA can’t be negation complete.

The reasoning for this goes, of course, in a now familiar style: it is exactly parallel
to the argument for the informal Theorem 5.7.

33.5 Another incompleteness argument

The alert reader might ask: in proving incompleteness by thinking about Turing
machines halting, can we again drop the assumption that we are dealing with a
sound theory of arithmetic and replace it e.g. with the weaker assumption that
we are dealing with an ω-consistent theory?

We can! So, merely because it’s rather fun if you like this sort of thing, let’s
re-prove our canonical version of the First Theorem. Here again is what we want
to establish:

Theorem 17.3 If T is a p.r. adequate, p.r. axiomatized theory
whose language includes LA, then there is a LA-sentence ϕ of
Goldbach type such that, if T is consistent then T � ϕ, and if
T is ω-consistent then T � ¬ϕ.

And this time we prove the result without constructing a canonical Gödel sen-
tence or appealing to the Diagonalization Lemma.

Proof Recall the definition of H(e) from Section 33.3, and now consider a Tur-
ing machine which, on input e, looks at values of m in turn, and tests whether
m numbers a T -proof of ¬H(e), i.e. for successive values of m it evaluates
Prf T (m, �¬H(e)�), and it eventually halts when this p.r. relation holds or else
it trundles on for ever otherwise (evidently, we can program such a machine).
This Turing machine, in short, tries to prove that Πe doesn’t halt with input e.
For some s, it will be Πs in our standard enumeration of machines. And – very
predictably! – we first ask whether Πs halts on input s.

If it does, then T � H(s) (because a p.r. adequate theory can prove each true
H(e) – see the proof of Theorem 33.4). But also, by the definition of Πs, its
halting implies that for some m, Prf T (m, �¬H(s)�), so T � ¬H(s). So, assuming
T is consistent, Πs doesn’t halt on input s.

And now we can show (i) that if T is consistent, it doesn’t prove ¬H(s), and
(ii) if T is ω-consistent, then it doesn’t prove H(s).

4There’s also an alternative version that runs more closely parallel to the informal argument
in Chapter 5, but we won’t spell this out. Enthusiasts should consult Cutland (1980, Ch. 8).
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(i) First assume that T � ¬H(s). Then for some m, Prf T (m, �¬H(s)�), so Πs

would halt for input s. But we’ve just shown that Πs doesn’t halt for input s.
So T doesn’t prove ¬H(s).

(ii) Now assume alternatively that T � H(s) i.e. T � ∃xC(s, s, x, 0). But since Πs

doesn’t halt on input s, we have c′(s, s, j) �= 0 for each j; and so T � ¬C(s, s, j, 0)
for each j. Which makes T ω-inconsistent. So if T is ω-consistent, it doesn’t
prove H(s).

Finally, you can readily confirm that the undecidable wff ϕ =def ¬H(s) is of
Goldbach type. �

33.6 Kleene’s Normal Form Theorem

That’s the main business of this rather action-packed chapter done. But I can’t
resist – now we’ve got this far – adding a couple more sections. First, in this
section, we’ll prove a (version) of a very illuminating result due to Kleene (1936a).
Then in the final section, we’ll show that this result once more gives us another
route to incompleteness.

Still – very pretty though the arguments are! – you might want to skip on a
first reading.

(a) Review the argument of Section 32.3. By exactly the same reasoning, if
the Turing program Πe in our enumeration in fact does compute a μ-recursive
function fe(n) then we will have

fe(n) = decode(c′(e, n, μz[c′(e, n, Sz) = 0]))

Now just for brevity, let’s define two functions by composition as follows:

t(x, y, z) =def c
′(x, y, Sz)

u(x, y, z) =def decode(c′(x, y, z))

Both t and u are p.r. functions: hence – at least, given we’ve done the hard work
of spelling out the definition of c′ – we have established the following result:

There is a pair of three-place p.r. functions t and u such that any
one-place μ-recursive function can be given in the standard form

fe(n) = u(e, n, μz[t(e, n, z) = 0])

for some value of e.

Which is almost, but not quite, Kleene’s Normal Form theorem.5

5Note, by the way, that it is emphatically not being claimed that for every value of e our
definition delivers a μ-recursive function. For note that t is not a regular function: for most
values of e and n, t(e, n, z) never hits zero. The claim then is only that, for a value of e where
fe is μ-recursive, then t(e, n, z) will always hit zero and the equality holds.

Let’s note an interesting corollary of almost-Kleene. Imagine for a moment that we could

311



Kleene’s Theorem entails Gödel’s First Theorem

33.7 Kleene’s Theorem entails Gödel’s First Theorem

We’ll finish this chapter by noting a wonderfully pretty result which again neatly
takes us back to our most central Gödelian concerns:

Theorem 33.8 Kleene’s Normal Form Theorem entails the First
Incompleteness Theorem.

Proof Suppose that there is a p.r. axiomatized formal system of arithmetic S
which is p.r. adequate, is ω-consistent (and hence consistent), and is negation
complete. Then for every sentence ϕ either S � ϕ or S � ¬ϕ.

Since S is p.r. adequate, there will be a four-place formal predicate T which
captures the p.r. function T that appears in Kleene’s theorem. And now consider
the following definition,

fe(n) =

⎧⎨
⎩
U(μz[T (e, n, z) = 0]) if ∃z(T (e, n, z) = 0)

0 if S � ∀z¬T(e, n, z, 0)

We’ll show that, given our assumptions about S, this well-defines an effectively
computable total function for any e.

Take this claim in stages. First, we need to show that our two conditions are
exclusive and exhaustive:

i. The two conditions are mutually exclusive (so the double-barrelled definition
is consistent). For assume that both (a) T (e, n, k) = 0 for some number k,
and also (b) S � ∀z¬T(e, n, z, 0). Since the formal predicate T captures T , (a)
implies S � T(e, n, k, 0). Which contradicts (b), given that S is consistent.

ii. The two conditions are exhaustive. Suppose the first of them doesn’t hold.
Then for every k, it isn’t the case that T (e, n, k) = 0. So for every k, S �
¬T(e, n, k, 0). By hypothesis S is ω-consistent, so we can’t also have S �
∃zT(e, n, z, 0). Hence by the assumption of negation-completeness we must
have S � ¬∃zT(e, n, z, 0), which is equivalent to the second condition.

Which proves that, given our initial assumptions, our conditions well-define a
total function fe.

that every k-place μ-recursive function f(�n) can be given in the form U(μz [Tk(e, �n, z) = 0])
for some e.

Note, by the way, that we can use a similar proof idea to establish Kleene’s Normal Form
theorem about recursive functions more directly, i.e. without going via the different idea of a
Turing program. Just Gödel-number the computations which execute the function’s recursive
recipe: see e.g. Odifreddi (1999, pp. 90–96).

Finally, I should perhaps just mention – to aid comparisons with other treatments – that
Kleene’s theorem in its full generality in fact gives a normal form for partial computable
functions too, if we allow the μ-operator to be applied when it might return no value because
there is no least z such that T (e, n, z) = 0. But we’ll stick to our self-denying ordinance, and
not say anything more here about the case of partial functions.
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Now we prove that fe is effectively computable. Given values for e and n
just start marching through the numbers k = 0, 1, 2, . . . until we find the first k
such that either T (e, n, k) = 0 (and then we put fe(n) = U(μz[T (e, n, z) = 0])),
or else k is the super g.n. of a proof in S of ∀z¬T(e, n, z, 0) (and then we put
fe(n) = 0). Each of those conditions can be effectively checked to see whether it
obtains – in the second case because S is p.r. axiomatized, so we can effectively
check whether k codes for a sequence of expressions which is indeed an S-proof.
And it follows from what we’ve just shown that eventually one of the conditions
must hold.

Two more observations (still with our original assumptions in play):

iii. Suppose fe is μ-recursive, then fe(n) = U(μz[T (e, n, z) = 0]) and the con-
dition ∃z(T (e, n, z) = 0) obtains for every n. And so in that case fe = fe.
Hence a list of the fe will include all the μ-recursive functions.

iv. Since, given e, we know how to compute the computable function fe, the
diagonal function d(n) =def fn(n) + 1 is also effectively computable. But
then d is a computable total function distinct from all the fe, hence distinct
from any μ-recursive function.

So we’ve just shown that – given our original assumptions – there is a computable
total function d which isn’t μ-recursive, contradicting Church’s Thesis.

Hence, given Church’s Thesis, it follows from Kleene’s Theorem that, if S is
a p.r. axiomatized, p.r. adequate, ω-consistent theory, it can’t also be negation
complete – which is (the core of) Gödel’s First Theorem again, proved this time
without any appeal to Prf or Prf. �

Since Church’s Thesis is here being used in labour-saving mode (to link two for-
mal results together) we can of course give a variant of the argument without it –
we just need to turn the informal argument that fe is effectively computable into
a formal characterization of fe as a μ-recursive function. But cutting that corner,
as our version here does, makes the proof of the theorem more transparent.

And, I’m rather tempted to add, if you don’t find it a delight, then maybe
you aren’t quite cut out for this logic business after all!
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Right back in Chapter 2 we stated Turing’s Thesis: a numerical (total) function is
effectively computable by some algorithmic routine if and only if it is computable
by a Turing machine. Of course, we initially gave almost no explanation of the
Thesis. It was only very much later, in Chapter 31, that we developed the idea
of a Turing machine and saw the roots of Turing’s Thesis in his general analysis
of the fundamental constituents of any computation.

Meanwhile, in Chapter 29, we had already introduced the idea of a μ-recursive
function and noted the initial plausibility of Church’s Thesis: a numerical (total)
function is effectively computable by an algorithmic routine if and only if it is
μ-recursive.

Then finally, in Chapter 32, we outlined the proof that a total function is
Turing computable if and only if it is μ-recursive. Our two Theses are therefore
equivalent.

Given that equivalence, we can now talk of

The Church–Turing Thesis The effectively computable total nu-
merical functions are the μ-recursive/Turing computable functions.

Crucially, this Thesis links what would otherwise be merely technical results
about μ-recursiveness/Turing computability with intuitive claims about effective
computability; and similarly it links claims about recursive decidability with
intuitive claims about effective decidability. For example: it is a technical result
that PA is not a recursively decidable theory. But what makes that theorem
really significant is that – via the Thesis – we can conclude that there is no
intuitively effective procedure for deciding what’s a PA theorem. The Thesis is
in the background again if, for example, we focus on the generalized version
of the First Theorem, which says that any recursively axiomatized ω-consistent
theory containing Q is incomplete. Why is that significant? Because the Thesis
links the idea of being recursively axiomatized to the idea of being a properly
axiomatized theory in the informal intuitive sense.

So, in sum, we do depend on the Thesis in giving interesting interpretative
glosses to some of our technical results in this book. The Thesis is almost uni-
versally accepted. This chapter briefly explains why.

34.1 From Euclid to Hilbert

Any schoolchild, when first learning to calculate (e.g. in learning how to do
‘long division’), masters a number of elementary procedures for computing the
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answers to various problems. And ever since Euclid, who e.g. gave an elegant
and efficient routine for finding the greatest common divisor of two integers,
mathematicians have developed more and more algorithms for tackling a wide
variety of problems.1

These algorithms – to repeat our characterization of Section 2.2 – are finite
sequential step-by-step procedures which can be set out in every detail in advance
of being applied to any particular case. Every step is (or, by further breaking
down, it can be made to be) ‘small’ so that it is readily executable by a human
calculator with limited cognitive resources; the steps don’t require any ingenuity
or mathematical acumen at all. The rules for moving from one step to the next
are entirely determinate and self-contained (e.g. they don’t involve pausing to
toss coins or to consult an outside oracle).2 We also require that an algorithmic
procedure is to deliver its output after a finite number of computational steps.

Such algorithms are evidently great to have when we can get them. It is no
surprise, then, that algorithms to deal with an ever-widening domain of prob-
lems have been sought over two millennia. And mathematicians had – we may
reasonably suppose – a pretty clear idea of the kind of thing they were looking
for before they had ever heard of μ-recursiveness or Turing machines. The idea
of an algorithm was simply taken for granted, and wasn’t subject to any close
analysis. Even in the foundational ferment of the first quarter of the last century,
there seems to have been very little explicit discussion. And surely not because
the idea was thought too foggy to take very seriously, but for exactly the oppo-
site reason. Compared with the profound worries about the infinite generated by
e.g. the set-theoretic paradoxes and the intuitionistic critique of classical math-
ematics, the idea of a finite, algorithmic, step-by-step procedure must initially
have seemed quite clear and unproblematic.

Consider again Hilbert and Ackermann’s Grundzüge der theoretischen Logik
(1928). In §11, as we’ve noted before, the authors famously pose the Entschei-
dungsproblem, i.e. the problem of deciding for an arbitrary sentence of first-order
logic whether it is valid or not. They note that the corresponding decision prob-
lem for propositional logic is easily solved – we just use a truth-table: in this

1For a generous sample of cases, ancient and more modern, see Chabert (1999).
2Determinism is built into the classical conception. Nowadays, we also talk of ‘non-

deterministic algorithms’ – the most exciting cases are the so-called quantum algorithms.
This is perhaps a natural enough extension of the original idea; however, it assuredly is an
extension (though intriguingly, dropping determinism doesn’t actually allow us to compute
more functions, even if it can radically speed things up). More generally, perhaps it is true to
say that

In fact the notion of algorithm is richer these days than it was in Turing’s
days. And there are algorithms . . . not covered directly by Turing’s analysis, for
example, algorithms that interact with their environments, algorithms whose
inputs are abstract structures, and geometric or, more generally, non-discrete
algorithms. (Blass and Gurevich, 2006, p. 31)

But our concern here is with the articulation of the classical idea of deterministic step-by-step
routines of the kind that the founding fathers had in mind in arriving at the concept of an
effective procedure.
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case, at any rate, we have a ‘well-developed algebra of logic’ where ‘so to speak,
an arithmetic treatment’ is possible. So now,

The decision problem for first-order logic presents itself. . . . The
decision problem is solved when one knows a process which, given
a logical expression, permits the determination of its validity/satis-
fiability in a finite number of operations. . . . We want to make it
clear that for the solution of the decision problem a process needs
to be given by which [validity] can, in principle, be determined
(even if the laboriousness of the process would make using it im-
practical). (Hilbert and Ackermann, 1928, §11)

The quest, then, is for an effective procedure which works – at least in principle,
given world enough and time – to deliver a verdict in a finite number of steps by
means of a quasi-arithmetical computation. In sum, the Entscheidungsproblem
– ‘the chief problem of mathematical logic’ as they call it – is the problem of
finding an algorithm for deciding validity. And Hilbert and Ackermann plainly
took themselves to have set a well-posed problem, which needed only the bare
minimum of elucidation which we have just quoted.

Of course, it is one thing to pose a decision problem, and quite another thing
to solve it. And there is a crucial asymmetry here between positive and negative
cases. Hilbert and Ackermann note, for example, that the decision problem for
monadic first-order logic (i.e. logic with only one-place predicates) does have a
positive solution: see Löwenheim (1915). Now, to show that Löwenheim’s pro-
cedure solves the restricted decision problem, we just need (i) to see that it is
algorithmic, and (ii) to prove that it always delivers the right verdict. And step
(i) requires only that we recognize an algorithm when we see one: we don’t need
e.g. to have command of any general story about necessary conditions for being
an algorithm. Similarly for other decision problems with positive solutions.

Suppose, on the other hand, that we begin to suspect that a certain decision
problem is unsolvable and want to confirm that conjecture. For example, let’s
re-run history and suppose that we have tried but failed to discover a general
positive solution for the Entscheidungsproblem. We find some solutions for lim-
ited cases, extending Löwenheim’s work, but the suspicion begins to dawn that
there isn’t a general method for deciding validity for arbitrarily complex sen-
tences. We therefore set out to prove that the decision problem is unsolvable
– i.e. prove that there is no algorithm which decides first-order validity across
the board. Obviously, we can’t establish this by an exhaustive search through
possible algorithms, one at a time, since there are unlimitedly many of those.
Hence, to get our negative proof, we’ll need some way of proving facts about
the class of all possible algorithms: now we will need some general claims about
what makes for an algorithm.

In headline terms, then, the situation is this: our implicit pre-theoretical grasp
of the idea of a step-by-step computation is enough for a good understanding
of what the Entscheidungsproblem is. But to show that it is unsolvable we need
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more, i.e. we need an explicit story about general features of all algorithmic
procedures in order to show that no procedure with those features can solve the
problem. Or to quote Kleene:

[The] intuitive notion of a computation procedure, which is real
enough to separate many cases where we know we do have a com-
putation procedure before us from many others where we know we
don’t have one before us, is vague when we try to extract from it
a picture of all possible computable functions. And we must have
such a picture, in exact terms, before we can hope to prove that
there is no computation procedure at all for a certain function,
. . . . Something more is needed for this. (Kleene, 1967, p. 231)

We’ll need to say more in the next chapter, however, about whether ‘vague’ is
le mot juste here.

34.2 1936 and all that

Faced with the Entscheidungsproblem and the growing suspicion that it was
unprovable, Church, Kleene, Gödel and Turing developed a variety of accounts
of what makes for an effectively computable function.3 The drama was played
out in Princeton and Cambridge.

(a) To start with, in the early 1930s in Princeton, Alonzo Church and his then
students Stephen Kleene and Barkley Rosser developed the so-called ‘λ-calculus’.
After some false starts, this proved to be a powerful foundational system: Church
first conjectured in 1934 that every effectively calculable function is ‘λ-definable’.

However, we won’t pause to explain what this means. For – at least until
it was taken up much later by theoretical computer scientists – the λ-calculus
didn’t win over a great number of enthusiasts, and a couple of other approaches
to computability very quickly came to occupy centre stage.4

First, in lectures he gave during his visit to Princeton in 1934, Gödel outlined
the idea of a so-called general recursive function, drawing on work by Jacques
Herbrand. Consider how we compute values of the Ackermann-Péter function p
(see Section 29.3). We are given some fundamental equations governing p; and
then we work out the value of e.g. p(2, 1) by repeated substitutions in these
equations. Roughly speaking, the idea of a general recursive function is the
idea of a function whose values can similarly be uniquely generated by repeated

3To be absolutely explicit about the connection: the Gödel-numbering trick turns the
decision problem about validity into a decision problem about the corresponding numerical
property of numbering-a-valid-wff; and the characteristic function trick turns this numerical
decision problem into a question about the algorithmic computability of a corresponding func-
tion. We’ll have to radically truncate the historical story in what follows, but I hope in not too
misleading a way. For many more details, see Davis (1982), Gandy (1988) and Sieg (1997).

4But see, for example, Trakhtenbrot (1988) and Barendregt (1997).
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substitutions into initial equations (where these equations aren’t now restricted
to primitive recursive definitions but allow e.g. double recursions).

But again we won’t go into further details here.5 For by 1936, Kleene was high-
lighting the neat concept of a μ-recursive function which we met in Chapter 29
– i.e. the idea of a function definable by primitive recursion and minimization.
And it almost immediately became clear that in fact the λ-definable total func-
tions are the same functions as Gödel’s general recursive total functions which
are the same as the μ-recursive functions.6

This convergence of approaches was enough to convince Church of the sound-
ness of his original conjecture – a version of Church’s Thesis, as we now think
of it – identifying calculability with λ-definability. So in his classic 1936 paper,
he writes:

We now define the notion, already discussed, of an effectively calcu-
lable function of positive integers by identifying it with the notion
of a recursive function of positive integers (or of a λ-definable func-
tion of positive integers). This definition is thought to be justified
by the considerations which follow [most notably, the equivalence
results], so far as a positive justification can ever be obtained for
the selection of a formal definition to correspond to an intuitive
notion. Church (1936b, p. 356)

Kleene had already been persuaded: he reports that – when Church originally
conjectured that the Thesis is true – he ‘sat down to disprove it by diagonalizing
out of the class of the λ-definable functions’; and finding that this couldn’t be
done he ‘became overnight a supporter’.7 Gödel, however, was more cautious:
his recollection was that he was initially ‘not at all convinced’ that all effective
computations were covered by his characterization of general recursiveness.8

(b) Meanwhile, in 1935 in Cambridge, Turing was working quite independently
on his account of computation.

We have already sketched this in Section 31.1. To repeat, but now more in
his own words, Turing invites us to ‘imagine the operations performed by the
[human] computer to be split up into “simple operations” which are so elemen-
tary that it is not easy to imagine them further divided.’9 Take our computing
agent to be writing on squared paper (though the two-dimensional character of
the usual paper we use for hand computation is inessential: we can ‘assume that
the computation is carried out on one-dimensional paper, i.e. on a tape divided
into squares’). Then, Turing continues, we can suppose that a single symbol
is being observed at any one time: if the computing agent ‘wants to observe

5See Gödel (1934, §9). For a modern introduction to ‘Herbrand-Gödel’ computability, as
it is also called, see for example Mendelson (1997, §5.5) or Odifreddi (1999, pp. 36–38).

6The key equivalence results were published in Kleene (1936a,b).
7(Kleene, 1981, p. 59). For the idea of ‘diagonalizing out’ see Section 29.6.
8See the letter from Gödel to Martin Davis as quoted by Kleene (Gödel, 1986, p. 341).
9This, and the following quotations in this paragraph, come from Turing (1936, §9).
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more, he must use successive observations.’10 Likewise ‘[w]e may suppose that
in a simple operation not more than one symbol is altered. Any other changes
can be split into simple changes of this kind.’ Further, we may, without loss of
generality, ‘assume that the squares whose symbols are changed are always “ob-
served” squares.’ Having read and written in some square, we then need to move
to work on a new square. The human computer needs to be able to recognize
the squares he has to jump to next. And Turing claims that ‘it is reasonable to
suppose that these can only be squares whose distance from . . . the immediately
previously observed squares does not exceed a certain fixed amount’ (without
loss of generality we can suppose the computer gets to new squares stepwise,
jumping one square at a time, as in our presentation.) As each simple operation
is completed, the human computer moves to some new ‘state of mind’ which en-
capsulates determinate instructions about what to do next by way of changing
the contents of a square and jumping to a new square (or cell, to revert to our
earlier terminology).

In sum,

It is my contention that these operations [i.e. reading/writing cells
on a tape, moving the scanned cell, and jumping to a new in-
struction] include all those that are used in the computation of a
number. (Turing, 1936, §1)

And if all that is right, then it is immediate that any function which is effectively
computable via an algorithm will be computable by a Turing machine. The
converse, however, is surely uncontentious: any Turing computable function is
computable by us (given world enough and time), by following the program
steps. Whence Turing’s Thesis.

(c) Turing learnt of the Princeton research on λ-definability and recursiveness
just as he was about to send off his own classic paper for publication. In re-
sponse, he added a key appendix outlining a proof of the equivalence of Turing-
computability with λ-definability. And thus the two strands of work that we’ve
just outlined came together. Still only 24, Turing then left Cambridge to continue
his research at Princeton.

(d) It would be wrong to say that in 1936 Church was still defending his Thesis
merely because a number of different but apparently ‘empirically adequate’ char-
acterizations of computability had turned out to be equivalent, while in contrast
Turing based his Thesis on a bottom-up analysis of the very idea of computa-
tion. For a start, Church takes over Gödel’s 1934 idea of general recursiveness,
and that can be thought of as an attempt to locate the essence of a computation
in the repeated manipulation of equations. And in his paper, Church also gives

10In our presentation, we took the fundamental symbols to be just ‘0’ and ‘1’. Turing was
more generous. But for the reasons we gave, working with (say) 27 basic symbols rather than
two in the end makes no odds.
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what is often referred to as his ‘step-by-step argument’ for the Thesis, which is
related to the argument which we gave in Section 29.5.

Still, Turing’s analysis does seem to dig deeper. It convinced Church: if he
was somewhat guarded in 1936 (saying that his own account of computability
is justified ‘so far as a positive justification can ever be obtained’), he is quite
emphatic a year later:

It is . . . immediately clear that computability, so defined [by Tur-
ing], can be identified with (especially, is no less general than) the
notion of effectiveness as it appears in certain mathematical prob-
lems (various forms of the Entscheidungsproblem, various problems
to find complete sets of invariants in topology, group theory, etc.,
and in general any problem which concerns the discovery of an
algorithm). (Church, 1937, p. 42)

Gödel was similarly convinced. In a ‘Postscriptum’ added in 1964 to a reprint of
his 1934 lectures, he writes:

Turing’s work gives an analysis of the concept of ‘mechanical proce-
dure’ (alias ‘algorithm’ or ‘computation procedure’ or ‘finite com-
binatorial procedure’). This concept is shown to be equivalent with
that of a ‘Turing machine’. (Gödel, 1934, pp. 369–370).

And Gödel remarks in a footnote that ‘previous equivalent definitions of com-
putability’ (and he refers to Church’s account of λ-definability and his own
treatment of general recursiveness) ‘are much less suitable for our purpose’ – the
purpose, that is, of giving a ‘precise and unquestionably adequate definition’ of
concepts like undecidability. The thought, then, is that Turing’s analysis shows
that algorithmic computability is ‘unquestionably’ Turing computability (while
λ-definability and recursiveness earn their keep as alternative characterization
of computability because of the equivalence theorems that show them to come
to the same as Turing computability).

34.3 What the Church–Turing Thesis is not

To repeat, the Church–Turing Thesis is the claim that the informal notion of an
effectively/algorithmically computable numerical function has the same exten-
sion as the formal notion of a μ-recursive function.

This Thesis must not be confused (as it too often is) with the entirely different
claim that a physical machine can only compute recursive functions – i.e. the
claim that any possible computing mechanism (broadly construed) can compute
no more than a Turing machine. For perhaps there could be a physical set-up
which somehow or other is not restricted to delivering a result after a finite
number of discrete, deterministic steps, and so is enabled to do more than any
Turing machine. Or at least, if such a ‘hypercomputer’ is impossible, that can’t
be established merely by arguing for the Church–Turing Thesis.
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Let’s pause over this important point, and explore it just a little further. We
have seen that the Entscheidungsproblem can’t be solved by a Turing machine.
In other words, there is no Turing machine which can be fed (the code for)
an arbitrary first-order wff, and which will then decide, in a finite number of
steps, whether it a valid wff or not. Here, however, is a simple specification for
a non-Turing hypercomputer that could be used to decide validity.

Imagine a machine that takes as input the wff φ which is to be tested for
validity. It then starts effectively enumerating the theorems of the relevant first-
order language; this can be done since first-order logic can be treated as an
axiomatized formal theory. We’ll suppose our computer flashes a light if and
when it enumerates a theorem that matches φ. Now, our imagined computer
speeds up as it works. It performs one operation in the first second, a second
operation in the next half second, a third in the next quarter second, a fourth
in the next eighth of a second, and so on. Hence after two seconds it has done
an infinite number of tasks, thereby enumerating and checking every theorem
to see if it matches φ! So if the computer’s light flashes within two seconds, φ is
valid; if not, not. In sum, we can use our wildly accelerating machine to decide
validity, because it can go through an infinite number of steps in a finite time.

Now, you might very reasonably think that such accelerating machines are a
mere philosophers’ fantasy, physically impossible and not to be taken seriously.
But actually it isn’t quite as simple as that. For example, we can describe space-
time structures consistent with General Relativity which apparently have the
following feature. We could send an ‘ordinary’ computer on a trajectory towards
a spacetime singularity. According to its own time, it’s a non-accelerating com-
puter, plodding evenly along, computing for ever and never actually reaching
the singularity. But according to us – such are the joys of relativity! – it takes a
finite time before it vanishes into the singularity, accelerating as it goes. Suppose
we set up our computer to flash us a signal if, as it enumerates the first-order
logical theorems, it ever reaches φ. We’ll then get the signal within a bounded
time just in case φ is a theorem. So our computer falling towards the singularity
can be used to decide validity.

Now, there are quite fascinating complications about whether this fanciful
story actually works within General Relativity.11 But no matter. It is at any
rate entirely clear that the issue of whether there could be this sort of Turing-
beating physical set-up is not settled by the Church–Turing Thesis.

34.4 The status of the Thesis

So the question whether the Church–Turing Thesis is true is not an issue about
the limits of all possible machines (whatever exactly that means). The ques-
tion is: are the functions computable-in-principle by step-by-small-step, finite,
deterministic processes exactly the recursive/Turing-computable functions? The

11For discussion of the ingenious suggestion and its pitfalls, see Earman (1995, Ch. 4).
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Church–Turing Thesis gives a positive answer, and no serious challenge has ever
been successfully mounted.12 So the Thesis is almost universally believed. But
we have already seen intimations of two rather different assessments of its status,
modest and bold.

The more modest view (which perhaps echoes that of the earlier Church) can
be expressed as follows:

Various attempts to characterize the class of effectively computable
functions have converged on the same class of recursive functions.13

No one has ever succeeded in describing a computable function that
isn’t recursive. All this weight of evidence therefore warrants our
adopting recursiveness/Turing-computability at least as an ‘expli-
cation’ of our intuitive concept of effective computability – i.e. as
a fruitful, simple, clean replacement for our perhaps rather inexact
pre-theoretic concept.14 Hence we can accept the Thesis, though
perhaps not so much as a statement of the bald truth as a recom-
mendation about how (uniquely) best to locate a sharply defined
class of functions in the area gestured to by our vague informal
concept.

The bolder stance (inspired by Turing, and seemingly adopted by the later
Church and by Gödel) maintains that

Analytical reflection on the very notion of an effective calculation
shows that the effectively calculable functions can be none other
than the recursive/Turing-computable ones, and so the Thesis is a
demonstrably true claim about the coextensiveness of our intuitive
and formal concepts.

Now, despite Turing’s work and Gödel’s consequent endorsement of the bolder
stance, the modest view seems to have been dominant both in the passing com-
ments of mathematicians and in philosophical discussions of the Church–Turing
Thesis. As it happens, I think we can be bolder, and explain why in the next
chapter. However, don’t be distracted by those contentious arguments: accepting
the Thesis in a modest spirit is quite enough for our purposes in this book. For
what we really care about is linking up the technical results about e.g. recursive
decidability with claims about what is effectively decidable in the intrinsically
interesting intuitive sense. And so long as we accept the Thesis as a working
assumption, that’s enough to make the link, whatever its philosophical status.

12Which isn’t to say that there haven’t been attempts, and some of these failures can be
instructive. See e.g. Kalmár (1959) and the riposte by Kleene (1987).

13For accessible reviews of a number of formal definitions of computability in addition to μ-
recursiveness and Turing-computability, see Cutland (1980, Chs 1 and 3) and Odifreddi (1999,
Ch. 1). Note particularly the idea of a register machine, which idealizes the architecture of a
real-world computer on which e.g. C++ programs run.

14For more on the idea of an explication, see Carnap (1950, Ch. 1).
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An algorithm, we said, is a sequential step-by-step procedure which can be fully
specified in advance of being applied to any particular input. Every minimal
step is to be ‘small’ in the sense that it is readily executable by a calculator with
limited cognitive resources. The rules for moving from one step to the next must
be entirely determinate and self-contained. And an algorithmic procedure is to
deliver its output after a finite number of computational steps. The Church–
Turing Thesis, as we are interpreting it, is then the claim that a numerical
function is effectively computable by such an algorithm iff it is μ-recursive/
Turing-computable (note, we continue to focus throughout on total functions).

The Thesis, to repeat, is not a claim about what computing ‘machines’ can or
can’t do. Perhaps there can, at least in principle, be ‘machines’ that out-compute
Turing machines – but if so, such hypercomputing set-ups will not be finitely
executing algorithms (see Section 34.3).

And as we also stressed, it is enough for our wider purposes that we ac-
cept the Thesis’s link between effective computability by an algorithm and μ-
recursiveness/Turing computability; we don’t have to take a particular stance
on the status of the Thesis.

But all the same, it is very instructive to see how we might go about following
Turing (and perhaps Gödel) in defending a bolder stance by trying to give an
informal proof that the intuitive and formal concepts are indeed coextensive. So
in this chapter I attempt such a demonstration.

It should be clearly signalled that the core argument is contentious. Still, it is
very good to be reminded as we get towards the end of this book that, when it
comes to questions about the interpretative gloss that we put on technical results
in logic, things aren’t always as black-and-white as textbook presentations can
make them seem. Take our discussions here as a provocation to further thought
and exploration.

35.1 The project

Before proceeding, however, we’d better pause to make it as clear as possible
what the project is.

We really need to distinguish three levels of concepts which can be in play
hereabouts:

1. We start with an initial, inchoate, ‘unrefined’, concept of computability –
a concept fixed, insofar as it is fixed, by reference to some paradigms of
common-or-garden real-world computation.
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2. Next there is our idealized though still informal and vaguely framed notion
of effective computability. Here we require that the computational steps
follow an algorithm (in the sense we’ve just briefly indicated again; see
also Section 34.1, fn. 2 and the accompanying text). But we abstract away
from ‘practical’ considerations of how long a computation will take or how
much paper will be needed to execute it.

3. Then, thirdly, there are the formal concepts of μ-recursiveness, Turing
computability, and so on.

Now, the move from the first of these notions to the second involves a certain
exercise in conceptual sharpening. And there is no doubt an interesting story
to be told about the conceptual dynamics involved in reducing the amount of
‘open-texture’,1 getting rid of some of the imprecision, in our initial inchoate
concept – for this exercise isn’t just an arbitrary one. However, it plainly would
be over-ambitious to claim that in refining our inchoate concept and homing
in on the idea of effective computability we are just explaining what we were
talking about all along. And that isn’t any part of my claim.

Rather, the claim is that, once we have arrived at the second, more refined but
still somewhat vague, concept of an effective computation, then we in fact have
a concept which pins down the same unique class of functions as the third-level
concepts.

35.2 Vagueness and the idea of computability

(a) Repeatedly in the literature, we find claims like this:

It is important to realise that the [Church–Turing] thesis is not
susceptible of proof: it is an unsubstantiable claim . . . . (Bridges,
1994, p. 32)

Why? The usual reason given is some version of the following:

Since our original notion of effective calculability of a function
(or of effective decidability of a predicate) is a somewhat vague
intuitive one, the thesis cannot be proved. (Kleene, 1952, p. 317)

But what kind of vagueness is in question here, and why is it supposed to block
all possibility of a proof?2

Let’s consider two different ways of elaborating the sort of claim Kleene makes,
deploying the ideas of what I’ll call borderline-vagueness-in-extension and poly-
vagueness respectively. I will argue that neither interpretation leads to a good
argument against the unprovability of the Church-Turing Thesis.

1The phrase ‘open texture’ is due to Friedrich Waismann (1945). Waismann’s work has
been rather neglected of late; but see Shapiro (2006a) and the Appendix to Shapiro (2006b).

2We could readily give twenty quotations making much the same claim.
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(b) The concept of a tall man is vague in the sense of allowing the possibility
of borderline cases, so its extension needn’t be sharply bounded. We can line up
a series of men, shading from tall to non-tall by imperceptibly tiny stages: there
is no sharp boundary to the class of tall men.3

Now suppose that it is claimed that the concept of an effectively computable
function similarly allows the possibility of borderline cases, so its extension too is
not sharply bounded. The picture is that we can likewise line up a series of func-
tions shading gradually from the effectively computable to the non-computable,
and again there is no sharp boundary to be found.

If that picture is right, then the extension of ‘effectively computable function’
is blurry. But the extension of ‘recursive function’ is of course entirely sharp.
So the two concepts don’t strictly speaking have the same extension, and the
Church–Turing biconditional can’t be strictly true.4

We have, however, no compelling reason to suppose that this picture is right.
To be sure, our initial characterization of a step-by-step algorithm used vague
talk (e.g. we said that the steps should be ‘small’). But note that it just doesn’t
follow from the fact that the idea that of an algorithm is vague that there can be
borderline cases of algorithmically computable functions.

Compare: I wave an arm rather airily and say, ‘The men over there are great
logicians’. The sense of ‘over there’ is vague; yet I may determinately refer to
none other than Gödel, Church and Kleene, if they are the only men in the
vicinity I sweepingly gesture towards (so on any reasonable sharpening of ‘over
there’ in the context, I pick out the same men). Likewise, even if informal talk
of effectively computable functions is in some sense an imprecise verbal gesture,
it could be the case that this gesture picks out a determinate class of functions
(i.e. the only natural class in the vicinity, which is located by any reasonable
sharpening of the idea of a function calculable by an algorithm proceeding by
small steps). For example, it could be the case that any function presented as
computable by a step-by-step process which is a borderline algorithmic process
(because the steps are verging on the too ‘big’) is also computable by a Turing
machine. And not only could that be the case, but arguably it is the case, as
we’ll see later.

In a slogan, then: vagueness in the sense of ‘effectively computable’ does not
necessarily make for vagueness in the extension – and the Church–Turing Thesis
is a claim about extensions.5

3I won’t here consider the so-called epistemic theory of vagueness according to which there
really is a sharp boundary to the class of tall men, but we don’t and can’t know where it is:
see the Introduction to Keefe and Smith (1999). Enthusiasts for the epistemic theory will have
to rewrite this subsection to accord with their preferred way of thinking of vagueness.

4Compare: ‘The extension of ‘effectively computable’ is vague and . . . ‘recursive’ sharpens
it, which is the main reason [the Thesis] is important and was introduced by Church in the
first place.’ (Nelson, 1987, p. 583, my emphasis.)

5For us, at any rate, it would be a mistake to write, e.g., ‘Church’s thesis is the proposal
to identify an intuitive notion with a precise, formal, definition’ (Folina, 1998, p. 311): it isn’t
the notions but their extensions which are being identified.
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So there is no simple argument for the supposed borderline vagueness in the
extension of ‘effectively computable function’. And now we can just be blunt. If
that extension did suffer from borderline vagueness, then there could be a series
of functions which – as we march along from one function to the next – takes us
from the plainly computable-in-principle to the plainly not-computable-even-in-
principle via borderline cases. But as far as I know no one has ever purported
to describe such a series. I suggest that’s because there isn’t one.

(c) Consider next the discussion of the concept of a polyhedron in Imre Lakatos’
wonderful Proofs and Refutations (1976). Lakatos imagines a class examining the
Euler conjecture that, for any polyhedron, V − E + F = 2.6 And, after some
discussion of Cauchy’s argument in support of the conjecture, the student Alpha
suggests a counterexample. Take a solid cube with a cubic ‘hole’ buried in the
middle of it. This has 12 faces (six outside faces, six inside), 16 vertices, and 24
edges, so in this case V − E + F = 4.

Has Alpha described a genuine counterexample? ‘Polyhedron’ means some-
thing along the lines of ‘a solid bounded by polygonal faces’. But does Alpha’s ex-
ample count as a solid in the originally intended sense? Well, our pre-theoretical
practice arguably just doesn’t settle whether Alpha’s hollowed-out cube falls
under our pre-theoretical concept of a polyhedron or not: so that concept could
be sharpened up in different ways, quite consistently with the implicit infor-
mal rules we’d mastered for applying and withholding the concept to ‘ordinary’
cases. To put it another way: Alpha’s example reveals that our pre-theoretic
talk about polyhedra fails to pick out a single mathematical ‘natural kind’ – we
can legitimately disambiguate the term in more than one way, and we need to
disambiguate it before we can prove or disprove Euler’s conjecture.

Let’s say that a term is ‘poly-vague’ if it ambiguously locates more than
one mathematical kind (though each kind might be precisely bounded).7 And
whether or not ‘polyhedron’ is a good example, the general phenomenon of
informal mathematical concepts that can be rigorized in more than one way
is surely incontestable. So is ‘computable’ another one? If it is, then our pre-
theoretic talk here fails to pick out a single mathematical ‘natural kind’, and
– before disambiguation – it will therefore be indeterminate what the Church–
Turing Thesis says, and hence the Thesis as it stands will be unprovable.

But is ‘computable function’ poly-vague in this way? Well, we have no reason
whatsoever to suppose that there is more than one mathematically natural class
of total functions in the vicinity picked out by the intuitive notion of a com-
putable function. As we’ve said before, all our attempts to define computabil-
ity famously point to exactly the same class of μ-recursive/Turing-computable

6V , of course, is the number of vertices, E the number of edges, F the number of faces.
7The unfriendly might think it is wrong to think of this as involving any kind of vagueness,

properly so called, and that ‘confused’ would be a better label than ‘poly-vague’ – see Camp
(2002). In a more friendly spirit, you might think that what we are talking about again is a
kind of ‘open texture’ – see Shapiro (2006a). But let’s not fuss about how exactly to describe
the situation, for the point I need to make isn’t sensitively dependent on such details.

327



35 Proving the Thesis?

functions. So we certainly can’t take the claim that ‘computable function’ is
poly-vague as a starting point for arguing about the Church–Turing Thesis.

35.3 Formal proofs and informal demonstrations

In sum, we can’t take either vagueness-in-extension or poly-vagueness for granted
here. So what are we to make of Kleene’s blunt claim that the idea of an ef-
fectively computable function is a vague intuitive one? We seem to be left with
nothing much more than the truism that our intuitive, pre-theoretical notion is
intuitive and pre-theoretical (i.e. to grasp it doesn’t involve grasping an explicit
and sharply formulated general theory of what makes for a computation).

So consider again Kleene’s expressed pessimism about whether we can ‘extract’
from our pre-theoretical notion a clearly defined account suitable for theoreti-
cal purposes (see the quotation at the end of Section 34.1). Kleene seems to
be taking it as obvious that there aren’t enough constraints governing our pre-
theoretical notion – constraints which anyone who has cottoned on to the notion
can be brought to acknowledge – which together with mathematical argument
will suffice to establish that the computable functions are the recursive ones.
But that claim is not obvious. It needs to be defended as the conclusion of some
arguments: it can’t just be asserted as an unargued presumption.

Here is the same presumption at work again, this time with a couple of added
twists:

How can we in any wise demonstrate [that the intuitively calculable
functions are those computable by each of the precise definitions
that have been offered]? Ultimately only in some formal system
where the vague intuitive concept ‘calculable function’ would have
to be made precise before it could be handled at all, so that in any
case the vague intuitive idea would be eliminated before we began,
so we would certainly fail to demonstrate anything about it at all.
(Steen, 1972, p. 290)

The added assumptions here are that (i) formal systems can’t handle vague
concepts, and (ii) any genuine demonstration must ‘ultimately’ be in some formal
system.

But neither assumption is compelling. (i) There are in fact a number of com-
peting, non-classical, ways of formally representing the semantics of vague con-
cepts, if we want to be explicit in modelling their vagueness. But waive that
point.8 Much more importantly, (ii) formalization doesn’t somehow magically
conjure proofs where there were none before. Formalization enforces honesty
about what assumptions and inferential rules are being relied on, enabling us to
expose suppressed premisses and inferential fallacies, to avoid trading on ambi-
guities, and so forth. We thereby push to their limits the virtues of explicitness

8For some details, see e.g. the editors’ Introduction to Keefe and Smith (1999).
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and good reasoning that we hope to find in common-or-garden mathematical
arguments. But those common-or-garden arguments can perfectly well involve
good reasoning and sound demonstrations before we go formal.

Here are two examples. First, take the diagonal argument for what we cheer-
fully labelled Theorem 11.1, i.e. the result that not all effectively computable
functions are primitive recursive.9 Surely, by any reasonable standards, that
argument counts as a perfectly good proof, even though one of the concepts it
involves is ‘a vague intuitive idea’.

Second, take the claim endorsed by almost all those who say that the Church-
Turing Thesis is not provable, namely that it would be disprovable if false.10

The thought is that if we could find a clear case of an intuitively computable
function which is provably not recursive, then that would decisively settle the
matter. But that again would be a proof involving the application of an intuitive
unformalized notion.

The point here is worth highlighting. For note that the argument for Theo-
rem 11.1, for example, didn’t invoke mere plausibility considerations. It was, let’s
say, a demonstration in informal mathematics. We might distinguish, then, three
levels of mathematical argument – mere plausibility considerations, informal
demonstrations, and ideally formalized proofs (or truncated versions thereof).11

Some philosophers write as if the important divide has ideally formalized proofs
on one side, and everything else on the other, pieces of informal mathematics and
mere plausibility considerations alike. But that’s simply not an attractive view: it
misrepresents mathematical practice, and also pretends that the formal/informal
distinction is much sharper than it really is.12 Moreover, it certainly doesn’t draw
the line in a way that is relevant to our discussion of the status of the Church–
Turing Thesis. The question we set ourselves is whether we can do better than
give quasi-empirical plausibility considerations. If we can support the Thesis

9I was hardly stepping out of line in calling this result a ‘theorem’ ! See, for just one
example, ‘Theorem 3.11’ of Cohen (1987, §3.6): ‘There is an intuitively computable function
which is not primitive recursive’ (my emphasis).

10For dissent, see Folina (1998) – but this again depends on the unargued presumption that
any genuine proof must be translatable into a formal proof involving no vague concepts.

11One of the nicest examples of a plausibility consideration I know concerns Goldbach’s
conjecture that every even number greater than 2 is the sum of two primes. Just being told
that no one has yet found a counterexample among the even numbers so far examined is not
at all persuasive (after all, there are well-known examples of arithmetical claims, e.g. about
the proportion of numbers up to n that are primes, which hold up to some utterly enormous
number, and then fail). However, if you do a graphical analysis of the distribution of the
pairs of primes that add to the successive even numbers you get a remarkable, fractal-like,
pattern called the ‘Goldbach Comet’ which reveals a lot of entirely unexpected structure (I
won’t reproduce it here: an internet search will reveal some nice examples). And this suddenly
makes Goldbach’s conjecture look a lot more plausible. It no longer looks like a stand-alone
oddity, but seems as if it should have interesting interconnections with a rich body of related
propositions about the distribution of primes. Though that does indeed make it seem all the
more puzzling that the conjecture has resisted proof.

12For emphatic resistance to exaggerating the formal/informal distinction, see Mendelson
(1990).
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using arguments that have something like the demonstrative force of our diagonal
argument to show that there are computable functions which aren’t p.r., then this
is enough to support a bold stance on the Thesis (in the sense of Section 34.4).

35.4 Squeezing arguments

(a) We have seen that there is no obvious sense of ‘vague’ in which it is clear
at the very outset both that (i) our informal notion of an effectively computable
function is vague and that (ii) this kind of vagueness must prevent our demon-
strating that the Church–Turing thesis is true. Which, of course, doesn’t show
that such a demonstration is possible, but at least it means that we shouldn’t
give up too soon on the project of looking for one.

So let’s consider how we can show that a pre-theoretical, intuitive, concept C
is co-extensive with some explicitly defined concept E. Here’s one key type of
argument.

Suppose first that our intuitive understanding of what is sufficient for being
C enables us to show that, for any suitable α,

1. If α is E, then α is C.

Second, we might also have a conclusive warrant for a claim of the form

2. If α is C, then α is E′.

where E′ is another clearly defined formal condition. For our intuitive under-
standing of what is necessary for being C might enable us to show, equivalently,
that

2′. If α is not-E′, then α is not-C.

It follows, to put it schematically, that E → C → E′, and we have sandwiched
the informal condition of being C between two formally defined conditions.

But now suppose that we can also prove, as a theorem relating the two formal
concepts, that

3. If α is E′, then α is E.

Then this squeezes together the formal conditions that sandwich C, showing
that E → C → E. In other words, we can conclude from (1) to (3) that

4. α is C if and only if α is E.

We’ll call this type of argument for proving some intuitive concept coextensive
with a formal concept a squeezing argument.

(b) It might help to have a quick example of this type of argument at work (an
example which is important in its own right).13

13This is a version of an argument famously given by Georg Kreisel (1972). I rather like
this illustrative example: but whether you agree will depend, of course, on whether you buy
its first two premisses (the third premiss being non-negotiable).
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Take the αs to be arguments couched in a given regimented first-order lan-
guage. And let C be the intuitive notion of being valid-in-virtue-of-form for such
arguments – where an argument α is valid in the classical intuitive sense if, how-
ever we reinterpret the relevant non-logical vocabulary, then given α’s premisses
are true, its conclusion is true too. This intuitive notion might well be counted
as ‘vague’, given that it isn’t sharply specified just what counts as a permissible
reinterpretation here.14 However, the constraints on the intuitive notion do in
fact suffice to pin down a unique extension for C. Here’s how.

Take E to be the property of having a proof in a standard proof system for
first-order logic. Then (for any argument α)

1. If α is E, then α is C.

That is to say, the proof system is sound: if you can formally deduce ϕ from
some bunch of premisses Σ, then the inference from Σ to ϕ is intuitively valid.
(Their intuitive soundness is, of course, a principal reason why you accepted the
proof system’s rules in the first place!)

Second, let’s take E′ to be the property of having no countermodel in the
natural numbers. To explain, a countermodel for an argument is an interpretation
that makes the premisses true and conclusion false; and a countermodel in the
natural numbers is one whose domain of quantification is the natural numbers,
where any constants refer to numbers, predicates have sets of numbers as their
extensions, and so forth. Then, for any argument α,

2′. If α is not-E′, then α is not-C.

That’s because, even if we are a bit foggy about the limits to what counts as an
‘interpretation’ in the sense used in the intuitive characterization of the idea of
validity, we must recognize at least this much: if α does have a countermodel in
the natural numbers – i.e. we can reconstrue the argument to be talking about
numbers in such a way that the premisses are true and conclusion false – then
α certainly can’t be valid-in-virtue-of-its-form.

But it’s a standard result about first-order logic that

3. If α is E′, then α is E.

That is to say, if α has no countermodel in the natural numbers, then α can be
deductively warranted.15

Putting all that together, we get

14Recall: on the standard formal notion of an ‘interpretation’ which we briefly sketched in
Section 3.3, we fix on a determinate set of objects to be the domain of quantification. Compare
the intuitive, pre-theoretic, notion of an interpretation. Are we now allowed to be more relaxed
and interpret quantifiers as running over e.g. simply everything, i.e. over a domain which is
‘too big’ to be a set? Or aren’t we?

15Recall: the downward Löwenheim-Skolem theorem tells us that if there’s any countermodel
to α, then there is a countermodel whose domain is some or all the natural numbers. So if α has
no countermodel in the natural numbers it can have no countermodel at all, so by completeness
is deductively valid.
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4. α is C if and only if α is E.

In sum, take the intuitive notion of a first-order inference which is valid in virtue
of its form: then our pre-theoretic assumptions about that notion constrain it to
be coextensive with a sharply defined formal concept.

Which, I claim, is a very nice result. But whether you buy the details of that
argument or not, it illustrates one sort of reasoning we might use to argue about
computability. So the next question is whether we can turn a similar squeezing
trick when the αs are total numerical functions f , C is effective computability,
and E is recursiveness/Turing-computability, and hence can demonstrate the
Church–Turing Thesis.

35.5 The first premiss for a squeezing argument

The first premiss of a squeezing argument for computability is surely secure.

1. If a function f is E (μ-recursive), then it is C (effectively computable in
the intuitive sense).

For if f is μ-recursive it is Turing-computable, so there is a Turing-program
which computes it; and a human calculating agent can in principle follow the
entirely determinate algorithmic instructions in that program and therefore –
given world enough and time – compute the value of f for any given input. So
the function is in-principle-computable in the intuitive sense. Which proves the
first premiss.

35.6 The other premisses, thanks to Kolmogorov and

Uspenskii

Now for the really contentious section! To complete the squeezing argument,
we need to find a formally framed condition E′ which is weak enough to be a
necessary condition for algorithmic computability, yet strong enough to entail
μ-recursiveness (remember: we are concentrating on total functions). Can we
find such a condition?

(a) With a bit of regimentation, we can think of Turing’s epoch-making 1936
paper as gesturing towards a suitable E′ and giving us the beginnings of a defence
of the second and third premisses for a squeezing argument.

As we’ve seen, Turing notes various features that would prevent a procedure
from counting as algorithmic in the intuitive sense. For example, an algorithmic
procedure can’t require an infinity of distinct fundamental symbols: ‘if we were
to allow an infinity of symbols, then there would be symbols differing to an
arbitrarily small extent’ (given they have to be inscribed in finite cells), and then
the difference between symbols wouldn’t be recognizable by a limited computing
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agent. For similar reasons, the computing agent can’t ‘observe’ more than a
limited amount of the workspace at one go. And computations shouldn’t involve
arbitrarily large jumps around the workspace which can’t be reduced to a series
of smaller jumps – a bound is set by cognitive resources of the computing agent,
who needs to be able to recognize where to jump to next.16

Now put together the requirements of a finite alphabet, restricted local action
on and movement in the workspace, etc. with whatever other similar constraints
we can muster. We will get a – formally specifiable – composite necessary con-
dition E′ for being calculable by an acceptably algorithmic procedure. In short,
we will have something of the form

2. If f is C, then f is E′.

Then, to complete the squeeze, we need to be able to prove that any total function
which is E′ is computable by a standard Turing machine/is μ-recursive. That is,
we need to prove

3. If f is E′, then f is E.

Turing’s remarks about how we can break down more general kinds of computa-
tion into small steps, and hence don’t lose generality in concentrating on what
we now think of as standard Turing machines (which e.g. change just one cell at
a time), can be read as intimating the possibility of this sort of result.

There’s now bad news and good news. The bad news is that Turing himself
isn’t clear about exactly how to fill in the necessary condition E′ in order to
complete the argument. And in so far as he is clear, his way of spelling out
E′ is surely too strong to look uncontentious. For example, when we do real-
life computations by hand, we often insert temporary pages as and where we
need them and equally often throw away temporary working done earlier. In
other words, our workspace doesn’t have a fixed form: so when we are trying to
characterize intuitive constraints on computation we shouldn’t assume straight
out – as Turing does – that we are dealing with computations where the ‘shape’
of the workspace stays fixed once and for all.

The good news is that this and other worries can be quieted by appeal
to the very general condition for algorithmic computation given in 1958 by
A. N. Kolmogorov and V. A. Uspenskii in their paper ‘On the definition of an
algorithm’ (English translation 1963). Note, however, that we do not need to
accept the claim implicit in their title, namely that the Kolmogorov–Uspenskii
(KU) account gives necessary and sufficient conditions for being an algorithm:
for our purposes, necessity is enough: I’ll return to this point.

My claim, then, will be that when the necessary condition E′ is identified
with being-computable-by-a-KU-algorithm, the second and third premisses of the
Turing-style squeezing argument are demonstrably true. So in the rest of this sec-
tion, we will spell out the linked ideas of a KU-algorithm and KU-computability

16For more on the same lines, see Turing (1936, §9).
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(very slightly modified from Kolmogorov and Uspenskii’s original version). We
defend premiss (2) with E′ understood in terms of KU-computability. We then
indicate briefly how the corresponding technical result (3) is proved, and so
complete the squeeze.

(b) For Turing’s reasons,

i. We still take the alphabet of symbols which any particular algorithm
works on to be finite.

But we now start relaxing Turing’s assumptions about the shape of the work-
space, to get the most general story possible.

First, though, a terminological point. We want a way of referring to the whole
collection of ‘cells’ that contain data – whether they are in some general area
where computations can take place, or in some reserved areas for passive memory
storage (‘memory registers’). In the case of Turing machines which lack such
reserved areas, it was natural enough to use the term ‘workspace’ for the whole
collection of cells. But now we are moving to a more general setting – and given
that ‘workspace’ naturally contrasts with ‘reserved memory’ – we better use a
different term to make it clear that we intend comprehensive coverage. I suggest
dataspace – which has the added advantage of having a more abstract ring to it,
and so doesn’t too readily suggest a simple spatial arrangement.

Since we are going to allow the extent of the dataspace to change as the
computation goes along, we can take it to consist of a finite network of ‘cells’ at
every stage, adding more cells as we need them. So,

ii. The dataspace at any stage of the computation consists of a finite collec-
tion of ‘cells’ into which individual symbols are written (we can assume
that there is a special ‘blank’ symbol, so every cell has some content).
But now generalizing radically from the ‘tape’ picture, we’ll allow cells
to be arranged in any network you like, with the only restriction being
that there is some fixed upper limit (which can be different when imple-
menting different algorithms) on the number of immediate ‘neighbours’
we can get to from any given cell. Being ‘neighbours’ might be a matter
of physical contiguity, but it doesn’t have to be: a cell just needs to carry
some kind of ‘pointer’ to zero or more other cell(s). Since the algorithm
will need to instruct us to operate on cells and certain neighbours and/or
move from one cell (or patch of cells) to some particular neighbour(s),
we’ll need some system for differentially labelling the ‘pointers’ from a
cell to its various neighbours.

For vividness, you can depict cells as vertices in a directed graph, with vertices
being linked to their neighbours by ‘colour-coded’ arrows (i.e. directed edges):
the ‘colours’ are taken from a given finite palette, and the arrows linking one cell
to its immediate neighbours are all different colours.17 And why put an upper

17For enthusiasts: here we have slightly modified Kolmogorov and Uspenskii’s original treat-
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bound on the size of the colour palette (and so put an upper bound on the
number of different arrows leading out from a given vertex)? Well, consider a
finite computing agent with fixed ‘on board’ cognitive resources who is trying
to follow program instructions of the kind that require recognizing and then
operating on or moving around a group of cells linked up by particular arrows:
there will be a fixed bound on the number of discriminations the agent can make.

Subject to those constraints, the dataspace can now be structured in any way
you like (it needn’t be equivalent to a tape or even to an n-dimension ‘sheet’
of paper): we only require that the network of cells is locally navigable by a
computing agent with fixed cognitive resources.

Next, we’ve said all along that an algorithm should proceed by ‘small’ steps.
So we can certainly make the weak requirements that

iii. At every stage in the computation of a particular algorithm, a patch of
the dataspace of at most some fixed bounded size is ‘active’.

iv. The next step of the computation operates only on the active area, and
leaves the rest of the dataspace untouched.

Without loss of generality, we can think of the ‘active’ area of dataspace at any
point in the computation to be the set of cells that are no more than n arrows
away from some current focal vertex, where for a given algorithmic procedure n
again stays fixed throughout the computation. Why keep n fixed? Because the
maximum attention span of a limited cognitive agent stays fixed as he runs the
algorithm (he doesn’t get smarter!). However, we will otherwise be ultra-liberal
and allow the bound n to be as large as you like.18

Now for perhaps the crucial radical relaxation of the Turing paradigm:

v. A single computing step allows us to replace a patch of cells in the active
area of the dataspace with particular contents and a particular pattern
of internal arrows, by a new collection of cells (of bounded size) with new
contents and new internal arrows.

So, at least internally to the active area of the dataspace, we can not only fiddle
with the contents of the cells at vertices, but change the local arrangement of
coloured arrows (while preserving incoming arrows from outside the active area).

ment. They treat the dataspace as an undirected graph; putting it in our terms, if there is an
arrow of colour c from vertex v1 to v2, then there is an arrow of colour c from vertex v2 to
v1. Hence, for them, the restriction to a bounded number of ‘arrows out’ from a vertex implies
a similar restriction to the number of ‘arrows in’. But this is unnecessary, and is probably
unwelcome if we want maximal generality, as is in effect shown by the independent work in
Schönhage (1970, 1980).

18At the end of Section 35.7, we note that even this ‘fixed bound’ constraint can be lifted:
but for the moment, we are motivating something like the original KU version. And get the
order of the quantifiers right here! – we are only making the weak claim that for any particular
algorithm there is some bound on the size of its active dataspace as it runs; we aren’t saying
that there has to be some one bound which obtains across all algorithms.
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As announced, then, the shape of the dataspace itself is changeable – and the
dataspace can grow as needed as we replace a small patch by a larger patch with
extra cells and new interlinkings.

Having worked on one patch of the dataspace, our algorithm needs to tell us
which patch to work on next. And, for Turing’s reasons,

vi. There is a fixed bound on how far along the current network of cells the
focal vertex of the active patch shifts from one step of the algorithm to
the next.

But again, we will be ultra-relaxed about the size of that bound, and allow it to
be arbitrarily large for any given algorithm.

Thus far, then, we have described the dataspace and general mode of operation
of a KU-algorithm. We now need to define the character of the algorithm itself.

vii. First there can be an initial set of instructions which sets up and struc-
tures a patch of dataspace, which ‘writes in’ the numerical input to the
algorithm in some appropriate way. We might, for example, want to set
up something with the structure of a register machine, with some ini-
tial numerical values in different registers. Or – as with our computation
of the Ackermann-Péter function – we might start by writing into the
dataspace an equation we are going to manipulate. Rather differently, we
might want to start by writing a higher-level program into the dataspace,
and then we will use the rest of the algorithm as an interpreter.

viii. The body of a KU-algorithm then consists in a finite consistent set of
instructions for changing clumps of cells (both their contents and inter-
linkings) within the active patch and jumping to the next active patch.
Without loss of generality, we can follow Turing in taking these instruc-
tions as in effect labelled lines, giving bunches of conditional commands
of the form ‘if the active patch is of type P , then change it into a patch
of type P ′/move to make a different patch P ′′ the new active patch; then
go on to execute line qj/halt’. The instructions are to be implemented
sequentially, one line at a time.

ix. Finally, we will need to specify how we read off numerical output from
the configuration of cells if and when we receive a ‘halt’ instruction after
a finite number of steps.

We can then offer the following natural definition

x. A (monadic, total) function f(n) is then KU-computable if there is some
KU-algorithm which, when it operates on n as input, delivers f(n) as
output.

The generalization to many-place f(�n) is obvious.
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Now, we’ve given conditions (i) to (x) in a rough and informal style. But it
should be clear enough how to go about developing the kind of fully formal ab-
stract characterization articulated in detail by Kolmogorov and Uspenskii. Let’s
not go into that, however: the important thing is to grasp the basic conception.

(c) Such is the great generality of the KU story, it probably covers far too
many procedures to count as giving an analysis of the intuitive notion of an
algorithm. For what we ordinarily think of as algorithms proceed, we said, by
‘small’ steps and KU-algorithms can proceed by very large operations on very
large chunks of dataspace. But we needn’t worry about that at all. The only
question we need to focus on is: could the KU story possibly cover too little?
Well, how could a proposed algorithmic procedure for calculating some function
fail to be covered by the KU specification?

The KU specification involves a conjunction of requirements (finite alphabet,
logically navigable workspace, etc.). So for a proposed algorithmic procedure to
fail to be covered, it must falsify one of the conjuncts. But how? By having
(and using) an infinite number of primitive symbols? Then it isn’t usable by a
limited computing agent like us (and we are trying to characterize the idea of
an algorithmic procedure of the general type that agents like us could at least in
principle deploy). By making use of a different sort of dataspace? But the KU
specification only requires that the space has some structure which enables the
data to be locally navigable by a limited agent. By not keeping the size of active
patch of dataspace bounded? But algorithms are supposed to proceed by the
repetition of ‘small’ operations which are readily surveyable by limited agents.
By not keeping the jumps from one active patch of dataspace to the next active
patch limited? But again, a limited agent couldn’t then always jump to the next
patch ‘in one go’ and still know where he was going. By the program that governs
the updating of the dataspace having a different form? But KU-algorithms are
entirely freeform; there is no more generality to be had.

The claim is that the very modest restrictions on finiteness of alphabet and
bounded locality of operation in the dataspace are compulsory for any algorithm:
and otherwise, the KU specification imposes no significant restrictions.19 So, as
Kolmogorov and Uspenskii (1963, p. 231) themselves asserted, ‘any algorithm is
essentially subsumed under the proposed definition’. Hence, as we want:

2. If f is C (effectively computable, by some algorithm), then f is E′ (KU-
computable).

(d) We need not pause too long over the last premiss of the squeezing argument,
i.e. the technical result

3. If f is E′ (KU-computable), then f is E (μ-recursive).

19That’s right, at any rate, given our small modification of their original story, as remarked
in the last footnote.
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We get this by arithmetization once again – i.e. we use just the same kind of
coding argument that we’ve used in outline twice before, first in Section 29.4 to
show that the Ackermann-Péter function is μ-recursive, and then Section 32.3
to show that Turing-computable total functions are all μ-recursive. And indeed,
we already implied by a rather handwaving argument in Section 29.5 that this
kind of coding argument looked as if it could be used to give a general defence
of Church’s Thesis. So, in brief:

Sketch of a proof sketch Suppose the KU-algorithm A computes a total monadic
function f(n) (generalizing to many-place functions is routine). Define a function
c(n, j) whose value suitably codes for the state of play at the j-th step of the run
of A with input data n – i.e. the code describes the configuration and contents
of the dataspace and locates the active patch. And let the state-of-play code
default to zero once the computation has halted, so the computation halts at
step number μz[c(n, Sz) = 0]. Therefore the final state of play of the computation
has the code c(n, μz[c(n, Sz) = 0]). And hence, using a decoding function d to
extract the value computed at that state of play, we get

f(n) = d(c(n, μz[c(n, Sz) = 0]))

But d will (fairly trivially) be primitive recursive. So, as usual with this type
of proof, all the real work goes into showing that c(n, j) is p.r. too. That result
is basically ensured by the fact that the move from one state of play to the
next is always boundedly local (so the transition from c(n, j) to c(n, Sj) can be
computed using only ‘for’ loops). Hence f(n) is μ-recursive. �

The squeeze is therefore complete! We have shown that the (total) computable
functions are just the μ-recursive ones.

(e) A reality check. At the beginning of subsection (c) we said ‘Such is the
great generality of the KU story, it probably covers far too many procedures
to count as giving an analysis of the intuitive notion of an algorithm’. But in
subsection (d) we have just argued that the KU-computable functions are exactly
the μ-recursive functions and hence, by the squeezing argument, are exactly the
effectively computable functions. Those claims might look to be in some tension:
it is important to see that they are not.

To repeat, the idea of a KU-algorithm may well be too wide to capture the in-
tuitive notion of an algorithm – i.e. more procedures count as KU-algorithms than
count as mechanical, step-by-small-step, procedures in the ordinary sense. But
quite consistently with this, the KU-computable functions can be exactly those
functions which are algorithmically computable by intuitive standards. That’s
because – by the third premiss of the squeezing argument – any function that
might be computed by a KU-algorithm which operates on ‘over-large’ chunks
of dataspace (i.e. a KU-algorithm which is too wild to count as an intuitive
algorithm) is also tamely computable by a standard Turing machine.

338



The squeezing argument defended

35.7 The squeezing argument defended

I will consider three responses, the first two very briefly, the third – due to Robert
Black (2000) – at greater length.

(a) One response is to complain that the argument illegitimately pre-empts the
possible future development of machines that might exploit relativistic or other
yet-to-be-discovered physical mysteries in order to trump Turing machines.

But such complaints are quite beside the point. We need, as before, to sharply
distinguish the Church–Turing Thesis proper – which is about what can be
computed by finite step-by-step algorithmic procedures – from a claim about
what might perhaps be computed by exploiting physical processes structured in
some other way.

(b) A second response is to complain that the argument illegitimately pre-
empts the future development of mathematics: ‘The various familiar definitions
of computable functions (e.g. in terms of λ-definability and Turing machines) are
radically different one from another. We can’t second-guess how future research
might go, and predict the new sort of procedures that might be described. So
how do we know in advance that another definition won’t sometime be offered,
which can’t be regimented into KU form?’

Well, true, we can’t predict how mathematics develops. New paradigms for
abstract ‘computing’ processes may be discovered (mathematicians are always
generalizing and abstracting in radical ways). We certainly aren’t in the business
of second-guessing such developments. We are only making the conceptual point
that, whatever ideas emerge they won’t count as ideas of algorithmic calculation
in the classic sense if they don’t cleave to the basic conception of step-by-small-
step local manipulations in a dataspace that can be navigated by limited agents.
But that conception is all we built into the idea of a KU algorithm. So, to repeat,
the claim is: if a procedure is properly describable as algorithmic at all, it will
be a KU algorithm.

(c) I am in considerable agreement with Black’s excellent discussion; but we
part company at the very last step in our responses to Kolmogorov and Uspen-
skii. Towards the end of his paper, he writes:

Given the extreme generality of [their] definition of locality, I think
it is fair to say that we here have a rigorous proof of Church’s
thesis if we can assume that bounded attention span is built into
the intuitive notion of effective computation. However, this is a
rather big ‘if’. . . . [I]t is unclear why the idealization which al-
lows a potentially infinite passive memory (the unlimited supply
of Turing-machine tape) should not be accompanied by a corre-
sponding idealization allowing unlimited expansion of the amount
of information which can be actively used in a single step. (Black,
2000, p. 256, his emphasis)
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However, the reason for not making the second idealization in fact seems pretty
clear.

Let’s start, though, with a reminder about the first idealization. The sense in
which we ‘allow a potentially infinite passive memory’ is that we are simply silent
about the extent of the dataspace (other than, in the KU specification, assuming
that the occupied space is finite at any stage). In the same way, we are silent
about how many steps a successful algorithmic calculation may take. And the
reason is the same in both cases. An algorithmic procedure is to be built up from
small steps which can be followed by a cognitive agent of limited accomplishment,
on the basis of a limited amount of local information (the overall state of the
dataspace may well, in the general case, be beyond the agent’s ken). Hence, so
far as the agent is concerned, the state and extent of the non-active portion of
the dataspace at any moment has to be irrelevant, as is the extent of the past
(and future!) of the computation. We count an algorithm as in good standing so
long as it keeps issuing instructions about what to do locally at the next step
(irrespective of the history of the computation or the state of play beyond the
active part of the dataspace).

Of course, the real-world implementation of a particular algorithmic procedure
may well run up against limitations of external physical resources. But if we can’t
keep working away at the algorithm because we run out of paper or run out of
time, then we – so to speak – blame the poverty of the world’s resources rather
than say that there is something intrinsically at fault with our step-by-step
procedure as an in-principle-computable algorithm.

Now, in the KU story, there is another kind of silence – a silence about just
how smart a computing agent is allowed to be. Which means that, for any n,
we allow KU-algorithms which require the computing agent to have an attention
span of ‘radius’ n (i.e. which require the agent to deal at one go with a patch of
cells linked by up to n arrows from some current focal cell). So in that sense, we
do allow an ‘unlimited amount of information’ to be ‘actively used in a single
step’. And to be sure, that looks like a decidedly generous – indeed quite wildly
over-generous – interpretation of the idea that an algorithm should proceed by
‘small’ steps: so we might very well wonder whether every KU-algorithm will be
a genuine algorithm in the intuitive sense. But, as we said before, no matter.
The claim that concerns us is the converse one that a procedure that isn’t a KU-
algorithm won’t count as an algorithm by intuitive standards – a claim which of
course gets the more secure the wider we cast the KU net.

What the KU story explicitly doesn’t allow, though, are procedures which
require the capacities of the computing agent to expand in the course of executing
a given algorithm (so that on runs of the algorithm for different inputs, the agent
has to ‘take in at a glance’ ever bigger patches of dataspace, without any limit).
But isn’t that, contrary to Black’s talk about ‘unlimited expansion’, in fact just
fine? For it surely goes clean against the whole intuitive idea of an idiot-proof
algorithm – which always proceeds by small steps, accessible to limited agents
– that the steps should get ever bigger, without a particular limit, requiring
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ever more cognitive resources from the computer. So Black’s worry is arguably
quite unfounded: in fact, the absence of a limit on the size of the dataspace and
the presence of a limit on ‘attention span’ in the KU story are both natural
concomitants of the same fundamental assumption that we are dealing with
a computing agent of limited internal cognitive capacity, doing limited things
locally.

But we can in fact be more concessive to Black. For note that, to establish the
argument for the third premiss of the squeezing argument, we just need c(n, j)
to be primitive recursive. Suppose, then, that there is a transition function tr
that takes us from the code for the j-th step of the computation for input n to
the code for the j + 1-th step, so c(n, Sj) = tr(n, j, c(n, j)). Then c(n, j) will
certainly be p.r. if tr is. Now suppose that tr involves the use of a restricted
search operator (μz ≤ a(n, j)), where a(n, j) – whose value is to be extracted
from c(n, j) – is a p.r. function giving the size of the active patch of dataspace
that needs to be looked around in applying a transition rule for the next step.
Then tr could still be p.r. even if a(n, j) grows primitively recursively. So in
fact we could tweak the definition of a KU-algorithm to allow the size of the
active patch to grow, as fast as you like so long the growth is governed by some
primitively recursive function, and yet c would still remain p.r., as needed for
the squeezing argument.

Which should be more than enough to quiet Black’s worries.

35.8 To summarize

So I’ve argued that the Church–Turing Thesis, which links some of our earlier
technical results to intuitive claims about axiomatized theories, decidability, etc.,
itself seems susceptible to an intuitively compelling demonstration.

But be that as it may. Let’s stress the key point again. Whatever its exact
status, the Thesis is quite secure enough for us to lean on: and that ’s sufficient
for all our technical results earlier in the book to have their advertised deep
interest.
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Let’s finish by taking stock one last time. At the end of the last Interlude, we
gave a road-map for the final part of the book. So we won’t repeat the gist of
that detailed local guide to recent chapters; instead, we’ll stand further back
and give a global overview. And let’s concentrate on the relationship between
our various proofs of incompleteness. Think of the book, then, as falling into
three main parts:

(a) The first part (Chapters 1 to 7), after explaining various key concepts,
proves two surprisingly easy incompleteness theorems. Theorem 5.7 tells us that
if T is a sound axiomatized theory whose language is sufficiently expressive, then
T can’t be negation complete. And Theorem 6.2 tells us that we can weaken the
soundness condition and require only consistency if we strengthen the other
condition (from one about what T can express to one about what it can prove):
if T is a consistent axiomatized theory which is sufficiently strong, then T again
can’t be negation complete.

Here the ideas of being sufficiently expressive/sufficiently strong are defined
in terms of expressing/capturing enough effectively decidable numerical proper-
ties or relations. So the arguments for our two initial incompleteness theorems
depend on a number of natural assumptions about the intuitive idea of effec-
tive decidability. And the interest of those theorems depends on the assumption
that being sufficiently expressive/sufficiently strong is a plausible desideratum on
formalized arithmetics. If you buy those assumptions – and they are intuitively
attractive ones – then we have proved Gödelian incompleteness without tears
(and incidentally, without having to construct any ‘self-referential’ sentences).
But it isn’t very satisfactory to leave things like that, given the undischarged
assumptions. And much of the ensuing hard work over the nearly three hun-
dred pages that follow is concerned with avoiding those assumptions, one way
or another.

(b) The second part of the book (Chapters 8 to 28) proves incompleteness
again, without relying on informal assumptions about a theory’s being suffi-
ciently expressive/sufficiently strong, and without relying on the idea of effec-
tive decidability at all. Two ideas now drive the proofs – ideas that are simple
to state but inevitably rather messy to prove. (i) The first idea involves the
arithmetization of syntax by Gödel-numbering: we show that key numerical re-
lations like m codes for a PA proof of n are primitive recursive, and similarly
for any p.r. axiomatized theory. (ii) The other idea is that PA and even Q are
p.r. adequate theories: that is to say, they can express/capture all p.r. functions
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and relations. With these two ideas in place, the rest of the argument is then
relatively straightforward. We can use Gödel’s method of explicitly constructing
a particular sentence G which, via coding, ‘says’ of itself that it isn’t provable.
Or, what comes to much the same, we can prove the Diagonalization Lemma and
hence that there is a Gödel sentence, in the sense of a fixed point for ¬Prov(x),
even if we don’t explicitly construct one. Either way, we can then show that PA is
incomplete if sound, since it can’t prove its Gödel sentences. And again, we can
weaken the semantic assumption of soundness to a syntactic assumption, this
time the assumption of ω-consistency. If PA is ω-consistent, then it is incomplete.

Further, the dual arguments for PA’s incompleteness then generalize in easy
ways. By the semantic argument, any sound theory which contains Q and which
is sensibly axiomatized (more carefully: is p.r. axiomatized) is incomplete: more-
over there are undecidable sentences which are Π1 sentences of arithmetic. In
fact, by the syntactic argument, any ω-consistent p.r. axiomatized theory which
contains Q is incomplete, whether it is sound or not. Or, to generalize to the
result closest to Gödel’s own First Theorem, Theorem 17.3: if T includes the
language of basic arithmetic, can capture all p.r. functions, is p.r. axiomatized,
and is ω-consistent, then there are Π1 arithmetical sentences undecidable in T .
And to improve these last results, Rosser’s construction then tells us how to
replace the assumption of ω-consistency with plain consistency.

The Second Theorem then reveals that there are undecidable sentences like
ConT which aren’t ‘self-referential’ either, thus reinforcing a point that emerged
in the first part of the book: incompleteness results aren’t somehow irredeemably
tainted with self-referential paradox. And where the First Theorem sabotages
logicist ambitions, the Second Theorem sabotages Hilbert’s Programme.

(c) The final part of the book (Chapters 29 to 35) returns to the approach to
incompleteness we initially explored in the first part. But we now trade in the
informal notion of effective decidability for the idea of recursive decidability – or
what provably comes to the same, for the idea of being-decidable-by-a-Turing-
machine (the Church–Turing Thesis tells us that this is a good trade). We can
then use results about Turing machines to re-prove incompleteness, still using
Cantor-like diagonalization tricks but now without going via the Diagonalization
Lemma, to get formal analogues of our informal theorems Theorem 5.7 and
Theorem 6.2. And finally, for fun, we also proved the First Theorem again by a
new route, by invoking Kleene’s Normal Form Theorem and the Church–Turing
Thesis that whatever is effectively computable is Turing computable.

So that all gives us a number of different routes to the pivotal Gödelian incom-
pleteness results. Our discussions are certainly not the end of the story: there
are other routes too, some of a different character again, and not involving any
kind of diagonalization tricks. They must remain a story for another day. But
at least we’ve made a start . . .
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Further reading

(a) Let’s begin with four recommendations for parallel reading (fuller publica-
tion details are in the bibliography).

1. For a beautifully clear introduction, presenting and rounding out some of
the logical background we assume in this book, and also giving a very nice
proof of incompleteness, Christopher Leary’s A Friendly Introduction to
Mathematical Logic is hard to beat.

2. George Boolos and Richard Jeffrey’s Computability and Logic (3rd edi-
tion) covers most of the same ground as this book, and more besides, but
does things in a different order – dealing with the general theory of com-
putability before exploring Gödelian matters. There is also a significantly
expanded fourth edition, with John Burgess as a third author: but many
readers may prefer the shorter earlier version.

3. Raymond Smullyan’s terse and very elegant Gödel’s Incompleteness The-
orems is deservedly a modern classic.

4. Even briefer is the Handbook essay on ‘The Incompleteness Theorems’ by
Craig Smoryński, though it still manages to touch on some issues beyond
the scope of this book.

(b) So where next? There are many pointers in the footnotes scattered through
this book. So I’ll confine myself here to mentioning readily available books which
strike me as being, in their different ways, particularly good. First, a group very
directly concerned with Gödelian issues:

5. Raymond Smullyan’s Diagonalization and Self-Reference examines in de-
tail exactly what the title suggests.

6. In his The Logic of Provability , George Boolos explores in depth the logic
of the provability predicate (the modal logic of our ‘�’).

7. For more on what happens when we add sequences of consistency state-
ments to expand an incomplete theory, and much else besides, see Torkel
Franzén, Inexhaustibility .

Next, a couple of fine books that explore Peano Arithmetic and its variants in
more depth:

8. Petr Hájek and Pavel Pudlák’s Metamathematics of First-Order Arith-
metic is encyclopaedic but still accessible.
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Further reading

9. Richard Kaye’s Models of Peano Arithmetic will tell you – among many
other things – about ‘natural’ mathematical statements which are inde-
pendent of PA.

As we saw in the last part of the book, incompleteness results are intimately
related to more general issues about computability and decidability. For more
on those issues, here are a few suggestions:

10. For a brief and very accessible overview, see A. Shen and N. K. Vereshcha-
gin, Computable Functions.

11. Nigel Cutland’s Computability is deservedly a modern classic, with much
more detail yet also remaining particularly accessible.

12. A more recent text, also quite excellent, is S. Barry Cooper, Computability
Theory.

13. Another splendid book – with more historical and conceptual asides than
the others – is Piergiorgio Odifreddi, Classical Recursion Theory.

14. For much more on the Church-Turing Thesis, though of variable quality,
see Olszewski et al. (eds), Church’s Thesis after 70 Years.

Finally, we mentioned second-order arithmetics in Chapter 22. For more on
second-order theories, see the indispensable

15. Stewart Shapiro, Foundations without Foundationalism.
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Gödel, K., 1931. On formally undecidable propositions of Principia Mathematica and

related systems I. In Gödel 1986, pp. 144–195.
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Gödel, K., 1951. Some basic theorems on the foundations of mathematics and their
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Smullyan, R. M., 1992. Gödel’s Incompleteness Theorems. Oxford: Oxford University

Press.

Smullyan, R. M., 1994. Diagonalization and Self-Reference. Oxford: Clarendon Press.

Steen, S. W. P., 1972. Mathematical Logic. Cambridge: Cambridge University Press.

Szabo, M. E. (ed.), 1969. The Collected Papers of Gerhard Gentzen. Amsterdam:

North-Holland.

Tait, W. W., 1981. Finitism. Journal of Philosophy, 78: 524–546. Reprinted in Tait

2005.

Tait, W. W., 2002. Remarks on finitism. In W. Sieg, R. Sommer, and C. Talcott

(eds.), Reflections on the Foundations of Mathematics: Essays in Honor of Solomon

Feferman, pp. 410–419. Association for Symbolic Logic and A K Peters. Reprinted

in Tait 2005.

Tait, W. W., 2005. The Provenance of Pure Reason. Essays in the Philosophy of

Mathematics and Its History. New York: Oxford University Press.

Takeuti, G., 1987. Proof Theory. Amsterdam: North-Holland.

Tarski, A., 1933. Pojecie Prawdy w Jezykach Nauk Dedukcyjnych. Warsaw. Translated

into English in Tarksi 1956, pp. 152–278.

Tarski, A., 1956. Logic, Semantics, Metamathematics. Oxford: Clarendon Press.

Tarski, A., Mostowski, A., and Robinson, R., 1953. Undecidable Theories. Amsterdam:

North-Holland Publishing Co.

Tennant, N., 1978. Natural Logic. Edinburgh: Edinburgh University Press.

Tennant, N., 2002. Deflationism and the Gödel phenomena. Mind, 111: 551–582.

Tennant, N., 2005. Deflationism and the Gödel phenomena: reply to Ketland. Mind,
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Carnap, Rudolf, 173

categorical theory, 194

characteristic function, 9, 92

Chinese Remainder Theorem, 112
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onto, 8

partial, 8, 266, 291

primitive recursive, 84, 87

range, 8
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state-of-play, 303, 306
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total, 8
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g.n., see Gödel number
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Gentzen, Gerhard, 59, 219
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reported views, 155, 262
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Mac Lane, Saunders, 190
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Milne, Peter, 176

minimization

bounded, 94

operator, 94, 266
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model, 193
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Myhill, John, 209
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natural numbers, 1
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negation complete, 2, 24
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numeral, 30
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one-one correspondence, 8
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order-adequate, 61
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P , Gödel’s type theory, 152, 214
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p.r. axiomatized, 147

p.r. function, see primitive recursive

function

PA, 77–78

PA2, 191
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Paris, Jeff, 201

partial function, 8, 266, 291

Peano, Giuseppe, 77

Penrose, Roger, 263

Péter, Rósza, 84, 269, 273

Potter, Michael, 249

PRA0, 104

Presburger, Mojżesz, 78

Presburger Arithmetic, 78

Prf, 169

Primitive Recursive Arithmetic, 105

primitive recursive function, 84, 87

Principia Mathematica, 118–122, 152,

253

proof relation Prf, 127

proof system, 22

Prov, 169

provability predicate, 170

Rosser, 177, 243

Putnam, Hilary, 260
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Quine, W. V., 160
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Ramsey, Frank, 192
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real-conservative, 255
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real-sound, 255

recursive, 84

recursively adequate theory, 277

recursively axiomatized theory, 280

recursively decidable

property, 279

set, 279

theory, 280

recursively enumerable, 280

recursively solvable, 279

reflection schema, 229, 245

regular function, 266

regular minimization, 266

Robinson Arithmetic, see Q

Robinson, Julia, 157

Rosser, Barkley, 165, 166, 177, 318

Russell, Bertrand, 81, 118, 119, 122,

192, 214, 253

Russell’s paradox, 81, 119

schema, pl. schemata, 52

Second Incompleteness Theorem, 6–7,

215, 233, 237

second-order

entailment, 189
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self-halting problem, 306

sentence, 20

set theory, 5, 119, 122, 206, 253, 256,

260

Shapiro, Stewart, 263

Skolem, Thoralf, 79, 84

slim model, 194

Smiley, Timothy, 44

Solovay, Robert, 198

sound theory, 4, 24

arithmetically, 149

speed-up, 183, 198

squeezing argument, 330

state-of-play function, 303, 306

strictly Π1 wff, 63

strictly Σ1, 63

strictly Σ1 wff, 63

successor function, 30

sufficiently expressive, 37

sufficiently strong, 44

super Gödel number, 127

surjective, 8

syntax, 20

arithmetization of, 49, 124–129

TA, 165

Tarski, Alfred, 157, 180, 182

Tarski’s Theorem, 180–182

term, 31

closed, 31

theorem, 23

theory

axiomatized, 19, 23, 147, 279

categorical, 194

complete, 2, 24

consistent, 24

decidable, 24

formal, 19, 23, 147, 279

nice, 150

nice+, 282

nice*, 232

of rational fields, 157

of real closed fields, 157

p.r. adequate, 103

recursively adequate, 277

recursively axiomatized, 280

recursively decidable, 280

sound, 4, 24

total function, 8

transfinite induction, 204

True Basic Arithmetic, 165

Turing, Alan, 11, 281, 287, 319, 320,

323

Turing machine, 11, 287–297

halting problem, 307

self-halting problem, 306

state of, 297

Turing program, 290

dextral, 298

Turing’s Thesis, 11, 291, 315

Turing-computable function, 291

unbounded search, 91, 265

universal closure, 72
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