
Invitation to
Formal Semantics

(Formerly known as Semantics Boot Camp)

Elizabeth Coppock
&

Lucas Champollion

Draft of January 18, 2022

Preface

Semantics, the study of meaning, is a core subfield of linguistics, a
discipline that integrates methods from the social sciences, liberal
arts, and mathematics to study the nature of language. Since the
1970s, much of semantics has taken a formal turn, including tech-
niques from mathematics such as logic and set theory. This text-
book is a gentle and compact introduction to these techniques,
and focuses on the way the meaning of individual expressions in
natural language (words and phrases) combine to produce larger
meaningful expressions such as sentences and texts.

Students are guided through the development of a formally
precise, compositional, model-theoretic account of semantics, us-
ing a logical representation language that is well-rooted in intel-
lectual tradition, yet modern. The book familiarizes students with
the main tools and techniques they need to understand current
research in formal semantics and contribute to the state of the art,
and provides students with training in how to argue for one for-
malized theory over another on the basis of empirical evidence,
through hypothesis comparison. We have used the book to teach
a one-semester introduction to formal semantics for students who
have already studied some semantics, though no previous experi-
ence with logic is required. Beyond its use in traditional classroom
settings, this book is suitable for flipped classrooms (i.e. classes
where students read the textbook at home and use classroom time
to ask questions and solve exercises) and for self-study.

One distinguishing feature of this book is the Lambda Calcu-

3

4

lator, an interactive, graphical application to help students prac-
tice derivations in the typed lambda calculus. It is designed for
both students and teachers, with modules for online classroom
instruction, graded homework assignments, and self-guided prac-
tice. The primary function is to assist in the computation of nat-
ural language denotations up a syntactic tree. To this end, the
program detects common errors and attempts to provide intel-
ligent feedback to the student user and a record of performance
for the instructor. Many exercises in this textbook are designed to
be solved with the Lambda Calculator. The software runs on Mac,
Linux, and Windows machines. The student version of the calcu-
lator is available as a free download from www.lambdacalculator.
com, which also provides documentation and exercise files; the
teacher edition, which offers advanced functionality, is available
to instructors on request by writing to champollion@nyu.edu. The
Lambda Calculator was originally developed by Lucas Champol-
lion, Maribel Romero, and Josh Tauberer (Champollion et al., 2007).
Further contributions to its code and documentation have been
made by Anna Alsop, Dylan Bumford, Raef Khan, Alex Warstadt,
and Nigel Flower, whose help we gratefully acknowledge.

Instructors who have previously taught from Heim & Kratzer
(1998) will find much familiar material in this book, such as the
composition rules: Function Application, Predicate Modification,
Predicate Abstraction, Lexical Terminals, and the Pronouns and
Traces Rule. The most prominent difference in the framework
is that we translate English expressions into well-formed expres-
sions of the lambda calculus rather than specifying denotations
directly using an informal metalanguage containing lambdas. Our
style of analysis involves defining a formal representation language,
which is a logic with a syntax and a semantics (the language of
lambda calculus, with some enhancements borrowed from the
linguistic tradition), and defining a systematic translation from
English to that language (‘translate-first, interpret-second’, in slo-
gan form). Our logic-based representation language is both more

Draft January 18, 2022

www.lambdacalculator.com
www.lambdacalculator.com
champollion@nyu.edu

5

precise and more compact than the informal language based on
paraphrases adopted in Heim & Kratzer (1998). Our derivations
easily fit into tree representations. Here is a sample derivation in-
volving both Predicate Modification and Function Application:

DP
e

ιx .[Textbook(x)∧On(x,sem)]

D
⟨⟨e, t⟩,e⟩

λP . ιx .P(x)

the

N′

⟨e, t⟩
λx .[Textbook(x)∧On(x,sem)]

N
⟨e, t⟩

λx .Textbook(x)

textbook

PP
⟨e, t⟩

λx .On(x,sem)

P
⟨e,⟨e, t⟩⟩

λyλx .On(x, y)

on

DP
e

sem

semantics

Another important departure from the Heim & Kratzer (1998)
framework is in the treatment of presupposition. Partial functions
are replaced with total functions whose range includes an ‘unde-
fined’ value, and a partiality operator is introduced. This means
that Function Application is always defined, it is easy to read off
the presuppositions of a sentence from its logical translation, and
definedness conditions do not get lost along the way.

There is also a greater emphasis on the notion of denotation
relative to a model. This grounds our formal representation more

Draft January 18, 2022

6

firmly in intellectual tradition, and provides us with a method for
capturing entailments, which we view as the primary source of
data for a semantic theory.

We are grateful to Omar Agha, Masha Esipova, and Alicia Par-
rish for assisting us with preparing the text of this book and for
helping us create the answer keys. For helpful discussion, com-
ments and feedback, we are grateful to David Beaver, Natalie Clar-
ius, Kathryn Davidson, Alexander Stewart Davies, Thomas Grano,
Magda Kaufmann, Nathan Klinedinst, Karen Lewis, Dean McHugh,
Zoltan Szabo, James Walsh, Joost Zwarts, and the students of NYU
Semantics I courses in 2019 and 2020.

[a full list of acknowledgements will be added in the final ver-
sion]

Draft January 18, 2022

Contents

1 Introduction 13
1.1 Implication . 13
1.2 Varieties of implication 15

1.2.1 Defining entailment 15
1.2.2 Entailment vs. implicature 24
1.2.3 Entailment vs. presupposition 35

1.3 Theoretical foundations 42
1.3.1 Truth-conditional semantics 42
1.3.2 Compositionality 45
1.3.3 Indirect interpretation 49

2 Sets, relations, and functions 53
2.1 Introduction . 53
2.2 Negative polarity items: the puzzle 54
2.3 Sets . 61
2.4 Negative polarity items revisited 74
2.5 Relations and functions 79

2.5.1 Ordered pairs 79
2.5.2 Relations . 81
2.5.3 Functions . 85

3 Propositional logic 91
3.1 Introduction . 91
3.2 Propositional logic . 92

3.2.1 Formulas and propositional letters 94

7

8 CONTENTS

3.2.2 Boolean connectives 98
3.2.3 Conditionals and biconditionals 111
3.2.4 Equivalence, contradiction and tautology . . . 116

3.3 Summary: Propositional logic 119
3.3.1 Syntax of LProp 119
3.3.2 Semantics of LProp 120

4 Predicate logic 121
4.1 From propositional logic to predicate logic 121

4.1.1 Individual constants 122
4.1.2 Predication . 127
4.1.3 Functions . 135
4.1.4 Identity . 138

4.2 Quantification . 145
4.2.1 Syntax of LPred 158
4.2.2 Semantics of LPred 161

5 Typed lambda calculus 171
5.1 Introduction . 171
5.2 Lambda abstraction 174

5.2.1 Types . 174
5.2.2 Syntax and semantics 181
5.2.3 Application and beta reduction 183
5.2.4 Some applications 189

5.3 Summary . 192
5.3.1 Syntax of Lλ . 192
5.3.2 Semantics of Lλ 200

5.4 Further reading . 203

6 Function Application 205
6.1 Introduction . 205
6.2 Fun with Function Application 215

6.2.1 Agnetha loves Björn 215
6.2.2 Björn is kind . 216
6.2.3 Björn is not kind 218

Draft January 18, 2022

CONTENTS 9

6.2.4 Frida is with Benny 220
6.2.5 Benny is proud of Frida 221
6.2.6 Agnetha is a singer 222

6.3 Quantifiers: type ⟨⟨e, t⟩, t⟩ 224
6.4 Empirical diagnostics against type e 231
6.5 Generalized quantifiers 235

6.5.1 Toy fragment . 251

7 Beyond Function Application 257
7.1 Introduction . 257
7.2 Adjectives . 261
7.3 Relative clauses . 275
7.4 Quantifiers in object position 289

7.4.1 Quantifier raising 289
7.4.2 A type-shifting approach 296

7.5 Pronouns . 303

8 Presupposition 315
8.1 Introduction . 315
8.2 The definite determiner 317
8.3 Definedness conditions 331
8.4 Designing a three-valued logic 334
8.5 The projection problem 342

9 Dynamic semantics 347
9.1 Introduction . 347
9.2 Presupposition in dynamic semantics 347
9.3 Presupposition accommodation 359
9.4 Pronouns with indefinite antecedents 360
9.5 File change semantics 368
9.6 Discourse representation theory 371
9.7 Compositional DRT . 379

Draft January 18, 2022

10 CONTENTS

10 Coordination and plurals 395
10.1 Coordination . 395
10.2 Mereology . 402
10.3 The plural . 406

10.3.1 Algebraic closure 406
10.3.2 Plural definite descriptions 409

10.4 Cumulative readings 412
10.5 Formal mereology . 414
10.6 A formal fragment . 418

10.6.1 Logic syntax . 419
10.6.2 Logic semantics 419
10.6.3 English syntax 420
10.6.4 Translations . 420

11 Event semantics 423
11.1 Why event semantics 423

11.1.1 The Neo-Davidsonian turn 428
11.2 Composition in Neo-Davidsonian event semantics . 432

11.2.1 Verbs as predicates of events 433
11.2.2 A formal fragment 438

11.3 Quantification in event semantics 439
11.3.1 Verbs as event quantifiers 443
11.3.2 Another formal fragment 450

11.4 Conjunction in event semantics 451
11.5 Negation in event semantics 455

12 Tense and aspect 461
12.1 Introduction . 461
12.2 Aspect . 462

12.2.1 Aktionsart . 462
12.2.2 Viewpoint aspect 465

12.3 Indexicality . 470
12.4 Tense . 474

12.4.1 Priorean tense logic 475
12.4.2 Shortcomings of the Priorean theory of tense . 477

Draft January 18, 2022

CONTENTS 11

12.5 A formal theory of tense 479
12.5.1 Anaphoric theory of the past 479

12.6 Future (in English) . 485
12.6.1 Sequence of tense 486

13 Modality 489
13.1 Introduction . 489
13.2 Opacity . 489
13.3 Modal logic . 497

13.3.1 Alethic logic . 497
13.4 Intensional logic . 502

13.4.1 Introducing intensional logic 502
13.4.2 Formal fragment 508

13.5 Fregean sense and hyperintensionality 512
13.6 Explicit quantification over worlds 514
13.7 Limitations of Intensional Logic 514

13.7.1 Modal auxiliaries 518
13.8 Indexicals and necessity 519

Appendix 523
A.1 Logic: Partial typed lambda calculus (L3) 524

A.1.1 Syntax of L3 . 524
A.1.2 Semantics of L3 525

A.2 Syntax of English fragment 527
A.3 Translations . 529

A.3.1 Lexical entries 529
A.3.2 Composition rules 532

Draft January 18, 2022

1 ∣ Introduction

1.1 Implication

This is a book about meaning. What is meaning? It seems that
meaning is somehow tied to understanding, insofar as understand-
ing something amounts to grasping its meaning. So what is it
to understand? For instance, does Google understand language?
Many might argue that it does, in some sense. Case in point: On
July 29, 2020, we typed in “350 USD in SEK” and got back “3062.33
Swedish Krona” as the first result. This appears to be at least a step
toward understanding.

But computers don’t seem to understand language in the same
way a human being does. One of the hallmarks of human under-
standing is the ability to draw INFERENCES; in other words, to un-
derstand something is to be able to determine its IMPLICATIONS.
For example, at the time of writing, there is a web page that says:

(1) Natalie Portman speaks English and Hebrew fluently, and
she also speaks Spanish, German, Japanese, and French.1

From this sentence, a reader would likely infer that Natalie Port-
man does not speak Russian—if she did, then Russian would have
been listed among the languages she speaks. The sentence would
not be false, strictly speaking, if it turned out that Natalie Portman

1https://www.ranker.com/list/celebrities-who-are-bilingual/
celebrity-lists. Accessed August 20, 2019.

https://www.ranker.com/list/celebrities-who-are-bilingual/celebrity-lists
https://www.ranker.com/list/celebrities-who-are-bilingual/celebrity-lists

14 Introduction

also speaks Russian. Still, it somehow implies that she does not.
But when we ask Google whether Natalie Portman speaks Russian,
we do not get ‘no’ as the answer.

Another inference that a reader would be licensed to draw is
this:

(2) Natalie Portman speaks more than two languages.

But if we ask Google whether Natalie Portman speaks more than
two languages, we do not get ‘yes’ as the answer.

A hallmark of a system or agent that understands language—
or grasps meaning—is that it can draw these kinds of inferences.
In other words, a good theory of meaning should be able to ex-
plain when one sentence IMPLIES another sentence.2

We mean ‘implies’ here in a broad sense, one that covers sev-
eral different specific types of implications. In this broad sense,
our sentence (1) implies both:

• that Natalie Portman doesn’t speak Russian, and

• that she speaks more than two languages.

These are not the same kind of implication, but they can both be
classified under that broader umbrella.

One way of defining ‘implies’ in this broad sense is as follows:
‘A implies B (in context C)’ means: If someone says A (in context
C), then a typical listener will conclude that B is true (assuming

2Terminological note: An IMPLICATION (or IMPLICATION RELATION) is a re-
lation that holds between some sentences, called PREMISES, and another sen-
tence, the CONCLUSION, when the conclusion follows from the premises. We
say in that case that the premises IMPLY the conclusion. The noun inference nor-
mally describes the act of inferring conclusions from premises, but inference can
also be used to mean implication. The verb infer is totally different from the verb
imply, though; an intelligent person infers conclusions based on premises, but
premises imply conclusions. The subject of infer is the person drawing the in-
ference (the hearer). The subject of imply can either be the speaker, as in John
implied that he would be home late, or the premise of an argument, as in Sen-
tence A implies Sentence B.

Draft January 18, 2022

Introduction 15

that they trust the speaker).’ This notion covers a wide range of
subtypes of implication, including ENTAILMENTS, IMPLICATURES,
and PRESUPPOSITIONS. This chapter provides a brief introduction
to all three, explains how to tell them apart, and gives an overview
of how, and to what extent, our theory of semantics will handle
them.

1.2 Varieties of implication

1.2.1 Defining entailment

Entailment is closely connected with reasoning. Somebody who
infers (2) Natalie Portman speaks more than two languages based
on (1) Natalie Portman speaks English and Hebrew fluently, and
she also speaks Spanish, ... reasons correctly. Somebody who in-
fers based on

(3) Some lizards are pets.

that

(4) Some pets are lizards.

reasons correctly as well. But somebody who infers from

(5) All cats are animals.

that

(6) All animals are cats.

does not reason correctly. We will say that sentence (1) ENTAILS

sentence (2), and that sentence (3) entails sentence (4). Sentence
(5) does not entail sentence (6) under the definition of entailment
that we will build our way up to in what follows.

Entailment can relate more than two sentences. For example,
sentences (7a) and (7b) taken together entail (7c).

Draft January 18, 2022

16 Introduction

(7) a. Every man is mortal.
b. Socrates is a man.
c. ∴ Socrates is mortal.

Similarly, in the following examples, the (a) and (b) sentences to-
gether entail the (c) sentence.

(8) a. If it rained last night, then the lawn is wet.
b. It rained last night.
c. ∴ The lawn is wet.

(9) a. Aristotle taught Alexander the Great.
b. Alexander the Great was a king.
c. ∴Aristotle taught a king.

The symbol ∴ is pronounced “therefore”.
Each of these three sequences of sentences is an ARGUMENT,

in the sense that it presents a CONCLUSION as a consequence of
one or more PREMISES.3 In the case of (7), for example, the premises
are (7a) and (7b), and the conclusion is (7c).

Arguments whose conclusion follows from their premises, like
the ones in (7) to (9), are called VALID; others INVALID. In this
book, we use the symbol ∴ for valid arguments and the symbol
/∴ for invalid arguments. ENTAILMENT is defined as the relation-
ship between the premise(s) and conclusion of a valid argument.
So, if we have a theory of what makes a valid argument, we have a
theory of entailment.

Validity is about reasoning correctly. What, then, is it to reason
correctly or incorrectly? Consider again this invalid argument:

(10) a. All cats are animals. (Premise)
b. /∴All animals are cats. (Conclusion)

3The term argument has other senses in addition to this one, as in for example
The couple had a huge argument yesterday, and nearly broke up where argument
means something like verbal altercation, or The author’s argument is that mass
incarceration is an inevitable consequence of neo-liberal capitalism, where the
term argument is used as a synomym for claim.

Draft January 18, 2022

Introduction 17

The premise of this argument is true, but its conclusion is false.
Whenever that situation arises, an argument is invalid. But there
are also invalid arguments with true premises and true conclu-
sions:

(11) a. All cats are animals. (Premise 1: True)
b. Some animals are black. (Premise 2: True)
c. /∴ Some cats are black. (Conclusion: True)

Both premises of this argument are true, and so is its conclusion.
But this is not correct reasoning. The conclusion doesn’t follow
from the premises. While it’s easy to see that reasoning from true
premises to a false conclusion is not correct reasoning, it’s much
harder to put your finger what goes wrong when we reason incor-
rectly from true premises to a true conclusion. What part of the
reasoning is incorrect? We will come back to this question soon.

On the other hand, an argument can involve correct reasoning
and thus be valid even if it has false premises – in other words,
even if the basis of the argument is not factual.

(12) a. Lemonade is made from watermelon. (False)
b. Watermelon is a type of vegetable. (False)
c. ∴ Lemonade is made from a type of vegetable. (False)

Of course lemonade is not actually made from watermelon, and
watermelon is not actually a vegetable. But still the conclusion
follows as an entailment from the premises; the argument is valid.
(While one might hesitate to call it a good argument, that’s a dif-
ferent matter.)

An argument that is valid and whose premises are furthermore
true is called SOUND. So the argument in (12) is valid but not
sound. Both soundness and validity are useful concepts. In or-
dinary life, it matters a lot whether we reason from true or false
premises. But it also matters whether we make mistakes in our
reasoning itself. Soundness is about correct reasoning from true
premises, and validity is just about correct reasoning. The follow-

Draft January 18, 2022

18 Introduction

ing argument is also valid but not sound. This argument has one
false premise, one true premise and a true conclusion:

(13) a. Lemonade is made from watermelon. (False)
b. Watermelon is a type of fruit. (True)
c. ∴ Lemonade is made from a type of fruit. (True)

In order for a valid argument to be sound, it must be the case that
all of the premises are true.

Why are these last two arguments valid? Here is one way of
thinking about it: If the premises were true, then regardless of how
things might stand with everything else, the conclusion would be
true too. This way of thinking about it frames validity as NECES-
SARY CONSEQUENCE. On this view, a ‘valid argument’ can be de-
fined as one for which it is not possible both for its premises to be
true and its conclusion to be false.

The notion of necessary consequence is connected to the philo-
sophical notion of a POSSIBLE WORLD, roughly, a “way the world
could have been”. A possible world can be thought of as a kind
of circumstance with respect to which we can ask whether the
premises and conclusion would have been true or false. A valid
argument can then be seen as one whose conclusion is true with
respect to any possible world in which its premises are true.

Another way of thinking about validity is LOGICAL CONSEQUENCE.
This strategy involves thinking about alternative ‘interpretations’,
roughly, ways to specify what the basic ‘non-logical’ terms lemon-
ade, watermelon, vegetable, and be made from stand for (leaving
‘logical’ terms like all, some, be a type of, etc. unaffected). Left
unconstrained, ‘interpretations’ can vary wildly; for example, ac-
cording to one interpretation, the terms lemonade, watermelon,
and fruit truthfully apply only to things that are in reality cake,
granite, and furniture respectively. On this view, a ‘valid argu-
ment’ can be defined as one whose conclusion is true with respect
to any interpretation we choose for its non-logical terms, so long as
its premises are also true with respect to this interpretation.

Draft January 18, 2022

Introduction 19

The notion of logical consequence is connected to the view
that the validity of an argument is not based on its content (or
what it is about) but on its form (or the shape it takes). On this
view, a valid argument is an instance of a correct argument form.
An ARGUMENT FORM is a template for arguments. It is like an ar-
gument except that instead of all of the “non-logical” words, there
are just meaningless placeholders. An interpretation for an argu-
ment form can then be thought of as specifying what its place-
holders stand for. A correct argument form can then be seen as
one whose conclusion is true with respect to any interpretation
that makes its premises true.4

Take the word ‘case’ to stand for something with respect to
which it is appropriate to ask whether a premise or conclusion
is true (we are deliberately leaving open whether this is a possi-
ble world or an interpretation). Then we can simply and neutrally
define validity as follows:

(14) An argument is VALID if and only if:
In any case where all of the premises are true, the conclu-
sion is true too.

Above, we defined entailment in terms of validity. Given the
definition of validity that we now have, entailment between two
sentences A and B can be defined independently as follows:

(15) A ENTAILS B if and only if:
In any case where A is true, B is true too.

Or in slogan form: Whenever A is true, B is true too.

4Since interpretations are also called models, this approach is called MODEL-
THEORETIC SEMANTICS. An alternative approach to defining correct argument
forms, PROOF-THEORETIC SEMANTICS, will not play a role in this book. On a
proof-theoretic approach, a correct argument form is one that can be formally
“proved” or derived from certain designated starting points, called AXIOMS, by
means of a collection of INFERENCE RULES, also called a calculus. For a good
introduction to proof-theoretic semantics, see Carpenter (1998).

Draft January 18, 2022

20 Introduction

Both necessary and logical consequence can help us make sense
of why the conclusion of (11) doesn’t follow from its premises,
even though both its premises and its conclusion are true. Here
it is again:

(16) a. All cats are animals. (Premise 1: True)
b. Some animals are black. (Premise 2: True)
c. /∴ Some cats are black. (Conclusion: True)

First consider necessary consequence. Here the cases are pos-
sible worlds. We will show that the conclusion is not a neces-
sary consequence of the premises, so we need to think about how
things would be in different possible worlds. Suppose for example
that all cats were entirely white, and suppose there were still some
black animals around, say black dogs. Then it would still be the
case that all cats are animals, and that some animals are black, so
both premises of (16) would be true. But it would not be the case
that some cats are black, so the conclusion would be false. So the
conclusion of (16) is not a necessary consequence of its premises.

Now consider logical consequence. Here the cases are inter-
pretations. We will show that the argument is based on an incor-
rect argument form, so we need to think about what the place-
holders in that argument form would stand for with respect to
different interpretations. If we take the non-logical terms to be
cat, animal, and black and the placeholders to be F , G , and H , the
argument form of (16) is:

(17) a. All F s are Gs. (Premise 1)
b. Some Gs are Hs. (Premise 2)
c. /∴ Some F s are Hs. (Conclusion)

Now consider the interpretation of this form according to which
F stands for triangles, G stands for shapes, and H stands for cir-
cles. Since all triangles are shapes, and some shapes are circles,
the premises of this argument form are true with respect to this
interpretation. But no triangles are circles, so its conclusion is

Draft January 18, 2022

Introduction 21

false. So the conclusion of (16) is not a logical consequence of
its premises.

Both logical consequence and necessary consequence have
undergone scrutiny. The main difficulty with logical consequence
consists in saying exactly what counts as a non-logical word, and
the main difficulty with necessary consequence consists in saying
exactly what counts as a possible world or circumstance. But we
will set these difficulties aside for now.

In the cases we have seen so far, logical consequence and nec-
essary consequence always lead to the same result. But the type
of entailment that we will actually implement in Chapter 3 and
thereafter is logical consequence. We won’t have any theory of
necessary consequence until Chapter 13, and then we will see ex-
amples where logical and necessary consequence come apart.

Exercise 1. Which, if any, of the following arguments are valid?
Which, if any, are sound?

(a) Every Spaniard is female. Yo Yo Ma is a Spaniard. Therefore,
Yo Yo Ma is female.

(b) Every person is a person. Therefore, Paris is the capital of
France.

(c) There is no person that is not a living being. Angela Merkel is
a person. Therefore, Angela Merkel is a living being.

(d) Copenhagen is either in Denmark or in the Netherlands.
Copenhagen is not in the Netherlands. Therefore, Copen-
hagen is in Denmark.

Exercise 2. Can a valid argument have...

Draft January 18, 2022

22 Introduction

• false premises and a false conclusion?

• false premises and a true conclusion?

• true premises and a false conclusion?

• true premises and a true conclusion?

If you answer yes to any of these, give your own example of such
an argument. If your answer is no, explain why.

Regardless of how exactly it is defined, an important obser-
vation about validity is that in order to determine whether a given
argument in natural language is valid, one has to look deeper than
the surface. Two arguments may be superficially similar, but differ
in validity. For example, the following argument is valid (at least
assuming that north is a logical term and that the laws of geome-
try hold in all possible circumstances):

(18) a. Alaska is north of New York.
b. New York is north of Florida.
c. ∴Alaska is north of Florida.

but the following is not:

(19) a. Florida is north of no U.S. state.
b. No U.S. state is north of Alaska.
c. /∴ Florida is north of Alaska.

Clearly, no U.S. state has a very different kind of meaning from
New York. It is a QUANTIFIER, and although quantifiers and names
can occupy the same syntactic positions, they give rise to very dif-
ferent entailments. So the syntax is not always a reliable guide to
the semantics.

Moreover, many sentences are VAGUE, in the sense that there
is no sharp boundary between circumstances in which they are

Draft January 18, 2022

Introduction 23

true and circumstances in which they are false. For example, a
sentence like Jane is tall is neither clearly true nor clearly false if
Jane’s height is close to whatever counts as the average. As a re-
sult, it can be difficult to determine whether arguments contain-
ing vague sentences are valid. Without denying that vagueness is
pervasive in natural language, we set it aside in this book.

Furthermore, because sentences in natural language can be
AMBIGUOUS, the validity of an argument may depend on how the
sentences in it are read. For example, suppose (20a) is true. Does
it follow that (20b) is true?

(20) a. Today, Jane received five emails and responded to four.
b. Jane hasn’t responded to an email today.

In one sense, yes, but in another sense, no. (20b) can be read ei-
ther as saying that it is not the case there there is an email Jane has
responded to, or that there is an email (a particular one) that she
hasn’t responded to. This difference is a SCOPE AMBIGUITY. In the
first reading (“It is not the case that there is an email...”) the nega-
tion (n’t in hasn’t) TAKES SCOPE over the indefinite noun phrase an
email). In the second reading (“There is an email that she hasn’t
....”), the indefinite noun phrase (an email) takes scope over the
negation.

Another example of scope ambiguity is in the famous song
“Home on the Range”:5

(21) ... and the skies are not cloudy all day.

Does this mean that over the course of a given day, the skies are
occasionally not cloudy? Or does it mean that all day, the skies
are not cloudy? It depends whether negation takes scope over the
universal quantifier all day. The formal tools that we will develop
in this book will help to elucidate the various readings that sco-
pally ambiguous sentences can have.

5Jill Anderson, p.c.

Draft January 18, 2022

24 Introduction

When a word has multiple senses, we speak of LEXICAL AMBI-
GUITY. Like scopal ambiguity, this can also muddy the question of
whether one sentence entails another. For example, consider the
following two arguments, which are identical in syntactic struc-
ture:

(22) a. Sue and Martha are sisters.
b. ∴ Sue is Martha’s sister.

versus:

(23) a. Sue and Martha are vegetarians.
b. /∴ Sue is Martha’s vegetarian.

There is at least one reading of the argument in (22) on which it
is valid, but there is no reading of the argument in (23) on which
it is valid. This is because (22) exhibits a kind of lexical ambiguity
that is absent in (23). The validity of (22) depends on whether ‘Sue
and Martha are sisters’ is read as ‘Sue and Martha are each other’s
sisters’, or ‘Sue is a sister (to someone) and Martha is a sister (to
someone)’. This ambiguity is driven by a lexical ambiguity in the
noun sister of a kind that we will discuss later in the book. Again,
we see that surface syntax is an unreliable guide to entailment.

Because the surface structure of sentences in natural languages
is such an unreliable guide to entailment, precise and unambigu-
ous formal languages can be a useful tool for characterizing mean-
ing in natural language. Formal languages can help in bringing
out underlying structure that is hidden in the surface form of nat-
ural language sentences. A primary aim of this book is to familiar-
ize you with these formal methods, and empower you to develop
your own variations on them.

1.2.2 Entailment vs. implicature

We now discuss how to distinguish entailments from another kind
of implication, namely implicatures. Recall example (1), repeated

Draft January 18, 2022

Introduction 25

here as (24):

(24) Natalie Portman speaks English and Hebrew fluently, and
she also speaks Spanish, German, Japanese, and French.

This sentence implies that Natalie Portman does not speak Rus-
sian. But suppose you observed Natalie Portman in a heated con-
versation with a Russian diplomat in perfectly fluent Russian. Would
you conclude, based on this information, that (24) is false? Pre-
sumably not. So this implication is not an entailment. It derives
from the assumption that the languages listed make up an ex-
haustive list of the languages that Natalie Portman speaks. If she
did speak Russian and the author of sentence (24) knew this, they
would be saying something misleading (or “lying by omission”
as it’s sometimes described colloquially, although arguably this is
not a form of lying). The implication that Natalie Portman doesn’t
speak Russian is an example of a CONVERSATIONAL IMPLICATURE.
Conversational implicatures are inferences that the hearer can de-
rive using the assumption that the speaker is adhering to certain
norms of conversation (Grice, 1975). Among these norms is the
Maxim of Quantity, which requires that speakers provide as much
information as needed for the information exchange (but not more).
If we’re on the subject of what languages Natalie Portman speaks,
and if she speaks Russian, then the Maxim of Quantity dictates
that this fact be mentioned.

Whether or not a given sentence gives rise to a conversational
implicature via the Maxim of Quantity depends on what is rel-
evant, as the following exchange from the film When Harry Met
Sally brings out:

Jess: So you’re saying she’s not that attractive?
Harry: No, I told you she is attractive.
Jess: But you also said she had a good personality.
Harry: She does have a good personality.
Jess: When someone’s not that attractive, they’re al-
ways described as having a good personality.

Draft January 18, 2022

26 Introduction

Harry: Look, if you would ask me, “What does she
look like?” and I said, “She has a good personality.”
That means she’s not attractive. But just because I
happened to mention that she has a good personal-
ity, she could be either. She could be attractive with
a good personality, or not attractive with a good per-
sonality.

Here, Harry is pointing out that the conversational implicature
from She has a good personality to She is not attractive depends
on what the QUESTION UNDER DISCUSSION (the subject matter at
hand) is. Only if the question under discussion is what she looks
like does the implicature arise. Along with the Maxim of Quantity,
Grice posits a Maxim of Relation, which enjoins speakers to be
relevant, which in more modern terms is to address the question
under discussion. As illustrated by this example, both the Maxim
of Quantity and the Maxim of Relation play a role in how implica-
tures arise.

Grice posits four maxims in total: Quantity (say as much as is
required, but no more), Quality (do not say what you believe to be
false, and have adequate evidence for what you say), Relation (be
relevant), and Manner (avoid obscurity, avoid ambiguity, be brief,
and be orderly). These four maxims make up what Grice calls
the ‘Cooperative Principle’, which he sums up as follows: “Make
your conversational contribution such as is required, at the stage
at which it occurs, by the accepted purpose or direction of talk
exchange in which you are engaged” (Grice, 1975, 45). Grice in-
troduced the term ‘conversational implicature’ as a label for the
kind of implication that arises through reasoning on the part of
the hearer about the speaker’s adherence to the Cooperative Prin-
ciple and its constituent maxims. Although scholars have debated
what exactly the norms of conversation are over the years since
Grice published his seminal work, we have held onto the idea that
an implicature is an implication that arises crucially through rea-
soning about norms of conversation.

Draft January 18, 2022

Introduction 27

Exercise 3. What is the difference between an implication and an
implicature? Explain using definitions and at least one example
of each.

Conversational implicatures differ from entailments in the fol-
lowing way: Suppose that A is true. If A entails B , then B is true
for sure, but if A conversationally implicates B , then B is not guar-
anteed to be true. Unlike entailments, implicatures can be CAN-
CELLED without producing a contradiction. For example, one could
say, without contradicting oneself:

(25) Natalie Portman speaks English, Hebrew, Spanish, Ger-
man, Japanese, and French. In fact, she speaks Russian
as well.

Here, the second sentence expresses the negation of the impli-
cature of the first (since the implicature was itself negative: that
Natalie Portman does not speak Russian). What is to be observed
about this example is that the combination of the two sentences is
not contradictory; if your friend made these two claims in succes-
sion, you could not accuse her of contradicting herself. In other
words, the second sentence can be used successfully to CANCEL

the implicature of the first sentence that Natalie Portman does not
speak Russian. Another way of putting this is that the inference is
DEFEASIBLE (i.e., can be ‘defeated’ without contradiction).

In contrast, entailments are not defeasible. Consider:

(26) Natalie Portman speaks English, Hebrew, Spanish, Ger-
man, Japanese, and French. #In fact, she doesn’t speak
more than two languages.

(The hash-mark # here indicates that the sentence is somehow
odd in its interpretation. In general, the hash-mark is used to in-
dicate that a sentence is either semantically anomalous—makes
no sense—or pragmatically infelicitous (inappropriate) in a given

Draft January 18, 2022

28 Introduction

context. This symbol is the semantics/pragmatics equivalent of
the asterisk [*] used in the syntax literature to indicate that a sen-
tence is ungrammatical.) If your friend uttered these two sen-
tences in succession, she would be open to the accusation that
she was contradicting herself, because the first sentence entails
Natalie Portman speaks more than two languages. In general, if
you know that sentence A implies sentence B but you don’t know
whether this implication is an entailment or an implicature, you
can run this DEFEASIBILITY TEST by constructing an example in
which A is followed by a negated version of B , and observing whether
the result is contradictory. If so, then the implication is not defea-
sible, and thus you have an entailment on your hands.6

More specifically, to run the defeasibility test for an implica-
tion from sentence A to sentence B , the first step is to construct a
text of the form A & not-B , where not-B negates B , and & is the
most appropriate conjunction (but, and, in fact, whichever fits
best).

Negating a sentence can sometimes be a bit tricky. It’s not
always a matter of just adding a not. For example, let’s consider
whether (27a) entails (27b).

(27) a. Some Republicans voted ‘yes’.
b. Not all Republicans voted ‘yes’.

To run the defeasibility test on this example, we have to construct
a negated version of (27b). In this case, rather than adding a not,
as we just did, we can take one away: All Republicans voted ‘yes’.
Now we can ask whether A & not-B is SELF-CONTRADICTORY:

(28) Some Republicans voted ‘yes’; in fact, all of them did.

6There are defeasible inferences that are not implicatures. Among these are
inferences based on real-world knowledge. For example, John smokes loosely
implies John buys cigarettes – if John smokes, then he probably buys cigarettes,
but it’s possible that he doesn’t, so the inference is defeasible. This case is not
an implicature, because it’s not an inference that crucially relies on reasoning
about the speaker’s adherence to norms of conversation.

Draft January 18, 2022

Introduction 29

Would someone who uttered (28) be contradicting themselves?
No. So A & not-B is not self-contradictory in this case. So the im-
plication from (27a) to (27b) is not an entailment; it’s a conversa-
tional implicature.

This some → not all pattern is a textbook example of a so-
called SCALAR IMPLICATURE. Scalar implicatures arise when there
is a scale of alternatives – in this case some and all arranged from
weakest to strongest. In this case some is weaker than all, in the
sense that it doesn’t convey as much information about the way
the world is. By choosing the weaker alternative rather than the
stronger one, a speaker can implicate that the stronger alternative
is not true, or not a good way of describing the situation. This pat-
tern (weak→ not strong) is what constitutes a scalar implicature.

Now, consider the following sentence:

(29) Everybody likes chocolate.

Which of the following negates (29)?

(30) a. Nobody likes chocolate.
b. Not everybody likes chocolate.

Answer: Of these two, the sentence that negates (29) is (30b): Not
everybody likes chocolate. The other one, Nobody likes chocolate,
says something stronger than than the one that negates it. In prin-
ciple, there are three types of circumstances:

(i) Everybody likes chocolate.

(ii) Some people like chocolate and some people don’t.

(iii) Nobody likes chocolate.

The sentence Not everybody likes chocolate is true in (ii) and (iii),
while the sentence Nobody likes chocolate is only true in (iii). So
Nobody likes chocolate is true in fewer types of circumstances, and
in that sense it makes a stronger statement. In (ii), neither (29)
nor (30a) is true; it’s not the case that everyone likes chocolate,

Draft January 18, 2022

30 Introduction

and it’s also not the case the nobody likes chocolate. Neither is
true. This is characteristic of CONTRARY OPPOSITION, as opposed
to CONTRADICTORY OPPOSITION. These two terms can be defined
as follows:7

(31) A sentence A stands in CONTRADICTORY OPPOSITION to a
sentence B if and only if:
It is impossible for A and B to be true together, and it im-
possible for A and B to be false together.

(32) A sentence A stands in CONTRARY OPPOSITION to a sen-
tence B if and only if:
It is impossible for A and B to be true together, but it is
possible for A and B to be false together.

Let us consider what relation holds between (29) Everybody likes
chocolate and (30a) Nobody likes chocolate: These two sentences
cannot be true at the same time, but they can be false at the same
time, as we have just seen. These two sentences therefore stand
in contrary opposition. The sentence that stands in contradictory
opposition to (29) Everybody likes chocolate is (30b) Not everybody
likes chocolate. If the one is true, then the other must be false, and
vice versa. We define a NEGATION of a sentence as one that stands
in contradictory opposition to it.

As another example, consider the following sentence:

(33) Jo is tall.

7Horn (2018) defines the two terms thusly: “Contradictory opposites (She is
sitting/She is not sitting) are mutually exhaustive as well as mutually inconsis-
tent; one member of the pair must be true and the other false, assuming with
Aristotle that singular statements with vacuous subjects are always false. As it
was put by the medievals, contradictory opposites divide the true and the false
between them; for Aristotle, this is the primary form of opposition. Contrary
opposites (He is happy/He is sad) are mutually inconsistent but not necessarily
exhaustive; they may be simultaneously false, though not simultaneously true.”
Students interested in learning more about the topic are encouraged to study
Horn’s (2018) overview article on contradiction, published in the Stanford Ency-
clopedia of Philosophy.

Draft January 18, 2022

Introduction 31

A sentence that stands in contradictory opposition to (33) is Jo
is not tall. If one is true, then the other must be false, and vice
versa. But if we replace tall with its antonym, short, producing Jo
is short, then the result stands in contrary opposition to (33). The
two sentences can’t both be true (in the same context), because
one cannot be both tall and short at the same time (as long as we
are applying consistent standards for height), but they could both
be false: Jo might be neither tall nor short, just somewhere in that
grey zone, the ‘zone of indifference’ as Sapir (1944) called it (see
e.g. Kennedy & McNally 2005).

Again, a negated version of a sentence stands in contradic-
tory rather than contrary opposition to it, so to check whether
you have constructed your negation correctly, you can check what
type of opposition your sentences stand in to each other. But if
you are faced with a really tricky case, you can always just add It
is not the case that to the beginning of the sentence; It is not the
case that S is always a negated version of S. For example, It is not
the case that everyone likes to eat is a negated version of Everyone
likes to eat. Notice that this sentence is equivalent to Not everyone
likes to eat in the following sense: when one is true, the other is
true too, and when one is false, the other is false too. Thus, even
if you don’t use the It is not the case that strategy, another way to
check whether you have constructed your negated version prop-
erly is to ask yourself whether your sentence is equivalent to the It
is not the case that version.

Once you have constructed your negated version, it is impor-
tant that you pose the right question about the example of the
form A & not-B to a native speaker of the language (possibly your-
self, if you are a native speaker of the language). The question is
not ‘Is this example grammatical?’ or ‘Is this example true?’ but
rather ‘Is this example self-contradictory?’ If the answer is yes,
then the A sentence cannot be true while the B sentence is false,
so the implication from A to B is an entailment, rather than an
implicature.

Draft January 18, 2022

32 Introduction

Exercise 4. For each of the following sentences, give (i) a sentence
that stands in contrary opposition to it and (ii) a sentence that
stands in contradictory opposition to it.

(a) My pet giraffe is young.

(b) I always drink coffee in the morning

(c) The evidence proves that he is guilty.

(d) Everyone liked it.

Exercise 5. Samuel Bronston was a movie producer who filed for
bankruptcy in 1964 after his very expensive epic film The Fall of
the Roman Empire failed at the box office (Solan & Tiersma, 2014,
213–221). In 1966, he was questioned under oath by his creditors
regarding his overseas assets, and the exchange went as follows:

Q. Do you have any bank accounts in Swiss banks, Mr.
Bronston?
A. No, sir.
Q. Have you ever?
A. The company had an account there for about six
months, in Zürich.
Q. Have you any nominees who have bank accounts
in Swiss banks?
A. No, sir.
Q. Have you ever?
A. No, sir.

It turned out that Bronston personally had had an account with
International Credit Bank in Geneva. He made deposits in it and
drew checks from it totalling up to $180,000 during the five years

Draft January 18, 2022

Introduction 33

in which the company was active. He closed it just before the
bankruptcy filing.

He was charged with perjury and convicted. But he appealed,
and ultimately he was acquitted by the U.S. Supreme Court, who
ruled that it is the responsibility of the questioner to press for fur-
ther information when the respondent is ‘unresponsive’.

Clearly, when he said The company had an account there...
Bronston implied something that was not true, namely that he
himself did not. But was this implication an implicature or an en-
tailment? Argue for your answer using the defeasibility test.

Another test that can be used to distinguish between entail-
ments and implicatures is called the REINFORCEMENT TEST. The
idea behind it is that if A entails B, then saying B after one has
just said A sounds redundant, because B was just directly implied.
Consider the following contrast:

(34) She speaks English, Hebrew, Spanish, German, Japanese,
and French; { #and / #but / #in fact } she speaks more than
two languages.

(35) She speaks English, Hebrew, Spanish, German, Japanese,
and French; but she doesn’t speak Russian.

In both cases, we have a sentence of the form ‘A & B’, where B is
implied by A. But in the first case, B is entailed by A, so ‘A & B’
sounds redundant. In the second case, B is merely conversation-
ally implicated by A, so ‘A & B’ does not sound redundant. The
kind of observation to be made about the constructed example is
different here: Rather than asking whether the example sounds
contradictory, we ask whether it sounds redundant.

To summarize, we have presented two tests for distinguish-
ing between entailments and implicatures. For the DEFEASIBILITY

TEST, the example to construct is of the form ‘A & not-B’, and the
question to ask is whether it sounds contradictory. If yes, then the

Draft January 18, 2022

34 Introduction

test suggests that the implication from A to B is an entailment.8

For the REINFORCEMENT TEST, the example is of the form ‘A & B’,
and the question to ask is whether it sounds redundant. If yes,
then the test suggests that the implication from A to B is an entail-
ment.

What if ‘A & not-B’ doesn’t sound contradictory, and ‘A & not-B’
doesn’t sound redundant? One possibility is that there is no infer-
ence from A to B to begin with, like ‘Paris is in France’ and ‘Berlin
is in Germany’. But if it is felt that A somehow implies B and yet
the inference is defeasible and reinforceable, then you have a rea-
sonable basis on which to conclude that it is a conversational im-
plicature.

Exercise 6. Consider the following pairs of sentences:

(36) a. Every dog barked.
b. Every small dog barked.

(37) a. Every dog barked.
b. Every dog made a noise.

(38) a. Sam regrets winking at Dave.
b. Sam winked at Dave.

(39) a. Sam lived in London in the 1990s.
b. Sam doesn’t live in London now.

(40) a. When I was in the army, I tried LSD.
b. I was in the army.

(41) a. It’s warm.
b. It’s not hot.

8We say “suggests” rather than “definitively proves” here because for some
implicatures, for some speakers, ‘A & not-B’ does sound a bit contradictory. It’s
always a good idea to use multiple converging sources of evidence in semantics,
as language is unavoidably messy.

Draft January 18, 2022

Introduction 35

In each case, the first implies the second. Are these implica-
tions entailments? Support your answers by applying the defeasi-
bility and reinforcement tests.

1.2.3 Entailment vs. presupposition

Normally, when a sentence is not true, its negation is true. For
example, the following sentence is not true:

(42) In Stockholm, January is the warmest month of the year.

while its negation is true:

(43) In Stockholm, January is not the warmest month of the
year.

But it can happen that neither a sentence nor its negation is true.
Consider the following sentence:

(44) The theremin duo that Mozart wrote is very famous.

As it happens, Mozart died long before the theremin was invented,
and therefore could never have written any piece for theremin, let
alone a duo. So this sentence is certainly not true. And yet its
negation is not true either:

(45) The theremin duo that Mozart wrote is not very famous.

The culprit behind this odd state of affairs is the DEFINITE DE-
SCRIPTION the theremin duo that Mozart wrote. To a first approx-
imation, a DEFINITE DESCRIPTION is a phrase of the form D + X,
where D is a DEFINITE ARTICLE (the in English) and picks out the
unique individual that satisfies the description X. By use of the
definite description in (45), a speaker becomes committed to the
existence of theremin duos written by Mozart, whether or not the

Draft January 18, 2022

36 Introduction

sentence that the definite description is embedded in contains
negation. Both (44) and (45) entail (46).

(46) Mozart wrote a theremin duo.

Since both sentences entail something false, neither sentence is
true.

The type of implication involved here is not an ordinary en-
tailment, but it is not a conversational implicature either; it is
a PRESUPPOSITION. One way of thinking about presupposition
is as something that speakers do. For example, someone who
speaks of the theremin duo that Mozart wrote presupposes that
Mozart wrote a theremin duo. What a speaker presupposes is what
they take for granted, treating it as uncontroversial and known
to everyone participating in the conversation (Stalnaker, 1978).
The idea of a sentence presupposing something can be derived
from the speaker-based notion of presupposition as follows: A
sentence A presupposes a sentence B if uttering A in any given
context acts as a signal that the speaker in that context presup-
poses B.

We have just given a pragmatic characterization of presuppo-
sition. Alternatively, presupposition can be given a semantic def-
inition. According to the semantic definition, when a sentence
presupposes something, the presupposed content must be true
in order for the sentence to be true or false; otherwise, the sen-
tence just doesn’t make any sense. For example, since (46) is not
true, (44) is arguably neither true nor false. It’s just nonsense, be-
cause it presupposes something false. As Karttunen (1973b, 170)
writes, “There is no conflict between the semantic and the prag-
matic concepts of presupposition. They are related, albeit differ-
ent notions.”

The part of the sentence (word or construction) that carries
this signal that something is being presupposed is called a PRE-
SUPPOSITION TRIGGER. The definite article the triggers a presup-
position of existence. Another example of a presupposition trigger

Draft January 18, 2022

Introduction 37

is the adverb still, in the sense “up to and including the present”.
For example, if I said (47), I would signal (48) through a presuppo-
sition.

(47) Natalie Portman still speaks French.

(48) Natalie Portman spoke French in the past.

Although it is not an ordinary entailment, the relation between
these sentences is arguably some form of entailment; in every sit-
uation where (47) is true, (48) is also true. This can also be shown
using the defeasibility test. But presuppositions differ from ordi-
nary entailments, as you can see from what happens when they
are negated. Suppose we negate (47) as follows:

(49) It’s not the case that Natalie Portman still speaks French.

This sentence denies that Natalie Portman currently speakes French
but still implies that she spoke French in the past.

In fact, merely supposing that Natalie Portman still speaks French
also yields the implication that she spoke French in the past.

(50) If Natalie Portman still speaks French, then she might en-
joy this poem.

Here we have placed Natalie Portman still speaks French in the
ANTECEDENT position (the ‘if’ part) of a CONDITIONAL statement.
(The ‘then’ part is called its CONSEQUENT.) Normally, material that
is in the antecedent of a conditional is not implied. For exam-
ple, the following sentence does not imply that Natalie Portman
speaks French:

(51) If Natalie Portman speaks French, then she might enjoy
this poem.

The antecedent of a conditional is for ideas that are merely enter-
tained for the purpose of exploring a hypothetical possibility; the
speaker normally does not commit herself to the material here.

Draft January 18, 2022

38 Introduction

But presupposed information still ‘pops out’ from the antecedent
of a conditional, as it were. In other words, the presupposition
PROJECTS from the antecedent of the conditional (and from under
negation).

We see this with questions as well. If someone were to ask,

(52) Does Natalie Portman speak French?

they would not be implying that Natalie Portman spoke French, of
course. And yet:

(53) Does Natalie Portman still speak French?

does imply that Natalie Portman spoke French at some time in the
past. The presupposition projects out of the yes/no question.

In general, presuppositions can be distinguished from entail-
ments using this PROJECTION TEST, which assesses whether the
inference in question ‘projects’ over negation, from the antecedent
of a conditional statement or over question-formation. What these
environments have in common is that they are ENTAILMENT-CAN-
CELING environments; environments where entailments normally
go to die. But presuppositions thrive in these environments. To
test whether an inference from A to B is an ordinary entailment or
a presupposition, one embeds A in an entailment-canceling en-
vironment, and observes whether the B sentence is still implied.
If so, then the inference projects, and is therefore behaving as a
presupposition.

Here is an example. Example (54a) implies (54b), broadly speak-
ing; anyone who heard (54a) would certainly conclude that (54b)
is true, assuming they trusted the speaker.

(54) a. Kim’s twin sister lives in Austin.
b. Kim has a twin sister.

Does this implication project? Let us apply the projection test.
To do so, we’ll need to embed (54a) in an entailment-cancelling

Draft January 18, 2022

Introduction 39

environment, such as negation, the antecedent of a conditional,
or a maybe statement. Let’s try all three, just to be on the safe side:

(55) a. Negation
Kim’s twin sister doesn’t live in Austin.

b. Antecedent of a conditional
If Kim’s twin sister lives in Austin, then Kim has prob-
ably eaten at Torchy’s Tacos.

c. Maybe
Maybe Kim’s twin sister lives in Austin.

These sentences all imply that Kim has a twin sister. So the infer-
ence projects.

The projection test does not require the projected inference to
have the same properties as an ordinary entailment. Sometimes,
projecting presuppositions are defeasible. For example, the fol-
lowing example sounds fine to some native speakers:

(56) Kim’s twin sister doesn’t live in Austin, because she doesn’t
have a twin sister.

We will talk about this phenomenon in Chapter 8 under the head-
ing “accommodation”. What matters for the projection test is that
presuppositions remain present in embedded environments such
as negation, whether or not they survive only in a defeasible way.

The decision procedure for distinguishing between the vari-
ous types of implication relations is summarized in Figure 1.1.
Use the defeasibility test to distinguish between entailment and
implicature; use the projection test to distinguish between ordi-
nary entailment and presupposition.

Exercise 7. Use the projection test to determine whether the fol-
lowing implications are entailments or presuppositions. Explain
how the test supports your conclusion.

Draft January 18, 2022

40 Introduction

Defeasible and
reinforceable?

Projects?

Ordinary entailment

no

Presupposition

yes
no

Implicature

yes

Figure 1.1: A decision tree for categorizing implications

(a) The flying saucer came again.
The flying saucer has come sometime in the past.

(b) The flying saucer came yesterday.
The flying saucer has come sometime in the past.

Exercise 8. Consider the following two sentences.

(57) a. John succeeded in learning to play the guitar.
b. John failed at learning to play the guitar.

Intuitively, both sentences imply that John tried to learn to play
the guitar (58a), but the succeed sentence implies that he did
(58b), and the fail sentence implies that he did not (58c).

(58) a. John tried to learn to play the guitar.
b. John learned to play the guitar.
c. John didn’t learn to play the guitar.

So there are four implications under consideration:

(59) a. (57a) ‘succeed’→ (58a) ‘try’;

Draft January 18, 2022

Introduction 41

b. (57b) ‘fail’→ (58a) ‘try’;
c. (57a) ‘succeed’→ (58b) ‘did’;
d. (57b) ‘fail’→ (58c) ‘didn’t’.

For each of these in turn, determine whether it is an implicature,
an ordinary entailment, or a presupposition. First, determine
whether it is an implicature or an entailment (ordinary or pre-
supposition) using the defeasibility and reinforcement tests, and
then, if it is an entailment, determine whether it is an ordinary en-
tailment or a presupposition using projection from negation, the
antecedent of a conditional, and a yes/no question.

Be sure to include all of the relevant examples, observations,
and reasoning in your answer, and summarize your findings by
saying in general what is entailed, presupposed, and implicated
(if anything), by a sentence of the form X succeeded in Y, and do
the same for X failed at Y.

Semantics is sometimes said to be the study of what linguistic
expressions mean, while pragmatics is the study of what speakers
mean by them. (By LINGUISTIC EXPRESSIONS, we mean to include
words, phrases, and sentences—any chunk of language that forms
a syntactic unit.) The term ‘pragmatics’ can also be applied to the
study of any interaction between meaning and context, broadly
construed. There is no sharp dividing line between semantics and
pragmatics, and indeed the study of presupposition lies squarely
within their intersection. However, it is fair to say that ordinary
entailments lie in the domain of semantics proper, while implica-
tures lie in the domain of pragmatics proper. Since this is a book
about semantics, implicatures will largely be left out of the discus-
sion. We treat presuppositions in a later chapter, but our primary
focus throughout the book is on ordinary entailments. In the next
section, we describe our strategy for developing a theory that can
account for them.

Draft January 18, 2022

42 Introduction

1.3 Theoretical foundations

We now describe the theoretical foundations for the family of the-
ories developed in this book. To account for entailment relations
among sentences, we will devise a system that assigns TRUTH CON-
DITIONS to sentences. The system will do so in a COMPOSITIONAL

manner, with meanings of larger expressions built up from mean-
ings of the parts. In these respects, this book presents quite an or-
dinary picture of formal semantics. The principal design feature
that distinguishes this book from the otherwise quite similar text-
book Heim & Kratzer 1998, is stylistic: We make use of an INDI-
RECT INTERPRETATION style, where natural language expressions
are mapped to expressions of a representation language, which
are in turn interpreted. In this respect the book is more like Dowty
et al. 1981, a more traditional exposition of modern formal se-
mantics. Let us explain all this in a bit more detail.

1.3.1 Truth-conditional semantics

1.3.1.1 What is truth-conditional semantics?

We said above that explaining entailment patterns in natural lan-
guage lies in the domain of semantic theory. We also said that
entailment could be characterized as follows: For any two arbi-
trary sentences A and B : A entails B if and only if there is no cir-
cumstance where A is true, but B is not. In order to explain entail-
ments, therefore, we will define an association between sentences
and truth conditions, that is, sets of circumstances. In other words,
we will need to associate sentences with their TRUTH CONDITIONS,
following in the logical tradition championed by the likes of Bertrand
Russell, Gottlob Frege, Alfred Tarski, Rudolf Carnap, Ludwig Wittgen-
stein, Donald Davidson, David Lewis, Richard Montague, and Bar-
bara Partee, who has acted as an ambassador between philosophy
and linguistics, coming from linguistics but contributing to both
fields.

Draft January 18, 2022

Introduction 43

At some level, truth conditions are a way of characterizing the
meaning of a sentence. Partee (2006) motivates this idea as fol-
lows:

Knowing the meaning of a sentence does not re-
quire knowing whether the sentence is in fact true; it
only requires being able to discriminate between sit-
uations in which the sentence is true and situations
in which the sentence is false.

The truth conditions of a sentence are the situations (or circum-
stances, as we have been referring to them) under which the sen-
tence is true. They don’t determine whether the sentence is in fact
true, but taken together, they determine what would have to be
the case in order for the sentence to be true. TRUTH-CONDITIONAL

SEMANTICS characterizes meaning by providing a systematic as-
sociation between sentences and their truth conditions.

Exercise 9. What is truth-conditional semantics?

1.3.1.2 Limitations of truth-conditional semantics

It is sometimes suggested that truth conditions are all there is to
the meaning of a sentence. Wittgenstein writes in his Tractatus:
“To understand a sentence means to know what is the case if it is
true.”9 Heim & Kratzer (1998) begin their textbook similarly: “To
know the meaning of a sentence is to know its truth conditions.”
This opening might be taken to be making the bold suggestion
that the meaning of a sentence consists entirely in its truth condi-
tions.

9Wittgenstein (1921) 4.024; our translation. The original German uses the
word ‘Satz’ where we have ‘sentence’. Published translations use ‘proposition’
instead of ‘sentence’, but the term ‘sentence’ is closer to our usage; Wittgenstein
did not distinguish between sentences and propositions.

Draft January 18, 2022

44 Introduction

There is certainly more to meaning, though. In the two quota-
tions above, truth conditions are associated with sentences, rather
than with particular occasions on which these sentences are used.
A SENTENCE is a particular word sequence that could in principle
be used on many different occasions, or on none; an UTTERANCE

on the other hand is a sentence as produced on a given occasion.
An utterance is typically associated with a designated speaker, ad-
dressee, time, and location, but a sentence is not. An utterance is
also situated in a particular discourse context, where some things
are relevant and under discussion and other things are not. It
is useful to distinguish accordingly between SENTENCE MEANING

and UTTERANCE MEANING. The implicatures that an utterance
gives rise to in its context can be seen as part of its meaning. Ut-
terances have meaning beyond truth conditions.

Sentence meaning goes beyond truth conditions too. In fact, it
is not clear that all sentences even have truth conditions. Declar-
ative statements of opinion such as Vegemite is tasty, commands
like Eat your vegemite! and questions like Did you eat your veg-
emite? are among the types of sentences that have been argued
not to have truth conditions, although opinions vary on these is-
sues. We focus here on sentences that do—declarative statements
of fact like Vegemite consists mainly of brewer’s yeast extract. The
techniques we will develop for this purpose can profitably be ex-
tended to a wider range of sentence types once they are in place.

But even the meaning of declarative statements of fact goes
beyond truth conditions. For one example, consider Sue has a
twin vs. Sue is a twin (example due to Matt Mandelkern). These
two sentences have the same truth conditions, but differ in how
easy they make it to refer to Sue’s twin with a pronoun in the next
sentence.

(60) a. Sue has a twin. She’s at boarding school.
b. Sue is a twin. She’s at boarding school.

In (60a), the pronoun she is most naturally interpreted as referring

Draft January 18, 2022

Introduction 45

to Sue’s twin. In (60b), it has to refer to Sue.
The earliest well-known example of this kind is due to Barbara

Partee (cited in Heim 1982b):

(61) a. I dropped ten marbles and found nine of them. ?It is
probably under the sofa.

b. I dropped ten marbles and found all of them, except
one. It is probably under the sofa.

DYNAMIC SEMANTICS models this as a difference in meaning, and
we will illustrate how this works in Chapter 9. Until then, our sys-
tem will be STATIC.

The final limitation of truth-conditional semantics that we will
mention here is that truth conditional meaning is somewhat coarse-
grained, collapsing finer-grained distinctions making up a phe-
nomenon known as HYPERINTENSIONALITY (e.g. Muskens 2005b).
For example, any two sentences expressing mathematical truths
(2+ 2 = 4 and e iπ = −1) have the same truth conditions—they’re
true in every possible circumstance—but they have different mean-
ings. Here is an argument for the claim that they have different
meanings: The sentence ‘Ed knows that 2+ 2 = 4’ doesn’t entail
‘Ed knows that e iπ = −1’; therefore, 2+ 2 = 4 must mean some-
thing different from e iπ = −1. We won’t have much to say about
hyperintensionality in this book, but we acknowledge that it is an
important dimension of meaning.

Exercise 10. In what ways does meaning go beyond truth condi-
tions? Discuss three.

1.3.2 Compositionality

The systems for natural language understanding that we develop
here are COMPOSITIONAL in the sense that the meaning of a com-
pound expression is a function of the meanings of its parts and

Draft January 18, 2022

46 Introduction

the way they are syntactically combined (Partee, 1984, 281). Truth
conditions will be assigned to sentences by combining together
the meanings of smaller expressions (noun phrases, verb phrases,
etc.).

Thanks to compositionality, along with the RECURSIVE nature
of the grammar and associated semantic composition system that
we will build, the parts can be combined and re-combined in in-
finitely many new ways. (In general, a RECURSIVE system is one
in which a concept or a procedure can be defined in terms of it-
self, while avoiding circularity. We will illustrate how the con-
cept of recursion applies in our case when we present the systems
in detail starting in Chapter 3.) In this respect, the systems you
will encounter in this book reflect the human capacity to produce
and understand infinitely many new sentences (Chomsky, 1957,
1965), a core characteristic of human language.

An analogy from arithmetic might help to illustrate what it
means for a semantic theory to be compositional. For the pur-
poses of discussion, we can think of the ‘meaning’ of the com-
pound expression 6*(3+2) as the number thirty. One of the parts
of this expression is the digit 6, whose meaning is the number six;
another part is the compound expression 3+2, whose meaning is
the number five. The meaning of 6*(3+2) only depends on the
meanings (six and five) of its parts (6 and 3+2) and how they are
combined (in this case, by multiplication). It does not depend on
anything else, such as the length or complexity of the subexpres-
sions, or the meanings of its surroundings.

For example, the expression 3+2 has the same meaning as
the expression 5, and these meanings don’t depend on what sur-
rounds these expressions. Whether we enter 6*(3+2) into a calcu-
lator or 6*5, the result is the same. In general, in a compositional
system, when we substitute one part of an expression by some-
thing else that has the same meaning, the meaning of the whole
expression remains the same. This is called the PRINCIPLE OF SUB-
STITUTIVITY.

Draft January 18, 2022

Introduction 47

Exercise 11. What would it look like if the principle of substitutiv-
ity was violated? Give an example from math.

Exercise 12. What does it mean for a theory of meaning to be com-
positional?

Depending on how we make the concept of ‘meaning’ precise,
we obtain different notions of compositionality. In this book, we
will define semantic theories, sets of rules, that assign a SEMAN-
TIC VALUE, or equivalently, DENOTATION, to each grammatical ex-
pression of the language. For instance, these rules will assign a
proper noun like Sue a particular individual as its denotation; we
will say that the noun DENOTES that individual. A common noun
like cat, on the other hand, does not pick out any particular in-
dividual but rather could apply truthfully to any number of indi-
viduals, so its denotation is more like a set of individuals. (A set
is just an unordered collection of objects, as we discuss in Chap-
ter 2.) Which set? The set of actual cats currently in existence at
the time of writing? We can imagine various counterfactual cir-
cumstances in which the set of cats is different. With respect to
those circumstances, the word cat would not pick out the set of
cats in the actual world currently in existence at the time of writ-
ing, but some other set. So we will say that denotations depend
on the circumstance; an expression denotes whatever it denotes
with respect to a given circumstance.

The denotation of an expression with respect to a particular
circumstance is called the EXTENSION of the expression at that cir-
cumstance; the INTENSION of an expression encompasses infor-
mation about its extensions at each of the various circumstances.
One way of thinking about the intension of an expression is as a
function (as defined in Chapter 2) that takes as input a circum-
stance, and returns the extension of the expression in question

Draft January 18, 2022

48 Introduction

at that circumstance. Sometimes, the extension of a complex ex-
pression depends not only on the extensions of its parts, but also
on their intensions:

(62) a. Johnny wants to find a unicorn.
b. Johnny wants to find a dragon.

Clearly these sentences don’t have the same meaning (one might
be true while the other one is false). By the principle of substi-
tutivity, unicorn and dragon can’t have the same meaning either.
Since their extension with respect to reality is the empty set, this
extension cannot be their meaning. Their intensions, however,
differ, and so intensions are closer to meanings than extensions
are.

A compositional system for assigning semantic values to com-
plex expressions that allows the extension of a complex expression
to depend on the intension of one or more of its parts is called IN-
TENSIONAL. A compositional system in which the extensions of
complex expressions depend only on the extensions of their parts
is called EXTENSIONAL. Our compositional system will be exten-
sional until Chapter 13, when we will incorporate tools that allow
us to treat intensional phenomena.

Now, how is the meaning of a complex expression determined
from the meanings of the parts? Frege (1891) described semantic
composition of two parts metaphorically in terms of ‘saturation’;
one part is somehow missing something (‘unsaturated’), and the
other part is the missing piece (and thus ‘saturates’ it). A similar
idea goes back at least to Aristotle’s division of a sentence into sub-
ject and predicate, and shows up in modern linguistics in syntax
rules such as S→NP VP. Here is how Frege puts it:

Statements in general [. . .] can be imagined to be
split up into two parts; one complete in itself, and the
other in need of supplementation, or “unsaturated.”
Thus, for example, we split up the sentence “Caesar
conquered Gaul” into “Caesar” and “conquered Gaul.”

Draft January 18, 2022

Introduction 49

The second part is “unsaturated” — it contains an empty
place; only when this place is filled up with a proper
name, or with an expression that replaces a proper
name, does a complete sense appear.10

Frege proposed to model this “saturation” using mathemati-
cal FUNCTIONS, which we will discuss in Chapter 2. We will see
exactly how this works in Chapter 6.

1.3.3 Indirect interpretation

Finally, let us say a word about the style of analysis that we will
adopt in this book, called INDIRECT INTERPRETATION. This is a
style in which a formal language (which we refer to as a REPRESEN-
TATION LANGUAGE) serves as an intermediary between the natural
language of interest and the theory of its semantics.

To explain this more fully, let us begin with the distinction be-
tween OBJECT LANGUAGE and META-LANGUAGE. In order to give
a theory of meaning for a given language (say, English), we must
somehow express that theory. The language in which the theory is
expressed is called the META-LANGUAGE, and the language being
characterized is called the OBJECT LANGUAGE. In other words, the
OBJECT LANGUAGE is the language that we are talking about, while
the language in which we theorize about the object language is
the META-LANGUAGE. The related term META-LINGUISTIC is used
to describe discourse that is about language.

In this book, we are using English (with some mathematical
notions mixed in) to theorize about English, so the object lan-
guage is English, and so is the meta-language (with some math-
ematical notions mixed in). But if we were developing a theory of
French, then French would be the object language, and we might
still use English to talk about it. If this book were translated into
Spanish, then Spanish would be the meta-language, even if the
example sentences were left in English.

10Translation by Black & Geach (1961), p. 31.

Draft January 18, 2022

50 Introduction

Exercise 13. Underline the object-language expressions in the fol-
lowing meta-linguistic statements.

(a) The word boy contains three letters.

(b) John said, “I am hungry.”

(c) John said that he was hungry using the word hungry.

(d) The English first person pronoun rhymes with eye.

As we are interested here in natural language semantics, a nat-
ural language like English or Swahili will be the language whose
semantics we want to characterize. But we will use another lan-
guage with its own semantics as an intermediary between this nat-
ural language and the language in which the theory is expressed.
The intermediary is a formal language (an artificial language de-
fined by clear and explicit rules), serving as what we call a REP-
RESENTATION LANGUAGE. Our formal language will be a LOGIC,
roughly, a formal language in which it is clearly defined which ar-
guments are valid and which are not.

Part of our task as theorists, then, is to specify the syntactic
and semantic rules for our representation language. When we are
laying out the rules of a formal logic, we are again talking about
a language, albeit a formal language. In that setting too, there is
an object language and a meta-language; it’s just that the object
language happens to be a formal logic. So in the picture we build
up in this book, there will actually be two languages that play the
role of ‘object language’: the natural language whose semantics
we aim to characterize (a fragment of English), and the formal lan-
guage with which we represent the meaning, i.e., the ‘representa-
tion language’. To avoid confusion, we will refer to these as the
‘natural language’ and the ‘representation language’, respectively,

Draft January 18, 2022

Introduction 51

rather than as the ‘object language’.
Our theory will thus consist of two mappings:

• a mapping from expressions of a natural language to ex-
pressions of the representation language

• a mapping from representation language expressions to se-
mantic values (described using the meta-language, which
incorporates elements from set theory)

This method is known as INDIRECT INTERPRETATION, and it is the
method used in Richard Montague’s paper, ‘The Proper Treatment
of Quantification in Ordinary English’ (Montague, 1973b).

Let us consider an example. The English expression Natalie
could have two different translations into logic, natalie_p and na-
talie_c, which in turn refer to Natalie Portman and Natalie Cole,
respectively.

ENGLISH LOGIC SEMANTIC VALUE

Natalie natalie_p Natalie Portman
Natalie natalie_c Natalie Cole

We refer to Natalie Portman in the meta-language using her name,
“Natalie Portman”. (We might as well have put a photograph of
Natalie Portman instead, in order to drive home the point that it
is really the individual herself that we mean to indicate.) In the
system that we will set up, the English name Natalie indirectly be-
comes associated with this individual, by virtue of the fact that it
is associated with the symbol natalie_p, which is part of the logic.
Notice that while the English expression is ambiguous, the logical
expression is unambiguous.

Another way to go about things would be to skip the logic and
give the interpretations of object language expressions directly us-
ing our meta-language, as Richard Montague did in his paper ‘En-
glish as a Formal Language’ (Montague, 1970). That style is known
as DIRECT INTERPRETATION, and it is adopted in the Heim & Kratzer
(1998) textbook.

Draft January 18, 2022

52 Introduction

The indirect interpretation style offers a number of practical
technical advantages over direct interpretation. The main advan-
tage derives from the fact that natural language is ambiguous and
vague, while our logical representation language is not. Having
a non-vague, non-ambiguous representation language makes it
possible to give a coherent treatment of entailment—our core phe-
nomenon of interest—as well as related, important notions like
contradictory vs. contrary opposition and equivalence. (Two sen-
tences are EQUIVALENT if and only if each entails the other.) A
more practical advantage is that it allows our meaning represen-
tations to be more concise, so they can fit on a tree diagram show-
ing the compositional derivation of the meaning of a sentence.
Finally, and importantly, it also meshes well with the Lambda Cal-
culator, a pedagogical software application that is integrated with
this book.

Exercise 14. What is the difference between direct and indirect in-
terpretation? Which style will be used in this book?

What to expect

Consider this book a starter kit for a theory of semantics. If you
understand the foundations well, you will be able to modify them
to suit your purposes. In trying to extend the theory to account
for a certain phenomenon, you may well find yourself making a
fundamental contribution to the theory of natural language se-
mantics.

Draft January 18, 2022

2 ∣ Sets, relations, and functions

2.1 Introduction

In the previous chapter, we defined entailment as follows: A en-
tails B if and only if there is no circumstance in which A is true
but B is not. An equivalent way of characterizing entailment is in
terms of SUBSET: A entails B if and only if the set of circumstances
where A is true is a subset of the set of circumstances where B is
true. That the premise is a subset and not a superset of the con-
clusion reflects the fact that premises may be more specific than
conclusions: being more specific amounts to being true in fewer
circumstances. Characterizing entailment is only one of the many
uses for set-theoretic concepts in semantic theorizing; there are
many more.

This chapter provides a brief introduction to set theory, in-
cluding relations between sets like SUBSET and SUPERSET, as well
as operations on sets like INTERSECTION, UNION and COMPLEMENT.
We will also use sets to characterize RELATIONS and FUNCTIONS.
Functions play a particularly important role in semantic theoriz-
ing, as they give us a way of making precise the idea that compo-
sition somehow involves saturation of something unsaturated.

Set theory not only lies at the foundation of the mathemati-
cal concepts used in formal semantics (and indeed of all of math-
ematics); it can also be applied fairly directly to some linguistic
puzzles. We will introduce such a puzzle here.

54 Sets, relations, and functions

2.2 Negative polarity items: the puzzle

There are certain words of English, including any, ever, yet, and
anymore, which can be used in negative sentences but not all pos-
itive sentences (at least in standard varieties of English):

(1) a. Chrysler dealers don’t ever sell any cars anymore.
b. *Chrysler dealers ever sell any cars anymore.

The italicized words in these examples are called NEGATIVE PO-
LARITY ITEMS (NPIs). The contrast between (1a) and (1b) shows
that negative polarity items are licensed in the presence of nega-
tion. Specifically, they are licensed in ENVIRONMENTS containing
negation. An environment is the part of a sentence that surrounds
a given constituent (in this case, the constituent that contains the
NPI).

It’s not just environments containing negation where NPIs can
be found. Here is a sampling of the data (Ladusaw, 1980).

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

No one
At most three people

*Someone
*At least three people
*Many students

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

who had ever read anything about

phrenology attended any of the lectures.

(3) I

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

never
rarely
seldom

*usually
*always
*sometimes

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ever eat anything for breakfast anymore.

(4) a. Susan finished her homework { without
*with

} any help.

b. Susan voted{ against
*for

} ever approving any of the pro-

Draft January 18, 2022

Sets, relations, and functions 55

posals.

(5) John will replace the money

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

before
if

*after
*when

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

anyone ever misses

it.

(6) It’s

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

hard
difficult

*easy
*possible

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

to find anyone who has ever read anything

much about phrenology.

(7) John

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

doubted
denied

*believed
*hoped

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

that anyone would ever discover that the

money was missing.

(8) It

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

is unlikely
is doubtful
amazed John

*is likely
*is certain
is surprising

*is unsurprising

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

that anyone could ever discover that

the money was missing.

So, along with negation, there are words like hard and doubt and
unlikely which license negative polarity items. What could these
words have in common?

The issue is made a bit more complex by the fact that words
differ as to where they license negative polarity items. Words like
every, some, and no belong to the syntactic category of DETERMIN-
ERS (as opposed to nouns, verbs, adjectives, etc.), and these de-
terminers differ as to where they license NPIs. For the purposes
of discussion, let us assume the following syntactic structure for

Draft January 18, 2022

56 Sets, relations, and functions

sentences like Every musician snores:

S

DP

D

every

NP

musician

VP

snores

A determiner like every is of category D (for determiner), and we
assume that it combines with an NP (for ‘noun phrase’, used in
this book for a phrase headed by a noun but excluding any deter-
miners) to form a DP (for ‘determiner phrase’, used in this book for
a phrase headed by a determiner). We are thus following the ‘DP
hypothesis’ (Abney, 1987), according to which a phrase like every
musician is headed by the determiner every rather than the noun
musician, as opposed to the ‘NP hypothesis’, according to which
phrases like every musician are headed by nouns, hence NPs. The
term “noun phrase” is sometimes used to refer to things like every
musician, regardless of whether they are analyzed as NPs or DPs.
In this book, we sometimes follow this practice in cases where it
will not lead to confusion, but reserve the term NP for things like
musician, and DP for things like every musician. The DP and the
VP together form a complete sentence, of category S. (The trian-
gles in the trees indicate that there is additional structure that is
not shown in full detail—in this case, the links from NP to N and
VP to V.)

No licenses NPIs throughout the sentence, in both the NP and
the VP:

(9) a. No [student who had ever read anything about phrenol-
ogy] [attended the lecture].

b. No [student who attended the lecture] [had ever read
anything about phrenology].

Draft January 18, 2022

Sets, relations, and functions 57

And some fails to license NPIs both in the NP and in the VP:

(10) a. *Some [student who had ever read anything about phrenol-
ogy] [attended the lecture].

b. *Some [student who attended the lecture] [had ever
read anything about phrenology].

But every licenses NPIs only in the NP, not in the VP:

(11) a. Every [student who had ever read anything about phrenol-
ogy] [attended the lecture].

b. *Every [student who attended the lectures] [had ever
read anything about phrenology].

This shows that the ability to license negative polarity items is not
a simple yes/no matter for each lexical item.

Building on work by Fauconnier (1975), Ladusaw (1980) illus-
trated a correlation between NPI licensing and “direction of en-
tailment”. A simple, positive sentence containing the word cel-
list will typically entail the corresponding sentence containing the
word musician, as shown by the validity of the following argu-
ment:1

(12) Mary is a cellist.
∴Mary is a musician.

The “direction of entailment” can be either DOWNWARD or UP-
WARD. To understand the idea behind these labels, let us arrange
terms like cellist and musician visually in a TAXONOMIC HIERAR-
CHY (an arrangement of categories specifying which categories
are sub-categories of others, sometimes used in biology to cap-

1As discussed in Chapter 1, a distinction can be drawn between ‘logical con-
sequence’ and ‘necessary consequence’. The argument in (12) is ‘necessarily
valid’ because it is impossible for the conclusion to be false when the premise
is true, assuming that being a musician is an intrinsic part of what it means to
be a cellist. But it is not ‘logically valid’, because it is not valid solely in virtue of
its form. Similar remarks apply to subsequent examples in this chapter.

Draft January 18, 2022

58 Sets, relations, and functions

ture the organization of flora or fauna into categories) with more
specific concepts below more general concepts.

musician

string player

cellist violinist ...

brass player

trombonist ...

...

In terms of this visual representation, the inference in (12) pro-
ceeds from lower (more specific) to higher (more general), hence
“upwards”. An entailment by a sentence of the form [... A ...] to
a sentence of the form [... B ...] where A is more specific than B
can thus be labelled an UPWARD ENTAILMENT. The validity of the
following argument illustrates another upward entailment:

(13) Some cellists snore.
∴ Some musicians snore.

But negation and the determiner no reverse the entailment pat-
tern; witness the validity of the following arguments:

(14) Mary isn’t a musician.
∴Mary isn’t a cellist.

(15) No musicians snore.
∴No cellists snore.

The entailments here are called, as you might guess, DOWNWARD

ENTAILMENTS, because they go from more general (higher) to more
specific (lower).

We can also consider direction of entailment between sen-
tences varying only in the verb phrase (VP). If we think of snores
and snores loudly as being arranged in the same kind of taxonomic

Draft January 18, 2022

Sets, relations, and functions 59

hierarchy, where the more general terms are higher and the more
specific terms are lower, we see that snores loudly is below snores,
because every case of snoring loudly is a case of snoring.

snores

snores loudly snores softly

In simple sentences like the following, replacing a specific VP with
a more general one yields a valid argument, so the VP is in an
UPWARD-ENTAILING ENVIRONMENT.

(16) Ed snores loudly.
∴ Ed snores. (upward)

But negation reverses the direction of entailment, so that the VP
is then in a DOWNWARD-ENTAILING ENVIRONMENT:

(17) Ed doesn’t snore.
∴ Ed doesn’t snore loudly. (downward)

It turns out that there is a correlation between NPI-licensing
and downward entailment: NPIs are licensed in downward-entailing
environments. Compare the following examples to the NPI data
for no, some and every above.

(18) a. No musician snores.
∴No cellist snores. (downward)

b. No musician snores.
∴No musician snores loudly. (downward)

(19) a. Some cellists snore.
∴ Some musicians snore. (upward)

b. Some musician snores loudly.
∴ Some musician snores. (upward)

(20) a. Every musician snores.
∴ Every cellist snores. (downward)

Draft January 18, 2022

60 Sets, relations, and functions

b. Every musician snores loudly.
∴ Every musician snores. (upward)

Observe that there is an exact match between the environments
that are downward-entailing and those in which negative polarity
items are licensed. This exact match is in accordance with the
FAUCONNIER-LADUSAW GENERALIZATION: An expression licenses
negative polarity items wherever it licenses downward entailments.

What we have said so far about what it means for one expres-
sion to be “downward” of another one is that it is more “specific”.
But as Farkas (2002, 213) writes, “the notion of specificity in lin-
guistics is notoriously non-specific.” We can state this idea more
precisely by making use of the certain technical vocabulary, in
particular, the concepts of SET and SUBSET. A SET is an abstract
collection of distinct objects, which are called the MEMBERS or EL-
EMENTS of that set. One set is a SUBSET of another set if and only
if every member of the first is a member of the second (or in other
words: there is nothing in the first that isn’t also in the second, al-
though there may be elements of the second that are not in the
first).

Let us assume that words like cellist and musician denote sets,
such as the set of cellists and of musicians. While the set of cellists
in one circumstance may differ from the set of cellists in another,
it does not matter which circumstance we pick, since regardless
of our choice, every cellist is a musician; so, every member of the
set denoted by cellist is bound to be a member of the set denoted
by musician. Hence the denotation of cellist is always (in all cir-
cumstances) a subset of the denotation of musician. Assuming
that verb phrases like snores and snores loudly denote sets as well,
we again have a subset relation: every member of the set denoted
by snores loudly (i.e. every loud snorer) is a member of the set de-
noted by snores (i.e. is a snorer).

In the next section, we turn to a more technical presentation
of sets and related notions. Not only will these notions help to elu-
cidate what we have said so far, they will also allow us to charac-

Draft January 18, 2022

Sets, relations, and functions 61

terize the meaning of no, some and every in a way that helps to ex-
plain why they are downward-entailing where they are. These no-
tions will also lay the foundations for the rest of this book, as our
language for describing denotations (our META-LANGUAGE) builds
on concepts and notational devices related to sets.

2.3 Sets

As mentioned above, a SET is an abstract collection of distinct
objects, which are called the MEMBERS or ELEMENTS of that set.2

Here is an example of a set:

{2,7,10}

This set contains three elements: the number 2, the number 7,
and the number 10. The members of the set are separated by com-
mas and enclosed by curly braces. To express the fact that 2 is a
member of this set, we write:

2 ∈ {2,7,10}

This expression is a declarative statement, which can be read aloud
as follows: ‘2 is a member of the set containing 2, 7 and 10.” To ex-
press the fact that 3 is not a member of this set, we write:

3 /∈ {2,7,10}

This statement can be read, ‘3 is not an element of the set con-
taining 2, 7 and 10.’

The elements of a set are not ordered. Thus this set:

{2,5,7,4}
2The material in this section is inspired heavily by Partee et al. (1990), where

you will find an excellent and a more in-depth presentation of these and related
issues.

Draft January 18, 2022

62 Sets, relations, and functions

is exactly the same set as this set:

{5,2,4,7}

Listing an element multiple times does not change the member-
ship of the set. Thus:

{3,3,3,3,3}
is exactly the same set as this one:

{3}

Sets can be very big or very small. Here is another example of
a set:

{2,4,6,8, . . .}
The ELLIPSIS NOTATION (. . .) signals that the list of elements con-
tinues according to the pattern. So this set is infinite; it contains
all positive even numbers. But a set need not have multiple mem-
bers; it can have just one element:

{3}

This set contains just the number 3. If a set has only one member,
it is called a SINGLETON; we also say that the set {3} is the single-
ton of 3. A set can even be empty. The set with no elements at all
is called the EMPTY SET, written either like this:

{}

or like this:
∅

The CARDINALITY of a set is the number of elements it contains.
The cardinality of the empty set, for example, is 0. Cardinality is
expressed by vertical bars surrounding the set: If A is a set, then
∣A∣ is the cardinality of A. So, for example:

∣{5,6,7}∣ = 3

Draft January 18, 2022

Sets, relations, and functions 63

This formula can be read, ‘The cardinality of the set containing 5,
6, and 7 is 3.’

The members of a set can be all sorts of things. A set can, for
example, contain another set as an element. The following set:

{2,{1,3,5}}

contains two elements, not four. One of the elements is the num-
ber 2. The other element is a three-membered set. A set could
also, of course, contain the empty set as an element, as the follow-
ing set does:

{∅,2}
This set has two elements, not one.

Exercise 1. What is the cardinality of the following sets?

(a) {2,3,{4,5,6}}

(b) ∅

(c) {∅}

(d) {∅,{3,4,5}}

(e) {∅,3,{4,5}}

In the kind of set theory that linguists typically use, elements
may be either concrete (like the beige 1992 Toyota Corolla the first
author sold in 2008, you, or your computer) or abstract (like the
number 2, the English phoneme /p/, or the set of all professional
soccer players of the 1980s). Partee et al. (1990) also point out:

A set may be a legitimate object even when our knowl-
edge of its membership is uncertain or incomplete.
The set of Roman emperors is well-defined even though

Draft January 18, 2022

64 Sets, relations, and functions

its membership is not widely known . . . , although it
may be hard to find out who belongs to it. For a set
to be well-defined it must be clear in principle what
makes an object qualify as a member of it . . .

The only kinds of things that cannot be members of a given
set are certain other sets. This restriction is needed in order to
avoid problems such as RUSSELL’S PARADOX (there cannot be a
set of all sets that are not members of themselves, since that set
could neither contain nor fail to contain itself). For now, we will
set this paradox aside. In Chapter 5, we will introduce a simplified
version of Russell’s solution to his paradox called type theory that
constrains the conditions under which one set can be a member
of another.

When we can’t list all of the members of a set, we can use
PREDICATE NOTATION (also called SET-BUILDER NOTATION) to de-
scribe the set of things meeting a certain condition. To do that,
we place a VARIABLE – a symbol that serves as a placeholder – on
the left-hand side of a vertical bar, and put a description contain-
ing the variable on the right-hand side. In principle, we are free
to choose any symbol we like to serve as a variable, but typical
choices for numbers are single letters in the middle of the alpha-
bet like n, m, and k. Let us use n as our variable. For example,
the following expression describes the set of integers below zero
(Z designates the set of integers):

{n ∣ n ∈Z and n < 0}

This expression can be read, ‘the set of all n such that n is an inte-
ger and n is less than 0’. The vertical bar can be read as ‘such that’
in this context; it is sometimes written as a colon. The same set
could be written as

{−1,−2,−3, . . .}
showing that the set of elements stretches out infinitely in the neg-
ative direction.

Draft January 18, 2022

Sets, relations, and functions 65

Two sets are EQUAL if and only if they have the same members.
Thus it does not matter which order we use if we list the members
of a set, and which notation we use to begin with. For example,
the expressions {1,2,3}, {1,3,2}, and {3,2,1} all denote the same
set.

It is important to distinguish between elements and subsets.
The set {2,3} is not an element, but rather a subset of the set {2,3,4}.
In general, as we have said earlier, a set A is a SUBSET of a set B if
and only if every member of A (if any) is a member of B . Put more
formally:

A ⊆B iff for all x: if x ∈ A then x ∈B .

This formulation uses several pieces of mathematical jargon. The
word “iff” is shorthand for “if, and only if”. The symbol ⊆ is pro-
nounced “is a subset of”. The symbol ∈ is pronounced “is an ele-
ment of” or “is a member of” or “is contained in”.

Let a, b, and c stand for three arbitrary distinct things, such
as your three favorite moments, the Three Musketeers, or three
particular sets of numbers. Here are some true statements:

{a,b} ⊆ {a,b,c}

{b,c} ⊆ {a,b,c}
{a} ⊆ {a,b,c}

Things get slightly trickier to think about when the elements of the
sets involved are themselves sets. Here is another true statement:

{a,{b}} /⊆ {a,b,c}

(The slash across the ⊆ symbol negates it, so /⊆ can be read ‘is not
a subset of’.) The reason that {a,{b}} is not a subset of {a,b,c}
is that the first has a member that is not a member of the second,
namely {b}. It is tempting to think that {a,{b}} contains b as an
element but this is not correct. The set {a,{b}} has exactly two el-
ements, namely: a and {b}. The set {b}, called the SINGLETON of

Draft January 18, 2022

66 Sets, relations, and functions

b, is not the same thing as b. One is a set and the other might not
be. (Whether b is a set is open at this point, since we have made
no assumptions about what b is.) Likewise, the set {{b}} is not
the same thing as the set {b}, and so on. This example can also
help clarify the difference between membership and subsethood.
A member or element (∈) of a set is not a subset (⊆) of that set. Un-
like subsethood, membership is not transitive. For example, the
set {{b}} has a single element, {b}, which in turn has a single el-
ement, b. In this example, b is an element of {b} but not of {{b}},
and {b} is an element, but not a subset, of {{b}}. As for b itself, it
is not a subset of anything (assuming it is not itself a set).

The following is a true statement:

{a,{b}} ⊆ {a,{b},c}

Every element of {a,{b}} is an element of {a,{b},c}, as we can
see by observing that the following two statements hold:

a ∈ {a,{b},c}

{b} ∈ {a,{b},c}
The empty set is a subset (not an element!) of every set. So, in

particular:
∅⊆ {a,b,c}

Since the empty set doesn’t have any members, it never contains
anything that is not an element of another set, so the definition of
subset is always trivially satisfied. So whenever anybody asks you,
“Is the empty set a subset of...?”, you can answer “yes” without
even hearing the rest of the sentence. (If they ask you whether
the empty set is an element of some other set, then you’ll have to
look among the elements of that other set in order to decide.)

By this definition, every set is actually a subset of itself, even
though normally we might first think of two sets of different sizes
when we think of the subset relation. So the following statement
is true:

{a,b,c} ⊆ {a,b,c}

Draft January 18, 2022

Sets, relations, and functions 67

To avoid confusion, it helps to distinguish between subsets and
proper subsets. A is a PROPER SUBSET of B , written A ⊂ B , if and
only if A is a subset of B and A is not equal to B :

A ⊂B iff (i) for all x: if x ∈ A then x ∈B and (ii) A ≠B .

For example, {a,b,c} ⊆ {a,b,c}but it is not the case that {a,b,c} ⊂
{a,b,c}.

When we collect all of the subsets (proper or not) of a given
set S into a set, that is called the POWERSET of S, written ℘(S) or
sometimes 2S . The latter notation is motivated by the fact that
if a set has n elements, then its powerset has 2n elements. For
example, if a set has 2 elements then its powerset has 4 elements:

℘({a,b}) = {{},{a},{b},{a,b}}

The reverse of subset is superset. A is a SUPERSET of B , written
A ⊇B , if and only if every member of B is a member of A.

A ⊇B iff for all x: if x ∈B then x ∈ A.

Two sets are identical whenever they have the same members.
This means we have A =B if and only if both A ⊆B and A ⊇B .

And as you might expect, A is a PROPER SUPERSET of B , written
A ⊃B , if and only if A is a superset of B and A is not equal to B .

A ⊃B iff (i) for all x: if x ∈B then x ∈ A and (ii) A ≠B .

The word every can be thought of as a relation between two
sets X and Y which holds if X is a subset of Y , i.e., if every member
of X is a member of Y . The sentence every musician snores, for
instance, expresses that every member of the set of musicians is a
member of the set of people who snore. This type of scenario can
be depicted as follows:

Draft January 18, 2022

68 Sets, relations, and functions

m
usicians

snorers

Subset and superset are RELATIONS BETWEEN SETS, which ei-
ther hold or fail to hold. Other elements of the set theoretic vo-
cabulary express OPERATIONS ON SETS, producing a new set from
one or more sets. The principal operations on sets include inter-
section, union, and complement.

The INTERSECTION of A and B , written A ∩B , is the set of all
entities x that are both a member of A and a member of B .

A∩B = {x ∣ x ∈ A and x ∈B}

For example:
{a,b,c}∩{b,c,d} = {b,c}

{b}∩{b,c,d} = {b}

{a}∩{b,c,d} =∅

{a,b}∩{a,b} = {a,b}

Intersection is very useful in natural language semantics. It can be
used as the basis for a semantics of and. For example, if someone
tells you that John is a lawyer and a doctor, then you know that
John is in the intersection between the set of lawyers and the set of
doctors. If the circle on the left in the following diagram represents
the set of doctors, and the circle on the right represents the set of
lawyers, then John is located somewhere in the area where the two
circles overlap, as long as he is both a doctor and a lawyer. (This
way of representing the relations among sets is called an EULER

DIAGRAM.)

Draft January 18, 2022

Sets, relations, and functions 69

doctors lawyers

The English determiner some can be thought of in terms of
intersection as well, as a relation between two sets X and Y which
holds iff there is some member of X which is also a member of
Y , i.e., iff the intersection between X and Y is non-empty. For
instance, some musician snores is true iff there is some individual
which is both a musician and a snorer.

The determiner no can be thought of as a relation between
two sets X and Y which holds if the two sets have no members in
common, in other words, iff the intersection is empty. So no musi-
cian snores holds iff there is no individual who is both a musician
and a snorer. In that case, the two sets are DISJOINT, like so:

musicians snorers

Exercise 2. Here are three Euler diagrams:

(a) (b)

Draft January 18, 2022

70 Sets, relations, and functions

(c)

And here are three statements in set-theoretic language:

1. A∩B =∅

2. A∩B ≠∅

3. A ⊆B

For each of the Euler diagrams, say (i) which of the three set-
theoretic statements it matches, and (ii) which of the following
three determiners it best represents: some, every, or no. (The
dashed line represents A and the dotted line represents B .)

Another useful operation on sets is union. The UNION of A
and B , written A∪B , is the set of all things that are either in A or
in B (or both).

A∪B = {x ∣ x ∈ A or x ∈B}

For example:
{a,b}∪{d ,e} = {a,b,d ,e}

{a,b}∪{b,c} = {a,b,c}

{a,b}∪∅= {a,b}

As you can guess, union can be used to give a semantics for or. If
someone tells you that John is a lawyer or a doctor, then you know
that John is in the union of the set of lawyers and the set of doctors.
(You might normally assume that he is not in the intersection of
doctors and lawyers though – that he is either a doctor or a lawyer,

Draft January 18, 2022

Sets, relations, and functions 71

but not both. This is called an exclusive interpretation for or, and
we will get to that later on.)

Exercise 3. Use D to denote the set of doctors, L to denote the set
of lawyers, and R to denote the property of being rich. Which of
the following best captures the meaning of Every doctor and every
lawyer is rich?

(a) (D ∩L) ⊆R

(b) (D ∪L) ⊆R

(c) R ⊆ (D ∩L)

(d) R ⊆ (D ∪L)

We can also talk about SUBTRACTING one set from another.
The DIFFERENCE of A and B , written A −B or A ∖B , is the set of
all things that are in A but not in B .

A−B = {x ∣ x ∈ A and x /∈B}
For example, {a,b,c}−{b,d , f } = {a,c}. This is also known as the
RELATIVE COMPLEMENT of A and B , or the result of subtracting B
from A. A −B can also be read, ‘A minus B ’. Sometimes people
speak simply of the COMPLEMENT of a set A, without specifying
what the complement is relative to. This is still implicitly a relative
complement; it is relative to some assumed UNIVERSE of entities.
The complement of A can be written Ā.3

Exercises on sets

The following exercises are taken from Partee et al. 1990, Mathe-
matical Methods in Linguistics.

3The notation A′ is also sometimes used for the complement.

Draft January 18, 2022

72 Sets, relations, and functions

Exercise 4. Given the following sets:

A = {a,b,c,2,3,4} E = {a,b,{c}}
B = {a,b} F =∅
C = {c,2} G = {{a,b},{c,2}}
D = {b,c}

classify each of the following statements as true or false.

(a) c ∈ A (g) D ⊂ A (m) B ⊆G
(b) c ∈ F (h) A ⊆C (n) {B} ⊆G
(c) c ∈ E (i) D ⊆ E (o) D ⊆G
(d) {c} ∈ E (j) F ⊆ A (p) {D} ⊆G
(e) {c} ∈C (k) E ⊆ F (q) G ⊆ A
(f) B ⊆ A (l) B ∈G (r) {{c}} ⊆ E

Exercise 5. Consider the following sets:

S1 = {{∅},{H}, H} S6 =∅
S2 = H S7 = {∅}
S3 = {H} S8 = {{∅}}
S4 = {{H}} S9 = {∅,{∅}}
S5 = {{H}, H}

(a) Of the sets S1−S9, which are members of S1?

(b) Which are subsets of S1?

(c) Which are members of S9?

(d) Which are subsets of S9?

(e) Which are members of S4?

(f) Which are subsets of S4?

Draft January 18, 2022

Sets, relations, and functions 73

Exercise 6. Given the sets A, ...,G from above, repeated here:

A = {a,b,c,2,3,4} E = {a,b,{c}}
B = {a,b} F =∅
C = {c,2} G = {{a,b},{c,2}}
D = {b,c}

list the members of each of the following:

(a) B ∪C

(b) A∪B

(c) D ∪E

(d) B ∪G

(e) D ∪F

(f) A∩B

(g) A∩E

(h) C ∩D

(i) B ∩F

(j) C ∩E

(k) B ∩G

(l) A−B

(m) B − A

(n) C −D

(o) E −F

(p) F − A

(q) G −B

Exercise 7. Let A = {a,b,c}, B = {c,d}, C = {d ,e, f }. Calculate the
following:

(a) A∪B

(b) A∩B

(c) A∪(B ∩C)

(d) C ∪ A

(e) B ∪∅

(f) A∩(B ∩C)

Draft January 18, 2022

74 Sets, relations, and functions

(g) A−B

(h) Is a a member of {A,B}?

(i) Is a a member of A∪B?

2.4 Negative polarity items revisited

We have characterized the truth conditions of the determiners no,
some and every as follows:

• Every X Y is true if and only if X is a subset of Y .

• Some X Y is true if and only if there is a non-empty inter-
section between X and Y .

• No X Y is true if and only if X and Y have an empty inter-
section.

Given this, consider what happens when we consider a subset X ′

of X (e.g., if X is the set of musicians, take X ′ to be the set of cel-
lists). Every X Y is true if and only if X is a subset of Y . If that is
true, then any subset X ′ of X will also be a subset of Y . This can
be visualized as in the following Euler diagram. Assume it is true
that all musicians snore. Then the set of musicians is a subset of
the set of snorers. And since all cellists are musicians, the set of
cellists is a subset of the set of musicians:

Draft January 18, 2022

Sets, relations, and functions 75

cellists

musicians

snorers

So, from Every musician snores it follows that Every cellist snores.
In this particular example, we have taken X to be the set of mu-
sicians, X ′ the set of cellists, and Y the set of snorers. In general,
every X Y entails every X ′ Y whenever X ′ is a subset of X . We say
that every is LEFT DOWNWARD MONOTONE (“left” because it has
to do with the expression on the left, X , rather than the expres-
sion on the right, Y .) In general, a determiner δ is left downward
monotone iff δX Y entails δX ′Y for all X ′ that are subsets of X .

A determiner δ is RIGHT DOWNWARD MONOTONE iff δX Y en-
tails δX Y ′ for any Y ′ that is a subset of Y . Let us consider whether
every is right downward monotone. Suppose that every X Y is
true. Then X is a subset of Y . Now we will take a subset of Y ,
Y ′. Are we guaranteed that X is a subset of Y ′? No! Here is a
counterexample:

Draft January 18, 2022

76 Sets, relations, and functions

lo

ud snorers musicians

snorers

Here, X (musicians) is not a subset of Y ′ (loud snorers). Or think
about it this way: From every musician snores it doesn’t follow
that every musician snores loudly. So every is not right downward
monotone.

Now let us consider some. With some, we are not guaranteed
that a true sentence will remain true when we replace X with a
subset X ′. Some X Y is true iff the intersection of X and Y con-
tains at least one member. If we take a subset X ′ of X , then we
might end up with a set that has no members in common with Y ,
like this:

musicians snorers

cellists

So, for example, suppose that Some musician snores is true.
From this it does not follow that Some cellist snores is true, be-
cause it could be the case that none of the musicians who snore
are cellists. So some is not left downward monotone. By analogous
reasoning, it isn’t right downward monotone either.

Draft January 18, 2022

Sets, relations, and functions 77

Exercise 8. Is no left downward monotone? Is it right downward
monotone? Explain. In a sentence of the form No X Y , where
are negative polarity items licensed (see above)? So, does the
Fauconnier-Ladusaw generalization hold up for no? Explain.

Exercise 9. Consider the following data:

(21) At most five [of the cities I have ever visited] [have decent
bike infrastructure].

(22) At most five [of the cities I have visited] [have any decent
bike infrastructure at all].

(23) *At least five [of the cities I have ever visited] [have de-
cent bike infrastructure].

(24) *At least five [of the cities I have visited] [have any decent
bike infrastructure at all].

This shows that at most five licenses NPIs in the NP it forms a
syntactic unit with as well as the VP, and at least five licenses neg-
ative polarity items in neither position. Let us consider whether
the distribution of negative polarity items with these quantifiers
fits the Fauconnier-Ladusaw generalization about downward
entailment (that NPIs are licensed in downward-entailing envi-
ronments).

In particular, consider whether at most five and at least five
produce downward-entailing environments both in NP, and in
the VP. You’ll need to construct four pairs of examples, one pair
for each of the environments under consideration.

Note: Your examples should not contain NPIs; your goal is just to
determine whether the environment is downward-entailing.

Draft January 18, 2022

78 Sets, relations, and functions

Based on your observations, does the Fauconnier-Ladusaw
generalization hold up for at least and at most? Explain your
reasoning for your answer.

Exercise 10. For each of the examples in (2), (3), and (4b) on page
54, check whether the Fauconnier-Ladusaw generalization holds
up. Are downward entailments licensed in exactly the places
where NPIs are licensed? (The examples that you need to con-
struct in order to test this should not contain NPIs; they can be
examples like the ones in (18b), (20b) and (19b).)

What we have seen so far is that the Fauconnier-Ladusaw gen-
eralization works quite well as a way of characterizing the envi-
ronments where negative polarity items are licenced. But it is not
perfect. For example, consider the fact that only licenses negative
polarity items in the VP in sentences like the following:

(25) Only Sandy did any work.

The verb phrase is not a downward-entailing environment, as shown
by the fact that (26a) does not entail (26b).

(26) a. Only Sandy did work.
b. Only Sandy did gardening.

Suppose that the only kind of work that was done was food prepa-
ration and clean-up; nobody did any gardening. Then (26a) could
be true even though (26b) is not true; Sandy didn’t garden. This
particular issue can be resolved by replacing ‘downward entail-
ment’ with what von Fintel (1999) calls STRAWSON DOWNWARD-
ENTAILMENT. An environment is Strawson downward-entailing if
it is downward-entailing under the assumption that all of the pre-
suppositions of both sentences are true. For instance, (26b) presup-

Draft January 18, 2022

Sets, relations, and functions 79

poses that Sandy did gardening, and (26a) presupposes that Sandy
did work. Under these assumptions, (26a) does entail (26b), so the
verb phrase is a Strawson downward-entailing environment.

Another type of example that is challenging for the Fauconnier-
Ladusaw generalization is questions, like:

(27) Did you have any problems?

It is not entirely clear what it means for one question to entail an-
other. On the basis of this and other data, some authors, including
Zwarts (1995) and Giannakidou (1999), have offered a theory of
negative polarity item licensing based on a notion called ‘veridi-
cality’, which we will not go into here. For further reading on neg-
ative polarity items, we recommend the overview by Penka (2016)
as a place to start.

2.5 Relations and functions

The denotations of common nouns like cellist and intransitive verbs
like snores are often thought of as sets (the set of cellists, the set of
individuals who snore, etc.). Transitive verbs like love, admire, and
respect are sometimes thought of as denoting RELATIONS between
two individuals. Relations can be modelled mathematically using
pairs of elements that stand in a specified order to each other, i.e.
ORDERED PAIRS.

2.5.1 Ordered pairs

As stated above (p. 61), sets are not ordered. For any a and b:

{a,b} = {b, a}

But the elements of an ORDERED PAIR are ordered. Using angle
brackets, we write

⟨a,b⟩

Draft January 18, 2022

80 Sets, relations, and functions

to designate the ordered pair in which a is the FIRST MEMBER and
b is the SECOND MEMBER. Thus:

⟨a,b⟩ ≠ ⟨b, a⟩

Like the elements of sets, the members of an ordered pair can
be anything. Here is an ordered pair of numbers:

⟨3,4⟩

A member of an ordered pair could also be a set, as in the or-
dered pair whose first member is the set {1,2,3} and whose sec-
ond member is the set {2,3,4}, written:

⟨{1,2,3},{2,3,4}⟩

Alternatively, one or both of the members could be ordered pairs,
as in the following:

⟨3,⟨10,12⟩⟩

In this ordered pair, the first member is the number 3, and the sec-
ond member is the ordered pair ⟨10,12⟩. Note that ⟨3,{10,12}⟩
is not the same thing as ⟨3,⟨10,12⟩⟩. The first is an ordered pair
whose second member is the set containing 10 and 12; the sec-
ond is an ordered pair whose second member is the ordered pair
⟨10,12⟩.

Given two sets A and B , the set of ordered pairs ⟨x, y⟩ such
that x ∈ A and y ∈ B is called the CARTESIAN PRODUCT of A and B ,
written A×B . For example:

{a,b,c}×{1,2,3}

= {⟨a,1⟩,⟨a,2⟩,⟨a,3⟩,⟨b,1⟩,⟨b,2⟩,⟨b,3⟩,⟨c,1⟩,⟨c,2⟩,⟨c,3⟩}

Exercise 11. True or false?

Draft January 18, 2022

Sets, relations, and functions 81

(a) {3,3} = {3}

(b) {3,4} = {4,3}

(c) ⟨3,4⟩ = ⟨4,3⟩

(d) ⟨3,3⟩ = ⟨3,3⟩

(e) {⟨3,3⟩} = ⟨3,3⟩

(f) {⟨3,3⟩,⟨3,4⟩} = {⟨3,4⟩,⟨3,3⟩}

(g) ⟨3,{3,4}⟩ = ⟨3,{4,3}⟩

(h) {3,{3,4}} = {3,{4,3}}

2.5.2 Relations

As mentioned above, the semantics of transitive verbs like love,
admire, and respect is sometimes modeled using RELATIONS be-
tween two individuals. The ‘love’ relation corresponds to the set
of ordered pairs of individuals such that the first member loves the
second member. Suppose John loves Sandy. Then the pair ⟨John,
Sandy⟩ is a member of this relation.

Certain nouns, including neighbor, mother, and friend, can
be thought of as denoting relations between individuals. So can
prepositions like in and beside. Relations can also hold between
sets; for example, subset is a relation between two sets A and B
which holds if and only if every element of A is an element of B .
As mentioned before, this is arguably the relation expressed by the
determiner every; if every A is a B , then A is a subset of B .

A preposition like in denotes a relation between two individ-
uals; that is, it denotes a BINARY RELATION. The preposition be-
tween, by contrast, expresses a TERNARY RELATION, that is, a re-
lation between three objects (a is between b and c). A ternary

Draft January 18, 2022

82 Sets, relations, and functions

relation can be modelled as a set of ordered triples. For exam-
ple, the ternary relation denoted by between contains the follow-
ing triples:

⟨Alabama,Mississippi,Georgia⟩

⟨Togo,Ghana,Benin⟩

as Alabama is between Mississippi and Georgia and Togo is be-
tween Ghana and Benin. A QUATERNARY relation corresponds to
a set of ordered 4-tuples. For example, it might be convenient
for some purposes to consider a ‘spatiotemporal location’ relation
that holds between an entity, a latitude, a longitude, and a time.

Given sets A and B , a RELATION FROM A TO B is a set of ordered
pairs whose first member is an element of A and whose second
member is an element of B . Not all elements of A and B need
necessarily be involved in the relation. The DOMAIN is the set of
those entities in A that occur as a first member of some pair, and
the RANGE is the set of those entities in B that occur as a second
member of some pair. The union of the domain of a relation with
its range is called the FIELD of a relation. The sets A and B them-
selves are called the DOMAIN OF DEFINITION and the CODOMAIN of
the relation. Formally, a binary relation over A and B is a (proper
or non-proper) subset of the Cartesian product A×B .

The sets A and B can be, but need not be distinct. One can
also be a subset of the other. A REFLEXIVE relation is one that re-
lates everything to itself, that is, for any x, the pair ⟨x, x⟩ is in the
relation. (Other pairs may be in the relation, too.) For example,
the relation ‘greater than or equal to’ is reflexive, because every
number is greater than or equal to itself.

A relation is SYMMETRIC if and only if: For any a and b, if ⟨a,b⟩
is in the relation, then ⟨b, a⟩ is also in the relation. For example,
the ‘standing next to’ relation is symmetric; hence the following
argument is valid:

(28) Paul is standing next to George.
∴George is standing next to Paul.

Draft January 18, 2022

Sets, relations, and functions 83

The ‘admires’ relation is not, though.

(29) Paul admires George.
/∴George admires Paul.

Here we see an example of how mathematical properties of the
relations expressed by words and phrases in natural language can
affect the inference patterns that they license.

A TRANSITIVE relation is one that licenses inferences like this:

(30) Paul is taller than George.
George is taller than Ringo.

∴ Paul is taller than Ringo.

In general, a relation is TRANSITIVE if and only if: For any a, b, and
c, if ⟨a,b⟩ and ⟨b,c⟩ are in the relation, then ⟨a,c⟩ is also in the
relation. (This notion TRANSITIVE should not be confused with
the notion of a transitive verb.) Another example of a transitive
relation is ‘before’: If a is before b, and b is before c, then a is
before c.

A relation that is reflexive, symmetric, and transitive is called
an EQUIVALENCE RELATION. For example, the relation ‘has the
same birthday as’ is an equivalence relation. An equivalence re-
lation determines a PARTITION over a set, that is, a set of non-
intersecting subsets that cover the whole set (so the union of the
subsets is equal to the whole set). Each member of the partition is
called a CELL of the partition. So, for example, if we group people
by birthday, we can form a partition over the set of people with a
number of cells equal to the number of different birthdays. Within
each cell, the elements will stand in the ‘have the same birthday’
equivalence relation to each other, and it is in that sense that the
equivalance relation determines the partition. This notion comes
up in the analysis of questions, although we will not touch on that
in this book.

Draft January 18, 2022

84 Sets, relations, and functions

Exercise 12. One of the following arguments is valid, and the other
is not.

(31) The singer is the drummer’s brother.
∴ The drummer is the singer’s brother.

(32) The singer is the drummer’s sibling.
∴ The drummer is the singer’s sibling.

Which one is valid? Why is it valid while the other is not? Put
your answer in the following form: “Because expresses a

relation and does not.”

Exercise 13. One of the following arguments is valid, and the other
is not.

(33) The singer is immediately to the left of the drummer.
The drummer is immediately to the left of the lead gui-
tarist.
Therefore, the singer is immediately to the left of the lead
guitarist.

(34) The singer is to the left of the drummer.
The drummer is to the left of the lead guitarist.
Therefore, the singer is to the left of the lead guitarist.

Which one is valid? Why is it valid while the other is not? Put
your answer in the following form: “Because expresses a

relation and does not.”

Exercise 14. ABBA is composed of two couples: Björn and Ag-
netha, and Frida and Benny. The ‘partner’ relation over the mem-

Draft January 18, 2022

Sets, relations, and functions 85

bers of ABBA can be expressed as the following set of pairs:

{⟨Agnetha,Björn⟩,⟨Björn,Agnetha⟩,⟨Frida,Benny⟩,⟨Benny,Frida⟩}

(a) Is the ‘partner’ relation symmetric? Explain why or why not.

(b) Is the ‘partner’ relation transitive? Explain why or why not.

2.5.3 Functions

We turn now to functions, a special type of relation. The word
‘function’ has many senses, but here we are using it in its mathe-
matical sense. You can think of a mathematical function as some-
thing like a vending machine: It takes an INPUT (e.g. a specifica-
tion of which item you would like to buy), and returns an OUT-
PUT (e.g. a particular bag of chocolate-covered raisins). (Let us set
aside the fact that vending machines typically also require money;
this constitutes an additional input.) The inputs to functions are
also called ARGUMENTS (this is unrelated to the notion of an argu-
ment as constituted by a series of statements that we encountered
in Chapter 1). The outputs of functions are also called VALUES.

An example of a function is a relation that maps a person to
their height in feet and inches. For example, given Michelle Obama
(the person herself) it returns 5′11′′ (five feet and 11 inches). Be-
cause functions are relations, a function is essentially a set of or-
dered pairs. The following ordered pairs are members of this ‘height’
function:

⟨Michelle Obama,5′11′′⟩

⟨Angela Merkel,5′5′′⟩

⟨Jacinda Ardern,5′5′′⟩

Draft January 18, 2022

86 Sets, relations, and functions

Every function is a relation (by definition), but not every relation
is a function. A relation from A to B is a FUNCTION only if every
element of A is mapped to one and only one member of B . In
the example at hand, we have a relation from people to heights.
Two different people may be mapped to the same height, but for
every person, there is only one height that it maps to. For exam-
ple, both Angela Merkel and Jacinda Ardern (the political leaders
of Germany and New Zealand, respectively, at the time of writing)
are mapped to 5′5′′ by this ‘height’ function, but the only value
that Angela Merkel is mapped to is 5′5′′. An example of a rela-
tion that is not a function is the ‘sister’ relation, because a single
person may have multiple sisters. In Figure 2.1, the relations de-
picted are not functions. In Figure 2.2, the relations depicted are
functions.

domain

codomain

domain

codomain

Figure 2.1: Two non-functions

Functions can be written either as a set of ordered pairs:

{⟨M. Obama,5′11′′⟩,⟨Angela Merkel,5′5′′⟩,⟨Jacinda Ardern,5′5′′⟩, ...}

Draft January 18, 2022

Sets, relations, and functions 87

domain

codomain

domain

codomain

Figure 2.2: Two functions

or using large brackets like this:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Michelle Obama → 5′11′′

Angela Merkel → 5′5′′

Jacinda Ardern → 5′5′′

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The style with large brackets is easier to read (though not as easy
to type), so we will often use that style.

We write f (a) for ‘the result of applying function f to argu-
ment a’ or ‘ f of a’ or ‘ f applied to a’. In this PARENTHESIS NO-
TATION, the argument is enclosed within parentheses. Note that
there are no spaces surrounding the parentheses. If f is a func-
tion that contains the ordered pair ⟨a,b⟩, then:

f (a) = b

This means that given a as input, f gives b as output. More prop-
erly speaking, we say that a is given to f as an ARGUMENT, and that
b is the VALUE of the function f when a is given as an argument.

Draft January 18, 2022

88 Sets, relations, and functions

Exercise 15. Some nouns in English express relations; these are
called relational nouns. A special class of relational nouns ex-
presses functions; these are sometimes called functional nouns.
For example, mother (in the biological sense) is a functional noun
(assuming that the relevant domain consists of people) because
every person has a unique mother. On the other hand, aunt is not,
because some people have multiple aunts or none at all. Which of
the following might be called functional nouns? When answering
this question, assume domains where the relations in question are
defined. For example, when deciding whether height is a function,
assume a domain that only contains objects that can have height
to begin with.

(a) height

(b) center

(c) edge

(d) part

(e) age

(f) citizenship

Given a set A, a function that takes an entity and returns 1
(True) if that entity is a member of A and 0 (False) otherwise is
called the CHARACTERISTIC FUNCTION of A. For example, the set of
ABBA band members is {Agnetha, Björn, Benny, Frida}. With this
set as the domain, the characteristic function of the set {Agnetha,
Frida} is a function that takes as input an ABBA member and re-

Draft January 18, 2022

Sets, relations, and functions 89

turns 1 (True) if the input is a member of this set and 0 if not:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → 1
Björn → 0
Benny → 0
Frida → 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
This function, applied to Agnetha, yields 1 (True). Applied to Björn,
it yields 0 (False). (Conversely, if f is the characteristic function of
S, then S is the CHARACTERISTIC SET of f .)

The denotations (relative to a particular circumstance) of com-
mon nouns like tiger and picnic and student are sometimes treated
as sets – the set of tigers, the set of picnics, the set of students. But
characteristic functions provide an equivalent way of capturing
the same information. This fact will turn out to be convenient as
we develop our semantic theory in later chapters.

Exercise 16. Recall that ABBA is composed of two couples—Björn
and Agnetha, and Frida and Benny—and that the ‘partner’ rela-
tion over the members of ABBA can be expressed as the following
set of pairs:

{⟨Agnetha,Björn⟩,⟨Björn,Agnetha⟩,⟨Frida,Benny⟩,⟨Benny,Frida⟩}
(a) The ‘partner’ relation (on the set of ABBA members) is a func-

tion. If we call this partner function f , then we can use the
parentheses notation to designate the value of the function
when applied to an argument. For example, we can write
f (Agnetha) to designate the value of the ‘partner of’ function
when applied to Agnetha. What is the value of f (Agnetha)?

(b) True or false: f (Björn) = Frida

(c) True or false:
f (f (Björn)) = f (Agnetha)

Draft January 18, 2022

90 Sets, relations, and functions

Exercise 17. Recall that the characteristic function of a set is a
function that maps every member of that set to 1, and every non-
member (in some specified larger set) to 0. For example, the char-
acteristic function of the set of female individuals in ABBA is:

{⟨Agnetha,1⟩,⟨Björn,0⟩,⟨Benny,0⟩,⟨Frida,1⟩}

(a) Give the characteristic function of the set of male individuals
in ABBA.

(b) Call the function you defined in the previous question male.
What is the value of male(Björn)?

(c) Suppose that the verb phrase is male denotes this function
male. Suppose further that the name Björn denotes Björn
Ulvaeus of ABBA. Suppose that the denotation of a sentence
consisting of a noun phrase and a verb phrase is the result of
applying the function denoted by the verb phrase to the de-
notation of the noun phrase. What, then, is the denotation of
the sentence Björn is male? (Give the value of the function.)

(d) Under the same assumptions (plus the assumption that Ag-
netha denotes Agnetha Fältskog of ABBA), what is the denota-
tion of the sentence Agnetha is male?

Draft January 18, 2022

3 ∣ Propositional logic

3.1 Introduction

In Chapter 1, we suggested that one of the things a good theory
of meaning should capture is when one sentence entails another.
For example, a good theory of meaning should correctly predict
that the following are valid arguments:

(1) If it rained last night, then the lawn is wet.
It rained last night.

∴ The lawn is wet.

(2) Every man is mortal.
Socrates is a man.

∴ Socrates is mortal.

(3) Aristotle taught Alexander the Great.
Alexander the Great was a king.

∴Aristotle taught a king.

We will start working in simplified settings. We will use ar-
tificial FORMAL LANGUAGES that are inspired by natural language
but are also carefully designed to avoid much of its complexity
and ambiguity. We will then design a semantics that systemati-
cally associates sentences in these formal languages with differ-
ent truth values corresponding to different interpretations of the
placeholders in these sentences. This will allow us to develop a
notion of entailment. A formal language that is equipped with a

91

92 Propositional logic

notion of entailment, and a way to determine when that notion
applies, is called a LOGIC. The first formal language we will con-
sider is PROPOSITIONAL LOGIC (also called SENTENTIAL LOGIC). In
propositional logic, placeholders stand for entire clauses or sen-
tences, so we can express arguments like (1) but not like (2) or (3).
In chapter 4, we will then introduce PREDICATE LOGIC (also called
QUANTIFIER LOGIC), in which these latter two arguments can be
expressed.

We will use logic to interpret natural language in a two-step
manner (INDIRECT INTERPRETATION). First, we translate natural
language into a logic, and then we interpret that logic, as explained
in Chapter 1. By associating sentences of natural language with
sentences of logic, and letting the entailment relation on sentences
of natural language be inherited from the corresponding logic, we
can provide a theory of entailment in natural language.

3.2 Propositional logic

Recall from the introduction that one of the main driving ques-
tions in the study of logic is: Under what conditions is an argu-
ment valid? For instance, the following argument (repeated here
from (1)) is clearly valid:

(4) If it rained last night, then the lawn is wet. (Premise 1)
It rained last night. (Premise 2)

∴ The lawn is wet. (Conclusion)

This argument has two premises and a conclusion. The conclu-
sion is a necessary consequence of the premises: As long as the
premises are both true, the conclusion must be true too. One
might disagree with the premises, but it does not matter whether
they are actually true. As long as they are both granted, the con-
clusion holds. Hence, the argument is valid.

The conclusion in (4) is also a logical consequence of the premises.
The argument is an instance of the argument form known as MODUS

Draft January 18, 2022

Propositional logic 93

PONENS:

(5) If p, then q .
p.

∴ q .

Exercise 1. Using (4) as inspiration, give another argument using
Modus Ponens.

Now consider this superficially similar argument:

(6) If it rained last night, then the lawn is wet. (Premise 1)
The lawn is wet. (Premise 2)

/∴ It rained last night. (Conclusion)

One might be tempted to think that this argument is valid, but it
is not. The premises might be true while the conclusion is false.
It may well be true that the lawn gets wet whenever it rains, and
that the lawn is wet. But if something other than rain can cause
the lawn to become wet, perhaps a sprinkler, then the conclu-
sion might still be false. Because the conclusion is not entailed
by the premises taken together, the argument is not valid. This ar-
gument form, which is called AFFIRMING THE CONSEQUENT, is not
correct—it is a FALLACY (an argument form that is not valid):

(7) If p, then q .
q .

/∴ p.

(Terminological note: in a conditional sentence of the form ‘if p
then q’, p is called the ANTECEDENT and q is called the CONSE-
QUENT. The name of this fallacious argument form derives from
the fact that the consequent is affirmed as a premise, and is then
used to derive the antecedent of the conditional sentence.)

Draft January 18, 2022

94 Propositional logic

Exercise 2. Give another fallacious argument using Affirming the
Consequent.

Propositional logic aims to capture the difference between cor-
rect argument forms and fallacies, focusing on ones that involve
placeholders standing for clauses and sentences. By translating
sentences into propositional logic, and building our notion of en-
tailment on that of propositional logic, we can get a step closer
towards developing a theory of entailment for natural language.

Exercise 3. For both of the following argument forms, say whether
it is valid or a fallacy.

1. Modus Tollens
If it rained last night, then the lawn is wet.
The lawn is not wet.
Therefore, it did not rain last night.

2. Denying the antecedent
If it rained last night, then the lawn is wet.
It didn’t rain last night.
Therefore, the lawn is not wet.

3.2.1 Formulas and propositional letters

Let us begin our introduction to propositional logic with the no-
tion of a PROPOSITIONAL LETTER (also called propositional vari-
able or sentential letter). A propositional letter is a symbol that
represents roughly the kind of thing that is expressed by a sim-
ple declarative clause or sentence that does not contain any of the
words and, or, not, if, then. For example, the propositional letter p
is a placeholder for clauses like“Boston is the capital of Nebraska”,

Draft January 18, 2022

Propositional logic 95

or “red is a primary color”, or any other sentence of this nature that
is either true or false. In this chapter, we will adopt the following
inventory of propositional letters:

Syntactic Rule: Propositional letters
p, q , and r are propositional letters.

(A summary of definitions like this will be compiled in Section
3.3.2.)

Other choices would also be possible within the realm of what
is called ‘propositional logic’. In principle, any set of symbols can
be used as propositional letters. When more letters are needed, it
is customary to use primes as in p, p′, p′′, etc. Different choices
of letters will give rise to different PROPOSITIONAL LANGUAGES. We
will refer to the specific propositional language we are building up
as LProp.

Just like natural languages, propositional languages and other
logics consist of grammatical sentences. In the context of logic, it
is common to use the term WELL-FORMED rather than “grammat-
ical”. The counterpart in logic of a grammatical sentence is called
a FORMULA or WFF (for well-formed formula). Our mapping from
natural languages to representation languages will map natural
language sentences to logical formulas (or formulae, as the plu-
ral of formula is sometimes written) with the same denotations as
the sentences.

Now, what is the denotation of a formula? Frege suggested
that the denotation of a natural language sentence is a truth value:
True (T) or False (F).1 In order to know if a formula is true or false,
we need to know which of its propositional letters we should con-
sider true and which ones we should consider false. An INTERPRE-
TATION FUNCTION, sometimes just called INTERPRETATION, for a

1In Chapter 8, we will countenance a third truth value (Neither), but here we
stick to classical logic, which has just two.

Draft January 18, 2022

96 Propositional logic

given propositional language is a function that maps each propo-
sitional letter of that language to a truth value. What are these
interpretations? There are different ways to think about them,
and we come back to this below. But what they have in common
is that an interpretation provides enough information to deter-
mine truth values for all the formulas in a formula of propositional
logic. Here is an example of an interpretation function for LProp.

⎡⎢⎢⎢⎢⎢⎣

p → T
q → T
r → F

⎤⎥⎥⎥⎥⎥⎦
This says that p is true, and that q is true, while r is false.

We will speak of formulas being true or false “under an inter-
pretation” (that is, given an interpretation function) or “with re-
spect to an interpretation”. In propositional logic, an interpreta-
tion relative to which a given formula is true coincides with what
is called a MODEL FOR that formula. (Later, when we get to pred-
icate logic, the notions of ‘model’ and ‘interpretation’ will come
apart; as we will see, a model will then be taken to specify both an
interpretation and certain additional information that is not yet
relevant now.)

Any propositional letter, taken by itself, is a formula. But just
as natural language expressions may be built up from smaller ex-
pressions, formulas in propositional logic may be also built up
from smaller formulas. To define and interpret formulas of arbi-
trary size, we will lay down SYNTACTIC RULES (also called rules of
formation) and SEMANTIC RULES. Syntactic rules specify how to
build formulas, and semantic rules specify how to interpret them,
that is, how to map them to T or F. The semantic rules will be
compositional, in the sense that they assign denotations to larger
formulas in ways that depend only on the denotations of the smaller
formulas (rather than on their shape or length, for example).

As we assign truth values to complex formulas in terms of smaller
ones, we will introduce a DENOTATION FUNCTION, which provides

Draft January 18, 2022

Propositional logic 97

a denotation to every formula of the language, by extending a given
interpretation function which just assigns denotations to the propo-
sitional letters. The denotation function is written using double
square brackets (a.k.a. ‘semantic brackets’), and carries a super-
script in order to specify the interpretation function it is based on:

Notational convention
For any well-formed formula φ of propositional logic, let JφKI

stand for the denotation of φ with respect to interpretation func-
tion I .

Here, the Greek letter φ (“phi”) is a META-VARIABLE, a symbol
which stands for a formula of propositional logic. Typical meta-
variables for propositional logic include φ (sometimes written ϕ)
and ψ (“psi”).2 Meta-variables are not themselves part of LProp;
they are part of the META-LANGUAGE that we use to talk about
LProp and other logics. (Recall from Chapter 1 that we said that our
meta-language would be English with some mathematical jargon
mixed in; meta-variables are among that mathematical jargon.)

Recall the example interpretation function given above:

⎡⎢⎢⎢⎢⎢⎣

p → T
q → T
r → F

⎤⎥⎥⎥⎥⎥⎦

Call this I1. Then, for example, JpKI1 (‘the denotation of p un-
der I1’) is T. Thus, interpretation functions and denotation func-
tions both map formulas to their truth values. The difference is
that interpretation functions only apply to propositional letters,
while denotation functions apply to all formulas of our proposi-
tional language. The interpretation function I will typically differ

2The Greek letter phi, writtenφ, looks very similar to the empty set symbol∅,
but this is just an accident; they are completely unrelated symbols.

Draft January 18, 2022

98 Propositional logic

from one propositional language to the other, while the denota-
tion function J⋅KI extends I in a completely predictable way. Dif-
ferent propositional languages could have different propositional
letters or could use the same letter for different purposes, in which
case their interpretations I will have to differ. But once I is fixed,
J⋅KI is fixed too: the denotations of larger formulas are derived en-
tirely from those of the propositional letters they contain. (The
difference between I and J⋅KI in logic is like the difference between
lexicon and compositional semantics in English. If the meaning of
a given English word were to change, the lexicon of English would
change to reflect that fact, but the compositional semantics of En-
glish would stay the same.)

The following semantic rule specifies that in the case of propo-
sitional letters, I and J⋅KI coincide, for any interpretation function
I :

Semantic Rule: Propositional letters
If φ is any propositional letter and I is any function from proposi-
tion letters to truth values, then

JφKI = I(φ)

So, for example, JpKI = I(p). If I(p) =T, then JpKI =T as well.

Exercise 4. Let I1 be defined as above. What is the value of I1(r)?
What is the value of Jr KI1 ?

3.2.2 Boolean connectives

Formulas in propositional logic can be combined and assembled
into larger formulas by using the so-called LOGICAL CONNECTIVES,
or just CONNECTIVES. These connectives correspond roughly to

Draft January 18, 2022

Propositional logic 99

the English expressions and, or, not, if . . . then, and if and only
if (often abbreviated iff). The meanings of these expressions are
intimately connected with each other. To illustrate: Suppose you
ask your friend, “Are you free today or tomorrow?” and she says no.
That means that she’s not free today, and she’s not free tomorrow.
In general, the following argument form is valid:

(8) not [p or q]
∴ [not p] and [not q]

as is its converse,

(9) [not p] and [not q]
∴ not [p or q]

Because the argument is valid in both directions,

[not p] and [not q]

and

not [p or q]

are EQUIVALENT, a relationship we can express using ‘if and only
if’:

(10) [[not p] and [not q]] if and only if [not [p or q]]

Now, suppose you ask your friend, “Are you free today and tomor-
row?” and she says no. That is not quite as strong; it means that ei-
ther she’s not free today or she’s not free tomorrow (or both). Thus
the following argument form is valid:

(11) not [p and q]
∴ [not p] or [not q]

Its converse is valid as well:

(12) [not p] or [not q]
∴ not [p and q]

Draft January 18, 2022

100 Propositional logic

Again, we have an equivalence:

(13) [[not p] or [not q]] if and only if [not [p and q]]

The equivalences in (10) and (13) are called DE MORGAN’S LAWS.
We elaborate on them a few pages down.

By specifying a syntax and an interpretation for connectives
corresponding to and, or, and not, we can capture the logical re-
lationships between these words.

The term CONNECTIVE is used in logic for symbols that con-
nect formulas, or attach to them, to form new formulas. A propo-
sitional letter standing alone is called an ATOMIC FORMULA, while
formulas that are formed with the help of connectives are called
COMPLEX FORMULAS. Two examples of connectives in proposi-
tional logic are the symbol ∧ (sometimes written &), pronounced
‘and’, and the symbol ∨ (sometimes written ∣), pronounced ‘or’.
Symbols such as conjunction and disjunction are called BINARY

CONNECTIVES, because they join two formulas together. The nega-
tion symbol ¬ (sometimes written ∼) is called a UNARY CONNEC-
TIVE, because it applies to a single formula to produce a new one.
Connectives, particularly unary ones, are also called OPERATORS.

Consider the sentence Susan does not volunteer on Monday.
This can be represented in propositional logic as follows. Let the
propositional letter p represent the sentence Susan volunteers on
Monday. We then represent Susan does not volunteer on Monday
as follows:

¬p

This is a formula and can be read ‘it is not the case that p’, or
simply, ‘not p’. The ¬ symbol represents ‘it is not the case that’. In
general:

Syntactic rule: Negation
If φ is a formula, then ¬φ is also a formula. (This is called the

Draft January 18, 2022

Propositional logic 101

NEGATION of φ.)

Now, this ¬ symbol is interpreted in such a way that ¬p is true
whenever p is false, and vice versa. There are two possibilities
to consider: p is true; p is false. The interpretation of ¬ can be
represented using a TRUTH TABLE, as follows. A truth table is a
way of representing interpretation functions and showing how the
denotation function extends them to complex formulas. Each row
in a truth table corresponds to a different interpretation function.

p ¬p

T F

F T

This says: If p is true, then ¬p is false; and if p is false, then ¬p is
true.

We will express the information contained in this truth table
in a different format as our official semantic rule:

Semantic Rule: Negation
If φ is a formula, then J¬φKI =T if JφKI = F, and F otherwise.

The expression “andF otherwise” is a common shorthand that
we will frequently use to indicate whatever is the relevant other
possibility; here, for example, it stands for “and J¬φKI = F if JφKI =
T”.

Let us now consider the binary connectives, corresponding to
and and or. An expression of the form ‘X and Y’ is called a CON-
JUNCTION; an expression of the form ‘X or Y’ is called a DISJUNC-
TION. In English, conjunctions can join two noun phrases, as in
Susan volunteers on Monday and Wednesday, where Monday and

Draft January 18, 2022

102 Propositional logic

Wednesday are two noun phrases joined by and. But in this exam-
ple, what is actually expressed can also be expressed as the con-
junction of two sentences, which we can represent using the let-
ters p and q . Let the propositional letter p represent the sentence
Susan volunteers on Monday as above, and let the propositional
letter q represent the sentence Susan volunteers on Wednesday.
We can then represent Susan volunteers on Monday and Wednes-
day in propositional logic as follows:

[p ∧q]

This is a formula and can be read ‘p and q’. It is a CONJUNC-
TION in which p and q are the two CONJUNCTS. In general:

Syntactic rule: Conjunction
If φ and ψ are formulas, then [φ∧ψ] is also a formula.

This truth table for ∧ is as follows:

p q [p ∧q]

T T T

T F F

F T F

F F F

The semantic rule expresses the same information as the truth ta-
ble in more compact form:

Semantic Rule: Conjunction
If φ and ψ are formulas, then J[φ∧ψ]KI =T if JφKI =T and JψKI =
T, and F otherwise.

Draft January 18, 2022

Propositional logic 103

The DISJUNCTION of φ and ψ is written [φ∨ψ]. In such a for-
mula, φ and ψ are called DISJUNCTS. For example:

[p ∨q]

can be read ‘p or q’. In general:

Syntactic rule: Disjunction
If φ is a formula andψ is a formula, then [φ∨ψ] is also a formula.

The interpretation of ∨ can be represented as follows.

p q [p ∨q]

T T T

T F T

F T T

F F F

Semantic Rule: Disjunction
If φ andψ are formulas, then J[φ∨ψ]KI =T if JφKI =T or JψKI =T
(or both), and F otherwise.

This interprets∨ as INCLUSIVE DISJUNCTION, because the state-
ment is considered true even in the case where both of the dis-
juncts are true. This might surprise you. Suppose you heard this
sentence:

(14) Susan volunteers on Monday or Wednesday.

Would you conclude that Susan volunteers on Monday or Wednes-
day, but not both? If so, then you are getting a so-called EXCLUSIVE

interpretation, where the possibility that she volunteers on both

Draft January 18, 2022

104 Propositional logic

days is excluded. An INCLUSIVE interpretation is one on which the
sentence is still true if she volunteers on both days.

EXCLUSIVE DISJUNCTION specifies that only one of the disjuncts
is true. While it is not generally considered part of propositional
logic, it would not be difficult to define an exclusive disjunction
connective, sometimes written XOR (for eXclusive OR).

Exercise 5. Specify appropriate syntactic and semantic rules and
an appropriate truth table for the exclusive disjunction connec-
tive XOR.

One might imagine that natural language or is ambiguous be-
tween inclusive and exclusive disjunction. But there is reason to
believe that inclusive reading is what or really denotes, and that
the exclusive reading arises via a conversational implicature. One
argument for this comes from the fact that negation reliably brings
out the inclusive disjunction (e.g. Horn, 1985; Schwarz et al., 2008).
If I say Kim did not invite Pat or Sandy, it follows that Kim did not
invite Pat and also did not invite Sandy. As for unembedded dis-
junctions, experiments have consistently shown that most of the
time they are considered true, not false, when both disjuncts are
true (e.g. Paris, 1973).

So far, we have discussed the semantics of ∧, ∨, and ¬. In each
case, the truth value of a complex expression that is produced by
combining one of these connectives with the appropriate number
of formulas depends solely on the truth values of the connectives.
Connectives with this property are called TRUTH-FUNCTIONAL. In
Chapters 12 and 13, we will encounter connectives that are not
truth-functional.

Truth tables can be used to compute the truth values for ar-
bitrarily complex formulas using these connectives. For instance,
let us consider when the formula ¬[p ∧q] is true. To find out, we
first find out when [p ∧q] is true, and then apply negation to that.

Draft January 18, 2022

Propositional logic 105

p q [p ∧q] ¬[p ∧q]

T T T F

T F F T

F T F T

F F F T

(The brackets [] are crucial here, as they show that we are apply-
ing negation to the conjunction of p and q . As we will see later,
the syntax rules for propositional logic will ensure that a formula
like [¬p ∧ q] would be interpreted as the conjunction of ¬p and
q .) The final column in the truth table above, for ¬[p ∧q], is the
result of ‘flipping’ the truth values in the preceding column, for
[p ∧q]. This is what the truth table for negation tells us to do.

Recall that a sentence A entails a sentence B whenever in ev-
ery case where A true, B is true as well. Similarly, when A and B
have the same truth values in every case, we say they are EQUIV-
ALENT. When our sentences are formulas of propositional logic,
and our cases are interpretations, entailment and equivalence can
be easily checked with truth tables, where every row corresponds
to an interpretation. To do so, construct a truth table with columns
for both formulas, and observe how the two columns relate. For
example, to prove that p is equivalent to ¬¬p, we can use the
following truth table, where the columns for the two formulas in
question are highlighted:

p ¬p ¬¬p

T F T

F T F

Since this formula only has one propositional letter, we only need
to consider two cases, each corresponding to a row of the truth

Draft January 18, 2022

106 Propositional logic

table. The case where it’s true corresponds to the first row, and
the case where it’s false corresponds to the second row. Observe
that in the case where p is true, ¬¬p is also true, and in the case
where p is false, ¬¬p is also false.

De Morgan’s laws involve two propositional letters, so there
are four cases to consider, as each propositional letter might be
either true or false in a given interpretation. For instance, to prove
that ¬[p ∧q] is equivalent to [¬p ∨¬q], let us use the following
truth table, where the columns for¬[p ∧q] and [¬p ∨¬q] are high-
lighted. (The non-highlighted columns are there as intermedi-
ate steps that will allow you to compute the highlighted columns,
which are the main ones of interest.) As you can see, the pattern
of T and F values in the two columns is the same.

p q [p ∧q] ¬[p ∧q] ¬p ¬q [¬p ∨¬q]

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

The two formulas are thus true under all the same interpretations,
and false under all the same interpretations, and this shows that
they are logically equivalent.

Exercise 6. Show that ¬[p ∨q] is equivalent to [¬p ∧¬q], using a
truth table. This is one of De Morgan’s Laws. Here is a start:

p q

T T

T F

F T

F F
Draft January 18, 2022

Propositional logic 107

What should we observe about your truth table? In other words,
what shows that the two formulas are equivalent?

Entailment can also be proven using truth tables. Recall the
definition of entailment: A entails B if and only if there is no cir-
cumstance in which A is true but B is not. Truth tables list out vari-
ous alternative possible scenarios, and each row of the truth table
corresponds to a different imaginable circumstance. Example:

[p ∧q]

entails
p

because there is no row where [p ∧q] is true but p is not.

p q [p ∧q]

T T T

T F F

F T F

F F F

Exercise 7. Does p entail [p ∧q]? Explain why or why not, using
the truth table.

Exercise 8. Decide whether or not:

¬[p ∨q]

Draft January 18, 2022

108 Propositional logic

entails
¬[p ∧q]

Start by filling in this truth table:

p q [p ∨q] ¬[p ∨q] [p ∧q] ¬[p ∧q]

T T

T F

F T

F F

Based on the truth table you constructed, does ¬[p ∨q] entail
¬[p ∧q]? Explain.

Let us take a moment to reflect on the exact type of entailment
that we have captured using these formal tools. Recall from Chap-
ter 1 that we sketched two ways of viewing entailment, the first in
terms of logical consequence and the second in terms of neces-
sary consequence. To recap, the logical consequence view says
that an argument is valid just in case there is no way to interpret
its placeholders that results in an argument with a true premise
and false conclusion. And the necessary consequence view says
a valid argument is one for which there is no possible circum-
stance under which the premises are true but the conclusion false.
Which of these have we implemented here?

The answer depends on what interpretations are. Can we see
interpretations as corresponding to specific possible worlds, or
‘ways things could have been’? If so, we can think of the entail-
ment relation of our logic as necessary consequence. Can we see
interpretations as corresponding to specific ways to fill in the place-
holders in an argument form? If so, we can think of our entailment
relation as logical consequence. Because a model assigns truth

Draft January 18, 2022

Propositional logic 109

values to different propositional letters independently of one an-
other, the two perspectives are equivalent only as long as one as-
sumes that the intrinsic meanings of propositional letters are in-
dependent of one another. In propositional logic, this assump-
tion is always made. By contrast, if we were to take the letters
p and q in a given language to stand for propositions that aren’t
both true in any possible world, this assumption would be vio-
lated. Suppose for example that we took p and q to stand for pairs
of propositions such as “today is Tuesday” and “tomorrow is Tues-
day”; or “this is red” and “this is colorless”; or “there is water in
my cup” and “there is no H2O in my cup”; or “John has grandchil-
dren” and “John is childless”. In all these cases, it seems that an
interpretation function that maps both p and q to T does not cor-
respond to any possible world. Now, the way we have set things
up, the truth tables always list out all combinations of truth val-
ues for proposition letters like p and q . Each row corresponds
to an ‘interpretation’ of the proposition letters, and to check en-
tailment, we consider all of these interpretations, even if they are
intuitively ‘impossible’ in some sense. Hence the notion of con-
sequence that we have implemented here is logical consequence,
rather than necessary consequence. In Chapter 13, we will bring
necessary consequence back into the picture.

Truth tables can also help to shed light on SCOPAL AMBIGUITY.
The following sentence is scopally ambiguous:

(15) Geordi didn’t consult both Troi and Worf.

It can mean either of the following:

(16) a. Geordi consulted neither Troi nor Worf.
b. It is not the case that Geordi consulted both Troi and

Worf (although he might have consulted one or the
other).

The two readings can be modeled based on the relative scope of
negation and conjunction. Assume that the propositional letter

Draft January 18, 2022

110 Propositional logic

p stands for the English sentence Geordi consulted Troi, and the
propositional letter r stands for the sentence Geordi consulted Worf.3

The two readings can then be represented as:

(17) a. ¬[p ∧ r]
b. [¬p ∧¬r]

These two formulas are not equivalent. However, the second for-
mula is equivalent to ¬[p ∨ r], which explains why ‘Geordi didn’t
consult Troi and Worf’ can mean the same thing as ‘Geordi didn’t
consult Troi or Worf’!

Exercise 9.

(a) Which of the formulae in (17) captures the reading in (16a)?

(b) Which corresponds to the reading in (16b)?

You might have noticed that we always place square brack-
ets around conjunctions and disjunctions. In general, the outer
square brackets that go with binary connectives are always there
according to the official rules of the syntax. We will sometimes
drop them when they are not necessary for disambiguation. Some-
times, operator precedence rules are assumed. For example, in
the absence of brackets, negation is taken to TAKE SCOPE UNDER

(i.e. bind more strongly than) the binary connectives. (The SCOPE

of a connective in a formula is the part of the formula that stands
in for the metavariable(s) in its syntactic rule.) This means that

3We can do this without causing too much confusion here because Geordi
consulted Troi and Geordi consulted Worf are logically independent of each
other; they could both be true, they could both be false, or one or the other of
them could be the only true one. If we were dealing with two sentences that
were not independent in this way (e.g., if one entailed the other or they were
mutually contradictory), then this type of ‘translation’ would lead us to consider
impossible combinations of truth values for the sentences.

Draft January 18, 2022

Propositional logic 111

a formula like ¬p ∧ r is the conjunction of ¬p with r , and is not
equivalent to ¬[p ∧ r]. Likewise, the material conditional and the
biconditional, which we are about to encounter, are sometimes
taken to TAKE SCOPE OVER all other connectives. Brackets can be
left in place to either override or reinforce these conventions. Con-
junctions and disjunctions bind equally strongly, and one must
take care to leave brackets in place. For example, [[p ∧q]∨ r] is
not equivalent to [p ∧[q ∨ r]]. Here the brackets disambiguate:
one should never write something like [p ∧q ∨ r]

Exercise 10. Above, we suggested that the inclusive reading is
what or really denotes, and that the exclusive reading arises via
a conversational implicature in certain contexts. One argument
came from the fact that if one says Kim did not invite Pat or Sandy,
it follows that Kim did not invite Pat and also did not invite Sandy.

Spell out this argument. To this end, write out truth tables for
¬[p ∨q] and ¬[p XOR q] (for the definition of XOR as exclusive
or, see above). Where do they differ? Which analysis captures the
intuition that Kim did not invite Pat or Sandy entails that Kim did
not invite Pat and also did not invite Sandy? Explain. You may
assume that conversational implicatures of the kind that would
be involved here (‘scalar implicatures’) typically disappear under
negation.

3.2.3 Conditionals and biconditionals

Recall that we want our logic to validate Modus Ponens (‘If p then
q ; p; therefore q’) as an argument form, but not Affirming the
Consequent (‘If p then q ; q ; therefore p’). In other words, we want
to account for the fact that one is valid but not the other. There is a
way of defining the semantics of CONDITIONAL statements (state-
ments of the form ‘if A then B’) using truth tables that captures
these facts. This method involves the so-called MATERIAL CONDI-

Draft January 18, 2022

112 Propositional logic

TIONAL, a connective written as→ (sometimes also ⊃).
The material conditional is the truth-functional connective that

comes closest to conditional statements (ones of the form ‘if p
then q’) in natural language. Consider the following conditional
sentence:

(18) If it’s sunny, then it’s warm.

(As a reminder, in a conditional sentence of the form ‘if p then
q ’, p is called the ANTECEDENT and q is called the CONSEQUENT.
Here the antecedent is it’s sunny and the consequent is it’s warm.)
There are four types of situations, in principle:

1. It’s sunny and it’s warm.

2. It’s sunny and it’s not warm.

3. It’s not sunny and it’s warm.

4. It’s not sunny and it’s not warm.

Let us consider which of these situations would falsify (18). Cer-
tainly the first situation does not. And if it’s not sunny, then whether
it’s warm is irrelevant, because the claim only pertains to situa-
tions where it’s sunny. So the third and the fourth situations would
not falsify it. Since classical propositional logic has only two truth
values, and we cannot plausibly assign F in these cases, we assign
T instead. The only kind of situation that could falsify the claim is
the second one, where the antecedent is true and the consequent
is false.

In general, a formula of the form [p→ q] is false only when p
is true and q is false, and true otherwise. The truth table for this
connective looks like this:

Draft January 18, 2022

Propositional logic 113

p q [p→ q]

T T T

T F F

F T T

F F T

While it seems intuitively clear that a conditional is false when the
antecedent is true and the consequent is false, it admittedly seems
less intuitively clear that a conditional is true when the antecedent
is false. For example, the moon is not made of green cheese. Does
that mean that If the moon is made of green cheese, then I had yo-
gurt for breakfast this morning is true? Intuitively not.

One might think that an indicative conditional is true only if
the corresponding argument is valid. As we have seen there, an
argument is not made valid merely by virtue of having a true con-
clusion; its validity depends on whether the conclusion is true
in all cases where the premise is true. So one might reasonably
argue that English indicative conditionals too cannot be judged
as true or false based on a single case. In order to capture the
truth conditions of indicative conditionals, we would need to talk
about multiple circumstances or interpretations and not just a
single one.4 But the connectives of propositional logic are TRUTH-
FUNCTIONAL: their truth value depends only on the truth values of
their constituents. Among truth-functional connectives, the ma-
terial conditional as we have defined it comes closest to doing the
job. With it, we can account for the fact that Modus Ponens is valid
and Denying the Antecedent is invalid.

Exercise 11. Fun fact: [p→ q] is equivalent to [¬p ∨q]. Show this
by filling in the following truth table.

4See Bennett (2003) and von Fintel (2011) for good introductions to the topic.

Draft January 18, 2022

114 Propositional logic

p q [p→ q] ¬p [¬p ∨q]

T T

T F

F T

F F

What should we observe about this truth table? In other words,
what shows that the two formulas are equivalent?

Exercise 12. Let us consider the question of whether Modus Tol-
lens ([p→ q]; ¬q ; therefore ¬p) turns out to be a valid argument
form. Start by filling in this truth table:

p q [p→ q] ¬q ¬p

T T

T F

F T

F F

To determine whether the argument is predicted to be valid,
we need to determine whether the conclusion of the argument
is true in every case where all of the premises are true. So first,
we need to determine in what cases all of the premises are true.
There are two premises in the Modus Tollens argument: [p→ q]
and ¬q . The first step is to identify the row(s) in which both of
these premises are true. The next step is to consider whether the
conclusion of the argument (¬p) is true in every such row.

Draft January 18, 2022

Propositional logic 115

With all this in mind, explain in your own words how we can
see from the truth table above that Modus Tollens is valid.

Exercise 13. Recall that Denying the Antecedent has the form:

Premise 1: [p→ q]
Premise 2: ¬p
Conclusion: ¬q

Using a truth table, explain in your own words why the argument
is or is not valid, sticking closely to the truth table. (Which are the
rows where all of the premises are true? Is the conclusion true in
those rows?)

As we have seen at the outset of this chapter, not all true con-
ditionals have true converses. It may be true that if it rained last
night, the lawn is wet and yet false that if the lawn is wet, it rained
last night. But some conditionals do have the property that their
converse holds:

(19) a. If yesterday was Sunday, then today is Monday.
b. If today is Monday, then yesterday was Sunday.

The logician’s idiom if and only if can be used to succinctly ex-
press this kind of state of affairs:

(20) Today is Monday if and only if yesterday was Sunday.

The “if” part of this statement corresponds to (19a), which states
that yesterday’s being Sunday is a sufficient condition for today’s
being Monday. The “only if” part corresponds to (19b), or equiv-
alently, to Today is Monday only if yesterday was Sunday, which
states that yesterday’s being Sunday is a necessary condition for
today’s being Monday. (By contrast, in gardens with sprinklers, its

Draft January 18, 2022

116 Propositional logic

being rainy yesterday is typically a sufficient but not a necessary
condition for the lawn’s being wet today.) This “if and only if” for-
mulation, sometimes abbreviated as “iff”, is also used as a way of
providing a definition of a concept with necessary and sufficient
conditions.

This brings us to the last propositional logic connective we will
introduce here: the BICONDITIONAL, written ↔, and sometimes
pronounced ‘if and only if’ (although as with the material condi-
tional, it is just the closest thing to that idea we can express as a
truth-functional connective). [p↔ q] is true whenever p and q
have the same truth value — either both true or both false. Its
truth table looks like this:

p q [p↔ q]

T T T

T F F

F T F

F F T

This truth table differs from that for [p→ q] only in the third row.
When p is false and q is true, [p→ q] is true but [p↔ q] is false.

3.2.4 Equivalence, contradiction and tautology

As mentioned above, if two formulas are true under exactly the
same interpretations, then they are EQUIVALENT. For example, p
and ¬¬p are equivalent; whenever one is true, the other is true,
and whenever one is false, the other is false, too:

p ¬p ¬¬p

T F T

F T F

Draft January 18, 2022

Propositional logic 117

Exercise 14. Using truth tables, check whether the following pairs
of formulas are equivalent.

(a) [p ∨q]; ¬[¬p ∧¬q]

(b) [p→ q]; [¬p ∨q]

(c) ¬[p ∧q]; [¬p ∨¬q]

(d) [p ∨¬q]; ¬[p ∧¬q]

(e) [p→ q]; [¬q→¬p]

(f) [p→ p]; [p ∨¬p]
(The truth table for this one should only contain two rows,
since it doesn’t mention q .)

Two formulas are CONTRADICTORY iff for every assignment of
values to their variables, their truth values are different. For ex-
ample p and ¬p are contradictory.

p ¬p

T F

F T

Another contradictory pair is [p→ q] and [p ∧¬q].

p q [p→ q] ¬q [p ∧¬q]

T T T F F

T F F T T

F T T F F

F F T T F

Draft January 18, 2022

118 Propositional logic

A TAUTOLOGY (also called valid formula) is a formula that is
true under every assignment. The opposite, an expression that is
false under every assignment, is called a CONTRADICTION; such a
formula is also called inconsistent or unsatisfiable. Formulas that
are neither valid nor inconsistent are called CONTINGENT, and for-
mulas that are either valid or contingent are called SATISFIABLE.
You can tell which of these categories a formula falls under by
looking at the pattern of Ts and Fs in the column underneath it
in a truth table: If they are all true, the formula is satisfiable and
valid; if some are true and others are false, it is satisfiable and con-
tingent; if they are all false, it is inconsistent. Here is a tautology:
[p ∨¬p] (e.g. It is raining or it is not raining):

p ¬p [p ∨¬p]

T F T

F T T

When two expressions are equivalent, the formula obtained by
joining them with a biconditional is a tautology. For example,
[p↔¬¬p] is a tautology:

p ¬p ¬¬p [p↔¬¬p]

T F T T

F T F T

Exercise 15. Which of the following are tautologies?

(a) [p ∨q]

(b) [[p→ q]∨[q→ p]]

(c) [[p→ q]↔ [¬q ∨¬p]]

Draft January 18, 2022

Propositional logic 119

(d) [[[p ∨q]→ r]↔ [[p→ q]∨[p→ r]]]

Support your answer with truth tables.

3.3 Summary: Propositional logic

To summarize what we have covered so far, we are defining here
a simple propositional logic language called LProp. All languages
of propositional logic are like this language up to the choice of
propositional letters. We begin by listing all of the syntactic rules,
to define what counts as a well-formed expression of the language,
and then give the rules for semantic interpretation.

It is worth emphasizing that a logic is a language (or a class
of languages), and comes with both syntax and semantics. The
syntax specifies the well-formed formulas of the language. The
semantics specifies the semantic value of every well-formed for-
mula, given an interpretation.

3.3.1 Syntax of LProp

1. Atomic formulas

• Propositional letters: p, q , r

2. Complex formulas

• Negation (Unary connective): If φ is a formula, then
¬φ (‘not φ’) is a formula.

• Binary connectives: If φ and ψ are formulas, then so
are:

– [φ∧ψ] ‘φ and ψ’

– [φ∨ψ] ‘φ or ψ’

– [φ→ψ] ‘if φ then ψ’

Draft January 18, 2022

120 Propositional logic

– [φ↔ψ] ‘φ if and only if ψ’

The outer square brackets with binary connectives are always
there according to the official rules of the syntax, but we some-
times drop them when they are not necessary for disambiguation.

3.3.2 Semantics of LProp

Let JφKI stand for the denotation of a given expression φ with re-
spect to an interpretation function I .

1. Propositional letters

• If φ is any propositional letter, then

JφKI = I(φ).

2. Complex formulas

• Unary connective: If φ is a formula, then J¬φKI =T if
JφKI = F, and F otherwise.

3. Binary connectives: If φ and ψ are formulas, then:

• Jφ∧ψKI =T if JφKI =T and JψKI =T, and F otherwise.

• Jφ∨ψKI = T if JφKI = T or JψKI = T (or both), and F
otherwise.

• (Semantic rules for→ and↔ are left as exercises.)

Exercise 16. Specify the semantic rules for the material condi-
tional.

Exercise 17. Specify the semantic rules for the biconditional.

Draft January 18, 2022

4 ∣ Predicate logic

4.1 From propositional logic to predicate logic

In natural languages, sentences (clauses) may or may not consist
of other sentences (clauses). For example, the English sentence
Abelard is happy and Eloise is sad contains two sub-sentences (sub-
clauses), Abelard is happy, and Eloise is sad.1 These latter two sen-
tences do not contain any other sentences and in that sense they
can be said to be ATOMIC. Formulas are like this too: an ATOMIC

FORMULA contains no other formulas, while a COMPLEX FORMULA

contains other formulas. In this respect, propositional logic mir-
rors natural language accurately.

But in many respects, propositional logic is much simpler than
natural language. While we might represent Abelard is happy and
Eloise is sad as [p ∧q], and its first conjunct Abelard is happy as
p, we cannot break it down further. There is nothing in propo-
sitional logic that corresponds to Abelard or to happy. There are
many valid arguments that we would like to be able to capture
that depend on our ability to break the units into smaller parts; for

1Peter Abelard was a philosopher and theologian in 12th century Paris, ar-
guably the greatest logician of the Middle Ages and an important thinker on rea-
son and religion. His affair with Eloise, already renowned for her knowledge of
Latin, Greek and Hebrew when she arrived in Paris as a young woman, led to
their secret marriage and, tragically, to his castration. At that point, Abelard be-
came a monk, and Eloise a nun (and eventually a prioress). Their subsequent
correspondence is among the most moving and personal documents of the 12th
century.

121

122 Predicate logic

example, Abelard is happy entails Someone is happy. We’ve seen
similar arguments at the outset of the previous chapter, and we’ll
see plenty more as we proceed.

To gain a better tool for representing natural language, we will
now “split the atom”. This is the point where we go beyond the
resources of propositional logic and move into PREDICATE LOGIC.
The propositional letters and connectives of propositional logic
all carry over to predicate logic. But in predicate logic, atomic
formulas may be built up of several BASIC EXPRESSIONS—symbols
that have no internal structure even in predicate logic: names like
a (for Abelard) and e (for Eloise), predicate symbols likeHappy and
Loves, and function symbols like ageInYearsOf or motherOf. Con-
strained by the syntactic rules that we will define for the language,
these basic expressions may be put together in various ways to
form atomic formulas. Predicate logic also has VARIABLES and
QUANTIFIERS, which we will delay until Section 4.2.

4.1.1 Individual constants

Predicate logic is a formal language that allows us to reason about
a given DOMAIN of entities. Individual objects are named by INDI-
VIDUAL CONSTANTS, also known as NAMES. In this book, we adopt
the convention that individual constants start with a lowercase
letter. In general, constants (including individual constants, pred-
icate symbols, and function symbols) may contain any sequence
of letters and numbers and underscores, but no spaces. For ex-
ample,

sam_smith

is a valid individual constant, but

S

is not, nor is
sam smith.

Draft January 18, 2022

Predicate logic 123

Individual constants make up one kind of TERM in the logic. A
term is an expression that picks out an individual object in the
domain (like a proper name such as Sam or a definite description
such as the sun in natural language). Later, we will introduce vari-
ables, which are another type of term.

Recall that in propositional logic, expressions are interpreted
relative to an interpretation function I , which maps propositional
letters to truth values. In predicate logic, this interpretation func-
tion is given a more complex set of tasks, because it has to provide
denotations for all of the basic expressions of the language. One
of its jobs is to map individual constants to individuals (that is to
specify which individuals the names REFER to). It is customary to
write the set of individuals that are available for this purpose as D .
A pair ⟨D, I⟩, where D is a nonempty set and I is an interpretation
function, is called a MODEL for predicate logic, and we will use M
to refer to an arbitrary model of this kind. The set of individuals D
is called the UNIVERSE OF DISCOURSE or the DOMAIN of the model
in question. (Subscripts can be placed on M , D , and I when differ-
ent models and their components need to be distinguished. For
example, suppose M1 = ⟨D1, I1⟩, and M2 = ⟨D1, I2⟩. This means
that M1 and M2 are distinct models that share a domain.)2

To illustrate, we will define a language L0 and interpret it in
models whose domain consists of the four members of the Swedish
pop band ABBA, whose names are Agnetha, Björn, Benny, and
Anni-Frid (better known by her nickname Frida). Our language L0

should contain expressions that refer to these individuals. Let us
assume that expressions in L0 may contain the following individ-
ual constants: a,b,e, f. Let us also assume that our interpretation
function maps these constants to the four band members in the
order we have mentioned them. For this purpose, we will define
the set D0 as { Agnetha, Bjorn, Benny, Frida }, the set of ABBA

2This sense of the term domain is distinct from the sense introduced in chap-
ter 2, in which functions are mappings from a domain to a codomain. Thus, the
domain of a model is a subset of the codomain (and not of the domain) of the
model’s interpretation function.

Draft January 18, 2022

124 Predicate logic

band members. We will also define an interpretation function I0

as follows:

(1) a. I0(a) =Agnetha
b. I0(b) =Björn
c. I0(e) =Benny
d. I0(f) = Frida

We will refer to the model ⟨D0, I0⟩ as M0. The interpretation func-
tion I0 is responsible for mapping all of the non-logical constants
to appropriate denotations based on D0. It will map individual
constants to elements of D0, and one-place predicates to subsets
of D0. Two-place predicates are mapped to subsets of D0×D0, the
Cartesian product of D0 with itself. That is to say, each two-place
predicate is mapped to a set of ordered pairs of individuals, where
each individual is taken from D0. However, D0 itself does not con-
tain any pairs. Predicates of higher arities are treated analogously.
The same remarks apply to other models than D0.

Since the interpretation function is a function, individual con-
stants in that language are not ambiguous; they pick out exactly
one object. This sets them apart from names in English such as
Björn, which can refer to any individual with that name. However,
not every individual object in a given model needs to have a cor-
responding individual constant in a given language. We could de-
fine a different model that includes any number of objects in the
model’s domain (say, Benny’s nose) that are not named by any in-
dividual constant in the language. To illustrate, within the model
M0 = ⟨D0, I0⟩ just defined, Benny’s nose is not in D0. Now con-
sider a model M1 = ⟨D1, I0⟩ where I0 is as before but D1 is defined
as { Agnetha, Björn, Benny, Frida, Benny’s nose }. Both models
have the same interpretation function I0. Now take a language L0

which contains the non-logical constants a,b,e, and f. Given this
setup, there is no individual constant in L0 that is mapped by I0 to
Benny’s nose in either M0 or M1.

There is an important distinction between the objects them-

Draft January 18, 2022

Predicate logic 125

selves, which are not part of the formal language, and the non-
logical constants that name these objects, which are. While Benny
is a member of D0 and D1, and his nose is a member of D1, neither
Benny himself nor his nose is part of L0.

Just as in propositional logic, we define a DENOTATION FUNC-
TION that coincides with I on basic expressions like individual
constants and extends it to expressions of arbitrary complexity.
This function will now depend not only on I but rather on M as a
whole, and is therefore written J⋅KM rather than J⋅KI :

(2) a. JaKM0 =Agnetha
b. JbKM0 =Björn
c. JeKM0 =Benny
d. JfKM0 = Frida

Here, we refer to the actual members of ABBA in our meta-
language using their first names, and we write them capitalized
and in ordinary type face. To echo Dowty et al. (1981): If it had
been possible to persuade Agnetha Fältskog to come and occupy
the right-hand side of the equation above for a moment, that would
certainly have been preferable, but this is the closest we can come
given that we are communicating with the reader via the printed
page.

Starting in Chapter 6, we will define systems that relate En-
glish expressions to logical expressions, and thereby indirectly as-
sociate English expressions with denotations in the model. The
mapping between expressions of the natural language (English)
and their denotations (expressed in our meta-language) will thus
be mediated by our logical representation language. So our ulti-
mate theory will consist of two steps:

• Björn↝ b (English to logic)

• JbKM0 =Björn (logic to denotation)

We follow the convention of italicizing natural language (e.g. En-
glish) expressions here and throughout. We say that Björn TRANS-

Draft January 18, 2022

126 Predicate logic

LATES TO b and that b (and, indirectly, Björn) DENOTES Björn. And
similarly for other expressions. Again, as discussed in Chapter 1,
the style of doing semantics we are adopting here is called INDI-
RECT INTERPRETATION. It differs from DIRECT INTERPRETATION in
that we map English to some logic (the representation language)
before assigning a denotation to natural language expressions.

Individual constants fall into the category of NON-LOGICAL CON-
STANTS. This category includes not only individual constants but
also some additional types of symbols that will be introduced be-
low: predicate and function symbols. Why are they called ‘non-
logical’ constants? In general, CONSTANTS are expressions whose
denotation does not vary once a model has been specified. LOGI-
CAL CONSTANTS are things like ∧, whose denotation does not even
vary from model to model; thus, ∧ behaves according to its truth
table across all models. The denotations of NON-LOGICAL CON-
STANTS, on the other hand, depend on the model, and can vary
from model to model. Later, we will introduce variables, whose
denotation can vary even once a model has been specified.

The following rule ensures that the J⋅KM function tracks the I
function on individual constants.

Semantic Rule: Non-logical constants
If α is a non-logical constant and M = ⟨D, I⟩, then:

JαKM = I(α)

Like φ and ψ in Section 3.2, α is a meta-variable. It is not part of
the language L0 we are defining but only part of the meta-language
we are using to talk about that language. In the next section, we
will see further applications of the semantic rule for non-logical
constants.

Draft January 18, 2022

Predicate logic 127

4.1.2 Predication

4.1.2.1 Syntax of predication

True to its name, predicate logic has PREDICATES, along with indi-
vidual constants. Predicates are expressions that stand, intuitively
speaking, for properties (such as being female, being Swedish, or
singing) or for relations (such as loving, or being between). Predi-
cates that stand for properties are called UNARY PREDICATES. Pred-
icates that stand for relations are called BINARY PREDICATES, TER-
NARY PREDICATES, or more generally, n-ARY PREDICATES depend-
ing on the number of entities they relate. A unary predicate com-
bines with one term (sometimes called its ARGUMENT) to produce
a statement that is true or false, depending on whether the indi-
vidual denoted by the term has the property in question; if so, we
also say that the predicate HOLDS of the individual. A binary pred-
icate applies to two terms, a ternary predicate applies to three,
and so on. In first-order logic, all predicates apply to individuals;
in higher-order logic, predicates may also apply to other predi-
cates.

In this book, the first letter of a predicate symbol will be capi-
talized, as in Female, Swedish or Sings. We will use the same style
for non-unary predicates such as Loves or Between. As in the case
of propositional letters, we will use interpretation functions to as-
sociate these symbols with denotations. The denotation of a unary
predicate is a set of individuals (such as the set of female or Swedish
or singing individuals). Predicate symbols combine with individual-
denoting expressions to form ATOMIC FORMULAS. Like in proposi-
tional logic, formulas are true or false given a model. For example,

(3) Swedish(a)

is a formula that consists of the predicate symbol Swedish and the
constant a. Assume that we have a model that is defined in such
a way that the predicate symbol Swedish denotes the set of indi-
viduals who are Swedish at the time of writing, and the constant

Draft January 18, 2022

128 Predicate logic

a denotes Agnetha Fältskog, the ABBA singer. (We will make simi-
lar assumptions throughout.) Given this model, the formula in (3)
denotes T if and only if Agnetha Fältskog is Swedish (which she
is). Another way of talking about what is going on in (3) is that
Swedishness is being ‘predicated of’ Agnetha Fältskog, so (3) can
be called a PREDICATION. We will say more about the semantics of
predications after we have laid out their syntax.

A BINARY PREDICATE denotes a relation between two individ-
uals, and therefore combines with two terms. As an example of a
binary predicate, we will use Loves. A possible denotation for this
predicate (in a given model) is the relation (the set of pairs) that
contains a given pair of two individuals just in case the first loves
the second in the actual world at the time of writing. A binary
predicate combines with two terms:

(4) Loves(a,b)

We say that the predicate Loves HOLDS OF, APPLIES TO, or RELATES

its two arguments. When translating transitive verbs like love from
English to logic, the usual (and arbitrary) convention is to list the
subject of an active sentence before its object. That is, we read (4)
as “Agnetha loves Björn”, not as “Björn loves Agnetha”.

The number of terms that a predicate symbol combines with
is its ARITY, also called VALENCE or ADICITY (which sometimes gets
misspelled as acidity). Unary predicates take one term, and there-
fore have an arity of 1. Binary predicates have an arity of 2. A
TERNARY PREDICATE has an arity of 3. As an example, we might
define a ternary predicate BETWEEN, and assume that it denotes
the relation that holds of three objects x, y and z, if and only if x is
between y and z. There is no upper limit to the arity of predicates
in logic. Sometimes it is useful to regard propositional letters as
ZERO-PLACE or NULLARY predicates. It is also common to speak of
ONE-PLACE or MONADIC, TWO-PLACE or DYADIC, and generally of
n-ARY, n-PLACE or n-ADIC PREDICATES.

Predicates combine with the appropriate number of terms to

Draft January 18, 2022

Predicate logic 129

form ATOMIC FORMULAS. As we have seen above, Singer(a) is an
atomic formula. Here a unary predicate Singer combines with a
single term, enclosed in parentheses, to form an atomic formula.
A binary predicate combines with two terms, enclosed in paren-
theses, to form an atomic formula. Thus (4) is also an atomic for-
mula.

The following syntactic rule, introducing predicate-argument
combinations into the language, enforces a match between the
arity of a predicate and the number of terms it combines with:

Syntactic rule: Predication
Given any predicate π, if n is the arity of π, and α1, ...,αn is a se-
quence of terms, then

π(α1, ...,αn)

is an atomic formula.

(A summary of definitions like this can be found at the end of this
section.)

The arity of a predicate is fixed in predicate logic. The arity of
corresponding natural language expressions is much more free;
for example, English allows the adjective excited to take a preposi-
tional phrase complement but does not require it to.

(5) a. Agnetha is excited about Benny.
b. Agnetha is excited.

In predicate logic, a predicate like Excited may only have a sin-
gle arity; it cannot be both unary and binary. To represent the
difference between the transitive and intransitive version of ex-
cited in English, one option would be to define two predicates,
say, a unary predicate Excited1 and a binary predicate Excited2,
which would produce well-formed formulas with the correspond-
ing numbers of terms.

(6) a. Excited1(a)

Draft January 18, 2022

130 Predicate logic

b. Excited2(a,e)

To capture how close in meaning these two predicates otherwise
are, a theory could stipulate facts about how they relate to each
other via constraints that are stipulated separately. (See MEANING

POSTULATES below.)

Exercise 1. Give two examples of atomic formulas generated by
the syntactic rule of Predication, choosing from the following in-
dividual constants and predicates:

• a and b are individual constants (a.k.a. ‘names’);

• Singer and Swedish are one-place predicates;

• Knows and Loves are two-place predicates.

4.1.2.2 Semantics of predication

So much for the syntax of predication. Now let us turn to the se-
mantics. We will begin with some gossip. As it happens, in the
1970s, ABBA was composed of two married couples: Björn and
Agnetha, as well as Frida and Benny. It therefore follows, by the
principle that whenever two people are married to one another
that they also love each other, that the sentences corresponding
to the following formulas were true:

(7) a. Loves(a,b)
b. Loves(b,a)

(8) a. Loves(e,f)
b. Loves(f,e)

Now, as it happens, like all good things, both of the marriages
eventually came to an end, and these four statements, concomi-
tantly, ceased to be true (we assume). So far, we have only had

Draft January 18, 2022

Predicate logic 131

one model, M0. To distinguish between the way it was in the past,
and how things later turned out, we will now edit it in two differ-
ent ways: MTHEN corresponds to how it was back in the day, and
MNOW to how it is now. These two models share the same domain,
D0, but their interpretation functions will differ. We will define
MTHEN = ⟨D0, ITHEN⟩ and MNOW = ⟨D0, INOW⟩. (The subscripts THEN

and NOW on these models and their components are meaningless;
we just use them to label the two models in an easy-to-remember
way.)

Relative to these two different models, the binary predicate
Loves has two different semantic values. Accordingly, we make
the following assumptions about ITHEN and INOW:

(9) ITHEN(Loves) =
{⟨Agnetha,Björn⟩, ⟨Björn,Agnetha⟩,
⟨Frida,Benny⟩, ⟨Benny,Frida⟩}

(10) INOW(Loves) = {}

That is, back in the day, Agnetha and Björn loved each other, and
so did Benny and Frida, but now, nobody loves each other. What
we have done here is interpret the denotation of the binary predi-
cate Loves as a binary relation, that is, a set of ordered pairs.

Just as we did for individual constants, we need to make sure
that J⋅KM function tracks the I function on predicates. We already
have a rule that ensures this for all non-logical constants, so all we
need to assume is that predicates count as non-logical constants.
The semantic rule for non-logical constants given above then en-
sures that for any predicate α, JαKM = I(α).

Just as we did for propositional letters, we will assume that the
denotation of a formula like Singer(a) is a truth value:

JSinger(a)KM =T if JaKM ∈ JSingerKM , and F otherwise.

The denotations of non-logical constants (including names and
predicates) can differ across models. In some models, f denotes
Frida, and in other models, it doesn’t. In some models, Frida is in

Draft January 18, 2022

132 Predicate logic

the denotation of Singer, and in other models, she’s not. Assum-
ing the individual constant f does denote Frida, the truth value of
Singer(f) depends on whether Frida is in the denotation of Singer.
In general, for any given unary predicate π and any given term α,
we would like the semantics of our language to ensure the follow-
ing:

Jπ(α)KM =T if JαKM ∈ JπKM , and F otherwise.

This can be read, “the semantic value of pi applied to alpha (with
respect to model M) is T, if the semantic value of alpha (with re-
spect to M) is an element of the semantic value of pi (with respect
to M), and F otherwise.” To put it somewhat more elegantly: “Rel-
ative to any given model, the predication of π upon α is true in
that model if and only if the denotation of α in that model is a
member of the set denoted by π in that model.”

Our semantics should also ensure that the formula Loves(a,b)
is true relative to MTHEN and false relative to MNOW.

(11) a. JLoves(a,b)KMTHEN =T
because ⟨Agnetha,Björn⟩ ∈ JLovesKMTHEN

b. JLoves(a,b)KMNOW = F
because ⟨Agnetha,Björn⟩ /∈ JLovesKMNOW

In general, for any binary predicate π, and any given terms α and
β, our semantics should ensure:

Jπ(α,β)KM =T if ⟨JαKM ,JβKM ⟩ ∈ JπKM , and F otherwise.

This strategy can be generalized to predicates of arbitrary arity
as follows:

Semantic Rule: Predication
If π is a predicate of arity n and α1, ...,αn is a sequence of terms,
then:

Jπ(α1, ...αn)KM =T if ⟨Jα1KM , ...,JαnKM ⟩ ∈ JπKM , and F otherwise.

Draft January 18, 2022

Predicate logic 133

To make sure this works as expected in the unary case, we adopt
the convention that ⟨JαnKM ⟩ = JαnKM .

Exercise 2. Suppose we have a particular model M2 = ⟨D2, I2⟩. Let
D2 = {Agnetha, Björn, Benny, Frida}. Suppose that in M2, every-
body loves themselves and nobody loves anybody else, and the bi-
nary predicate Loves denotes the ‘love’ relation. What is then the
value of I2(Loves)? Specify the relation as a set of ordered pairs.

Exercise 3. Assume a model

M3 = ⟨D3, I3⟩

where D3 contains Abelard and Eloise:

D3 = {Abelard, Eloise}
and I3 is defined as follows:

I3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a → Abelard
e → Eloise
Female → {Eloise}
Scholar → {Abelard, Eloise}
Loves → {⟨Abelard,Eloise⟩,⟨Eloise,Abelard⟩,⟨Eloise,Eloise⟩}
Teacher → {⟨Abelard,Eloise⟩}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For each of the following formulas, use the semantic rule of Pred-
ication to determine its semantic value in model M3:

(a) Teacher(a,e)

(b) Teacher(e,a)

(c) Loves(a,a)

(d) Scholar(a)

(e) Female(a)

Draft January 18, 2022

134 Predicate logic

On a philosophical note: As in the case of propositional let-
ters, we can think of predicate symbols either as carrying intrinsic
meanings, or as being devoid of any intrinsic meaning apart from
what the model supplies. On the first view, the model (and more
specifically, its interpretation function) corresponds to a possible
world (or way things could be), and its specification of denota-
tions for each of the predicates constitutes a specification of how
that world is. On this view, the predicate Sings has some intrinsic
meaning. On the second view, the model supplies an otherwise
meaningless symbol with a denotation, and the predicate Sings
has no intrinsic meaning. The model associates it with a set of
individuals, and there is nothing more to it than that.

Because a model assigns sets to different predicate symbols
independently of one another, the two perspectives are equiva-
lent only as long as one assumes that the intrinsic meanings of
different predicate symbols are independent of one another. By
contrast, if we were to take the predicate symbols Bachelor and
Married in a given language to stand for the properties of being a
bachelor and of being married, a model that maps the two pred-
icate symbols to overlapping sets would not correspond to any
possible circumstance (since it’s impossible for a bachelor to be
married). MEANING POSTULATES are a mechanism for limiting
attention to just those models in which these formulas are true;
these are called ADMISSIBLE MODELS. A typical meaning postulate
is a formula that might correspond to a sentence like “No bachelor
is married” or “It is not both Tuesday and Wednesday”. Even if one
takes the view that predicate symbols are inherently meaningless,
the use of meaning postulates can be seen as imbuing these sym-
bols with some degree of meaning, at least enough so that they
interact with other symbols in the way that would be expected if
they corresponded to particular concepts that the theorist has in
mind.

Draft January 18, 2022

Predicate logic 135

4.1.3 Functions

Recall that a TERM is an expression that denotes an individual in
the domain. So far, the only kind of term that we have seen are
individual constants. But it is also possible to form syntactically
complex terms using FUNCTION SYMBOLS. A function symbol de-
notes a function, in the sense defined in Chapter 2. In first-order
logic, a function symbol denotes a function from individuals (or
n-tuples of individuals) to individuals. This means that the func-
tion has to associate every individual in the relevant domain with
a value (which is also an individual in that domain), and provide
a unique output for each input. In this, function symbols contrast
with predicate symbols, which denote sets.

Confining our attention to models where every individual in
the domain has exactly one spouse,

spouseOf(e)

could be used to denote the spouse of Benny. (We continue to as-
sume throughout that e denotes Benny.) It is not used to make a
claim about Benny, like a predicate does, and the entire expres-
sion does not express something that can be true or false, as in
the case of a predicate. Rather, this expression denotes a particu-
lar individual.

Syntactically, function symbols combine with terms. Combi-
nations of function symbols with terms are called COMPLEX TERMS.
Since complex terms are terms, they can appear in all the same
positions as individual constants and other terms. For instance,
complex terms can fill the first argument slot of a binary relation:

Loves(spouseOf(b),b)

This formula can be read as saying that Benny’s spouse loves him
(Benny).

Complex terms can even combine with function symbols again.
For example, the following is a complex term that can be used to
refer to Benny’s spouse’s spouse, or in other words, Benny himself:

Draft January 18, 2022

136 Predicate logic

spouseOf(spouseOf(b))
Predicates and functions are easy to confuse with each other,

because they both combine with terms in parentheses. To dis-
tinguish between them, this textbook uses the following conven-
tions: predicates are written with uppercase letters, and functions
are written with lowercase letters and end in Of unless we explic-
itly specify otherwise. (These conventions are just what we do in
this book. There is no standard set of conventions of that sort
across the field.) This way, all terms (both individual constants
and complex terms formed with functions) start with lowercase
letters. As with predicate and name symbols, we follow the con-
vention that any sequence of numbers or letters or underscores
may follow the initial letter, but no spaces.

Functions, like predicates, have a particular arity. The func-
tion spouseOf has arity 1 (i.e, it is a UNARY FUNCTION). As an ex-
ample of a function with arity 2, suppose that in model M1, the
expression tallerOneOf denotes the function that takes two argu-
ments and returns whichever one is taller at the time of writing.
Assuming Frida is currently taller than Agnetha,

tallerOneOf(a, f)

denotes Frida in M1. In general:

Syntactic rule: Complex terms
Given any function γ with arity n, then:

γ(α1, ...,αn)

is a term, where α1, ...,αn is a sequence of expressions that are
themselves terms.

The denotation of function symbols is specified by the inter-
pretation function I . Just like individual constants and predicate

Draft January 18, 2022

Predicate logic 137

symbols, function symbols are considered non-logical constants;
therefore, their denotation is derived from I according to the same
rule as individual constants and predicate symbols. However, func-
tion symbols combine with terms in a slightly different manner
from the way predicate symbols do. The denotation of a function
symbol applied to a term is the result of applying the function de-
noted by the function symbol to the denotation of the term, as op-
posed to checking for set membership. For example, suppose that
in model M1, spouseOf denotes a function that returns Frida when
given the individual Benny as an argument. Then spouseOf(e) de-
notes Frida, i.e., JspouseOf(e)KM1 = Frida. In general:

Semantic Rule: Complex terms
If γ is a unary function symbol, and α is a term, then:

Jγ(α)KM = JγKM(JαKM)

The preceding formula can be read, “the semantic value of gamma
applied to alpha (in model M) is equal to the semantic value of
gamma (in M) applied to the semantic value of alpha (in M).”
Observe that we are using parentheses around alpha both in the
object language (in this context, the formal representation lan-
guage) and the meta-language here. The parentheses in the ob-
ject language (on the left) help to create a complex term consist-
ing of the function symbol and its argument. The parentheses in
the meta-language (on the right) signify the application of the de-
noted function to the actual individual denoted by the term.

A binary function symbol like tallerOneOf combines with two
terms. In general:

If γ is a binary function, and α and β are terms, then:

Jγ(α,β)KM = JγKM(⟨JαKM ,JβKM ⟩)

Draft January 18, 2022

138 Predicate logic

This definition can be generalized to accommodate functions of
arbitrary arity:

Semantic Rule: Complex terms
If γ is a function of arity n, and α1, ...,αn is a sequence of n terms,
then:

Jγ(α1, ...,αn)KM = JγKM(⟨Jα1KM , ...,JαnKM ⟩)

Exercise 4. Which of the following are well-formed formulas? As-
sume Happy is a unary predicate, spouseOf is a unary function,
and tallerOneOf is a binary function (you can assume that it re-
turns the taller one of two individuals).

(a) Happy(spouseOf(a))

(b) Happy(spouseOf(a,e))

(c) Happy(tallerOneOf(a,e))

(d) Happy(spouseOf(a),spouseOf(e))

4.1.4 Identity

It is useful to be able to express that two terms refer to the same
individual. For this purpose, we will add a special two-place pred-
icate to our language, the equality symbol =. This symbol is inter-
preted as the identity relation, which holds between any individ-
ual and itself, and does not hold between any distinct individuals.
While identity is technically a binary predicate, it behaves differ-
ently from all other predicates in the language. For this reason, it
is common to speak of “predicate logic with identity” or “predi-
cate logic without identity” depending on whether the predicate
is included or left out.

Draft January 18, 2022

Predicate logic 139

Syntactically, the identity symbol is used to form atomic for-
mulas by joining two terms. Unlike other predicate symbols, it is
inserted between the terms and not in front of them. The follow-
ing are all atomic formulas:

a = e
spouseOf(a) = b

f = tallerOneOf(f,a)
The following rule dictates that any two terms, simple or complex,
can be joined in this way to form an atomic formula:

Syntactic Rule: Identity
If α and β are terms, then α =β is an atomic formula.

This rule only applies to terms; formulas cannot be joined by an
equals symbol. To join two formulas, the biconditional symbol↔
can be used instead.

Semantically, the interpretation of identity is independent of
the model. Unlike predicates, but similarly to connectives, the in-
terpretation of the symbol does not vary from model to model.
This makes identity a logical rather than non-logical constant.

Semantic Rule: Identity
If α and β are terms, then Jα =βKM = T if JαKM = JβKM , and F
otherwise.

Exercise 5. For each of the following, say whether it is well-
formed, and give a paraphrase in English. (For the ones that are
not well-formed, the paraphrase in English might sound like non-
sense, and that’s OK.)

Draft January 18, 2022

140 Predicate logic

(a) spouseOf(a) = spouseOf(e)

(b) spouseOf(a)↔ spouseOf(e)

(c) Happy(spouseOf(a))↔Happy(spouseOf(e))

(d) Happy(spouseOf(a)) =Happy(spouseOf(e))

It is common to extend predicate logic with other binary pred-
icates taken from mathematics as well, such as q , ≤, or ∈. These
predicates often receive a special treatment, both syntactically and
semantically. Syntactically, they are most commonly written in
between the terms they apply to, as in a = b instead of = (a,b).
Semantically, they are usually treated as logical rather than non-
logical constants. In this chapter, the only such predicate we are
adding to our logic is identity (=). In chapter 10, we will add a
predicate standing for the parthood relation.

Section summary

To summarize, our formal language so far is made up of basic and
complex expressions. We have the following types of basic expres-
sions, which are all non-logical constant symbols in our language.

CATEGORY EXAMPLE

individual constants a

unary predicates Singer

binary predicates Loves

function symbols spouseOf

In addition to our basic expressions, we have syntactic and se-
mantic rules for creating complex terms using function symbols,

Draft January 18, 2022

Predicate logic 141

and two ways of creating atomic formulas: predication and iden-
tity. Both of these types have a corresponding semantic rule. On
top of this we retain all of the syntactic and semantic rules from
propositional logic, including negation and the rules for creating
complex formulas using binary connectives.

Exercise 6. Let us consider a model M4 = ⟨D4, I4⟩ with domain D4

consisting only of two individuals: Abelard and Eloise. Let us as-
sume that among our basic expressions we have names for both
Abelard and Eloise (say a and e respectively), as well as the unary
predicates Scholar, Male, and Female, binary predicates Loves and
Younger, and the function terms spouseOf and selfOf. The in-
tended interpretation of selfOf is a function that applies to an in-
dividual and returns that very individual that was given as input
as output. Fill in the missing values in the interpretation function,
according to what you think they should be based on the constant
symbol:

I4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a → Abelard
e → Eloise
Female → {Eloise}
Male →

Scholar → {Abelard, Eloise}
Loves → {⟨Abelard,Eloise⟩,⟨Eloise,Abelard⟩,⟨Eloise,Eloise⟩}
Younger → {⟨Eloise,Abelard⟩}
spouseOf → {⟨Abelard,Eloise⟩,⟨Eloise,Abelard⟩}
selfOf →

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Exercise 7. Fill in the following table based on the rules of L0.

Term or formula? J⋅KM4 Semantic Rule(s)

Draft January 18, 2022

142 Predicate logic

spouseOf(a) term Eloise Complex terms

Female(a) formula F Atomic formulas

Male(a,e) not well-formed! N/A N/A

Younger(a,e)

Younger(spouseOf(e),e)

Loves(a,selfOf(a))

spouseOf(spouseOf(e))

Scholar(selfOf(selfOf(a)))

Scholar(a,selfOf(a))

Younger(selfOf(selfOf(a)))

In the first labelled column, state whether the expression is a term,
a formula, or not well-formed. In the second, give the seman-
tic value relative to the model you designed in exercise 6. In the
third, indicate the semantic rule(s) you used to derive the seman-
tic value in the second column.

Exercise 8. This exercise has seven parts, labelled (a)-(g) below.
One of the following arguments is valid and the other is not.

The valid one, of course, is (12).

(12) a. Ben and Jerry are brothers.
b. ∴Ben is Jerry’s brother.

(13) a. Ben and Jerry are computers.
b. /∴Ben is Jerry’s computer.

Relational nouns are nouns that denote two-place predicates
(a.k.a. ‘binary relations’); sortal nouns are ones that denote one-

Draft January 18, 2022

Predicate logic 143

place predicates. When N is a relational noun, representable as a
binary relation R, a sentence of the form ‘x and y are N s’ can be
translated into predicate logic as:

[R(x, y)∧R(y, x)]

In other words, the construction asserts that x and y stand in the
relation to each other. (This explains why Jerry and Ben are broth-
ers is unremarkable but ??Jerry and Sheila are brothers is quite jar-
ring, under conventional assumptions about what names signal
about the gender of the referent.) In this sense, the construction
expresses a reciprocal relation between x and y .

When N is a sortal noun, representable by predicate P , a sen-
tence of the form ‘x and y are N s’ can be translated into predicate
logic as:

[P(x)∧P(y)]

In other words, the construction says that both x and y have
the property in question. Let’s think about how this theory can
explain the contrast in the preceding question. First, we need to
decide how to classify the nouns brother and computer.

(a) Should we classify brother as sortal or relational?
(b) How about computer?

With these assumptions, let us now provide translations into
predicate logic, starting with the (a) sentences. Use Brother as
your translation for brother and Computer for computer, and use
the individual constants b and j as your translations for Ben and
Jerry respectively. Make sure that your formulas are well-formed
according to our syntax rules!

(c) Ben and Jerry are brothers.

Draft January 18, 2022

144 Predicate logic

(d) Ben and Jerry are computers.

Possessive statements of the form ‘x is y ’s N ’ must be ana-
lyzed slightly differently depending on whether N is sortal or
relational. If N is relational, and denotes the binary relation R,
then ‘x is y ’s N ’ just expresses that x and y stand in the relation R:

R(X ,Y)
On the other hand, if N is sortal, then ‘x is y ’s N ’ expresses (i)

that x is an N and (ii) that some kind of possessive relation holds
between x and y . Let’s use the two-place predicate Poss to denote
this possession relation (which must be general enough to cover
a broad range of more specific possessive relations that may be
implied in context). Let’s use Poss(y, x) to signify ‘y possesses x’.
So for a sortal noun N translated as one-place predicate P , ‘x is
y ’s N ’ would be translated as:

[P(x)∧Poss(y, x)]
With this in mind, give a translation for the following sen-

tences:

(e) Ben is Jerry’s brother.
(f) Ben is Jerry’s computer.

Now we are in a position to derive the fact that (12) and (13)
above differ in validity. In general, arguments of the following
form are valid:

[φ∧ψ]
∴φ

(g) Based on this fact (called conjunction elimination) and the
translations into logic that we have given, explain why the infer-

Draft January 18, 2022

Predicate logic 145

ence is valid in one example but not the other. (Make sure to ad-
dress both examples.)

4.2 Quantification

Consider this argument:

(14) Aristotle taught Alexander the Great.
Alexander the Great was a king.

∴Aristotle taught a king.

Construing teaching as a binary relation that holds between teach-
ers and their students, the conclusion of this argument is true in
any case where Aristotle stands in the teaching relation to an in-
dividual that is a king. How can we express this formally? If we
had names for all of the kings, then we could express this using
the tools we have by saying something along the lines of, “Aristo-
tle taught King So-and-So or Aristotle taught King Such-and-Such
or ...” and so on for all of the kings. But this is quite inconvenient,
and it will not work if there are individuals without names. All we
want to say is that there is some entity, call it x, such that Aristo-
tle taught x and x is a king. This can be done using variables. A
VARIABLE is a symbol that is just like a constant symbol except that
the model does not specify the individual it stands for (unlike in
the case of constants). We will use the symbols x, y , and z, and
similar ones that we will introduce later, as variables, and never
as constants. The condition that the object should satisfy may be
written as follows:

(15) [Taught(aristotle, x)∧King(x)]

This is a well-formed formula of first-order logic, but it does not
make a claim, even once the model is fixed; it just describes a con-
dition that whatever individual x stands for might or might not

Draft January 18, 2022

146 Predicate logic

satisfy. This is because the occurrence of the variable x in this for-
mula is not BOUND by any quantifier (so it is FREE). To make the
claim that there is some individual that satisfies this condition, we
may use the EXISTENTIAL QUANTIFIER, ∃.

(16) ∃x[Taught(aristotle, x)∧King(x)]

This can be read, “There is (or: exists) an x such that Aristotle
taught x and x is a king” or “For some x, Aristotle taught x and
x is a king”. And this formula will be true in any model where the
individual denoted by aristotle stands in the relation denoted by
Taught to some element of the set denoted by King, or as we will
put it, in any model where there is a king that Aristotle taught (we
will use similar simplifications from now on).

The other quantifier of predicate logic is the UNIVERSAL QUAN-
TIFIER, written ∀. If we had used the universal quantifier instead
of the existential quantifier in the formula in (16), we would have
expressed the claim that everything satisfies the condition in (15).
Thus everything was taught by Aristotle and everything is a king.
That is probably not something one would ever feel the urge to ex-
press, but there are plenty of other practical uses for the universal
quantifier. For example, consider the sentence Every philosopher
studies Aristotle. We can represent this as follows:

(17) ∀x[Philosopher(x)→ Studies(x,aristotle)]

This can be read, “For all x, if x is a philosopher, then x studies
Aristotle.” (“For every x” is also fine instead of “For all x”, and we
will use both formulations interchangeably.) We would be saying
something very different if we had a conjunction symbol (∧) in-
stead of a material conditional arrow (→) in this formula, thus:

(18) ∀x[Philosopher(x)∧Studies(x,aristotle)]

This says, “For all x, x is a philosopher and x studies Aristotle” – in
other words, “Everything/everyone is an philosopher and every-

Draft January 18, 2022

Predicate logic 147

thing/everyone studies Aristotle.”
Let us take some time to reflect on why the universally quan-

tified formula with the material conditional above expresses the
every claim, that every philosopher studies Aristotle. We will for-
malize the semantics of universally quantified statements shortly,
but intuitively, here is how it works. What this formula expresses
is that each element of the domain satisfies the condition:

(19) [Philosopher(x)→ Studies(x,aristotle)]

As we will see, the semantics for ∀ asks us to go through each in-
dividual in the domain, and consider what happens when x is in-
terpreted as that individual. There are two types of cases that are
important to consider: the value of x is a philosopher, or the value
of x is not a philosopher. Consider a value for x which is not a
philosopher. For this value of x, the condition

Philosopher(x)

is not met, so the antecedent is false. By the definition of the mate-
rial conditional, this means that the conditional as a whole is true.
So any value for x that is not a philosopher vacuously satisfies
[Philosopher(x)→ Studies(x,aristotle)]. The only kind of value
for x that could fail to satisfy this condition would be a philoso-
pher that did not study Aristotle. Then the antecedent would be
true, and the consequent would be false, so the conditional state-
ment as a whole would be false. If there are no philosophers that
do not study Aristotle, then the formula is true. And this is exactly
what Every philosopher studies Aristotle says.

Now consider the following formula:

(20) ∀x[Linguist(x)→∃y[Philosopher(y)∧Admires(x, y)]]

If we were to read this aloud, symbol for symbol, we would say,
“For every x, if x is a linguist, then there exists a y such that y is
a philosopher and x admires y .” A more natural way of putting
this would be “Every linguist admires a philosopher.” But “Every

Draft January 18, 2022

148 Predicate logic

linguist admires a philosopher” is actually ambiguous. It could
mean two things:

1. For every linguist, there is some philosopher that the lin-
guist admires (possibly a different philosopher for every lin-
guist).

2. There is one lucky philosopher such that every linguist ad-
mires that philosopher.

The latter reading can be translated as follows:

(21) ∃y[Philosopher(y)∧∀x[Linguist(x)→Admires(x, y)]]

Predicate logic is thus a tool for teasing apart these kinds of am-
biguities in natural language. What we have just seen is an in-
stance of QUANTIFIER SCOPE AMBIGUITY. The first reading is the
one where “every linguist” takes WIDE SCOPE over “a philosopher”.
On the second reading, “every linguist” has NARROW SCOPE with
respect to “a philosopher”.

Quantifiers can also take wide or narrow scope with respect
to negation. Consider the sentence “Everybody isn’t happy”. This
could mean either one of the following:

(22) a. ∀x.¬Happy(x)
b. ¬∀x.Happy(x)

The first formula, where the universal quantifier takes wide scope
over negation says, “For every x, it is not the case that x is happy.”
The second formula, where the quantifier has narrow scope with
respect to negation says, “It is not the case that for every x, x is
happy.” The first one states that nobody is happy. The second one
states merely that there is at least one person who is not happy.

Exercise 9. For each of the following formulas, say (i) how you
would read the formula aloud, using phrases like ‘for all x’ and

Draft January 18, 2022

Predicate logic 149

‘there exists an x such that’ and (ii) give a natural paraphrase in
English.

(a) ∀x .Friendly(x)

(b) ∀x[Friendly(x)∧Happy(x)]

(c) ∃x[Friendly(x)∧Happy(x)]

(d) ∃x[Friendly(x)∨Happy(x)]

(e) ∀x[Friendly(x)→Happy(x)]

(f) ∀x .¬Friendly(x)

(g) ∃x .¬Friendly(x)

(h) ¬∃x .Friendly(x)

(i) ∀x .∃y .Loves(y, x)

Exercise 10. For each of the following sentences, say which of the
formulas above it matches (if any). (In some cases, the sentence
might match two formulas.)

(a) Somebody is friendly and happy.

(b) Everybody is friendly and happy.

(c) Everybody who is friendly is happy.

(d) Nobody is friendly.

(e) Somebody is not friendly.

(f) Somebody is friendly or happy.

Draft January 18, 2022

150 Predicate logic

(g) Everybody loves somebody.

(h) Somebody loves everybody.

Exercise 11. Which of the following statements in first-order logic
better represents the denotation of Every cellist smokes?

(a) ∀x[Cellist(x)→ Smokes(x)]

(b) ∀x[Cellist(x)∧Smokes(x)]

Exercise 12. Express the following sentences in a variant of LPred

that you have augmented with any necessary basic expressions:

(a) There is a red car.

(b) All cars are red or green.

(c) No car is blue.

(d) Alan dislikes all cars.

Feel free to add as many non-logical constants as you need.

Exercise 13. Express the following sentences. In some cases, there
may be quantifier scope ambiguity; in that case, give a represen-
tation corresponding to both interpretations.

(a) Every even number is divisible by two.

(b) Everything has a reason.

Draft January 18, 2022

Predicate logic 151

(c) Something is the reason for everything.

(d) Every human being has at least two mothers.

(e) All fathers are older than their children.

(f) If a man is a philosopher then he is mortal.

(g) Some statues are not of marble.

(h) All statues are not of marble.

(i) He who sins sleeps badly.

Feel free to add as many non-logical constants as you need.

Note: This exercise is extremely challenging!

Now let us start to give a formal definition of the syntax of a
language with variables and quantifiers. We will refer to this lan-
guage as LPred. We will allow an infinite number of variables of the
form xi , yi , or zi , where i is any nonnegative integer. For example,
our xi variables include x0, x1, x2, and so on. We use x as an ab-
breviation for x0, and similarly for y and z. (It is not good practice
to mix the abbreviated and non-abbreviated versions of the same
variable, so x and x0 should never both be used within the same
formula.) We will also add new formation rules for the universal
quantifier ∀ and the existential quantifier ∃.

Syntactic rule for LPred: Quantification
Given any variable u, if φ is a formula, then

[∀u .φ]
is a formula, and so is

[∃u .φ]

Draft January 18, 2022

152 Predicate logic

In this rule, the symbols u and φ are meta-variables; that is to say,
they belong to our meta-language (English with some mathemat-
ical bits mixed in). They stand for variables (such as x) and for-
mulas (such as Happy(x)) that can occur in formulas of the logic,
but they themselves cannot occur in any formulas. For example,
[∀x .Happy(x)] is a well-formed formula according to these rules
(but [∀u .Happy(u)] and [∀x .φ] are not).

As an abbreviatory shorthand, whenever there is no risk of
ambiguity we may drop the brackets around the formula (as we
have already done in many cases). We may also drop the dot af-
ter the variable when it is immediately followed by a bracket, e.g.
∀x[Happy(x)→ Friendly(x)]. In a formula of the form [∀u .φ] or
[∃u .φ], we call φ the SCOPE of the quantifier. When the outer
brackets are dropped, the dot indicates that the scope of its quan-
tifier extends as far to the right as possible.

Now for the semantics. We continue to treat models as pairs
consisting of a domain and an interpretation function, so a given
model M will be defined as ⟨D, I⟩ where D is the set of individuals
in the domain of the model, and I is a function giving a value to
every non-logical constant in the language. Informally,

(23) ∀x .Happy(x)

is true in a model M if (and only if) no matter which individual we
assign as the interpretation of x,

(24) Happy(x)

is true. Likewise, informally,

(25) ∃x .Happy(x)

is true iff we can find some individual to assign to x that makes
Happy(x) true.

Since we are doing first-order logic, all our variables range over
individuals. In higher-order logic, variables can also stand for pred-

Draft January 18, 2022

Predicate logic 153

icates. Here are two examples of statements that can be expressed
as a single formula in higher-order logic but not in first-order logic:

(26) a. Napoleon had all the properties of a good general.
b. No two distinct objects have the same properties.

Example (26b) is often referred to as the law of the Identity of In-
discernibles, or Leibniz’s Law. We will put off higher-order logic
until Chapter 5.

As we have seen, a formula can in principle have multiple quan-
tifiers. For example:

∀x[Happy(x)→∃y .Likes(x, y)]

This says, ‘everything that is happy likes something.’ Whether or
not it is true, it contains two variables and two quantifiers. The
outermost formula is true if every individual in the domain is an
x such that:

[Happy(x)→∃y .Likes(x, y)]
In order to evaluate whether this holds for a given x that is happy,
we will need to determine whether there is a y that x likes. So we
will need to hold the value of x fixed while we look for a suitable y .
For sentences with multiple quantifiers, then, we need to simulta-
neously consider the values we are assigning to multiple variables.
ASSIGNMENT FUNCTIONS allow us to do just that.

Variables should not be confused with constants; they are the
opposite of constants. While constants get their interpretation
from the interpretation function (which is part of the model), vari-
ables get their interpretation from the assignment function (which
is not part of the model, and which is acted on by quantifiers). The
model continues to consist of just a domain of individuals and an
interpretation function.

An assignment function is a function that specifies for each
variable, how that variable is to be interpreted, by mapping it to
an individual. Here are some examples of assignment functions:

Draft January 18, 2022

154 Predicate logic

g1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x → Agnetha
y → Benny
z → Benny
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

g2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x → Benny
y → Björn
z → Benny
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The domain of an assignment function is the set of variables.

In order to interpret an expression like Happy(x), we need
both a model and an assignment function: The model tells us who
is happy, and the assignment function determines a value for x.
For uniformity, our denotation function will always be relativized
to both a model and an assignment function, although sometimes
the assignment function will not make a difference to the deno-
tation. We typically use the letter g to stand for an assignment
function, so instead of

JφKM

we will now write:
JφKM ,g

where g stands for an assignment function. The denotation of
the variable u with respect to model M and assignment function
g , written:

JuKM ,g

is simply whatever g maps u to. We can express this more formally
as follows:

Semantic rule for LPred: Variables
JuKM ,g = g(u)

For example, JxKM ,g1 = g1(x) = Agnetha, and JxKM ,g2 = g2(x) =
Benny (regardless of our choice of model M).

Exercise 14. In this exercise, use the assignment functions g1 and
g2 that we defined above.

Draft January 18, 2022

Predicate logic 155

(a) What is g1(y)?

(b) What is JyKM ,g1 (for any model M)?

(c) What is g2(y)?

(d) What is JyKM ,g2 (for any model M)?

From now on, our semantic denotation brackets will have two
superscripts: one for the model, and one for the assignment func-
tion. As a reminder, the model is just a pair consisting of a domain
(which consists of all things that can potentially occur as denota-
tions of predicates, of individuals, of functions, etc.) and an in-
terpretation function (which applies to non-logical constants in
the language). The assignment function applies to variables in the
language, and is not part of the model. In some cases, the choice
of assignment function will not make any difference for the se-
mantic value of the expression. For example, take any model M
in which the constant Happy is defined. JHappyKM ,g1 will be the
same as JHappyKM ,g2 for any two assignments g1 and g2, because
Happy is a constant. Since it is a non-logical constant, its seman-
tic value depends on the model, but that is the only thing that it
depends on. In particular, it does not depend on any assignment
function. But the value of the formula

Happy(x)

depends on the value that is assigned to x. Whether Happy(x) is
true or not depends on how x is interpreted, and this is given by
the assignment function.

Now let us consider the formula ∃x .Happy(x). This is true
if we can find one individual to assign x to such that Happy(x) is
true. Suppose we are trying to determine whether ∃x .Happy(x) is
true with respect to a given model M and an assignment function

Draft January 18, 2022

156 Predicate logic

g . We can show that the formula is true if we can find a variant of
g on which the variable x is assigned to some happy individual.

Let us use the expression

g [x↦ Frida]

to describe an assignment function which differs from g , if at all,
only in that g(x) = Frida. That is to say, g [x ↦ Frida] is like g
except that it maps x to Frida while g itself may or may not do
so. If g already happens to map x to Frida, then g [x ↦ Frida] is
exactly the same as g ; otherwise, the two functions differ when it
comes to the value of x, and are otherwise the same.

In general, for any variable u and any individual k,

g [u↦ k]

is an assignment function that is exactly like g with the possible
exception that the value of g(u) is k. Here, k is a symbol of our
meta-language that stands for an individual in the domain, and u
is a meta-variable over variables. We call this a u-VARIANT OF g . If
g already maps u to k then, g [u↦ k] is the same as g . This tech-
nique lets us keep everything the same in g except for the variable
of interest.

Let us consider an example using a particular assignment func-
tion, g1 from above:

g1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x → Agnetha
y → Benny
z → Benny
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
g1[y ↦Björn] would be as follows:

g1[y ↦Björn] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x → Agnetha
y → Björn
z → Benny
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Draft January 18, 2022

Predicate logic 157

We changed it so that y maps to Björn and kept everything else
the same.

Exercise 15.

(a) What is g1[z ↦ Björn](x)? (I.e., what does g1[z ↦ Björn] as-
sign to x?)

(b) What is g1[z↦Björn](y)?

(c) What is g1[z↦Björn](z)?

With this terminology, we can give the following official se-
mantics for ∃x .Happy(x):

J∃x .Happy(x)KM ,g =T iff there is an individual k ∈D such that:

JHappy(x)KM ,g[x↦k] =T.

What this says is that given a model M and an assignment func-
tion g , the sentence ∃x .Happy(x) is true with respect to M and g
if we can modify the assignment function g in such a way that x
has a denotation that makes Happy(x) true. In general:

Semantic Rule: Existential quantification
J∃x .φKM ,g =T iff there is an individual k ∈D such that:

JφKM ,g[x↦k] =T

Now, if we wanted to show that the formula∀x .Happy(x) was
true, we would have to consider assignments of x to every element
of the domain, not just one. (To show that it is false is easier; then
you just have to find one unhappy individual.) If Happy(x) turns
out to be true no matter what the assignment function maps x

Draft January 18, 2022

158 Predicate logic

to, then ∀x .Happy(x) is true. Otherwise it is false. So the official
semantics of the universal quantifier is as follows:

Semantic Rule: Universal quantification
J∀v .φKM ,g =T iff for all individuals k ∈D :

JφKM ,g[v↦k] =T

4.2.1 Syntax of LPred

Let us now summarize the syntactic rules of our language. (We
will not list every single name, function, and predicate, but rather
only list a few examples.)

1. Basic Expressions

• Individual constants: a, b, e, f, ...

• Individual variables: xn , yn , and zn for every natural
number n;
(x is an optional abbreviation for x0 which must be
used consistently throughout a formula if it is used at
all; similarly for y and z)

• Function symbols

– Unary: spouseOf, ...

– Binary: tallerOneOf, ...

• Predicate symbols

– Unary: Happy, ...

– Binary: Loves, ...

2. Terms

• Every individual constant is a term.

Draft January 18, 2022

Predicate logic 159

• Every individual variable is a term.

• If π is a function symbol of arity n, and α1, ...,αn are
terms, then π(α1, ...,αn) is a term.3

3. Atomic formulas

• Predication
If π is a predicate of arity n and α1, ...αn is a sequence
of terms, then π(α1, ...αn) is an atomic formula.4

• Identity
If α and β are terms, then α =β is an atomic formula.

4. Negation

• If φ is a formula, then ¬φ is a formula.

5. Binary connectives
If φ is a formula and ψ is a formula, then so are:

• [φ∧ψ] ‘φ and ψ’

• [φ∨ψ] ‘φ or ψ’

• [φ→ψ] ‘if φ then ψ’

• [φ↔ψ] ‘φ if and only if ψ’

6. Quantifiers
If u is a variable and φ is a formula, then both of the follow-
ing are formulas:

3Special cases:

– If π is a unary function symbol and α is a term then π(α) is a term.

– If π is a binary function symbol and α and β are terms then π(α,β) is a
term.

4Special cases:

– If π is a unary predicate and α is a term, then π(α) is a formula.

– If π is a binary predicate and α and β are terms, then π(α,β) is formula.

Draft January 18, 2022

160 Predicate logic

• [∀u .φ] ‘for all u: φ’

• [∃u .φ] ‘there exists a u such that φ’

Variables are either FREE or BOUND in a given formula. Whether
a variable is free or bound is defined syntactically as follows:

• In an atomic formula, any variable is free.

• The free variables in φ are also free in ¬φ, and the free vari-
ables in φ and ψ are free in [φ∧ψ], [φ∨ψ], [φ→ψ], and
[φ↔ψ].

• All of the free variables in φ are free in [∀u .φ] and [∃u .φ],
except for u, and every occurrence of u in φ is bound in the
quantified formula.

A formula containing no free variables is called a CLOSED FOR-
MULA. As a special case, this also includes a formula that contains
no variables at all. A formula containing one or more free vari-
ables is called an OPEN FORMULA. A closed formula is also called a
SENTENCE. The distinctions introduced in this paragraph are syn-
tactic, rather than semantic, in the sense that they only talk about
the form of the expressions. However, there are semantic conse-
quences of this distinction, as we will see.5

We want to avoid unnecessary clutter in our representations,
so as mentioned above, we allow brackets to be dropped when it
is independently clear what the scope of a quantifier is, and we
also allow the outermost brackets of an expression to be dropped.
For example, instead of:

[∀x[Linguist(x)→ [∃y .Admires(x, y)]]]
5An odd feature of predicate logic is that if φ is a closed formula, φ is equiv-

alent to [∀u .φ] as well as to [∃u .φ]. For example, Swedish(a) is equivalent to
[∀x .Swedish(a)] and to [∃x .Swedish(a)]. These formulas are all true (on the
intended interpretation) just in case Agnetha is Swedish. To put it differently, if
it is true that Agnetha is Swedish, then it is also true of every individual, and of
some individual, that Agnetha is Swedish.

Draft January 18, 2022

Predicate logic 161

we can write:

∀x[Linguist(x)→∃y .Admires(x, y)]

because it is clear that the scope of the existential quantifier does
not extend any farther to the right than it does. Furthermore,
when reading a formula, you may assume that the scope of a binder
(e.g.∀x or ∃x) extends as far to the right as possible. So, for exam-
ple, ∀x[P(x)∧Q(x)] can be rewritten as ∀x .P(x)∧Q(x), inter-
preted in such a way that the universal quantifier takes scope over
the conjunction, rather than as the conjunction of ∀x .P(x) and
Q(x). (As a heuristic, you may think of the dot as a “wall” that
forms the left edge of a constituent, which continues until you
find an unbalanced right bracket or the end of the expression.)
However, we will typically retain brackets around conjunctions,
disjunctions, and implications.

We retain all of the abbreviatory conventions from above in or-
der to avoid unnecessary clutter in our formulas. Furthermore, we
can drop the dot between two quantificational binders in a row.
Thus instead of:

∀x .∃y .Admires(x, y)
we can write:

∀x∃y .Admires(x, y)
This convention is specific to our textbook, and there is no sin-
gle standard in the field. In the Lambda Calculator, on its default
setting, dots are always optional.

4.2.2 Semantics of LPred

Now for the semantics of LPred. The semantic value of an expres-
sion is determined relative to two parameters:

1. a model M = ⟨D, I⟩ where D is the set of individuals and I
is a function mapping each non-logical constant of the lan-
guage to an element, subset, or relation over elements in D ,
depending on the nature of the constant;

Draft January 18, 2022

162 Predicate logic

2. an assignment function g mapping each individual variable
in LPred to some element in D.

For any given model M and assignment function g , the denota-
tion of a given expression α relative to M and g , written JαKM ,g , is
defined as follows:

1. Basic Expressions

• If α is a non-logical constant, then JαKM ,g = I(α).

• If α is a variable, then JαKM ,g = g(α).

2. Complex terms

• If π is a function of arity n, and α1, ...,αn is a sequence
of n terms, then:6

Jπ(α1, ...,αn)KM ,g = JπKM ,g (⟨Jα1KM ,g , ...,JαnKM ,g ⟩)

3. Atomic formulas

• Predication
If π is a predicate of arity n and α1, ...,αn is a sequence
of terms, then: Jπ(α1, ...αn)KM ,g =T if ⟨Jα1KM ,g , ...,JαnKM ⟩ ∈
JπKM ,g , and F otherwise.

• Identity
If α and β are terms, then

Jα =βKM ,g =T if JαKM ,g = JβKM ,g ,

6Special cases:

– When π is a function of arity 1, then:

Jπ(α)K = JπKM ,g
(JαKM ,g

).

– When π is a function of arity 2, then:

Jπ(α,β)K = JπKM ,g
(⟨JαKM ,g ,JβKM ,g

⟩).

Draft January 18, 2022

Predicate logic 163

and F otherwise.

4. Negation

• J¬φKM ,g =T if JφKM ,g = F, and F otherwise.

5. Binary Connectives

• Jφ∧ψKM ,g = T if JφKM ,g = T and JψKM ,g = T, and F
otherwise.

• Jφ∨ψKM ,g =T if JφKM ,g =T or JψKM ,g =T, and F oth-
erwise.

• (Semantic rules for→ and↔were left as exercises.)

6. Quantification

• J∀v .φKM ,g =T if for all individuals k ∈D :

JφKM ,g[v↦k] =T

and F otherwise.

• J∃v .φKM ,g =T if there is an individual k ∈D such that:

JφKM ,g[v↦k] =T

and F otherwise.

The choice of assignment function doesn’t always make a dif-
ference for the interpretation of an expression. It only makes a
difference when the formula contains free variables. For example,
in the formula

Happy(x)
the variable x is not bound by any quantifier (so it is a free vari-
able). So the semantic value of this formula relative to M and g
depends on what g assigns to x. In contrast, a closed formula such
as ∀x .Happy(x) has the same value relative to every assignment
function.

Draft January 18, 2022

164 Predicate logic

One important feature of the semantics for quantifiers and
variables in first-order logic using assignment functions is that it
scales up to formulas with multiple quantifiers. Recall the quan-
tifier scope ambiguity in Every linguist admires a philosopher that
we discussed at the beginning of the section. That sentence was
said to have two readings, which can be represented as follows:

∀x[Linguist(x)→∃y[Philosopher(y)∧Admires(x, y)]]

∃y[Philosopher(y)∧∀x[Linguist(x)→Admires(x, y)]]
We will spare you a step-by-step computation of the semantic value
for these sentences in a given model. We will just point out that in
order to verify the first kind of sentence, with a universal quanti-
fier outscoping an existential quantifier, one would consider mod-
ifications of the input assignment for every member of the do-
main, and within that, try to find modifications of the modified
assignment for some element of the domain making the existen-
tial statement true. To verify the second kind of sentence, one
would try to find a single modification of the input assignment for
the outer quantifier (the existential quantifier), such that modifi-
cations of that modified assignment for every member of the do-
main verify the embedded universal statement. This procedure
will work for indefinitely many quantifiers.

Exercise 16. Consider the following formulas.

(a) [Happy(m)∧Happy(m)]

(b) Happy(k)

(c) Happy(m,m)

(d) ¬¬Happy(n)

(e) ∀x .Happy(x)

(f) ∀x .Happy(y)

(g) ∃x .Loves(x, x)

(h) ∃x .∃z .Loves(x, z)

(i) ∃x .Loves(x, z)

(j) ∃x .Happy(m)

Draft January 18, 2022

Predicate logic 165

Questions:

(i) Which of the above are well-formed formulas of LPred?

(ii) Of the ones that are well formed in LPred, which have free
variables in them? (In other words, which of them are open
formulas?)

Recommended: Express your answer in the form of a table, with
one column for each question.

Exercise 17. Consider the following model M f = ⟨D, I f ⟩, where ev-
erybody is happy:

I f (Happy) = {Benny,Björn,Agnetha}

Assume that gBenny = g1[x↦Benny] in the problems below.

(a) What is JxKM f ,gBenny ? Apply the LPred semantic interpretation
rule for variables.

(b) What is JHappyKM f ,gBenny ? Apply the relevant LPred semantic
interpretation rule.

(c) Which semantic interpretation rule do you need to use in or-
der to put the denotations of Happy and x together, and com-
pute the denotation of Happy(x)?

(d) Using the rule you identified in your answer to the previous
question, explain carefully why JHappy(x)KM f ,gBenny =T.

Draft January 18, 2022

166 Predicate logic

Exercise 18. Consider the following four assignment functions.

gae = [x → Abelard
y → Eloise

] gea = [x → Eloise
y → Abelard

]

gee = [x → Eloise
y → Eloise

] gaa = [x → Abelard
y → Abelard

]

For each of the following expressions, give the semantic value of
the expression relative to the model M defined in Exercise 6 and
each of the four assignment functions, using the syntax and se-
mantics of LPred. In other words, say for each expression α what
JαKM ,g is, for each given assignment function g .

Give your answer in the form of a table, with columns labelled
gae , gea , gee , and gaa .

(a) x

(b) y

(c) a

(d) spouseOf(x)

(e) Female(x)

(f) [Female(x)∧Scholar(x)]

(g) [Female(x)→ Scholar(x)]

(h) Teacher(x, y)

(i) ∃y .Teacher(x, y)

(j) ∃x∃y .Teacher(x, y)

(k) Teacher(a, y)

(l) ∃y .Teacher(a, y)

Draft January 18, 2022

Predicate logic 167

(m) Loves(x,spouseOf(x))

(n) ∀x .Loves(x,spouseOf(x))

(o) Loves(x, y)

(p) ∀x .Loves(x, y)

(q) ∃y∀x .Loves(x, y)

(r) Teacher(x, y)→Male(x)

(s) ∀y[Teacher(x, y)→Male(x)]

(t) ∀x∀y[Teacher(x, y)→Male(x)]

Exercise 19. Let g be defined such that x ↦Frida, y ↦Benny, and
z ↦Björn, and suppose that in M2, everybody loves themselves
and nobody loves anybody else, and the binary predicate Loves
denotes this love relation. Assume that f denotes Frida.

(a) Calculate:

(i) JxKM2,g

(ii) JfKM2,g

(iii) JLovesKM2,g

(iv) JLoves(x, f)KM2,g

(b) List all of the value assignments that are exactly like g ex-
cept possibly for the individual assigned to x, and label them
g1...gn .

(c) For each of those value assignments gi in the set {g1, ..., gn},
calculate JLoves(x, f)KM2,gi .

Draft January 18, 2022

168 Predicate logic

(d) On the basis of these and the semantic rule for universal
quantification calculate J∀x .Loves(x, f)KM ,g and explain your
reasoning.

Exercise 20. If a formula has free variables then it may well be true
with respect to some assignments and false with respect to others.
Give an example of two variable assignments gi and g j such that

JLoves(x, f)KM ,gi ≠ JLoves(x, f)KM ,g j .

Exercise 21. In the Algonquian language Passamaquoddy (spo-
ken in Maine, United States, and New Brunswick, Canada), voice
marking on the verb can affect which scope readings are available
for quantifiers (Bruening, 2001, 2008). For example, (27) and (28)
differ in voice-marking and are true in different circumstances.

(27) Skitap psite ’sakolon-a puhtaya.
man all hold-DIRECT bottles
‘A man is holding all the bottles.’

(28) Psite puhtayak ’sakolon-ukuwal peskuwol skitapiyil.
all bottles hold-INDIRECT one man
‘All of the bottles are held by some man.’

(The morphological glosses have been simplified.)
In (27), the verb is in direct voice, and the agent of the verb

hold corresponds to the bare noun skitap ‘man’, interpreted as
an indefinite (‘a man’). The patient (the thing being held) corre-
sponds to puhtaya ‘bottle’, which is associated with the univer-
sal quantifier psite ‘all’. Speakers of Passamaquoddy judge this
sentence to be true in the situation on the right in Figure 4.1,
but not in the situation on the left. (Images created by Benjamin

Draft January 18, 2022

Predicate logic 169

Figure 4.1: Left: A situation where each man is holding a differ-
ent bottle. Right: A situation where one man is holding all of the
bottles. (See exercise (28).)

Bruening for the Scope Fieldwork Project; see http://udel.edu/
~bruening/scopeproject/materials.html.)

In (28), the verb is in indirect voice, and again the agent cor-
responds to an indefinite noun phrase meaning ‘a man’, and the
patient corresponds to ‘all bottles’. This version of the sentence
can be interpreted in two ways, one where the picture on the left
in Figure 4.1 makes it true, and one where the picture on the right
makes it true.

(a) Write out representations in LPred for the two possible scope
interpretations.

(b) Given that the version in direct voice is true only in the situ-
ation on the right, which of the two scope interpretations is
correct for direct voice?

(c) More generally, what does this contrast suggest about how
voice affects scope interpretation in Passamaquoddy?

Draft January 18, 2022

http://udel.edu/~bruening/scopeproject/materials.html
http://udel.edu/~bruening/scopeproject/materials.html

5 ∣ Typed lambda calculus

5.1 Introduction

As you may recall from the introduction, this book develops a sys-
tem that assigns truth conditions to sentences in a compositional
manner, with the semantic values of larger expressions built up
from those of the parts of these expressions. Following Frege, we
adopt the idea that semantic composition involves a kind of sat-
uration that can be modeled using functions. Suppose you have
a syntactic phrase consisting of two sub-phrases, such as a sen-
tence made up of a subject and a verb phrase, or a verb phrase
made up of a transitive verb and its object. In order for the se-
mantic values of the sub-phrases to combine via saturation, one
of them must denote a function and the other must denote a po-
tential argument to that function. Currently, we have only a very
limited set of tools for describing functions. In this chapter, we
will expand our range of tools. Doing so will enable us to model
semantic composition in an elegant and general way.

Consider the sentence John loves Mary, which might be trans-
lated into LPred as:

Loves(j,m)
Some parts of the sentence John loves Mary can be straightfor-
wardly mapped into expressions in LPred, but others do not map
onto self-contained chunks. For example, we might say that (rel-
ative to a given model) the English name Mary picks out a partic-
ular element of the domain, namely Mary. So it makes sense to

171

172 Typed lambda calculus

translate the English name Mary as an individual constant, such
as m, as this is the sort of denotation that individual constants
have. The English verb loves could be thought of as denoting a bi-
nary relation (a set of ordered pairs of individuals in the domain),
the sort of thing denoted by a binary predicate. Let us therefore
assume that Loves is a binary predicate and that the verb maps to
it. But what does a verb phrase like loves Mary map onto? Your
intuition as a theorist might tell you that it translates to a formula
with an empty slot:

(1) Loves(,m)

where the first argument of Loves is missing. As Frege puts it, the
verb phrase expresses something unsaturated, a function whose
arguments are things that can fill the empty slot. In order to ex-
press this idea formally, we will make use of a device known as an
ABSTRACTION OPERATOR. We will use a variable as a placeholder
in the empty slot, and we will use an abstraction operator, written
as the Greek letter λ (‘lambda’), to bind that variable, creating a
function that will accept a filler for that slot. This device is also
known as LAMBDA ABSTRACTION.

The language of the SIMPLY TYPED LAMBDA CALCULUS, devel-
oped by the logician Alonzo Church, gives us the tools to represent
‘unsaturated meanings’ as functions. Using the λ symbol, we can
ABSTRACT OVER the missing piece. The result looks like this:

(2) λx .Loves(x,m)

This expression (read ‘lambda x dot loves x m’) denotes a function
from an individual to a truth value, which yields true if and only
if that individual loves Mary. This is the characteristic function
of the set of all individuals that love Mary. In Chapter 2, we as-
sumed that verb phrases (as well as nouns) denote sets of individ-
uals. Apart from replacing sets by their characteristic functions,
we are making the same assumption here.

A similar problem arises with expressions like Everything. A

Draft January 18, 2022

Typed lambda calculus 173

sentence containing everything is always translated as something
of the following form:

∀x . (x)

where is a placeholder for some predicate. For instance, Ev-
erything is temporary could be expressed:

(3) ∀x .Temporary(x)

while Everything is permanent would be expressed:

(4) ∀x .Permanent(x)

What is constant across these uses is the universal quantification;
only the predicate varies. We can capture this if we can abstract
over the predicate. Suppose that P is a variable over predicates;
then we can abstract over that position using the following expres-
sion:

(5) λP .∀x .P(x)

This expression (read ‘lambda P (dot) for all x, P of x’) denotes a
function that expects a predicate, and returns a truth value that
depends on the input predicate. More specifically, it denotes a
function from a predicate P to a truth value: true if everything
satisfies P , and false otherwise.

Now, so far we have not had any variables over predicates.
In first-order logic, which we have been using so far, variables
only range over individuals. From here on in, we will be using a
HIGHER-ORDER LOGIC. This means we can have variables ranging
over predicates, which can then be abstracted over. It also means
that expressions other than terms can serve as arguments to other
expressions. So the logic in this chapter is different from LPred in
two respects: it contains lambda abstraction, and it is a higher-
order logic.

In this chapter, we will define the syntax and semantics of a
language that includes this lambda operator. We will name the

Draft January 18, 2022

174 Typed lambda calculus

language Lλ, after its most important symbol.

5.2 Lambda abstraction

5.2.1 Types

Our languages LProp, L0, and LPred had a rather limited set of syn-
tactic categories: terms, predicates and functions of various ari-
ties, and formulas. In the language Lλ that we present next, we
will have a much richer set of syntactic categories, called TYPES.
Strictly speaking, a type is a syntactic category for an expression
of the logic, but a type also represents the kind of denotation an
expression has, and puts constraints on which other expressions
(if any) the expression can combine with.

The set of types is recursively specified, so they can be of ar-
bitrary complexity and depth, but there are strict rules as to what
counts as a type and what doesn’t. We will start with two BASIC

TYPES:

(6) e

(the type of entities) for individual-denoting expressions (corre-
sponding to TERMS in L0), and

(7) t

(the type of truth values) for formulas.
From now on, we will use the term EXPRESSION for any well-

formed string of any type, and the term FORMULA for any expres-
sion of type t . We will assign types in such a way that everything
that was a formula in propositional or predicate logic will con-
tinue to be a formula.

From these types we will build up FUNCTION TYPES such as:

(8) ⟨e, t⟩

Draft January 18, 2022

Typed lambda calculus 175

for expressions denoting functions from individuals to truth val-
ues. The set of types is defined recursively as follows, where σ

‘sigma’ and τ ‘tau’ are not themselves types but rather are meta-
variables that stand for arbitrary types:

• e is a type

• t is a type

• If σ is a type and τ is a type, then ⟨σ,τ⟩ is a type.

• Nothing else is a type.

For example, ⟨e, t⟩ is a type, since both e (our σ) and t (our τ) are
types. Note that σ and τ could in principle be instantiated by the
same actual type; for example, ⟨e,e⟩ is a type, since σ and τ don’t
have to be distinct. Also, since ⟨e, t⟩ is a type, and e is a type of
course, it follows that ⟨e,⟨e, t⟩⟩ is a type. And so on. The set of
types is infinite.

These types are syntactic categories of expressions of our log-
ical language. In any given model, these expressions denote var-
ious kinds of objects, and in this way types are indirectly associ-
ated with the objects that these expressions denote. A model as-
sociates each type with a different DOMAIN, the set of possible de-
notations for expressions of that type. For any type τ, we use Dτ to
signify the set of possible denotations for an expression of type τ.
An expression of type e denotes an individual; De is the set of in-
dividuals. So we say indirectly that e is the type of individuals. An
expression of type t is a formula, so its denotation must be either
Tor F; D t = {1,0}. An expression of type ⟨e, t⟩ denotes a function
from individuals to truth values. D⟨e,t⟩ is the set of functions with
domain De and codomain D t ; that is, functions that take as in-
put an individual, and give a truth value as output. An expression
of type ⟨e,⟨e, t⟩⟩ denotes a function which takes an individual as
its input and returns a function from individuals to truth values.
An expression of type ⟨⟨e, t⟩,e⟩ denotes a function which takes a

Draft January 18, 2022

176 Typed lambda calculus

function from individuals to truth values as its input and returns
an individual. And so forth.

Although the set of types is infinite, there are limits: Not ev-
erything is a type. For example, ⟨e⟩ is not a type according to this
system (though some authors write ⟨e⟩ for e); according to our
definition, angle brackets are only introduced for function types.

The system used in this book and in most semantic research
also lacks types corresponding to sets and binary relations, the
sorts of things that the unary and binary predicates of predicate
logic denote. In this language, an expression cannot denote a set,
because there is no type for that. There is, however, the type ⟨e, t⟩,
which corresponds to the characteristic function of a set (a func-
tion that takes an individual, and returns true or false depending
on whether that individual is in the set). From the characteristic
function of a set, one can figure out what the members of the set
are (it is the characteristic set of that function), so unary predi-
cates can be replaced by expressions of type ⟨e, t⟩ with no loss of
information.

Similarly, an expression cannot denote a binary relation, as
there is no type for that. But we do have the type ⟨e,⟨e, t⟩⟩, which
can encode a binary relation, by using a method known as CURRY-
ING.1 Currying serves to change a single function taking multiple
arguments into multiple functions each taking a single argument.
For example, a binary relation R is a set of pairs of individuals. The
characteristic function of this set is a function that applies to pairs
of individuals and returns a truth value. From this characteristic
function, LEFT-TO-RIGHT CURRYING produces a function f such
that [f (x)](y) = T if and only if ⟨x, y⟩ ∈ R (where [f (x)](y) de-

1This procedure is named after the logician Haskell Curry. It is also called
‘Schönfinkelization”, after the logician Moses Schönfinkel, on whose work Curry
built. See Heim & Kratzer (1998) p. 41, fn. 13. Hindley & Seldin (2008, p. 3)
write, “Curry always insisted that he got the idea of using [curried functions]
from [Schönfinkel 1924 (see Curry & Feys 1958, pp. 8, 10)], but most workers
seem to prefer to pronounce ‘currying’ rather than ‘schönfinkeling’. The idea
also appeared in 1893 in [Frege 1983, Vol. 1, Section 4].”

Draft January 18, 2022

Typed lambda calculus 177

notes the result of first applying f to x, and then applying f (x) to
y). Analogously, right-to-left currying produces a function f such
that [f (x)](y) =T if and only if ⟨y, x⟩ ∈R.

For example, say we want to turn the following binary relation
over the set of ABBA members into a function of type ⟨e,⟨e, t⟩⟩:

(9) {⟨Agnetha,Frida⟩,⟨Björn,Benny⟩,
⟨Björn,Björn⟩,⟨Frida,Björn⟩}

The characteristic function of this relation, call it f , is shown be-
low. Applied to any pair of individuals, it returns a truth value: T
if that pair is in the relation, F otherwise.

(10) f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨Agnetha,Agnetha⟩ → F
⟨Agnetha,Benny⟩ → F
⟨Agnetha,Björn⟩ → F
⟨Agnetha,Frida⟩ → T
⟨Benny,Agnetha⟩ → F
⟨Benny,Benny⟩ → F
⟨Benny,Björn⟩ → F
⟨Benny,Frida⟩ → F
⟨Björn,Agnetha⟩ → F
⟨Björn,Benny⟩ → T
⟨Björn,Björn⟩ → T
⟨Björn,Frida⟩ → F
⟨Frida,Agnetha⟩ → F
⟨Frida,Benny⟩ → F
⟨Frida,Björn⟩ → T
⟨Frida,Frida⟩ → F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Left-to-right currying turns f into the function we call f→:

Draft January 18, 2022

178 Typed lambda calculus

(11) f→ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → F
Frida → T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Benny →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → F
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Björn →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → T
Björn → T
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Frida →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → T
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Right-to-left currying turns f into the function we call f←:

(12) f← =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → F
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Benny →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → T
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Björn →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → T
Frida → T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Frida →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → T
Benny → F
Björn → F
Frida → F

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Draft January 18, 2022

Typed lambda calculus 179

Both f→ and f← are of type ⟨e,⟨e, t⟩⟩. Applied to a given indi-
vidual x, each one returns another function, which in turns maps
individuals y to truth values: f→ returns T iff x stands in the orig-
inal relation to y , and f← returns T iff y stands in the original re-
lation to x. For example, there are two ordered pairs in the rela-
tion whose second element is Björn, namely, ⟨ Björn, Björn ⟩ and ⟨
Frida, Björn ⟩ (we look at the second element because the relation
is right-to-left curried.) Accordingly, when we apply f← to Björn,
the result is a function that maps Björn to T Frida to T and the
others to F

(13) f←(Björn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Agnetha → F
Benny → F
Björn → T
Frida → T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
As another example, when f← is applied to Agnetha, it returns

a function that maps everything to F because there is no ordered
pair in the relation whose second element is Agnetha. And so on.

As it turns out, right-to-left currying is precisely what we need
in order to give a compositional analysis of sentences in natural
languages containing transitive verbs. (We use right-to-left cur-
rying because of a mismatch: in bottom-up syntactic derivations,
the first argument with which a transitive verb merges is its ob-
ject, and this order will be mirrored in the compositional seman-
tics. But because subjects occur to the left of objects in many lan-
guages, it is customary to think of binary relations as relating sub-
jects to objects in that order. That is, the first element in the pair of
a binary relation is thought of as the subject, and the second ele-
ment is thought of as the object. If this was the other way around,
we would use left-to-right currying instead.) In the next chapter,
we will characterize transitive verbs as denoting such curried rela-
tions – functions which, when given an individual, return another
function. Rather than translating the verb loves as the binary pred-
icate Loves, we will translate it as a function that applies to its ob-

Draft January 18, 2022

180 Typed lambda calculus

ject (say, Björn, in Agnetha loves Björn) to return a new function,
which then may apply to the subject (say, Agnetha). That way, ev-
ery part of the sentence is assigned a denotation, including the
verb phrase (loves Björn), and the composition proceeds through
the successive application of functions.

To translate the verb loves, we can use a simple expression of
type ⟨e,⟨e, t⟩⟩ like

(14) loves

where the initial lower case letter indicates that it is a function
symbol rather than a relation symbol. Then

(15) loves(b)

will serve as the translation for the verb phrase loves Björn, and

(16) loves(b)(a)

will serve as the translation for Agnetha loves Björn. Note that in
loves(b)(a), the subexpression loves(b) forms a unit. We have
loves(b)(a) rather than loves(a)(b) because the verb combines
first with the object Björn and then with the subject Agnetha. But
as we generally prefer to read the subject before the object, and in
order to reduce parenthesis clutter, we will introduce the follow-
ing notational convention: instead of loves(b)(a), we will write as
a shorthand:

(17) Loves(a,b)

We will stick to this RELATIONAL STYLE (as opposed to the FUNC-
TIONAL STYLE) throughout the book as much as possible. Thus in-
stead of the functional style (18a), with a lowercase predicate and
two sets of parens, we will represent the denotation of a transitive
verb in lambda calculus in the relational style as in (18b), with an
uppercase predicate and just one set of parens:

Draft January 18, 2022

Typed lambda calculus 181

(18) a. λy .λx . loves(y)(x)
b. λy .λx .Loves(x, y)

The expression in (18b) denotes the result of right-to-left currying
the binary relation denoted by the binary predicate Loves in pred-
icate logic. Using the relational style helps bring out visually how
many arguments the verb expects to combine with, and is more
similar to how verbal denotations are commonly represented fol-
lowing the style of Heim & Kratzer (1998); the denotation of the
verb loves in that style would be represented as ‘λy .λx . x loves y ’,
with a blend of English and lambda calculus.

For consistency, we define upper-caseλx .Happy(x) to be equiv-
alent to λx .happy(x), where happy is a predicate of type ⟨e, t⟩,
and so on for each predicate. So each lower-case predicate will
have a matching upper-case predicate that we will make use of.
The upper-case predicate and relation symbols are not part of the
official language (so the interpretation function in models of this
language will not have to worry about both variants), but we will
use the upper-case predicates in practice when it is convenient.

5.2.2 Syntax and semantics

The introduction of an infinite set of syntactic categories sets the
stage for the introduction of the LAMBDA OPERATOR (orλ-operator),
also known as an ABSTRACTION OPERATOR. The lambda operator
allows us to describe a wide range of functions. For example:

(19) λx .Loves(m, x)

denotes the characteristic function of the set of individuals that
Mary loves, while

(20) λx .Loves(x,m)

denotes the characteristic function of the set of individuals that
love Mary. You can think of the λ-operator analogously to predi-
cate notation for building sets. λx .Loves(m, x) denotes the char-

Draft January 18, 2022

182 Typed lambda calculus

acteristic function of the set {x ∣ Mary loves x}, that is, of the set of
individuals that Mary loves. (It is common not to distinguish be-
tween sets and their characteristic functions. So we will often also
say slightly imprecise things like “λx .Loves(m, x) denotes the set
of individuals that Mary loves.”)

The lambda expressions in the previous paragraph are of type
⟨e, t⟩, because the input is an individual (something in De) and
the output is a truth value (something in D t). In general, if φ is a
formula (type t), and x is a variable of type e, then λx .φwill be an
expression of type ⟨e, t⟩. But the input and the output can be any
type whatsoever. Here is a lambda expression of type ⟨e,e⟩:

(21) λx .spouseOf(loverOf(x))

This function takes as input an individual x and returns as output
another individual, the spouse of x’s lover.

The syntax rule that introduces lambda expressions into the
language thus allows for any possible type:

Syntax Rule: Lambda abstraction
If α is an expression of type τ and u is a variable of type σ then
[λu .α] is an expression of type ⟨σ,τ⟩.
(We will often drop the outer square brackets when it does not
result in confusion.)

In a lambda expression of the form described in this rule, we call
σ and τ the INPUT TYPE and OUTPUT TYPE.

The semantics of lambda expressions is defined as follows:

Semantic Rule: Lambda abstraction
If α is an expression of type τ and u a variable of type σ then for
any assignment g , Jλu .αKM ,g is that function f from Dσ into Dτ

such that for all objects o in Dσ, f (o) = JαKM ,g[u↦o].

Draft January 18, 2022

Typed lambda calculus 183

For example, λx .Happy(x) is of the form λu .α where u (i.e., x)
is of type e, and α (i.e., Happy(x)) is of type t . So it denotes the
function f from De to D t such that for all objects o in De , f (o) is

equal to JHappy(x)KM ,g[x↦o]. For any object o, f (o) will return T
(True) if o is happy, and F (False) if not. So λx .Happy(x) denotes
the characteristic function of the set of happy individuals.

To give the full picture of the indirect interpretation theory,
the syntactic constituent “loves Björn” will be translated to the
expression λx .Loves(x,b). We will symbolize the translation re-
lation with the symbol↝ (pronounced “translates to” or “is trans-
lated as”). The J⋅KM ,g denotation function maps this lambda ex-
pression to the characteristic function of the set of individuals
who love Björn in M . If that characteristic function is given the
individual Agnetha as an input, the output is a truth value: T if
Agnetha loves Björn in M ; F if not.

If this seems overwhelming, stay calm; it may start to sink in
after you get some practice with beta reduction, which we turn to
next.

5.2.3 Application and beta reduction

The functions resulting from abstraction behave just like the func-
tions we are already familiar with. As in L0, we indicate the ar-
guments of a function using parentheses. This is called APPLICA-
TION. Ifπ is an expression denoting a function, andα is an expres-
sion whose type is the input type of π, then π(α) denotes the re-
sult of applying π to α, and its type is the output type of π. For ex-
ample, [λx .Happy(x)](a) denotes the result of applying the func-
tion denoted by [λx .Happy(x)] to the semantic value of a. This
principle also applies to syntactically complex function-denoting
terms formed by lambda abstraction. Thus

(22) [λx .Loves(x,b)](a)

denotes the result of applying the function ‘loves Björn’ to Ag-

Draft January 18, 2022

184 Typed lambda calculus

netha.
Here is the syntax rule that introduces function application

terms into the language:

Syntax Rule: Function Application
For any types σ and τ, if α is an expression of type ⟨σ,τ⟩ and β is
an expression of type σ then α(β) is an expression of type τ.

The semantics of function application is defined as follows:

Semantic Rule: Function application
If α is an expression of type ⟨σ,τ⟩, and β is an expression of type
σ, then Jα(β)KM ,g = JαKM ,g (JβKM ,g).

The expression we have just seen is provably equivalent to the
simpler:

(23) Loves(a,b)

where the λ-binder, the square brackets, and the variable have
been removed, and we have kept just the part after the dot, with
the modification that the argument of the function is substituted
for all instances of the variable. This kind of simplification is known
as BETA REDUCTION (other names include BETA CONVERSION and
LAMBDA CONVERSION).

Using beta reduction, an expression of the form:

[λx x ...](α)

can be simplified to
... α ...

The following pairs of expressions are equivalent; in each case, the
second is the beta-reduced version of the first.

Draft January 18, 2022

Typed lambda calculus 185

(24) a. [λx .Smiled(x)](a)
b. Smiled(a)

(25) a. [λx .[Smiled(x)∧Happy(x)]](a)
b. [Smiled(a)∧Happy(a)]

(26) a. [λx .[Smiled(x)∧Happy(y)]](a)
b. [Smiled(a)∧Happy(y)]

In a lambda expression of the formλx .φ, theφpart (the scope
of the lambda expression) describes the value of the function given
an argument, so it can be called the VALUE DESCRIPTION (or BODY).
For example, the value description in the expression

(27) λx .Loves(x,bj)

is

(28) Loves(x,bj).

Exercise 1. Identify the value description in the following lambda
expressions:

1. λx .Happy(x)

2. λx . x

3. λy .λx .[Loves(x, y)∨Loves(y, x)]

4. λz .λy .λx .Between(x, y, z)

In general, the result of applying a function described by a
lambda expression to an argument can be described as taking the
value description and replacing all free occurrences of the lambda-
bound variable with the argument. By ‘free occurrences’, we mean
occurrences that are not bound by another variable binder (a lambda
operator or a quantifier). The official definition of beta-reduction

Draft January 18, 2022

186 Typed lambda calculus

is as follows. Here we write x for a variable of any type, α for an
expression of the type of x, φ for an expression of any type, and
φ[x ∶= α] for the result of replacing with α all free occurrences of
x in φ:

Beta reduction: [λx .φ](α) can be reduced to φ[x ∶= α] provided
that α does not contain any free variables that occur in φ.

If another variable binder is present in the value description
and binds the very same variable that is bound by the lambda op-
erator in question, then occurrences of the variable that are in the
scope of that other variable binder are no longer bound by the
lambda operator. So the following two formulas are equivalent:

(29) a. [λx .[Smiled(x)∧∃x .Happy(x)]](a)
b. [Smiled(a)∧∃x .Happy(x)]

The occurrence of the variable x inside the scope of the existen-
tial quantifier is bound by that quantifier and not by the lambda
operator, so replacing it with a would not result in an equivalent
expression.

To avoid confusion, as a matter of practice, it is best to avoid
letting the same variable be bound by more than one binder. But
if you find yourself in such a situation, you can remedy it using
the rule of ALPHA CONVERSION. This is a re-lettering rule: it allows
one to replace bound variables by other ones under certain con-
ditions without a change in denotation. For instance, ∀x .P(x)
is equivalent to ∀y .P(y), where we have ‘re-lettered’ all occur-
rences of x as y . The same holds for lambda-bound variables as
well: λx .P(x) is equivalent to λy .P(y). Alpha conversion also
allows us to convert

(30) λx .Loves(x, y)

into

Draft January 18, 2022

Typed lambda calculus 187

(31) λz .Loves(z, y)

Here we replaced x with z, which we could do because z did not
already occur free in the variable description in (30). We could
not have picked y , as that would have produced a VARIABLE COL-
LISION, also known as an ACCIDENTAL CAPTURE. If you replace
the lambda-bound variable with one that already occurs free in
the body of the lambda expression (such as y in this example),
the lambda operator will come to bind that variable occurrence
whereas it did not before, so that would change the meaning. But
for any variables u and v , as long as v does not occur free in φ,
λu .φ can be written equivalently as λv .φ′, where φ′ is a version
of φ with all free instances of u replaced by v .

In the context of beta-reduction, alpha conversion can be es-
pecially useful when the argument contains a free variable, or is a
variable itself. For example, consider:

(32) [λy .λx .Loves(x, y)](x)

If we just substitute x in for y , we get:

(33) λx .Loves(x, x)

The rule of beta-reduction does not allow this, because it contains
the proviso, “provided thatα [the argument] does not contain any
free variables that occur in φ [the value description].” In this case,
the argument (here, x) contains a free variable that occurs in the
value description (here, λx .Loves(x, y)). And indeed, (33) is not
equivalent to the original expression (32). The expression (33) de-
notes the set of self-lovers, while the expression (32) denotes the
set of those who love whomever x picks out. Through overly en-
thusiastic substitution of y for x, the variable y accidentally be-
came bound by the inner lambda operator. But the inner lambda
expression could have involved any variable. It didn’t have to be
x. For example, it could have been z. Using alpha conversion, we
reletter x as z in (32) and get the following:

Draft January 18, 2022

188 Typed lambda calculus

(34) [λy .λz .Loves(z, y)](x)

This expression has exactly the same denotation as (32). If we sub-
stitute x for y by performing beta reduction on (34), then we get
the right result: an expression that has the same denotation as (32)
(and (34)), but that cannot be simplified any further.

(35) λz .Loves(z, x)

Whereas our former attempt in (33) denotes the set of individuals
who love themselves, this denotes the set of individuals who love
whomever x picks out.

When doing beta reduction on arguments that contain free
variables which also occur in the value description, as in (32), we
recommend first using alpha conversion to ‘re-letter’ the bound
variable as in (34), before carrying out beta reduction as usual. In
the Lambda Calculator, the software accompanying this book that
can be used as a tool in solving the exercises, this re-lettering pro-
cedure is enforced as a matter of practice.2

2A third rule, ETA REDUCTION, allows us to rewrite a lambda term of the
shape λx .[φ(x)] as just φ, and vice versa. For example, this rule ensures that
λx .smiles(x) and λy .smiles(y) are equivalent to each other and to smiles. Two
other examples: λy[λx . loves(y)(x)] is equivalent to λy . loves(y), which in
turn is equivalent to loves; and λP .[λx .¬P(x)] is equivalent to λP .¬P . This
can be another handy way of simplifying representations. Like the other rules,
it comes with a proviso regarding free variables: φ can be any expression ex-
cept it must not contain any free occurrences of x. For example, λx . loves(x)(x)
(which denotes the set of self-lovers) cannot be eta-reduced to loves(x), which
denotes the set of x-lovers rather than self-lovers. If it is not clear why loves(x)
has this denotation, it might help to see that it can be obtained via eta reduction
from λy . loves(x)(y), which also denotes the set of x-lovers. (Remember that
curried predicates that translate to transitive verbs take their object before their
subject.)

Eta reduction is needed in order to derive equivalences that one would not
have been able to derive with just alpha and beta reduction. For example, the
expressions λx.[(λP.P)(Smiled)](x) and Smiled have the same denotation in
every model, but we cannot reduce the first to the second without using eta-
reduction.

One can show that these three rules never change the denotation or the type

Draft January 18, 2022

Typed lambda calculus 189

5.2.4 Some applications

Our new and improved representation language, with its capacity
for abstraction and its infinitely many types, can express a wide
range of potential denotations for natural language expressions.
Take for example the prefix non-, as in non-smoker. A non-smoker
is someone who is not in the set of smokers. If smoker denotes the
set of people who smoke and translates to this:

(36) λx .Smokes(x)

Then non-smoker should denote the set of people who don’t smoke,
and it should translate to this:

(37) λx .¬Smokes(x)

On this analysis, a non-P is a member of the set denoted byλx .¬P(x).
So the denotation of non- can be thought of as a function that
takes as its argument a predicate (say, P) and then returns a new
predicate which holds of an individual iff the individual does not
satisfy the input predicate P :

(38) λP .[λx .¬P(x)]

If we apply this function to λx .Smokes(x), the result is equiva-
lent to λx .¬Smokes(x). This correctly captures the fact that a
non-smoker doesn’t smoke. As the prefix non- applies to a predi-
cate, rather than an individual, it can be said to denote a HIGHER-
ORDER FUNCTION, that is, a function that applies to other func-
tions. By the same token, non- is a HIGHER-ORDER EXPRESSION.

In the beginning of this chapter, we motivated the use of lambda
calculus on the basis of its ability to capture the idea of a tem-

of a lambda expression and that they always give the same result no matter in
which order they are applied to a complex lambda term. And in the simply typed
lambda calculus, one can show that these rules will always terminate, i.e. no
matter how complex the initial expression, it is always possible to come to a
point where none of these rules can be applied.

Draft January 18, 2022

190 Typed lambda calculus

plate with a slot to be filled, but its ability to represent higher-
order functions is another important virtue of this formalism as
a way of representing natural language. For example, in Chapter
4, we mentioned that the following sentences can be expressed as
a single formula in higher-order logic but not in first-order logic:

(39) a. Napoleon had all the properties of a good general.
b. No two distinct objects have the same properties.

Here are two translations of these sentences into higher-order logic:

(40) ∀P .[[∃x .Good(x)∧General(x)∧P(x)]→ P(napoleon)]
(41) ¬[∃x∃y .[¬(x = y)∧[∀P .P(x)↔ P(y)]]]

In these formulas, P is not a predicate but a variable over predi-
cates (otherwise, it could not be bound by the universal quanti-
fier). The type of this variable is ⟨e, t⟩. In the first-order logic we
have encountered in chapter 3, all variables range over individu-
als; in other words, the types of all first-order variables is e.

Other higher-order expressions that we can treat using our new
language include quantifiers like every cellist and determiners like
every. Recall that intuitively, every expresses the subset relation
between two sets. To say Every cellist smokes is to say that the set of
cellists is a subset of the set of individuals that smoke. Let P and Q
be variables ranging over the characteristic functions of sets (type
⟨e, t⟩). The denotation of every can be represented like this:

(42) λP .λQ .∀x .P(x)→Q(x)

This expression denotes a function that takes a predicate (call it
P), and returns a function that takes another predicate (call it Q),
and returns T(True) if and only if every P is a Q.

The denotation of every cellist would be the result of applying
this function to the denotation of cellist. This means that cellist
must denote a function from individuals to truth values. This sug-
gests that cellist is translated as follows:

Draft January 18, 2022

Typed lambda calculus 191

(43) λy .Cellist(y)

Then every cellist will be translated as:

(44) [λP .λQ .∀x .P(x)→Q(x)](λy .Cellist(y))

λP .λQ .∀x .P(x)→Q(x)

every

λy .Cellist(y)

cellist

The translation at the top can be simplified via two beta reduc-
tion. In a first step, we remove λP and correspondingly replace P
in the value description by λy.Cellist(y). This gives us:

(45) λQ .∀x .[λy .Cellist(y)](x)→Q(x)

In a second step, we apply λy .Cellist(y) to x and get Cellist(x)
This happens within the bigger expression, so we end up with:

(46) λQ .∀x .Cellist(x)→Q(x)

Thus the denotation of every, applied to the denotation of cellist, is
a function that is still hungry for another unary predicate. Feeding
it λz .Smokes(z) produces a formula that denotes a truth value:

(47) [λQ .∀x .Cellist(x)→Q(x)](λz .Smokes(z))

This formula, too, can be simplified via two beta reductions. In
a first step, we remove λQ and correspondingly replace Q in the
value description by λy.Smokes(y). This gives us:

(48) [∀x .Cellist(x)→ [λz .Smokes(z)](x)]

In a second step, we apply λz .Smokes(z) to x and get Smokes(x).
So we end up with:

(49) ∀x .Cellist(x)→ Smokes(x)

Draft January 18, 2022

192 Typed lambda calculus

From here on in, we will not spell out these kinds of beta reduc-
tions explicitly.

Exercise 2. Download the Lambda Calculator from http://
lambdacalculator.com, and install it on your computer. (It
works with Mac, Windows and Linux operating systems.) Then
open the ‘Scratch Pad’ and verify for yourself that the two reduc-
tions just given work as described.

5.3 Summary

5.3.1 Syntax of Lλ

Let us now summarize our new logic, Lλ, which is a version of the
SIMPLY TYPED LAMBDA CALCULUS. The TYPES are defined recur-
sively as follows:

• e is a type

• t is a type

• If σ is a type and τ is a type, then ⟨σ,τ⟩ is a type.

• Nothing else is a type.

A FORMULA is an expression of type t . This means that all those ex-
pressions that were already well-formed formulas in our old log-
ics LProp and L0 (e.g. atomic formulas, conjunctions, disjunctions,
quantified statements, etc.) are expressions of type t .

For every type, there is a set of constants of that type, and an
infinite set of variables of that type. Each variable bears an index,
indicated with a subscripted integer.

1. Basic Expressions
For every type τ, there is:

Draft January 18, 2022

http://lambdacalculator.com
http://lambdacalculator.com

Typed lambda calculus 193

• a possibly empty set of constants Conτ

• an infinite set of variables Varτ, each bearing a natu-
ral number as an index, one for each natural number.
(The index 0 can be suppressed, so x is an abbrevi-
ation of x0. Abbreviated and non-abbreviated forms
should not occur in the same formula, lest confusion
arise.)

In this language, since we can have constants of any type,
including the whole range of functional types, we will drop
the convention that constants denoting functions end in Of.
For instance, we could have a constant non ∈ Con⟨⟨e,t⟩,⟨e,t⟩⟩

that denotes the function we associated with the English
prefix non- above. The constant loves above is in Con⟨e,⟨e,t⟩⟩.

Variables of the form xi , yi or zi , where i is an integer, are
variables of type e. Variables of the form Pi or Qi are of type
⟨e, t⟩. Variables of the form Ri are of type ⟨e,⟨e, t⟩⟩. Outside
of these conventions, we sometimes indicate the type of a
variable by means of an additional subscript.

2. Application (cf. ‘Complex Terms’ in LPred)
For any typesσ and τ, ifα is an expression of type ⟨σ,τ⟩ and
β is an expression of type σ then [α(β)] is an expression of
type τ. (We will often drop the square brackets when it does
not result in confusion.)

3. Identity
If α and β are expressions of the same type, then α = β is a
formula (an expression of type t).

4. Negation
If φ is a formula, then so is ¬φ.

5. Binary Connectives
Ifφ andψ are formulas, then so are [φ∧ψ],[φ∨ψ],[φ→ψ],
and [φ↔ψ].

Draft January 18, 2022

194 Typed lambda calculus

(This means that we cannot apply the connectives to ex-
pressions of any type other than t , nor can we use them to
produce any such expressions.)

6. Quantification
Ifφ is a formula and u is a variable of any type, then [∀u .φ]
and [∃u .φ] are formulas.

7. Lambda abstraction (new!)
If α is an expression of type τ and u is a variable of type σ
then [λu .α] is an expression of type ⟨σ,τ⟩.

Recall that when reading a formula, you may assume that the
scope of a binder (∀, ∃, or λ) extends as far to the right as possible.
So, for example, ∀x .[P(x)∧Q(x)] can be rewritten as ∀x .P(x)∧
Q(x). However, we will typically retain brackets in these cases.
Similarly to how we can drop the dot between two quantifica-
tional binders, we can also drop the dot between two lambdas in
a row, so we can write, e.g. λxλy .Admires(x, y). (The order of the
lambdas still matters: this function is not the same asλyλx .Admires(x, y).)
We will, however, always retain the final dot in a sequence of lambda
binders in order to show that the end of the argument list has
been reached, e.g. λxλy .∃z .Gave(x, y, z). Once again, these dot-
related conventions are specific to our textbook, and there is no
single standard in the field.

To further reduce clutter, we will add the following abbrevia-
tory convention: Square brackets that are immediately embedded
inside parentheses can be dropped. This way, we can for example
write π(λx .Happy(x)) rather than π([λx .Happy(x)]).

Finally, we define some equivalences between ‘relational style’
and ‘functional style’ formulas. For example,

(50) Loves(x, y)

is defined to be equivalent to loves(y)(x), and Happy(x) is equiv-
alent to happy(x). In general, if π denotes an n-place right-to-left
curried relation, then

Draft January 18, 2022

Typed lambda calculus 195

(51) π(α1)(α2)...(αn)

can be re-written as

(52) Π(αn ,αn−1, ...,α1)

whereΠ is a variant of π that starts with a capital letter.

Exercise 3. Consider the following expressions, assuming the fol-
lowing abbreviations:

• x is v0,e (meaning that x is variable number 0 of type e)

• y is v1,e

• P is v0,⟨e,t⟩, Q is v1,⟨e,t⟩, and X is v2,⟨e,t⟩

• R is v0,⟨e×e,t⟩

• a is c0,e and b is c1,e

1. [λx .P(x)](a)

2. [λx .P(x)(a)]

3. [λx .R(y,a)]

4. [λx .R(y,a)](b)

5. [λx .R(x,a)](b)

6. [λxλy .R(x, y)](b)

7. [λxλy .R(x, y)](b)(a)

8. [λx .[λy .R(x, y)](b)](a)

9. [λX .∃x .[P(x)∧X (x)]](λy .R(a, y))

10. [λX .∃x .[P(x)∧X (x)]](λx .R(a, x))

Draft January 18, 2022

196 Typed lambda calculus

11. [λX .∃x .[P(x)∧X (x)]](λy .R(y, x))

12. [λX .∃x .[P(x)∧X (x)]](Q)

13. [λX .∃x .[P(x)∧X (x)]](X)

14. [λX .∃x .[P(x)∧X (x)](λx .Q(x))]

15. [λyλx .R(y, x)](a)

For each of the above, answer the following questions:

(a) Is it a well-formed expression of Lλ (given both the official
syntax and our abbreviatory conventions) and if yes, what is
its type?

(b) If the formula is well-formed, give a completely beta-reduced
expression which is equivalent to it. Use alpha-conversion
(re-lettering of bound variables) if necessary to avoid variable
clash.

You can check your answers using the Lambda Calculator.

Exercise 4. Identify the type of each of the following. Assume that
man and mortal are constants of type ⟨e, t⟩.

1. λy . y

2. λx .P(x)

3. P

4. a

5. x

Draft January 18, 2022

http://lambdacalculator.com

Typed lambda calculus 197

6. P(x)

7. [λx .P(x)](a)

8. P(a)

9. R(x, y)

10. λx .R(x,a)

11. λyλx .R(y, x)

12. [λyλx .R(y, x)](a)

13. [λx .R(y,a)](b)

14. R(a,b)

15. λx .[P(x)∧Q(x)]

16. [λx .P(x)∧Q(x)](a)

17. λxλy .[R(y)(a)∧Q(x)]

18. λP .P

19. λP .P(a)

20. ∃x .P(x)

21. λP .∃x .P(x)

22. [λP .∃x .P(x)](man)

23. ∃x .man(x)

24. λP .∀x .P(x)

25. [λP .∀x .P(x)](mortal)

Draft January 18, 2022

198 Typed lambda calculus

26. ¬mortal(x)

27. λx .¬mortal(x)

28. λPλx .¬P(x)

29. [λPλx .¬P(x)](mortal)

30. λx .¬mortal(a)

31. [λx .¬mortal(x)](a)

32. ¬mortal(a)

33. λQ .∀x .[man(x)→Q(x)]

34. [λQ .∀x .[man(x)→Q(x)]](mortal)

35. λPλQ .∀x .[P(x)→Q(x)]

36. [λPλQ .∀x[P(x)→Q(x)]](man)

37. [λPλQ .∀x[P(x)→Q(x)]](man)(mortal)

38. [λQ .∀x[man(x)→Q(x)]](λx[mortal(x)])

39. [λPλx .¬P(x)](mortal)

40. [λPλx .¬P(x)](λx .mortal(x))

You can check your answers using the Lambda Calculator.

Exercise 5. Where possible, apply beta-reduction to give a more
concise version of each of the following. If the expression is fully
reduced, just give the original expression.

1. [λx . x](a)

Draft January 18, 2022

http://lambdacalculator.com

Typed lambda calculus 199

2. [λP .P](man)

3. [λx .P(x)](a)

4. [λx .P(x)]

5. [λyλx .R(y, x)](a)

6. [λx .R(y,a)](b)

7. [λP .∃x .P(x)](man)

8. [λP .∀x .P(x)](mortal)

9. λx .¬mortal(x)

10. [λPλx .¬P(x)](mortal)

11. [λx .¬mortal(x)](a)

12. [λQ .∀x .[man(x)→Q(x)]](mortal)

13. [λPλQ .∀x .[P(x)→Q(x)]](man)

14. [λPλQ .∀x .[P(x)→Q(x)]](man)(mortal)

15. [λx .P(x)∧Q(x)](a)

16. [λxλy .[R(y,a)∧Q(x)]](a)(b)

17. [λx .∃y .R(x, y)](y)

18. [λx .a](b)

19. [λx .[P(x)→∃x .R(b, x)]](a)

20. [λQ .∀x[mortal(x)→Q(x)]](λx[mortal(x)])

21. [λQ .∃P .∀x .[P(x)→Q(x)]](mortal)

Draft January 18, 2022

200 Typed lambda calculus

22. [λPλx .¬P(x)](λx[mortal(x)])

23. [λPλx .P(x)](λx[¬mortal(x)])

You can check your answers using the Lambda Calculator.

5.3.2 Semantics of Lλ

As in LPred, the semantic values of expressions in Lλ depend on
a model and an assignment function. As in LPred, a model M =
⟨D, I⟩ is a pair consisting of the domain of individuals D and an
interpretation function I , which assigns semantic values to each
of the non-logical constants in the language.

Recall that types are associated with domains:

• The domain of individuals De is the set of individuals, the
set of potential denotations for an expression of type e.

• The domain of truth values D t contains just two elements:
T ‘True’ and F ‘False’.

• For any types σ and τ, D⟨σ,τ⟩ is the domain of functions
from Dσ to Dτ.

For every type τ, I assigns to every non-logical constant of
type τ an object from the domain Dτ. We then say that τ is the
type of this object.

Assignments provide values for variables of all types, not just
those of type e. An assignment thus is a function assigning to each
variable of type τ a denotation from the set Dτ.

The semantic value of an expression is defined as follows:

1. Basic Expressions

(a) If α is a non-logical constant, then JαKM ,g = I(α).

(b) If α is a variable, then JαKM ,g = g(α).

Draft January 18, 2022

http://lambdacalculator.com

Typed lambda calculus 201

2. Application
If α is an expression of type ⟨σ,τ⟩, and β is an expression of
type σ, then Jα(β)KM ,g = JαKM ,g (JβKM ,g).

3. Identity
Ifα andβ are expressions of the same type, then Jα =βKM ,g =
T iff JαKM ,g = JβKM ,g .

4. Negation
If φ is a formula, then J¬φKM ,g =T iff JφKM ,g = F.

5. Binary Connectives
If φ and ψ are formulas, then:

(a) Jφ∧ψKM ,g =T iff JφKM ,g =T and JψKM ,g =T.

(b) Jφ∨ψKM ,g =T iff JφKM ,g =T or JψKM ,g =T.

(c) Jφ→ψKM ,g =T iff JφKM ,g = F or JψKM ,g =T.

(d) Jφ↔ψKM ,g =T iff JφKM ,g = JψKM ,g .

6. Quantification

(a) Ifφ is a formula and v is a variable of type τ then J∀v .φKM ,g =
T iff for all objects o ∈Dτ:

JφKM ,g[v↦o] =T

(b) Ifφ is a formula and v is a variable of type τ then J∃v .φKM ,g =
T iff there is some object o ∈Dτ such that:

JφKM ,g[v↦o] =T

7. Lambda Abstraction
If α is an expression of type τ, and u a variable of type σ,
then Jλu .αKM ,g is that function f from Dσ into Dτ such that

for all objects o in Dσ, f (o) = JαKM ,g[u↦o].

Draft January 18, 2022

202 Typed lambda calculus

Exercise 6.

(a) Partially define a model for Lλ giving denotations to the con-
stants loves, n, and d of type ⟨e,⟨e, t⟩⟩, e, and e, respectively.

(b) Show that [λx . loves(n)(x)](d) and its beta-reduced version
loves(n)(d) have the same semantic value in your model us-
ing the semantic rules for Lλ.

Exercise 7. Relational kinship terms like aunt can be thought of
as denoting binary relations among individuals. We might there-
fore introduce a binary predicate Aunt to represent the aunt-
hood relation, such that a sentence like Sue is Alex’s aunt could
be represented as Aunt(sue,alex). But consider Sue is an aunt!
(perhaps uttered in a context where Sue’s sister just gave birth).
This sentence might be taken to express an existential claim
like ∃x .Aunt(sue, x). On such a usage, the noun aunt might
be taken to denote, rather than a binary relation, the property
that someone has if there is someone that they are the aunt of:
λy .∃x .Aunt(y, x). In this expression, one of the arguments of
the relation is existentially bound. We might imagine that there
is a regular process that converts a relational noun like aunt into a
noun denoting the property of standing in the relevant relation to
some individual. Using Lλ, describe a function that would take as
input an arbitrary binary relation like the aunthood relation (type
⟨e,⟨e, t⟩⟩) and gives as output the property that an individual has
if they stand in this relation to another individual. This is a one-
place predicate, so it is of type ⟨e, t⟩. The answer should therefore
take the form of a lambda expression of type ⟨⟨e,⟨e, t⟩⟩,⟨e, t⟩⟩.

Draft January 18, 2022

Typed lambda calculus 203

Exercise 8. We normally consider eat a transitive verb, and ac-
cording to the kind of analysis we have done here, this would im-
ply a treatment as a binary relation, type ⟨e,⟨e, t⟩⟩. And yet we
do have usages where the object does not appear, as in Have you
eaten? One might imagine that a two-place predicate can be re-
duced to a one-place predicate through an operation that existen-
tially quantifies over the object argument. Define a function that
does this and express it as a well-formed lambda term in Lλ. The
input to the function should be a binary relation (type ⟨e,⟨e, t⟩⟩)
and the output should be a unary relation (type ⟨e, t⟩) where the
object argument has been existentially quantified over.

Exercise 9. Like eat, the verb shave can be used both transitively
and intransitively; consider The barber shaved John and The bar-
ber shaved. But in contrast to eat, the intransitive version does not
mean that the barber shaved something; it means that the barber
shaved himself. Give an expression of Lλ of type ⟨⟨e,⟨e, t⟩⟩,⟨e, t⟩⟩
which produces this sort of denotation from a two-place predi-
cate. (Adapted from Dowty et al. (1981), Problem 4-7, p. 97.)

5.4 Further reading

This chapter has provided just the bare minimum that is needed
for starting to do formal semantics. There is no trace of proof the-
ory in this chapter, and there has been only scant presentation
of model theory, so this can hardly be considered a serious intro-
duction to the subject. Carpenter (1998) is an excellent introduc-
tion to the logic of typed languages for linguists who would like to
deepen their understanding of such issues.

Draft January 18, 2022

6 ∣ Function Application

6.1 Introduction

We will now use the lambda calculus to translate constituents of
arbitrary size, from words and phrases all the way up to the sen-
tences themselves, into logic. We will show how to carry out a
translation of English into the lambda calculus, and how to com-
pose the resulting lambda terms and their denotations so that the
result is a logical formula whose truth conditions are the same
as those of the English sentence. Our underlying assumption is
that lambda calculus expressions translate syntactic constituents
and compose in a way that mirrors the syntactic structure of the
sentence. It is the job of a theory of syntax to determine what
these constituents are; not just any substring of an English sen-
tence is a constituent. Here we will just give a toy syntax that can
be replaced by more sophisticated syntactic theories without sig-
nificant changes to the semantics. The process by which trans-
lations of complex expressions are derived compositionally from
the translations of their parts is sometimes referred to as a DERIVA-
TION.

How, then, do denotations of constituents compose? We will
first explore the hypothesis, inspired by Frege’s idea of saturation,
that there is only one way for the meanings of two subexpressions
to combine to give the meaning of a complex expression: applica-
tion of a function to an argument. In this chapter, we will define a
semantics for a fragment of English that adheres to this principle.

205

206 Function Application

To do so, we will translate expressions of English into expressions
of Lλ. A name like Agnetha will translate as the type e expression a;
both denote the individual Agnetha. The intransitive verb smiled
will be translated as the type ⟨e, t⟩ expression λx .Smiled(x); both
denote the set of smilers. We write the ‘translates to’ relation as↝:

(1) a. Agnetha↝ a
b. smiled↝λx .Smiled(x)

The combination, Agnetha smiled, will then be translated as the
result of applying the translation of the verb to the translation of
the subject:

(2) [λx .Smiled(x)](a)

a

Agnetha

λx .Smiled(x)

smiled

... or equivalently, through beta reduction:

(3) Smiled(a)

a

Agnetha

λx .Smiled(x)

smiled

The formulas at the tops of these trees have the same denotation
as each other and as the English sentence Agnetha smiled; that
denotation is the truth value of this sentence.

Again, we are using an indirect interpretation method in this
book, which means that we translate English to the representa-
tion language first (using ↝), and then interpret the representa-
tion language (using J⋅K). So rather than the Heim & Kratzer (1998)
style:

(4) JAgnetha smiledK =T

Draft January 18, 2022

Function Application 207

we instead write:

(5) Agnetha smiled↝ Smiled(a)

and:

(6) JSmiled(a)K =T

in order to express that the sentence is true (ignoring here the
usual adornment of the denotation brackets with a specification
of a model and an assignment function). At the time of writing,
both styles are widely used in the semantic literature, and the choice
depends on what the author finds most convenient for their ex-
pository purposes.

We take the denotations of the English expressions to be in-
herited from those of their translations in lambda calculus.1 A
given sentence can then be said to be true with respect to a model
and an assignment function if its translation is true with respect
to that model and assignment function.

Indirect interpretation is the style that Montague (1973a) used
in his famous work entitled The Proper Treatment of Quantifica-
tion in Ordinary English (‘PTQ’ for short). There, he specified a set
of principles for translating English into a logic. This work stands
in contrast to another famous Montague paper, English as a For-
mal Language (Montague, 1970), in which a direct interpretation
style was used. Montague was very clear that this translation pro-
cedure was only meant to be a convenience; one could in princi-
ple specify the denotations of the English expressions directly. So
we will continue to think of our English expressions as having de-
notations, even though we will specify them indirectly via a trans-
lation to the lambda calculus. Nevertheless, the expressions of the
lambda calculus are not themselves the denotations, just like the

1Assuming that there may be multiple translations into the representation
language for a given expression of English, there is not necessarily a unique de-
notation, although the representation language is unambiguous. For example, a
given word might have multiple distinct translations.

Draft January 18, 2022

208 Function Application

name “Agnetha” is not itself the person Agnetha. Lambda calculus
expressions are strings with a certain length, structure, etc., while
denotations are entities, truth values, sets and functions, etc. We
have two languages at play, a natural language such as English
(our object language) and the lambda calculus (a formal language,
our representation language). We are translating from the natural
object language to the formal representation language, and spec-
ifying the semantics of the formal representation language in our
meta-language (which is also English, mixed with talk of sets and
relations).2

We will not translate every expression of English to our repre-
sentation language, only a well-behaved ‘fragment’ of it, as Richard
Montague called it. In ‘English as a formal grammar’, Montague
(1970) formally defined the first fragment of English, consisting of
the following ingredients: a specification of our formal represen-
tation language, with syntactic and semantic rules; a specification
of the syntax of the English expressions we cover; a list of lexical

2An important difference between the tack we are taking here and the one
taken in Heim & Kratzer’s (1998) textbook is that here the λ symbol is part of
our representation language but not the meta-language, whereas in Heim and
Kratzer the λ symbol is part of the meta-language (and there is no distinction
between the meta-language and the representation language). For example, in
their style, one would write:

(i) JsnoresK =λx . x snores

with a mix of English and lambdas on the right-hand side of the equation. In
contrast, we write equations mapping object language to representation lan-
guage like this:

(ii) snores↝λx .snores(x)

and equations mapping representation language to denotations specified in the
meta-language like this:

(iii) Jλx .snores(x)KM ,g
= I(snores)

One should carefully distinguish between these two ways of using the λ symbol
and make sure to be consistent.

Draft January 18, 2022

Function Application 209

entries; and a list of composition rules. Throughout this book we
too will build up a fragment in a similar style.

We already have our representation language: Lλ as defined in
the previous chapter. The next step is to specify the rules that gen-
erate the syntactically well-formed expressions of our fragment of
English. We will use a simplistic theory of syntax called context-
free grammar. Many details of the syntactic theory don’t matter,
as long as the syntax delivers the right structure. For example,
the syntactic categories we use in the syntax rules and as labels
of nonterminals (nodes with daughters) are only for purposes of
exposition, and any other set of labels would do just as well.

(7) Syntax
S → DP VP
S → S CoordP
CoordP → Coord S
VP → V (DP∣AP∣PP∣NegP)
NegP → Neg VP∣AP
AP → A (PP)
DP → D (NP)
NP → N (PP)
NP → A NP
PP → P DP

The vertical bar ∣ separates alternative possibilities, and the paren-
theses signify optionality, so the VP rule means that a VP can con-
sist solely of a verb, or of a verb followed by an NP, or of a verb
followed by an AP, etc.

The terminal nodes (nodes without daughters, i.e. leaves) of
the syntax trees produced by these syntax rules may be labeled by
the following words:

(8) Lexicon

Coord: and, or
Neg: not

Draft January 18, 2022

210 Function Application

V: smiled, laughed, loves, hugged, is, did
A: Swedish, happy, kind, proud
N: singer, drummer, musician
D: the, a, every, some, no
D: Agnetha, Frida, Björn, Benny,
everybody, somebody, nobody
P: of, with

For example, this grammar generates Björn is the drummer and
Benny did not smile, with syntactic structures as shown in the fol-
lowing analysis trees:

(9) S

DP

D

Björn

VP

V

is

DP

D

the

NP

N

drummer

(10) S

DP

D

Benny

VP

V

did

NegP

Neg

not

VP

V

smile

Draft January 18, 2022

Function Application 211

Exercise 1. Which of the following strings are sentences of the
fragment of English that we have defined (modulo sentence-
initial capitalization)? Draw syntax trees for those that are.

(a) George loves everybody.

(b) Some drummer smiled every happy musician.

(c) Agnetha is not a drummer.

(d) Frida is.

(e) No is a happy singer.

(f) Somebody is proud of the singer.

(g) A drummer loves proud of Björn.

(h) The proud drummer of Björn loves every happy happy happy
happy drummer.

(i) Frida smiles with nobody.

(j) Agnetha and Frida are with Björn.

(k) Agnetha is with Björn and Frida is with Benny.

Keep in mind that the syntax might generate sentences that don’t
make any sense, and that’s OK. At least some of the nonsensical
sentences will be ruled out once we define semantic interpreta-
tions for these words.

In the trees below, sometimes we “prune” non-branching nodes.
For example, we might write:

(11) DP

Agnetha

Draft January 18, 2022

212 Function Application

instead of

(12) DP

D

Agnetha

Now that we have defined the syntax of our fragment of En-
glish, we need to specify how the expressions generated by these
syntax rules are interpreted. To do so, we will translate them into
expressions of Lλ. We will associate translations not only with
words, but also with syntactic trees. We can think of words as de-
generate cases of trees, so in general, translations go from trees to
expressions of our logic.

In accordance with Frege’s conjecture, at this time we have
only one rule for composing the denotation of a complex expres-
sion out of the denotations of the parts. (We will add further rules
to our system in later chapters.) Our rule, FUNCTION APPLICA-
TION, just applies a function to an argument:

Composition Rule 1. Function Application (FA)
Let γ be a syntax tree whose only two subtrees are α and β (in any
order) where:

• α↝α′ where α′ has type ⟨σ,τ⟩

• β↝β′ where β′ has type σ.

Then
γ↝α′(β′)

(The prime symbol ′ in α′ is not intended to have any meaning
of its own; α′ is just a convenient way to refer to whatever α is
translated as.)

Draft January 18, 2022

Function Application 213

Exercise 2. If γ is a syntax tree whose only two subtrees are α and
β (in any order), where:

• α↝α′ where α′ has type ⟨σ,τ⟩

• β↝β′ where β′ has type σ.

then what type does the translation of γ have, assuming that it is
translated according to the rule of Function Application?

This rule will provide a translation into Lλ for any tree that has
two immediate subtrees, as long as their types match appropri-
ately. The node at the top of such a tree is called a BRANCHING

NODE because it branches into multiple subtrees. If a tree has
no branches, then it is called a NON-BRANCHING NODE. For non-
branching nodes, we will simply assume that the denotation at
the higher node is the same as the denotation at the lower one:

Composition Rule 2. Non-branching Nodes (NN)
If β is a tree whose only daughter is α, where α↝α′, then β↝α′.

With these two rules, we can assign denotations to each sub-
tree in the syntactic structure of Agnetha smiled as follows (show-
ing only fully beta-reduced translations at each node, along with
their types):

Draft January 18, 2022

214 Function Application

(13) S
Smiled(a)

t

DP
a
e

D
a
e

Agnetha

VP
λx .Smiled(x)

⟨e, t⟩

V
λx .Smiled(x)

⟨e, t⟩

smiled

In order to provide a starting point to the compositional pro-
cess, we assume that the terminal nodes provided by the syntac-
tic theory each contribute independent semantic values and have
translations that are individually stipulated and not determined
by rules such as Function Application. What these terminal nodes
are can vary from theory to theory. While the traditional picture
takes them to be words, certain theories of syntax and morphol-
ogy identify them in other ways. For example, theories such as
Distributed Morphology (Halle & Marantz, 1993) assume that there
is no sharp boundary between word formation and sentence for-
mation; on such theories, the terminal nodes may consist of units
that are smaller than a word.

A related question is whether the Function Application rule
applies to every branching node or whether it has exceptions. Id-
ioms such as spill the beans or kick the bucket are often argued
to make their semantic contribution to the sentence as a whole.
Theories such as Construction Grammar (Croft & Cruse, 2004) as-
sume that there is no sharp boundary between the meaning of
words and of larger constructions such as idioms; on such theo-
ries, one may want to consider these idioms as nonterminal nodes
whose translations are not determined by the Function Applica-

Draft January 18, 2022

Function Application 215

tion rule.

6.2 Fun with Function Application

6.2.1 Agnetha loves Björn

Let us now consider how to analyze a simple transitive sentence
like Agnetha loves Björn. We will represent the denotation of the
verb loves as follows:

(14) loves↝λyλx .Loves(x, y)

Can this verb combine semantically with a type-e direct object via
Function Application? Yes, it can; the types match. This is shown
in the following derivation for Agnetha loves Björn:

(15) S
t

Loves(a,b)

DP
e
a

Agnetha

VP
⟨e, t⟩

λx .Loves(x,b)

V
⟨e,⟨e, t⟩⟩

λyλx .Loves(x, y)

loves

DP
e
b

Björn

Via Function Application, the transitive verb loves combines
with the object Björn. The VP loves Björn thus comes to denote
(the characteristic function of) the set of all individuals who love
Björn, which we can think of as the property of loving Björn. This

Draft January 18, 2022

216 Function Application

property is then attributed to Agnetha through a second applica-
tion of Function Application at the top node.

Exercise 3. For both of the following trees, give a fully beta-
reduced translation at each node. Give appropriate lexical entries
for words that have not been defined above.

(a) S

DP

Björn

VP

V

laughed

(b) S

DP

Frida

VP

V

hugged

DP

Benny

6.2.2 Björn is kind

Now let us consider how to analyze a sentence with an adjective
following is, such as Björn is kind. The syntactic structure is as
follows:

Draft January 18, 2022

Function Application 217

(16) S

DP

Björn

VP

V

is

AP

kind

We will continue to assume that the proper name Björn is trans-
lated as the constant b, of type e. We can assume that kind de-
notes a function of type ⟨e, t⟩, the characteristic function of a set
of individuals (those that are kind). Let us use Kind as a constant
of type ⟨e, t⟩, and translate kind thus.

(17) kind↝λx .Kind(x)

Now, what is the contribution of the copula is? Besides sig-
naling present tense, it does not seem to accomplish more than
to link the predicate ‘kind’ with the subject of the sentence. Since
we have not started dealing with tense yet, we will ignore the for-
mer function and focus on the latter. (We also set aside cases
in which is indicates identity rather than predication, as in Mark
Twain is Samuel Clemens.) We can capture the fact that the copula
is connects the predicate to the subject by treating it as an IDEN-
TITY FUNCTION, a function that returns whatever it takes in as in-
put. In this case, the copula is takes in a function of type ⟨e, t⟩,
and returns that same function. (We adopt the same approach for
other words that seem to lack meaning of their own, such as did
in Benny did not smile.)

(18) is↝λP .P

This implies that is denotes a function that takes as its first argu-
ment another function P , where P is of type ⟨e, t⟩, and returns P .

With these rules, we will end up with the following analysis for
the sentence Björn is kind:

Draft January 18, 2022

218 Function Application

(19) S
t

Kind(b)

DP
e
b

Björn

VP
⟨e, t⟩

λx .Kind(x)

V
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .P

is

AP
⟨e, t⟩

λx .Kind(x)

kind

Each node shows the syntactic category, the semantic type, and
a fully beta-reduced translation to lambda calculus. In this case,
Function Application is used at all of the branching nodes (S and
VP), and Non-branching Nodes is used at all of the non-branching
non-terminal nodes (DP, V, and AP). The individual lexical entries
that we have specified are used at the terminal nodes (Björn, is,
and kind).

6.2.3 Björn is not kind

Now let us consider how to analyze the word not in a sentence like
Björn is not kind. The syntactic structure would be as follows:

Draft January 18, 2022

Function Application 219

(20) S

DP

Björn

VP

V

is

NegP

Neg

not

AP

A

kind

The denotation of Björn is not kind should be the negation of Björn
is kind:

(21) ¬Kind(b)

Thus the property that (is) not kind denotes should be something
that applies to an individual and yields ‘true’ just in case that in-
dividual is not kind:

(22) λx .¬Kind(x)

The denotation of not should apply to a property and produce
such a function for any arbitrary predicate, not just kind. The fol-
lowing denotation will do the trick:

(23) not ↝λPλx .¬P(x)

This lambda expression denotes a function that takes as input
a predicate (P) and returns a new predicate, one that returns True
given an input x only if P does not hold of x, and otherwise returns
False. Note that in this lambda expression, the value description
is λx .¬P(x), so the return value is itself another function.3

3There are also approaches to treating not as a sentential modifier, in which
case it takes scope at the sentence level, and it translates to λp .¬p where p is
a variable that ranges over truth values. These approaches are usually referred
to as “VP-internal subject hypothesis”, and they use the label VP for the comple-

Draft January 18, 2022

220 Function Application

Exercise 4. Using this lexical entry for not, give a compositional
analysis of Björn is not kind, by showing the translations and types
at each node of the syntax tree.

6.2.4 Frida is with Benny

Like adjectives, prepositional phrases can also serve as predicates,
as in, for example, Frida is with Benny. Let us translate with as
follows, invoking a binary predicate With:

(24) with↝λyλx .With(x, y)

Via Function Application, the preposition with combines with its
object Benny, and the resulting PP combines with is to form a VP.
The translation of the VP is an expression of type ⟨e, t⟩, denoting
a function from individuals to truth values. This applies to the
denotation of Frida to produce a truth value.

(25) S
t

DP
e

Frida

VP
⟨e, t⟩

V
⟨⟨e, t⟩,⟨e, t⟩⟩

is

PP
⟨e, t⟩

P
⟨e,⟨e, t⟩⟩

with

DP
e

Benny

ment of “not”, including the subject.

Draft January 18, 2022

Function Application 221

Exercise 5. Derive the translation into Lλ for Frida is with Benny
by giving a fully beta-reduced translation for each node.

6.2.5 Benny is proud of Frida

Like prepositions, adjectives can denote functions of type ⟨e,⟨e, t⟩⟩.
Proud is an example; in Benny is proud of Frida, the adjective
proud expresses a relation that holds between Benny and Frida.
We can capture this by assuming that proud translates as:

λyλx .Proud(x, y)

This is an expression of type ⟨e,⟨e, t⟩⟩ denoting a function that
takes two arguments, first a potential object of pride (such as Frida),
then a potential bearer of such pride (e.g. Benny), and returns
True if the pride relation holds between them.

In contrast to with, the preposition of does not seem to signal
a two-place relation in this context. We therefore assume that of is
a function word like is, and also denotes an identity function. Un-
like is, however, we will treat of as an identity function that takes
an individual and returns an individual, so it will be of type ⟨e,e⟩.

(26) of ↝λx . x

So the adjective phrase proud of Frida will have the following struc-
ture:

Draft January 18, 2022

222 Function Application

(27) AP
⟨e, t⟩

A
⟨e,⟨e, t⟩⟩

proud

PP
e

P
⟨e,e⟩

of

DP
e

Frida

Exercise 6. Give a lexical entry for proud and a fully beta-reduced
form of the translation at each node for Benny is proud of Frida.
(You will need to draw out more of the tree structure than what is
shown above.)

6.2.6 Agnetha is a singer

Let us consider Agnetha is a singer. The noun singer can be an-
alyzed as an ⟨e, t⟩ type property like Swedish, the characteristic
function of the set of individuals who are singers.

The indefinite article a is another function word that appears
to be semantically vacuous, at least on its use in the present con-
text. We will assume that a, like is, denotes a function that takes an
⟨e, t⟩-type predicate and returns it. In general, it is common and
convenient to assume that all semantically vacuous words denote
such identity functions.

(28) a↝λP .P

With these assumptions, the derivation will go as follows.

Draft January 18, 2022

Function Application 223

(29) S
t

DP
e

Agnetha

VP
⟨e, t⟩

V
⟨⟨e, t⟩,⟨e, t⟩⟩

is

DP
⟨e, t⟩

D
⟨⟨e, t⟩,⟨e, t⟩⟩

a

NP
⟨e, t⟩

singer

Exercise 7. Give fully beta-reduced translations at each node of
the tree for Agnetha is a singer.

Exercise 8. Can we treat a as ⟨⟨e, t⟩,⟨e, t⟩⟩ in a sentence like A
singer loves Björn? Why or why not?

Exercise 9. Assume that Norwegian and millionaire are both of
type ⟨e, t⟩, following the style we have developed so far. Is it pos-
sible to assign truth conditions to the following sentence using
those assumptions? Why or why not?

Draft January 18, 2022

224 Function Application

(30)

S

DP

Frida

VP

V

is

DP

D

a

NP

A

Norwegian

NP

N

millionaire

6.3 Quantifiers: type ⟨⟨e, t⟩, t⟩

Let us now consider how to analyze quantifiers like everybody and
nobody. Consider the sentence:

(31) Everybody smiled.

We have assumed that a VP like smiled denotes a predicate (type
⟨e, t⟩) and that a sentence like (31) denotes a truth value (type t).
Based on what we established in Chapter 4, the translation of Ev-
erybody smiled should be something like the following (assuming
that every individual in the domain is conceived of as human):

(32) everybody smiled↝∀x .Smiled(x)

Informally, then, the contribution of everybody to the denotation
of a sentence is a template:

(33) ∀x . (x)

Draft January 18, 2022

Function Application 225

where the verb phrase fills in the underlined slot. This idea can
be formally implemented through lambda abstraction. Everybody
will denote a function that takes an arbitrary predicate P , and
yields a truth value: true if everything satisfies P and false if not.
The following lexical entry for everybody says, “Give me a predi-
cate P as input, and I will return as output a truth value – true if
everybody satisfies P , and false otherwise”:

(34) everybody↝λP .∀x .P(x)

As P is a variable that stands for a predicate—something of type
⟨e, t⟩—the type of the expression denoted by everybody is:

(35) ⟨⟨e, t⟩, t⟩

This is the type of a QUANTIFIER.
This denotation for everybody can be combined via Function

Application with the denotation for smiled in the following man-
ner:

(36) ∀x .Smiled(x)
t

λP .∀x .P(x)
⟨⟨e, t⟩, t⟩

everybody

λx .Smiled(x)
⟨e, t⟩

smiled

In this derivation, the VP is fed as an argument to the subject DP,
rather than the other way around. Recall that Function Applica-
tion does not care about the order of the arguments, so this or-
der of application works just as well as the more familiar situation
where the VP takes the subject as an argument.

For any type τ, an expression of type ⟨τ, t⟩ can be seen as a
predicate that applies to arguments of type τ. So quantifiers can
be seen as higher-order predicates: that is, as predicates of predi-

Draft January 18, 2022

226 Function Application

cates. For instance, somebody can be seen as denoting a function
that takes as input a predicate and returns true iff there is at least
one individual that satisfies the predicate:

(37) somebody↝λP .∃x .P(x)

In contrast, the function denoted by nobody returns true iff there
is nothing satisfying the predicate:

(38) nobody↝λP .¬∃x .P(x)

Now what about determiners like every, no, and some? We
want every singer to function in the same way as everyone, so these
should denote functions that take the denotation of a noun phrase
and return a quantifier. The input to these determiners (e.g. singer)
is of type ⟨e, t⟩, and their output is a quantifier, of type ⟨⟨e, t⟩, t⟩.
So the type of these kinds of determiners will be:

(39) ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩

In other words, quantificational determiners like every expect a
predicate (like singer) as their argument, and return a function,
which itself expects a predicate (like smiled). The latter function
returns a truth value.

For each of these quantificational determiners, the truth value
that is returned depends on the two input predicates, and can be
specified using the quantifiers ∃ and ∀ of first-order logic:

(40) some↝λPλP ′ .∃x .[P(x)∧P ′(x)]
(41) no↝λPλP ′ .¬∃x .[P(x)∧P ′(x)]
(42) every↝λPλP ′ .∀x .[P(x)→ P ′(x)]

These lexical entries will yield analyses like the following:

Draft January 18, 2022

Function Application 227

(43) S
t

∀x .[Singer(x)→ Smiled(x)]

DP
⟨⟨e, t⟩, t⟩

λP ′ .∀x .[Singer(x)→ P ′(x)]

D
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩

λPλP ′ .∀x .[P(x)→ P ′(x)]

every

NP
⟨e, t⟩

λx .Singer(x)

singer

VP
⟨e, t⟩

λx .Smiled(x)

V
⟨e, t⟩

λx .Smiled(x)

smiled

The same strategy can be applied to indefinite descriptions
like a singer. Previously, we analyzed indefinite descriptions in
sentences like Agnetha is a singer, where the indefinite descrip-
tion functions as a PREDICATE, and applies to a subject. But an
indefinite description can also function as the subject or object of
a transitive verb, as in the following sentences:

(44) a. A singer loves Frida. [subject position]
b. Frida loves a singer. [object position]

In such uses, a singer functions as an ARGUMENT of the verb, as
opposed to a predicate. (In this instance, we are using the term ‘ar-
gument’ in the sense in which it is used in the study of natural lan-
guage syntax, referring to a syntactic dependent of an argument-
selecting lexical item like a verb.) If we applied our ⟨⟨e, t⟩,⟨e, t⟩⟩
analysis to a case like A singer smiled, where the indefinite appears
in subject position, we would be in a predicament:

Draft January 18, 2022

228 Function Application

(45) S
???

DP
⟨e, t⟩

D
⟨⟨e, t⟩,⟨e, t⟩⟩

a

N
⟨e, t⟩

singer

VP
⟨e, t⟩

smiled

We currently have no rule for combining two expressions of type
⟨e, t⟩, because neither is expecting the other as an argument. In
the next chapter, we will define a rule that can combine two ex-
pressions of type ⟨e, t⟩, namely Predicate Modification. But even
that rule does not give the right meaning. We can escape this
predicament by providing the indefinite article with a translation
as a quantificational determiner.

Exercise 10. Give an analysis of A singer loves Frida using Func-
tion Application and Non-Branching Nodes. Your analysis should
take the form of a tree, specifying at each node, the syntactic cat-
egory, the semantic type, and a fully beta-reduced translation to
Lλ. The translation of the sentence should be true in any model
where there is some individual that is both a singer and someone
who loves Frida. You may have to introduce a new lexical entry for
the indefinite article a. Your analysis should account for the fact
that the sentence is true in any model where there is an individual
who is both a singer and who stands in the ‘loves’ relation with
Frida, and no others.

Exercise 11. For each of the following trees, give the semantic type

Draft January 18, 2022

Function Application 229

and a completely beta-reduced translation at each node. Give
appropriate lexical entries for words that have not been defined
above, following the style we have developed:

• Adjectives, non-relational common nouns, and intransitive
verbs are of type ⟨e, t⟩.

• Transitive verbs are of type ⟨e,⟨e, t⟩⟩.

• Proper names are of type e.

• Quantificational DPs are of type ⟨⟨e, t⟩, t⟩.

• Determiners are of type ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩.

The lexical entries should be assigned in a way that captures what
a model should be like if the sentence is true. For example, No-
body likes Ursula should be predicted to be true in a model such
that no individual stands in the ‘like’ relation to Ursula.

(a) S

DP

Everybody

VP

snores

(b) S

DP

Somebody

VP

V

hugged

DP

Ariel

(c)

Draft January 18, 2022

230 Function Application

S

DP

Everyone

VP

V

is

AP

A

afraid

PP

P

of

DP

Ursula

(d) S

DP

Nobody

VP

V

likes

DP

Ursula

(e) S

DP

D

Some

NP

guy

VP

V

hugged

DP

Sebastian

Exercise 12. In the early 70’s, cases of VP coordination as in Sam
smokes or drinks were analyzed using CONJUNCTION REDUCTION,
a transformational rule that deletes the subject of the second
clause under identity with the subject in the first clause, so this

Draft January 18, 2022

Function Application 231

sentence would underlyingly be Sam smokes or Sam drinks.

1. What translation into Lλ would the conjunction reduction
analysis predict for a case like Everybody smokes or drinks?

2. What is problematic about this translation?

3. Give an alternative lexical entry for or that avoids the prob-
lem with the conjunction reduction analysis.

4. Give a syntax tree and a step-by-step derivation of the truth
conditions for Sam smokes or drinks using your analysis.

5. Explain how your analysis avoids the problem.

6.4 Empirical diagnostics against type e

Under the analysis we have just given, quantifiers like everybody
and every singer are treated not as type e but as type ⟨⟨e, t⟩, t⟩. Is
there any viable analysis on which they are type e instead? In this
section, we list empirical diagnostics that can be used to argue
against such an analysis. These diagnostics can be used to show
that such expressions cannot be of type e. An expression of type
e denotes a particular individual, so two occurrences of the same
expression of type e denote the same individual (unless these ex-
pressions are context sensitive and the context changes from use
to use—pronouns like him and her, for example which we will ar-
gue get their meaning from assignment functions just like vari-
ables in logic, are arguably type e and yet may refer to different
individuals on different occasions of use). It follows that expres-
sions of type e should exhibit certain properties.

An expression of type e should validate subset-to-superset in-
ferences. For example:

Draft January 18, 2022

232 Function Application

(46) Susan came yesterday morning.
∴ Susan came yesterday.

This is correctly predicted to be a valid inference under the as-
sumption that the subject (Susan) denotes an individual. Here is
why. The set of things that came yesterday morning is a subset of
the things that came yesterday. For any expression α (including
Susan), if α denotes an individual, then α came yesterday morn-
ing is true if the individual denoted by α is among the things that
came yesterday morning. But if that is true, then that individual is
among the things that came yesterday. Hence if the first sentence
is true, then the second sentence is true.

In contrast, the expression at most one letter fails to validate
subset-to-superset inferences.

(47) At most one letter came yesterday morning.
∴At most one letter came yesterday.

This inference is not valid, so at most one letter must not denote
an individual, so it must not be of type e.

Exercise 13. Among the quantificational determiners some, every,
no, at least one, at most one, which validate subset-to-superset in-
ferences? Give examples.

A second property that expressions of type e have is related
to the LAW OF EXCLUDED MIDDLE, which is a theorem of proposi-
tional and predicate logic. The law of excluded middle says that
[p ∨¬p] is true for any formula p. That is to say, the disjunction
of any p with its negation is a tautology. For example:

(48) John is over 30 years old, or John is not over 30 years old.

This is a tautology, and that is because John is an expression of
type e. Any expression of type e will yield a tautology in a sen-

Draft January 18, 2022

Function Application 233

tence like this. Here is why. Everything is either over 30 years old
or not over 30 years old; together these two sets cover the entire
set of individuals. If α is of type e, then α is over 30 years old is
true iff the individual that α denotes is over 30 years old. α is not
over 30 years old is true iff the individual is not over 30 years old.
Since everything satisfies at least one of these criteria, sentence
(48) (under a standard analysis of or as logical disjunction) can-
not fail to be true.

But the following sentence is not a tautology (here, the second
disjunct should be read with everybody taking scope over not):

(49) Every woman in this room is over 30 years old, or every
woman in this room is not over 30 years old.

So every woman cannot be of type e.

Exercise 14. Among the quantificational determiners some, every,
no, at least one, at most one, which give rise to tautologies in ex-
amples analogous to (48) and (49)? Give examples. For which of
these cases, then, does this diagnostic provide evidence against a
type e analysis?

A third property that expressions of type e should have is re-
lated to the LAW OF NON-CONTRADICTION, another theorem of
propositional and predicate logic. The law of non-contradiction
is the principle that [p ∧¬p] is false for any formula p. That is to
say, the conjunction of any p with its negation is a contradiction.
If we take the sentence Mont Blanc is higher than 4,000m and con-
join it with its negation, the result is self-contradictory:

(50) Mont Blanc is higher than 4,000m, and Mont Blanc is not
higher than 4,000m.

This sentence is self-contradictory because Mont Blanc denotes
an individual. Here is why. Nothing that counts as ‘higher than

Draft January 18, 2022

234 Function Application

4,000m’ counts as ‘not higher than 4,000m’; these two sets are dis-
joint. If α is of type e, then α is higher than 4,000m is true if and
only if the individual that α denotes is higher than 4,000m. In
that case, the second conjunct must be false. The same reason-
ing works in reverse; if the second conjunct is true, then the first
must be false. The two conjuncts stand in contradictory opposi-
tion to each other, as p and ¬p do. Hence, the conjunction (under
an analysis of and as logical conjunction) can never be true.

The following sentence, however, is not self-contradictory:

(51) More than two mountains are higher than 4,000m, and
more than two mountains are not higher than 4,000m.

Evidently, the two conjuncts do not stand in contradictory oppo-
sition to each other, and the law of contradiction does not prevent
them from being true at the same time. If more than two moun-
tains had type e, and picked out a particular individual, then we
would expect the sentence to be self-contradictory. It is not, so
more than two mountains must not have type e.

Importantly, it can happen that a given expression is not of
type e, and yet still gives rise to a contradiction in sentences like
this. For example:

(52) Every mountain is higher than 4,000m, and every moun-
tain is not higher than 4,000.

This sentence is contradictory, but that is not grounds for con-
cluding that every mountain is type e. The implication only goes
in one direction: If a given expression fails to give rise to a contra-
diction in this type of example, then that is positive evidence that
it is not type e (as long as it is not context-sensitive). If it gives rise
to a contradiction, then it may or may not be type e.

Exercise 15. Among the quantificational determiners some, every,
no, at least one, at most one, which give rise to contradictions in

Draft January 18, 2022

Function Application 235

sentences like (50) and (51)? Give examples. For which of these
cases, then, does this diagnostic provide evidence against a type e
analysis?

Exercise 16. This sentence is not contradictory: At most two
mountains are higher than 4,000m, and at most two mountains
are not higher than 4,000m. This shows that at most two moun-
tains is not an expression of type e. Explain why. (Your answer
could take the form, “If this expression were of type e, we would
expect ..., but instead we find the opposite: ...”)

6.5 Generalized quantifiers

(This section is under development.)

We have said that every cat translates to the following expres-
sion of type ⟨⟨e, t⟩, t⟩:

(53) every cat↝λP .∀x .Cat(x)→ P(x)

What does this expression denote? There are several equivalent
ways to think about this question. One way is as a function from
predicates to truth values. Taking P to be a variable over predi-
cates, (53) denotes the function that maps those predicates that
apply to every cat to True, and all other predicates to False. This
denotation corresponds to a set of sets of entities: (53) denotes
the set of all sets that contain every cat—that is to say, the set of
all supersets of the set of cats. Writing CAT for the set of cats, and
(as usual) De for the domain of entities, we can write this set as
follows:

(54) {P ⊆De ∶CAT ⊆ P}

Draft January 18, 2022

236 Function Application

Similarly, some dog translates to this:

(55) some dog↝λP .∃x .[Dog(x)∧P(x)]

which denotes the set of all sets that are not dog-free:

(56) {P ⊆De ∶ P ∩DOG /=∅}

We will call these sets everyCat and someDog. They can be visual-
ized as in Figures 6.1 and 6.2.

Let us assume that the noun thing denotes De in every model,
that is, it always denotes the universal property (the predicate that
applies to all entities). (We ignore the fact that in practice it is a bit
odd to refer to people and other animate beings as things.) By re-
placing CAT and DOG with De , we arrive at plausible denotations
for the English words everything and something and the English
expressions every thing and some thing. We will call these every-
Thing and someThing:

(57) a. everyThing =de f {P ⊆De ∶De ⊆ P} = {De}
b. someThing =de f {P ⊆De ∶ P ∩De /=∅}

= {P ⊆De ∶ P /=∅}

These sets are, respectively, the singleton set of De , and the set
of nonempty subsets of De . We can understand them as con-
ditions on properties. In order for a property P to be included
in everyThing, it has to be the universal property. In order for P
to be included in someThing, it merely has to be nonempty. In
the same vein, we can represent the generalized quantifiers noTh-
ing, which is denoted by the expressions nothing and no thing;
exactlyTwoThings, which is denoted by exactly two things; and
atLeastTwoThings, which is denoted by at least two things, more
than one thing, and two or more things.

(58) a. noThing =de f {P ⊆De ∶ ∣P ∣ = 0} = {∅}
b. exactlyTwoThings =de f {P ⊆De ∶ ∣P ∣ = 2}
c. atLeastTwoThings =de f {P ⊆De ∶ ∣P ∣ ≥ 2}

Draft January 18, 2022

Function Application 237

Chapter 9 408

the set of all sets to which every student belongs. This can be pictorially
represented as in the following diagram from Dowty, Wall and Peters
(1981), p. 122.

(4) [every student] =

'l 'he checkered circle represents the set of students, and the other circles are
the other sets to which those students all belong.

Similarly, we can intcrprct [some student] as the set that contains all the
scts to which some student or other belongs. This can be pictured as follows:

(5) [some student] =

The circle with the hatching represents the set of students, and the other
circles are the othcr sets to which some student belongs.

Using set-theoretic notation, we can give the semantic values ofthe NPs
in question as follows:

(6) a. [every student] U: [student]
b. [some student] U: [student] n X#- 0}

Hence, [every student] is the set of subsets of the domain U of which the
students are a subset, and [some student] is the set of all subsets of U whose
intersection with the set of students is nonempty.

We can give a similar characterization for all the NPs that we have
encountered. In what follows we list a few:

Figure 6.1: The generalized quantifier everyCat denoted by every
cat. The biggest circle represents the universe of discourse. The
cross-hatched circle represents the set of cats. The other circles
represent some of the sets in the denotation of the generalized
quantifier. The cross-hatched circle must be fully contained in
each of the other circles because they represent properties com-
mon to every cat, that is, supersets of the set of cats.

Draft January 18, 2022

238 Function Application

Chapter 9 408

the set of all sets to which every student belongs. This can be pictorially
represented as in the following diagram from Dowty, Wall and Peters
(1981), p. 122.

(4) [every student] =

'l 'he checkered circle represents the set of students, and the other circles are
the other sets to which those students all belong.

Similarly, we can intcrprct [some student] as the set that contains all the
scts to which some student or other belongs. This can be pictured as follows:

(5) [some student] =

The circle with the hatching represents the set of students, and the other
circles are the othcr sets to which some student belongs.

Using set-theoretic notation, we can give the semantic values ofthe NPs
in question as follows:

(6) a. [every student] U: [student]
b. [some student] U: [student] n X#- 0}

Hence, [every student] is the set of subsets of the domain U of which the
students are a subset, and [some student] is the set of all subsets of U whose
intersection with the set of students is nonempty.

We can give a similar characterization for all the NPs that we have
encountered. In what follows we list a few:

Figure 6.2: The generalized quantifier someDog denoted by some
dog. The biggest circle represents the universe of discourse. The
dashed circle represents the set of dogs. The other circles repre-
sent some of the sets in the denotation of the generalized quanti-
fier. The cross-hatched circle need not be fully contained within
any of the other circles, because they represent properties of some
dogs.

Draft January 18, 2022

Function Application 239

This says that for a set P to be included in noThing, it has to be
the empty set; for exactlyTwoThings, it has to contain exactly two
things; and for atLeastTwoThings, it has to contain at least two
things.

Which quantifier does two things denote? It is clear that Two
things are blue implicates Exactly two things are blue, but what is
the status of this implication? Most semanticists take it to be an
implicature, as opposed to an entailment. If this is correct, two
things denotes atLeastTwoThings in (58c). Otherwise, it denotes
exactlyTwoThings in (58b).

Sets of sets of entities like those in (58) are called GENERAL-
IZED QUANTIFIERS. This is because they generalize the standard
quantifiers ∀ and ∃ of first-order logic.

Some generalized quantifiers are FIRST-ORDER DEFINABLE; that
is, they are the denotations of lambda expressions whose value
descriptions are built up using the rules of first-order logic only.
This includes the denotations of every cat in (53) and some dog
in (55), as well as the quantifiers in (58). Some of these look very
simple:

(59) nothing↝λP .¬∃x .P(x)

Others look quite unwieldy:

(60) exactly two things↝λP .∃x .∃y . ¬(x = y)∧P(x)∧P(y)∧
¬∃z .P(z)∧¬(z = x)∧¬(z = y)

Other generalized quantifiers, such as those denoted by most swans,
most things, one in three cats are not ‘first-order definable’ in the
sense that they cannot be expressed in first-order logic. But they
can be defined in terms of sets:

(61) a. mostSwans =de f {P ⊆De ∶ ∣SWAN∩P ∣ > ∣SWAN−P ∣}
b. mostThings =de f {P ⊆De ∶ ∣P ∣ > ∣De −P ∣}
c. oneInThreeCats =de f {P ⊆De ∶ ∣P ∩CAT∣/∣CAT∣ = 1/3}

Draft January 18, 2022

240 Function Application

The fact that these generalized quantifiers are not first-order de-
finable doesn’t prevent us from defining them in Lλ, since this is
a language of higher-order logic. One way to do this would be to
include numbers into our domains as a new basic type in addi-
tion to entities and truth values, as well as functions from sets of
entities to numbers (like cardinality), operations on numbers (like
/, the division operation), relations between numbers (like >, the
greater-than relation), and meaning postulates that ensure that
all these things behave in the ordinary mathematical sense. But
with all these additions, our logical language Lλ would become
cumbersome. Instead, to keep Lλ simple, we will just regard the
formal definitions in (58) and similar ones below as part of our
meta-language.

The denotations of noun phrases like every cat and most swans
are built up compositionally, at least from those of the words they
consist of. (It has even been suggested that most is internally com-
plex and can be seen as a combination of the comparative more
and the superlative morpheme -st, which is the same morpheme
that we find on the end of words like tallest and funniest.) So de-
terminers denote functions from nouns (type ⟨e, t⟩) to generalized
quantifiers (type ⟨⟨e, t⟩, t⟩), or in other words, functions of type
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩. We will refer to functions of this type as DETER-
MINER FUNCTIONS or just DETS.

The following translation of every denotes a Det that yields the
generalized quantifier everyCat when applied to the denotation of
cat:

(62) every↝λP ′λP .∀x .P ′(x)→ P(x)

The Det that this denotes is the left-to-right Curried version of
the subset relation. We will refer to this relation as every:

(63) every =de f {⟨P ′,P⟩ ∣ P ′ ⊆ P}

Likewise, the translation of some in (64) denotes the Curried ver-
sion of the relation in (65), which holds between any two sets when

Draft January 18, 2022

Function Application 241

they overlap:

(64) some↝λP ′λP .∃x .P ′(x)∧P(x)
(65) some =de f {⟨P ′,P⟩ ∣ P ′∩P /=∅}

This function maps the denotation of dog to the generalized quan-
tifier someDog. We will refer to it as some. In general, we will
call each Det we discuss by the determiner that denotes it, or that
comes closest to denoting it.

The first argument of a Det is called its RESTRICTOR, and its
second argument, its NUCLEAR SCOPE. The noun that a deter-
miner combines with is called the restrictor of that determiner
because, intuitively, it restricts the attention of the noun phrase
to just those entities to which the noun applies.

In a sentence like Every cat meows, the word every denotes the
Det every, whose restrictor is denoted by cat, and whose nuclear
scope is denoted by meows.4

Unlike ∃ and ∀, some and every do not bind any variables. But
some and every give rise to formulas with the same truth condi-
tions as the first-order logic quantifiers ∃ and ∀:

(66) a. some(λx .Dog(x))(λx .Barks(x))
b. ∃x .Dog(x)∧Barks(x)

(67) a. every(λx .Cat(x))(λx .Meows(x))
b. ∀x .Cat(x)→Meows(x)

So in first-order logic, quantification and variable binding are con-
flated, but in the case of generalized quantifiers they come apart.

The Dets some and every are special not just because they repli-
cate ∃ and∀, but also because they are SORTALLY REDUCIBLE. This
means that they each denote a relationship between two sets that

4In the literature, generalized quantifiers are also called Type (1) quantifiers
because they combine with one unary function (their nuclear scope), and Dets
are also called Type (1,1) quantifiers because they combine with two unary func-
tions (their restrictor and their nuclear scope).

Draft January 18, 2022

242 Function Application

can be expressed using just the set theoretic operations of inter-
section, union, and complement. These operations correspond
to the propositional logic connectives. This is why we were able
to translate some using ∧ and intersection, and every using→ and
subsethood.

We can test whether a Det is sortally reducible by looking for
paraphrases of determiners where the restrictor is replaced by en-
tity and the nuclear scope incorporates the old restrictor and the
expressions and, or, not, if . . . then (read as the material condi-
tional) and if and only if :

(68) a. Some A is a B⇔
b. Some entity is both an A and a B.

(69) a. Every A is a B⇔
b. Every entity is such that, if it is an A, then it is a B.

A Det that is not sortally reducible is called INHERENTLY SORTAL.
An example is most, which cannot be paraphrased in the required
way:

(70) a. Most As are Bs. /⇔
b. Most entities are such that, if they are As, then they

are Bs.

To illustrate, take A to be the set of swans, and B to be the set of
black entities. In a model where there are 8 white swans, 2 black
swans, and 90 ducks, sentence (70a) is intuitively judged false. But
sentence (70b), with if read as the material conditional, is true,
because each duck makes that the material conditional vacuously
true.

The Dets some and every are examples of Dets called INTER-
SECTIVE and CO-INTERSECTIVE. These two classes of Dets taken
together form the class of sortally reducible Dets. The four sets
that a Det can depend on are represented visually in the Venn di-
agram in Figure 6.3 and labeled A∩B , A−B , B − A, and (A∪B)′,

Draft January 18, 2022

Function Application 243

where A is the restrictor and B is the nuclear scope. The union of
these four sets is called the UNIVERSE OF DISCOURSE. This is the
same as the domain of individuals De .

A−B B − AA∩B

(A∪B)′

Figure 6.3: The four sets that a Det can depend on.

An INTERSECTIVE Det depends only on A∩B , the intersection
of its restrictor and nuclear scope. For example, some is intersec-
tive because in order to know whether Some As are Bs is true, all
you need to know is something about the set A∩B—in this case,
whether it is nonempty. By contrast, every is not intersective, be-
cause even if you know precisely which entities are in A ∩B , you
don’t yet know whether Every A is a B is true. For that, you would
need to know whether there are any entities in A −B , the set of
entities that are As without being Bs. Is this all you need to know?
This depends on whether Every A is a B has EXISTENTIAL IMPORT,
that is, whether it entails Some A is a B. If so, then you need to
know not only whether A − B is empty, but also whether A ∩ B
is. In his syllogistic logic, Aristotle treated universal quantifiers
as having existential import; in first-order logic, they don’t; and
as for whether this holds in natural language, we come back to it
in Chapter 8. As defined in (63), every is intended to mirror the
behavior of ∀ in first-order logic, and therefore lacks existential
import.

Draft January 18, 2022

244 Function Application

Exercise 17. Define a version of every that has existential import
and call it every∃.

A CO-INTERSECTIVE Det depends on A −B and nothing else.
So every as defined in (63) is CO-INTERSECTIVE, while every∃ as de-
fined in Exercise 17 would be neither intersective nor co-intersective.
As another example,most is neither intersective nor co-intersective,
since in order to know whether most As are Bs one needs to know
something about A∩B and about A−B (namely, whether the first
set has more members than the second).

While some and every differ in which set they depend on, they
have something in common: they depend only on the cardinality
of that set, and not on the identity of its members. A CARDINAL

Det depends just on the cardinality of A∩B , and a CO-CARDINAL

one depends just on the cardinality of A −B . Some depends on
whether the cardinality of A ∩B is nonzero, and every depends
on whether the cardinality of A−B is zero. Cardinal Dets include
some, a, no, practically no, more than ten, fewer than ten, exactly
ten, about ten, ten or more, between ten and twenty, and so on.
Co-cardinal Dets include every and all but two.

The Det most is neither cardinal nor co-cardinal; it is PROPOR-
TIONAL. A proportional Det depends on the proportion of the car-
dinalities of the sets A∩B and A−B , and on nothing else; for ex-
ample, most depends on whether that proportion is greater than
half. Other proportional Dets are at least half the, ten percent
of the, less than two-thirds of the, etc. Proportional Dets are not
first-order definable.

So far we have seen examples of Dets that depend only on
A ∩B , Dets that depend only on A −B , and Dets that depend on
both. As Fig. 6.3 shows, there are two more sets that Dets could
in principle depend on: B − A, and (A ∪B)′. Dets which do not
depend on B − A are called CONSERVATIVE, and Dets that do not
depend on (A ∪B)′ satisfy EXTENSION. One can prove that the

Draft January 18, 2022

Function Application 245

Dets that satisfy conservativity and extension are just those which
relativize a generalized quantifier. (To RELATIVIZE a generalized
quantifier means to convert it into a determiner which behaves
like the generalized quantifier in question after it combines with
its first argument. For example, the determiner every relativizes
the generalized quantifier everything, assuming that thing ranges
over the entire universe of discourse.) Most semanticists agree
that all Dets denoted by determiners, as well as comparable lexi-
cal items in any natural language, satisfy both conservativity and
extension. This has been proposed as a SEMANTIC UNIVERSAL, a
property that holds across all languages (Barwise & Cooper, 1981).

All determiners we have discussed so far conform to this uni-
versal. What would a Det look like that violates it? One example
is the Det in (71), which violates conservativity but satisfies exten-
sion:

(71) {⟨A,B⟩ ∣ ∣A∣ = ∣B ∣}

The English word that is perhaps closest in meaning to this Det
is the adjective equinumerous (i.e. of equal number). If it could
be used as a determiner in a sentence like Equinumerous cats are
dogs, to express that there are as many cats as there are dogs, it
would be a counterexample to the conservativity universal. But
this sentence is not grammatical.

As another example, a Det that means the same as some on
universes of discourse with fewer than five elements, and the same
as at least five otherwise, would obey conservativity but would vi-
olate extension.

The following schema can be used to test whether a deter-
miner denotes a conservative Det:

(72) _____ A is/are B iff _____ A is/are A that B.

For example, most denotes a conservative determiner because the
following is a valid statement:

Draft January 18, 2022

246 Function Application

(73) Most dogs bark iff most dogs are dogs that bark.

To better understand what it would mean for a Det not to be con-
servative, consider the word Only:

(74) Only dogs bark iff only dogs are dogs that bark.

This is not a valid statement. The left-hand side may well be false,
but the right-hand side will always be true. For example, in a
model in which dogs and sea lions bark, it is not true that only
dogs bark; but it is always true that only dogs are dogs that bark.

This suggests that the word only does not denote a conserva-
tive Det. If anything, it denotes a Det like the following:

(75) {⟨A,B⟩ ∣ B ⊆ A}

In the case of this Det, knowing just A∩B and A−B is not enough.
Rather, one would need to know whether B − A is empty. And this
is precisely what the truth of Only As are Bs hinges on.

While the word only bears some resemblance to a determiner,
most linguists do not regard it as such, because it has a wider dis-
tribution than determiners. For example, it composes not only
with nouns as determiners do, but also with verb phrases and noun
phrases:

(76) a. John only read two papers today.
b. Only the postman rang twice.

For similar reasons, other putative counterexamples to the con-
servativity universal such as just and mostly are generally not seen
as genuine.

Formulating crosslinguistic generalizations such as the con-
servativity universal is only one example of the many applications
of generalized quantifier theory in linguistics. Another one is the
distribution of negative polarity items, which we discussed in Chap-
ter 2. Other applications account for the restricted distribution of
noun phrases in various constructions. An example is the EXISTENTIAL-

Draft January 18, 2022

Function Application 247

THERE CONSTRUCTION, a construction which is used to talk about
existence or nonexistence and which consists of the word there,
an inflected form of be, a noun phrase called the PIVOT, and typi-
cally a CODA such as a prepositional phrase. Here are some exam-
ples:

(77) a. There were four men at the table.
b. There is a unicorn in the garden.
c. There was nobody in the building.
d. There are a lot of books regarding this.
e. There were three or more voting members present.
f. There are the same number of students as teachers on

the committee.

The question is which noun phrases can and cannot be used as
pivots. The following examples are infelicitous.

(78) a. #There was John at the table.
b. #There are most angels in heaven.
c. #There was everybody in the building.
d. #There are both books regarding this.
e. #There were the three or more voting members present.
f. #There are two out of three students on the committee.

(We set aside sentences like There is the problem of the cockroaches
escaping, which present instances of something whose existence
has already been asserted or implied.)

Generalized quantifier theory provides an elegant account of
this problem. As a first approximation, the noun phrases that oc-
cur as pivots in existential-there sentences are just those that are
intersective.

Another linguistic application concerns PARTITIVES, that is, noun
phrases with two determiners separated by the word of. The ques-
tion is which determiners can occur on the left and on the right of
of :

Draft January 18, 2022

248 Function Application

(79) a. two of the students
b. most of these cats
c. half of John’s books
d. some of your cookies
e. each of the five examples

(80) a. ?two of most students
b. *two of each student
c. *none of no tables
d. *half of ten people
e. *the of the five examples
f. *the two of the five examples

The relevant notion is DEFINITENESS. Noun phrases headed by de-
terminers such as the, such as the woman or the moon, are DEF-
INITE, as opposed to INDEFINITE noun phrases like a star, some
man, or three women. Definite determiners are excluded from the
left of of, but not from the right; in fact, it is sometimes claimed
that it is only definite determiners that can appear on the right
of of. Definiteness is usually described in terms of familiarity and
uniqueness. FAMILIARITY means that the referents of definite noun
phrases have been previously introduced in the discourse (e.g.
the woman refers to a woman previously mentioned or otherwise
made salient), while UNIQUENESS means that there is only one
item matching the description (e.g. the moon works because there
is only one moon). The notion of uniqueness doesn’t work for plu-
ral definites such as the stars or the three little pigs. But it is pos-
sible to define a definite Det in a way that extends to these cases.
We come back to this question in Chapter 8.

Draft January 18, 2022

Function Application 249

S

DP

Benny

VP

VP

V

introduced

DP

Agnetha

PP

P

to

DP

Björn

Figure 6.4: A ditransitive verb

Exercises

Exercise 18. Assume that the ditransitive verb introduce is of type
⟨e,⟨e,⟨e, t⟩⟩⟩. Give a lexical entry for introduce of this type and
provide appropriate translations for the terminal and nontermi-
nal nodes in the tree in Figure 6.4. You will also need to assume a
lexical entry for to that works along with your assumption about
introduce and the structure of the syntax tree.

Exercise 19. In some languages, there is a morpheme (e.g., Mid-
dle Voice in Ancient Greek, reflexivizing affix in Kannada, Passive
Voice in Finnish, etc.) that attaches to the verb stem and reduces
its arity by one. Let us take the following imaginary morphemes
self1, self2, and self3. Assuming the syntactic structure given, give
a denotation for each of these morphemes.

Assume that Carlos is an ordinary proper name, translated as
a constant of type e, and assume that shaves is an ordinary tran-

Draft January 18, 2022

250 Function Application

sitive verb, translated as an expression of type ⟨e,⟨e, t⟩⟩. You can
use the lexical entry for introduce given in the previous exercise.

(a) For the sentence Carlos self1-shaves, make the structure below
yield the denotation ‘Carlos shaves himself’ by supplying the
denotation of self1.

Carlos
self1 shaves

(b) For the sentence Carlos self2-introduced Paco, make the struc-
ture below yield the denotation ‘Carlos introduced Paco to
Carlos (himself)’ by supplying the denotation of self2.

Carlos

self2 introduced
Paco

(c) For the sentence Carlos self3-introduced Paco, make the struc-
ture below yield the denotation ‘Carlos introduced Paco to
Paco (himself)’ by supplying the denotation of self3.

Carlos

self3 introduced
Paco

Make sure that your denotations work not just for sentences in-
volving Carlos and Paco, but arbitrary proper names.

(Exercise due to Maribel Romero.)

Draft January 18, 2022

Function Application 251

Exercise 20. How does the kind of treatment of quantificational
expressions given in the preceding discussion account for these
facts:

(a) More than two cats are indoors and more than two cats are not
indoors is not a contradiction.

(b) Everybody here is over 30 or everybody here is not over 30 is not
a tautology.

6.5.1 Toy fragment

So far, we have developed the following toy fragment of English,
consisting of a set of syntax rules, a lexicon, a set of composition
rules, and a set of lexical entries.

Syntax

S → DP VP
S → S CoordP
CoordP → Coord S
VP → V (DP∣AP∣PP∣NegP)
NegP → Neg (VP∣AP)
AP → A (PP)
DP → D (NP)
NP → N (PP)
NP → A NP
PP → P DP

Lexicon

Draft January 18, 2022

252 Function Application

Coord: and, or
Neg: not
V: smiled, laughed, loves, hugged, is
A: Swedish, happy, kind, proud
N: singer, drummer, musician
D: the, a, every, some, no
D: Agnetha, Frida, Björn, Benny,
everybody, somebody, nobody
P: of, with

Composition rules

• Function Application (FA)
Let γ be a tree whose only two subtrees are α and β where:

– α↝α′ where α′ has type ⟨σ,τ⟩
– β↝β′ where β′ has type σ.

Then
γ↝α′(β′)

• Non-branching Nodes (NN)
If β is a tree whose only daughter is α, where α↝ α′, then
β↝α′.

Lexical entries

• Agnetha↝ a

• smiled↝λx .Smiled(x)

• loves↝λyλx .Loves(x, y)

• kind↝λx .Kind(x)

• is↝λP .P

• with↝λyλx .With(x, y)

Draft January 18, 2022

Function Application 253

• of ↝λx . x

• a↝λP .P

• not ↝λPλx .¬P(x)

• some↝λPλP ′ .∃x .[P(x)∧P ′(x)]

• no↝λPλP ′ .¬∃x .[P(x)∧P ′(x)]

• every↝λPλP ′ .∀x .[P(x)→ P ′(x)]

• something↝λP .∃x .P(x)

• nothing↝λP .¬∃x .P(x)

• everything↝λP .∀x .P(x)

Exercise 21. Give fully beta-reduced translations at each node of
the following trees. Provide appropriate lexical entries as needed.

(a) S

DP

Riker

VP

snores

(b) S

DP

Riker

VP

V

likes

DP

Crusher

(c) S

DP

Riker

VP

V

is

AP

lazy

Draft January 18, 2022

254 Function Application

(d) S

DP

Riker

VP

V

is

DP

D

a

NP

drunkard

(e) S

DP

Worf

VP

V

is

PP

P

with

DP

Data

Exercise 22. Give fully beta-reduced translations at each node of
the following trees. Provide appropriate lexical entries as needed.

(a) S

DP

Troi

VP

V

is

AP

A

proud

PP

P

of

DP

Picard

Draft January 18, 2022

Function Application 255

(b) S

DP

Picard

VP

V

is

NegP

Neg

not

AP

A

lazy

(c) S

DP

D

everyone

VP

V

snores

(d) S

DP

D

every

NP

doctor

VP

V

smokes

(e) S

DP

D

every

NP

man

VP

V

is

DP

mortal

Draft January 18, 2022

256 Function Application

Exercise 23. Extend the fragment to assign representations in Lλ
to the following sentences. For both sentences, give a parse tree
with a fully beta-reduced representation at each node.

• Björn is a fan of Agnetha.

• Björn is Agnetha’s fan.

The two representations should be equivalent to each other, in
order to capture the fact that the English sentences are.

Exercise 24. Extend the fragment to assign representations in Lλ
to the following sentences so that the following two sentences are
equivalent. For both sentences, give a parse tree with a fully beta-
reduced representation at each node.

• Benny smokes and Benny drinks.

• Benny smokes and drinks.

Draft January 18, 2022

7 ∣ Beyond Function Application

7.1 Introduction

In the previous chapter, we built up a first compositional theory
of semantics for a fragment of English, using only one composi-
tion rule: Functional Application. This chapter continues in the
same vein, but we will add two new composition rules: Predicate
Modification and Predicate Abstraction.

Let us begin with an example. At the 2013 trial of economist
Vicky Pryce, the wife of former British Energy secretary Chris Huhne,
the jury asked the judge, Justice Sweeney, the following question:

(1) Can you define what is reasonable doubt?

Justice Sweeney replied:

(2) A reasonable doubt is a doubt which is reasonable.

That this reply does not seem informative was probably part of the
judge’s point.1 But for us, the reply does reveal something about
the entailment patterns that adjectives like reasonable give rise to.

In (2), the adjective reasonable appears twice: in ATTRIBUTIVE

position before the noun doubt, and in PREDICATIVE position after
the auxiliary verb is. Sweeney seems to imply that one can reason

1https://www.bbc.com/news/uk-21521460. Retrieved October 7, 2019.
He went on to say: “These are ordinary English words that the law doesn’t allow
me to help you with beyond the written directions that I have already given.”

https://www.bbc.com/news/uk-21521460

258 Beyond Function Application

from the attributive to the predicative use, and vice versa:

(3) This is a reasonable doubt. (Premise, attributive use)
∴ This doubt is reasonable. (Conclusion, predicative use)

(4) This doubt is reasonable. (Premise, predicative use)
∴ This is a reasonable doubt. (Conclusion, attributive use)

A related, but distinct point is that dropping this adjective when it
occurs in attributive position also results in a valid argument:

(5) This is a reasonable doubt. (Premise)
∴ This is a doubt. (Conclusion)

Lastly, we can reason from the adjective and the noun to their
combination (at least on the judge’s interpretation of reasonable):

(6) This is reasonable. (Premise 1)
This is a doubt. (Premise 2)

∴ This is a reasonable doubt. (Conclusion)

We will abbreviate these three entailment patterns with the fol-
lowing statement:

(7) This is a reasonable doubt iff this is reasonable and this is a
doubt.

There are many other adjectives that give rise to the same entail-
ment pattern:

(8) Frida is a Norwegian millionaire iff Frida is Norwegian and
Frida is a millionaire.

(9) John is a vegetarian farmer iff John is vegetarian and John
is a farmer.

How do we explain entailment patterns like these? A simple an-
swer is that the adjectives (reasonable, Norwegian, and vegetar-
ian) denote sets—the set of all reasonable things, for example—

Draft January 18, 2022

Beyond Function Application 259

and that the nouns (doubt, millionaire, and farmer), just like other
nouns we have seen, denote sets as well—for example, the set of
doubts. A reasonable doubt, then, is something which is in each of
these two sets, or in other words, in their intersection. Adjectives
that combine with nouns in this way are also called INTERSECTIVE

ADJECTIVES.
One of the hallmarks of intersective adjectives is that they make

arguments of the following form valid:

(10) John is a vegetarian farmer.
John is a doctor.

∴ John is a vegetarian doctor.

This is as predicted based on what we have said about the deno-
tation of intersective adjectives: If being a vegetarian farmer is
nothing more and nothing less than being both vegetarian and
a farmer, and being a vegetarian doctor is just being a vegetarian
and being a doctor, then any vegetarian farmer who is also a doc-
tor should count as a vegetarian doctor.

Many adjectives are not intersective. For example, Albert Ein-
stein was not only an outstanding physicist but also an amateur
violinist. The following argument is grammatically parallel to the
one in (10) but not valid:

(11) Einstein is an outstanding physicist.
Einstein is a violinist.

/∴ Einstein is an outstanding violinist.

However, just as with reasonable, dropping the adjective results in
a valid argument:

(12) Einstein is an outstanding physicist.
∴ Einstein is a physicist.

The validity of (12) leads us to conclude that outstanding physicist
denotes a subset of what physicist denotes, just as amateur vio-

Draft January 18, 2022

260 Beyond Function Application

linist denotes a subset of the denotation of violinist. In this sense,
both outstanding and amateur are SUBSECTIVE ADJECTIVES. But
outstanding is not an INTERSECTIVE ADJECTIVE. If it were, then
an outstanding physicist who is also a violinist should also be an
outstanding violinist.

Some phrases appear to be ambiguous between an intersec-
tive and a non-intersective reading. A famous example is beauti-
ful dancer:

(13) Nureyev is a beautiful dancer.

On the intersective reading, this sentence is equivalent to saying
that Nureyev is beautiful and is a dancer (but not necessarily one
who dances beautifully). On the non-intersective reading, this is
equivalent to saying that Nureyev dances beautifully (but is not
necessarily beautiful in other respects). Other examples of the
same kind include old (as in old friend) and big (as in big idiot).

Yet other adjectives are neither intersective nor subsective. This
includes adjectives like alleged, former, wannabe, counterfeit, and
fake. For example, the following reasoning is not valid:

(14) John is an alleged murderer.
/∴ John is a murderer.

The set of alleged murderers will typically include some murder-
ers but not only murderers, so it is not a subset of the set of mur-
derers.

Adjectives like counterfeit, fake, and maybe former are special
among non-subsective adjectives in that they seemingly map sets
to disjoint sets (they are also called PRIVATIVE). For example, while
some alleged murderers really are murderers, no fake gun really
is a gun. Or is it? This depends on which set the noun gun is
taken to denote: either the set of real guns, or the set of real and
fake guns taken together. If the following entailment is valid, that
would suggest that only real guns are included:

Draft January 18, 2022

Beyond Function Application 261

(15) This is a fake gun.
∴ This is not a gun.

On the other hand, if only real guns are included, then it is not
clear why sentences like the following have nontrivial meanings:

(16) This gun is fake.

(17) Is this gun real or fake?

We will not settle this issue here.
Among our goals in this chapter will be to expand our frag-

ment of English in a manner that allows us to capture the entail-
ments that various types of adjectives give rise to. As we will see,
the composition rule that we introduce for intersective adjectives
(Predicate Modification) will also be applicable to relative clauses
as in the representative who Sandy called. But confronting rela-
tive clauses will lead us to develop an additional composition rule
(Predicate Abstraction) that can be applied more broadly, in par-
ticular to the analysis of quantifiers in object position. The rest of
this chapter takes on each of these topics in turn.

7.2 Adjectives

The logical counterpart of intersection is conjunction. From the
conjunction [A∧B] we can reason to A and to B and back, so us-
ing conjunction to translate sentences with attributively-used in-
tersective adjectives will explain their entailment patterns. (Here
we translate the demonstrative This with a constant this, as if it
was a proper name. We do this for convenience only and it should
not be taken too seriously. We discuss the semantics of demon-
stratives in Chapter 12.)

(18) This is a reasonable doubt.
Reasonable(this)∧Doubt(this)

(19) This is reasonable.

Draft January 18, 2022

262 Beyond Function Application

Reasonable(this)
(20) This is a doubt.

Doubt(this)

We will treat outstanding and other subsective adjectives as func-
tions from sets to subsets. To do so, we rely on a higher-order
function term OutstandingAs of type ⟨⟨e, t⟩,⟨e, t⟩⟩. For any type
⟨e, t⟩ expression P , OutstandingAs(P) is a new expression of type
⟨e, t⟩.

In order to ensure thatOutstandingAs denotes a function from
sets to subsets, and thus that ‘x is an outstanding P ’ entails ‘x is
a P ’, we can stipulate that the following formula must be true in
every model:

(21) ∀P∀x .OutstandingAs(P)(x)→ P(x)
(For every set P , every outstanding P-individual is a P-

individual.)

What we have written in (21) is not part of any lexical entry; it is a
constraint that every model must satisfy. This kind of assumption
is what Montague called a MEANING POSTULATE. Another exam-
ple of a meaning postulate would be a constraint requiring that
every Bachelor is Male, no matter the circumstances. This kind of
constraint is a way of capturing the fact that being male is part of
what it means to be a bachelor (hence the term ‘meaning postu-
late’). What is encoded in (21) is that being P is part of what it
means to be ‘outstanding as a P ’.

Non-subsective adjectives like alleged can be treated in the
same way as subsective adjectives except without a meaning pos-
tulate like this. Without this meaning postulate, no entailment
from sentences of the form ‘x is an [adjective] [noun]’ to ‘x is a
[noun]’ is predicted.

With this in place, let us assume the following translations (where
↝ signifies the translation in question):

Draft January 18, 2022

Beyond Function Application 263

(22) Einstein is an outstanding physicist.
↝OutstandingAs(Physicist)(e)

(23) Einstein is a physicist.
Physicist(e)

Using these assumptions, we can explain why Einstein is an out-
standing physicist implies Einstein is a physicist: The formula in
(23) follows logically from the formula (22), together with the mean-
ing postulate in (21). (The corresponding entailment for non-
subsective adjectives is blocked because the meaning postulate
is absent in those cases.)

Now, suppose we take Einstein is outstanding to mean that
Einstein is outstanding in some salient respect; then its transla-
tion would be as follows:

(24) Einstein is outstanding.
OutstandingAs(P)(e)

This translation contains a free variable P , whose interpretation
needs to be specified by the contextually supplied assignment func-
tion. (This is just one of several potentially viable ways to treat
adjectives like outstanding.) This captures the fact that being out-
standing as a physicist does not entail being outstanding uncon-
ditionally, at least not in every context.

Exercise 1. Explain how the treatment of outstanding given above
blocks the inference from Einstein is an outstanding physicist to
Einstein is an outstanding violinist.

Having translated our sentences into logic, we have accounted
for the entailment relations between them. But how do we make
this translation compositional? Let us first consider intersective
adjectives, since these are the simplest case, and then see what
needs to change so we can account for other types of adjectives.

Draft January 18, 2022

264 Beyond Function Application

In the previous chapter, we considered sentences with adjectives
and nouns like Björn is kind and Agnetha is a singer, treating kind
and singer as type ⟨e, t⟩. So we know how to derive truth condi-
tions compositionally for (19) and (20).

But we do not yet have the tools to analyze sentences like This
is a reasonable doubt). In this sentence, the two expressions rea-
sonable and doubt are sisters in the tree, but neither one denotes
a function that has the denotation of the other in its domain, so
Function Application cannot be used to combine them. So far, we
have no other rules that could be of use. A situation like this is
called a TYPE MISMATCH. Type mismatches occur when two sister
nodes in a tree have denotations that are not of the right types for
any composition rule to combine them.

(25) NP
???

A
⟨e, t⟩

λx .Reasonable(x)

reasonable

NP
⟨e, t⟩

λx .Doubt(x)

doubt

At this point, one might try and adopt a different denotation
for reasonable, one that can be applied directly to doubt. This de-
notation would expect a predicate like doubt, and return a new
predicate that holds of individuals that are both reasonable and in
the set denoted by the input predicate. Such an expression would
be of type ⟨⟨e, t⟩,⟨e, t⟩⟩. That is, its input type and its output type
are the same.

(26) reasonable↝λP .λx .[Reasonable(x)∧P(x)]

This expression avoids the type mismatch in (25):

Draft January 18, 2022

Beyond Function Application 265

(27) NP
⟨e, t⟩

λx .[Reasonable(x)∧Doubt(x)]

A
⟨⟨e, t⟩,⟨e, t⟩⟩

λPλx .[Reasonable(x)∧P(x)]

reasonable

NP
⟨e, t⟩

λx .Doubt(x)

doubt

We will call this second translation for reasonable a MODIFIER and
its type a MODIFIER TYPE. In Chapter 11, we will encounter an-
other category that can be analyzed as having modifier types: ad-
verbs.

The drawback of this translation is that it does not work smoothly
for intersective adjectives in predicative position:

(28) This is reasonable.

Here the modifier-type translation above leads to a type mismatch:

(29) S

DP
e

this

This

VP
???

V
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .P

is

AP
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .λx .[Reasonable(x)∧P(x)]

reasonable

So the modifier type analysis causes problems for adjectives in

Draft January 18, 2022

266 Beyond Function Application

predicative position. We adopted it to solve the type mismatch in
attributive positions, where the adjective applies to a noun. But in
predicative position, there is no noun for the adjective to apply to.
The type of the identity function denoted by is is the same as that
of reasonable, so the two don’t combine. Even if we ignored is or
allowed it to apply to functions of arbitrary types, the resulting VP
denotation would still not be of the right type to combine with the
subject, and it would expect one too many arguments. So at this
point we have considered two translations, and each one works
fine for one position but does not work for the other.

There are at least two ways to resolve this problem. We can (i)
generate two translations for the adjective reasonable (and simi-
larly for other intersective adjectives): one of type ⟨e, t⟩ for pred-
icative positions, and another one of type ⟨⟨e, t⟩,⟨e, t⟩⟩ for attribu-
tive positions. Or (ii), we can give intersective adjectives a sin-
gle translation no matter which position they occur in, and elimi-
nate the type mismatches by introducing a new composition rule.
While the two ways lead to the same result, each one involves tools
that have many other uses beyond adjectives, so we will consider
them both.

To implement option (i) and capture the semantic relation-
ship between attributive and predicative uses of adjectives, we
take one translation to be basic and derive the other one from it
with the help of either a TYPE-SHIFTING RULE or a SILENT OPER-
ATOR. Type-shifting rules and silent operators are theoretical de-
vices that generate additional translations/denotations for a given
constituent. The difference between them is that type-shifting
rules are typically regarded as invisible to the syntactic compo-
nent of the grammar; by contrast, silent operators are generally
assumed to have a reflection in the syntax.

For concreteness, we will take the translations of type ⟨e, t⟩ to
be basic and those of type ⟨⟨e, t⟩,⟨e, t⟩⟩ to be derived. The ba-
sic type ⟨e, t⟩ is the right one for predicative positions, as we have
seen in the previous chapter for analogous sentences to This doubt

Draft January 18, 2022

Beyond Function Application 267

is reasonable. For attributive positions (reasonable doubt), we will
now derive translations of type ⟨⟨e, t⟩,⟨e, t⟩⟩. If we use a silent op-
erator MOD to generate derived translations, we will represent this
as follows:

(30) A
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .λx .[Reasonable(x)∧P(x)]

⟨⟨e, t⟩,⟨⟨e, t⟩,⟨e, t⟩⟩⟩
λP ′λP .λx .P ′(x)∧P(x)

MOD

A
⟨e, t⟩

λx .Reasonable(x)

reasonable

where MOD is an unpronounced word. Alternatively, we can use
the following type-shifting rule to equivalent effect:

Type-Shifting Rule 1. Predicate-to-modifier shift (MOD)
If α↝α′, where α′ is of type ⟨e, t⟩,
then α↝ λP .[α′(x)∧P(x)] (as long as P and x are not free
in α′; in that case, use different variables of the same type).

We will represent the application of this rule in the syntax tree
like this:

Draft January 18, 2022

268 Beyond Function Application

(31) A
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .λx .Reasonable(x)∧P(x)
⇑MOD

A
⟨e, t⟩

λx .Reasonable(x)

reasonable

Our notation uses the upwards-facing double arrow ⇑ in order to
capture the intuition that the type-shifting operation induces a
transformation of the denotation.

Exercise 2. We could go the other way around in principle, and
take ⟨⟨e, t⟩,⟨e, t⟩⟩ as the basic type and ⟨e, t⟩ as the derived type.
This requires introducing either a silent operator with a trivial
translation such as λx.x = x, which denotes the set of all individ-
uals, or a type shifting rule with the same effect. Specify what the
type shifting rule would look like.

Having looked at type-shifting rules and silent operators, we
now turn to option (ii), i.e. assuming that all intersective adjec-
tives have translations of a single type, and eliminating type mis-
matches via a new composition rule. Again for concreteness, we
will take that type to be ⟨e, t⟩. This means that we need to ad-
dress the type mismatch that occurs in attributive positions such
as reasonable doubt, as we saw in (25). Our new rule is called Pred-
icate Modification, though Intersective Modification would per-
haps be a more fitting name. It takes two predicates of type ⟨e, t⟩,
and combines them into a new predicate also of type ⟨e, t⟩. The
new predicate holds of anything that satisfies both of the old pred-
icates:

Draft January 18, 2022

Beyond Function Application 269

Composition Rule 3. Predicate Modification (PM)
If:

• γ is a tree whose only two subtrees are α and β

• α↝α′

• β↝β′

• α′ and β′ are of type ⟨e, t⟩

Then:
γ↝λu .[α′(u)∧β′(u)]

where u is a variable of type e that does not occur free in α′ or β′.

This gives us the following analysis for the NP reasonable doubt:

(32) NP
⟨e, t⟩

λx .[Reasonable(x)∧Doubt(x)]

A
⟨e, t⟩

λx .Reasonable(x)

reasonable

NP
⟨e, t⟩

λx .Doubt(x)

doubt

With this in place, the rest of the derivation proceeds as before.

Exercise 3. Consider the sentence John is a vegetarian farmer.
Give two different analyses of the sentence, one using the
Predicate-to-modifier shift, and one using Predicate Modifica-
tion. Give your analysis in the form of a tree that shows for each

Draft January 18, 2022

270 Beyond Function Application

node, the syntactic category, the type, and a fully beta-reduced
translation. (Feel free to use the Lambda Calculator for this.)

Exercise 4. Identify the types of the following expressions:

(a) λxλy . In(y, x)

(b) λx . x

(c) λx .City(x)

(d) texas

(e) λy . In(y,texas)

(f) λ f . f

(g) λyλx .Fond-of(x, y)

Assume:

• x and y are variables of type e, and f is a variable of type
⟨e, t⟩.

• Any constant that appears with an argument list of length
1 (e.g. City) is a unary predicate, and any constant that ap-
pears with an argument list of length 2 (e.g. In) is a (Curried)
binary predicate.

• Any constant that appears without an argument list (e.g.
texas) is type e.

The following exercises are adapted from Heim & Kratzer (1998).

Draft January 18, 2022

Beyond Function Application 271

Exercise 5. In addition to the ones given above, adopt the follow-
ing lexical entries, using the same assumptions about types as in
the previous exercise:

1. cat↝λx .Cat(x)

2. city↝λx .City(x)

3. gray↝λx .Gray(x)

4. gray2↝λPλx .Gray(x)∧P(x)

5. in↝λyλx . In(x, y)

6. in2↝λyλPλx .P(x)∧ In(x, y)

7. fond↝λyλx .FondOf(x, y)

8. fond2↝λyλPλx .P(x)∧FondOf(x, y)

9. Joe↝ joe

10. Texas↝ texas

11. Kaline↝ kaline

12. Lockhart↝ lockhart

For each of the trees below, provide a fully beta-reduced transla-
tion at each node, and state the type of the expression.

(a) S

DP

Joe

VP

V

is

PP

P

in

DP

Texas

Draft January 18, 2022

272 Beyond Function Application

(b)
S

DP

Joe

VP

V

is

AP

A

fond

PP

of DP

Kaline

(c) S

DP

Kaline

VP

V

is

DP

D

a

N

cat

(d) S

DP

Lockhart

VP

V

is

DP

D

a

NP

N

city

PP

P

in

DP

Texas

Draft January 18, 2022

Beyond Function Application 273

(e) S

DP

Kaline

VP

V

is

DP

D

a

NP

NP

NP

A

gray

NP

cat

PP

P

in

DP

Texas

AP

A

fond

PP

P

of

DP

Joe

(f) S

DP

Kaline

VP

V

is

DP

D

a

NP

NP

NP

A

gray2

NP

cat

PP

P

in2

DP

Texas

AP

A

fond2

PP

P

of

DP

Joe

Draft January 18, 2022

274 Beyond Function Application

Exercise 6. Frida is a former millionaire does not entail Frida is a
millionaire and *Frida is former. In this sense, former is a non-
intersective modifier. Which of the following are non-intersective
modifiers? Give examples to support your point.

(a) deciduous

(b) presumed

(c) future

(d) good

(e) mere

Exercise 7. In Russian, there is a morphological alternation be-
tween two forms of adjectives, a LONG FORM and a SHORT FORM.
For example, the short form of the adjective ‘good’ is xoroša (fem-
inine) or xoroš (masculine), and the long form is xorošaja (fem-
inine) or xorošij (masculine). As discussed by Siegel (1976), the
two forms have different syntactic distributions. In attributive po-
sitions (modifying a noun), only the long form is possible:

(33) a. Èto
this

byla
was

xoroša-ja
good-LONG

teorija.
theory

‘This was a good theory.’
b. *Èto

this
byla
was

xoroša
good.SHORT

teorija.
theory

But in predicative positions, both forms are possible:

(34) a. Èta
this

teorija
theory

byla
was

xoroša-ja.
good-LONG

‘This theory was good.’

Draft January 18, 2022

Beyond Function Application 275

b. Èta
this

teorija
theory

byla
was

xoroša.
good.SHORT

‘This theory was good.’

(35) a. Naša
our

molodež’
youth

talantliva-ja
talented-LONG

i
and

trudoljubiva-ja.
industrious-LONG

‘Our youth are talented and industrious.’
b. Naša

our
molodež’
youth

talantliva
talented.SHORT

i
and

trudoljubiva.
industrious.SHORT

‘Our youth is talented and industrious.’

Construct an analysis (including lexical entries, any type-shifting
rules you wish to assume, syntactic rules, and perhaps additional
constraints) that accounts for this contrast. You may wish to in-
clude a lexical entry for the -LONG suffix and/or the -SHORT suf-
fix. Provide derivation trees for each of the grammatical sentences
provided in this exercise, and explain why the ungrammatical sen-
tence is ruled out.

7.3 Relative clauses

We turn now to another construction that uses the rule of Predi-
cate Modification, namely relative clauses. Recall that Judge Sweeney
defined the construction in (36a), which involves an attributive
use of the adjective reasonable, in terms of (36b), which involves a
predicative use of the same adjective:

(36) a. reasonable doubt
b. doubt which is reasonable

The expression which is reasonable is a relative clause. Both rea-
sonable and which is reasonable serve to restrict the set of doubts

Draft January 18, 2022

276 Beyond Function Application

under consideration to a subset that are reasonable. Suppose we
assume that which is reasonable denotes a set: the set of reason-
able things. Then, it can combine via Predicate Modification with
doubt to produce an expression that is equivalent to reasonable
doubt.

Other relative clauses can be treated as set-denoting expres-
sions as well. Consider:

(37) woman who Björn loves

This expression characterizes any individual who has the follow-
ing two properties: (i) she is a woman; (ii) Björn loves her. In other
words, this expression denotes (the characteristic function of) the
intersection between the set of women and the set of individuals
that Björn loves. Such an interpretation can be derived compo-
sitionally if we assume that the relative clause who Björn loves is
translated as an expression of type ⟨e, t⟩:

λx .Loves(b, x)

Woman is translated as λx .Woman(x). Since both woman and
who Björn loves translate to expressions of type ⟨e, t⟩, they can
combine via Predicate Modification, like so:

λx .[Woman(x)∧Loves(b, x)]
⟨e, t⟩

λx .Woman(x)
⟨e, t⟩

woman

λx .Loves(b, x)
⟨e, t⟩

who Björn loves

This expression captures the fact that a woman who Björn loves is
both a woman and an individual loved by Björn.

The question now becomes how we can compositionally de-
rive translations like this for relative clauses. As we have seen, the

Draft January 18, 2022

Beyond Function Application 277

verb loves is transitive, so in ordinary, so-called ‘canonical’ sen-
tences of English, this verb is followed by an object. But in this
case, the relative pronoun who, which intuitively corresponds to
the object of the verb, appears at the left edge of the relative clause
who Björn loves.

One way of understanding the connection between who and
the object of loves is by assuming that there are (at least) two levels
of syntactic representation, one where who occupies the canoni-
cal object position immediately following the verb (the ‘Deep Struc-
ture’ of 1960s Chomskyan syntax), and another where it has moved
to its so-called ‘surface position’ (the ‘Surface Structure’). Under
this view, wh- words like who (along with which, where, what,
etc.) do not disappear entirely from their original positions; they
leave a TRACE signifying that they once were there. (Contempo-
rary theories of syntax often use the term UNPRONOUNCED COPY

for a related notion that plays essentially the same role for pur-
poses of semantics.) The syntactic structure of the relative clause
after movement would then be:

CP

whoi C′

C S

DP

Björn

VP

V

loves

DP

ti

The subscript i on who represents an INDEX, which allows us to
link the wh- word to its base position. It can be instantiated as
any natural number, such as 1, 3, or 47, so long as it is the same
as that of the trace. The element ti is a TRACE of movement, and
because the wh-word and the trace bear the same index, we say

Draft January 18, 2022

278 Beyond Function Application

that the two expressions are CO-INDEXED. It is the job of syntax,
rather than semantics, to ensure that all relative pronouns are co-
indexed with their traces.

The category label CP stands for ‘Complementizer Phrase’, be-
cause it is the type of phrase that can be headed by a complemen-
tizer in relative clauses (see below). The wh- word occupies the
so-called ‘specifier’ position of CP (sister to C′).2 In this structure,
the C position is thought to be occupied by a silent version of the
complementizer that. We hear the complementizer that instead
of the relative pronoun who in, for example, woman that Björn
loves.3

To explain the fact that that and which cannot co-occur in
English, we assume that either the relative pronoun or the com-
plementizer that is deleted, in accordance with the ‘Doubly-Filled

2The term ‘specifier’ comes from the X -bar theory of syntax, where all
phrases are of the form [X P (specifier) [X ′ [X (complement)]]]. See for example
Carnie (2013, Ch. 6).

3One reason to think that the word that is not of the same category as relative
pronouns such as who or which is that only relative pronouns participate in so-
called ‘pied-piping’:

(i) a. good old-fashioned values [CP on which we used to rely]
b. *good old-fashioned values [CP on that we used to rely]

This contrast can be understood under the assumption that which originates as
the complement of on, and moves together with it, while that is generated in
its surface position. Furthermore, the complementizer that is not found only in
relative clauses; it also serves to introduce other finite clauses, as in John thinks
that Mary came. Moreover, in some languages, relative pronouns can actually
co-occur with complementizers (Carnie, 2013, Ch. 12). One example is Bavarian
German (Bayer, 1984, p. 24):

(ii) I
I

woaß
know

ned
not

wann
when

dass
that

da
the

Xavea
Xavea

kummt.
comes

‘I don’t know when Xavea is coming’

The possibility of their co-occurrence provides additional evidence for the idea
that relative pronouns like who and complementizers like that occupy distinct
positions in relative clauses.

Draft January 18, 2022

Beyond Function Application 279

Comp Filter’ (Chomsky & Lasnik, 1977), the principle that either
the relative pronoun or that must be silent in English.4

The same kind of movement is thought to occur in a relative
clause like who likes Agnetha or which is reasonable, in which it
is the subject, rather than the object, that is extracted. In such
relative clauses, the trace occurs in subject position:

(38) CP

whichi C′

C

that

S

DP

ti

VP

V

is

AP

reasonable

In this tree, the relative pronoun which is co-indexed with a trace
in the subject position for the embedded auxiliary verb is.5 Be-
cause the movement changes only the underlying structure and
not the sequence of words that is pronounced, this kind of move-
ment is called STRING-VACUOUS MOVEMENT.

These syntactic assumptions lay the groundwork for a seman-
tic treatment of relative clauses on which they function much like
adjectival modifiers. The key assumptions are the following:

• Relative clauses are formed through a movement operation
that leaves a trace.

4See Carnie (2013, Ch. 12) for a more thorough introduction to the syntax of
relative clauses.

5While the trace theory is widely used in linguistics at the time of writing,
some minimalist theories of movement postulate unpronounced copies instead
of traces (Fox, 2002). For a recent proposal how to integrate this “copy theory” of
movement with compositional semantics, see Pasternak (2020).

Draft January 18, 2022

280 Beyond Function Application

• Traces are translated as variables.

• A relative clause is interpreted by introducing a lambda op-
erator that binds this variable.

Which variable does a trace like t3 correspond to? Recall that
in Lλ we have an infinite number of variables in stock. For every
natural number i and every type τ, we have a variable of the form
vi . A trace may in principle correspond to a variable of any type.
But in the cases we are considering at the moment, it works best
to assume that the traces are of type e.

In the compositional system we are setting up here, a trace
with a given index always will be translated as a variable of type
e with the same index. For example, the trace t7 would be inter-
preted as x7:

t7↝ x7

This technique will allow the trace and the associated relative pro-
noun to be linked up in the semantics, as we will choose a match-
ing variable for the lambda expression to bind when we reach the
co-indexed relative pronoun in the tree.

The denotation of the variable x7 will then depend on an as-
signment; recall from our definition of the semantics of variables
in Lλ that:

Jx7KM ,g = g(x7)

Since traces are translated as variables, and variables are inter-
preted using assignment functions, traces ultimately get their de-
notation from assignment functions.6

6Contrast Heim & Kratzer’s (1998) rule, given in a direct interpretation style,
where an assignment function decorates the denotation brackets: Jαi K

g
= g(i).

Here the difference between direct and indirect interpretation becomes bigger
than mere substitution of square brackets for squiggly arrows: In indirect inter-
pretation, we translate pronouns and traces as logical variables. Note that the
meta-language still contains its own variables in Heim and Kratzer’s style, and
these can be bound by lambda operators, as in Jloves himi K

g
=λx . x loves g(i).

Draft January 18, 2022

Beyond Function Application 281

We have thus arrived at a new composition rule:

Composition Rule 4. Pronouns and Traces Rule
If α is an indexed trace or pronoun, αi ↝ xi

We have called it the ‘Pronouns and Traces Rule’ because it will
also be used for pronouns; for example:

he7↝ x7

We will see more on the pronoun side of this in Section 7.5.7

With these assumptions, we derive the representation

Loves(b, x1)

for Björn loves t1:

S
t

Loves(b, x1)

DP
e
b

Björn

VP
⟨e, t⟩

λx .Loves(x, x1)

V
⟨e,⟨e, t⟩⟩

λyλx .Loves(x, y)

loves

DP
e

x1

t1

Here, variables like x appear on the right-hand side and variables like ‘himi ’ ap-
pear on the left-hand side.

7The idea of treating traces and pronouns as variables is rather controversial;
see Jacobson (1999) and Jacobson (2000) for critique and alternatives.

Draft January 18, 2022

282 Beyond Function Application

The translation corresponding to this S node, Loves(b, x1), is of
type t . Suppose that the complementizer that is an identity func-
tion of type ⟨t , t⟩, so that↝ λp . p, where p is a variable of type t .
So the relative clause that Björn loves t1 has the same translation,
of type t . How does the relative clause end up with a denotation
of type ⟨e, t⟩? In particular, how do we reach our goal, according
to which the relative clause ends up with a translation equivalent
to λx .Loves(b, x)?

We can achieve this by assigning the relative clause an inter-
pretation in which a lambda operator binds the variable x1, thus:

λx1 .Loves(b, x1)

In principle, the trace might have any index, so we need to know
which variable to let the lambda operator bind. We can do this
with the help of the index of the relative pronoun. The rule of
Predicate Abstraction (also called Lambda Abstraction or Func-
tional Abstraction), triggered by the presence of an indexed rela-
tive pronoun, turns the appropriate variable from a free one into
a bound one:

Composition Rule 5. Predicate Abstraction
If

• γ is a syntax tree whose only two subtrees are αi and β

• αi is a terminal node carrying the index i

• β↝β′

• β′ is an expression of any type

Then γ↝λxi .β′

where the index on αi and xi is the same.

In this rule, the terminal nodeαi does not contribute anything

Draft January 18, 2022

Beyond Function Application 283

other than an index. For this reason, we assume that it carries
neither a denotation nor a type, unlike all other terminal nodes.

This gives us the following analysis of the relative clause, with
γ corresponding to the CP node, αi to the sibling node of C′, and
β to the C′ node:

(39) CP
⟨e, t⟩

λx1 .Loves(b, x1)

who1 C′
t

Loves(b, x1)

C
⟨t , t⟩
λp . p

that

S
t

Loves(b, x1)

DP
e
b

Björn

VP
⟨e, t⟩

λx .Loves(x, x1)

V
⟨e,⟨e, t⟩⟩

λyλx .Loves(x, y)

loves

DP
e

x1

t1

We have reached our goal! The relative clause that Björn loves de-
notes the property of being loved by Björn. Because it translates to
an expression of type ⟨e, t⟩, it can combine via Predicate Modifica-
tion with woman, giving the property of being in the intersection
between the set of women and the set of individuals who Björn
loves.

It is important to understand the difference between the de-
notations of the C′ and CP nodes. The C′ node is of type t , so it de-

Draft January 18, 2022

284 Beyond Function Application

notes a truth value. Whether it denotes True or False depends on
what individual the assignment function g assigns to the variable
x1. If that individual is among the individuals loved by Björn, the
node denotes True, otherwise False. The CP node is of type ⟨e, t⟩,
so it denotes a set of individuals, namely all those individuals that
are loved by Björn. Unlike C′, the CP node has a denotation that
does not depend on the assignment function g .

Using the same tools, the phrase doubt which is reasonable
can be given an analysis that accords with Judge Sweeney’s intu-
itions:

Draft January 18, 2022

Beyond Function Application 285

(40) NP
⟨e, t⟩

λx .[Doubt(x)∧Reasonable(x)]

N
⟨e, t⟩

λx .Doubt(x)

doubt

CP
⟨e, t⟩

λx1 .Reasonable(x1)

which1 C′
t

Reasonable(x1)

C
⟨t , t⟩
λp . p

that

S
t

Reasonable(x1)

DP
e

x1

t1

VP
⟨e, t⟩

λx .Reasonable(x)

V
⟨⟨e, t⟩,⟨e, t⟩⟩

λP .P

is

AP
⟨e, t⟩

λx .Reasonable(x)

reasonable

Under this analysis, a doubt which is reasonable is something that
is both a doubt and reasonable.

According to the assumptions we have made, a relative pro-
noun such as who or which is never assigned a denotation. The
same applies to its silent counterpart in relative clauses that lack
overt relative pronouns (whether the complementizer is pronounced,
as was illustrated in (39) for the woman that Björn loves, or not,
as in the woman Björn loves). Rather, the contribution of a rela-
tive pronoun to the semantic composition of the clause lies in the

Draft January 18, 2022

286 Beyond Function Application

fact that it triggers the rule of Predicate Abstraction, which gives a
denotation for a tree. Thus, relative pronouns don’t have a deno-
tation of their own, even though their presence affects the deno-
tation of the constituents that contain them. An expression like
this is called SYNCATEGOREMATIC. In contrast, CATEGOREMATIC

expressions carry denotations of their own. Most expressions dis-
cussed in this book are categorematic.

Exercise 8.
(a) For each of the labelled nodes in the following tree, give: i) the
type; ii) a fully beta-reduced translation to Lλ, and iii) the compo-
sition rule that is used at the node.

8
NP

7
NP

man

6
CP

who1 5
C’

4
that

3
S

1
DP

t1

2
VP

left

(b) You are not asked to give a type for who1. Why not? Hint: Use
the word ‘syncategorematic’.

Draft January 18, 2022

Beyond Function Application 287

Exercise 9. Traditional grammar distinguishes between restric-
tive and non-restrictive relative clauses. Non-restrictive relative
clauses are normally set off by commas in English, and they can
modify proper names and other individual-denoting expressions.

1. Susan, who I like, is coming to the party.

2. *Susan who I like is coming to the party.

3. That woman, who I like, is coming to the party.

4. The woman who I like is coming to the party.

We have given a treatment of restrictive relative clauses in terms of
Predicate Modification. Would an analysis using Predicate Modi-
fication in the same way be appropriate for non-restrictive relative
clauses? Why or why not?

Draft January 18, 2022

288 Beyond Function Application

Exercise 10. For each node in the following tree, give the type and
a fully beta-reduced translation to Lλ.

NP

NP

man

CP

who1 S

DP

t1

VP

talked PP

P

to

DP

D

the

NP

NP

boy

CP

who2 S

DP

t2

VP

V

visited

DP

him1

You’ll need to make an assumption about the denotation of
the definite article the. For the purposes of this exercise, please
assume that it is translated as follows:

the↝λP . ιx .P(x)

where P is a predicate (type ⟨e, t⟩), and ιx .P(x), read ‘iota x P x’
is an expression of type e that denotes the unique satisfier of P
(assuming there is one). So the type of the translation for the is
⟨⟨e, t⟩,e⟩. We will justify this analysis in greater detail in Chapter
8.

Draft January 18, 2022

Beyond Function Application 289

7.4 Quantifiers in object position

7.4.1 Quantifier raising

Everybody loves Björn should be translated as:

(41) ∀x .Loves(x,b)

and Björn loves everybody should be translated as:

(42) ∀x .Loves(b, x)

The first case, with the quantifier in subject position, can be de-
rived compositionally using the tools that we have:

∀x .Loves(x,b)
t

λP .∀x .P(x)
⟨⟨e, t⟩, t⟩

everybody

λx .Loves(x,b)
⟨e, t⟩

λy .λx .Loves(x, y)
⟨e,⟨e, t⟩⟩

loves

b
e

Björn

But the case with the quantifier in object position (Björn loves ev-
erybody) cannot be. Observe what happens when we try:

Draft January 18, 2022

290 Beyond Function Application

∀x .Loves(b, x)
t

b
e

Björn

???

λy .λx .Loves(x, y)
⟨e,⟨e, t⟩⟩

loves

λP .∀x .P(x)
⟨⟨e, t⟩, t⟩

everybody

The transitive verb is expecting an individual, so the quantifier
phrase cannot be fed as an argument to the verb. And the quanti-
fier phrase is expecting an ⟨e, t⟩-type predicate, so the verb cannot
be fed as an argument to the quantifier phrase. It is rather an em-
barrassment that this does not work. It is clear what this sentence
means!

According to the assumptions we made so far, everybody trans-
lates as:

(43) λP .∀x .P(x)

The appropriate value for P here would be a function that holds
of an individual if Björn loves that individual:

(44) λx .Loves(b, x)

If we could separate out the quantifier from the rest of the sen-
tence, and let the rest of the sentence denote this function, then
we could put the two components together and get the right trans-
lation:

(45) [λP∀x .P(x)](λx .Loves(b, x))

This beta-reduces to:

(46) ∀x .Loves(b, x)

Draft January 18, 2022

Beyond Function Application 291

Exercise 11. Before we continue working through the problem
raised by Björn loves everybody, check your understanding by sim-
plifying the following expression step-by-step:

[λQ .∀x[Linguist(x)→Q(x)]](λx1 .Offended(j, x1))

Tip: Use the ‘scratch pad’ function in the Lambda Calculator.

We can get the components we need to produce the right de-
notation using the rule of Quantifier Raising. QUANTIFIER RAIS-
ING is a syntactic transformation that moves a quantifier (an ex-
pression of type ⟨⟨e, t⟩, t⟩) to a position in the tree where it can
be interpreted, and leaves a DP trace in its previous position. In
terms of 1970’s syntax, this transformation occurs not between
Deep Structure and Surface Structure, but rather between Sur-
face Structure and another level of representation called Logical
Form (LF), as discussed in more detail below. At Logical Form,
constituents do not necessarily appear in the position where they
are pronounced, but they are in the position where they are to be
interpreted by the semantics. Thus the structure in (47a) is con-
verted to the Logical Form representation (47b):

(47) a. S

DP

Björn

VP

V

loves

DP

everybody

Draft January 18, 2022

292 Beyond Function Application

b. S

DP

everybody

LP

1 S

DP

Björn

VP

V

loves

DP

t1

The index 1 in the syntax tree plays the same role as a relative pro-
noun like which in a relative clause: It triggers the introduction
of a lambda expression binding the variable corresponding to the
trace.

The derivation works as follows. Predicate Abstraction is used
at the node we have called LP for ‘lambda P’; Function Application
is used at all other branching nodes. The LP node is posited for se-
mantic purposes, and as far as we know, there is no syntactic ev-
idence to support it; it provides a place for the Predicate Abstrac-
tion rule to apply. LP was introduced by Heim & Kratzer (1998)
and has been widely adopted, though the name we use is specific
to our textbook.

Draft January 18, 2022

Beyond Function Application 293

(48) ∀x .Loves(b, x)
t

λP .∀x .P(x)
⟨⟨e, t⟩, t⟩

everybody

λx3 .Loves(b, x3)
⟨e, t⟩

3 Loves(b, x3)
t

b
e

Björn

λx .Loves(x, x3)
⟨e, t⟩

λy .λx .Loves(x, y)
⟨e,⟨e, t⟩⟩

loves

x3

e

t3

The Quantifier Raising solution to the problem of quantifiers
in object position was originally developed in a syntactic theory
with several levels of representation:

• Deep Structure (DS): Where active sentences (John kissed
Mary) look the same as passive sentences (Mary was kissed
by John), and wh- words are in their original positions. For
example, Who did you see? is You did see who? at Deep
Structure.

• Surface Structure (SS): Where the order of the words cor-
responds to what we see or hear (after e.g. passivization or
wh-movement)

• Phonological Form (PF): Where the words are realized as
sounds (after e.g. deletion processes)

Draft January 18, 2022

294 Beyond Function Application

• Logical Form (LF): The input to semantic interpretation (af-
ter e.g. Quantifier Raising)8

Transformations map from DS to SS, and from SS to PF and LF:

DS

SS

LF PF

This is the so-called ‘T-model’, or (inverted) ‘Y-model’ of Govern-
ment and Binding theory, motivated originally by Wasow (1972)
and Chomsky (1973). Since the transformations from SS to LF
happen “after” the order of the words is determined, we do not
see the output of these transformations. These movement opera-
tions are in this sense COVERT.

Many other transformational generative theories of grammar
have been proposed over the years (see Lasnik & Lohndal 2013 for
an overview), and many of these are also compatible with the idea
of Quantifier Raising; the crucial thing is that there is an interface
with semantics (such as LF) at which quantifiers are in the syntac-
tic positions that correspond to their scope, and there is a trace
indicating the argument position they correspond to. Quantifier
Raising is not an option in non-transformational generative theo-
ries of grammar such as Head-Driven Phrase Structure Grammar
(Pollard & Sag, 1994) and Lexical-Functional Grammar (Bresnan,
2001); other approaches to quantifier scope are taken in conjunc-
tion with those syntactic theories.

8‘Logical Form’ refers here to a level of syntactic representation. A Logical
Form is thus a natural language expression, which will be translated into Lλ.
It is natural to refer to the Lλ translation as the ‘logical form’ of a sentence, but
this is not what is meant by ‘Logical Form’ in this context.

Draft January 18, 2022

Beyond Function Application 295

Exercise 12. Produce a translation into the lambda calculus for
Beth speaks a European language. Start by drawing the LF, assum-
ing that a European language undergoes Quantifier Raising. As-
sume also that the indefinite article a can denote what some de-
notes, that European and language combine via Predicate Modifi-
cation, and that speaks is a transitive verb of type ⟨e,⟨e, t⟩⟩.

Exercise 13. Some linguist offended every philosopher is ambigu-
ous; it can mean either that there was one universally offensive
linguist or that for every philosopher there was a linguist, and
there may have been different linguists for different philosophers.
Give an LF tree for each of the two readings, and specify the trans-
lation into Lλ at every node of your trees.

Exercise 14. Provide a fragment of English with which you can de-
rive truth conditions for the following sentences:

1. Every conservative congressman smokes.

2. No congressman who smokes dislikes Susan.

3. Susan respects no congressman who smokes.

4. Susan dislikes every congressman.

5. Some congressman from every state smokes.

6. Every congressman respects himself.

The fragment should include:

• a set of syntax rules

Draft January 18, 2022

296 Beyond Function Application

• lexical entries (translations of all of the words into Lλ)

• composition rules (Function Application, Predicate Modi-
fication, Predicate Abstraction, Pronouns and Traces Rule,
Non-branching Nodes)

Then, for each sentence:

• draw the syntactic tree for the sentence

• for each node of the syntactic tree:

– indicate the semantic type

– give a fully beta-reduced representation of the deno-
tation in Lλ

– specify the composition rule that you used to compute
it

If the sentence is ambiguous, give multiple analyses, one for each
reading.

You can use the Lambda Calculator for this exercise.

7.4.2 A type-shifting approach

Quantifier Raising is only one possible solution to the problem
of quantifiers in object position. Another approach is to inter-
pret the quantifier phrase in situ, i.e., in the position where it is
pronounced. In this case one can apply a type-shifting operation
to change either the type of the quantifier phrase or the type of
the verb. This latter approach, using flexible types for the expres-
sions involved, adheres to the principle of “Direct Composition-
ality”, which rejects the idea that the syntax first builds syntactic
structures which are then sent to the semantics for interpretation
as a second step. (Direct compositionality is not to be confused

Draft January 18, 2022

Beyond Function Application 297

with direct interpretation—two totally different ideas.) With di-
rect compositionality, the syntax and the semantics work in tan-
dem, so that the semantics is computed as sentences are built up
syntactically, as it were. Jacobson (2012) argues that this is a priori
the simplest hypothesis and defends it against putative empirical
arguments against it.

Type-shifting rules can target either the quantifier, making it
into the sort of thing that could combine with a transitive verb, or
the verb, making it into the sort of thing that could combine with a
quantifier. On Hendriks’s (1993) system, a type ⟨e,⟨e, t⟩⟩ predicate
can be converted into one that is expecting a quantifier for its first
or second argument, or both.

Another approach uses so-called Cooper Storage, which in-
troduces a storage mechanism into the semantics (Cooper, 1983).
This is done in Head-Driven Phrase Structure Grammar (Pollard
& Sag, 1994). In brief, the idea is that a syntax node is associated
with a set of quantifiers that are “in store”. When a node of type t
is reached, these quantifiers can be “discharged”.

Exercise 15. What is the problem of quantifiers in object position,
and what are the main approaches to solving it? Explain in your
own words.

Hendriks defines a general type-shifting schema called ARGU-
MENT RAISING (not because it involves “raising” of a quantifier
phrase to another position in the tree — it doesn’t — but because
it “raises” the type of one of the arguments of an expression to a
more complex type). We will focus on one instantiation of this
schema, called OBJECT RAISING, defined as follows. Here and in
the following, we will use x for variables associated with the sub-
ject, and y for those associated with the object, wherever possible.

Draft January 18, 2022

298 Beyond Function Application

Type-Shifting Rule 2. Object raising (RAISE-O)
If an English expression α is translated into a logical expres-
sion α′ of type ⟨e,⟨a, t⟩⟩, for any type a, then α also has a
translation of type ⟨⟨⟨e, t⟩, t⟩,⟨a, t⟩⟩ of the following form:

λQ⟨⟨e,t⟩,t⟩λxa .Q(λy .α′(y)(x))

(unless Q, y or z occurs in α′; in that case, use different vari-
ables).

Using this rule, a sentence like Björn loves everybody can be
analyzed as follows, without quantifier raising:

(49) S
t

∀y .Loves(b, y)

DP
e
b

Björn

VP
⟨e, t⟩

λx .∀y .Loves(x, y)

V
⟨⟨⟨e, t⟩, t⟩,⟨e, t⟩⟩

λQ⟨⟨e,t⟩,t⟩λx .Q(λy .Loves(x, y))
⇑RAISE-O

⟨e,⟨e, t⟩⟩
λyλx .Loves(x, y)

loves

DP
⟨⟨e, t⟩, t⟩

λP .∀y .P(y)

everybody

Draft January 18, 2022

Beyond Function Application 299

The translation of the VP node can be computed from those of the
V and object DP nodes through three successive beta reductions:

(50) [λQ.λx.Q(λy.Loves(x, y))](λP.∀y.P(y))
≡λx.[[λP.∀y.P(y)](λy.Loves(x, y))]
≡λx.∀y.[[λy.Loves(x, y)](y)]
≡ ∀y.Loves(x, y)

In some situations, it can be useful to apply type-shifting to
subject arguments. One such situation stems from scope ambigu-
ities as they occur in sentences with two quantifiers such as Some-
body loves everybody. Lifting the verb using the Object Raising rule
and then combining it with its two arguments results in the sur-
face scope reading, i.e. the reading in which the subject existential
takes scope over the object universal. This is shown in the follow-
ing tree, where subscripts indicate the types of the variables.

(51) t
∃x∀y .Loves(x, y)

⟨⟨e, t⟩, t⟩
λP .∃x .P(x)

Somebody

⟨e, t⟩
λx .∀y .Loves(x, y)

⟨⟨⟨e, t⟩, t⟩,⟨e, t⟩⟩
λQ⟨⟨e,t⟩,t⟩λx .Q(λy .Loves(x, y))

⇑RAISE-O

⟨e,⟨e, t⟩⟩
λyλx .Loves(x, y)

loves

⟨⟨e, t⟩, t⟩
λP .∀y .P(y)

everybody

But what about the inverse scope reading, in which the object uni-
versal takes scope over the subject existential? It turns out that in
order to generate this reading we need to lift both arguments of
the verb. To do so, we first need to raise the subject, with a rule

Draft January 18, 2022

300 Beyond Function Application

we will call Subject Raising. We then lift the verb using the Subject
Raising and then the Object Raising rule and combine the result-
ing doubly-lifted verb with its two arguments.

Type-Shifting Rule 3. Subject raising (RAISE-S)
If an English expression α is translated into a logical expres-
sionα′ of type ⟨a,⟨e, t⟩⟩ for any type a, thenα also has a trans-
lation of type ⟨a,⟨⟨⟨e, t⟩, t⟩, t⟩⟩ of the following form:

λyaλQ⟨⟨e,t⟩,t⟩ .Q(λxe .α′(y)(x))

(unless y , Q or x is free in α′; in that case, use different vari-
ables).

This rule is the mirror image of the Object Raising rule above, in
the sense that this rule alters the way that a transitive verb com-
bines with its subject argument, while the Object Raising rule al-
ters the way it combines with its object argument.

We are now ready to generate the inverse scope reading of
Somebody likes everybody. To do so, we apply Subject Raising to
the verb, followed by Object Raising:

Draft January 18, 2022

Beyond Function Application 301

(52) t
∀y∃x .Loves(x, y)

⟨⟨e, t⟩, t⟩
λP .∃x .P(x)

Somebody

⟨⟨⟨e, t⟩, t⟩, t⟩
λQ⟨⟨e,t⟩,t⟩ .∀y .Q(λx .Loves(x, y))

⟨⟨⟨e, t⟩, t⟩,⟨⟨⟨e, t⟩, t⟩, t⟩⟩
λQ′⟨⟨e,t⟩,t⟩λQ⟨⟨e,t⟩,t⟩ .Q′(λy .Q(λx .Loves(x, y)))

⇑RAISE-O

⟨e,⟨⟨⟨e, t⟩, t⟩, t⟩⟩
λyλQ⟨⟨e,t⟩,t⟩ .Q(λx .Loves(x, y))

⇑RAISE-S

⟨e,⟨e, t⟩⟩
λyλx .Loves(x, y)

loves

⟨⟨e, t⟩, t⟩
λP .∀y .P(y)

everybody

Exercise 16. What happens if we apply Object Raising to the verb,
followed by Subject Raising? Draw a derivation at the same level
of detail as the tree in (52). Can the resulting reading also be gen-
erated in a simpler way?

In fact, Subject Raising and Object Raising are both instances
of a general type-shifting schema that Hendriks defines. (The fol-
lowing explanation is advanced, and the rest of the current sub-
section 7.4.2 can be skipped. Nothing in the remainder of the
book depends on it.) The general schema is as follows: If an ex-
pression has a translationα′ of type ⟨Ð→a ,⟨b,⟨Ð→c , t⟩⟩⟩, whereÐ→a and
Ð→c are possibly null sequences of types, then that expression also
has translations of the following form, whereÐ→x andÐ→z stand for
possibly null sequences of arguments of the same length asÐ→a and
Ð→c respectively:

Draft January 18, 2022

302 Beyond Function Application

(53) λÐ→x Ð→a λQ⟨⟨b,t⟩,t⟩λ
Ð→z Ð→c [Q(λyb[α′(Ð→x)(y)(Ð→z)])]

(unless x, y , z, or Q occur in α′; in that case, just use different
variables of the same type).

This schema works in the following way, for a verb α that ex-
pects at least one argument, the “targeted argument” as we will
call it. In the following examples, this argument will be of type e,
but more generally it could be of any type; this is why the schema
uses b instead of e. The sequencesÐ→x andÐ→z represent whatever
arguments the verb applies to before and after it combines with
the targeted argument. Suppose now that a verb has combined
with all of the arguments in Ð→x and that its next argument is not
of the expected type (say e) but rather it is a quantifier Q of type
⟨⟨e, t⟩, t⟩. In that situation, the verb cannot apply to Q; and if there
are more arguments coming up, i.e. ifÐ→z is nonempty (for exam-
ple, if Q is in object position,Ð→z will contain a slot for the subject),
Q cannot apply to the verb either. Hendriks’ schema adjusts the
entry and type of the verb α by replacing e with ⟨⟨e, t⟩, t⟩ so that
α can apply to Q. The adjusted entry provides α with all of the
arguments inÐ→x , then with a fresh variable y , and finally with all
remaining arguments inÐ→z (such as the subject); and finally it ab-
stracts over y and uses the quantifier Q to bind it. This makes
sure that the adjusted entry behaves just as the original entry for
α would do if the quantifier Q was raised above α and all of its
arguments, leaving a trace corresponding to the variable y .

To illustrate, the Object Raising rule above results from apply-
ing Hendriks’s schema with Ð→x and Ð→a as null (because the verb
does not apply to any arguments before it combines with the ob-
ject), b as a (corresponding to the type of the object – typically
type e),Ð→z as z (because after combining with the object, the verb
still expects to apply to the subject), andÐ→c as e (because the sub-
ject is of type e):

(54) λQ⟨⟨a,t⟩,t⟩λze[Q(λya[α′(y)(z)])]

Draft January 18, 2022

Beyond Function Application 303

To get the Subject Raising rule, we instantiate Hendriks’ schema
above by settingÐ→x to x,Ð→a to a, b to e, and z andÐ→c to null:

(55) λxaλQ⟨⟨e,t⟩,t⟩[Q(λye[α′(x)(y)])]

These formulas are identical to those in the Object Raising and
Subject Raising rules above, except that we have renamed some
bound variables for consistency with the rest of the book.

7.5 Pronouns

Recall that the Pronouns and Traces Rule tells us that if α is an
indexed trace or pronoun, αi ↝ xi . Thus pronouns and traces are
interpreted in the same manner: as variables. In this section, we
will try and justify this assumption.

Exercise 17. Using the Pronouns and Traces Rule, give transla-
tions at every node for the following tree (ignoring the semantic
contribution of gender):

S

DP

She3

VP

V

loves

DP

her5

Can all pronouns be interpreted as variables? For example, if
someone were to point to Cruella De Vil, and say:

(56) She is suspicious.

then this occurrence of she would refer to Cruella De Vil. But one
could point to Ursula and say the same thing, in which case she

Draft January 18, 2022

304 Beyond Function Application

would refer to Ursula. One doesn’t have to point, of course; if Ur-
sula is on TV then she is sufficiently salient for the same utterance
to pick her out. Alternatively, one could raise Ursula to salience by
talking about her:

(57) Ursula is usually mean, but offered to help Ariel. She is
suspicious.

In this case, the pronoun is used ANAPHORICALLY, as it has a lin-
guistic antecedent. In the previous cases, the pronoun is used DE-
ICTICALLY.

Both the deictic and the anaphoric uses can be accounted for
under the following hypothesis (to be revised):

Hypothesis 1. All pronouns refer to whichever individual is most
salient at the moment when the pronoun is processed.

(We are setting aside gender and animacy features for the mo-
ment.) Individuals can be brought to salience in any number of
ways: through pointing, by being visually salient, or by being raised
to salience linguistically.

The problem with Hypothesis 1 is that there are some pro-
nouns that don’t refer to any individual at all. The following ex-
amples all have readings on which it is intuitively quite difficult to
answer the question, “Who/what does the pronoun refer to?”

(58) No woman blamed herself.

(59) Neither man thought he was at fault.

(60) Every boy loves his mother.

So not all pronouns are referential. It is sometimes said that
No woman and herself are “coreferential” in (58) but this is strictly
speaking a misuse of the term “coreferential”, because coreference
implies reference.

Draft January 18, 2022

Beyond Function Application 305

Exercise 18. Give your own example of a pronoun that could be
seen as referential, and your own example of a pronoun that could
not be seen as referential.

The pronouns in examples (58)-(60) can be analyzed as bound
variables.9 For example, (58) should be translated as:

(61) ¬∃x .[Woman(x)∧Blamed(x, x)]

Another reason to unify the semantics of pronouns and traces is
that there are certain cases where pronouns behave almost identi-
cally to traces. For instance, regarding the late U.S. Supreme Court
Justice Ruth Bader Ginsburg, it was once remarked:

(62) This is an older woman who everyone listens to when she
speaks.

The alternative with an unpronounced trace (*...who everyone lis-
tens to when speaks) would have been ungrammatical; inserting
the pronoun she rescues the sentence (although perhaps not fully;
many speakers find examples like this less than fully acceptable).
Pronouns in such configurations are called RESUMPTIVE PRONOUNS.
The semantic contribution of a resumptive pronoun is exactly like
the semantic contribution of a trace: as a variable that is bound by
a lambda operator. Thus

who everyone listens to when she speaks

9The terms free and bound are also used to describe pronouns in BINDING

THEORY, the area of syntax that deals with different types of potentially referring
expressions like proper names and various types of pronouns. The way that the
terms free and bound are used in that context involves slightly different, albeit
related, senses. Here, we use a quite traditional sense of those terms, applying
to variables of a formal language that contains variable binders. A variable is
free within an expression if it is not bound by any binder within that expression.
In syntax, a noun phrase is free in a given expression if it does not have an an-
tecedent within that expression.

Draft January 18, 2022

306 Beyond Function Application

denotes the property of being an x such that everyone listens to x
when x speaks.

Another example in which pronouns are interpreted very much
like traces is with such-relatives, as in:

(63) any book such that Mary read it

These cases can be treated much like relative clauses, using Pred-
icate Abstraction. The trigger for the abstraction in this case is
such, which is coindexed with a pronoun rather than a trace. (In
this case, the pronoun would not be considered a resumptive pro-
noun because there’s no sense in which it is overtly realizing a
trace of movement; such is analyzed as originating in its surface
position rather than in the position of the pronoun.) For example,
in (63), there is coindexation between such and it. The analysis
works as follows:10

10Keep in mind that x is a distinct variable from x1.

Draft January 18, 2022

Beyond Function Application 307

(64) NP
⟨e, t⟩

λx .[book(x)∧ read(m, x)]

NP
⟨e, t⟩

λx .book(x)

book

AP
⟨e, t⟩

λx1 .read(m, x1)

such1 CP
t

read(m, x1)

C
⟨t , t⟩
λp . p

that

S
t

read(m, x1)

DP
e
m

Mary

VP
⟨e, t⟩

λx .read(x, x1)

V
⟨e,⟨e, t⟩⟩

λy .λx .read(x, y)

read

DP
e

x1

it1

Exercise 19. Give the types and a fully beta-reduced logical trans-
lation for every node of the following tree (from Heim & Kratzer
1998, p. 114).

Draft January 18, 2022

308 Beyond Function Application

NP

NP

man

AP

such2 CP

C

that

S

DP

Ed

VP

V

read

DP

D

the

NP

NP

book

CP

which1 S

DP

he2

VP

V

wrote

DP

t1

For the definite article, assume the analysis described in Exercise
10.

In light of this evidence, let us consider the possibility that
pronouns should always be treated as bound variables.

Hypothesis 2. All pronouns are translated as bound variables.

What this means is that whenever a pronoun occurs in a sentence,
the sentence translates to a formula in which the variable corre-
sponding to the pronoun is bound by a variable-binder (a lambda
or a quantifier).

Draft January 18, 2022

Beyond Function Application 309

One reason not to treat all pronouns as bound variables is that
there are some ambiguities that depend on a distinction between
free and bound interpretations. For example, in the movie Ghost-
busters, there is a scene in which the three Ghostbusters Dr. Pe-
ter Venkman, Dr. Raymond Stantz, and Dr. Egon Spengler (played
by Bill Murray, Dan Aykroyd, and Harold Ramis, respectively), are
in an elevator. They have just started their Ghostbusters busi-
ness and received their very first call, from a fancy hotel in which
a ghost has been making disturbances. They have their proton
packs on their back and they realize that they have never been
tested.

(65) Dr Ray Stantz: You know, it just occurred to me that we
really haven’t had a successful test of this equipment.
Dr. Egon Spengler: I blame myself.
Dr. Peter Venkman: So do I.

There are two readings of Peter Venkman’s quip, a sympathetic
reading and a reading on which he is, as usual, being a jerk. On the
SLOPPY reading (the sympathetic reading), Peter blames himself.
On the STRICT reading (the asshole reading), Peter blames Egon.
The strict/sloppy ambiguity exemplified in (65) can be explained
by saying that on one reading, we have a bound pronoun, and
on another reading, we have a referential pronoun. The anaphor
so picks up the the property ‘x blames x’ on the sloppy reading,
which is made available through Quantifier Raising thus:

Draft January 18, 2022

310 Beyond Function Application

(66) S

DP

I

LP

1 S

DP

t1

VP

V

blame

DP

myself 1

The strict reading can be derived from an antecedent without Quan-
tifier Raising:

(67) S

DP

I

VP

V

blame

DP

myself 1

This suggests that pronouns are sometimes bound, and some-
times free. We have not said anything about how to interpret deic-
tic pronouns like I, but let us assume that it picks out Peter Venkman
just as his name would in the relevant context of utterance. For
the reflexive pronoun myself, let us assume that it comes with an
index that determines which variable it maps to in the represen-
tation language, like other pronouns.

Exercise 20. Which reading — strict or sloppy — involves a bound
interpretation of the pronoun? Which reading involves a free in-
terpretation?

These considerations lead us to Heim and Kratzer’s hypothe-

Draft January 18, 2022

Beyond Function Application 311

sis: All pronouns are interpreted as variables, either free or bound.
For example, in the following examples, the pronoun in the sen-
tence is interpreted as a free variable; it doesn’t end up bound by
any quantifier:

(68) S

DP

She1

VP

V

is

A

nice

(69) S

DP

John

VP

V

hates

DP

D

his1

NP

father

But in the following examples, the pronoun is translated as a bound
variable (on the most prominent reading):

(70) S

DP

Every boy

LP

1 S

DP

t1

VP

V

loves

DP

D

his1

NP

father

Draft January 18, 2022

312 Beyond Function Application

(71) S

DP

John

LP

1 S

DP

t1

VP

V

hates

DP

D

his1

NP

father

Whether or not Quantifier Raising takes place will be reflected in
a free/bound distinction in the logical translation. The denota-
tion of the sentences with free pronouns will depend on an as-
signment.

Exercise 21. What empirical advantages does Heim and Kratzer’s
Hypothesis have over Hypotheses 1 and 2? Summarize briefly in
your own words, using example sentences where necessary.

This way of treating pronouns suggests that assignment func-
tions can be thought of as being provided by the discourse con-
text. As Heim & Kratzer (1998) put it:

Treating referring pronouns as free variables implies
a new way of looking at the role of variable assign-
ments. Until now we have assumed that an LF whose
truth-value varied from one assignment to the next
could ipso facto not represent a felicitous, complete
utterance. We will no longer make this assumption.
Instead, let us think of assignments as representing
the contribution of the utterance situation.

Draft January 18, 2022

Beyond Function Application 313

So a sentence that translates to a logical formula containing a free
variable can still make an interpretable contribution to a discourse.
Still, it is not appropriate to say She left! in a context where your
interlocutor has no idea who she refers to. This observation could
be captured via a requirement that the context specify an inter-
pretation for any free variables that occur in the representation of
the meaning of a given text. If she translates as x3, for example,
and this variable remains unbound, then the context should de-
termine an assignment function that provides a value for x3.

We will not go into depth developing a theory of context here,
but when we get to dynamic semantics in Chapter 9, we will intro-
duce contexts explicitly as part of our semantic theory, bridging
the gap between semantics and pragmatics. But first, we will in-
corporate presupposition into our theory of semantics. This will
be the focus of the next chapter, Chapter 8.

Draft January 18, 2022

8 ∣ Presupposition

8.1 Introduction

There are no dubstep albums by Gottlob Frege (the logician who
lived in the 1800s); he just did not make any. So the following sen-
tence is not true:

(1) There are dubstep albums by Frege.

Its negation, naturally, is true:

(2) There are no dubstep albums by Frege.

This is how things usually are; if a sentence is not true, then its
negation is true. But this is not always the case.

The following sentence, in which every combines with dubstep
albums by Frege, is not felt to be true:

(3) Every dubstep album by Frege is famous.

Yet few would assent to its negation, however it is formulated:

(4) a. Not every dubstep album by Frege is famous.
b. It’s not the case the every dubstep album by Frege is

famous.

Thus neither the original sentence nor its negation is felt to be
true. How can this be?

316 Presupposition

The answer is that every presupposes the existence of some-
thing satisfying the description it combines with. This presuppo-
sition is inherited by the negation. As Chierchia & McConnell-
Ginet (2000, 28) write, “If A PRESUPPOSES B, then A not only im-
plies B but also implies that the truth of B is somehow taken for
granted, treated as uncontroversial.” Furthermore,

If A presupposes B, then to assert A, deny A, wonder
whether A, or suppose A – to express any of these atti-
tudes toward A is generally to imply B, to suggest that
B is true and, moreover, uncontroversially so. That is,
considering A from almost any standpoint seems al-
ready to assume or presuppose the truth of B; B is part
of the background against [which] we (typically) con-
sider A.

Thus, if A presupposes B, then A, the negation of A, a yes/no ques-
tion targeting A, and a conditional sentence in which A figures as
the antecedent will all presuppose B as well. Observe that the fol-
lowing sentences also imply that Frege made at least one dubstep
album:

(5) Maybe every dubstep album by Frege is famous.

(6) If every dubstep album by Frege is famous, then I must be
out of the loop.

Every one of these sentences shares the implication; this is char-
acteristic of presupposition. In general, sentences that embed the
original sentence under negation, conditionals, and modals are
usually used to test for presuppositions. This is called the FAMILY-
OF-SENTENCES TEST. Sometimes questions are also used, though
these require an extension of the notion of entailment.

A word or construction that signals a presupposition is called a
PRESUPPOSITION TRIGGER. Other presupposition triggers include
the quantifiers both and neither, factive adjectives (e.g., glad, an-
noying), factive verbs (e.g., know, remember, realize), possessives,

Draft January 18, 2022

Presupposition 317

exclusives (e.g., only), and the definite determiner the (also called
a definite article). Besides every, here are some examples (where
≫ signifies ‘presupposes’):

(7) a. Neither candidate is qualified.
≫ There are exactly two candidates.

b. Ed is glad we won.
≫ We won.

c. Ed knows we won.
≫ We won.

d. Ed’s son is bald.
≫ Ed has a son.

e. Only Ed came.
≫ Ed came.

f. The balcony is lovely.
≫ There is a balcony.

The definite determiner is the presupposition trigger that the the-
ory of presupposition grew up around, so we will spend the next
section reviewing that history, using the definite determiner as a
focal point.

8.2 The definite determiner

So far, we have seen two types for determiners: ⟨⟨e, t⟩,⟨e, t⟩⟩ for
the indefinite determiner a in predicative descriptions such as a
singer in Agnetha is a singer; and ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩ for other deter-
miners. This section motivates a treatment of definite determin-
ers with yet a third type, namely ⟨⟨e, t⟩,e⟩. In a phrase like the
moon, called a DEFINITE DESCRIPTION, the singular definite de-
terminer the takes as input the predicate moon, and returns the
unique individual which satisfies that predicate, if there is one. If
there is not, then the phrase has an ‘undefined’ denotation. (We
set aside plural definite descriptions like the stars until Chapter
10.)

Draft January 18, 2022

318 Presupposition

Recall that definite descriptions often convey uniqueness, as
discussed earlier in Chapter 6 in relation to Generalized Quanti-
fier theory. Suppose that we were in Sweden, and you were not en-
tirely sure who was in the royal family, and in particular whether
there were any princesses, and if there were, how many there were.
Suppose then that someone were to tell you: Guess what! I’m at-
tending a banquet with the princess tonight. You would probably
infer that there is one and only one contextually relevant princess.
(There are actually many princesses in Sweden, so a sincere and
well-informed speaker would probably not use the expression the
princess out of the blue. The point is that if they do, this implies
that only one is relevant.) Thus definite descriptions convey EXIS-
TENCE (that there is a relevant princess, in this case), and UNIQUE-
NESS (that there is only one).

In “On Denoting”, Russell (1905) proposes to analyze definite
descriptions on a par with the quantifiers we analyzed in Chapter
6. He proposes that The princess smokes means ‘There is exactly
one princess and she smokes’:

(8) ∃x .[Princess(x)∧∀y .[Princess(y)→ x = y]∧Smokes(x)]

This expression can be read as follows: There exists some x such
that (i) x is a princess, and (ii) every y that is a princess is equal to
x (in other words, there are no princesses other than x), and (iii) x
smokes.

According to this treatment, the definite determiner introduces
an entailment both that there is a princess (existence, part (i) above)
and that there is only one (uniqueness, part (ii) above). The sen-
tence is thus predicted to be false if there are either no princesses
or multiple ones.

Exercise 1. Read the above formula aloud to yourself and then
write out the words that you said. Which part of this formula en-
sures uniqueness?

Draft January 18, 2022

Presupposition 319

Exercise 2.

(a) Give a Russellian lexical entry for the. It should combine with
princess and smokes to yield (8) as a translation.

(b) What is the type of the under your treatment?

(c) Show this lexical entry in action in the following tree:
S

DP

D

the

NP

princess

VP

V

smokes

Strawson (1950), in a response to Russell titled “On Referring”
and building on some ideas of Frege’s, agrees that definite descrip-
tions signal existence and uniqueness of something satisfying the
description, but he disagrees with Russell’s proposal that these
implications are entailments. His argument centers around so-
called EMPTY DESCRIPTIONS: definite descriptions in which noth-
ing satisfies the descriptive content. For example, since France is
not a monarchy, the king of France is an empty description. Straw-
son writes,

To say, “The king of France is wise” is, in some sense
of “imply”, to imply that there is a king of France. But
this is a very special and odd sense of “imply”. “Im-
plies” in this sense is certainly not equivalent to “en-
tails” (or “logically implies”).

Putting it another way:1

1With “disguised assertion”, Strawson is alluding to Russell’s idea that the

Draft January 18, 2022

320 Presupposition

When a man uses such an expression, he does not
assert, nor does what he says entail, a uniquely exis-
tential proposition. But one of the conventional func-
tions of the definite determiner is to act as a signal
that a unique reference is being made – a signal, not a
disguised assertion.

Strawson argues for this thesis as follows:

Now suppose someone were in fact to say to you with
a perfectly serious air: The king of France is wise. Would
you say, That’s untrue? I think it is quite certain that
you would not. But suppose that he went on to ask
you whether you thought that what he had just said
was true, or was false; whether you agreed or disagreed
with what he had just said. I think you would be in-
clined, with some hesitation, to say that you did not
do either; that the question of whether his statement
was true or false simply did not arise, because there
was no such person as the king of France. You might,
if he were obviously serious (had a dazed, astray-in-
the-centuries look), say something like: I’m afraid you
must be under a misapprehension. France is not a monar-
chy. There is no king of France.

Strawson’s observation is that we feel squeamish when asked to
judge whether a sentence of the form The F is G is true or false,
when there is no F. We do not feel that the sentence is false; we
feel that the question of its truth does not arise, as Strawson put
it.

For The king of France is wise, why doesn’t the question of its
truth arise? Because the sentence presupposes something that
is false, namely that there is one and only one king of France.

form of a sentence containing a definite description, where the definite descrip-
tion appears as a term, is misleading, and that the quantificational nature of
definite descriptions is disguised by this form.

Draft January 18, 2022

Presupposition 321

Only when the presuppositions of a sentence are met can it make
enough sense to be true or false. Otherwise, it is neither true nor
false. In fact, as discussed in Chapter 1, one way of defining pre-
supposition is just in this way:

(9) Semantic definition of presupposition
A presupposes B if and only if:
Whenever A is true or false (as opposed to neither true nor
false), B is true.

The truth values True and False are called CLASSICAL. The idea
here is that a presupposition of a sentence is something that needs
to be true in order for the sentence to even have a classical truth
value, as opposed to being neither true nor false.

Exercise 3. Recall the definition of entailment:

A entails B if and only if:
Whenever A is true, B is true.

Notice how similar this definition is to the semantic definition of
presupposition. Consider the relationship between these two def-
initions. According to these definitions, is semantic presupposi-
tion a species of entailment? Or is it the other way around? Or
neither? Explain your reasoning.

One way of implementing the idea that sentences might be
neither true nor false is by introducing a third truth value. Under
this strategy, along with ‘true’ and ‘false’, we have ‘undefined’ or
‘nonsense’ as a truth value. An alternative, subtly different strat-
egy would be to abstain from assigning any truth value whatso-
ever to sentences with false presuppositions. It turns out that hav-
ing this third truth value makes the formal system a bit easier to
set up, so we will adopt that strategy here. Let us use m (pro-
nounced “hash” or “undefined”) to represent this undefined truth

Draft January 18, 2022

322 Presupposition

value. If there is no king of France, then the truth value of the
sentence The king of France is wise will be m. In general, when a
sentence has a false presupposition, we call it a PRESUPPOSITION

FAILURE. Then the question becomes how we can set up our se-
mantic system so that this is the truth value that gets assigned to
a sentence with a false presupposition.

Intuitively, the reason that this sentence is neither true nor
false is that there is an attempt to refer to something that does
not exist. One way of capturing the same intuition is to introduce
a special ‘undefined individual’ of type e. We will adopt this ap-
proach here, using the symbol me to denote this individual in our
meta-language. One advantage of doing so is that every expres-
sion has some semantic value or other, so our system can com-
pute a denotation even in case of a presupposition failure. This
symbol is not meant to be introduced as an expression of our log-
ical representation language Lλ; rather we use me in our meta-
language to refer to this ‘undefined entity’ we are imagining, spec-
ifying this as the denotation for empty descriptions.2 A definite
description of the form the F will denote me whenever the num-
ber of satisfiers of F is not exactly one.

To formalize this idea, we introduce a new symbol into our
logic:

ι

which is the Greek letter ‘iota’. Like the λ symbol, ι can bind a
variable. Here is an example:

ιx .P(x)

This is an expression of type e. It denotes the unique individual
satisfying P if there is exactly one such individual, otherwise it de-
notes me . To add this symbol to our logic, first we add a syntax
rule producing ι-expressions:

2Other notations that have been used for the undefined individual include
Kaplan’s (1977) †, standing for a ‘completely alien entity’ not in the set of indi-
viduals, Landman’s (2004) 0, and Oliver & Smiley’s (2013) O, pronounced ‘zilch’.

Draft January 18, 2022

Presupposition 323

Syntax rule: Iota
If φ is an expression of type t , and u is a variable of type e, then
ιu .φ is an expression of type e.

The semantics of iota-expressions is defined as follows:

Semantic rule: Iota

Jιu .φKM ,g =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d if JφKM ,g[u↦d] =T but

for all d ′ distinct from d ,JφKM ,g[u↦d ′] = F

me otherwise

Here, d and d ′ are meta-variables that range over individuals in
De . The semantic rule tells us that the ι operator picks out the
unique referent d from the domain that belongs in the denotation
of the predicate φ. If there is no such element, it returns #. In
essence, ι encodes the existence and uniqueness conditions, and
introduces # when one of these conditions is not satisfied.

Here, we are working within an idealized semantic picture in
which contextual relevance plays no further role once the model
has been fixed. For the purposes of ι, the only thing that matters is
the number of individuals satisfying P in the domain of the model.

Exercise 4. Read the semantic rule for ι aloud to yourself and then
write down the words that you said. How does this definition en-
sure that ι expressions are undefined when existence and unique-
ness are not satisfied?

With this formal tool in hand, we can now give a so-called
“Fregean” analysis of the definite determiner as follows (see be-
low for further discussion of why it is called “Fregean”):

Draft January 18, 2022

324 Presupposition

(10) the↝λP . ιx .P(x)

Applied to a predicate-denoting expression like λx .Moon(x), it
denotes the unique moon, if there is one and only one moon in
the domain of the model.

(11) DP
e

ιx .Moon(x)

D
⟨⟨e, t⟩,e⟩

λP . ιx .P(x)

the

NP
⟨e, t⟩

λx .Moon(x)

moon

(12) Jιx .Moon(x)KM ,g

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d if JMoon(x)KM ,g[x↦d] =T but
for all d ′ distinct from d ,

JMoon(x)KM ,g[x↦d ′] = F

me otherwise

It may be useful to compare the existentially quantified for-
mula∃x.Moon(x) and the term ιx .Moon(x)The existentially quan-
tified formula checks if there is at least one individual that satis-
fiesMoon(x). If there is, it returns True, otherwise False. The term
checks if there is exactly one individual that satisfies Moon(x). If
there is, it returns that individual, otherwise #.

A definite description that successfully refers to something will
behave just like a proper name when embedded in a larger sen-
tence. Consider for example:

(13) The moon is spherical.

The definite description the moon, an expression of type e, picks

Draft January 18, 2022

Presupposition 325

out the unique moon in the given model, if there is one. Relative to
a model that adheres to our earth-centric worldview and contains
no moons other than that object we call the moon, i.e., Earth’s only
natural satellite, the definite description will successfully refer to
it. Assuming that spherical is translated as an expression of type
⟨e, t⟩, the sentence is true in a given model M if and only if, ac-
cording to M , the referent of the moon satisfies the predicate de-
noted by spherical. Simple enough.

But what happens if the definite description fails to refer, as in
The king of France is wise? Assume that a predicate likeWise yields
the undefined truth value m when given the undefined individ-
ual me as input, and yields true or false only for other individuals.
So JWise(α)KM ,g will be m if JαKM ,g = me , and T or F otherwise,
depending on whether JαKM ,g is in the extension of Wise with re-
spect to M and g . Since (the translation of) the king of France, in
a model that represents the state of the world today, would have
me as its denotation, (the translation of) The King of France is wise
would then have m as its denotation.

Exercise 5. Explain how this Fregean treatment of the definite de-
terminer vindicates Strawson’s intuitions.

Exercise 6. Using the assumptions above, compute a derivation
for the following tree:

S

DP

D

the

NP

N

king

PP

P

of

DP

France

VP

V

is

AP

A

wise

Draft January 18, 2022

326 Presupposition

This analysis is called “Fregean”, as it captures an intuition
that was expressed earlier by Frege (1892 [reprinted 1948]). Ac-
cording to Frege, a definite description like the king of France or
the negative square root of 4, like a proper name, denotes an indi-
vidual (corresponding to type e in modern parlance):

We have here a case in which out of a concept-expression,
a compound proper name is formed, with the help of
the definite article in the singular, which is at any rate
permissible when one and only one object falls under
the concept.

We assume that by “concept-expression”, Frege means an expres-
sion of type ⟨e, t⟩, and that by “compound proper name”, Frege
means “a complex expression of type e”. To flesh out Frege’s anal-
ysis of this example further, Heim & Kratzer (1998) suggest that
square root is a “transitive noun” (a.k.a. RELATIONAL NOUN), with
a denotation of type ⟨e,⟨e, t⟩⟩, and that “of is vacuous, square root
applies to 4 via Function Application, and the result of that com-
poses with negative under predicate modification.” Spelling this
out yields the structure in (14):

Draft January 18, 2022

Presupposition 327

(14) NP
e

D
⟨⟨e, t⟩,e⟩

the

N′

⟨e, t⟩

A
⟨e, t⟩

negative

N′

⟨e, t⟩

N
⟨e,⟨e, t⟩⟩

square root

PP
e

P
⟨e,e⟩

of

NP
e

four

Now, what does Frege mean by “permissible”? One way of formal-
izing this idea is that the denotes a function of type ⟨⟨e, t⟩,e⟩ that
is only defined for input predicates that characterize one single
entity. This function applies to a predicate, and if there is exactly
one satisfier of that predicate, then the return value is that satis-
fier. But if there are zero satisfiers or multiple satisfiers, then the
function simply does not return a value.

Exercise 7. Compute a derivation for the following tree according
to Frege’s intuitions, translating square root as a constant of type
⟨e,⟨e, t⟩⟩, and four as a constant of type e:

Draft January 18, 2022

328 Presupposition

DP

D

the

NP

AP

A

negative

N’

N

square root

PP

P

of

DP

four

Exercise 8. Assume the following lexical entries:

1. book↝λx .Book(x)

2. on↝λyλx .On(x, y)

3. pillow↝λx .Pillow(x)

Which of the following trees gives the right kind of interpretation
for the book on the pillow?

DP

the NP

book PP

on DP

D

the

NP

pillow

Draft January 18, 2022

Presupposition 329

DP

DP

D

the

NP

book

PP

P

on

DP

D

the

NP

pillow

Explain your answer. You will find it helpful to annotate the nodes
with their types (if not their fully beta-reduced translations as
well), and consider the type at the top of the tree.

Let us consider another example. Beethoven wrote one opera,
namely Fidelio, but Mozart wrote quite a number of operas. So
in a model reflecting this fact of reality, the phrase the opera by
Beethoven has a defined value. But the opera by Mozart does not.
Consider what happens when the opera by Mozart is embedded in
a sentence like the following:

(15) The opera by Mozart is Italian.

This would have the following translation:

Italian(ιx .[Opera(x)∧By(x,mozart)])

Assuming that Italian (like Wise) yields the value m when applied
to an expression whose semantic value is me , this formula will
denote m in a model where there are multiple operas by Mozart.
Here as before, the undefinedness of the definite description “per-
colates up”, as it were, to the sentence level.

Draft January 18, 2022

330 Presupposition

Exercise 9. Both The king of France is wise and The opera by
Mozart is Italian have an undefined value relative to the actual
world, but for different reasons. Explain the difference.

The iota operator can be used in the analysis of other phe-
nomena as well. We give one example here: possessives. As men-
tioned above, possessives trigger presuppositions:

(16) Björn loves Agneta’s cat.
≫ Agneta has a cat.

The fact that this inference is a presupposition can be seen via the
projection test; for example, Björn doesn’t love Agneta’s cat also
implies that Agneta has a cat. How might we define possessive-
marking in a way that captures this presupposition? Let us con-
sider first what sort of meaning representation we wish to derive
for the sentence as a whole. We propose the following as a repre-
sentation of the meaning of (16):

(17) Loves(b, ιy[Cat(y)∧Has(a, y)])]

Under this treatment, (16) presupposes not only that Agneta has a
cat, but also that she has exactly one (a common but slightly con-
troversial assumption). To arrive at this formula compositionally,
we propose the following lexical entry for possessive ’s:

(18) ’s↝λxλP . ιy .P(y)∧Has(x, y)

Exercise 10. Draw a derivation tree for example (16) and annotate
each node with its translation and its semantic type, using the lex-
ical entry in (18).

Draft January 18, 2022

Presupposition 331

8.3 Definedness conditions

In the previous section, we encountered two examples of presup-
positional expression, namely the definite determiner the and the
possessive suffix ’s. We translated both using ι-expressions, which
lead to a presupposition failure when nothing satisfies the descrip-
tion. In that case, we assumed that definite descriptions denote a
special ‘undefined individual’, denoted #e .

Even if we are satisfied with our treatment of those phenom-
ena, we still need a more general way of dealing with presupposi-
tion. The determiners both and neither, for example, come with
presuppositions; accordingly, they are called PRESUPPOSITIONAL

DETERMINERS. In a context where three candidates are applying
for a job, it would be quite odd for someone to say either of the
following:

(19) a. Both candidates are qualified.
b. Neither candidate is qualified.

If there were only two candidates and both were qualified, then
(19a) would clearly be true and (19b) would clearly be false. But
with any number of candidates other than two, it is odd to say
that these sentences are true. Applying the projection test, we
can see that this inference survives embedding under entailment-
cancelling operators:

(20) a. It’s not true that both candidates are qualified.
b. It’s not true that neither candidate is qualified.

(21) a. If both candidates are qualified, then we will have a
round of interviews.

b. If neither candidate is qualified, then we will have to
expand the search.

(22) a. Maybe both candidates are qualified.
b. Maybe neither candidate is qualified.

Draft January 18, 2022

332 Presupposition

All of these imply that there are two candidates. These results
support the idea that both candidates and neither candidate come
with a presupposition that there are exactly two candidates.

We will set aside both and focus on neither, in its use as a de-
terminer as in (19b). We can model its presupposition by treating
neither as a variant of no that is only defined when its argument
is a predicate with exactly two satisfiers. Let us use ∣P ∣ = 2 (‘the
cardinality of P is 2’) as a shorthand way of expressing the fact
that predicate P has exactly two satisfiers.3 This is what is pre-
supposed. To signify that it is presupposed, we will use Beaver
& Krahmer’s (2001) ∂ operator, pronounced “presupposing that”.
This operator is of type ⟨t , t⟩; that is, it maps a formula to another
formula. A formula like this:

∂(∣P ∣ = 2)

can be read, ‘presupposing that there are exactly two Ps’. The lex-
ical entry for neither can be stated using the ∂ operator as follows:

(23) neither↝λPλQ .[∂(∣P ∣ = 2)∧¬∃x .[P(x)∧Q(x)]]

This says that neither is basically a synonym of no, carrying an
extra presupposition: that there are exactly two Ps.4

In order to be able to give translations like this, we need to
augment Lλ to handle formulas containing the ∂ symbol. Let us

3
∣P ∣ = 2 is short for ∃x∃y[¬(x = y)∧P(x)∧P(y)∧¬∃z[¬(z = x)∧¬(z = y)∧

P(z)]].
4A widely used alternative notation, inspired by Heim & Kratzer (1998), writes

the presupposition of a lambda term at the beginning of the value description
of that term, in between a colon and a dot. For example, (23) would be written
λPλQ ∶ ∣P ∣ = 2.¬∃x[P(x)∧Q(x)] in that notation, without any ∂ operator. One
practical advantage of the present system is that it offers a way of indicating
the presuppositions at the top node of a sentence, once the function has been
applied to all of its arguments and the translation has become a formula. The
colon/dot notation only makes sense inside the definition of a function. That
it is nevertheless widely used is likely due to the influence of Heim & Kratzer
(1998). Also, that textbook uses direct rather than indirect interpretation, so they
skip the representation language where beta reduction happens.

Draft January 18, 2022

Presupposition 333

call our new language ∂L. In this new language, ∂(φ) will be a
kind of expression of type t . Its value will be ‘true’ if φ is true and
‘undefined’ otherwise. While the logics in previous chapters were
classical and therefore two-valued, this new language is a THREE-
VALUED LOGIC: a logic in which there are three truth values to be
assigned to sentences. To implement this, we add the following
rules:

Syntax Rule: Definedness conditions
Ifφ is an expression of type t , then ∂(φ) is an expression of type t .

Semantic Rule: Definedness conditions
If φ is an expression of type t , then:

J∂(φ)KM ,g = {T if JφKM ,g =T
m otherwise.

The lexical entry in (23) will give us the following analysis for
(19b), where beta-reduced variants of the translations are given at
each node:

(24) ∂(∣Candidate∣ = 2)∧¬∃x .[Candidate(x)∧Qualified(x)]

λQ .[∂(∣Candidate∣ = 2)∧¬∃x .[Candidate(x)∧Q(x)]]

λPλQ .[∂(∣P ∣ = 2)∧¬∃x .[P(x)∧Q(x)]]

neither

λx .Candidate(x)

candidate

λx .Qualified(x)

is qualified

The translation for the whole sentence should have a defined value
in a model if ∣Candidate∣ = 2 is true in the model. If it has a de-

Draft January 18, 2022

334 Presupposition

∧ T F m

T T F m

F F F m

m m m m

∨ T F m

T T T m

F T F m

m m m m

¬
T F
F T
m m

∂

T T
F m

m m

Table 8.1: Truth tables for the Weak Kleene connectives

fined value, then its value is equal to that of ¬∃x .[Candidate(x)∧
Qualified(x)].

The existence presupposition of the quantifier every can be
treated using definedness conditions as well. We can capture it
using the following kind of analysis of every:

(25) every↝λPλQ .[∂(∃x .P(x))∧∀x .[P(x)→Q(x)]]

This will give rise to an undefined value for Every dubstep album
by Frege in models where there are no dubstep albums by Frege
(such as the one corresponding to reality), capturing the intuition
that the sentence is neither true nor false.

8.4 Designing a three-valued logic

In setting up a logic with three truth values, a number of deci-
sions have to be made. For example, what if φ is undefined and
ψ is true—is [φ∧ψ] undefined or false? If we take undefinedness
to represent ‘nonsense’, then presumably the conjunction of non-
sense with anything is also nonsense. The same applies for dis-
junction, and the negation of an undefined formula is also pre-
sumably undefined. This perspective leads to the truth tables in
Table 8.1. In the truth tables for the binary connectives, the truth
value of one conjunct (or disjunct) is represented by the row la-
bels, and the truth value of the other is represented by the col-
umn labels. The tables are symmetric, so it doesn’t matter which
is which. The value in the table is the value for the conjoined

Draft January 18, 2022

Presupposition 335

∧ T F m

T T F m

F F F F
m m F m

∨ T F m

T T T T
F T F m

m T m m

¬
T F
F T
m m

∂

T T
F m

m m

Table 8.2: Truth tables for the Strong Kleene connectives

(or disjoined) formula. These connectives are called the WEAK

KLEENE connectives, after the American mathematician Stephen
Cole Kleene. If, on the other hand, we take undefinedness to rep-
resent ‘unknown value’, then the conjunction of an unknown value
with False is false, and the disjunction of an unknown value with
True is true. These connectives are called the STRONG KLEENE

connectives (see Table 8.2; the values that differ from the Weak
Kleene ones are bolded).

Strong Kleene and Weak Kleene connectives give different truth
conditions in the case where one conjunct/disjunct is undefined
and the other is not, such as the following:

(26) The king of France is wise and the moon is made of green
cheese.
Weak Kleene: m; Strong Kleene: F

(27) The king of France is wise or there is no king of France.
Weak Kleene: m; Strong Kleene: T

(These truth values are based on the assumptions that there is
no king of France, and that there is exactly one moon but it is
not in fact made of green cheese.) Intuitions may differ regard-
ing whether it is more sensible to regard (26) as undefined or false,
and whether it is more sensible to regard (27) as undefined or true.
In any case, there are trade-offs. The Strong Kleene connectives
give us a bit more flexibility: We can define Weak Kleene connec-
tives in terms of Strong Kleene ones, but not the other way around.
Furthermore, as Beaver & Krahmer (2001) show, the Strong Kleene

Draft January 18, 2022

336 Presupposition

connectives can be used to capture some subtleties of presuppo-
sition projection, discussed in Section 8.5. On the other hand, the
Weak Kleene connectives fit better with the motivating intuition
underlying the introduction of three-valued logic in the first place,
the idea that the third truth value represents ‘nonsense’. For con-
creteness, we will adopt the Weak Kleene connectives here, but
encourage the reader to keep in mind Strong Kleene as an alter-
native.

It is sometimes useful to think of the semantic contribution of
a sentence as a conjunction consisting of two components: the
presupposition and the AT-ISSUE CONTENT. The at-issue content
is the part of a sentence which, intuitively speaking, expresses
its “main point”. In contrast, the presupposition typically corre-
sponds to a background assumption. For example, the presuppo-
sition of (28a) is (28b) and its at-issue content is (28c).

(28) a. John stopped smoking.
b. John used to smoke.
c. John does not currently smoke.

When this simplified picture is implemented using the ∂ operator,
one conjoins the presupposition ∂(π) with the at-issue contentφ.
If so, it is crucial to use a weak Kleene conjunction, so that ∂(π)∧φ
denotes the truth value of the at-issue content φ whenever π is
true, and otherwise #. This is the desired behavior. Under a strong
Kleene interpretation, when both φ and ψ are false, ∂(φ) ∧ψ is
also false. But this is incorrect, since a sentence whose presuppo-
sition is false has the truth value #.

Another slightly thorny issue is identity. Under what circum-
stances do we want to say that a given sentence of the form α =β
is true, given that α or βmight denote #e ? We certainly don’t want
it to turn out to be the case that The king of France is the Grand
Sultan of Germany is a true statement. To deal with this issue,
LaPierre (1992) defines identity between two terms as follows:

• If neither α nor β denotes the undefined individual, then:

Draft January 18, 2022

Presupposition 337

Jα =βKM ,g =T if JαKM ,g = JβKM ,g , and F otherwise.

• If exactly one of α or β denotes the undefined individual,
then Jα =βKM ,g = F

• If both denote the undefined individual, then Jα =βKM ,g =
m (the rationale being that not enough is “known” about
the objects to determine that they are the same or distinct).

This treatment avoids the conclusion that The king of France is
Grand Sultan of Germany is true.

The last remaining issue we must address before we can de-
fine a three-valued logic to serve as our representation language
is what to do with quantified sentences. Consider the following
sentence:

(29) Every boy loves his cat.

Ignoring the presupposition of every, and building on the analysis
of possessive ’s given above (i.e. decomposing his into he+’s and
treating his cat as synonymous with the cat he has), this would be
translated:

(30) ∀x .[Boy(x)→ Loves(x, ιy[Cat(y)∧Has(x, y)])]

This formula will be true in a model where every element of De

satisfies the following formula, when plugged in for x:

(31) Boy(x)→ Loves(x, ιy[Cat(y)∧Has(x, y)])

What, precisely, is the presupposition of (29)? If his is translated as
a variable as we have seen in Chapter 7, the presupposition trig-
gered by loves his cat in (29) can be paraphrased as “x owns a cat”,
where x occurs free. Indeed, the translation in (30) will denote the
value ‘undefined’ when x is a boy who doesn’t happen to have a
single cat. What if there are such boys? Should that make the sen-
tence as a whole have an undefined truth value? Or should we say
that the sentence is true as long as every boy who has a cat loves

Draft January 18, 2022

338 Presupposition

it? In other words, if the assortment of truth values that the open
formula x loves his cat (the SCOPE PROPOSITION) takes on as we cy-
cle through various values for x contains both T and #, should the
truth value for the proposition Every boy loves his cat (the UNIVER-
SAL PROPOSITION) be T or should it be #? Different authors have
advocated different answers to this question.

According to Muskens (1995a), a partial logic should be set up
in such a way that universal quantifiers ‘match’ conjunction, and
existential quantifiers ‘match’ disjunction. In other words, a uni-
versal claim should be seen as a big conjunction, and an existen-
tial claim should be seen as a big disjunction. With a Weak Kleene
treatment of conjunction, then, this desideratum leads to the fol-
lowing treatment of universal quantification:

(32) J∀x .φKM ,g =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T if JφKM ,g[x→k] =T for all k ∈De

if JφKM ,g[x→k] = # for some k ∈De

F otherwise

With this treatment of the universal quantifier, a universal claim is
false only if (a) the scope proposition never takes on an undefined
value for any value of the variable, and (b) the scope proposition
is false for at least one value of the variable. For example, Every
boy loves his cat is false only if every boy has a cat (and at least one
boy doesn’t love his cat).

In predicate logic, the universal and existential quantifiers are
duals of each other; in particular, ∀x .¬φ is equivalent to ¬∃x .φ.
To maintain this equivalence, given the treatment of the universal
quantifier just given, we must define the existential quantifier as
follows:

J∃x .φKM ,g =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F if JφKM ,g[x→k] = F for all k ∈De

if JφKM ,g[x→k] = # for some k ∈De

T otherwise

So an existential claim is true only if the scope proposition never
takes on an undefined value, and is not always false. For example,

Draft January 18, 2022

Presupposition 339

Some boy loves his cat is false if every boy has a cat (and no boy
loves his cat).

Our treatment of identity and quantification gives us a way of
handling certain exceptions to the general rule that predications
involving the undefined individual will themselves be undefined.
Above, we said that a predicate should yield m when applied to
the undefined individual, as in The king of France is wise. But
there are cases in which we might want the predication to be true.
Among them are negative existence statements, as in the follow-
ing sentence discussed by Russell (1905):

(33) The golden mountain does not exist.

Russell used this sentence as evidence in favor of his “Russellian”
approach to the meaning of the definite article. Another approach
to negative existence statements involving definite descriptions
like (33) is to translate the English word exist as λx .∃y[y = x], and
to assume that since the undefined individual #e lacks existence
and any other properties, it is not considered part of the domain
De over which quantifiers range and predicates and relations are
defined. Then the translation of (33) would be:

(34) ¬∃y.y = ιx .[Golden(x)∧Mountain(x)]

Since the undefined individual #e is not in De , it is outside of the
range of the existential quantifier. For this reason, by the rules
for identity given above, ∃y.y = τ never denotes m no matter what
is the value of y and what term is inserted for τ. In particular,
in models where there is no unique golden mountain, the term
ιx .[Golden(x)∧Mountain(x)] denotes the undefined individual
#e . By the rules above, the formula

(35) ∃y.y = ιx .[Golden(x)∧Mountain(x)]

then denotes F, and the formula (34) denotes T. (Unfortunately,
though, it still denotes Tif there are two golden mountains, con-

Draft January 18, 2022

340 Presupposition

trary to intuition. So this account is not definitive.)5

We are now ready to give the full semantics for ∂L. We leave the
syntax of the language implicit, and just give the semantics here.

As usual, types are associated with domains. Type e is associ-
ated with the domain of individuals De = D and type t is associ-
ated with the domain of truth values D t = {T,F,#}. For functional
types ⟨σ,τ⟩, there is a domain D⟨σ,τ⟩ consisting of the (total) func-
tions from Dσ to Dτ. For every type, there is also an ‘undefined
individual’ of that type, which we refer to as mτ. This will allow
complex expressions of any type to inherit presupposition failures
of its subexpressions, which can be useful when carrying out com-
positional derivations involving presuppositions. We assume that
at least in the case of type e, this ‘undefined individual’ is not a
member of De .

Expressions are interpreted with respect to a model, a world,
and an assignment. A model is a tuple ⟨D, I⟩ subject to the follow-
ing constraints:

• The domain of individuals De contains at least one individ-
ual.

• I is an interpretation function, assigning a denotation to all
of the constants of the language. The denotation of a con-
stant of type τ is a member of Dτ.

An assignment g is a total function whose domain consists of the
variables of the language such that if u is a variable of type τ then
g(u) ∈Dτ.

5Another exception to the rule that predications involving the undefined in-
dividual are themselves undefined comes from sentences in which a definite
description that fails to refer occurs in a non-subject position (Strawson, 1964):

(i) The Exhibition was visited yesterday by the king of France.

While this sentence still presupposes the existence of a unique king of France,
it is still readily judged false (von Fintel, 2004). We offer no account of this phe-
nomenon.

Draft January 18, 2022

Presupposition 341

The semantic rules are the following.

1. Basic Expressions

(a) If α is a non-logical constant, then JαKM ,g = I(α).

(b) If α is a variable, then JαKM ,g = g(α).

2. Application
If α is an expression of type ⟨σ,τ⟩, and β is an expression of
type σ, then Jα(β)KM ,g = JαKM ,g (JβKM ,g).

3. Identity
If α and β are terms, then

Jα =βKM ,g

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T if JαKM ,g = JβKM ,g ≠me

if JαKM ,g =me and JβKM ,g =me

F otherwise

4. Connectives
We adopt a Weak Kleene semantics for the connectives, as
defined as in Table 8.1.

5. Quantification

(a) If φ is a formula and v is a variable of any type: then

J∀vφKM ,g =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T if JφKM ,g[v→k] =T for all k ∈D

if JφKM ,g[v→k] = # for some k ∈D
F otherwise

(b) If φ is a formula and v is a variable of any type: then

J∃vφKM ,g =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F if JφKM ,g[v→k] = F for all k ∈D

if JφKM ,g[v→k] = # for some k ∈D
T otherwise

Draft January 18, 2022

342 Presupposition

6. Lambda Abstraction
Ifα is an expression of type τ and u a variable of typeσ then
Jλu .αKM ,g is that function h from Dσ into Dτ such that for

all objects k in Dσ, h(k) = JαKM ,g[u↦k].

This is just one example of a complete system; other design choices
are also possible.

Exercise 11. Define a semantics for the universal and existential
quantifiers based on the Strong Kleene connectives. Make sure
that the two quantifiers are duals of each other, so ∀x¬φ is equiv-
alent to ¬∃xφ and ¬∀xφ is equivalent to ∃x¬φ. (You don’t need
to prove that they are duals in your answer.)

8.5 The projection problem

The treatment of presupposition we have given so far correctly
predicts that presuppositions can PROJECT: If a sentence S is em-
bedded in a larger sentence S′, and S carries a presupposition,
then S′ may carry the same presupposition. For instance, both
of the following sentences convey that there are multiple candi-
dates:

(36) a. Every candidate is qualified.
b. It is not the case that every candidate is qualified.

We have set up our logic so that ¬φ has the truth value m when-
everφ has that truth value. So, whenever (36a) is undefined, (36b)
is undefined as well. Hence, if a given sentence S presupposes
some sentence P—in the sense that the truth value of S is unde-
fined unless P is true—then the negation of S is predicted to pre-
suppose P as well. In that sense, the presupposition is predicted
to PROJECT OVER NEGATION, under the theoretical assumptions

Draft January 18, 2022

Presupposition 343

we have laid out. In fact, given our use of the Weak Kleene con-
nectives, presuppositions are always predicted to project from an
embedded sentence to a more complex one containing it.

But presuppositions do not always project. Consider the fol-
lowing examples:

(37) If there is a king of France, then the king of France is wise.

(38) Either there is no king of France or the king of France is
wise.

Neither of these sentences as a whole implies that there is a king
of France. The problem of determining when a presupposition
projects is called the PROJECTION PROBLEM.

The expressions if /then and either/or are FILTERS, which do
not let all presuppositions “through”, so to speak. (Imagine the
presuppositions floating up from deep inside the sentence, and
getting trapped when they meet if /then or either/or.) In keeping
with their name, operators like if /then and either/or do let some
presuppositions through. Examples:

(39) If France remains neutral, then the king of France is wise.

(40) Either France is lucky or the king of France is wise.

Both of these sentences carry the presupposition that there is a
king of France. The key difference between (39) and (37) is that
in (39), the antecedent (France remains neutral) does not entail
the consequent’s presupposition (that there is a king of France).
Similarly, in (40), unlike in (38), the first disjunct (France is lucky)
does not entail the second disjunct’s presupposition (again, that
there is a king of France).

In general, when the antecedent of the conditional (the if -
part) entails a presupposition of the consequent (the then-part),
the presupposition gets filtered out, so the larger, complex sen-
tence does not carry the presupposition. With a disjunction, the
generalization is that presupposition of one disjunct gets filtered

Draft January 18, 2022

344 Presupposition

out when the negation of another disjunct entails it.
We have used the word entail in the generalizations above.

In (37) and (38), the part of the sentence that is supposed to en-
tail the presupposition is simply equivalent to the presupposition.
But it could also be stronger, and entail the presupposition with-
out being equivalent to it:

(41) a. If France is a constitutional monarchy with a king and
a queen, then the king of France is wise.

b. Either France has not recently crowned its first king in
centuries, or the king of France is wise.

In (41a) the antecedent is France is a constitutional monarchy with
a king and a queen, which is slightly stronger (more informative)
than the consequent’s presupposition—just that France has a king.
Still, the sentence as a whole does not carry the presupposition
that there is a king of France; it gets filtered out. So the antecedent
need not be identical to the consequent’s presupposition; an en-
tailment relation suffices for the presupposition to be filtered out.
Similarly, in (41b), the negation of the first disjunct (France has
recently crowned its first king in centuries) is stronger than the sec-
ond disjunct’s presupposition (that France has a king). Here again,
the presupposition gets filtered out; the sentence as a whole does
not carry the presupposition that there is a king of France. Again
we see that an entailment relation suffices for the filtering to take
place.

Furthermore, the entailment relation may depend on real-world
knowledge or assumptions (example adapted from Karttunen 1973a):

(42) Either Geraldine is not a devout Christian or she has stopped
attending services on Sundays.

The second disjunct (she has stopped attending services on Sun-
days) presupposes that Geraldine did attend services on Sundays.
The first disjunct is Geraldine is not a devout Christian, the nega-
tion of which is Geraldine is a devout Christian. Together with the

Draft January 18, 2022

Presupposition 345

assumption that all devout Christians have attended services on
Sundays at some point in their life, the negation of the first dis-
junct entails that Geraldine attends services on Sundays. But the
first disjunct does not carry that entailment on its own. The gener-
alization should thus be revised to take real-world knowledge and
assumptions into account: If the negation of the first disjunct, to-
gether with real-world knowledge and assumptions, entails a pre-
supposition of the second disjunct, then that presupposition gets
filtered out. The analogous modification is applicable to the fil-
tering condition on conditional.

As mentioned above, the system that we have introduced for
dealing with presuppositions predicts that presuppositions will
always project, since undefinedness always “percolate up,” so to
speak. There are ways of handling presupposition projection within
the “static” type of framework we have been developing so far. The
first step is to move from Weak Kleene to Strong Kleene connec-
tives (Beaver & Krahmer, 2001). A more influential approach to
the projection problem, however, has made use of dynamic se-
mantics, where the denotation of a sentence is a “context change
potential”: a function that can update a discourse context. We
take up this subject in the next chapter.

Draft January 18, 2022

9 ∣ Dynamic semantics

(Significant revisions are planned for this chapter.)

9.1 Introduction

In this chapter, we motivate DYNAMIC SEMANTICS,1 where the de-
notation of an utterance is something that depends on and up-
dates the current discourse context. We will show first that the
presupposition projection problem receives an insightful solution
under a dynamic perspective. We then discuss pronouns with in-
definite antecedents, including the famous ‘donkey sentences’:

(1) If a farmer owns a donkey, then he beats it.

The chapter ends with a compositional dynamic fragment.

9.2 Presupposition in dynamic semantics

Recall the following generalizations from the previous chapter:

(2) When the antecedent of the conditional (the if -part) en-
tails a presupposition of the consequent (the then-part),
the presupposition gets filtered out.

1 Heim 1982b, 1983b,a; Kamp & Reyle 1993; Groenendijk & Stokhof 1990a,
1991; Muskens 1996, among others

348 Dynamic semantics

(3) A presupposition of one disjunct gets filtered out when the
negation of another disjunct entails it.

These two generalizations can be stated concisely and illuminat-
ingly using Karttunen’s (1974) concept of LOCAL CONTEXT: In gen-
eral, a presupposition gets filtered out if it is entailed by the ap-
propriate local context. The local context for the consequent of
a conditional is its antecedent. For disjunction, the local context
for the right disjunct is the negation of the left; whether this also
holds the other way around, or whether the local context for the
left disjunct is the context of the disjunction, is a matter of some
debate.

This idea builds on Stalnaker’s (1978) ideas about the prag-
matics of presupposition. Stalnaker introduces the concept of the
CONTEXT SET, which is conceived of as the set of possible worlds
that the participants in a conversation all publicly consider pos-
sible candidates for being the actual world. A context set is a set
that formally represents a context; it is not a set of contexts. Ac-
cordingly, it is common to refer to the context set simply as a CON-
TEXT, and we will do so below. (We make the simplifying assump-
tion that the context is the same for all participants. This means,
for example, that all participants are sincere and not trying to de-
ceive one another.) If a proposition holds in every world in the
context, it is PRESUPPOSED. Here is how Stalnaker characterizes it:

Roughly speaking, the presuppositions of a speaker
are the propositions whose truth he takes for granted
as part of the background of the conversation. A propo-
sition is presupposed if the speaker is disposed to act
as if he assumes or believes that the proposition is
true, and as if he assumes or believes that his audi-
ence assumes or believes that it is true as well. Pre-
suppositions are what is taken by the speaker to be
the COMMON GROUND of the participants in the con-
versation, what is treated as their COMMON KNOWL-

Draft January 18, 2022

Dynamic semantics 349

EDGE or MUTUAL KNOWLEDGE...

It is PROPOSITIONS that are presupposed – functions
from possible worlds into truth-values. But the more
fundamental way of representing the speaker’s pre-
suppositions is not as a set of propositions, but rather
as a set of possible worlds, namely those compatible
with what is presupposed. This set, which I will call
the CONTEXT SET, is the set of possible worlds recog-
nized by the speaker to be the “live options” relevant
to the conversation. A proposition is presupposed if
and only if it is true in all of these possible worlds.

The motivation for representing the speaker’s presup-
positions in terms of a set of possible worlds in this
way is that this representation is appropriate to a de-
scription of the conversational process in terms of its
essential purposes. To engage in conversation is, es-
sentially, to distinguish among alternative possible ways
that things may be. The presuppositions define the
limits of the set of alternative possibilities among which
speakers intend their expressions of propositions to
distinguish.

Before an assertion contributes a proposition to the common
ground, it needs to be accepted by all conversational participants.
If an assertion is made, and all of the interlocutors accept it, the
content of the assertion is added to the common ground. Stal-
naker thinks of the purpose of a conversation as inquiry into the
live options for what the actual world is like. As the contents of as-
sertions accumulate in the common ground, possible worlds that
were previously live options are eliminated, that is, they are re-
moved from the context. Thus the effect of accepting an assertion
in a context is to to eliminate from the context all the worlds in-
compatible with the assertion. This is the basic insight that dy-
namic semantics encodes in its semantics.

Draft January 18, 2022

350 Dynamic semantics

It is worth emphasizing the distinction between the context
(or context set, as Stalnaker calls it) and the common ground. The
context is the intersection of all of the propositions in the com-
mon ground. The common ground is what is presupposed, and
the context consists of the live options given what is in the com-
mon ground. The common ground gets bigger as information
is exchanged in a conversation, but the context gets smaller. As
propositions are added to the common ground, worlds get sub-
tracted from the context. This is because the more information
one collects about how the world actually is, the fewer candidates
remain for how it might be.

But an assertion is only felicitous when its presuppositions al-
ready hold in the context. Let us say that the presuppositions of
a sentence are SATISFIED in a given context if the context entails
the presuppositions. This definition depends on a notion of en-
tailment that can hold between contexts and sentences which we
must make precise. Recall that a sentence φ ENTAILS another sen-
tence ψ (written φ⊧ψ) if and only if whenever φ is true, ψ is true.
For most of the book so far, we have adopted an extensional the-
ory, and let sentences denote truth values. Now let us switch to an
intensional view and let sentences denote propositions, i.e. sets
of possible worlds. Then we can say that φ entails ψ if and only if
the proposition expressed by φ is a subset of the proposition ex-
pressed by ψ: every φ-world is a ψ-world. For example, suppose
that John is president in w1, w2, and w3, so the proposition ex-
pressed by ‘John is president’ is:

{w1, w2, w3}

Assume further that in every world, John is a child. Thus a child
is president in all of these worlds. But there are also other worlds
where Mary, who is also a child, is the president. Call these w4 and
w5. Then the proposition expressed by ‘A child is president’ is:

{w1, w2, w3, w4, w5}

Draft January 18, 2022

Dynamic semantics 351

Since
{w1, w2, w3} ⊆ {w1, w2, w3, w4, w5}

‘John is president’ entails ‘A child is president’. All worlds in which
the former holds are worlds in which the latter holds.

Now, what does it mean for a sentence to be entailed by a con-
text? As we said above, a context consists of all of the information
that is presupposed – in other words, all of the information that is
agreed upon, or taken for granted. We could think of this informa-
tion as a set of sentences, or as the set of propositions expressed
by these sentences. Or, as Heim (1983c, 399) puts it:

A context is here construed more or less... as a set of
propositions, or more simply, as a proposition, namely
that proposition which is the conjunction of all the el-
ements of the set.

If propositions are sets of possible worlds, then what is the con-
junction of a set of propositions? Here is a concrete example:

P = {w1, w2, w3} [‘John is president’]
Q = {w2, w3, w4, w5} [‘A child is president’]
R = {w2, w3} [‘John has a girlfriend’]
S = {w1, w4} [‘Mary is sick’]
W = {w1, w2, w3, w4, w5, w6, w7, w8, w9, w10}[the set of all worlds]

What is the conjunction of P and S, the conjunction of the propo-
sition that John is president and the proposition that Mary is sick?
It is the set of worlds where both propositions are true. That is the
intersection (not the union).

P ∩S
= {w1, w2, w3}∩{w1, w4}
= {w1}

So the context will constitute a set of possible worlds, those pos-
sible worlds in which all of the presupposed facts hold, i.e., the
intersection of all of the agreed-upon propositions.

Draft January 18, 2022

352 Dynamic semantics

On the dynamic view, the denotation of a sentence is consti-
tuted by its potential to update the context: a CONTEXT CHANGE

POTENTIAL, rather than a characterization of the world. We can
say that the update CRASHES when the presuppositions of the sen-
tence are not satisfied. Let us write:

(4) c +φ

to denote the result of updating a context c (which is a set of worlds)
with the proposition expressed by φ. Ignoring assignment func-
tions, if we take the denotation of a sentence to be a set of possi-
ble worlds, the update that a sentence makes is to narrow down
the context to just those in which the proposition expressed by
the sentence holds. A sentence like John is happy, for example,
eliminates all worlds where John is not happy from the context.
Since both contexts and sentence denotations are sets of possible
worlds, context update amounts to intersection:

(5) c +φ = c ∩ JφK

Exercise 1. Suppose that the context c consists of the following
worlds: {w1, w2, w3, w4, w5} and in these worlds it is raining:
{w2, w4}. What is the result of updating c with It is raining?

Suppose that we have a sentence like John’s son is bald, which
presupposes that John has a son. If there are some worlds in the
context where John does not have a son, then the presuppositions
of the sentence are not satisfied in the context. In such a situation,
we say that the context does not ADMIT the sentence. Karttunen’s
idea is that in order for a context to admit a sentence, the context
must entail the presuppositions of the sentence. Admittance is de-
fined in terms of SATISFACTION:

(6) Satisfaction
Let Pφ be the set of worlds where the presuppositions of φ

Draft January 18, 2022

Dynamic semantics 353

are satisfied. A context c satisfies the presuppositions of φ
if c ⊆ Pφ.

(7) Admittance
A context c ADMITS φ if and only if c satisfies the presuppo-
sitions of φ.

In terms of the previous chapter, whenφ is a declarative sentence,
admittance can be thought of as determining that a sentence has
a truth value other than #.

Now, given a context that does not satisfy the presuppositions
of a given sentence, it is easy enough to repair it so that the pre-
suppositions are taken for granted; this process is called GLOBAL

ACCOMMODATION.2 But the idea is nevertheless that the update
cannot proceed until the context is such that all the presupposi-
tions of the sentence are satisfied.

A simple, non-compound sentence will have a set of BASIC

PRESUPPOSITIONS. For example, Both Bill’s children are bald pre-
supposes that Bill has exactly two children; this is a basic presup-
position of this non-compound sentence. Non-compound sen-
tences are admitted by a context as long as the context entails all
of their basic presuppositions:

(8) Admittance conditions for non-compound sentences
If φ is a simple, non-compound sentence, then a context c
admits φ if and only if c satisfies the basic presuppositions
of φ. (Karttunen, 1974, 184)

Exercise 2. Assume the following:
P = {w1, w2, w3} [‘John is president’]
Q = {w1, w2, w3, w4, w5} [‘A child is president’]

2As opposed to LOCAL ACCOMMODATION, which has been posited as a last-
resort mechanism that allows interpreting a presupposition locally under se-
mantic operators when it cannot project for some reason. We will not discuss
local accommodation in this book.

Draft January 18, 2022

354 Dynamic semantics

R = {w2, w3} [‘John has a girlfriend’]
S = {w1, w4} [‘Mary is sick’]
W = {w1, w2, w3, w4, w5, w6, w7, w8, w9, w10}[the set of all worlds]

Suppose that the sentence φ = Both Bill’s children are bald
presupposes that Bill has exactly two children. Suppose that in
worlds w1...w8, only John and Sue are children of Bill, but in w9

and w10, John, Mary, and Sue are. So the proposition that Bill has
exactly two children (call it K) is the set of worlds w1...w8:

K = {w1, w2, w3, w4, w5, w6, w7, w8}

K is a basic presupposition of φ; let us pretend that it is the only
one. So

Pφ =K = {w1, w2, w3, w4, w5, w6, w7, w8}

Since our sentence φ is a simple, non-compound sentence, it is
admitted in contexts c that entail K .

• Suppose that c = P ∩S. Does c admit φ? Why or why not?

• Suppose instead that c = W . Does c admit φ? Why or why
not?

Now, consider (again) the contrast between the following two
conditional sentences:

(9) If baldness is hereditary, then John’s son is bald.
≫ John has a son.

(10) If John has a son, then John’s son is bald.
/≫ John has a son.

In the first example, the sentence as a whole presupposes that
John has a son (as indicated by the symbol ≫). In the second
example, the sentence as a whole does not at all convey that the

Draft January 18, 2022

Dynamic semantics 355

speaker believes that John has a son. The speaker appears quite
open to the possibility that he does not. Again, in a conditional
sentence of the form If A then B, if the antecedent A satisfies the
presuppositions of B, then the conditional as a whole does not
carry the presuppositions of B.

Karttunen (1974) makes sense of this by imagining that we
first update the global discourse context with A, and that it is in
this temporary, hypothetical context that the presuppositions of
B have to be satisfied. For conditionals, Karttunen proposes the
following:

(11) Admittance conditions for a conditional sentence
Context c admits “If φ then ψ” just in case (i) c admits φ,
and (ii) c +φ admits ψ. Here c +φ designates ‘c updated
with φ’. The result of this update will be the same as if φ
is asserted in context c; it will be defined if the presuppo-
sitions are satisfied, and if so, it will be the result of elimi-
nating all worlds where φ is not true.

Consider the following examples:

(12) If Bill has exactly two children, then both his children are
bald.

(13) If Bill is bald, then both his children are bald.

Assume the following:

A = {w1, w2, w3, w4, w5, w6, w7, w8} [‘Bill has exactly 2 children’]
W = {w1, w2, w3, w4, w5, w6, w7, w8, w9, w10} [the universe]

Suppose that c = W . Does c admit (12)? According to the admit-
tance conditions for conditional sentences in (11), it does just in
case (i) c admits Bill has exactly two children and (ii) c+Bill has
exactly two children admits both his children are bald. Since Bill
has exactly two children carries no presuppositions, the first con-

Draft January 18, 2022

356 Dynamic semantics

dition is satisfied. What about the second condition? The result of
updating c with Bill has exactly two children is the set A, the set of
worlds where Bill indeed has exactly two children. Now the ques-
tion is whether this set, A, admits the non-compound sentence
both his children are bald. Since it is a non-compound sentence,
the rule for non-compound sentences (8) applies. What both his
children are bald presupposes is that Bill has exactly two children.
This is satisfied in all of the worlds in A, so the second condition is
satisfied as well. Hence c does admit (12). But the same does not
hold for (13).

Exercise 3. Refine c (as defined in the foregoing discussion) in
such a way that it does not admit (13). To do this, specify in which
of the worlds in c Bill is bald. Explain step-by-step why your re-
fined context does not admit this sentence.

Figure 9.1: Example propositions

Draft January 18, 2022

Dynamic semantics 357

Exercise 4. Refer to Figure 9.1. Does C admit If the king has a son,
then the king’s son is bald? Why or why not? Does K admit it? Why
or not? Explain using the definition of admittance, and assume
that the result of updating a context with The king has a son is the
intersection of A with the context if the presuppositions of ‘The
king has a son’ are satisfied; undefined otherwise.

So now we are in a position to explain why the presupposition
that Bill has exactly two children projects in a case like (13), and
not in a case like (12). In order for the conditional as a whole to be
admitted by a given context, both of the conditions in (11) must
be met. The first condition will be met only if the presupposi-
tions of the antecedent are already satisified in the global context.
Hence this theory predicts that presuppositions in the antecedent
of a conditional always project. (Whether this prediction is cor-
rect is another matter. A sentence like If John stopped smoking, he
used to smoke may well be judged true even if John never smoked
in the first place.) The second condition will be met either if (i)
the antecedent entails the presuppositions of the consequent or
(ii) the global context already entails them. If the antecedent of
the conditional does not entail the presuppositions of the conse-
quent, then the global context must already entail them. Such is
the situation in a case like (13), where the antecedent of the con-
ditional does not entail the presuppositions of the consequent. In
order for that sentence to be admitted in a given context, the con-
text must already entail the presuppositions of the consequence.
Hence the presuppositions project in that case.

Another way of putting Karttunen’s insight is as follows: The
global context updated by the antecedent is the LOCAL CONTEXT

for the consequent. This idea is quite general. We can identify a
range of local contexts (c here stands for the global context):

• the consequent of a conditional→ c+ the antecedent

Draft January 18, 2022

358 Dynamic semantics

• the second conjunct in a conjunction → c+ the first con-
junct

• the second disjunct in a disjunction → c+ the negation of
the first disjunct

• the complement of a propositional attitude verb→ the be-
liefs of the holder of the propositional attitude (e.g. Hans
wants the ghost in his attic to be quiet tonight presupposes
that Hans believes that there is a ghost in his attic)

In general:

(14) A context c admits a sentence S just in case each of the
constituent sentences of S is admitted by the correspond-
ing local context.(Heim, 1983c, 399)

For example, consider (42) from the previous chapter, repeated
here:

(15) Either Geraldine is not a catholic or she has stopped at-
tending services on Sundays.

Here we have a disjunction. The local context for the second dis-
junct is c+ the negation of the first disjunct. The first disjunct
(Geraldine is not a catholic) is itself negated; let us assume that
the negation of the negated sentence can be obtained simply by
removing the ‘not’, so the local context for the second disjunct
is c+ Geraldine is a catholic. Suppose it is part of the common
ground in the global context that all catholics attend services on
Sundays. Then the local context entails that Geraldine attends
services on Sundays. The consequent, she has stopped attending
services on Sundays, presupposes that Geraldine attends services
on Sundays. Since the local context entails this proposition, the
global context need not entail it, so the presupposition is filtered
out.

Draft January 18, 2022

Dynamic semantics 359

Exercise 5. Give another example of a disjunction in which the
negation of the antecedent entails the presuppositions of the con-
sequent, and explain how the presuppositions of the consequent
get filtered out.

9.3 Presupposition accommodation

PUTTING THIS HERE FOR NOW; WILL INTEGRATE –Liz
Remember from Chapter 1 that a speaker presupposes some

proposition when they take it for granted, treating it as uncontro-
versial and known to everyone participating in the conversation.
For example, imagine we are office employees who discuss a co-
worker, John, and you don’t know if he owns any animals. Suppose
I tell you:

(16) John loves his elephant.

You would likely be surprised, and perhaps react with something
like Hey, wait a minute! I didn’t know John owns an elephant. But
suppose instead that I tell you:

(17) John loves his cat.

In this case, you would be more likely to take the information
about his cat in stride, add it to your stock of beliefs about John
without raising a fuss. That is to say, you would probably treat
(17) as if it had meant something like this:

(18) John owns a cat, and he loves it.

Now, the diagnostics from Chapter 1 show that the implication of
(16) that John has an elephant, and the implication of (17) that
John has a cat, are (semantic) presuppositions of these two sen-
tences. And the system we have described so far would assign

Draft January 18, 2022

360 Dynamic semantics

them the truth value # if John doesn’t own an animal of the re-
quired kind. But (18) has no presupposition: in contexts where
John doesn’t own a cat, it is judged false. It seems as if the presup-
position of (17) has changed from a test whose failure leads to the
truth value #, to a test whose failure leads to the truth value F. This
process is called PRESUPPOSITION ACCOMMODATION. We say that
the hearer is more likely to ACCOMMODATE the presupposition of
(17) than that of (16). (In general, presuppositions are more likely
accommodated the more probable they are. An office worker is
more likely to own a cat than to own an elephant.)

9.4 Pronouns with indefinite antecedents

Another important motivation for dynamic semantics comes from
pronouns with indefinite antecedents. In dynamic semantics, an
indefinite noun phrase like a man introduces a new DISCOURSE

REFERENT into the context, and an anaphoric pronoun or definite
description picks up on the discourse referent.

One of the main motivations for dynamic semantics comes
from examples involving pronouns whose antecedents are indef-
inite descriptions, as in the following two-sentence discourse:

(19) My neighbor found a cat. Then it ran away.

So far, we have analyzed indefinite descriptions as existential quan-
tifiers. This was Russell’s (1905) treatment.

There are good reasons to favor Russell’s treatment of indef-
inites over one on which indefinites refer to some individual, as
Heim (1982b) discusses. First, it correctly captures the fact that
(20) does not imply that there is a specific dog that John and Mary
are both friends with.

(20) John is friends with a dog and Mary is friends with a dog.

If we assumed that a dog referred to some particular dog, then
we would predict this sentence to have that implication. Second,

Draft January 18, 2022

Dynamic semantics 361

Russell’s analysis correctly captures the fact that (21) does not say
that some particular dog did not come in, in contrast to (22), which
has a proper name referring to a dog and does have that implica-
tion.

(21) It is not the case that a dog came in.

(22) It is not the case that Fido came in.

Third, Russell’s analysis correctly captures the fact that (23) can be
true even if it is not the case that there is some particular dog that
everybody owns, while (24) does not have that implication.

(23) Every child owns a dog.

(24) Every child owns Fido.

If a dog referred to a particular dog then (23) should mean that
every child owns that dog, as in (24).

However, there are some problems. If we analyze example (19)
using Russell’s very sensible analysis, we will derive the following
representation (assuming that it carries the index 3, and that a se-
quence of two sentences is interpreted as the conjunction of the
two sentences):

(25) ∃x[Cat(x)∧Found(n, x)]∧RanAway(v3)

with v3 an unbound variable outside the scope of the existential
quantifier. (It doesn’t matter which variable we choose; even if
we choose x, the variable will still be unbound, because it will be
outside the scope of the existential quantifier.) Assuming that QR
does not move quantifiers beyond the sentence level, the scope of
the existential quantifier introduced by a cat does not extend all
the way to include the variable v3, and there is no other variable-
binder to bind it.

Draft January 18, 2022

362 Dynamic semantics

Exercise 6. Give LF trees and derivations for the two sentences in
(19). (Feel free to treat ran away as a single verb.) Explain why
these representations do not capture the connection between the
pronoun and its intuitive antecedent.

One imaginable solution to this problem is to allow QR to move
quantifiers to take scope over multiple-sentence discourses, so we
could get the following representation:

(26) ∃x[Cat(x)∧Found(s, x)∧RanAway(x)]

Regarding this imaginable solution, Heim (1982a, 13) writes the
following:

This analysis was proposed by Geach [1962, 126ff]. It
implies as a general moral that the proper unit for the
semantic interpretation of natural language is not the
individual sentence, but the text. [The formula] pro-
vides the truth condition for the bisentential text as
a whole, but it fails to specify, and apparently even
precludes specifying, a truth condition for the [first]
sentence.’

Heim (1982a) also presents a number of empirical arguments
against this kind of treatment. One comes from dialogues like the
following:

(27) a. A man fell over the edge.
b. He didn’t fall; he jumped.

What would a Geachian analysis be for a case like (27)? If we
let the existential quantifier take scope over the entire discourse,
we would get the denotation ‘there exists an x such that x is a
man and x fell over the edge and x didn’t fall over the edge and
x jumped’. This is self-contradictory.

Draft January 18, 2022

Dynamic semantics 363

Another argument that Heim makes against the Geachian anal-
ysis is based on examples like the following:

(28) a. John owns some sheep. Harry vaccinated them.
b. Susan found exactly one cat. Then it ran away.

Example (28a) is only true if Harry vaccinated all of the sheep John
owns. For example, it should be false in a situation where John
owns six sheep, of which Harry vaccinated three. On the Geachian
analysis, the interpretation would be something along the lines,
‘there exists an x such that x is a bunch of sheep and John owns x
and Harry vaccinated x’, which would be true in such a situation.
But the English sentence would not be. The reason we don’t want
it to be true is that maybe John owns x +4 sheep, but Harry only
vaccinated x; that is, the x for John doesn’t necessarily mean all of
his sheep. so this is not a welcome prediction. Similarly, example
(28b) should be false in a situation where Susan found exactly two
cats, of which exactly one ran away. But the Geachian analysis
predicts it to be equivalent to There is exactly one cat that Susan
found and that ran away.

Third, Geach’s proposal would mean that existential quanti-
fiers have different scope properties from other quantifiers. Con-
sider the following examples:

(29) A dog came in. It lay down under the table.

(30) Every dog came in. #It lay down under the table.

(31) No dog came in. #It lay down under the table.

In neither (30) nor (31) can it be bound by the quantifier in the
first sentence.3 Heim (1992, 17) concludes:

3There is a phenomenon called telescoping, counterexemplifying the gener-
alization that every cannot take scope beyond the sentence boundary. Examples
include:
(i) Every story pleases these children. If it is about animals, they are excited, if it
is about witches, they are enchanted, and if it is about humans, they never want
me to stop.

Draft January 18, 2022

364 Dynamic semantics

The generalization behind this fact is that an unem-
bedded sentence is always a “scope-island,” i.e. a unit
such that no quantifier inside it can take scope be-
yond it. This generalization (which is just a special
case of the structural restrictions on quantifier-scope
and pronoun-binding that have been studied in the
linguistic literature) is only true as long as the puta-
tive cases of pronouns bound by existential quanti-
fiers under Geach’s analysis are left out of considera-
tion.

Thus it seems that Geach’s solution will not do, and we need an-
other alternative.

So-called ‘donkey anaphora’ is another type of case involving
pronouns with indefinite antecedents that motivates dynamic se-
mantics. The classic ‘donkey sentence’ is:

(32) If a farmer owns a donkey, then he beats it.

This example is naturally interpreted as a universal statement, rep-
resentable as follows:

(33) ∀x∀y[[Farmer(x)∧Donkey(y)∧Owns(x, y)]→Beats(x, y)]

But the representation that we would derive for it using the as-
sumptions that we have built up so far would be:

(34) [∃x∃y[Farmer(x)∧Donkey(y)∧Owns(x, y)]]→Beats(x′, y ′)

where the existential quantifiers have scope only over the antecedent
of the conditional. This analysis leaves the variables introduced
by the pronouns (the x′ and y ′ in (34)) unbound; clearly it does
not deliver the right denotation.

(ii) Each degree candidate walked to the stage. He took his diploma from the
dean and returned to his seat.
(From Poesio & Zucchi 1992, “On Telescoping”)

Draft January 18, 2022

Dynamic semantics 365

Similar problems arise with indefinite antecedents in relative
clauses:

(35) Every man who owns a donkey beats it.

Exercise 7. Give a representation in Lλ capturing the intuitively
correct truth conditions for (35). Then give an LF tree and a
derivation for (35) using the assumptions that we have built up so
far. Does this derivation give an equivalent result? If so, explain. If
not, give a situation (including a particular assignment function)
where one would be true but the other would be false.

According to Geach (1962), we must simply stipulate that in-
definites are interpretable as universal quantifiers that can have
extra-wide scope when they are in conditionals or in a relative
clause. But this is more of a description of the facts than an ex-
planation for what is happening. Moreover, it is not as if just any
relative clause allows for a wide-scope universal reading of an in-
definite within it:

(36) A friend of mine who owns a donkey beats it.

There is no wide-scope universal reading for a donkey here.
Heim’s (1982b) idea is that indefinites have no quantificational

force of their own, but are open formulas containing variables,
which may get bound by whatever quantifier there is to bind them.
This is supported by the fact that their quantificational force seems
quite adaptable; witness the following equivalences:

(37) In most cases, if a table has lasted for 50 years, it will last
for 50 more.
⇐⇒Most tables that have lasted for 50 years will last for
another 50.

(38) Sometimes, if a cat falls from the fifth floor, it survives.
⇐⇒ Some cats that fall from the fifth floor survive.

Draft January 18, 2022

366 Dynamic semantics

(39) If a person falls from the fifth floor, he or she will very
rarely survive.
⇐⇒Very few people that fall from the fifth floor survive.

However, on Heim’s view, indefinites are unlike pronouns in that
they introduce a ‘new’ referent, while pronouns pick up an ‘old’
referent. This idea of novelty is formulated in the context of dy-
namic semantics, where as a sentence or text unfolds, we con-
struct a representation of the text using discourse referents. A
pronoun picks out an established discourse referent. An indefi-
nite contributes a new referent, and has no quantificational force
of its own. The quantificational force arises from the indefinite’s
environment.

The idea of a DISCOURSE REFERENT is laid out by Karttunen
(1976), which opens as follows:

Consider a device designed to read a text in some nat-
ural language, interpret it, and store the content in
some manner, say, for the purpose of being able to an-
swer questions about it. To accomplish this task, the
machine will have to fulfill at least the following basic
requirement. It has to be able to build a file that con-
sists of records of all the individuals, that is, events,
objects, etc., mentioned in the text and, for each indi-
vidual, record whatever is said about it.

Karttunen characterizes discourse referents as follows: “the ap-
pearance of an indefinite noun phrase establishes a discourse ref-
erent just in case it justifies the occurrence of a coreferential pro-
noun or a definite noun phrase later in the text.”4 Thus a dis-
course referent need not correspond to any actual individual; in

4Here, Karttunen is using “coreference” in a looser manner than the one Heim
& Kratzer (1998) advocate when they say that “coreference implies reference”.
For Karttunen, any kind of anaphor-antecedent relationship qualifies as coref-
erence, even if reference does not take place.

Draft January 18, 2022

Dynamic semantics 367

this sense, a discourse referent does not necessarily imply a ref-
erent. There are examples in which the occurrence of a corefer-
ential pronoun or definite noun phrase is justified, but no partic-
ular individual is talked about, as in No man wants his reputa-
tion dragged through the mud. A discourse referent is more like a
placeholder for an individual, very much like a variable. Accord-
ing to Karttunen, one of the virtues of this notion is that it “allows
the study of coreference to proceed independently of any general
theory of extralinguistic reference” (p. 367).

Karttunen (1976) also pointed out that discourse referents have
a certain LIFESPAN; they do not license subsequent anaphora in
perpetuity. Here is an example where a discourse referent dies:

(40) Susan didn’t find a cat and keep it. #It is black.

The pronoun it in the second sentence cannot refer back to the
discourse referent that the it in the first sentence picks up. The
lifespan of that discourse referent ends with the scope of negation.
You might be tempted to account for this fact by assuming that
anaphora can only be used if the discourse referent it links back
to is assigned to a particular individual or entity. But this is not a
general requirement:

(41) Susan found a cat and kept it. It is black. Susan found
another cat and let it run away. It was grey.

Examples (30) and (31) above provide further cases in which one
can see evidence of lifetime limitations for discourse referents. So
while indefinites seem to introduce discourse referents with an
unusually long life span, compared to other apparently quantifi-
cational expressions, the discourse referents they introduce aren’t
immortal. A good theory should account for both sides of this ten-
sion.

Draft January 18, 2022

368 Dynamic semantics

9.5 File change semantics

Heim’s (1982b) FILE CHANGE SEMANTICS conceptualizes discourse
referents as file cards, very much building on Karttunen’s metaphor.
In file change semantics, an indefinite introduces a new file card.
Subsequent anaphoric reference updates the file card. For exam-
ple, consider the discourse in (42):

(42) a. A dog bit a woman.
b. She hit him with a paddle.
c. It broke in half.
d. The dog ran away.

The first sentence contains two indefinites, a dog and a woman.
These trigger the introduction of two new file cards; call them file
card 1 and file card 2. File card 1 is associated with the property
‘dog’, and ‘bit 2’, and file card 2 is associated with the property
‘woman’, and ‘bitten by 1’. Pictorially, we can represent the situa-
tion like this:

1

dog
bit 2

2

woman
bitten by 1

After the second sentence, a third card is added, and the first two
cards are updated thus:

1

dog
bit 2

was hit by 2 with 3

2

woman
bitten by 1
hit 1 with 3

3

paddle
used by 2 to hit 1

And so forth, so that by the end of the discourse, the file looks
like this:

Draft January 18, 2022

Dynamic semantics 369

(43)

1

dog
bit 2

was hit by 2 with 3
ran away

2

woman
bitten by 1
hit 1 with 3

3

paddle
used by 2 to hit 1

broke in half

The definite description the dog is assumed to behave just as an
anaphoric pronoun, and the descriptive content (dog) serves merely
to identify the appropriate discourse referent.

Exercise 8. Add a sentence to (42) and show what the file would
look like afterwards.

Like Karttunen, Heim wishes to distinguish between discourse
referents (i.e., file cards) and the things that they talk about. She
reasons that such an identification would be absurd, because a
file card is just a description and in principle it could match any
number of individuals:

what Karttunen calls “discourse referents” are, I sug-
gest, nothing more and nothing less than file cards.
Some people might disagree with this identification
and maintain that discourse referents are something
beyond file cards, that they are what the file cards de-
scribe. But such a distinction gains us nothing and
creates puzzling questions: File cards usually describe
more than one thing equally well. For example, if a
card just says “is a cat” on it, then this description fits
one cat as well as another.

This conception of file cards as descriptions is key to understand-
ing how truth is conceptualized in file change semantics.

In file change semantics, it is not formulas, but files (i.e., sets
of file cards), that are true or false. The truth of a file like (43) de-
pends on whether it is possible to find a sequence of individuals

Draft January 18, 2022

370 Dynamic semantics

that match the descriptions on the cards. For example, consider
the following two worlds. Assume that in both worlds, Joan is a
woman, Fido and Pug are dogs, and Paddle is a paddle.

World 1 World 2
Pug bit Joan Fido bit Joan

Joan hit Pug with Paddle Joan hit Fido with Paddle
Paddle broke in half Paddle broke in half

Pug ran away Fido ran away

In both worlds, it is possible to find a sequence of individuals that
match the descriptions. In World 1, the sequence is ⟨Pug, Joan,
Paddle⟩ (corresponding respectively to file cards 1, 2, and 3), and
in World 2, it is ⟨Fido, Joan, Paddle⟩. So the file is true relative to
both worlds.

More technically, we say that a given sequence of individuals
SATISFIES a file in a given possible world if the first individual in
the sequence fits the description on card number 1 in the file (ac-
cording to what is true in the world), the second individual fits the
description on card 2, etc. A file is TRUE (a.k.a. SATISFIABLE) in a
possible world if and only if there is a sequence that satisfies it in
that world.

On this view, the denotation of a sentence corresponds to an
update to the file in the discourse. It is not any particular file;
rather the denotation of a sentence constitutes a set of instruc-
tions for updating a given file. In other words, the denotation
of a sentence is constituted by its potential to update the con-
text: a CONTEXT CHANGE POTENTIAL. In file change semantics,
the context is represented as a file, so the denotation of a sen-
tence is a FILE CHANGE POTENTIAL. To make this precise, we need
a conceptualization of files that is amenable to formal definitions.
The boxes we have drawn give a rough idea, but they do not lend
themselves to this purpose. We therefore identify a file with the set
of world-sequence pairs such that the sequence satisfies the file in
the world. For instance, the pair consisting of World 1 and the se-
quence ⟨Pug, Joan, Paddle⟩ would be in the set of world-sequence

Draft January 18, 2022

Dynamic semantics 371

pairs making up the file represented by (43). So would the pair
consisting of World 2 and the sequence ⟨Fido, Joan, Paddle⟩. As
the denotation of a sentence in a dynamic framework is some-
thing that relates an input context to an output context, the deno-
tation would thus be a relation between two sets of world-sequence
pairs.

Recall that in a static framework, the denotation of a sentence
can be identified with a set of world-assignment pairs (or model-
assignment pairs): We talk about (the translation of) a sentence
as being true with respect to model M and assignment function
g . The set of model-assignment pairs that satisfy the formula rep-
resent the truth conditions for the sentence. Now, notice that a
sequence of individuals is very much like an assignment function,
mapping variables to individuals. Thus the difference between
static semantics and dynamic semantics can be seen as follows:
Whereas in static semantics, the denotation of a sentence cor-
responds to a set of world-assignment pairs, the denotation of a
sentence in dynamic semantics corresponds to a relation between
world-assignment pairs.

9.6 Discourse representation theory

File change semantics is not the only dynamic theory of meaning;
another very well-developed and well-known one is DISCOURSE

REPRESENTATION THEORY (Kamp & Reyle, 1993), in which DISCOURSE

REPRESENTATION STRUCTURES take the place of files. Discourse
representation structures (DRSs) are in a way one big file card,
with information about all of the discourse referents all combined
together. For example, the DRS for the discourse in (42) would
look as follows:

Draft January 18, 2022

372 Dynamic semantics

x y z

Woman(x)
Dog(y)

Paddle(z)
Bit(y,x)

Hit-with(x,y,z)
Ran-away(y)

Just as in file change semantics, this kind of structure is thought
to be built up over the course of a discourse, and the denotation
of a sentence can be seen as its potential to affect any DRS repre-
senting the current state of the discourse. A DRS has two parts:

• a UNIVERSE, containing a set of discourse referents;

• a SET OF CONDITIONS, which can be simple, likeWoman(x),
or complex, like ¬K or K ⇒ K ′, where K and K ′ are both
DRSs.

An indefinite adds a new discourse referent to the universe, and
subsequent anaphora can update the information associated with
that discourse referent. So, spoken out of the blue, a sentence with
two indefinites like a farmer owns a donkey would give rise to the
following DRS:

x y

Farmer(x)
Donkey(y)
Owns(x,y)

The same sentence used as the antecedent of a conditional would
appear as a DRS contained in a larger DRS, as follows:

Draft January 18, 2022

Dynamic semantics 373

x y

Farmer(x)
Donkey(y)
Owns(x,y)

⇒ Beats(x,y)

Informally, a DRS K is considered to be true in a model M if
there is a way of associating individuals in the universe of M with
the discourse referents of K so that each of the conditions in K is
verified in M . An EMBEDDING is a function that maps discourse
referents to individuals (like an assignment or sequence). The do-
main of this function will always be some set of discourse refer-
ents, but it may or may not include all of the possible discourse
referents. In this sense, the function may be a PARTIAL FUNCTION

on the set of discourse referents.
Truth in DRT is defined relative to a DRS. A DRS is defined to

be TRUE relative to a model if there is an embedding that VERIFIES

it in the model. Which embeddings verify a given DRS is deter-
mined by semantic clauses for DRSs. But to give an idea, consider
the following DRS:

x y

Farmer(x)
Donkey(y)
Owns(x,y)

A function g verifies this DRS with respect to model M if:

• the domain of g contains at least x and y

• according to M it is the case that g(x) is a farmer, g(y) is a
donkey, and g(x) owns g(y).

As in predicate logic, we have models M = ⟨D, I⟩. I assigns an ex-
tension to every predicate (Farmer,Donkey,Owns, etc.). I(Farmer)

Draft January 18, 2022

374 Dynamic semantics

will be a set of individuals; I(Owns) will correspond to a relation.
So g verifies Farmer(x) with respect to model M = ⟨D, I⟩ if and
only if g(x) ∈ I(Farmer). What this means is that an embedding
g verifies the DRS for A farmer owns a donkey if it assigns x to a
farmer, and y to a donkey that the farmer owns.

In general, verification of a DRS is defined as follows:

(44) Verification of a DRS
Embedding g VERIFIES DRS K in model M if and only if
g verifies every condition in K , and the domain of g in-
cludes every discourse referent in the universe of K .

Whether or not a given embedding g verifies a given condition
depends on the nature of the condition. Let us use the notation

M , g ⊧φ

to denote ‘g verifies condition φ in model M ’. The rule for decid-
ing whether a given embedding verifies a condition likeFarmer(x),
where a predicate applies to an argument, is defined as follows:

(45) Verification of a predication condition
M , g ⊧π(x) iff g(x) ∈ I(π)whereπ is a predicate and model
M = ⟨D, I⟩.

Recall that an indefinite will introduce a new discourse referent
into the discourse, and add the condition that the descriptive con-
tent apply to the discourse referent, so A farmer owns a donkey will
be represented:

x y

Farmer(x)
Donkey(y)
Owns(x,y)

According to the rules that we have set out, this DRS will be true in
M if there is an embedding g with a domain that includes x and y ,

Draft January 18, 2022

Dynamic semantics 375

which verifies all three of the conditions, in other words, if there
are indeed x and y such that x is a farmer and y is a donkey and x
owns y .

Exercise 9. Under this treatment, indefinites in unembedded sen-
tences like A farmer owns a donkey are interpreted essentially as
existential quantifiers. Suppose that your friend doesn’t under-
stand why this is so, and explain it to them so that they say ‘Aha!’.

Another kind of atomic condition is equality:

(46) Verification of an equality condition
M , g ⊧ x = y iff g(x) = g(y)

This says that embedding g verifies the condition ‘x = y’ in
model M if g(x) is the same entity as g(y).

Verifying a negated condition such as the following is a bit
more complex. Suppose that this is the representation for Paul
does not own a donkey.

x

x = p

¬
y

Donkey(y)
Owns(x,y)

Intuitively, this should be true if and only if there is no way to as-
sign a value to x such that x is Paul, and there is some individual
y such that y is a donkey and x owns y . This is defined with the
help of some auxiliary notions:

• Compatibility
We say that two functions f and g are COMPATIBLE if they

Draft January 18, 2022

376 Dynamic semantics

assign the same values to those arguments for which they
are both defined. I.e., f and g are compatible if for any a
which belongs to the domain of both f and g :

f (a) = g(a)

• Extension
g is called an EXTENSION of f if g is compatible with f and
the domain of g includes the domain of f .

Thus if g is an extension of f then f and g assign the same values
to all arguments for which f is defined, while g may (though it
need not) be defined for some additional arguments as well.

Returning to negation:

(47) Verification of a negated condition
An embedding function f verifies a condition of the form
¬K with respect to model M iff there is no function g such
that:

•g extends f

•g verifies K

Thus, for example, a function f verifies the negated condition in
the DRS for Paul does not own a donkey iff:

• f verifies x = p, and

• There is no function g such that: (i) g extends f , and (ii) g

verifies

y

Donkey(y)
Owns(x,y)

This gives us results for negated sentences containing indefi-
nites on par with Russell’s treatment: Just as with negated existen-
tials, a negated sentence containing an indefinite that takes scope
under the negation will be true only if there is no object in the

Draft January 18, 2022

Dynamic semantics 377

model satisfying the relevant description. Furthermore, the fact
that the discourse referent is introduced in a DRS that is nested
within another DRS, and, as it were, “shielded” from the top level
by a negation symbol, gives us the tools to account for the fact that
a donkey does not license an antecedent in a later sentence. We
will not go through how this works here; suffice it to say that the
discourse referent is not ACCESSIBLE for subsequent anaphora in
this position.

Exercise 10. Partially specify a model M = ⟨D, I⟩ where Paul does
not own a donkey is true, by specifying the value of I for the rele-
vant constants. Then give an embedding function f that verifies
the negated condition in the DRS for Paul does not own a donkey
in M , and explain why it verifies that condition.

The semantics of conditionals uses the concept of extensions
among embedding functions as well.

(48) Verification of a conditional condition
An embedding function f verifies a condition of the form
K ⇒K ′ with respect to model M if and only if: For all ex-
tensions g of f that verify K , there is an extension h of g
that verifies K ′.

The intuitive idea is something like the following: To verify a con-
ditional statement, first consider what kind of embedding would
be necessary to verify the antecedent. Now consider whether or
not the consequent has to hold, given that embedding.

It turns out that this semantics for conditionals allow for a uni-
fied account of indefinites across the full range of uses we have
seen. In particular, although unembedded indefinites get an exis-
tential interpretation, indefinites acquire universal import in con-
ditionals, and indefinites can bind from antecedent to consequent.
Consider the DRS for the donkey sentence:

Draft January 18, 2022

378 Dynamic semantics

(49)

x y

Farmer(x)
Donkey(y)
Owns(x,y)

⇒ Beats(x,y)

For an arbitrary embedding f , we want to determine whether ev-
ery extension g of f that verifies the antecedent DRS has an ex-
tension h of g that verifies the consequent DRS. Suppose we have
a model M = ⟨D, I⟩ in which the following is the case:

(50) I(paul) = a
I(Farmer) = {a,b,c}
I(Donkey) = {d ,e, f }
I(Owns) = {⟨a,d⟩,⟨b,e⟩,⟨b, f ⟩}
I(Beats) = {⟨a,d⟩,⟨b,e⟩,⟨b, f ⟩}

Let f be the null embedding, which has the empty set as its do-
main. The extensions g of f that verify the antecedent are the
ones that assign x to a farmer and y to a donkey that is owned by
the farmer. For example, this criterion would be satisfied by an
embedding that assigns x to a and y to d , like this:

g = [x → a
y → d

]

Now, in this case, there is an extension h of g that verifies the con-
sequent, namely g itself, since a beats d . In general, since the
Owns relation is exactly the same as the Beats relation, given an
assignment g that verifies the antecedent, there will always be an
extension h of g that verifies the consequent, namely g itself. In
other words, for every given case where we have a pair x and y
where x is a farmer and y is a donkey owned by the farmer, the
farmer in that pair also beats that donkey. If that condition did

Draft January 18, 2022

Dynamic semantics 379

not hold, then the condition would be false. Hence we have uni-
versal import for indefinites in conditional sentences.

Exercise 11. Let f be the empty embedding∅. Using the assump-
tions about the model given in (50), list all of the embeddings g
that verify the antecedent DRS in (49). For each of those embed-
dings, give an embedding h that verifies the consequent.

Exercise 12. Change the model specified in (50) so that the condi-
tion in (49) is not satisfied, and name the embedding g that veri-
fies the antecedent that does not have an extension h that verifies
the consequent.

Exercise 13. Draw a DRS for If a farmer beats a donkey, then he
beats a friend of the donkey, and give a model in which the con-
ditional is (non-trivially) satisfied. Give an example of an embed-
ding g and an extension h of g such that g verifies the antecedent
and h verifies the consequent.

9.7 Compositional DRT

We have not yet touched on how composition works, i.e., how files
or DRSs are to be constructed from an LF representation. Both
file change semantics and DRT look quite different from the sys-
tems we have presented in previous chapters. In this section we
show that it is possible to formalize DRT within a version of Mon-
tague semantics that is based on classical type logic. One advan-
tage of doing this is that the resulting system can be combined
with other parts of the system in this book. Moreover, the for-

Draft January 18, 2022

380 Dynamic semantics

malization allows us to avoid the level of discourse representa-
tions that is specific to file change semantics and DRT, and to cut
down on special-purpose auxiliary notions involved in interpret-
ing DRT. There are many formalizations that combine DRT and
Montague semantics, e.g. Dynamic Montague Grammar (Groe-
nendijk & Stokhof, 1990b). The system we present here is based
on Compositional DRT or CDRT (Muskens, 1995b, 1996). CDRT
has the advantage of being based on classical logic, which makes
it easy to integrate it with the system developed in the other chap-
ters in this book. We will focus on accounting for cases of anaphora
where the antecedent doesn’t c-command the pronoun (as in don-
key sentences) or isn’t in the same sentence as the pronoun.

Formally, we will be working in a many-sorted version of the
logic in Church (1940). The two-sorted version of this logic was
studied in Gallin (1975); it is called two-sorted because it uses two
basic types, e for individuals and t for truth values. To this we
will now add a third basic type, r , which will contain discourse
referents and names. Conceptually, individuals are entities of the
familiar kind (like kings and cabbages) while discourse referents
and names are symbols that encode the focus of our attention
throughout discourse. Discourse referents are introduced by in-
definites, while names are introduced by proper nouns.5 For each
type-e constant in our language (john, mary etc.), we assume that
the domain also contains a type-r name rjohn, rmary, etc. In addi-
tion to names, we will assume that any model contains either an
unlimited supply of discourse referents, or in any case one that is
sufficient for the purpose of any discourse. To keep things simple,
we will start with models that contain just three discourse refer-
ents r1,r2,r3.

Alongside discourse referents, our language will still make use
of variables x, y, z, x′,etc., as in Chapter 4; it is important not to
confuse them with discourse referents. In particular, variables

5Muskens (1996) uses the terms unspecific discourse referents for our dis-
course referents and specific discourse referents for our names.

Draft January 18, 2022

Dynamic semantics 381

can be free or bound by quantifiers and by lambda terms, but dis-
course referents cannot. 6

From the three basic types e, t ,r , we derive functional types
as in Chapter 5. In particular, we will make use of the type ⟨r,e⟩,
which is the type of functions from discourse referents to indi-
viduals. We will refer to objects of this type as assignments. These
assignments are similar to the interpretation functions in Chapter
4, with the difference that they are now considered entities within
a model, alongside ordinary individuals and truth values. For rea-
sons that will become clear shortly, we will use i , j , k, and o as
variables over assignments.

We assume that every assignment maps every name to the rel-
evant individual in the domain. By contrast, discourse referents
can be mapped by different assignments to different individuals.
Treating names and discourse referents in similar ways and giving
them the same type allows us to let pronouns and other anaphoric
expressions behave in a uniform way regardless of whether their
antecedents are proper names or indefinites.

CDRT assignments are similar to the assignment functions that
we introduced in Chapter 4 in that they keep track of which sym-
bols stand for which entities. One can think of an assignment as
a register that gets updated throughout the discourse. Expres-
sions that can act as potential antecedents, such as indefinites,
update the values of discourse referents in assignments, and ex-
pressions such as pronouns and definite descriptions retrieve the
values of discourse referents. While each assignment is taken to
be immutable (like a book that has been published and whose text
cannot be edited anymore), we can simulate the process of mak-
ing a change to an assignment by finding another assignment that
is just like the first in all relevant respects other than the relevant
change. This is encapsulated in the following definition:

6Since discourse referents and names are objects in the model and since vari-
ables can range over objects of any type, we could in principle also introduce
variables of type r that range over them. Here we avoid doing so to reduce con-
fusion and because we will not have a need for such variables.

Draft January 18, 2022

382 Dynamic semantics

(51) Definition
Let i and o be two assignments and r a discourse refer-
ent. We write i[r1]o to say that i and o differ at most in
the value they assign to r (i.e., either i and o agree on ev-
erything except r or they do not differ at all).

There are also differences between assignments in the sense of
this chapter and assignment functions as we used them in Chap-
ter 4. Assignments in this chapter are contained in the domain
of our models, just like individuals, truth values, predicates, re-
lations, and so on. By contrast, the assignment functions that
we used in Chapter 4 are not contained in our models; they are
used only as devices for interpreting predicate logic formulas. An-
other difference is that the assignments in this chapter apply to
discourse referents (of type r) while the assignment functions in
Chapter 4 apply to variables of type e.

The semantics of sentences in CDRT In Section 9.5, the differ-
ence between static and dynamic semantics was summarized as
follows: Whereas in static semantics, the denotation of a sentence
corresponds to a set of world-assignment pairs, the denotation
of a sentence in dynamic semantics corresponds to a binary re-
lation between world-assignment pairs. Keeping the world con-
stant for simplicity, we can say that the denotation of a sentence
(its context-change potential) corresponds to a curried binary re-
lation between assignments. Conceptually, a context-change po-
tential is like a DRS. Formally, context-change potentials have the
type ⟨r e,⟨r e, t⟩⟩; we will abbreviate this type as T and we will use
the letters p and q for variables that range over context-change
potentials. We will call the first argument to a context-change
potential the input assignment and its second element the out-
put assignment, and we will use the letters i and o to symbolize
them. By convention, we use the leftmost lambda slot for i and
the second-to-leftmost one for o. CDRT extends this view to every
subconstituent down to individual words, so that every lexical en-

Draft January 18, 2022

Dynamic semantics 383

try takes two assignments i and o as its arguments in addition to
whatever other arguments it applies to. The grammar will be set
up so that this property is passed up to larger constituents all the
way up to sentences.

For example, consider again the discourse in (42), repeated
here with discourse referents added. Following standard prac-
tice in dynamic semantics, discourse referents are superscripted
in those places where they get introduced into the discourse, and
subscripted in those places where they get picked up again. For
convenience and following common practice in dynamic seman-
tics, we have assumed that anaphoric links in sentences have al-
ready been resolved via coindexing before semantic interpreta-
tion takes place. This assumption helps us keep things simple
to understand because it lets us treat pronouns as essentially de-
noting discourse referents; it is not crucial, and we could, instead
let pronouns denote variables over discourse referents (Muskens,
2011).

(52) a. Ar1 dog bit ar2 woman.
b. Sher2 hit himr1 with ar3 paddle.
c. Itr3 broke in half.
d. Ther1 dog ran away.

The context-change potential of sentence (52a) consists in intro-
ducing two discourse referents r1 and r2, and updating the con-
text such that whichever entity r1 refers to is a dog, and whichever
entity r2 refers to is a woman that was bitten by r1. In models
where more than one dog and/or more than one woman fits the
description, there will be more than one way to update the con-
text. This suggests that the context-change potential is properly
thought of as a relation between input and output contexts, rather
than a function from input to output contexts. To keep things
readable, from this point onwards for any assignment j and dis-

course referent r , we will write the lookup operation j(r1) as r j
1 .

Formally, sentence (52a) denotes the following context-change

Draft January 18, 2022

384 Dynamic semantics

potential:

(53) λiλo .∃ j . i[r1] j ∧ j [r2]o
∧Dog(r o

1)∧Woman(r o
2)∧Bite(r o

1 ,r o
2)

In words, this is (the curried version of) the relation that holds
between any two assignments i and o just in case they differ at
most in what they assign to r1 and r2, and furthermore o maps r1

to some dog and r2 to some woman whom that dog bit.
In a model where indeed a dog bit a woman, this relation will

be nonempty. To take an example at random, in a model that cor-
responds to World 1 in Section 9.5, in which Pug bit Joan, the fol-
lowing pair of assignments i1 and o1 will stand in the relation (53):

i1 =
⎡⎢⎢⎢⎢⎢⎣

r1 → Bill
r2 → Bill
r3 → Mary

⎤⎥⎥⎥⎥⎥⎦
o1 =

⎡⎢⎢⎢⎢⎢⎣

r1 → Pug
r2 → Joan
r3 → Mary

⎤⎥⎥⎥⎥⎥⎦
The values that i1 assigns to r1 and r2 are irrelevant, and so is

the value that both i1 and o1 assign to r3. These values have been
filled in only for concreteness. Many other assignments than i1

and o1 stand in the relation denoted by (53). For example, since
the values that the input assignment assigns to r1 and r2 are irrele-
vant, i1 and o1 could be replaced by any other pair of assignments,
so long as they map r3 to the same value as each other and the sec-
ond assignment still maps r1 and r2 to the same values as o1 does.
This means that the relation (53) will relate any input assignment
to at least one output assignment. We will say that a relation that
relates i to some output assignment succeeds on i (otherwise it
fails on i); thus, the relation (53) succeeds on every input assign-
ment.

The next sentence, (52b), denotes the following context-change
potential:

(54) λiλo . i[r3]o∧Hit-with(r o
2 ,r o

1 ,r o
3)∧Paddle(r o

3)

This relation holds between assignments i and o just in case they

Draft January 18, 2022

Dynamic semantics 385

differ at most in what they assign to r3, and furthermore o maps
r3 to some paddle which was used by whatever o assigns to r2 in
order to hit whatever o assigns to r1.

What kinds of assignments stand in this relation? Since o and i
must agree in everything except possibly r3, they must both assign
the same value to r1, and likewise for r2. As for r3, it does not
matter what i assigns it to, but o must assign it to the right kind of
paddle.

For example, consider again a model that is like World 1, where
Joan hit Pug with Paddle. Suppose that no other hittings took
place. In this model, for two assignments i2 and o2 to stand in the
relation (54), i2 must be exactly as below except that r3 could also
be mapped to any other value than Mary; and o2 must be exactly
as given below.

i2 =
⎡⎢⎢⎢⎢⎢⎣

r1 → Pug
r2 → Joan
r3 → Mary

⎤⎥⎥⎥⎥⎥⎦
o2 =

⎡⎢⎢⎢⎢⎢⎣

r1 → Pug
r2 → Joan
r3 → Paddle

⎤⎥⎥⎥⎥⎥⎦
Because of the constraints it imposes, the relation (54) does

not succeed on every input assignment. In general, CDRT uses
such relations as denotations of sentences that contain unresolved
anaphoric dependencies (e.g. unbound pronouns such as Sher2

and himr1 in (52b)).
Typically, the previous discourse will supply input assignments

on which such sentences succeed. For example, the pronouns in
(52b) have their antecedents in the previous sentence (52a).

To connect pronouns with their antecedents, we now com-
bine the two denotations (53) and (54) by an operator called se-
quencing and written as a semicolon (;). This operator is intro-
duced here as a shorthand:

(55) ; =de f λpλqλiλo .∃ j . p(i)(j)∧q(j)(o)

This operator, which is present in many programming languages,
takes two context-change potentials p and q and combines them

Draft January 18, 2022

386 Dynamic semantics

to a new one which asserts that some assignment j can serve as
both the output of p and the input of q . Mathematically, this
amounts to composing the relations p and q ; in procedural terms,
this amounts to letting the output assignments of p serve as the
input assignments of q . For example, the output assignment o1

above is the same as the input assignment i2; therefore, i1 and o2

will stand in the relation denoted by sequencing (53) with (54).
That relation is the following:

(56) λiλo∃ j∃k . i[r1] j ∧ j [r2]k
∧Dog(r k

1)∧Woman(r k
2)∧Bite(r k

1 ,r k
2)

∧ k[r3]o∧Hit-with(r o
2 ,r o

1 ,r o
3)∧Paddle(r o

3)

In prose and simplifying a bit, this relation holds between two as-
signments i and o just in case o is the result of making minimal
changes to i such that r1, r2, and r3 are mapped to a dog, a woman
that it bit, and a paddle that she hit it with.

Bridging principles Context-change potentials are relations be-
tween input assignments and output assignments. But we are
used to thinking of sentences as simply being true or false. To
know whether a given sentence is true or false in a model, we
can convert its context-change potential into a truth value via the
following bridging principles. The first bridging principle defines
truth and falsity relative to an assignment:

(57) Bridging Principle 1
Let i be an assignment and φ be a term of type T (i.e. a
context-change potential). φ is true relative to i iff there
is an assignment o such that i[φ]o is true; otherwise φ is
false relative to i .

The idea behind this principle is that if we only care whether a
sentence is true given its input assignment, and not about whether
it provides potential antecedents to subsequent sentences, then it
does not matter what output assignments it produces.

Draft January 18, 2022

Dynamic semantics 387

For sentences without unresolved anaphoric dependencies,
i.e. sentences without pronouns or definite descriptions in them,
we can also define truth and falsity simpliciter by universally quan-
tifying over input assignments:

(58) Bridging Principle 2
Let φ be a term of type T without unresolved anaphoric
dependencies. φ is true iff it is true relative to every input
assignment (in the sense of Bridging Principle 1); other-
wise it is false.

The idea here is that if a sentence is true in the intuitive sense,
then we expect it to remain true no matter what input assignment
we present it with.

In combination, the upshot of these two principles is that a
context-change potential without unresolved anaphoric depen-
dencies is true just in case it maps every input assignment to some
output assignment. For example, according to these principles,
the context-change potential in (56) is true just in case for every
assignment i there is an assignment o that is just like i except that
it maps r1, r2, and r3 to a dog, a woman that it bit, and a paddle
that she hit it with. Now suppose that indeed there exist a dog, a
woman, and a paddle such that the dog bit the woman and the
woman hit the dog with the paddle. Then for any input assign-
ment i such an output assignment o can be obtained by changing
i as needed so that it maps r1 to the dog, r2 to the woman, and r3

to the paddle.
The reason that Bridging Principle 2 is restricted to sentences

that do not have unresolved anaphoric dependencies is in order
to avoid collapsing the truth conditions of pronouns and corre-
sponding universals. Without this constraint, a sentence like (59a)
would have the same truth conditions as Heraclitus’ famous apho-
rism in (59b).

(59) a. Itr1 is in flux.

Draft January 18, 2022

388 Dynamic semantics

b. Everything is in flux.

This is because (59a) is true relative to any input assignment that
maps r1 to something in flux. Suppose now that everything is in
flux; then, and only then, every assignment whatsoever will map
r1 to something in flux. Suppose instead that some things are in
flux and others aren’t; in that case, some assignments will map r1

to something in flux, while others will not. Accordingly, (59a) will
be true (in the sense of Bridging Principle 1) with respect to some
assignments but not others.

There is an intuitive connection between sentences with un-
resolved anaphoric dependencies in CDRT and formulas with free
variables in predicate logic. Both can be true with respect to some
assignments and false with respect to others. More generally, the
input assignments in CDRT play an analogous role to the assign-
ment functions in predicate logic.

Lexical entries for CDRT One of the advantages of using the
lambda calculus to express context-change potentials is that we
can now rely on it to generate them compositionally in the usual
way. To do this, we equip each lexical entry with two extra slots λi
and λo. For those lexical entries that do not introduce new dis-
course referents, we add a conjunct that requires i = o; otherwise
almost any pair of assignments could serve as input and output
and anaphoric information would be lost. For example, here are
some nouns and intransitive verbs:

(60) a. woman↝λxλiλo . i = o∧Woman(x)
b. dog↝λxλiλo . i = o∧Dog(x)
c. run-away↝λxλiλo . i = o∧Run-away(x)

The type of these entries is ⟨e,T⟩ (recall that we use T to abbreviate
⟨⟨r,e⟩,⟨⟨r,e⟩, t⟩⟩, the type of context-change potentials).

Proper nouns simply denote the relevant individuals, as usual:

(61) John↝ john

Draft January 18, 2022

Dynamic semantics 389

Indefinites introduce discourse referents r by operating on the in-
put assignment i and by using an intermediate assignment j that
is constrained to differ from i at most in r . They also take a restric-
tor R and a nuclear scope N , both of type ⟨e,T⟩, pass the value of
r according to j to R and N and link them up via sequencing.

(62) ar1 ↝λRλNλiλo∃ j . i[r1] j ∧(R(jr); N(jr))(j)(o)

For the sake of readability, from here on we will write φ(i)(o) as
i[φ]o, for any formula φ of type T; thus this above simplifies as
follows:

(63) ar1 ↝λRλNλiλo∃ j . i[r1] j ∧ j [R(jr); N(jr)]o

We can also spell out the sequencing shorthand to make things
clearer:

(64) ar1 ↝λRλNλiλo∃ j .
i[r1] j ∧∃k . j [R(jr)]k ∧k[N(jr)]o

Using this entry and two instances of function application, sen-
tence (65a) evaluates to (65b), which is equivalent to (65c) due to
the equivalences between assignments:

(65) a. Ar1 dog ran away.
b. λiλo .∃k . i[r1] j ∧∃k .Dog(jr)∧ j = k

∧Run-away(jr)∧k = o
c. λiλo . i[r1]o∧Dog(r o

1)∧Run-away(r o
1)

That (65b) is so much more complicated than (65c) is due to the
fact that neither the restrictor nor the nuclear scope of the indefi-
nite a in (65a) happen to contain any indefinites or anything else
that introduces discourse referents. In general, though, this is not
always the case; and this is also the reason for the sequencing op-
erator in (63). The point of sequencing R and N is to preserve any
anaphoric links from within R into N , such as the link between a
donkey and it in examples like the following:

Draft January 18, 2022

390 Dynamic semantics

(66) Ar1 [Restr farmer who had ar2 donkey] [Nucl beat itr2].

Before we get to such examples, we will build up the rest of our lex-
icon as we need it for our toy discourse. Consider first pronouns.
We will ignore gender and case features and simply treat them as
devices that query an input assignment for the value of the dis-
course referent they are indexed with. We could let the pronoun
just return this value, but this would prevent them from combin-
ing with predicates such as verb phrases; such predicates expect
an individual, not a relation between assignments and individu-
als. To remedy this, we let the pronoun take its predicate as an ad-
ditional argument. (This is called Montague-lifting the pronoun;
we will discuss it in more detail in Chapter 10 under the heading
entity-to-quantifier shift.). Here, P is of type ⟨e,T⟩; thus, the type
of any pronoun is ⟨⟨e,T⟩,T⟩. In general, all noun phrases in CDRT
are of this type.

(67) her1 /himr1 /sher1 /herr1 /itr1 ↝λPλiλo . i = o∧ i[P(ir)]o

For example, (68a) denotes (68b):

(68) a. Itr1 ran away.
b. λiλo . i = o∧Run-away(ir)

Pronouns can also be indexed with names rather than discourse
referents. Recall that our model contains names like r john that ev-
ery assignment maps to the relevant individual, so that for any
assignment i we have ir john =John. This means that (69a) is equiv-
alent to (69b):

(69) a. her john ↝λPλiλo . i = o∧ i[P(ir john)]o
b. her john ↝λPλiλo . i = o∧ i[P(john)]o

Turning now to definite descriptions, we assume following Heim
(1982b) that they behave just as anaphoric pronouns do, except
that they come with additional descriptive content. Formally, def-
inite determiners combine with a restrictor and a nuclear scope,

Draft January 18, 2022

Dynamic semantics 391

which are both applied to the entity they refer to.

(70) ther1 ↝λRλNλiλo∃ j . i[R(jr)] j ∧ j [N(jd)]o

Consider now a transitive verb such as bite. Following the same
reasoning as before, we arrive at the following lexical entry:

(71) Preliminary entry
bite↝λyλxλiλo . i = o∧Bite(x, y))

This entry cannot combine with noun phrases, since they are of
type ⟨⟨e,T⟩,T⟩ rather than e. To avoid this type mismatch, we ap-
ply type shifting to the lexical entries of transitive and ditransitive
verbs (for convenience, hit with is treated as if it was a ditransis-
tive verb). To do so, we use the Hendriks schema presented in
Section 7.4.2 to generate an Object Raising rule that is adapted for
the dynamic setting. This results in the following entry. Here, Q is
of type ⟨⟨e,T⟩,T⟩.

(72) Final entry
bite↝λQλx .Q(λyλiλo . i = o∧Bite(x, y))

In the same way, we can use Hendriks’ schema to lift the direct
and indirect objects of ditransitive verbs:

(73) Preliminary entry
hit-with↝λyλzλxλiλo . i = o∧Hit-with(x, y, z)))

(74) Final entry
hit-with↝λQ′λQλx .
Q′(λyλiλo . i = o∧Q(λzλiλo . i = o∧Hit-with(x, y, z)))

Using these entries, we can generate context change poten-
tials for the sentences in (52). We have already seen the context-
change potentials for (52a) and (52b) in (53) and (54). The one
for (52c) is analogous to the one in (68b), and the one for (52d) is
similar.

Draft January 18, 2022

392 Dynamic semantics

Exercise 14. Using the appropriate CDRT lexical entries, give a
compositional derivation of the context change potential of Sen-
tence (52d). Show the details of the derivation. Use equivalences
between assignments to simplify the result as much as possible in
the same manner shown in (65b) and (65c).

Exercise 15. We have seen how the context change potentials of
sentences (52a) and (52b) can be combined using sequencing, as
well as some examples of assignments that can serve as inputs
and outputs to each of these sentences, with the output of (52a)
serving as input to (52b). Do the same for the transitions from
(52b) to (52c), and from (52c) to (52d). Using repeated sequenc-
ing, produce a context-change potential for the entire discourse.
Paraphrase its truth conditions. Explain how anaphoric depen-
dencies are realized and preserved.

An advantage of CDRT is that negation and conditionals do
not require us to define any special composition rules. We can rely
on function application for these operators just as for any other
lexical entry. The following entry for not assumes the VP-internal
subject hypothesis:

(75) not↝λpλiλo . i = o∧¬∃ j . i[p] j

Exercise 16. Modify this entry so that it is able to combine with a
subject of type ⟨⟨e,T⟩,T⟩ along with a VP that expects a subject of
that type.

This entry limits the lifespan of discourse referents in its scope
so that they are no longer available for pronouns in subsequent
sentences to pick up:

Draft January 18, 2022

Dynamic semantics 393

(76) Paul does not own ar1 donkey. #Itr1 is grey.

Using analogous lexical entries to the ones we have already seen,
we combine the transitive verb with the indefinite object and get
the following:

(77) own ar1 donkey
↝λxλiλo .∃ j . i[r1] j ∧Donkey(jr1)∧Owns(x, jr1)

After combining with the subject, we get:

(78) Paul owns ar1 donkey
↝λiλo . . i[r1]o∧Donkey(r o

1)∧Owns(paul,r o
1)

This context-change potential relates any two assignments i and
o just in case they differ at most in r , in such a way that o maps r
to a donkey that Paul owns.

The bridging principles in (57) and (58) have the effect that
this is true just in case there exist an assignment i and an assign-
ment o that stand in this relation.

Negation now applies and converts this into a context-change
potential that requires i and o to be identical, and furthermore en-
sures that there is no assignment that is like i aside from mapping
r to a donkey Paul owns:

(79) not(Paul owns ar1 donkey)
↝λiλo . i = o∧¬∃ j . i[r1] j ∧Donkey(jr1)∧Owns(paul, jr1)

The bridging principles have the effect that this is true just in case
there is an assignment i such that for no assignment o is it the
case that i differs from o at most in that o maps r to a donkey
Paul owns. That is to say, there is an assignment i such that every
assignment o differs from i in more than the fact that o maps r to
a donkey Paul owns.

This chapter has only given a taste of dynamic semantics, enough
to show that it has the power to deal smoothly with the appar-
ently variable force of indefinites. Geurts & Beaver (2011) provide

Draft January 18, 2022

394 Dynamic semantics

a more thorough overview, including more on the notion of ‘ac-
cessiblity’, which constrains the ‘lifespan’ of discourse referents.
The interested student is encouraged to start there and work back-
wards from the references cited there.

Draft January 18, 2022

10 ∣ Coordination and plurals

10.1 Coordination

Let us now consider coordination in more detail. We may include
sentences with and and or among the well-formed expressions of
our language by extending our syntax and lexicon as follows:

(1) Syntax
S → S CoordP
CoordP → Coord S

(2) Lexicon
Coord: and, or

To translate these into the lambda calculus, we can simply write
the following (here, p and q are variables over truth values):

(3) a. andS ↝λqλp .[p ∧q]
b. orS ↝λqλp .[p ∨q]

This will work for coordinations of sentences. For example, here
is a tree for John smokes and Mary drinks:

395

396 Coordination and plurals

(4) S
t

[Smokes(j)∧Drinks(m)]

S
t

Smokes(j)

NP
e
j

John

VP
⟨e, t⟩

λx .Smokes(x)

smokes

CoordP
⟨t , t⟩

λp .[p ∧Drinks(m)]

Coord
⟨t ,⟨t , t⟩⟩

λqλp .[p ∧q]

and

S
t

Drinks(m)

NP
e
m

Mary

VP
⟨e, t⟩

λx .Drinks(x)

drinks

Sentences are not the only kinds of expressions that can be
coordinated, though. Here are a few examples:

(5) a. Somebody smokes and drinks. (VP and VP)
b. No man and no woman laughed. (DP and DP)
c. Susan caught and ate the fish. (V and V)

It is clear that we need to extend our grammar. Since these
examples do not cover all the possibilities, it will not do to intro-
duce fixes to the syntax and semantics one at a time. Instead, we
need to formulate a general pattern and then extend our syntax
and semantics according to it.

How shall we analyze the semantics of coordination? An early
style of analysis consisted in analyzing all coordinations as un-
derlyingly sentential, even those of constituents other than sen-

Draft January 18, 2022

Coordination and plurals 397

tences. For example, VP coordination was analyzed as involving
deletion of the subject of the second sentence (indicated here as
strikethrough):

(6) a. John smokes and drinks.
b. John smokes and John drinks.

It was soon found that this would not work. If VP coordination
really was sentential coordination in disguise, then all VP coordi-
nations should be semantically equivalent to their sentential rel-
atives. This may be the case for simple sentences, as above. But
quantifiers break this equivalence. The following two sentences
are not paraphrases, as their translations into logic show.

(7) a. Somebody smokes and drinks.
∃x .[Smokes(x)∧Drinks(x)]

b. Somebody smokes and somebody drinks.
[∃x .Smokes(x)∧∃x .Drinks(x)]

(8) a. Everybody smokes or drinks.
∀x .[Smokes(x)∨Drinks(x)]

b. Everybody smokes or everybody drinks.
[∀x .Smokes(x)∨∀x .Drinks(x)]

Exercise 1. For each of the two sentence pairs above, establish
that they are not equivalent by describing a scenario in which one
of them is true and the other one is false.

Luckily, it is also possible to design a grammar in which coor-
dinated constituents are directly generated syntactically, and di-
rectly interpreted semantically. We can extend the syntax by pairs
of rules of the following kind, one pair for each category:

(9) Syntax
X → X CoordP
CoordP → Coord X

Draft January 18, 2022

398 Coordination and plurals

where X ∈ {S, VP, DP, V,. . .}

The semantic side is trickier. It is not obvious if we can give a
single denotation for each conjunction that covers all of its uses
across categories. So we will first look at a few cases individually,
and then generalize over them. For VP coordination, the following
entries for and and or will do:

(10) a. andVP ↝λP ′λPλx .[P(x)∧P ′(x)]
b. orVP ↝λP ′λPλx .[P(x)∨P ′(x)]

This tree shows the entry for and in action. The result is what we
want: the quantifier somebody takes scope over and.

(11) S
t

∃x .[Smokes(x)∧Drinks(x)]

NP
⟨⟨e, t⟩, t⟩

λP∃x .P(x)

Somebody

VP
⟨e, t⟩

λx .[Smokes(x)∧Drinks(x)]

VP
⟨e, t⟩

λx .Smokes(x)

smokes

CoordP
⟨⟨e, t⟩,⟨e, t⟩⟩

λPλx .[P(x)∧Drinks(x)]

Coord
⟨⟨e, t⟩,⟨⟨e, t⟩,⟨e, t⟩⟩⟩

λP ′λPλx .[P(x)∧P ′(x)]

and

VP
⟨e, t⟩

λx .Drinks(x)

drinks

What about coordinations of transitive verbs, as in Mary loves and
hates John? Assuming that transitive verbs translate to expres-

Draft January 18, 2022

Coordination and plurals 399

sions of type ⟨e,⟨e, t⟩⟩, that is, (Schönfinkelized) binary relations,
the version of and that should be used to coordinate them should
take two binary relations and return a new binary relation. The
following entries will do that trick.

(12) a. andV ↝λR′λRλyλx .[R(y)(x)∧R′(y)(x)]
b. orV ↝λR′λRλyλx .[R(y)(x)∨R′(y)(x)]

Given loves and hates, these lexical entries will produce a new re-
lation, ‘loves and hates’.

Exercise 2. Using the lexical entry for and above, draw the tree for
Susan caught and ate the fish.

Noun phrase coordination (that is, coordination of DPs) can
be approached in the same way. Let us first look at conjunctions
of quantifiers:

(13) a. Every man and every woman laughed.
∀x .[Man(x)→ Laughed(x)] ∧
∀x .[Woman(x)→ Laughed(x)]

b. A man or a woman laughed.
∃x .[Man(x)∧Laughed(x)] ∨
∃x .[Woman(x)∧Laughed(x)]

Since quantifiers have a higher type, they take verb phrases as
arguments. This makes the entries for and and or very similar to
their VP-coordinating counterparts:

(14) a. andDP ↝λQ′λQλP .[Q(P)∧Q′(P)]
b. orDP ↝λQ′λQλP .[Q(P)∨Q′(P)]

Exercise 3. Using the lexical entries above, draw the trees for Every
man and every woman laughed and A man or a woman laughed.

Draft January 18, 2022

400 Coordination and plurals

In all of the examples so far, the two constituents being coor-
dinated were of the same semantic type. That is not always the
case. As the following example shows, a type-e noun phrase like
John can be coordinated with a type-⟨⟨e, t⟩, t⟩ noun phrase.

(15) John and every woman laughed.

The translation we should obtain for this sentence is as follows:

[Laughed(j)∧[∀x .Woman(x)→ Laughed(x)]]

In order to be able to reuse the lexical entry above, and in order
to avoid deviating from the pattern we have established so far, we
will adjust the type of John to make it equal to that of every woman.
For this purpose, we introduce a new type-shifting rule that intro-
duces a possible translation of type ⟨⟨e, t⟩, t⟩ for every translation
of type e:

Type-Shifting Rule 4. Entity-to-quantifier shift
If α↝ α′, where α′ is of type e, then α can also be translated
as follows:

λP .P(α′)

This rule, which goes back to Montague (1973b) and has made
a brief appearance in Chapter 9, is also called Montague-lift. It
encapsulates the insight that an individual x can be recast as the
set of all the properties that x has. Essentially, the rule inverts
the predicate-argument relationship between the subject and the
verb phrase of a sentence. For example, if John↝ j then also John
↝λP .P(j). That translation is of type ⟨⟨e, t⟩, t⟩. It denotes a func-
tion that maps predicates to truth values. Any predicate that holds
of John is within the characteristic set of this function. In a sen-
tence like John laughed, this function takes the verb phrase deno-
tation as an argument. In a sentence like John and every woman

Draft January 18, 2022

Coordination and plurals 401

laughed, we are able to conjoin this function with every woman
using the entry andDP. The resulting coordinated DP denotation
can combine with any verb phrase, or if it occurs in nonsubject
position, the resulting type mismatch can be repaired using the
mechanisms from Chapter 7 (either QR or further type-shifting).

Exercise 4. Draw the tree for John and every woman laughed and
derive a semantic interpretation for it compositionally.

Exercise 5. Draw a tree for John and Mary smoke and give a deriva-
tion that results in:

[Smoke(j)∧Smoke(m)]

You will need to apply the type shifter once on each conjunct.

We are now ready to generalize over syntactic categories. This
is done by defining a single operator ⊓ that generalizes over all
these categories and then translating and as ⊓ (and similarly for
disjunction and ⊔). All of the entries for conjunction and for dis-
junction have ∧ and ∨ at their core respectively. And all of them
operate on types that end in t , namely ⟨e, t⟩ for VP coordination,
⟨e,⟨e, t⟩⟩ for coordination of transitive verbs, and ⟨⟨e, t⟩, t⟩ for DP
coordination. The following recursive definitions will work for ev-
ery type that ends in t .

(16) ⊓⟨τ,⟨τ,τ⟩⟩

= {λqλp . p ∧q if τ = t

λXτλYτλZσ1 . ⊓⟨σ2,⟨σ2,σ2⟩⟩ (X (Z))(Y (Z)) if τ = ⟨σ1,σ2⟩
(17) ⊔⟨τ,⟨τ,τ⟩⟩

= {λqλp . p ∨q if τ = t

λXτλYτλZσ1 . ⊔⟨σ2,⟨σ2,σ2⟩⟩ (X (Z))(Y (Z)) if τ = ⟨σ1,σ2⟩

Draft January 18, 2022

402 Coordination and plurals

(For more details on this approach, see for example Partee &
Rooth (1983) and Winter (2001).)

Here is how the schema in (16) derives DP-coordinating and.
The type of DP (after lifting entities to quantifiers if necessary) is
⟨⟨e, t⟩, t⟩. So the type of DP-coordinating and is ⟨τ,⟨τ,τ⟩⟩, where
τ = ⟨⟨e, t⟩, t⟩. Since τ /= t , we look for σ1 and σ2 such that τ =
⟨σ1,σ2⟩. This works for σ1 = ⟨e, t⟩ and σ2 = t . We plug in these
definitions into the last line of (16) and get:

(18) λX⟨⟨e,t⟩,t⟩λY⟨⟨e,t⟩,t⟩λZ⟨e,t⟩ . ⊓⟨t ,⟨t ,t⟩⟩ (X (Z))(Y (Z))

To resolve⊓⟨t ,⟨t ,t⟩⟩, we apply Definition (16) once more. This time,
τ = t , so the result is simply logical conjunction:

(19) ⊓⟨t ,⟨t ,t⟩⟩ =λqλp . p ∧q

We plug this into the previous line and get the final result:

(20) λX⟨⟨e,t⟩,t⟩λY⟨⟨e,t⟩,t⟩λZ⟨e,t⟩ .Y (Z) ∧ X (Z)

This is indeed equivalent to our entry for DP-coordinating and in
(14a). The entry will only work if both DPs are of type ⟨⟨e, t⟩, t⟩.
If necessary, one or both DPs may need to be lifted into that type
first by applying the type shifter above.

Exercise 6. Show how the schema can be applied to VP-
coordination.

10.2 Mereology

All of the occurrences of and that we have seen so far can be re-
lated to the denotation of logical conjunction. This is not always
the case, though. Consider the following example.

(21) John and Mary are a happy couple.

Draft January 18, 2022

Coordination and plurals 403

There is no obvious way to formulate the truth conditions of (21)
using logical conjunction. It cannot be represented as:

[Happy-couple(j)∧Happy-couple(m)]

since this would entailHappy-couple(j) as well asHappy-couple(m).
In other words, it would have the entailments that John is a happy
couple and that Mary is a happy couple. These are obviously non-
sensical because a singular individual can’t be a couple. Only two
people can form a happy couple. Predicates like be a couple are
called COLLECTIVE. They apply to collections of individuals di-
rectly, without applying to those individuals. In this sentence,
then, the word and does not seem to amount to logical conjunc-
tion but to the formation of a collection, in this case, the “collec-
tive individual” John-and-Mary.

Another example of collective predication was given by Link
(1983a), at the beginning of his paper. He writes:

The weekly Magazine of the German newspaper
Frankfurter Allgemeine Zeitung regularly issues Mar-
cel Proust’s famous questionnaire which is answered
each time by a different personality of West German
public life. One of those recently questioned was Rudolf
Augstein, editor of Der Spiegel; his reply to the ques-
tion: [“Which property of your friends do you appre-
ciate the most?”] was . . . “that they are few”.

Clearly, this is not a property of any one of Augstein’s
friends; yet, even apart from the esprit it was designed
to display the answer has a straightforward interpre-
tation. The phrase . . . predicates something collectively
of a group of objects, here: Augstein’s friends.

To talk about such collections, we need to extend our formal
setup. On the semantic side, we will add collections of individuals
to our model. You might suspect that we would represent these

Draft January 18, 2022

404 Coordination and plurals

collections as sets, so that John and Mary would be represented
as the set that contains just these two individuals. Instead, we will
extend our formal toolbox by borrowing from MEREOLOGY, the
study of parthood. There are many reasons for this choice. One is
that using mereology for this purpose has been standard practice
in formal semantics since Link (1983b). Another reason is that set
theory makes formal distinctions that turn out not to be needed in
mereology. Where set theory is founded on two relations (∈ and ⊆),
mereology collapses them into one, the parthood relation. This
relation holds both between John and John-and-Mary (where in
set theory, we would use ∈), and also between John-and-Mary and
John-and-Mary-and-Sue (where in set theory, we would use ⊆).
Mereology also provides an operator,⊕, that allows us to put indi-
viduals together to form collections. The formal objects that rep-
resent these collections in mereology are called SUMS. For exam-
ple, the collection John-and-Mary is represented formally as the
sum j⊕m. Collective predicates apply directly to such sums. For
example, John and Mary are a happy couple can be represented as
Happy-couple(j⊕m). Since the sum j⊕m is of type e, the type of
the VP is ⟨e, t⟩ as usual.

Exercise 7. Formulate an additional lexical entry for andDP that
conjoins two entities of type e and returns their sum. Draw the
tree for John and Mary met.

In mereology, the domain can be organized into an algebraic
structure. An algebraic structure is essentially a set with a binary
operation (in this case, ⊕) defined on it. Figure 10.1 illustrates
such a structure. The circles stand for the individuals Tom, Dick,
and Harry, and for the sums that are built up from them. We will
use the word INDIVIDUAL to range over all the circles in this struc-
ture. We will refer to Tom, Dick, and Harry, as ATOMIC INDIVIDU-
ALS; the other circles stand for individuals which are not atomic.
In mereology, the terms ATOM and ATOMIC refer to anything which

Draft January 18, 2022

Coordination and plurals 405

does not have any parts other than itself; they are technical terms
that do not necessarily coincide with physical or metaphysical no-
tions of what is an atom. For semantic purposes, it is common
to assume that individuals that can be described with a singu-
lar count noun are atoms. By this criterion, any human being is
treated as an atom; so is any hand, and any committee, with no
mereological parthood relation holding between these entities (as
opposed to the matter that constitutes them).

The lines between the circles stand for the parthood relations
that hold between the various individuals. We will assume that
parthood is reflexive, transitive, and antisymmetric, or as it is called
in mathematics, a “partial order”. Reflexivity means that every-
thing is part of itself. (This may not be intuitive but it is a mere
formal convenience, and it can be eliminated by defining a dis-
tinct notion of proper parthood: a is a proper part of b just in case
a is both part of and distinct from b.) Transitivity means that if a
is part of b and b is part of c, then a is also part of c. For exam-
ple, according to Figure 10.1, t is part of t⊕d, and t⊕d is part of
t⊕d⊕h; therefore, by transitivity, t is also part of t⊕d⊕h. Finally,
antisymmetry means that two distinct things cannot both be part
of each other. This condition is very intuitive. For example, since
t is part of t⊕d, it follows that t⊕d is not part of t.

The branch of formal semantics that uses algebraic structures
and parthood relations to model various phenomena is known as
algebraic semantics. The fundamental assumption in algebraic
semantics is that any nonempty set of things of the same sort (for
example individuals or events) has one and exactly one sum. So
far, we have only considered one sort, namely individuals (type
e). We will assume that all individuals, including sums, will be
of type e. To express that the atomic individual Tom is part of the
sum individual Tom-and-Dick, we will write t ≤ t⊕d. In structures
like the one depicted in Figure 10.1, the sum of any nonempty set
of individuals S, at least for those sets S denoted by some predi-
cate, is always the lowest individual that sits above every element

Draft January 18, 2022

406 Coordination and plurals

Figure 10.1: An algebraic structure

t d h

t⊕d t⊕h d⊕h

t⊕d⊕h

of S. (As we will see later, this corresponds to the mathematical
notion of “least upper bound”.) For example, if S consists of the
two atomic individuals t and d, then the lowest individual that sits
above these two is t⊕d. Sometimes the sum of S can be a member
of S. For example, if S consists of t and t⊕d, then its sum is t⊕d
again. And if S consists of just one individual, such as h, then its
sum is that individual itself.

10.3 The plural

10.3.1 Algebraic closure

Coordinations of proper nouns are not the only way to talk about
sums:

(22) a. Tom, Dick and Harry met.
b. Some boys met.
c. Three boys met.
d. The boys met.

Draft January 18, 2022

Coordination and plurals 407

In each of these three sentences, the collective predicate met
applies to a sum x. Only (22a) fully specifies the parts of that sum,
while (22b) through (22d) describe it partially. That is, we know
that they are all boys, but we don’t know who they are.

Just like the predicate met, the plural noun boys can be seen as
denoting a predicate that applies to the sum x. What is the deno-
tation of the noun boys? One way to describe it is in terms of the
conditions it imposes on x, namely, boys requires it to be the sum
of some boys. In general, the denotation of a plural noun can be
described in terms of the denotation of its corresponding singular
noun. If we take P to be the set of all the entities in the denotation
of the singular noun, then the plural noun denotes the set that
contains any sum of things taken from P . This operation is cap-
tured by the notion of algebraic closure, which has been proposed
to underlie the denotation of the plural (Link, 1983b):

(23) Definition: Algebraic closure
The algebraic closure ∗P of a set P is the set that contains
any sum of any nonempty subset of P .

The most straightforward way to implement this idea is to identify
the denotation of the plural morpheme with the “star operator”:

(24) -s↝λP .∗P

For example, suppose that we are in a model with just three boys,
Tom, Dick and Harry. Then the denotation of the noun boy might
be modeled as {t,d,h}. The denotation of the noun boys is the al-
gebraic closure of that set: {t,d,h,t⊕d,t⊕h,d⊕h,t⊕d⊕h}. This
set contains everything that is either a boy or a sum of two or more
boys. It might seem strange to include individual boys in this set.
After all, it sounds strange to say Tom are boys, and the sentence
Some doctors are in the room is false if only one doctor is in the
room. And indeed, Link himself proposed excluding them. But
this leads to a different problem: It makes boys essentially syn-
onymous with two or more boys. But this leads to the wrong pre-

Draft January 18, 2022

408 Coordination and plurals

dictions in downward-entailing environments. For example, No
doctors are in the room is not synonymous with No two or more
doctors are in the room. Consider the case where a single doctor is
in the room. Here only one of the two sentences is true. For this
reason we will continue to use (24) as the denotation of the plu-
ral, and rule out Tom are boys on pragmatic grounds. That is, boys
literally means one or more boys. Sentences like *John is boys and
*John are boys are assumed to be ruled out on syntactic or prag-
matic rather than on semantic grounds.

Link gave plural individuals the status of first-class citizens in
the logical representation of natural language. That is, they be-
long to De and are not treated differently from atomic individuals.
This allowed him to represent collective predicates like meet as
predicates that apply directly to sum individuals:

(25) a. Tom, Dick, and Harry met. ↝Meet(t⊕d⊕h)
b. Some boys met.↝∃x .[∗Boy(x)∧Meet(x)]

As seen in (25a), Link represented sentential conjunction in a dif-
ferent way than noun phrase conjunction. This has the conse-
quence that even the translations of equivalent sentences can look
very different:

(26) a. Tom is a boy and Dick is a boy. ↝ [Boy(t)∧Boy(d)]
b. Tom and Dick are boys. ↝ ∗Boy(t⊕d)

Exercise 8. Draw trees for the sentences in (25) and (26b), using
the appropriate entries for and in each case. You can use the same
entry for some as in Chapter 6. Assume that is, a and are denote
identity functions, or treat them as vacuous nodes. Make sure that
the result is as in (25) and (26b).

Draft January 18, 2022

Coordination and plurals 409

10.3.2 Plural definite descriptions

Now, supposing that boys denotes the set of boy-pluralities, what
does the boys denote? If we translate the boys as:

ιx .∗Boy(x)

then we will have a presupposition failure as long as there is more
than one boy, because more than one individual will satisfy the
predicate ∗Boy(x).1 How shall we remedy this problem?

One possible solution is to give a different kind of analysis for
plural the, where it refers to the sum of the individuals that satisfy
that predicate given by the noun, rather than the unique individ-
ual that satisfies it. The sum operator is usually written with a σ
(the Greek letter ‘sigma’), following Link (1987). It is defined as
follows:

(27) σx .P(x) is defined as:
ιx .∗P(x)∧∀y[∗P(y)→ y ≤ x]

For example, σx .boy(x) denotes the sum of all of the boys. Since
every nonempty set has a sum, this expression has a defined value
whenever the predicate inside it applies to at least one individual.

The plural definite article can then be treated as denoting this
sum operator:

(28) theSUM ↝ λP .σx .P(x)

Later we will consider a different version of the; the subscript SUM

is there to distinguish this version of the from the other one we
will consider. Combined with boys, this yields:

(29) theSUM boys↝ σx .∗Boy(x)

In a model where the boys are Tom, Dick and Harry, (29) denotes
{t,d,h,t⊕d,t⊕h,d⊕h,t⊕d⊕h}. As can be checked with Figure

1This was pointed out by Sharvy (1980).

Draft January 18, 2022

410 Coordination and plurals

10.1, the sum of this set, and therefore the denotation of the boys,
is just t⊕d⊕h. This is exactly what we want.

But in other cases, such as the boy and the two boys, we run
into a problem. To see this, let us first establish some assumptions
about how phrases like two boys are interpreted. Suppose that two
denotes the property of being a sum of exactly two atomic indi-
viduals (for which we will write Card(x) = 2), and that it combines
with boys via Predicate Modification:

(30) two↝ λx .Card(x) = 2

Then two boys will translate as follows:

(31) two boys↝ λx .[Card(x) = 2∧∗Boy(x)]

In our model, the set denoted by two boys is {t⊕d,t⊕h,d⊕h }.

Exercise 9. In order to deal with sentences like Two boys met, we
can assume that there is a silent determiner with the semantics of
a generalized existential quantifier:

∅D ↝λPλP ′ .∃x .[P(x)∧P ′(x)]

Give a derivation for Two boys met using this assumption. Don’t
forget to include the silent determiner in the tree diagram.

Now, what about the two boys? If we use theSUM from above,
then we will get the sum of the two-boy pluralities. As a glance at
Figure 10.1 will confirm, this sum is t⊕d⊕h. We have applied the
condition Card(x) = 2 only to the pluralities being summed up,
and not to the result of this summing-up operation. So we end up
with the rather odd prediction that the two boys refers to this sum!

Exercise 10. Translate TheSUM boys met and TheSUM two boys met.

Draft January 18, 2022

Coordination and plurals 411

Exercise 11. In the model where the boys are Tom, Dick, and
Harry, what (if anything) do the expressions theSUM boy, theSUM

boys, theSUM two boys and theSUM three boys denote? In each case,
explain which presupposition arises and whether it is satisfied.

Which of these cases does this theory of plural the make the
correct predictions for?

Intuitively, the two boys should give rise to a presupposition
failure, because there are three boys in our model. We must build
a source of presupposition failure into our denotation for the plu-
ral definite. Let us therefore interpret the P as the single individual
of which P holds that contains every other individual of which P
also holds (Montague, 1979):

(32) theSUPR↝ λP ιx[P(x)∧∀y[P(y)→ y ≤ x]]

We call it this because under this theory, the denotes the SUPRE-
MUM of the P ’s: the unique P (if there is one) that contains all
other P ’s. In structures like the one depicted in Figure 10.1, we
can check whether a given set of individuals P has a supremum
by checking whether there is an element of P that sits above every
element of P other than itself. This is the same procedure as the
one for determining the sum of P show in (27), with one excep-
tion: in the case of the supremum of P , we check if the result is an
element of P , while in the case of the sum of P , we skip this check.

It turns out that this representation even works for the singular
definite article. In any model where there is exactly one boy, the
set denoted by boy is a singleton, and since everything is part of
itself, the representation in (32) picks out the only member of that
singleton. In all other models, the ι operator will not be defined.

Draft January 18, 2022

412 Coordination and plurals

Exercise 12. Translate TheSUPR boys met and TheSUPR two boys met.
This exercise can be solved in the Lambda Calculator.

Exercise 13. In the model where the boys are Tom, Dick, and
Harry, what (if anything) do the expressions theSUPR boy, theSUPR

boys, theSUPR two boys and theSUPR three boys denote? In each case,
explain which presupposition arises and whether it is satisfied.

Which of these cases does this theory of plural the make the
correct predictions for?

10.4 Cumulative readings

So far, we have seen three kinds of predicates that apply to sums:
plural nouns like boys, collective predicates like met, pluralized
distributive predicates like laughed-∅. All these are one-place pred-
icates. Sums can also be related by two-place predicates, as in the
following sentences:

(33) a. The men in the room are married to the women across
the hall. (Kroch, 1974)

b. 600 Dutch firms use 5000 American supercomputers.
(adapted from Scha, 1981)

c. Tom, Dick and Harry (between them) own (a total of)
four toothbrushes.

Let us take a closer look at the ways the plural entities in these
sentences are related. Sentence (33a) is true in a scenario where
each of the men in the room is married to one of the women across
the hall, and each of the women is married to one of the men.
(This might seem to be the only available scenario in which the

Draft January 18, 2022

Coordination and plurals 413

sentence is true, but this is an effect of Western social/legal norms
rather than a linguistic effect. One can easily imagine polyga-
mous societies where other scenarios can be described by this
sentence. All that is required for the sentence to be true is that
each of the people in the room is married to at least one of the
people across from them.) Sentence (33b) (on its relevant read-
ing) is true in a scenario where there are a collection of 600 Dutch
firms, and a collection of 5000 American supercomputers, such
that each of the firms uses one or more of the supercomputers,
and each of the computers is used by one or more of the firms.
Sentence (33c) is true in a scenario where Tom, Dick and Harry
own toothbrushes in such a way that a total of four toothbrushes
are owned. A widespread view is that these scenarios correspond
to genuine readings of these sentences, rather than special cir-
cumstances under which they are true. These readings are then
called cumulative readings.

Just like distributive readings, cumulative readings can be mod-
eled via algebraic closure. The idea is that if Tom owns toothbrush
t1, Dick owns toothbrush t2, and Harry owns toothbrush t3 and
also toothbrush t4, then the sum of Tom, Dick and Harry stands
in the algebraic closure of the owning relation to the sum of the
four toothbrushes. In order to formalize this, we need to general-
ize the definition of algebraic closure from sets (which correspond
to one-place predicates) to n-place relations (which correspond
to n-place predicates). Here we rely on the notion of a TUPLE, de-
fined in Chapter 2 as a finite sequence of elements.

(34) Definition: Sum of a set of n-tuples
The sum of a set of n-tuples R, written⊕R, is the n-tuple
whose first element is the sum of the first elements of these
tuples, whose second element is the sum of the second el-
ements of these tuples, and so on. (More formally, for any
set of n-tuples R, let

Ri = {r ∣ ∃r1, ...,rn−1 ∶ ⟨r1, ...,ri−1,r,ri , ...,rn−1⟩ ∈R}.

Draft January 18, 2022

414 Coordination and plurals

Then⊕R = ιÐ→r .ri =σ(Ri) for all i .)

(35) Definition: Tuple of an n-place predicate
For a given n-place relation R, a tuple of R is any n-tuple
⟨x1, x2, . . . , xn ,⟩ such that R(x1)(x2) . . .(xn).

(36) Definition: Algebraic closure of an n-place predicate
The algebraic closure ∗R of an n-place predicate R is the
set that contains any sum of any nonempty subset of tu-
ples of R. We write ∗R(a,b) for ∗R(⟨a,b⟩).

We can then represent cumulative readings by using the algebraic
closure of transitive verbs:

(37) Tom, Dick and Harry own four toothbrushes. ↝
∃x .∗Toothbrush(x)∧Card(x) = 4∧
∗Own(t⊕d⊕h, x)

An example model which verifies formula (37) is the one described
above, where Tom owns toothbrush 1, Dick owns toothbrush 2,
and Harry owns toothbrushes 3 and 4. The n-tuples of the relation
denoted by “own” are the pairs (2-tuples) ⟨t , t1⟩, ⟨d , t2⟩, ⟨h, t3⟩ and
⟨h, t4⟩. The sum of these four pairs is ⟨t ⊕d ⊕h, t1⊕ t2⊕ t3⊕ t4⟩.

10.5 Formal mereology

Intuitively, the sum of some things is that which you get when you
put them together. For many purposes, this rough intuition along
with a quick glance at diagrams like the one in Figure 10.1 is suffi-
cient. But if we want to prove that the logical representation of one
sentence entails that of another sentence, and if these represen-
tations involve parthood or sums, then we need a precise frame-
work in which we can substantiate our intuitions. For example, if
we want to prove that (26b) logically follows from (26a), we need
to show that this is the case given certain basic assumptions about
the properties of parthood and sum.

Draft January 18, 2022

Coordination and plurals 415

The most commonly used framework for describing the for-
mal behavior of parthood and sum in natural language seman-
tics is known as Classical Extensional Mereology (CEM). One of
the advantages of CEM is that there are intuitive similarities be-
tween its parthood relation and set-theoretical subsethood, and
between its sum operation and set-theoretical union. These sim-
ilarities are listed in Table 10.1. Here, ∃!x .φ(x) is a shorthand for
∃x .φ(x)∧∀y .φ(y)→φ(x) and can be read as “there is a unique
x such that . . . ”.

Table 10.1: Correspondences between CEM and set theory

Property CEM Set theory

1 Reflexivity x ≤ x x ⊆ x
2 Transitivity x ≤ y ∧ y ≤ z→ x ≤ z x ⊆ y ∧ y ⊆ z→ x ⊆ z
3 Antisymmetry x ≤ y ∧ y ≤ x→ x = y x ⊆ y ∧ y ⊆ x→ x = y
4 Uniqueness P /=∅→∃!z sum(z,P) ∃!z z =⋃P
5 Interdefinability x ≤ y↔ x⊕ y = y x ⊆ y↔ x ∪ y = y
6 Associativity x⊕(y ⊕ z) = (x⊕ y)⊕ z x ∪(y ∪ z) = (x ∪ y)∪ z
7 Commutativity x⊕ y = y ⊕ x x ∪ y = y ∪ x
8 Idempotence x⊕ x = x x ∪ x = x

9 Unique separation
x ≤ y ∧ x /= y →
∃!z[x⊕ z = y∧
¬∃z′[z′ ≤ x ∧ z′ ≤ z]]

x ⊂ y →∃!z[z = y − x]

There are different formulations of CEM. Here is a common
one (for others see Hovda 2009). In the following, P is either an
arbitrary predicate from first-order logic or an arbitrary set. De-
pending on the choice, the resulting system is first-order or second-
order, because there are more sets than predicates.

The following axioms constrain parthood to be a partial order:

(38) Axiom of reflexivity

Draft January 18, 2022

416 Coordination and plurals

∀x[x ≤ x]
(Everything is part of itself.)

(39) Axiom of transitivity
∀x∀y∀z[x ≤ y ∧ y ≤ z→ x ≤ z]
(Any part of any part of a thing is itself part of that thing.)

(40) Axiom of antisymmetry
∀x∀y[x ≤ y ∧ y ≤ x→ x = y]
(Two distinct things cannot both be part of each other.)

Reflexivity is imposed on the parthood relation mainly for tech-
nical convenience. We can define an irreflexive proper-part rela-
tion by restricting parthood to nonequal pairs:

(41) Definition: Proper part
x < y

def= x ≤ y ∧ x /= y
(A proper part of a thing is a part of it that is distinct from
it.)

With the part relation, we define the auxiliary concept of overlap:

(42) Definition: Overlap
x ○ y

def= ∃z[z ≤ x ∧ z ≤ y]
(Two things overlap if and only if they have a part in com-
mon.)

For example, in Figure 10.1, t ⊕d is a part, but not a proper part,
of t ⊕d (itself); it is both a part and a proper part of t ⊕d ⊕h; and
it overlaps with every entity except with h.

With this in place, we can define the notion of sum. We start
by defining it in a way that leaves it open whether a collection of
things may have more than one sum. It is only later that we will
constrain the system so that no collection can have more than one
sum.

(43) Definition: Sum
sum(x,P) def= ∀y[P(y)→ y ≤ x] ∧ ∀z[z ≤ x →∃z′[P(z′) ∧

Draft January 18, 2022

Coordination and plurals 417

z ○ z′]]
(A sum of a set P is a thing that contains everything in P
and whose parts each overlap with something in P .)

Here, sum is a relation of type ⟨e,⟨⟨e, t⟩, t⟩⟩, that is, it relates en-
tities x of type e to predicates P of type ⟨e, t⟩. The formulation of
the definition reflects the intuitive fact that a sum may have other
parts than just its immediate components. For example, in Fig-
ure 10.1, the sum of t ⊕d and h, namely t ⊕d ⊕h, has more parts
than just these two entities; in fact, every one of the entities in the
figure is one of its parts.

The following facts follow from these definitions:

(44) Fact
∀x∀y[x ≤ y → x ○ y]
(Parthood is a special case of overlap.)

(45) Fact
∀x[sum(x,{x})]
(A singleton set sums up to its only member.)

Different systems of mereology disagree on what kinds of col-
lections have a sum, and whether it is possible for one and the
same collection to have more than one sum. In CEM, sums are
unique, therefore two things composed of the same parts are iden-
tical. This is expressed by the following axiom schema that ranges
over all predicates φ of type ⟨e, t⟩:

(46) Axiom of uniqueness of sums
[[∃x .φ(x)]→∃!z sum(z,φ)]
(If the predicate φ applies to at least one individual, then
the set of all entities to which it applies has a unique sum.)

The binary and generalized sum operators in (47) and (48) give
us a way to refer explicitly to the sum of two things, and to the
sum of a set denoted by an arbitrary predicate. In these expres-
sions, ιx P(x) is defined if and only if there is exactly one object x

Draft January 18, 2022

418 Coordination and plurals

such that P(x) is true. When defined, the expression denotes that
object.

(47) Definition: Binary sum
x⊕ y is defined as ιz sum(z,{x, y}).
(The sum of two things is the thing which contains both
of them and whose parts each overlap with one of them.)

(48) Definition: Generalized sum
For any nonempty set P , its sum⊕P is defined as ιz sum(z,P).
(The sum of a set P is the thing which contains every ele-
ment of P and whose parts each overlap with an element
of P .)

For example, we can write the plural individual denoted by the
conjoined term John and Mary as j⊕m, and to the sum of all water
as⊕water.

We can now prove that various entailment relations hold be-
tween sentences that we had represented in ways that look rather
different from each other. For example, we can prove that the as-
sumption boy(j)∧boy(b) entails the conclusion ∗boy(j⊕b). Ac-
cording to Definition (23), ∗boy is the set that contains any sum of
any nonempty set of boys. So, ∗boy(j⊕b) is true if and only if j⊕b is
the sum of some nonempty set of boys. The obvious candidate is
{j,b}. So we need to show two things: that {j,b} is a nonempty set
of boys, and that j⊕b is its sum. By assumption, boy(j)∧boy(b),
hence j and b are boys. So {j,b} is a nonempty set of boys. That
j⊕ b is the sum of this set follows from the definition of ⊕. This
concludes the proof.

10.6 A formal fragment

Finally, we need to extend the syntax and semantics of our logic in
order to adapt it to the new entities and relations we have added.
The syntax is defined as in three-valued type logic (Lλ with three
truth values as in Chapter 8), plus the following additions:

Draft January 18, 2022

Coordination and plurals 419

10.6.1 Logic syntax

We add the following primitive symbol to our syntax.

1. Parthood If α and β are terms of type e, then α ≤ β is an
expression of type t .

In addition, we have the following abbreviation conventions.

1. If φ is an expression of type ⟨e, t⟩, we write ⊕φ (read as:
“the sum of φ”) for the expression [ιx.[∀y.[φ(y)→ y ≤ x]]∧
[∀z.[∀z′.[φ(z′) → z′ ≤ z]] → x ≤ z]]. (That is, ⊕φ denotes
the least upper bound, or sum, of φ.) This is defined when-
ever φ applies to at least one entity.)

2. Ifα and β are terms of type e, we write [α⊕β] (read as: “the
sum of α and β”) for the expression⊕[λx.x =α∨ x =β].

3. An expression of the form [[α⊕β]⊕γ] or [α⊕[β⊕γ]] can
be simplified to [α⊕β⊕γ].

10.6.2 Logic semantics

Expressions are interpreted with respect to both:

• a model M = ⟨D, I ,≤⟩ where D and I are defined as usual
and ≤ is the parthood relation over individuals that obeys
the conditions listed above,

• an assignment g defined as usual.

For every well-formed expressionα, JαKM ,g , is defined recursively
as usual. We add the following rule:

(49) Parthood
If α and β are expressions of type e, then Jα ≤βK = T if
JαK ≤ JβK, otherwise Jα ≤βK = F.

Draft January 18, 2022

420 Coordination and plurals

10.6.3 English syntax

Syntax rules. We add the following rules for coordination:

(50) Syntax
X → X CoordP
CoordP → Coord X
where X ∈ {S, VP, DP, V,. . .}

In addition, we add the following rule for the plural:

N → N Pl

Lexicon. Lexical items are associated with syntactic categories
as follows:

D: ∅D

A: two, three etc.
Coord: and, or
Pl: -s
V: met, own

10.6.4 Translations

Type ⟨e, t⟩:

1. smokes↝λx .∗Smoke(x)

2. drinks↝λx .∗Drink(x)

3. two↝ λx .Card(x) = 2

Type ⟨e,⟨e, t⟩⟩:

1. caught ↝λyλx .∗Catch(y)(x)

2. ate↝λyλx .∗Eat(y)(x)

3. own↝λyλx .∗Own(y)(x)

Draft January 18, 2022

Coordination and plurals 421

Type e:

1. John↝ j

2. Mary↝m

3. Tom↝ t

4. Dick↝ d

5. Harry↝ h

Type ⟨t ,⟨t , t⟩⟩:

1. andS ↝λqλp . p ∧q

2. orS ↝λqλp . p ∨q

Type ⟨⟨e, t⟩,⟨e, t⟩⟩:

1. is, a↝λP .P

Type ⟨⟨e, t⟩,⟨⟨e, t⟩,⟨e, t⟩⟩⟩:

1. andVP ↝λP ′λPλx .P(x)∧P ′(x)

2. orVP ↝λP ′λPλx .P(x)∨P ′(x)

Type ⟨⟨e,⟨e, t⟩⟩,⟨⟨e,⟨e, t⟩⟩,⟨e,⟨e, t⟩⟩⟩⟩:

1. andV ↝λR′λRλyλx .R(y)(x)∧R′(y)(x)

2. orV ↝λR′λRλyλx .R(y)(x)∨R′(y)(x)

Type ⟨⟨e, t⟩,e⟩:

1. the↝λP ιz[P(z)∧∀x[P(x)→ x ≤ z]]

Type ⟨⟨e, t⟩,⟨e, t⟩⟩:

1. -s↝λP .∗P

Type ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩:

1. ∅D ↝λPλQ .∃x .[P(x)∧Q(x)]

Draft January 18, 2022

11 ∣ Event semantics

11.1 Why event semantics

One of the advantages of translating natural language into logic is
that it helps us account for certain entailment relations between
natural language sentences. Suppose that whenever a sentence A
is true, a sentence B is also true. If the translation of A logically
entails that of B , then we have an explanation for this entailment.
Take the following sentences:

(1) a. John smokes and Mary drinks.
b. ∴ John smokes.

This argument is captured by the following logical entailment:

(2) a. [Smokes(j)∧Drinks(m)]
b. Smokes(j)

In every model where (2a) is true, also (2b) is true.
This pattern of inference – a longer sentence entails a shorter

one – also shows up in other places. Adverbial modification is one
example.

(3) a. Jones buttered the toast slowly.
b. ∴ Jones buttered the toast.

Here is how we would translate (3a) given the previous chap-

423

424 Event semantics

ters (we are treating the toast as if it was a constant rather than a
definite description, but nothing will hinge on this):

(4) Butter(j,t)

If this representation is correct, (3a) is about only two entities:
Jones and the toast. Which entity does slowly describe in (3a)? Is it
perhaps Jones who is slow? Then we might translate that sentence
as follows:

(5) [Butter(j,t)∧Slow(j)]

Since (5) logically entails (4), we have an account of the entailment
from (3a) to (3b). But there is a problem. If we represent (3a) as
(5), clearly we ought to translate (6a) as (6b), by analogy.

(6) a. Jones buttered the bagel quickly.
b. [Butter(j,b)∧Quick(j)]

But then, in any model where (5) and (6b) are both true, the
following will also be true as a matter of logical consequence!

(7) [Slow(j)∧Quick(j)]

Unless we want to countenance the possibility that Jones is both
slow and quick at the same time, our account clearly has a prob-
lem.

One might think that the slowness is not a property of Jones,
but of whatever Jones buttered the toast denotes. This would lead
us to a translation of (3a) like this:

(8) Slow(Butter(j,t))

In the system we have been developing so far, there is a problem
with this idea too. The denotation of the subformula Butter(j,t)
is a truth value, and correspondingly, its type is t . Since the con-
stant Slow in (8) is predicated of that subformula, it has to denote
a function whose input type is t . And if the entire formula (8) is to

Draft January 18, 2022

Event semantics 425

denote a truth value, the output type of Slow is t as well, and its
type as a whole must be ⟨t , t⟩. But there are only two truth values
(setting aside the undefined truth value), so there are only four
functions of that type: the identity function, negation, the func-
tion that maps both truth values to T, and the function that maps
both truth values to F. None of these functions captures the truth
conditions of Slow.

So Slow cannot have the type ⟨t , t⟩. What if it has the type
⟨et ,et⟩, and applies to the VP buttered the toast and then to Jones?

(9) Slow(λx .Butter(y,t))(j)

The problem with this approach is that it does not explain the pat-
tern of inference shown in (3). Depending on what Slow denotes
in any given model, the entailment from Jones buttered the toast
slowly to Jones buttered the toast may or may not hold. We can
remedy this by stipulating a meaning postulate to the effect that
whenever a property P that holds of an individual x is modified
by Slow, it still holds of x:

(10) ∀P∀x .Slow(P)(x)→ P(x)

But this is no more than a stopgap measure. It is analogous to
what we did in Chapter 7 when we gave intersective adjectives,
such as reasonable and vegetarian, the type ⟨et ,et⟩ and accounted
for their intersectivity by a meaning postulate. In that chapter, we
also saw that we can give intersective adjective a simpler type in-
stead, and remove the need for a meaning postulate. The solution
we are about to adopt is analogous.

In an influential paper, Davidson (1967) suggested that it is
not Jones but the action – or, as we will say, the event – of but-
tering the toast that is slow in (3a). On Davidson’s view, events
are taken to be concrete entities with locations in space and in
time, and natural language provides means to provide informa-
tion about them, refer to them, etc. Although not all sentences
that are about events necessarily provide explicit clues to that ef-

Draft January 18, 2022

426 Event semantics

fect, some do. For example, the subjects in these two sentences
arguably have an event as their referent (Parsons, 1990):

(11) a. Jones’ buttering of the toast was artful.
b. It happened slowly.

So let us assume that in (3a) it is the event of buttering the
toast that is slow, and in (6a) it is the event of buttering the bagel
that is quick, rather than Jones himself. The two sentences, then,
are not only talking about Jones and the things he is buttering but
also about the buttering events. According to Davidson (1967),
the correct logical representations for (3a) and (6a) are not (5) and
(6b) but rather something like the following:

(12) a. ∃e .[Butter(j,t,e)∧Slow(e)]
b. ∃e .[Butter(j,b,e)∧Quick(e)]

Here, the variable e stands for an event, and the existential quanti-
fier that binds it ranges only over events, and not over individuals.
Correspondingly, we introduce a new basic type for events, along-
side the type e of individuals and the type t of truth values. Since
the letter e is already taken, it is common to use v for the type of
events, as we will do here. (In some papers, the type of events is
also written ε.)

A sentence like (3b) would then be represented as:

(13) ∃e .Butter(j,t,e)

There is a logical entailment from (12a) to (13), as desired. But
unlike before, the conjunction of (12a) and (12b) no longer entails
that something is both slow and quick at the same time, since the
two formulas could (and typically will) be true in virtue of differ-
ent events.

Adverbs like quickly and slowly are not the only phenomena
in natural language that have been given an event semantic treat-
ment – far from it. Here are a few other examples.

Draft January 18, 2022

Event semantics 427

Prepositional adjuncts. Adjuncts like in the kitchen and at noon
can be dropped from ordinary true sentences without affecting
their truth value. Moreover, when a sentence has multiple adverbs
and adjuncts then one or more can be dropped. In these respects,
they behave just like the adverbs quickly and slowly that we have
already seen:

(14) a. Jones buttered the toast slowly in the kitchen at noon.
b. ∴ Jones buttered the toast slowly in the kitchen.
c. ∴ Jones buttered the toast slowly.
d. ∴ Jones buttered the toast.

Event semantics provides a straightforward account of these
entailment patterns:

(15) a. ∃e .Butter(j,t,e)∧Slow(e)∧ loc(e,k)∧ time(e,noon)
b. ∃e .Butter(j,t,e)∧Slow(e)∧ loc(e,k)
c. ∃e .Butter(j,t,e)∧Slow(e)
d. ∃e .Butter(j,t,e)

Direct perception and causation reports. Since events are con-
crete entities with a location in spacetime, it stands to reason that
we can see and hear them, and that they can be involved in causal
relations. This idea can be exploited to give semantics of direct
perception reports and causation reports (Higginbotham, 1983):

(16) a. John saw Mary leave.
b. ∴Mary left.

(17) a. John made Mary leave.
b. ∴Mary left.

(18) a. ∃e∃e′ .See(j,e′,e)∧Leave(m,e′)
b. ∃e′ .Leave(m,e′)

(19) a. ∃e∃e′ .Cause(j,e′,e)∧Leave(m,e′)
b. ∃e′ .Leave(m,e′)

Draft January 18, 2022

428 Event semantics

Here, e is the event of John seeing or causing something, and e′

is the event seen or caused by John—that is, the event of Mary
leaving.

The relation between adjectives and adverbs. If adverbs ascribe
properties to events, it is plausible to assume that the same is true
of adjectives that are derivationally related to these adverbs (Par-
sons, 1990):

(20) a. Brutus stabbed Caesar violently.
b. ∴ Something violent happened.

(21) a. ∃e .Stab(b,c,e)∧Violent(e)
b. ∃e .Violent(e)

11.1.1 The Neo-Davidsonian turn

As we have seen, Davidson equipped verbs with an additional event
argument. Later authors, however, have taken the event to be the
only argument of the verb (e.g. Castañeda, 1967; Parsons, 1990).
The relationship between this event and syntactic arguments of
the verb is then expressed by a smallish number of semantic rela-
tions with names like AGENT, THEME, INSTRUMENT, and BENEFI-
CIARY. These relations represent ways entities take part in events
and are generally called THEMATIC ROLES. The first occurrence of
thematic roles is as the six kāraka relations in the As.t.ādhyāyı̄, a
precise formal grammar of Classical Sanskrit created nearly 2500
years ago by Daks.iputra Pān. ini, arguably the first descriptive lin-
guist. In modern times, two influential works are Gruber (1965)
and Jackendoff (1972). This came to be known as “Neo-Davidsonian”
event semantics. Thematic roles describe semantic relations be-
tween events and their participants in terms that generalize across
many verbs. For example, the agent initiates and carries out the
event; the theme undergoes the event and does not have control
over the way it occurs; the instrument is manipulated by an agent
and is used to perform an intentional act; the beneficiary is po-

Draft January 18, 2022

Event semantics 429

tentially advantaged or disadvantaged by the event; and so on.
Additional thematic roles that specify the location of an event in
space and time are often proposed. For events of perception, one
finds the roles STIMULUS (the cause) and EXPERIENCER (the pa-
tient that is aware of the event undergone), and for motion events,
the roles SOURCE and GOAL for the initial and final points. The la-
bel PATIENT is sometimes used interchangeably with THEME, and
we will follow this convention here. Sometimes a distinction is
drawn between the two, in that patients undergo a change of state
as a result of an event but themes do not. There is no consen-
sus on the full inventory of thematic roles, but role lists of a large
number of English verbs have been compiled in Levin (1993) and
Kipper-Schuler (2005). An ISO standard for thematic roles is being
developed under the label ISO 24617-4:2014.

On the Neo-Davidsonian view, Jones buttered the toast might
be represented as follows:

(22) ∃e .Butter(e)∧agent(e, j)∧ theme(e,t)

In Neo-Davidsonian event semantics, there is no fundamen-
tal semantic distinction between syntactic arguments such as the
subject and object of a verb, and syntactic adjuncts such as ad-
verbs and prepositional phrases. For example, in the following
representation of Jones buttered the toast with a knife, the con-
junct that represents the prepositional phrase is essentially par-
allel to those conjuncts that represent Jones and the toast. (For
simplicity, we represent a knife as if it was a constant. Just like in
the case of the toast, this is not essential.)

(23) ∃e .Butter(e)∧agent(e, j)∧ theme(e,t)∧ instr(e,k)

The idea there is no fundamental semantic distinction between
syntactic arguments and adjuncts might not be immediately clear.
In what way is the prepositional phrase with a knife parallel to the
argument the toast? The following pair can make this clearer.

Draft January 18, 2022

430 Event semantics

(24) a. Mary loaded the truck with the hay.
b. Mary loaded the hay onto the truck.

Setting aside slight semantic differences between these two sen-
tences, their common semantic core can be expressed in the fol-
lowing way: there is a loading event whose agent is Mary, whose
goal (or location, on some accounts) is the truck, and whose theme
is the hay. This is expressed in the following translation:

(25) ∃e .Load(e)∧agent(e,m)∧goal(e,t)∧ theme(e,h)

The argument the truck in (24a) parallels the adjunct onto the truck
in (24b), and the adjunct with the hay in (24a) parallels the argu-
ment the hay in (24b).

One consequence of the lack of a semantic distinction between
arguments and adjuncts is that on the Neo-Davidsonian view, sen-
tences with too many or too few arguments are ungrammatical
but not semantically deviant. The following sentences can all be
assigned coherent event semantic translations, unlike in eventless
or classical Davidsonian semantics, where the number of seman-
tic arguments of a verb is fixed.

(26) a. John ate.
b. John ate the fish.
c. John dined.
d. *John dined the fish.
e. *John devoured.
f. John devoured the fish.

This aspect of Neo-Davidsonian event semantics has been jus-
tified in terms of the lack of any semantic distinction between
verbs with different subcategorization frames such as eat, dine,
and devour that could explain why the first is optionally intransi-
tive, the secondis obligatorily so, and the third obligatorily tran-
sitive. Whatever distinction there is between them must arguably
instead be attributed to syntax.

Draft January 18, 2022

Event semantics 431

One of the advantages of the Neo-Davidsonian view is that it
allows us to capture semantic entailment relations between dif-
ferent syntactic subcategorization frames of the same verb, such
as causatives and their intransitive counterparts (Parsons, 1990):

(27) a. Mary opened the door.
b. ∴ The door opened.

(28) a. ∃e .Open(e)∧agent(e,m)∧ theme(e,d)
b. ∃e .Open(e)∧ theme(e,d)

The Neo-Davidsonian approach raises important questions,
many of which have been answered in different ways in the se-
mantic literature. Do semantic roles have syntactic counterparts?
If so, how should we think of them? For example, presumably the
thematic role of Mary in (29a) – perhaps beneficiary – matches the
one of Mary in (29b).

(29) a. Jane gave the ball to Mary.
b. Jane gave Mary the ball.

We might think of this role as the denotation of to in (29a),
but in (29b) there is no corresponding word we can point to. One
common perspective on thematic roles in generative syntax is that
when no preposition is around, they are assigned by (usually silent)
functional heads projected in the syntax, often called theta roles.
For example, a “little v” head is often assumed to relate verbs to
their external arguments, which are usually their agents; here the
little v head would be the theta role and the agent relation the the-
matic role (Chomsky, 1995). As another example, the preposition
with often serves as the theta role of the thematic role instrument.
We follow the textbook Carnie (2013) in using the term thematic
role for the semantic relation, and the term theta role for its syn-
tactic counterparts; however, some authors use these terms inter-
changeably.

Another question is whether each verbal argument (perhaps

Draft January 18, 2022

432 Event semantics

with the exception of dummy subjects as in It’s raining) corre-
sponds to exactly one role, or whether the subject of a verb like
fall is both the agent and the theme (or patient or experiencer)
of the event (Parsons, 1990). Relatedly, it is often assumed that
each event has at most one agent, at most one theme, and so on.
(If the domain of individuals includes sums of individuals, as in
Chapter 10, it is common to assume that the domain of events in-
cludes sums of events as well. The agent of a sum of events is then
taken to be the sum of their agents, and similarly for other the-
matic roles.) This view, often called the unique role requirement
or thematic uniqueness, is widely accepted in semantics (Carlson,
1984; Parsons, 1990; Landman, 2000). Thematic uniqueness has
the effect that thematic roles can be represented as partial func-
tions. This is often reflected in the notation, as in (30).

(30) ∃e .Butter(e)∧agent(e) = j∧ theme(e) = t

A differing, less common view is based on the intuition that one
can touch a man and his shoulder in the same event (Krifka, 1992).
In this example, one could argue that there is a single touching
event that stands in the theme relation both to the man and to his
shoulder.

11.2 Composition in Neo-Davidsonian event se-
mantics

Building Neo-Davidsonian semantics into our fragment requires
us to decide how events, event quantifiers, and thematic roles en-
ter the compositional process. There is currently no universally
accepted way to settle the question. A common approach is that
verbs and verbal projections (such as VPs and IPs) denote predi-
cates of events and are intersected with their arguments and ad-
juncts, until an existential quantifier is inserted at the end and
binds the event variable (Carlson, 1984; Parsons, 1990, 1995). A
more recent approach views this existential quantifier as part of

Draft January 18, 2022

Event semantics 433

the lexical entry of the verb, and arguments and adjuncts as adding
successive restrictions to this quantifier (Champollion, 2015).

Both strategies are compatible with the idea that adjuncts and
prepositional phrases are essentially conjuncts that apply to the
same event. We discuss both of them here. The first approach is
more widespread and is sufficient for simple purposes, while the
second leads to a cleaner interaction with certain other compo-
nents of the grammar such as conjunction, negation and quanti-
fiers.

There are also other strategies that we will not discuss. For ex-
ample, Landman (1996) assumes that the lexical entry of a verb
consists of an event predicate conjoined with one or more the-
matic roles. Kratzer (2000) argues that verbs denote relations be-
tween events and their internal arguments while external argu-
ments (subjects) are related to verbs indirectly by theta roles.

11.2.1 Verbs as predicates of events

On the first strategy, verbs denote predicates of events:

(31) a. bark↝λe .Bark(e)
b. butter↝λe .Butter(e)
c. . . .

These lexical entries conform with the Neo-Davidsonian view
in that they do not contain any variables for the arguments of the
verb. Since these variables need to be related to the event by the-
matic roles, we need to provide means for these roles to enter the
derivation. One way to do so is to allow each noun phrase a way
to “sprout” a theta role head θ.

(32) Syntax
DP → θ DP

We then write lexical entries that map these heads to suitable
roles:

Draft January 18, 2022

434 Event semantics

(33) Lexicon
θ: [agent], [theme], . . .

At this point, we would normally need to make sure that the
right syntactic argument gets mapped to the right thematic roles.
For example, the subject is typically, but not exclusively, mapped
to the agent role. Operations such as passivization change the
order in which arguments get mapped to thematic roles. This is
what theories of argument structure are about (e.g. Wunderlich,
2012). We will ignore this problem here and simply assume that
each θ head gets mapped to the “right” role.

Next, we map these theta roles to thematic roles:

(34) a. [agent]↝λxλe .agent(e) = x
b. [theme]↝λxλe .theme(e) = x
c. . . .

Finally, we introduce an operation that existentially binds the
event variable at the sentence level. We can handle this operation
as a type-shifting rule. Here, and in what follows, v stands for the
type of events, so ⟨v, t⟩ is the type of an event predicate.

Type-Shifting Rule 5. Existential closure
If α↝α′, where α′ is of category ⟨v, t⟩, then:

α↝∃e .α′(e)

as well (as long as e does not occur in α′; in that case, use a
different variable of the same type).

The quantifier that binds the variable e is called the EVENT

QUANTIFIER. It does not correspond to anything pronounced in
an English sentence.

A sample derivation that shows all of the elements we have in-
troduced is shown in (35). The subject and the verb phrase both

Draft January 18, 2022

Event semantics 435

denote predicates of events, and combine via Predicate Modifica-
tion. The resulting event predicate is mapped to a truth value by
the Existential Closure type-shifting rule.

(35) S
t

∃e .Bark(e)∧agent(e) = s
⇑

⟨v, t⟩
λe .Bark(e)∧agent(e) = s

DP
⟨v, t⟩

λe .agent(e) = s

θ

⟨e,⟨v, t⟩⟩
λxλe .agent(e) = x

[agent]

DP
e
s

Spot

VP
⟨v, t⟩

λe .Bark(e)

barks

The existential closure type-shifting rule applies at the root of the
tree. Since both VP and S have the same type, one might wonder
what prevents it from applying at VP. In that case, the type of VP
would be t and there would be no way for the subject to combine
with it. As long as the syntax requires that a subject is present, this
derivation will not be interpretable.

Let us now add the adjunct slowly to our fragment. This ad-
verb is quite free in terms of where it can occur in the sentence:
before the sentence, between subject and VP, and at the end of the
sentence. This is captured in the following rules:

(36) Syntax

Draft January 18, 2022

436 Event semantics

S → AdvP S
VP → AdvP VP
VP → VP AdvP
AdvP → Adv

(37) Lexicon
Adv: slowly

As we have seen above, slowly is interpreted as an event pred-
icate. Its lexical entry is therefore very simple:

(38) a. slowly↝λe .Slow(e)

The tree in (39) shows the application of slowly. Like the sub-
ject and object, it is a predicate of type ⟨v, t⟩ and it combines with
its sister node via Predicate Modification:

Draft January 18, 2022

Event semantics 437

(39) S
t

∃e .Butter(e)∧agent(e) = j
∧theme(e) = t∧Slow(e)

⇑
⟨v, t⟩

λe .Butter(e)∧agent(e) = j
∧theme(e) = t∧Slow(e)

DP
⟨v, t⟩

λe .agent(e) = j

θ

⟨e,⟨v, t⟩⟩
λxλe .

agent(e) = x

[agent]

DP
e
j

Jones

VP
⟨v, t⟩

λe .Butter(e)∧
theme(e) = t∧

Slow(e)

VP
⟨v, t⟩

λe .Butter(e)∧
theme(e) = t

V
⟨v, t⟩

λe .Butter(e)

buttered

DP
⟨v, t⟩

λe .theme(e) = t

θ

⟨e,⟨v, t⟩⟩
λxλe .

theme(e) = x

[theme]

DP
e
t

the toast

AdvP
⟨v, t⟩

λe .Slow(e)

slowly

In the derivation in (39), syntactic arguments do not change the
type of the verbal projections they attach to. This is a hallmark

Draft January 18, 2022

438 Event semantics

of Neo-Davidsonian event semantics. The object maps a predi-
cate of type ⟨v, t⟩ (the V) to another one that is also of type ⟨v, t⟩
(the VP). The subject maps a predicate of type ⟨v, t⟩ (the VP) to
another one that is also of type ⟨v, t⟩ (the S). This is very different
from what we have seen in previous chapters, where V, VP and S all
had different types (namely, ⟨e,⟨e, t⟩⟩, ⟨e, t⟩, and t respectively).
In Neo-Davidsonian semantics, syntactic arguments are seman-
tically indistinguishable (as far as types are concerned) from ad-
juncts, which map a VP of a certain type (here, ⟨v, t⟩) to another
VP of the same type and which do not change the type of the VP.

11.2.2 A formal fragment

Let us recapitulate the additions to our fragment. The syntax is
defined as in three-valued type logic (Lλ with three truth values as
in Chapter 8), plus the following additions:

Syntax rules. We add the following rule:

(40) Syntax
DP → θ DP

Lexicon. Lexical items are associated with syntactic categories
as follows:

θ: [agent], [theme], . . .

Types. As mentioned, we add a new basic type to the system: v ,
the type of events. Complex types are generated from this type
and the other two basic types (e and t) in the usual way. For ex-
ample, ⟨v, t⟩ is the type of sets of events (or equivalently, functions
from events to truth values); ⟨v,e⟩ is the type of functions from
events to individuals; and so on.

Draft January 18, 2022

Event semantics 439

Translations. Verbs get new translations, and we add thematic
roles. We will use the following abbreviations:

• e is a variable of type v

• Bark and Butter are constants of type ⟨v, t⟩,

• agent, theme, and other thematic roles are constants of type
⟨v,e⟩. (To keep formulas readable, we depart from the prac-
tice we adopted in Chapter 4, and no longer require all func-
tion symbols to end in Of. In the literature, thematic roles
are also sometimes treated as two-place predicates rather
than as functions; we could have followed this approach
and written Theme(e, t) instead of theme(e) = t)

Type ⟨v, t⟩:

1. bark↝λe .Bark(e)

2. butter↝λe .Butter(e)

Type ⟨e,⟨v, t⟩⟩:

1. [agent]↝λxλe .agent(e) = x

2. [theme]↝λxλe .theme(e) = x

11.3 Quantification in event semantics

The system we have seen so far is sufficient for many purposes,
including the sentences discussed at the beginning of the chap-
ter. Most papers that use event semantics assume some version of
it, although the details differ. Things become more complicated,
though, when we bring in quantifiers like every cat and no dog. As
we have seen in Chapter 7, these quantifiers are able to take scope
in various positions in the sentence. We have seen that this can
be explained using quantifier raising or type-shifting. Since the
event variable is bound by a silent existential quantifier, we might

Draft January 18, 2022

440 Event semantics

expect that in this case too any overt quantifiers in the sentence
can take scope either over or under it. But this is not the case.
Rather, the event quantifier always takes scope below anything
else in the sentence. For example, sentence (41), read with neu-
tral intonation, is not ambiguous. Its only reading corresponds
to (42b), where the event quantifier takes low scope. As for (43b),
that is not a possible reading of the sentence.

(41) No dog barks.

(42) a. ¬[∃x .Dog(x)∧∃e[Bark(e)∧agent(e) = x]]
b. “There is no barking event that is done by a dog”

(43) a. ∃e .¬[Bark(e)∧∃x[Dog(x)∧agent(e) = x]]
b. “There is an event that is not a barking by a dog”

Exercise 1. How can you tell that (43b) is not a possible reading of
sentence (41)?

As it turns out, each of the two strategies for the interpretation
of quantifiers — quantifier raising and type-shifting — generates
one of these two formulas. Quantifier raising no dog above the
sentence level leads to the only available reading (42b), while ap-
plying Hendriks’ object raising rule (or rather, the general schema)
to the theta role head leads to the unavailable reading (43b). This
is shown in (44) and (45), respectively.

Draft January 18, 2022

Event semantics 441

(44) S
t

¬∃x[Dog(x)∧∃e .Bark(e)∧
agent(e) = x]

DP
⟨⟨e, t⟩, t⟩

λP¬∃x[Dog(x)
∧P(x)]

D
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩
λP ′λP¬∃x

[P ′(x)∧P(x)]

no

N
⟨e, t⟩

λx .Dog(x)

dog

λP
⟨e, t⟩

λv1∃e .Bark(e)∧agent(e) = v1

1 S
t

∃e .Bark(e)∧agent(e) = v1

⇑
⟨v, t⟩

λe .Bark(e)∧agent(e) = v1

DP
⟨v, t⟩

λe .agent(e) = v1

θ

⟨e,⟨v, t⟩⟩
λxλe .agent(e) = x

[agent]

DP
e

v1

t1

VP
⟨v, t⟩

λe .Bark(e)

barks

Draft January 18, 2022

442 Event semantics

(45) S
t

∃e .Bark(e)∧
¬∃x .Dog(x)∧agent(e) = x

⇑
⟨v, t⟩

λe .Bark(e)∧
¬∃x .Dog(x)∧agent(e) = x

DP
⟨v, t⟩

λe¬∃x .Dog(x)∧
agent(e) = x

θ

⟨⟨⟨e, t⟩, t⟩,⟨v, t⟩⟩
λQλe .Q(λx .
agent(e) = x)

⇑
⟨e,⟨v, t⟩⟩

λxλe .agent(e) = x

[agent]

DP
⟨⟨e, t⟩, t⟩

λP¬∃x .Dog(x)
∧P(x)

D
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩
λP ′λP¬∃x .
P ′(x)∧P(x)

no

N
⟨e, t⟩

λx .Dog(x)

dog

VP
⟨v, t⟩

λe .Bark(e)

barks

The interim conclusion, then, is that event semantics seems
to commit us to a quantifier-raising based treatment of quantifi-
cational noun phrases.

Draft January 18, 2022

Event semantics 443

11.3.1 Verbs as event quantifiers

In the tree in (44), we needed to apply quantifier raising to no
dog in order to give it scope above the event quantifier, which
was introduced by the existential-closure rule at sentence level.
If the event quantifier was introduced lower than no dog, there
would be no need to raise it. This brings us to the second strat-
egy for the compositional treatment of event semantics, due to
Champollion (2014). As mentioned, on this approach, verbs come
equipped with their own event quantifiers. Verbs no longer de-
note event predicates but rather generalized existential quanti-
fiers over events. Instead of sitting at the edge of the sentence,
which results in the wrong relation as in Figure 11.1a, the event
quantifier is now made part of the lexical entry for the verb, as
in Figure 11.1b. This results in the right scope relation between
quantificational noun phrases and the event quantifier and re-
moves the need for quantifier raising. Champollion (2014) argues
that this is preferable for analyses of languages in which there are
no scope ambiguities, such as Chinese (Huang, 1981). For lan-
guages like English, both approaches are viable in principle.

S
∃e . . .Qx . . .

⇑
λe . . .Qx . . .

DP
. . .Qx . . .

VP
λe . . .

(a) ∃e introduced at S

S
Qx . . .∃e . . .

⇑
λ f . . .Qx . . .∃e . . .

DP
. . .Qx . . .

VP
λ f . . .∃e . . .

(b) ∃e introduced by verb

Figure 11.1: Comparison of two approaches to event semantics.
Note the position of the existential in each subfigure.

To implement this approach, we need to revise our seman-
tics. We will equip each verb with a variable f of type ⟨v, t⟩, a

Draft January 18, 2022

444 Event semantics

variable over sets of events. This variable will stand for the future
of the derivation, that is, for the semantic contributions of any
constituents (arguments and adjuncts) that are about to combine
with the verb. Variables that stand for the future of the derivation
are known as CONTINUATION VARIABLES (Barker & Shan, 2014). We
will include the event quantifier into the lexical entry for each verb
and give it scope over the variable f and thereby over any other
quantifiers that might be contributed over the future course of the
derivation. The new representations for verbs are as follows:

(46) a. bark↝λ f ∃e .Bark(e)∧ f (e)
b. butter↝λ f ∃e .Butter(e)∧ f (e)
c. . . .

Our grammar will continue to map verbal projections (verbs,
VPs and Ss) to the same type. But this type is no longer ⟨v, t⟩ but
⟨⟨v, t⟩, t⟩. For this reason, we will no longer rely on predicate mod-
ification, but instead use function application to combine syntac-
tic arguments with verbal projections. This means that our the-
matic roles look more complicated than before:

(47) a. [agent]↝λxλV λ f .V (λe .agent(e) = x ∧ f (e))
b. [theme]↝λxλV λ f .V (λe .theme(e) = x ∧ f (e))
c. . . .

If the root of the tree is of type ⟨⟨v, t⟩, t⟩, we need to map it to
a truth value. In a simple case such as Spot barks, the root will be
true of any set of events f so long as f contains (possibly among
other things) an event that satisfies the relevant event predicate.
Whether this is true can be checked by testing whether the set of
all events whatsoever, λe .true, contains such an event:

(48) a. λ f ∃e[Bark(e)∧ag(e) = s∧ f (e)](λe .true)
b. ∃e[Bark(e)∧ag(e) = s∧(λe .true)(e)]
c. ∃e[Bark(e)∧ag(e) = s∧ true]
d. ∃e[Bark(e)∧ag(e) = s]

Draft January 18, 2022

Event semantics 445

After the type-⟨⟨v, t⟩, t⟩ expression at the root of the tree ap-
plies to λe .true, the result is of type t , as desired.

To formalize this idea, we introduce the type-shifting rule of
Quantifier Closure:

Type-Shifting Rule 6. Quantifier Closure
If α↝α′, where α′ is of category ⟨⟨v, t⟩, t⟩, then:

α↝α′(λe .true)

as well.

The full derivation of the sentence is shown in (49).

(49) S
t

∃e .Bark(e)∧
agent(e) = s

⇑
⟨⟨v, t⟩, t⟩

λ f ∃e .Bark(e)∧
agent(e) = s∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .V (λe .
agent(e) = s∧ f (e))

θ

⟨e,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩
λxλV λ f .V (λe .

agent(e) = x ∧ f (e))

[agent]

DP
e
s

Spot

VP
⟨⟨v, t⟩, t⟩
λ f ∃e .

Bark(e)∧ f (e)

barks

Draft January 18, 2022

446 Event semantics

We are now ready to interpret a quantificational noun phrase.
This time, applying Hendriks’ raising schema to the theta role gives
the right result, as shown in (50). We do not need to apply quan-
tifier raising. This is as expected, because the quantifier is con-
tained in the entry for the verb, so the subject already takes syn-
tactic scope over it.

Draft January 18, 2022

Event semantics 447

(50) S
t

¬∃x .Dog(x)∧∃e .Bark(e)∧
agent(e) = x

⇑
⟨⟨v, t⟩, t⟩

λ f ¬∃x .Dog(x)∧∃e .Bark(e)∧
agent(e) = x ∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩
λV λ f ¬∃x .Dog(x)∧

V (λe .agent(e) = x ∧ f (e))

θ

⟨⟨⟨e, t⟩, t⟩,
⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩⟩
λQλV λ f .

Q(λx .V (λe .
agent(e) = x
∧ f (e)))
⇑

⟨e,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩
λxλV λ f .V (λe .

agent(e) = x ∧ f (e))

[agent]

DP
⟨⟨e, t⟩, t⟩
λP¬∃x .

Dog(x)∧P(x)

D
⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩
λP ′λP¬∃x .
P ′(x)∧P(x)

no

N
⟨e, t⟩

λx .Dog(x)

dog

V
⟨⟨v, t⟩, t⟩
λ f ∃e .

Bark(e)∧ f (e)

barks

Let us now see how syntactic adjuncts, such as adverbs, are
treated on this approach. Just like syntactic arguments, adjuncts

Draft January 18, 2022

448 Event semantics

are combined with verbal projections using Function Application
instead of Predicate Modification. This makes the representations
of adverbs more complicated:

(51) a. slowly↝λV λ f .V (λe .Slow(e)∧ f (e))
b. . . .

An example of a derivation that uses this adverb is shown in
(52). To save space, the VP buttered the toast is shown as a unit,
and as before, we pretend that the toast is a constant rather than a
definite description. Nothing of consequence would change if we
didn’t.

Draft January 18, 2022

Event semantics 449

(52) S
t

∃e .agent(e) = j∧Butter(e)∧
theme(e) = t∧Slow(e)

⇑
⟨⟨v, t⟩, t⟩

λ f ∃e .agent(e) = j∧Butter(e)∧
theme(e) = t∧Slow(e)∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .V (λe .
agent(e) = j∧ f (e))

θ

⟨e,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩
λxλV λ f .V (λe .

agent(e) = x ∧ f (e))

[agent]

DP
e
j

Jones

VP
⟨⟨v, t⟩, t⟩
λ f ∃e .

Butter(e)∧ theme(e) = t
∧Slow(e)∧ f (e)

V
⟨⟨v, t⟩, t⟩
λ f ∃e .

Butter(e)∧
theme(e) = t∧ f (e)

buttered the toast

AdvP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .
V (λe .Slow(e)∧ f (e))

slowly

From what we have seen so far, the choice between the two
approaches depends mainly on whether the preferred way to deal
with quantificational noun phrases is by quantifier raising or type
shifting. The next sections compare the two systems with respect
to two other phenomena, conjunction and negation.

Draft January 18, 2022

450 Event semantics

11.3.2 Another formal fragment

Let us recapitulate the additions to our fragment.The syntax is de-
fined as in three-valued type logic (Lλ with three truth values as in
Chapter 8), plus the following additions:

Syntax rules. We add the following rule:

(53) Syntax
DP → θ DP

Lexicon. Lexical items are associated with syntactic categories
as follows:

θ: [agent], [theme], . . .

Translations. Verbs get new translations, and we add thematic
roles. We will use the following abbreviations:

• e is a variable of type v

• f is a variable of type ⟨v, t⟩

• V is a variable of type ⟨⟨v, t⟩, t⟩

• Bark and Butter are constants of type ⟨v, t⟩

• agent and theme are constants of type ⟨v,e⟩

The following entries replace the previous ones:

Type ⟨v, t⟩:

1. bark↝λ f ∃e .Bark(e)∧ f (e)

2. butter↝λ f ∃e .Butter(e)∧ f (e)

Type ⟨v,e⟩:

Draft January 18, 2022

Event semantics 451

1. [agent]↝λxλV λ f .V (λe .agent(e) = x ∧ f (e))

2. [theme]↝λxλV λ f .V (λe .theme(e) = x ∧ f (e))

Type ⟨⟨⟨v, t⟩, t⟩,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩:

1. andVP ↝λV ′λV λ f .V (f)∧V ′(f)

We have introduced the following type-shifter:

Type-Shifting Rule 7. Quantifier Closure
If α↝α′, where α′ is of type ⟨⟨v, t⟩, t⟩, then:

α↝α′(λe .true)

as well.

11.4 Conjunction in event semantics

In Chapter 10, we have seen that many uses of and can be sub-
sumed under a general schema, discussed by Partee & Rooth (1983)
among others. This schema is repeated here:

(54) and⟨τ,⟨τ,τ⟩⟩

↝{λqλp . p ∧q if τ = t

λXτλYτλZσ1 .⟪and⟫⟨σ2,⟨σ2,σ2⟩⟩(X (Z))(Y (Z)) if τ = ⟨σ1,σ2⟩

where ⟪and⟫⟨σ2,⟨σ2,σ2⟩⟩ denotes the translation of and for the cor-
responding type.

What does this rule amount to in the case of VP-modifying
and, as in John smoked and drank? On the first approach, VPs
are of type τ = ⟨v, t⟩. On the second approach, VPs are of type
τ = ⟨⟨v, t⟩, t⟩. Applying rule (54) in each case results in the follow-
ing:

Draft January 18, 2022

452 Event semantics

(55) a. andVP ↝λ f ′λ f λe . f (e)∧ f ′(e)
b. andVP ↝λV ′λV λ f .V (f)∧V ′(f)

Exercise 2. Show how rule (54) leads to these two representations.

As you can see in (57) and (58), these two choices lead to very
different translations: (56a) and (56b) respectively.

(56) a. ∃e .smoke(e)∧drink(e)∧agent(e) = j
b. ∃e .smoke(e)∧agent(e) = j∧

∃e′ .drink(e′)∧agent(e′) = j

Now, (56a) cannot be the right representation of John smoked
and drank. If this sentence is true, for all we know he might have
smoked slowly and drunk quickly. In (56a) there is only one event
for two such contradictory adverbs to modify, and we would end
up with the same kind of problem we already encountered ear-
lier in connection with Jones buttered the toast slowly and buttered
the bagel quickly. Part of the point of introducing events was to
avoid having to attribute contradictory properties to the same en-
tity. The entry in (56a) sends us right back to square one. We fare
much better with (56b), because it provides us with the two events
we need to avoid the problem.

Exercise 3. Add slowly and quickly to the tree in (58) and show
how the resulting formula avoids the attribution of contradictory
properties to the same event.

Draft January 18, 2022

Event semantics 453

(57) S
t

∃e .smoke(e)∧drink(e)
∧agent(e) = j

⇑
⟨v, t⟩

λe.smoke(e)∧drink(e)
∧agent(e) = j

DP
⟨v, t⟩

λe .agent(e) = j

θ

⟨e,⟨v, t⟩⟩
λxλe .agent(e) = x

[agent]

DP
e
j

John

VP
⟨v, t⟩

λe .smoke(e)
∧drink(e)

VP
⟨v, t⟩

λe .smoke(e)

smoked

CoordP

Coord
⟨⟨v, t⟩,

⟨⟨v, t⟩,⟨v, t⟩⟩⟩
λ f ′λ f λe .

f (e)∧ f ′(e)

and

VP
⟨v, t⟩

λe .drink(e)

drank

Draft January 18, 2022

454 Event semantics

(58) S
t

∃e .smoke(e)∧
agent(e) = j∧
∃e′ .drink(e′)∧
agent(e′) = j

⇑
⟨⟨v, t⟩, t⟩

λ f ∃e .smoke(e)∧
agent(e) = j∧ f (e)∧
∃e′ .drink(e′)∧

agent(e′) = j∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .V (λe .
agent(e) = j∧ f (e))

θ

⟨e,⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩⟩

λxλV λ f .V (λe .
agent(e) = x ∧ f (e))

[agent]

DP
e
j

John

VP
⟨⟨v, t⟩, t⟩

λ f ∃e .smoke(e)∧ f (e)∧
∃e′ .drink(e′)∧ f (e′)

VP
⟨⟨v, t⟩, t⟩
λ f ∃e .

smoke(e)
∧ f (e)

smoked

CoordP

Coord
⟨⟨⟨v, t⟩, t⟩,
⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩⟩
λV ′λV λ f .

V (f)∧V ′(f)

and

VP
⟨⟨v, t⟩, t⟩
λ f ∃e′ .
drink(e′)
∧ f (e′)

drank

Does this mean that we cannot represent conjunction on the
first approach? No: all we have seen is that the Partee & Rooth
schema is not compatible with it. We can still formulate an en-
try for VP-level conjunction that is compatible with event predi-

Draft January 18, 2022

Event semantics 455

cates. This is similar to DP-level conjunction, where in Chapter
10 we have encountered both schema-based and non-schema-
based entries.

Exercise 4. Formulate an entry for VP-level conjunction that is
compatible with the event-predicate based approach. Hint: use
sums of events. Make sure it predicts the right truth conditions
for John smoked slowly and drank quickly. Assume that for any
theta role θ, θ(e⊕e′) = θ(e)⊕θ(e′).

11.5 Negation in event semantics

Quantifiers and coordination are scope-taking elements whose be-
havior with respect to events we need to think about. Negation is
another. Just like quantificational noun phrases, negation always
seems to take scope above the event quantifier. For example, (59),
read with neutral intonation, only has the reading in (60b), and
lacks the reading in (61b). That reading, if it was available, would
be almost trivially true, since any event that doesn’t happen to be
a barking by Spot will verify it.

(59) Spot didn’t bark.

(60) a. ¬[∃e .Bark(e)∧agent(e) = s]
b. “There is no barking event that is done by Spot”

(61) a. ∃e .¬[Bark(e)∧agent(e) = s]
b. “There is an event that is not a barking by Spot”

How do the two approaches to event semantics that we have
encountered fare? Let us start with the first approach, on which
verbs denote sets of events. On this approach, verbs and their pro-
jections denote sets of events. For example, the verb bark denotes
the set of all barking events. And so does the VP, on the assump-
tion that it only consists of this verb. Now VP negation needs to

Draft January 18, 2022

456 Event semantics

map this set to another set of events. What could that set be? If VP
negation is translated in terms of truth-functional negation (that
is, the kind of negation that we are familiar with from proposi-
tional logic and predicate logic), we might attempt this:

(62) not↝λ f λe .¬ f (e) (to be revised)

But this is a disastrous denotation. It says that not applies to a set
of events and maps it to its complement. For example, if it ap-
plies to the set denoted by bark, the result will be the complement
of the set of barking events. The subject then combines with this
set via a thematic role head, and the result asserts that there is an
event whose agent is Spot that is not a barking event. This deriva-
tion is shown in Figure (64). The result is the following reading:

(63) ∃e .agent(e) = s∧¬Bark(e)
There is an event whose agent is Spot that is not a barking
event.

What we want is the reading expressed by (60b). But the entry
in (62) generates (63) instead, which expresses something much
weaker than what we want. Formula (63) is true just in case Spot
did anything at all instead of or in addition to barking. The prob-
lem runs deeper than the faulty translation in (62). It is concep-
tually not clear what set of events should be denoted by not bark,
nor what it would take for an event to be a member of this set.

Draft January 18, 2022

Event semantics 457

(64) S
t

∃e .agent(e) = s∧¬Bark(e)
⇑

⟨v, t⟩
λe.agent(e) = s∧¬Bark(e)

DP
⟨v, t⟩

λe .agent(e) = s

θ

⟨e,⟨v, t⟩⟩
λxλe .agent(e) = x

[agent]

DP
e
s

Spot

VP
⟨v, t⟩

λe .¬Bark(e)

Aux
⟨⟨v, t⟩,⟨v, t⟩⟩

λ f . f

did

NegP
⟨v, t⟩

λe .¬Bark(e)

Neg
⟨⟨v, t⟩,⟨v, t⟩⟩
λ f λe .¬ f (e)

not

VP
⟨v, t⟩

λe .Bark(e)

bark

One can respond to this situation in different ways. One way is
to expand our inventory of events to include “negative events”.
In some cases, it is intuitively clear what a negative event should
be: for example, a negative staying event is a leaving event and
vice versa. While it is not so clear what a negative barking event
is, some semanticists have tried to clarify their status (Bernard &
Champollion, 2018). Another way is to include the subject into
the VP (see the discussion of the VP-internal subject hypothesis in
Chapter 7), so that not applies to Spot did bark rather than to bark
and returns a truth value rather than a set of events. (Similarly,
not could take a VP and a subject and combine them to return a

Draft January 18, 2022

458 Event semantics

truth value.) But this will not extend easily to sentences in which
event modifiers like in the garden take scope over the subject, as
in In the garden, Spot didn’t bark, because such event modifiers
expect to be given sets of events. The tree for this sentence would
look like (64) except that the lower half of the S node would com-
bine via Predicate Modification with a PP node with type ⟨⟨v, t⟩, t⟩
and denotation λe.location(e) = ιx.Garden(x) and then the result
(after existential closure applies) would be the following:

(65) ∃e.location(e) = ιx.Garden(x)∧agent(e) = s∧¬Bark(e)

We will not implement any of these options in detail and instead
adopt the second approach to event semantics presented in this
chapter, on which verbs and their projections denote sets of sets
of events. On this approach, not bark can be given a straight-
forward denotation: the set of sets that do not contain any bark-
ing events. The resulting truth conditions are the desired ones in
(60b). This is shown in Figure (66).

Draft January 18, 2022

Event semantics 459

(66) S
t

¬∃e .Bark(e)∧
agent(e) = s

⇑
⟨⟨v, t⟩, t⟩

λ f ¬∃e .Bark(e)∧
agent(e) = s∧ f (e)

DP
⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩

λV λ f .V (λe .
agent(e) = s∧ f (e))

θ

⟨e,⟨⟨⟨v, t⟩, t⟩,⟨⟨v, t⟩, t⟩⟩⟩
λxλV λ f .V (λe .

agent(e) = x ∧ f (e))

[agent]

DP
e
s

Spot

VP
⟨⟨v, t⟩, t⟩
λ f ¬∃e .

Bark(e)∧ f (e)

Aux
⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩

λV λ f .V (f)

did

VP
⟨⟨v, t⟩, t⟩
λ f ¬∃e .

Bark(e)∧ f (e)

Neg
⟨⟨⟨v, t⟩, t⟩,
⟨⟨v, t⟩, t⟩⟩

λV λ f .¬V (f)

not

VP
⟨⟨v, t⟩, t⟩
λ f ∃e .

Bark(e)∧ f (e)

bark

Draft January 18, 2022

12 ∣ Tense and aspect

12.1 Introduction

So far, we have been ignoring the contribution of tense. In this
chapter, we will finally face it. In order to do so, we must grap-
ple with the related issue of aspect. Ideally, our theory should be
able to explain the contrasts in meaning among all of the follow-
ing forms.

(1) a. Ann dances. [simple present]
b. Ann danced. [simple past]
c. Ann will dance. [simple future]

(2) a. Ann is dancing. [present progressive]
b. Ann was dancing. [past progressive]
c. Ann will be dancing. [future progressive]

(3) a. Ann has danced. [present perfect]
b. Ann had danced. [past perfect]
c. Ann will have danced. [future perfect]

(4) a. Ann has been dancing. [present perfect progressive]
b. Ann had been dancing. [past perfect progressive]
c. Ann will have been dancing. [future perfect prog.]

We begin with aspect, in both of its senses, and then move on to
tense.

461

462 Tense and aspect

12.2 Aspect

12.2.1 Aktionsart

The term ASPECT can refer to two different things in linguistic the-
ory. Both have to do with the temporal properties of a state or
event being described or referred to. One of these two things is
also called AKTIONSART, a German word that literally means ‘type
of action’. In a famous paper entitled Verbs and Times, Vendler
(1957) distinguished between four types of eventualities:

• States (example: know the answer) are static, extended in
time, and lack a natural end point.

• Activities (example: make sandcastles) are like states except
they typically involve or lead to some kind of change.

• Accomplishments (example: run a mile) are like activities
except they have a natural end point.

• Achievements (example: reach the pier) are like accomplish-
ments except they are punctual rather than extended in time.

A fifth type, namely ‘semelfactives’, was later added (example: cough).
They are like achievements except they do not lead to a change.
These five types of aktionsart are categories of states or events—
EVENTUALITIES, to be neutral between state and event—with var-
ious different properties.1

One dimension along which these different eventuality types
differ is TELICITY. A telic eventuality has a natural endpoint; te-
los means ‘goal’ in Greek. Verb phrases denoting telic eventual-
ity types can be modified with in-adverbials such as in an hour.
Compare:

(5) a. Ida ran a mile in an hour. [accomplishment]

1Other words for ‘aktionsart’ include lexical aspect, situation aspect, internal
aspect, aspectual class, and situation type.

Draft January 18, 2022

Tense and aspect 463

b. ??Ida made sandcastles in an hour. [activity]

Run a mile is telic, while make sandcastles is not: it is atelic.
Verb phrases denoting atelic eventualities, on the other hand,

are more natural in combination with for-adverbials such as for
an hour:

(6) a. ??Ida ran a mile for an hour. [accomplishment]
b. Ida made sandcastles for an hour. [activity]

States, activities and semelfactives are atelic, while accomplish-
ments and achievements are telic.

What distinguishes states from activities is that activities are
DYNAMIC (they require constant influx of energy) while states are
not. For example, making sandcastles or running along the beach
requires energy, while having a friend does not. The state/non-
state distinction also has reflexes in the grammar. The progressive
in English does not combine well with stative predicates:

(7) a. Ida is running along the beach. [activity]
b. ??Ida is having a friend. [state]

Furthermore, the simple present tense gives rise to a habitual in-
terpretation only with non-stative predicates:

(8) a. Ida runs along the beach. [activity: habitual]
b. Ida has a friend. [state: non-habitual]

What distinguishes accomplishments from achievements and
semelfactives is that the former are DURATIVE while the latter are
conceptualized as taking place essentially at a single moment. This
contrast can be observed in conjunction with in phrases. To see
this, consider the following sentences:

(9) a. Ida will run a mile in 20 minutes. [accomplishment: in
= duration]

b. Ida will reach the pier in 20 minutes. [achievement: in

Draft January 18, 2022

464 Tense and aspect

= after]
c. Ida will jump in 20 minutes. [semelfactive: in = after]

With the accomplishment run a mile, 20 minutes can measure the
duration of the running-a-mile event, while with the achievement
reach the pier and the semelfactive jump, 20 minutes can only
measure the time that will elapse before the event takes place.

Finally, what distinguishes achievements from semelfactives
is that the former involve a change of state while the latter do not.
Because semelfactives do not involve a change of state, they can
be iterated, and an iterative reading arises with for adverbials:

(10) a. Ida jumped for an hour. [semelfactive: iterative]
b. ??Ida reached the pier for an hour. [achievement]

The idea of (10a) being iterative is that the sentence suggests that
Ida jumped multiple times within the hour. Repeated jumping is
an eventuality type that is atelic, unlike jumping once, which is
telic. The repetition induced by the for adverbial here can be seen
as a secondary operation on the denotation of the verb jump, tak-
ing it from its basic telic denotation to an atelic denotation involv-
ing iteration of the basic denotation.

The kind of eventuality being described can depend on the
object of the verb. For example, make sandcastles is atelic, while
make a sandcastle is telic. Thus it is not verbs but verb phrases
that are appropriate to classify with respect to their aktionsart.
But as we have just seen in the case of semelfactives, there may
be other elements in a sentence that help to determine the as-
pectual properties of the eventuality being described by the entire
sentence.

The properties of these five classes are summarized in Table
12.1, taken from Smith (1997):

Draft January 18, 2022

Tense and aspect 465

Durative Dynamic Telic
State + - -
Activity + + -
Accomplishment + + +
Achievement - + +
Semelfactive - + -

Table 12.1: Types of eventualities

12.2.2 Viewpoint aspect

We turn now to the other kind of aspect, which goes by many
names, including viewpoint aspect, grammatical aspect, and per-
spective point. We choose the term VIEWPOINT ASPECT here, em-
phasizing the idea that it has to do with how an eventuality is
‘viewed’, not with its inherent temporal properties. According to
a prominent view on viewpoint aspect (Klein, 1994), this kind of
aspect provides a link between eventualities and tense, by speci-
fying the relation between the EVENT TIME and a REFERENCE TIME,
two concepts which we will explain shortly.

English has two morphological forms that express viewpoint
aspect: the perfect, as in I have eaten, and progressive, as in I am
eating. Confusingly enough, the English progressive expresses IM-
PERFECTIVE ASPECT. Stative predicates like have a friend are also
imperfective. So the two main aspectual distinctions that English
is sensitive to are perfect vs. non-perfect, and perfective vs. imper-
fective. Confusingly enough, ‘perfective’ is totally different from
‘perfect’; these categories can cross-classify:

PERFECTIVE IMPERFECTIVE

PERFECT I have danced I have been dancing
NON-PERFECT I danced I was dancing

The English perfect is a key motivation for Reichenbach’s (1947)
theory of temporal reference. Reichenbach noticed that in order

Draft January 18, 2022

466 Tense and aspect

to give a good theory of the English perfect, it is necessary to con-
sider not only the time of utterance and the time at which the
event occurred, but also a more abstract time that he referred to
as REFERENCE TIME (later called TOPIC TIME).2

• SPEECH TIME (S): the time the sentence is uttered

• EVENT TIME (E): the time the event takes place

• REFERENCE TIME (R): the time under discussion
(also known as Topic Time)

The concept of ‘reference time’ was Reichenbach’s major innova-
tion, and the concept that is least intuitively obvious. One way of
characterizing it is that it is the time that the sentence is ‘about’
(hence the term ‘topic time’).

According to Reichenbach, the difference between a sentence
like I had danced and a sentence like I danced is that in the former
case, with the perfect, the sentence is about a time prior to speech
time before which some dancing took place (so E <R < S):

E R S

In the case of the simple past, I danced, the sentence is about the
time at which the dancing took place (so E = R < S), a time prior
to speech time.

E ,R S

Aside from its intuitive appeal, support for this analysis comes
from the fact that temporal adverbs like at 5pm track the hypoth-
esized reference time:

(11) a. At 5pm, I danced. (5pm = dancing time)

2This section borrows quite liberally from Cable’s (2008) notes on tense.

Draft January 18, 2022

Tense and aspect 467

b. At 5pm, I had danced. (dancing time < 5pm)

Assuming the modifier is identified with the reference time, we
correctly predict that 5pm is the time of dancing for the sentence
in simple past, but a time before the speech time and after the
time of dancing in the past perfect.

The contribution of the perfect, then, is that the event time
precedes the reference time. This holds in other tenses as well.
Consider the present tense:

(12) a. I have danced.
b. I dance.

The simple present example in (12b) has a habitual present inter-
pretation; the present perfect example expresses that a dancing
event took place prior to speech time. This can be understood if
the present tense puts reference time at speech time, and the con-
tribution of the perfect is to locate the event time as being prior to
reference time.

The simple present thus looks like this:

E ,R,S

And the present perfect looks like this:

E R,S

This theory of the perfect works in the future tense as well. If
we assume that the future tense locates the reference time after
speech time, and the perfect locates the event time prior to the
reference time, a sentence like:

(13) At 5pm, I will have danced.

is predicted to imply that the time referred to by 5pm is in the fu-
ture, and that some dancing event will have occurred prior to that

Draft January 18, 2022

468 Tense and aspect

(perhaps before, perhaps after speech time). This accords with
intuition. In contrast:

(14) At 5pm, I will dance.

implies that the time referred to by 5pm is in the future, and that
a dancing event will take place at that time.

The picture we arrive at, then, is that the contribution of tense
is to relate the reference time with the speech time, and the con-
tribution of viewpoint aspect is to relate the event time to the ref-
erence time. Past tense locates the reference time prior to speech
time; present tense sets them equal; and future locates reference
time after speech time. The perfect places the event prior to refer-
ence time; otherwise the event takes place at reference time.

This view is somewhat of an oversimplification; there are a
number of different uses for the English perfect, including:

(15) a. Ed has put the cake in the oven. RESULTATIVE

b. Ed has visited Korea many times. EXISTENTIAL

c. Ed has lived in Korea for 3 years. UNIVERSAL

We will set these uses aside.
Let us now turn to perfective and imperfective aspect, which

also relate the event time to the reference time. Consider the fol-
lowing contrast:

(16) a. At 5pm, I danced.
b. At 5pm, I was dancing.

In the first case, there was a dancing event that took place at 5pm.
In the second case, there was a dancing event that extended across
5pm. Klein (1994) proposes to model this using inclusion among
time intervals. In the past progressive example (16b), the time in-
terval during which the dancing event took place includes the ref-
erence time identified with 5pm. This gives us the following pic-
ture for past progressive:

Draft January 18, 2022

Tense and aspect 469

R

E

S

In general, imperfective aspect signals that the event time con-
tains the reference time, while perfective aspect signals the re-
verse: the reference time contains the event time.

This notion of ‘containedness’ entails a view of times on which
they are actually stretches of time, or time INTERVALS. A time t
contains another time t ′ if every moment included within t ′ is
also included in t . Using ⊆ to represent this containment relation-
ship, we can represent the contribution of aspectual morphology
as follows:

• perfective aspect: E ⊆R

• imperfective aspect: R ⊆ E

Stative predicates also have imperfective aspect:

(17) At 5pm, I was asleep.

As with the progressive, the time of the sleeping eventuality in-
cludes the reference time. Thus progressive is a specific type of
imperfective.

One of the limitations of Reichenbach’s model arises with sen-
tences that combine the perfect and another aspect. For example,
the difference between I have danced and I have been dancing is
impossible to represent. Both these sentences involve the perfect,
which contributes E < R. This is incompatible with the contri-
bution of perfective aspect (E ⊆ R) as well as imperfective aspect
(R ⊆ E). Such minimal pairs suggest that more times may need
to be distinguished than the three that Reichenbach’s model pro-
vides.

To summarize, tense relates speech time with reference time,
and aspect relates reference time with event time. In the following

Draft January 18, 2022

470 Tense and aspect

sections, we will work towards a formal and compositional imple-
mentation of these ideas, which will require us to both establish
the machinery for talking about indexicality and make certain de-
cisions about exactly how to consider reference time: Is it more
like an existentially bound variable or more like a free variable?
We turn first to the issue of indexicality.

12.3 Indexicality

The notion of ‘speech time’ is an INDEXICAL one: It has to do with
the so-called CONTEXT OF UTTERANCE, or CONTEXT OF USE. In
Chapter 9 on dynamic semantics, we spoke of context in terms of
the information that has been established so far in the discourse,
and the discourse referents that had been introduced, and how
denotations could be seen as operations that update such con-
texts. The ‘context of utterance’ is a context in another sense: It’s
about who is speaking, to whom, where, when, etc.

An INDEXICAL may be defined as “a word whose referent is de-
pendent on the context of use, which provides a rule which deter-
mines the referent in terms of certain aspects of the context” (Ka-
plan, 1977, 490). Examples include I, my, you, that, this, here, now,
tomorrow, yesterday, actual, and present. Kaplan distinguishes be-
tween two sorts of indexicals:

• DEMONSTRATIVES: indexicals that require an associated demon-
stration. Examples: this and that.

• PURE INDEXICALS: indexicals for which no demonstration
is required. Examples: I, now, here, tomorrow (although
here has a demonstrative use: “In two weeks, I will be here
[pointing]”.3

3There is some controversy surrounding how the referents of indexicals are
determined: by rules linking expressions to objective features of context, or by
speakers’ intentions.

Draft January 18, 2022

Tense and aspect 471

To warm up intuitions regarding how indexicals should be an-
alyzed, consider the following two utterances:

(18) a. (May 11, 2010, uttered by Elizabeth Coppock:)
I am turning 30 today.

b. (May 12, 2010, uttered by Elizabeth Coppock:)
I am turning 30 today.

What do you think: Do they have the same meaning or different
meaning? How about the following pair:

(19) a. (May 11, 2010, uttered by Elizabeth Coppock:)
I am turning 30 today.

b. (May 12, 2010, uttered by Elizabeth Coppock:)
I turned 30 yesterday.

It’s not immediately obvious how to answer this question. In some
sense, the examples in (18) have the same meaning, but in an-
other sense, those in (19) have the same meaning.

Kaplan resolves this tension by distinguishing between two
levels of meaning, CHARACTER and CONTENT.

• CHARACTER is the aspect of meaning that two utterances of
the same sentence share across different contexts of utter-
ance.

• CONTENT is the proposition expressed by an utterance, with
the referents of all of the indexicals resolved.

So under these definitions, the pair of sentences in (18) have the
same character, while the pair in (19) have the same content. Ka-
plan’s ‘contents’ are essentially the same as Carnap’s ‘intensions’;
they are functions from possible worlds (a.k.a. ‘circumstances of
evaluation’) to extensions. For sentences, the content is a propo-
sition, a function from possible worlds to truth values. The char-
acter of a sentence is something that, given a context of utterance,
gives you a content; formally a function from contexts to contents.
So in a nutshell, the Kaplanian picture is as follows:

Draft January 18, 2022

472 Tense and aspect

• Character + Context of utterance⇒ Content

• Content + Circumstance of evaluation⇒ Extension

(We could have written ‘Intension’ in place of ‘Content’ here; they
play indistinguishable roles for our purposes.)

The CONTEXT OF UTTERANCE determines who is speaking, to
whom, when, where, and in what possible world.

c = ⟨sp, ad , t , l oc, w⟩

In Kaplan’s ‘logic of indexicals’, there are certain special indexical
constants, whose semantics are defined as follows:

(20) a. JiKM ,g ,c = sp(c)
b. JuKM ,g ,c = ad(c)
c. JnowKM ,g ,c = t(c)
d. JhereKM ,g ,c = loc(c)

English expressions can then be mapped to these special indexical
constants like so:

(21) a. I ↝ i
b. you↝ u
c. now↝ now
d. here↝ here

Again, the CONTENT of a sentence is the proposition that is ex-
pressed after the reference of all of the indexicals has been fixed
by the context of utterance. Formally, fixing g and c, the content
of φ can be defined as:4

{M ∶ JφKM ,g ,c =T}
4The way Kaplan (1989) really defines it is closer to:

{w ∶ JφKM ,g ,c,w
=T}

where M = ⟨D, I ,W,C⟩ is an intensional model. We will introduce intensional
models in Chapter 13.

Draft January 18, 2022

Tense and aspect 473

And again, the CHARACTER of a sentence is that aspect of its mean-
ing that is the same across different contexts of use. This notion
can be formalized as a function from contexts of utterance to con-
tents. Fixing g , the character is that f such that:

f (c) = {M ∶ JφKM ,g ,c =T}

Now, Kaplan actually argues for this view of indexicals against
an alternative theory according to which indexicals are disguised
definite descriptions. One might imagine the following alterna-
tive analysis:

(22) I↝ ιx .Speaker(x)
(23) you↝ ιx .Addressee(x)

On this view, there is no need to posit a separate context of utter-
ance.

This alternative view fails to account for the fact that the fol-
lowing two sentences have very different meanings.

(24) a. If I were male, I would not be speaking right now.
b. If the person speaking were male, I would not be speak-

ing right now.

Spoken by a female person, the first sentence would seem un-
true. But the second sentence would seem true. The situation
with proper names is analogous to the case with indexicals:

(25) a. If Liz were male, Liz would not be speaking right now.
b. If the person speaking were male, Liz would not be

speaking right now.

The first sentence seems false, but the second sentence seems
true. In any case, their meanings are very different.

Similarly, Ed’s wish in the following two sentences is satisfied
under very different circumstances:

(26) a. Ed wishes that I were male.

Draft January 18, 2022

474 Tense and aspect

b. Ed wishes that the person speaking were male.

And again, the variant with the proper name patterns with the one
with the indexical first person pronoun:

(27) Ed wishes that Liz were male.

According to Kaplan, indexicals, like proper names, are DIRECTLY

REFERENTIAL: they refer to the same individual in every possible
world. Unlike definite descriptions like the speaker, they do not
look in a world to see who is the speaker there and then refer to
that person. They directly pick out an element of the context of
utterance. Definite descriptions like the speaker, in contrast, may
refer to different individuals in different worlds. Although index-
icals may be said to have descriptive content, it is part of their
character, not their content.

Kaplan’s conclusion is that we need to add CONTEXT OF UT-
TERANCE as a parameter according to which we determine the se-
mantic value of linguistic expressions:

JαKM ,g ,c = ...

We will adopt this context-of-utterance parameter in our treat-
ment of tense, which as Reichenbach (1947) points out, is a “par-
ticularly important” type of indexicality.

12.4 Tense

We are now ready to begin formalizing a theory of tense, building
on the ideas of Reichenbach, Klein, and Kaplan. One of the ques-
tions that we must take a stand on is how to conceive of the ref-
erence time: Is it existentially quantified or free? In other words,
does the past tense say ‘there was some time R in the past such
that...’ or does it pick out a salient time R from the context?

In order to give a bit of historical context for early work on
tense, let us begin by presenting Arthur Prior’s tense logic, which

Draft January 18, 2022

Tense and aspect 475

is essentially an ‘existential’ theory of the past. We will then dis-
cuss its shortcomings, in comparison to an ‘anaphoric’ theory of
the past.

12.4.1 Priorean tense logic

In Arthur Prior’s TENSE LOGIC, a formula can vary in its truth value
across time. Thus Susan is asleep might be true at time t , but false
at time t ′. A future sentence like Susan will be asleep can then be
said to be true at time t if there is a time t ′ later than t at which
Susan is asleep.

To achieve this, we will add to our models so that they con-
sist not only of a domain of individuals D and an interpretation
function I but also a set of times T and a linear ordering relation
< among the times. A TEMPORAL MODEL for a language L is then a
quadruple

⟨D, I ,T,<⟩
such that D is a set of individuals, T is a set of times, < is the ‘earlier
than’ relation among the times, and I is an interpretation function
which maps the non-logical constants to appropriate denotations
at the various times. The function I will thus take two arguments:
a constant, and a time. For example, suppose we have a model in
which the domain D = {a,b,c}, the set of times T is {t1, t2, t3}, and
we have two individual constants john and mary, and one predi-
cate constant Happy. The interpretation function I might then be
defined as follows:

I(t1, john) = a I(t2, john) = a I(t3, john) = a
I(t1,mary) = b I(t2,mary) = b I(t3,mary) = b
I(t1,Happy) = {a,b,c} I(t2,Happy) = {a,b} I(t3,Happy) = {c}

So, throughout time, the name john always denotes the same in-
dividual, namely a, and so does the name mary. But who is happy
changes. At first, everyone is happy, then c becomes unhappy, but
c has the last laugh in the end.

Draft January 18, 2022

476 Tense and aspect

Truth will be relative not only to a model and an assignment
function, but also to a time, so we will have expressions like:

JHappy(mary)KM ,g ,t1 =T

JHappy(mary)KM ,g ,t3 = F

Both of these meta-language statements happen to be true ac-
cording to the way we have set things up.

This framework allows for the definition of future and past op-
erators. To the syntax of the language, we add the following rules:

• If φ is a formula, then Fφ is a formula.

• If φ is a formula, then Pφ is a formula.

(Fφ can be read: ‘it will be the case that φ’, or ‘future φ’; Pφ can be
read: ‘it was the case that φ’, or ‘past φ’.)

These kinds of statements can be given truth values relative to
a particular time that depend on what value φ takes on at times
preceding or following the evaluation time, respectively:

• JFφKM ,g ,t =T iff JφKM ,g ,t ′ =T for some t ′ such that t < t ′.

• JPφKM ,g ,t =T iff JφKM ,g ,t ′ =T for some t ′ such that t ′ < t .

The way we have set things up, these formulas can be iterated ad
infinitum, letting us model statements like ‘Susan will have seen
the report’, which can take the form of FPφ or ‘A child was born
that would become the ruler of the world’ (Kamp, 1971), which
might be modeled using a future operator in the scope of a past
operator.

But let us not get too married to this system, because it suffers
from a number of difficulties as a theory of tense. We turn to these
next.

Draft January 18, 2022

Tense and aspect 477

12.4.2 Shortcomings of the Priorean theory of tense

12.4.2.1 Partee’s example

In Prior’s tense logic, as we have just discussed, there is an opera-
tor P (for ‘past’) whose semantics is defined such that

Pφ

is true at time t if there is some time t ′ prior to t such that φ is
true at t ′. For example, ‘John sneezed’ would be true at t if there is
some time t ′ prior to t such that John sneezed at t ′. This amounts
to an existential theory of the past tense.

But consider a context in which you’ve just baked some cook-
ies, and are on the way over to your friend’s house. You realize
mid-journey that you left the oven on. Then you say:

(28) Oh no! I didn’t turn off the stove!

The existential theory of the past tense does not make correct pre-
dictions about this case, as Partee (1973) famously pointed out.
We could consider two possible scopes for negation relative to the
past tense:

• Negation scopes over existential past tense (NOT > PAST):
It is not the case that there is a time in the past when I turned
off the stove.

• Existential past tense scopes over negation (PAST > NOT):
There is a time in the past when I didn’t turn off the stove.

Neither one of these is right. The first one is too strong – surely
there is some time in the past when you turned off the stove. The
second one is too weak – of course there is a time in the past when
you didn’t turn off the stove! For example, consider the moment
you put the cookies in the oven; you didn’t turn off the stove then.
It seems that (28) is saying something about a particular time.

Draft January 18, 2022

478 Tense and aspect

Partee (1973) notes a number of structural parallels between
tenses and pronouns, in support of the so-called REFERENTIAL THE-
ORY OF TENSE. On this view, the past tense in a sentence like (28)
is similar to a free pronoun, anaphorically referring back to a time
that has previously been introduced into the discourse.

The referential theory is not the only theory of tense. For ex-
ample, it is commonly assumed that the domain of quantifiers is
restricted by a contextually supplied argument, often thought of
as similar to a pronoun (von Fintel, 1994). This kind of contextual
domain restriction can make a quantificational analysis of tenses
viable. On such an analysis, (28) is literally false with respect to the
entire domain, but true with respect to a narrower domain which
only includes contextually relevant times.

12.4.2.2 Interactions between tense and aspect

Another shortcoming of Prior’s theory of tense is that it has noth-
ing to say about the interaction between tense and aspect. For
example, both of the following sentences are in the past tense, but
one implies that the event is complete, and the other allows for
the possibility that the event is continuing:

(29) (When I was in the room,) Dave ate the cookie.
(perfective)

(30) (When I was in the room,) Dave was eating the cookie.
(imperfective)

The example in (29), which is in the simple past, has PERFECTIVE

ASPECT. With perfective aspect, the past tense implies that the
event in question has been completed. The past progressive ex-
ample in (30) has IMPERFECTIVE ASPECT, which does not have the
same implication; the event might still be going on. As pointed
out by Klein (1994), this shows that it is not always the case that a
past tense sentence means that the event described is (entirely) in
the past.

Draft January 18, 2022

Tense and aspect 479

12.5 A formal theory of tense

12.5.1 Anaphoric theory of the past

Let us now present a theory of the past on which it refers to a
salient past time, as Partee advocates. We will incorporate the
ideas of Reichenbach, Klein and Kaplan in our theory as well.

As in Priorean tense logic, a model for our formal language
specifies a set of times T , along with an ordering relation among
the times < as well as a containment relation among the times ⊆.
We extend the models for intensional logic that we had before, so
a model M will have the following structure:

M = ⟨D, I ,W,T,<,⊆⟩

where

• D is the domain of individuals D

• I is an interpretation function assigning semantic values to
each of the non-logical constants in the language

• W is a set of worlds

• T is a set of times

• < is a precedence relation among times

• ⊆ is a containment relation among times

What constitutes the utterance time depends on the context of
utterance, which means that tense morphology is indexical. There-
fore, to model tense we will use an extension of Kaplan’s system,
where the semantic value of an expression is determined relative
to a model M , an assignment function g , a world w , and a context
c.

JαKM ,g ,w,c

Draft January 18, 2022

480 Tense and aspect

The ‘utterance time’ is the time determined by c, which we call
t(c).

Our formal language will allow expressions that refer to times.
We will use i as the type designator for times, so expressions that
refer to times will be of type i . We will allow an infinite set of vari-
ables of type i , so for example

v3,i

is a variable of type i with index 3. We use

tn

as an abbreviation for
vn,i .

We will also use the symbols < and ⊆ in our logical language, and
they will be interpreted as < and ⊆ in the model:

• Syntax: If α and β are expressions of type i , then,

α <β

is a formula.

• Semantics:

Jα <βKM ,g ,w,c = { 1 if JαKM ,g ,w,c < JβKM ,g ,w,c

0 otherwise

(where < is determined by M)

Similarly:

• Syntax: If α and β are expressions of type i , then, α ⊆β is a
formula.

• Semantics:

Jα ⊆βKM ,g ,w,c = { 1 if JαKM ,g ,w,c ⊆ JβKM ,g ,w,c

0 otherwise

(where ⊆ is determined by M)

Draft January 18, 2022

Tense and aspect 481

The expression t ⊆ t ′ can be read, ‘t is contained in t ′’. Thus t ′ is
the (potentially) larger interval, occupying a stretch of time that
contains the stretch of time t occupies.

With these tools in hand, let us outline a simple theory of tense.
The basic idea is that the past tense denotes a variable over times.
We assume that the natural language morpheme PAST is associ-
ated with an index n, just like a pronoun. This index determines
the variable over times that the past tense morpheme maps to.

(31) PASTn ↝ tn (first version)

But there is an additional constraint. The past tense further re-
quires that tn precedes the time of utterance, while the present
tense requires that tn is identical to the time of utterance. We use
the constant now to denote the time of utterance:

(32) JnowKM ,g ,c,w = t(c)

As Heim (1994) discusses, the denotation of the past tense should
be undefined unless ‘tn < now’ holds, because this constraint is
more like a presupposition than an entailment. (If it were other-
wise, then it should be possible to target the constraint with nega-
tion, and I didn’t turn off the stove could be true in virtue of there
being a non-past time at which the speaker turns off the stove.) As
long as that constraint holds, the past tense should be the value of
the assignment function for tn . To get this result using the formal
tools at our disposal, we can use an ι-expression, as follows:5

(33) PASTn ↝ ιt .[t = tn ∧ tn < now]

This expression will constrain both the assignment function g and
the context of utterance c. The past tense will only have a defined
value relative to assignment function g and context of utterance c

5This presupposition is analogous to the presupposition on gender features
on pronouns: he presupposes that the reference is male. That presupposition
can be captured by mapping hei to the expression ιx .[x = vi ∧male(vi)].

Draft January 18, 2022

482 Tense and aspect

when g(tn) precedes the time of utterance t(c).
For now, the present tense will be analyzed simply as:

(34) PRESENT↝ now

although there is evidence that the present tense behaves some-
what differently from the word now (Kamp, 1971). Compare:

(35) a. Someday Susan will marry a man she loves.
b. Someday Susan will marry a man she loves now.

These two sentences mean something different; the former de-
scribes a man she will love in the future; the latter describes a
man she loves now. This contrast can be captured using Kratzer’s
(1998) notion of ‘zero tense’. A ‘zero tense’ for Kratzer is an indexed
time variable with no presuppositions (hence the name ‘zero’),
which must be bound by a local antecedent.6 We will maintain
the simple theory of the present tense in (34) for the time being,
though.

Kratzer (1998) proposes that the syntax of verb phrases is lay-
ered so that an aspectual phrase, where the perfective/imperfective
distinction is represented, dominates the VP, and a tense phrase,
where the past/present distinction is represented, in turn domi-
nates the aspectual phrase:

TenseP

Tense AspP

Asp ...
The node that AspP dominates is taken to denote a property of

times, type ⟨i , t⟩. The AspP node imposes further constraints on

6Kratzer (1998) analogizes zero tenses to the phenomenon observed in sen-
tences like Only I did my homework, where the first person possessive pronoun
my seems to be interpretable without its first person feature, because the sen-
tence can mean ‘I am the only person x such that x did x’s homework’, not ‘I am
the only person x such that x did my (the speaker’s) homework.’

Draft January 18, 2022

Tense and aspect 483

this property of times, and this property is predicated of the time
denoted by the Tense node.

Verbal predicates will take time arguments. For example:

(36) dance↝ λx .λt .Dance(t , x)

This expression will thus denote a function from individuals to
functions from times to truth values. So assuming that Ann ↝ a,
Ann dance will be interpreted as:

λt .Dance(t ,a)

In an event-semantic framework, it is assumed that verbs like
dance denote properties of events. These events are assumed to
have ‘temporal traces’ – the interval of time during which they oc-
cur. The temporal trace of an event e is usually denoted τ(e). In
such a framework, the temporal argument of a verb would be in-
troduced separately, yielding a predicate of times like:

λt .∃e[Dance(e)∧Agent(e,a)∧τ(e) = t]

for Ann dance. This could then combine with aspectual and tense
morphology in the same way, which we are about to see.

An Asp node will dominate either PERF for ‘perfective’ or IMP

for ‘imperfective’. Perfective aspect has the following interpreta-
tion:

(37) PERF↝ λP⟨i ,t⟩ .λt .∃t ′ . t ′ ⊆ t ∧P(t ′)
‘Takes a predicate of times P , and returns a predicate of
times that is true of a time t if t contains a time t ′ at which
P is true.’

(38) IMP↝ λP⟨i ,t⟩ .λt .∃t ′ . t ⊆ t ′∧P(t ′)
‘Takes a predicate of times P , and returns a predicate of
times that is true of a time t if t is contained in a time t ′ at
which P is true.’

The event time in these formulas corresponds to t ′, because that
is the time of which P is predicated; see P(t ′) in the formula. The

Draft January 18, 2022

484 Tense and aspect

TenseP
∃t ′ . t ′ ⊆ [ιt .[t = tn ∧ tn < now]]∧Dance(t ′,a)

Tense
ιt .[t = tn ∧ tn < now]

PASTn

AspP
λt .∃t ′ . t ′ ⊆ t ∧Dance(t ′,a)

Asp
λP⟨i ,t⟩ .λt .∃t ′ . t ′ ⊆ t ∧P(t ′)

PERF

λt .Dance(t ,a)

Ann dance

Figure 12.1: Derivation for Ann danced.

topic time is t . The difference between perfective and imperfec-
tive aspect is captured by the underlined portion in the informal
glosses: With perfective aspect, the requirement is that the topic
time t contains the event time t ′. With imperfective aspect, the
requirement is the other way around: that the topic time t is con-
tained in the event time t ′.

Thus for an example like Ann danced, we have the derivation
in Figure 12.1: The top node introduces the presupposition tn <
now. This presupposition can be extracted from the formula, yield-
ing the simpler formula:

∃t ′ . t ′ ⊆ tn ∧∂(tn < now)∧Dance(t ′,a)

In this formula (and the equivalent one at the top of the tree in
Figure 12.1), tn is a free variable over times that is presupposed
to precede the moment of speech. The discourse context should
provide an assignment function that will give a value to this free
variable. As long as the value is one that precedes the time of ut-
terance, the sentence will have a defined truth value.

Draft January 18, 2022

Tense and aspect 485

Exercise 1. Write out how you would read the formula at the top
of Figure 12.1 aloud.

Exercise 2. Explain how this treatment explains the ‘completion
inference’ of the past perfective, i.e., the fact that Ann danced im-
plies that there is a dancing event carried out by Ann that has
reached completion.

Exercise 3. Compute a tree for Ann was dancing.

12.6 Future (in English)

It is natural to suppose that the English verb will denotes a time
located after utterance time. However, many authors claim that
the future is not a true tense. Evidence for this idea comes from
the fact that there seems to be a past-tense version of will, namely
would, seen in:

(39) (In 1981, Dave’s marriage was very stable.)
However, he would later learn (in 1987) that his wife was
cheating on him.

This sentence means that, spoken in 1981, the sentence “Dave
will learn that his wife is cheating” is true. If there is a past version
of will, then will must represent the combination of two elements,
a tense element and something else.

The other element we represent as WOLL and treat on a par
with the aspectual markers PERF and IMP.

(40) WOLL↝λP⟨i ,t⟩ .λt .[∃t ′ . t < t ′∧P(t ′)]

Draft January 18, 2022

486 Tense and aspect

TenseP
∃t ′ .now < t ′∧Dance(t ′,a)

Tense
now

PRESENT

AspP
λt .[∃t ′ . t < t ′∧Dance(t ′,a)]

Asp
λP⟨i ,t⟩ .λt .[∃t ′ . t < t ′∧P(t ′)]

WOLL

λt .Dance(t ,a)

Ann dance

Figure 12.2: Derivation for Ann will dance.

This can combine with both present and past morphology. The
verb will is the combination of present tense with WOLL; the verb
would combines past and WOLL. A sentence like Ann will dance
will have the representation in Figure 12.2, then.

On this view, English will does not occupy the same syntac-
tic position as present or past morphology, nor does it describe
the relationship between topic time and utterance time. Rather, it
combines WOLL which is more like an aspectual marker with one
of the two tenses, present or past. Thus the ‘future’ is not a tense
in English. A similar claim has been made for St’át’imcets (Salish)
by Matthewson (2006).

Exercise 4. Give a tree for Ann would dance.

12.6.1 Sequence of tense

One phenomenon that we have not covered is so-called ‘sequence
of tense’ phenomena. Examples include the following:

Draft January 18, 2022

Tense and aspect 487

(41) John decided a week ago that in ten days he would say to
his mother that they were having their last meal together.
(Abusch, 1988)

(42) John said he would buy a fish that was still alive.
(Ogihara, 1989)

(43) Mary predicted that she would know that she was preg-
nant the minute she got pregnant.
(Kratzer, 1998)

In each of these examples, the bolded phrase is morphologically
past tense, but is not interpreted as such. Several authors, start-
ing with Ogihara (1989), have suggested that the tense feature is
not semantically interpreted, and that the tense is interpreted as
a bound variable. See von Stechow & Gronn (2013a,b) for a recent
overview of the discussion. Even more recently, the conversation
has been extended to include optional tense languages such as
Washo (Bochnak, 2016) and Tlingit (Cable, 2017), in which the hy-
pothesized LF structure is what surfaces in the language.

Draft January 18, 2022

13 ∣ Modality

13.1 Introduction

Note: This chapter is still in a preliminary stage.

13.2 Opacity

The following might seem like a well-founded principle to adopt
in everyday reasoning:

(1) Substitutability of coextensionals
If two expressions have the same extension, then if one is
substituted for the other in any given sentence, the truth
value of the sentence remains the same.

For example, the following argument appears valid:

(2) a. Sir Walter Scott gave a public lecture.
b. Sir Walter Scott is the author of Waverley.
c. ∴ The author of Waverley gave a public lecture.

The conclusion seems to be licensed by the fact that Sir Wal-
ter Scott is the author of the novel Waverley – they are the same
person. Therefore any property that the one has, the other has as
well.

But there are examples where the principle of substitutability
of coextensionals does not hold.

489

490 Modality

For instance, the author of Waverley happens to be Sir Walter
Scott. (This is a famous set of examples by Russell. The novel was
so popular in 19th century Britain that subsequent novels by the
same author were sometimes billed simply as “By the author of
Waverley”.) Perhaps you did not know this already. Then someone
could tell you (3) and you would learn something.

(3) Scott is the author of Waverley.

On the other hand, if someone were to tell you (4),

(4) Scott is Scott.

you would not learn anything new. (Throughout this chapter we
set aside cases in which there are two or more people called Scott.)

It also seems much easier to agree that

(5) Scott might not have been the author of Waverley.

than that

(6) Scott might not have been Scott.

Here, we are focusing on the reading of (6) that is similar to Scott
might have been someone else or Scott might have been distinct
from himself. (To the extent that (6) can be used to express that
Scott might not have been called “Scott”, we set that reading aside.)

It is not hard to justify agreeing to (5). There was nothing in-
evitable about Scott’s career. If he had decided to become, say a
patent officer, he might well not have written any novels. There
is a natural reading of (5), perhaps its most prominent one, which
seems true for this reason. By contrast, even if Scott had become
a patent officer, he would still have been Scott. Indeed, it seems
hard to imagine what it would even take for (6) to be true.

Concomitantly, the following two sentences differ in their truth
value, despite differing only in the substitution of one term for an-
other that co-refers with it:

Draft January 18, 2022

Modality 491

(7) a. Necessarily, Scott is the author of Waverley.
b. Necessarily, Scott is Scott.

The reason for the non-substitutability of coextensionals in this
case is that necessarily depends on the proposition expressed by
the sentence it operates on, and not just on its truth value. This
property renders necessarily unlike, say, negation, which depends
only on the truth value; negation, as you may recall, is a ‘truth-
functional’ connective. Whether or not a proposition necessarily
holds depends on its truth value in every world, not just the world
under consideration. In other words, necessarily depends on the
INTENSION of the sentence it combines with, and not just its EX-
TENSION. The extension of an expression is its semantic value at a
particular world (so, for formulas, the extension is a truth value),
while the intension is a function from possible worlds to the ex-
tensions they have at those worlds. Expressions that depend on
the intensions of the phrases they combine with, and not just their
extensions, are called INTENSIONAL.

Verbs expressing attitudes towards propositions (PROPOSITIONAL

ATTITUDE VERBS) such as believe, know and want are also inten-
sional, as they express attitudes towards propositions, and not just
truth values. We find violations of substitutability of coextension-
als here as well. For example, Mary believes that Scott is Scott does
not imply that Mary believes that Scott is the author of Waverley .

Some propositional attitude verbs entail the truth of their com-
plement; these are called VERIDICAL. For example, know, notice,
and see are veridical, but believe and doubt are not. Thus, (8a)
does not entail (8b):

(8) a. Mary believes that Fred is in Paris.
b. Fred is in Paris.

Similarly, (9a) does not entail (9b).

(9) a. Mary believes that a unicorn is eating her parsnips.
b. A unicorn is eating Mary’s parsnips.

Draft January 18, 2022

492 Modality

In fact, (9a) does not even commit the speaker to the existence
of unicorns, although it does imply that Mary believes that there
are unicorns. In other words, (9a) lacks EXISTENTIAL IMPORT with
respect to the indefinite a unicorn.

Propositional attitudes can be embedded in transitive verbs
that take a noun phrase direct object, and in such cases we ob-
serve the same effect. Thus, while (10a) implies that there is at
least one sloop (a type of sailboat), (10b) need not do so:

(10) a. Andrea sees a sloop.
b. Andrea wants a sloop.

As Quine (1956) puts it, example (10b) can be interpreted to mean
that Andrea merely seeks relief from slooplessness, not that there
is a particular sloop that Andrea wants; no particular sloop need
even exist for the sentence to be true. Thus a representation of the
following kind would not do:

∃x .[Sloop(x)∧Wants(a, x)]

because this implies that there are sloops. How, then, should the
meaning of a sentence like (10b) be represented? We will need to
augment our representation language with tools for talking about
other possible worlds in order to capture the meaning of these in-
tensional expressions.

Before we embark on this task, however, we must observe that
(10b) is ambiguous; it could be interpreted to mean that there is
a particular sloop that Andrea wants. The two readings involved
here are called DE RE (‘of the object’) and DE DICTO (‘of the word’).1

On the de re reading, Andrea has a desire for a particular sloop:
Regarding that sloop, she wants it. The de dicto reading is the one
on which she merely seeks relief from slooplessness. In the latter

1A similar distinction may have been anticipated by Aristotle and is discussed
by the medieval logician Abelard, whom we encountered in Chapter 4. The
terms themselves appear for the first time about one century later in the writ-
ings of Saint Thomas Aquinas, the philosopher and theologian.

Draft January 18, 2022

Modality 493

case, the desire is not about a particular object, rather it is about
the category, sloops; she wants that category to be instantiated
in her possession. In this sense, the desire is about the category
named by the word sloop.

Quine (1956) illustrated the de dicto / de re ambiguity with the
following example:

(11) Ralph believes that someone is a spy.

On the de re reading, Ralph has a belief about a particular ob-
ject/individual: There is someone about whom Ralph believes that
they are a spy. On the de dicto reading, Ralph has no particular
individual in mind; he just believes that there are spies. The be-
lief is not about a particular individual, rather it’s about the cate-
gory, spies. Ralph believes that the category is instantiated. The de
dicto interpretation does not commit the speaker to the existence
of spies; only Ralph.

For another example:

(12) John believes that a Republican will win.

On one interpretation, there is a specific Republican who John be-
lieves will win. John may not even know that the person in ques-
tion is a Republican. This is the de re interpretation. On the de
dicto interpretation, there is no specific Republican that John be-
lieves will win; he just believes that whoever wins will be of that
party.

The de re/de dicto distinction is related to the distinction be-
tween specific and nonspecific objects. In many languages, indef-
inites can be marked for specificity using what is known as Differ-
ential Object Marking (DOM). For example, in Spanish, the object
of verbs like buscar “look for” is optionally marked by the prepo-
sition a to indicate specificity:

(13) a. Juan busca a un profesor.
b. Juan busca un profesor.

Draft January 18, 2022

494 Modality

Sentence (13a) expresses that there is a specific teacher Juan is
looking for (de re), while (13b) expresses that Juan is not looking
for any teacher in particular (de dicto).

Borrowing Quine’s metaphor, verbs like believe, want, and look
for ‘seal off’ the complement clause. As a consequence, the exis-
tential import of the complement clause is not inherited by the
sentence as a whole.

A related phenomenon concerns the principle of substitutabil-
ity of coextensionals mentioned at the outset of this chapter. Verbs
like believe and know give rise to environments in which this prin-
ciple fails. Such environments are called OPAQUE. For example,
suppose George knows of Scott’s existence but doesn’t know that
he is the author of Waverley. Then the following sentences differ
in truth value, even though the expressions Scott and the author
of Waverley are coextensional (because they refer to the same in-
dividual):

(14) a. George knows that Scott is Scott.
b. George knows that Scott is the author of Waverley.

Similarly, suppose that of all the spies in the world, the shortest
one happens to be a man named Bernard J. Ortcutt. In this case,
the expressions the shortest spy and Ortcutt are coextensional, and
yet the following sentences can differ in truth value.

(15) a. Ralph believes that the shortest spy is a spy.
b. Ralph believes that Ortcutt is a spy.

The environments corresponding to the complement clauses of
know and believe are OPAQUE. (The opposite of opaque is TRANS-
PARENT.)

This kind of ambiguity occurs not only in philosophy texts, but
also ‘in the wild’, or at least, in legal statutes. Anderson (2014) de-
scribes the following case.

In the fall of 2001, the accounting firm Arthur Ander-

Draft January 18, 2022

Modality 495

sen directed a large scale destruction of documents
regarding its client Enron. Expecting a federal sub-
poena of records as a wave of accounting scandals un-
folded, the firm urged its employees to begin shred-
ding papers in October, shortly before the SEC began
an official investigation into Enron. The shredding
ceased abruptly on November 9th, immediately on the
heels of the SEC’s subpoena. In 2005, the Supreme
Court reversed Arthur Andersen’s conviction for “know-
ingly . . . corruptly persuad[ing] another . . . with in-
tent to . . . induce any person to . . . withhold a record,
document, or other object, from an official proceed-
ing.” The conviction was defective in part because
the jury instructions did not make clear that the de-
fendant’s actions had to be connected to a particular
official proceeding that it had in mind, which in this
case had not been initiated at the time of the shred-
ding. The ruling followed a line of obstruction of jus-
tice decisions dating back to the nineteenth century
in holding that, if in its frenzy of paper shredding the
defendant firm was not specific about the particular
official proceeding to be obstructed, the statute could
not have been violated.

On the de re interpretation (for the both the document and the
proceeding from it) of the statute, it is violated when there is a
particular document from a particular official proceeding which
the perpetrator intends to withhold. On a de dicto interpretation,
it is violated when the intent is such that there is an official pro-
ceeding from which documents are withheld. It is fair to say that
Andersen would be guilty on a de dicto interpretation, and was
acquitted on the basis of a de re interpretation.

Draft January 18, 2022

496 Modality

Exercise 1. Consider the following case from Anderson (2014):

In 1869, an English court considered the case of
Whiteley v. Chappell, in which a man who had voted
in the name of his deceased neighbor was prosecuted
for having fraudulently impersonated a “person en-
titled to vote.” The court acquitted him, albeit re-
luctantly. There had been voter fraud by imperson-
ation, certainly. But the court fixated on the object
of the impersonation and concluded that because a
dead person could not vote, the defendant had not
impersonated a “person entitled to vote.” The court
attributed the mismatch between this result and the
evident purpose of the statute to an oversight of the
drafters: “The legislature has not used words wide
enough to make the personation of a dead man an of-
fence.”

How would you characterize the de re and de dicto interpretations,
respectively, in this case? Which interpretation does the court ap-
pear to have taken? Is there an interpretation on which the man is
guilty? Explain why or why not.

A good theory of propositional attitude verbs should be able
to account for the de dicto vs. de re ambiguity. In order to build up
the theoretical machinery necessary to do this, we will start with
modal logic, which contains the intensional operators necessar-
ily and possibly. We then present Montague’s Intensional Logic,
which builds on modal logic and provides a mechanism for com-
positional interpretation of sentences involving intensional oper-
ators.

Draft January 18, 2022

Modality 497

13.3 Modal logic

13.3.1 Alethic logic

On its most natural reading, (16a) expresses a truth that is not a
necessary truth; things could have been otherwise, for example if
Scott had become a patent officer instead of an author. By con-
trast, a statement like (16b) has a different status: it is necessarily
true.

(16) a. Scott is the author of Waverley.
b. Scott is Scott.

In other words, the statement in (16a) is CONTINGENTLY TRUE,
while the statement in (16b) is NECESSARILY TRUE.

We can also divide false statements into those that are neces-
sarily false and those that are contingently false in an analogous
manner. For example, both (17a) and (17b) are false, but the for-
mer is contingently false and the latter is necessarily false.

(17) a. Scott is the author of Frankenstein.
b. Scott is not Scott.

Exercise 2. Give another example of a contingently false state-
ment and one example of a necessarily false statement.

A logical system representing concepts like it is necessary that
and it is possible that is called an ALETHIC LOGIC or MODAL LOGIC.
The term ‘modal logic’ is somewhat more common and frequent,
but it also has a broader usage, sometimes also applying to tense
logics of the Priorian kind. The operator ‘it is necessary that’ is
standardly represented as a box, ◻, and ‘it is possible that’ is rep-
resented as a diamond, ◇.2 Thus in alethic logic the syntax rules
are extended with the following:

2According to Segerberg (2005), the diamond was first used by C.I. Lewis (one

Draft January 18, 2022

498 Modality

• If φ is a formula, then ◻φ is a formula.

• If φ is a formula, then ◇φ is a formula.

From the perspective of the system that we have developed
so far, it may seem natural to define the semantics of ◻φ by say-
ing that the formula is true if φ is true in every first-order model.
This is how Rudolf Carnap defined it. A slight variant on this view
is due to Saul Kripke, who contributed a new notion of model. A
model in Kripke’s framework contained a set of first-order models,
each representing a different possible state of affairs, or a POSSI-
BLE WORLD. In this way, Kripke formalized an idea from Leibniz
that a necessary truth is one that is true in all possible worlds.
These so-called KRIPKE MODELS had a flexibility that was absent
from Carnap’s system.

Now, a first-order model consists of a domain and an interpre-
tation function. So in principle, the possible worlds in a Kripke
model might have different domains. But we will assume for sim-
plicity (and not without good philosophical reason) that there is
a single domain of individuals that is shared across all possible
worlds. A model for modal logic will therefore consist of a set of
possible worlds W , in addition to a domain of individuals D and
an interpretation function I . Unlike in tense logic, the worlds are
not ordered. Thus a model will be a triple:

⟨D,W, I⟩

where D is a set of individuals, W is a set of worlds, and I is an
interpretation function. Just as in tense logic, the interpretation
function I will take two arguments: a non-logical constant, and,
this time, a world. So if there are three worlds w1, w2, and w3, and
three individuals a, b and c, it might be the case that

I(w1,Happy) = {a,b,c}

of the founding fathers of modern modal logic) in 1912, and the box was later
suggested by F.B. Fitch.

Draft January 18, 2022

Modality 499

but
I(w3,Happy) = {c}

Truth of a formula will in general be relative to a model M , an as-
signment function g , and a possible world w . So assuming that
john maps to a in every possible world, we have:

JHappy(john)KM ,g ,w1 = 1

but
JHappy(john)KM ,g ,w3 = 0

There is controversy as to how possible worlds should be con-
ceived of. On David Lewis’s view they are maximal spatio-temporal
systems, such as the universe we actually live in. Other views un-
derstand possible worlds as maximal properties the world could
have had, or as recombinations of individuals, properties, rela-
tions, etc. Most accounts of possible worlds identify them, or at
least make them correspond, with ways things could be, or ways
the world could be.3 The formalization here does not depend on
a particular conception of possible worlds.

The semantics of the modal operators can be defined syncat-
egorematically as follows:4

• J◻φKM ,g ,w =T iff JφKM ,g ,w ′ =T for all w ′

• J◇φKM ,g ,w =T iff JφKM ,g ,w ′ =T for some w ′

It turns out that, using these definitions, certain intuitively valid
sentences are indeed valid, for example:

• ◻φ↔¬◇¬φ
‘It is necessarily the case that phi if and only if it is not pos-
sible that not phi’

3See https://plato.stanford.edu/entries/possible-worlds/.
4This is one of many possibilities; this simplest system is known as S5. See

Hughes & Cresswell (1968) for a fuller presentation. For the notion SYNCATE-
GOREMATIC, see Section 7.3.

Draft January 18, 2022

https://plato.stanford.edu/entries/possible-worlds/

500 Modality

• ◻φ→φ

‘Necessarily phi implies phi’

• φ→◇φ
‘If phi, then possibly phi’

The first statement implies that ◇ is the DUAL of ◻. (In the same
way, ∃ is the dual of ∀, since ∀x .φ is equivalent to ¬∃x .¬φ.) In
fact, sometimes in modal logic a statement of the semantics of ◇
is left out, and the◇ is defined as a syntactic abbreviation of¬◻¬.

Given our semantics for the quantifiers from previous chap-
ters, the following formulas are also valid:

(18) a. ∀x◻φ→◻∀xφ (or equivalently: ◇∃xφ→∃x◇φ)
b. ◻∀xφ→∀x◻φ (or equivalently: ∃x◇φ→◇∃xφ)

Formula (18a) is known as the BARCAN FORMULA, and Formula
(18b), as the CONVERSE BARCAN FORMULA. The Barcan formula
concerns the question of whether there are possible individuals
that are not actual, or equivalently, whether there are actual in-
dividuals that are not necessary. A possible individual is an indi-
vidual that exists in (i.e. is part of the domain of individuals as-
sociated with) one or more possible worlds regardless of whether
it exists in the actual world. An actual individual is an individ-
ual that exists in the actual world. And a necessary individual is
an individual that exists in every possible world. Since the actual
world is a possible world, every actual individual is possible. But
as Dowty et al. (1981, 129) explain:

[I]t is somewhat controversial whether [these two state-
ments] should be formally valid. It has been suggested
that∀x◻φ ought to mean, “every individual x that ac-
tually exists is necessarily such that φ, whereas ◻∀xφ
ought to mean “in any possible world, anything that
exists in that possible word is such that φ.” Similarly,
∃xφ ought to mean that “some individual x that ac-
tually exists is in some world such that φ”, whereas

Draft January 18, 2022

Modality 501

◇∃xφ should mean that “in some world it is the case
that some individual which exists in that world is such
that φ.” To make these pairs of formulas semantically
distinct would require a model theory in which each
possible world has its own domain of individuals over
which quantifiers range (though the domains would,
in general, overlap partially). In this way, there could
be “possible individuals” that are not actual individu-
als, and perhaps actual individuals that do not “exist”
in some other possible worlds. The question whether
there are such individuals has, not surprisingly, been
the subject of considerable philosophical debate. It
is possible to construct a satisfactory model theory
on this approach (and in fact Kripke’s early treatment
in Kripke 1963 adopted it), but it is technically more
complicated than the approach we have adopted here,
and it was not adopted by Montague (for discussion
see Hughes & Cresswell 1968, pp. 170–184).

Note that treating possible worlds as first-order models, as Carnap
did, naturally suggests that different possible worlds may well be
associated with different domains of individuals. This not only
makes things more complicated, it also raises issues related to
how one might recognize a given individual as ‘the same’ individ-
ual across worlds, which of course is important for capturing the
semantics of sentences like I could have been a millionaire. Lewis
(1968) advocates an extreme version of the differing-domains view,
on which no two worlds share individuals. Rather, individuals are
identified across worlds through a COUNTERPART RELATION. In a
system where there is a fixed domain for all possible worlds, this
problem does not arise.

However, there are examples that seem to suggest that the verb
exist denotes a contingent property (examples from Coppock &
Beaver 2015):

Draft January 18, 2022

502 Modality

(19) My university email account no longer exists.

(20) If that existed, then I would have heard of it!

A famous example discussed by Russell (1905) is:

(21) The golden mountain does not exist.

This sentence is felt to be true; but in that case, what does the
golden mountain refer to? One way of capturing these facts in
a fixed-domain framework is to introduce an existence predicate
exists, understood to be true of an individual at a world if that in-
dividual really exists at that world. Thus we can distinguish be-
tween two kinds of ‘existence’: BROAD EXISTENCE, which holds of
everything a quantifier can range over, that is, everything in the
domain of individuals, and NARROW EXISTENCE, which is a con-
tingent property of individuals, holding at some worlds but not
others. The verb exist can be taken to denote the narrow, contin-
gent kind of existence, captured by the existence predicate.

13.4 Intensional logic

13.4.1 Introducing intensional logic

In the previous section, we defined the semantics of ◻ and◇ syn-
categorematically, rather than giving ◻ a meaning of its own. It
is common to do this with negation as well. But with negation,
unlike necessity, it is possible to give the symbol a meaning of its
own, one that is a function of the truth value of its complement.
The semantic value of the ¬ symbol can be defined as a function
that returns 0 if it receives 1 as input, or 1 if it receives 0 as input.
The same is not the case for ◻, because the truth of a ◻ statement
depends not on the truth value of its complement at a particular
world. We saw this above with the following examples:

(22) a. Necessarily, Scott is the author of Waverley.

Draft January 18, 2022

Modality 503

b. Necessarily, Scott is Scott.

Indeed, the truth of a necessity statement depends on the whole
range of truth values that the inner formula takes on across all
worlds. So if◻ denotes a function, it does not take as input a truth
value. Rather, it must take as input a specification of all of the
truth values that the sentence takes on, across all worlds. In other
words, the input to the function that ◻ denotes must be a propo-
sition. In this section, we will develop tools that make it possible
to give ◻ a denotation of its own, and feed the right kind of object
to it as an argument.

The technique we will use (due to Carnap) is to associate with
each expression both an INTENSION and an EXTENSION. The in-
tension is a function from possible worlds to the denotation of
the expression at that world. The denotation of an expression at a
world is called the extension (of the expression at that world).

• A name (type e), which denotes an individual, has an inten-
sion that is a function from possible worlds to individuals.
A function from possible worlds to individuals is called an
INDIVIDUAL CONCEPT.

• A unary predicate (type ⟨e, t⟩), which denotes a set of indi-
viduals (or characteristic function thereof), has a function
from possible worlds to (characteristic functions of) sets of
individuals as its intension. Such a function is called a PROP-
ERTY.

• A formula (type t), which denotes a truth value, has as its
intension a function from possible worlds to truth values.
A function from possible worlds to truth values is called a
PROPOSITION.

The extension of an expressionα at world w (with respect to model
M and assignment function g) is denoted by JαKM ,g ,w . The in-
tension of an expression α is that function f such that f (w) =

Draft January 18, 2022

504 Modality

JαKM ,g ,w . That function is sometimes denoted as follows:

JαKM ,g
¢

with the cent sign ¢ as a subscript on the denotation brackets, and
no world variable superscript.

Note that it is not possible to figure out the intension from the
extension at a particular world. In order to get the intension, you
need to know the extension at every possible world. So there is
no function from extensions to intensions. Note also that every
expression in the language gets an extension, even variables. But
since the denotation of a variable is always determined by an as-
signment function, its intension relative to g will be a function
that yields the same value for every possible world given as input.

Now let us return to the problem of giving a compositional,
non-syncategorematic semantics for necessity and belief. Recall
that if the ◻ operator denotes any function, it denotes one whose
input is a proposition, rather than a truth value. The relevant
proposition is of course the intension of the formula with which
it combines. The strategy that Montague followed in order to do
so was to introduce a device that forms from any expression α a
new expression denoting the intension of α. The device is called
the ‘hat operator’, and it looks like this:

ˆα

Relative to any given world, this expression has as its extension the
intension of α. For example, the formula

Happy(m)

has either 1 or 0 as its extension in every world. In w1, the exten-
sion of this formula might be 1; in w2, the extension might be 0;
in w3, the extension might be 1. The intension is a function from
worlds to truth values. But the expression:

ˆHappy(m)

Draft January 18, 2022

Modality 505

has the intension of Happy(m) as its extension. (Put more sim-
ply: The extension of ˆHappy(m) is the intension of Happy(m).)
We now therefore have a new class of expressions, which denote
functions from possible worlds to other sorts of things. With the
help of this ‘hat’ operator, a formula, which normally denotes a
truth value, can be converted into an expression that denotes a
proposition. This new expression is the right kind of input for an
expression that denotes necessity or belief.

Before showing how that works, it will be convenient to define
an addition to the type system that allows for the new kinds of
expressions that are formed using this operator. Letting s stand
for the type of possible worlds, we now have, for every type τ, a
new type ⟨s,τ⟩. The complete type system is now as follows:

• t is a type

• e is a type

• If σ and τ are types, then so is ⟨σ,τ⟩

• If τ is any type, then ⟨s,τ⟩ is a type.

Our syntax rules will be extended so that if α is an expression of
type τ, then ˆα is an expression of type ⟨s,τ⟩. Any expression
of type ⟨s,τ⟩ will denote a function from possible worlds to Dτ,
where Dτ is the domain of entities denoted by expressions of type
τ. The official semantic rule for ˆ is as follows:

• If α is an expression of type τ, then JˆαKM ,g ,w is that func-
tion f with domain W such that for all w ∈ W : f (w) is
JαKM ,g ,w .

The hat operator is an intensionalization operator. It has a
counterpart, the extensionalization operator ˇ, pronounced as “the
extension of”, which moves from intensions to extensions. If α is
an expression of type ⟨s,τ⟩, then ˇα is an expression of type τ. Its
semantics is defined as follows:

Draft January 18, 2022

506 Modality

• If α is an expression of type ⟨s,τ⟩, then JˇαKM ,g ,w is the re-
sult of applying the function JαKM ,g ,w to w .

With these tools in hand, let us now consider how we might get
a handle on the de dicto / de re ambiguity and related puzzles. Let
us introduce a constant bel, which relates a proposition (denoted
by an expression of type ⟨s, t⟩) with an individual (denoted by an
expression of type e). Given that believe combines first with its
clausal complement and then with its subject, its type should then
be

⟨⟨s, t⟩,⟨e, t⟩⟩
The de dicto reading of a sentence like John believes that a Repub-
lican will win can then be represented as follows:

(23) Bel(john, ˆ∃x[Repub(x)∧Win(x)])

The de re reading can be represented:

(24) ∃x[Repub(x)∧Bel(john, ˆ[Win(x)])]

In the latter formula, the existential quantifier and the predicate
Repub occur outside the scope of the belief operator. So on the de
re reading, John’s belief does not have to do with the property of
being a Republican; it’s about the particular individual. Not so for
the de dicto reading, on which the content of John’s belief involves
that property.

Let us consider one more example of a de dicto / de re am-
biguity, this time involving the proper name Miss America. The
following sentence can be understood in two ways:

(25) John believes that Miss America is bald.

On the de re interpretation, John believes of some particular indi-
vidual that she is bald. As it happens, this individual is also Miss
America, although John doesn’t have to know that as far as the
de re interpretation is concerned. On the de dicto interpretation,
John believes that whoever is Miss America is bald. As far as this

Draft January 18, 2022

Modality 507

interpretation is concerned, John doesn’t have any acquaintance
at all with the individual who is Miss America, and doesn’t have to
know who she is. With the term m translating Miss America, the
two interpretations can be represented as follows:

(26) De re: [λx .Bel(john, ˆBald(x))](m)
(John believes of the person who actually holds the title of
Miss America that she is bald.)

(27) De dicto: Bel(john, ˆBald(m))
(John would assent to the statement “Miss America is bald”.)

As the identity of Miss America varies from situation to situation,
let us assume that this name is not a rigid designator, but rather
a non-logical constant whose value can vary from world to world.
Then, the first of the two formulas above captures the de re in-
terpretation; the second captures the de dicto one. When m is in
the scope of the Bel operator, its interpretation may vary from
world to world, but when it is outside, it just denotes whoever
Miss America is in the current world.

As we will see, this example has an important consequence:
in Intensional Logic, beta reduction is not a valid principle any-
more. When the lambda-bound variable is found in the scope of
an intensional operator, beta reduction can change the meaning.

Here is a simple model in which (26) is true but (27) is false:
consider two worlds, w0 and w1. Assume that w0 is the actual
world in 2020, and w1 is the (only) world compatible with John’s
beliefs. Two women have competed for the title of Miss Amer-
ica: Camille Schrier and Victoria Hill. Camille in fact won the title
and has beautiful hair, but John mistakenly believes that Camille
is bald and that Victoria won the title of Miss America instead. So
at w0, Camille won and Victoria was the runner-up, while at w1 it
is the other way around. Also, John correctly believes that Victoria
is not bald.

We assume that the term john is a rigid designator and denotes
John at both worlds. The term m denotes Camille at w0 and Victo-

Draft January 18, 2022

508 Modality

ria at w1. The predicate Bald denotes the empty set at w0 and de-
notes { Camille } at w1. The predicate Bel denotes, at each world,
the relation that holds between John and any proposition he be-
lieves at that world. Since John believes that things are exactly as
they are in w1, at w0 Bel relates John to the proposition { w1 } and
to no other proposition.

Now, (26) is true at w0 just in case John believes of the individ-
ual that is actually (i.e. at the actual world) denoted by the term
m (i.e. of Camille), that that individual is bald – in other words, it
is true just in case John believes the proposition that contains any
world w just in case Camille is bald at that world. w1 is the only
such world, so (26) is true at w0 just in case John believes at w0

that {w1} is the proposition {w1}, which he does.
Now (27) is true at w0 just in case John believes that the person

he would describe by the term m (i.e. Victoria) is bald – roughly,
just in case John would assent to the sentence Miss America is
bald. At w0, nobody is bald, and at w1 Camille is bald but Vic-
toria is Miss America. So the proposition denoted by ˆBald(m) is
not true at any world at all in our model, i.e. it is the empty set
∅. Since at w0, John believes {w1} but not ∅, (26) but not (27) is
true at w0. So (26) and (27) are not equivalent. But (27) can be ob-
tained from (26) via beta reduction. So beta reduction is not valid
in Intensional Logic.

Exercise 3. Extend this model so that ˆBald(m) denotes a
nonempty proposition.

13.4.2 Formal fragment

Let us define a new logic, IL ‘Intensional Logic’, following Mon-
tague. The language is not exactly the same as Montague’s Inten-
sional Logic, but it is fundamentally similar in spirit.

Draft January 18, 2022

Modality 509

13.4.2.1 Semantics

The types are defined recursively as follows:

• t is a type

• e is a type

• If σ and τ are types, then so is ⟨σ,τ⟩

• If τ is any type, then ⟨s,τ⟩ is a type.

The set of expressions of type τ, for any type τ, is defined re-
cursively as follows:

1. Basic Expressions
For each type τ,

(a) the non-logical constants of type τ are the symbols of
the form cn,τ for each natural number n.

(b) the variables of type τ are the symbols of the form vn,τ

for each natural number n.

2. Predication
For any types σ and τ, if α is an expression of type ⟨σ,τ⟩
and β is an expression of type σ then α(β) is an expression
of type τ.

3. Equality
If α and β are terms, then α =β is an expression of type t .

4. Negation
If φ is a formula, then so is ¬φ.

5. Binary Connectives
Ifφ andψ are formulas, then so are¬φ,[φ∧ψ],[φ∨ψ],[φ→ψ],
and [φ↔ψ].

Draft January 18, 2022

510 Modality

6. Quantification
Ifφ is a formula and u is a variable of any type, then [∀u .φ]
and [∃u .φ] are formulas.

7. Lambda abstraction
If α is an expression of type τ and u is a variable of type σ
then [λu .α] is an expression of type ⟨σ,τ⟩.

8. Alethic modalities (new!)
If φ is a formula, then ◻φ and ◇φ are formulas.

9. Intensionalization (new!)
if α is an expression of type τ, then ˆα is an expression of
type ⟨s,τ⟩.

10. Extensionalization (new!)
If α is an expression of type ⟨s,τ⟩, then ˇα is an expression
of type τ.

The semantic values of expressions in IL depend on a model,
an assignment function, and a world. A model M = ⟨D, I ,W ⟩ is
a triple consisting of the domain of individuals D , an interpreta-
tion function I which assigns semantic values to each of the non-
logical constants in the language, and a set of worlds W .

Types are associated with domains. The domain of individuals
De =D is the set of individuals, the set of potential denotations for
an expression of type e. The domain of truth values D t contains
just two elements: T ‘true’ and F ‘false’. For any types a and b,
D⟨a,b⟩ is the domain of functions from Da to Db . For every type a,
I assigns an object in Da to every non-logical constant of type a.

Assignments provide values for variables of all types, not just
those of type e. An assignment thus is a function assigning to each
variable of type a a denotation from the set Da .

The semantic value of an expression is defined as follows:

1. Basic Expressions

Draft January 18, 2022

Modality 511

(a) If α is a non-logical constant, then JαKM ,g ,w = I(w,α).

(b) If α is a variable, then JαKM ,g ,w = g(α).

2. Predication
If α is an expression of type ⟨a,b⟩, and β is an expression of
type a, then Jα(β)K = JαK(JβK).

3. Equality
If α and β are terms, then Jα =βKM ,g ,w = T iff JαKM ,g ,w =
JβKM ,g ,w .

4. Negation
If φ is a formula, then J¬φKM ,g ,w =T iff JφKM ,g ,w = F.

5. Binary Connectives
If φ and ψ are formulas, then:

(a) Jφ∧ψKM ,g ,w =T iff JφKM ,g ,w =T and JψKM ,g ,w =T.

(b) Jφ∨ψKM ,g ,w =T iff JφKM ,g ,w =T or JψKM ,g ,w =T.

(c) Jφ→ψKM ,g ,w =T iff JφKM ,g ,w = F or JψKM ,g ,w =T.

(d) Jφ↔ψKM ,g ,w =T iff JφKM ,g ,w = JψKM ,g ,w .

6. Quantification

(a) Ifφ is a formula and v is a variable of type a then J∀v .φKM ,g ,w =
T iff for all k ∈Da :

JφKM ,g[v↦k],w =T

(b) Ifφ is a formula and v is a variable of type a then J∃v .φKM ,g ,w =
T iff there is an individual k ∈Da such that:

JφKM ,g[v↦k],w = 1.

7. Lambda Abstraction
Ifα is an expression of type a and u a variable of type b then
Jλu .αKM ,g ,w is that function h from Db into Da such that

for all objects k in Db , h(k) = JαKM ,g[u↦k],w .

Draft January 18, 2022

512 Modality

8. Alethic modalities (new!)

(a) J◻φKM ,g ,w =T iff JφKM ,g ,w ′ =T for all w ′

(b) J◇φKM ,g ,w =T iff JφKM ,g ,w ′ =T for some w ′

9. Intensionalization (new!)
If α is an expression of type τ, then JˆαKM ,g ,w is that func-
tion f with domain W such that for all w ′ ∈ W : f (w ′) is

JαKM ,g ,w ′ .

10. Extensionalization (new!)
If α is an expression of type ⟨s,τ⟩, then JˇαKM ,g ,w is the re-
sult of applying the function JαKM ,g ,w to w .

Exercise 4. Formalize the de dicto and de re readings of what the
statute prohibits in the Andersen example on page 494, and de-
scribe in your own words what the truth conditions are under
these two readings; in other words, describe what properties a
model would have to have in order for the reading to be true.

Exercise 5. Is it possible to give a non-syncategorematic treatment
of the hat operator ˆ? Explain why or why not.

13.5 Fregean sense and hyperintensionality

Frege’s assessment of his puzzle about identity built on a distinc-
tion between sense and reference. For Frege, expressions such as
“Scott” and “the author of Waverley” have the same referent, but
they differ in their sense. Frege was not fully explicit about what
a sense was, but described it as a ‘mode of presentation’. A Car-
napian intension is like a Fregean sense insofar as it provides a

Draft January 18, 2022

Modality 513

more fine-grained notion of meaning, but one might question whether
it really captures what Frege had in mind. Perhaps Frege’s notion
of sense is even more fine-grained than the notion of intension.

Certainly, intensions in Carnap’s sense are not sufficiently fine-
grained to capture entailment relations among belief sentences.
For example, the sentence 2+2 = 4 is a mathematical truth, so it
is true in every possible world. And there are many other math-
ematical truths that are true in exactly the same possible worlds
(namely all of them), such as the fact that there are infinitely many
prime numbers. But from (28), it does not follow that (29) is true.

(28) Susan believes that 2+2 = 4.

(29) Susan believes that there are infinitely many prime num-
bers.

This problem is not limited to tautologies; it also holds for pairs
of contingent but logically equivalent propositions where the log-
ical equivalence might be cognitively difficult to compute. For
example, the law of contraposition is sometimes difficult for hu-
man beings to compute, so (30) does not imply (31) (example from
Muskens 2005a):

(30) Susan believes that the cat is in if the dog is out.

(31) Susan believes that the dog is in if the cat is out.

Both of these cases exemplify the PROBLEM OF LOGICAL OMNI-
SCIENCE: in general, people do not believe all of the logical conse-
quences of their beliefs. Phenomena in which the substitution of
one expression for another that has the same intension leads to a
difference in truth value are called HYPERINTENSIONAL. A classical
example involves the synonyms woodchuck and groundhog:

(32) Susan knows that all woodchucks are woodchucks.
/∴ Susan knows that all woodchucks are groundhogs.

Such cases clearly show that the analysis of belief and knowledge

Draft January 18, 2022

514 Modality

given in the previous section is inadequate, and moreover that a
more fine-grained notion of meaning is required. Recent perspec-
tives on the problem are collected in a special volume of the jour-
nal Synthese; see Jespersen & Duží 2015 for an overview.

But the existence of hyperintensionality does not negate the
existence of the intensional ‘layer’ of meaning, as it were. Inten-
sions are like the shadows of hyperintensions. And intensions are
quite a bit more straightforward to deal with and more standard,
at the time of writing. Therefore, in order to keep things manage-
able, we will continue to work ‘at the intensional level’ as it were,
keeping in mind that any fully adequate theory ought to be hyper-
intensional.

13.6 Explicit quantification over worlds

13.7 Limitations of Intensional Logic

As we have seen, within IL, beta reduction is not valid, and this
is due to the interplay of the new intensional operators (such as
hat, box, diamond, and the Priorian tense operators) with the way
in which the interpretation of non-logical constants is dependent
on possible worlds (see clause 1a in the definition of the seman-
tics of IL) while that of variables is not (clause 1b). If you leave the
intensional operators out as in previous chapters, lambda con-
version (beta reduction) is valid again. Likewise, if you replace
the intensional operators by explicit quantification over possible
worlds, beta-reduction becomes valid again. This was shown by
Gallin (1975). His system is called two-sorted type theory or Ty2 for
short, and it can do everything that IL can do. Gallin showed how
to translate IL terms into Ty2 terms in a way that preserves en-
tailments, and that also makes the issue clear.For example, here
are the translations of (26) and (27) into Ty2 according to Gallin’s
schema:

Draft January 18, 2022

Modality 515

(33) [λx.Bel(w, john(w),λw.Bald(w, x))](m(w))
(34) Bel[w, john(w),λw.Bald(w,m(w))]

In these formulas, using the toy model that we used to show that
the IL formulas (26) and (27) are not equivalent, the term john(w)
denotes John no matter if w denotes w0 or w1, while m(w) de-
notes Camille when w denotes w0 and Victoria when w denotes
w1.

By convention, the variable w in Ty2 is interpreted as denoting
the actual world wherever it is free. Given this, the two formulas
have the same truth conditions as their IL counterparts. But cru-
cially, the Ty2 translation of (26) does not beta-reduce to that of
(27). The reason is that the w inm(w) is free in (26) (and therefore
denotes the actual world) but not free in (27), where it is bound
by the λw (and therefore ranges over the worlds in the proposi-
tion denoted by the subterm λw.Bald(w,m(w)), which in turn
denotes the proposition that is true in just those worlds such that
the holder of the title “Miss America” in that world is bald in that
world).

The λw in the Ty2 version of (27) translates the hat operator in
the IL version of (27). This shows that the intensional operators of
IL are essentially “hidden” binders of world variables. The trans-
lation from IL to Ty2 makes these world variables explicit. As a
result, Ty2 regains various formal properties that are lost in IL and
that many philosophers care about. The validity of beta reduction
is only one of them. Others are:

• the Church-Rosser property (this is the property that when
you can beta-reduce a term in more than one place, the end
result will be the same no matter where you start reducing)

• Universal Instantiation, i.e. the formula

[∀x∃y ◻(x = y)]→ [∃y ◻(frege = y)]

Draft January 18, 2022

516 Modality

(If everything is necessary equal to something, then Frege is
necessary equal to something.)

• Leibniz’s Law, expressed as

[c =m]→ [◻(c = c)→◻(c =m)]

(Suppose that Camille is Mata Hari; suppose further that
necessarily Camille is Camille; so, necessarily Camille is Mata
Hari.)

Montague designed IL purposefully so that this doesn’t hold,
in order to explain why an argument like this is not valid:

(35) Camille is Miss America.
Necessarily Camille is Camille.

∴Necessarily Camille is Miss America.

This indeed doesn’t seem to be valid. However, Montague assumed
that “is” denotes equality, which is not a foregone conclusion.

The astute reader may have noticed that in the system de-
scribed in §13.4, there were no expressions of type s. This is partly
because Montague and his contemporaries believed that there were
no expressions that made reference to possible worlds. That as-
sumption has since been challenged, and for that reason among
others, it is generally preferred nowadays to use a formal system
such as Ty2 in which there is explicit quantification and binding
of possible worlds. On this view, rather than writing

ˆBald(m)

one writes rather:
λw .Baldw(m)

where the subscript on w is meant to indicate that const denotes
a function that takes a possible world as an argument, in addition
to an individual.

The de dicto vs. de re ambiguity in

Draft January 18, 2022

Modality 517

(36) John believes that a Republican will win.

would be captured as follows. The extension of the de dicto read-
ing would be translated as follows:

λw .Belw0(j,λw ′∃x[Republicanw ′(x)∧Winw ′(x)])

The extension of the de re reading would be translated thus:

∃x[Republicanw0
(x)∧Bel(j,λw ′ .Winw ′(x))

Although the representation is a bit more cluttered, with world
variables here and there, it does make explicit which world the
various predicates hold in. In the de dicto formula, Republican is
associated with w ′, the world that features in the content of John’s
belief, whereas in the de re reading, it is associated with w , the
world of evaluation, i.e. the world in which John has the belief.
This captures the fact that on the de dicto reading, there may be no
particular Republican that John’s attitude relates to; indeed, the
sentence could be true even if Republicans did not exist.

By exposing world variables and making them accessible to
quantifiers, Ty2 provides the means to account for contrasts that
are beyond the reach of Intensional Logic. The following is based
on a classical example due to Cresswell (2012):

(37) It might have been that everyone rich was poor.

One reading of this sentence is nonsensical. It says that things
could have been different in such a way that being rich entails be-
ing poor. In Intensional Logic:

(38) ◇(∀x.Rich(x)→Poor(x))

Another reading, which is sometimes paraphrased as It might have
been that everyone who is in fact (or: actually) rich was poor, says
that things could have been different in such a way that every-
body who is rich as things stand in the actual world would in that

Draft January 18, 2022

518 Modality

case have been poor. Or to put it differently, it says that things
could have been turned out in such a way that none of the people
who really are rich would have been rich. This is true, for exam-
ple, if you believe that it would be possible for every rich person
to simultaneously give all their money to a poor person, or if you
believe that the global world economy to tank in such a way that
everyone becomes poor.

But this reading can’t be expressed using boxes and diamonds.
In particular, this won’t work:

(39) ∀x.[Rich(x)→◇Poor(x)]

This says that for every rich person, there is a possibility that that
person could have been poor. It could be different possibilities
for different rich people. Or in other words, nobody who is rich
is rich of necessity. This can be true even if it would have been
impossible for everyone to be poor at the same time.

This reading can be captured by the following Ty2 formula,
where w0 is the actual world, and w is the counterfactual world
the sentence is talking about:

(40) ∃w.∀x.[Rich(x, w0)→◇Poor(x, w)]

The moral of this section is that for anyone who cares about in-
tensionality, we recommend using Ty2 rather than IL. This means
avoiding boxes, hats and diamonds in favor of explicit binding of
world variables.

13.7.1 Modal auxiliaries

So far we have discussed two types of modal expressions: the ad-
jectives necessary and possible, denoting alethic modalities, and
attitude verbs like believe and hope. We have not said anything
about modal auxiliaries like may, must, can, and have to. For a
more thorough and pedagogical discussion of this topic than what
can be achieved here, the reader is encouraged to consult Chapter

Draft January 18, 2022

Modality 519

3 of von Fintel & Heim 2011, which motivates a particular context-
sensitive analysis of these elements.

[PRESENT KRATZER HERE]

13.8 Indexicals and necessity

Let us now return to a puzzle concerning indexicals, now that we
have a rudimentary treatment of intensional phenomena under
our belts. Kaplan (1977) observed that the following sentence is
always true, whenever uttered, and yet it does not express a nec-
essary truth:

(41) I exist.

For most of us, anyway, it is far from necessary that we exist. Any
number of circumstances could have conspired so that we never
came into being. How can it be that this sentence is always true,
yet not necessarily true?

Recall that in Kaplan’s theory, the extension of an expression
depends on a context of utterance c. Integrating this idea into our
intensional semantics, the extension of an expression α will de-
pend on a model M , and assignment g , a possible world w , and a
context of utterance c.

JαKM ,g ,w,c

The indexical constant i is defined as follows:

(42) JiKM ,g ,w,c = sp(c)

The context of utterance determines not only a speaker sp(c), an
addressee ad(c), a time of utterance t(c), and a location of utter-
ance l(c), but also a designated circumstance of evaluation w(c).
The designated circumstance of evaluation w(c) is intuitively the
world in which the utterance takes place. Truth in a context can
then be defined as follows: An occurrence of φ in c is true iff the

Draft January 18, 2022

520 Modality

content expressed byφ in this context is true when evaluated with
respect to the circumstance of the context.

The models of Kaplan’s logic of indexicals determine a set of
contexts, in addition to a set of individuals, a set of possible worlds,
and an interpretation function. (They also contain times and po-
sitions but we will ignore those here.) So an intensional model M
for a logic of indexicals would be a tuple:

M = ⟨D, I ,W,C⟩

where D is a set of individuals, W is a set of possible worlds, I is a
world-relative interpretation function, and C is a set of contexts.
Now, there are certain constraints on these models. For example,
the speaker of any context must be in the extension of the exis-
tence predicate Exists at the world of the context.5 Formally:

(43) If c ∈C , then sp(c) ∈ Iw(c)(Exists).

This condition on well-formed models requires that for any con-
text c in the model, the interpretation function I must be such
that the extension of the Exists predicate in the world of c con-
tains the speaker of c. This condition guarantees that the charac-
ter of ‘I exist’, or, formallyExists(i) will be a function from contexts
to contents such that the content is true in the world of the con-
text. In other words, for any context, the sentence will be true in
the context. In this sense, ‘I exist’ is a LOGICAL TRUTH in Kaplan’s
system.

But it is not a necessary truth. Kaplan’s logic of indexicals con-
tains necessity and possibility operators defined in the standard

way in modal logic. So J◻Exists(i)KM ,g ,w,c =T iff JExists(i)KM ,g ,w ′,c =
T for all w ′. If, relative to c, i denotes an individual that fails to ex-
ist at some worlds, then ◻Exists(i) will be false. Thus Exists(i) is
not a necessary truth.

5Cf. conditions 10 and 11, p. 544 of Kaplan (1977).

Draft January 18, 2022

Modality 521

Exercise 6. Explain why I am not here now is logically false yet not
necessarily false in this framework.

Exercise 7. In this framework, pronouns and indexicals depend
on different parameters of the function that assigns semantic val-
ues to expressions. Which parameter do pronouns and indexicals
depend on, respectively?

Draft January 18, 2022

Appendix

Let us take a moment to summarize what we have done. We are
almost done with all of English, but not quite. Ha! There are ex-
tremely many topics which are fruitful to study from this perspec-
tive that we haven’t touched on at all:

• comparatives: prettier, more beautiful, more books, less pretty,
fewer books, less milk

• superlatives: prettiest, most pretty, most books

• exclusives: only, sole(ly), exclusive(ly), mere(ly), just

• exceptives: except (for), save (that), but

• demonstratives: that glass over there

• questions: Did John kiss Mary? and embedded questions:
John doesn’t know whether he kissed Mary

• imperatives: Kiss Mary!

to name a few. And there is much remaining to be said about the
topics we have touched on. However, the reader now has a starter
kit. The following sections give the fragment of English that we
have developed so far.

523

524 Modality

A.1 Logic: Partial typed lambda calculus (L3)

Expressions of the following fragment of English given below will
be translated into the following version of lambda calculus in which
there are three truth values. Let us call the language L3.

Types. e and t are types, and if a and b are types, then ⟨a,b⟩ is
a type; nothing else is a type. For all type a, ma stands for the
undefined entity of type a.

A.1.1 Syntax of L3

The set of expressions of type a, for any type a, is defined recur-
sively as follows. (An expression of type t is a formula.)

1. Basic expressions
For each type a,

(a) the non-logical constants of type a are they symbols of
the form cn,a for each natural number n.

(b) the variables of type a are the symbols of the form vn,a

for each natural number n.

2. Predication
For any types a and b, if α is an expression of type ⟨a,b⟩
and β is an expression of type a then α(β) is an expression
of type b.

3. Equality
If α and β are terms, then α =β is an expression of type t .

4. Negation
If φ is a formula, then so is ¬φ.

5. Binary Connectives
Ifφ andψ are formulas, then so are¬φ,[φ∧ψ],[φ∨ψ],[φ→
ψ], and [φ↔ψ].

Draft January 18, 2022

Modality 525

6. Quantification
Ifφ is a formula and u is a variable of any type, then [∀u .φ]
and [∃u .φ] are formulas.

7. Lambda abstraction
If α is an expression of type a and u is a variable of type b
then [λu .α] is an expression of type ⟨b, a⟩.

8. Iota terms
If φ is a formula, and u is a variable of type a, then [ιu .φ] is
an expression of type a.

9. Definedness conditions
If φ is a formula, then ∂(φ) is a formula.

In addition, we have the following abbreviation conventions.

1. Square brackets that are outermost in an expression may be
deleted.

2. An expression of the form [[φ∧ψ]∧χ] or [φ∧[ψ∧χ]] can
be simplified to [φ∧ψ∧χ]. Similarly for disjunctions.

3. We may write π(α1, ...,αn) instead of π(αn)...(α1).

4. Brackets around a quantified formula can be dropped if it is
rightmost (last) in a top-level expression, or rightmost in a
larger constituent that ends in a bracket.

5. The dot may be dropped in a sequence of binders.

6. Square brackets that are immediately embedded inside paren-
theses can be dropped.

A.1.2 Semantics of L3

For each type a, there is an associated domain Da . De is the do-
main of individuals, D t is the set of truth values, and for any types
a and b, D⟨a,b⟩ is the set of functions from Da to Db .

Expressions are interpreted in L3 with respect to both:

Draft January 18, 2022

526 Modality

• a model M = ⟨D, I⟩ where D is a non-empty set of individu-
als, and I is a function assigning a denotation in Da to each
non-logical constant of type a

• an assignment g , which is a function assigning to each vari-
able of type a a denotation from the set Da

For every well-formed expression α, the semantic value of α with
respect to model M and assignment function g , written JαKM ,g , is
defined recursively as follows:

1. Basic expressions

(a) If α is a non-logical constant, then JαKM ,g = I(α).

(b) If α is a variable, then JαKM ,g = g(α).

2. Predication
If α is an expression of type ⟨a,b⟩, and β is an expression of
type a, then Jα(β)K = JαK(JβK).

3. Equality
If α and β are terms, then Jα =βKM ,g = 1 iff JαKM ,g = JβKM ,g .

4. Negation
If φ is a formula, then J¬φKM ,g = 1 iff JφKM ,g = 0.

5. Binary Connectives
If φ and ψ are formulas, then:

(a) Jφ∧ψKM ,g = 1 iff JφKM ,g = 1 and JψKM ,g = 1.

(b) Jφ∨ψKM ,g = 1 iff JφKM ,g = 1 or JψKM ,g = 1.

(c) Jφ→ψKM ,g = 1 iff JφKM ,g = 0 and JψKM ,g = 1.

(d) Jφ↔ψKM ,g = 1 iff JφKM ,g = JψKM ,g .

6. Quantification

Draft January 18, 2022

Modality 527

(a) Ifφ is a formula and v is a varaible of type a then J∀v .φKM ,g =
1 iff for all k ∈Da :

JφKM ,g[v↦k] = 1

(b) Ifφ is a formula and v is a variable of type a then J∃v .φKM ,g =
1 iff there is an individual k ∈Da such that:

JφKM ,g[v↦k] = 1.

7. Lambda Abstraction
Ifα is an expression of type a and u a variable of type b then
Jλu .αKM ,g is that function h from Db into Da such that for

all objects k in Db , h(k) = JαKM ,g[u↦k].

8. Iota terms
If φ is a formula and u is a variable of type a then:

Jιu .φK = { d i f {k ∶ JφKM ,g[u↦k] = 1} = {d}
me otherwise.

9. Definedness conditions
If φ is an expression of type t , then:

J∂(φ)KM ,g = { JαKM ,g i f JφKM ,g = 1
ma otherwise.

Truth in a model. For any expression φ, JφKM = 1 iff JφKM ,g = 1
for every value assignment g . Similarly, JφKM = 0 iff JφKM ,g = 0 for
every value assignment g .

A.2 Syntax of English fragment

Syntax rules. The following rules derive trees at Deep Structure:

S → DP VP

Draft January 18, 2022

528 Modality

S → S JP
JP → J S
VP → V (DP∣AP∣PP∣CP)
AP → A (PP)
DP → (DP) D′

D′ → D (NP)
NP → D (N′)
N′ → N (PP∣CP)
N′ → A N′

PP → P DP
CP → C′

C′ → C S

Lexicon. Lexical items are associated with syntactic categories
as follows:

J: and, or
Neg: it is not the case that
V: smokes, loves, kissed, is
A: lazy, proud
N: drunkard, baby, kid, zebra, sister
D: the, a, every, some, no, neither, ’s, who, which

John, Obama, everybody, somebody, nobody...
P: of, with
C: that

Transformations. We assume the ‘T-model’, where a set of trans-
formations convert Deep Structures to Surface Structures, Surface
Structures to Phonological Forms, and Surface Structures to Logi-
cal Forms.

DS

SS

LF PF

Draft January 18, 2022

Modality 529

The only transformation from Deep Structure to Surface Structure
that we will make explicit here is Relativization (cf. Muskens 1996):

Relativization (DS→ SS). If α is who, whom or which:

[S X [DP [D α]] Y]⇒ [CP αi [C′ [C′ ∅] [S X [DP ti] Y]]]

where i is a fresh index.
The structures that are interpreted are Logical Forms, which

are derived from Surface Structures using Quantifier Raising (QR).
Following May (1985), we assume that QR only allows adjunction
to S nodes (whereas Heim & Kratzer (1998) allow adjunction to
any expression of an appropriate semantic type), but we take the
insertion of a numerical index into the tree from Heim & Kratzer
(1998).

Quantifier Raising (SS→ LF).

[S X [DP α] Y]⇒ [[DP α] [λP i [S X [DP ti] Y]]]

where i is a fresh index.

A.3 Translations

A.3.1 Lexical entries

We associate each lexical item with a translation to L3. We will use
the following abbreviations:

• x is v0,e , y is v1,e , and z is v2,e .

• X , Y , P and Q are variables of type ⟨e, t⟩.

• R is a variable of type ⟨e,⟨e, t⟩⟩.

• p and q are variables of type t .

• b, l, m, h and r are constants of type e.

Draft January 18, 2022

530 Modality

• drunkard, baby, kid, zebra, lazy, and snores are constants of
type ⟨e, t⟩.

• loves, kissed, with, proud, and sister are constants of type
⟨e,⟨e, t⟩⟩.

Type ⟨e, t⟩:

1. ⟪drunkard⟫ =λx .drunkard(x)

2. ⟪baby⟫ =λx .baby(x)

3. ⟪kid⟫ =λx .kid(x)

4. ⟪zebra⟫ =λx .zebra(x)

5. ⟪lazy⟫ =λx . lazy(x)

Type e:

1. ⟪Homer⟫ = h

2. ⟪Maggie⟫ = g

3. ⟪Bart⟫ = b

4. ⟪Lisa⟫ = l

5. ⟪Marge⟫ =m

Type ⟨t ,⟨t , t⟩⟩:

1. ⟪and⟫ =λpλq .[p ∧q]

2. ⟪or⟫ =λpλq .[p ∨q]

Type ⟨t , t⟩:

1. ⟪it is not the case that⟫ =λp .¬p

Type ⟨⟨e, t⟩,⟨e, t⟩⟩:

Draft January 18, 2022

Modality 531

1. ⟪is⟫ =λP .P

2. ⟪a⟫ =λP .P

Type ⟨⟨e, t⟩,e⟩:

1. ⟪the⟫ =λP . ιx .P(x)

Type ⟨e,⟨e, t⟩⟩:

1. ⟪loves⟫ = loves

2. ⟪kissed⟫ = kissed

3. ⟪with⟫ =with

4. ⟪proud⟫ = proud

5. ⟪sister⟫ = sister

Type ⟨⟨e, t⟩, t⟩:

1. ⟪something⟫ =λP .∃x .P(x)

2. ⟪nothing⟫ =λP .¬∃x .P(x)

3. ⟪everything⟫ =λP .∀x .P(x)

Type ⟨⟨e, t⟩,⟨⟨e, t⟩, t⟩⟩:

1. ⟪some⟫ =λPλQ .∃x .[P(x)∧Q(x)]

2. ⟪no⟫ =λPλQ .¬∃x[P(x)∧Q(x)]

3. ⟪every⟫ =λPλQ .∂[∃x[P(x)]]∧∀x[P(x)→Q(x)]

4. ⟪neither⟫ =λPλQ .[∂[∣P ∣ = 2]∧¬∃x .[P(x)∧Q(x)]]

Type ⟨e,e⟩:

1. ⟪of⟫ =λx . x

Draft January 18, 2022

532 Modality

A.3.2 Composition rules

If the translation of an expression γ is not specified in the lexicon,
then it is given by one of the following rules:

1. Functional Application
Let γ be a tree whose only two subtrees are α and β. If ⟪α⟫
is of type ⟨σ,τ⟩ and ⟪β⟫ is of type σ, then:

⟪γ⟫ = ⟪α⟫(⟪β⟫)

2. Predicate Modification
If ⟪α⟫ and ⟪β⟫ are of type ⟨e, t⟩, and γ is a tree whose only
two subtrees are α and β, then:

⟪γ⟫ =λu .[⟪α⟫(u)∧⟪β⟫(u)]

where u is a variable of type e that does not occur free in
⟪α⟫ or ⟪β⟫.

3. Predicate Abstraction
If γ is an expression whose only two subtrees are αi and β

and ⟪β⟫ is an expression of type t , then ⟪γ⟫ =λvi ,e .⟪β⟫.

4. Pronouns and Traces
If α is an indexed trace or a pronoun, ⟪αi⟫ = vi ,e

5. Non-branching Nodes
If β is a tree whose only daughter is α, then ⟪β⟫ = ⟪α⟫.

We also have the following type-shifting rules:

1. Predicate-to-modifier shift (MOD)
If ⟪α⟫ is of category ⟨e, t⟩, then:

⟪MOD α⟫ =λPλx .[⟪α⟫(x)∧P(x)]

as well (as long as P and x are not free in ⟪α⟫; in that case,
use different variables of the same type).

Draft January 18, 2022

Modality 533

2. Argument Raising
If an expression has a translation α of type ⟨Ð→a ,⟨b,⟨Ð→c , t⟩⟩⟩,
then that expression also has translations of the following
form:

λÐ→x Ð→a λv⟨⟨b,t⟩,t⟩λ
Ð→y Ð→c . v(λzb[α(Ð→x)(z)(Ð→y)])]

3. Possessive shift
If ⟪α⟫ is of type ⟨e, t⟩, then:

⟪POSS α⟫ =λyλx .[⟪α⟫(x)∧poss(x, y)]

as well (unless y or x is free in ⟪α⟫; in that case, use different
variables of the same type).

4. Iota shift
If ⟪α⟫ is of type ⟨e, t⟩, then

⟪IOTA α⟫ = ιx .⟪α⟫(x)

as well (unless x is free in α′; then choose a different vari-
able).

Draft January 18, 2022

Bibliography

Abney, Steven Paul. 1987. The English noun phrase in its sentential
aspect. Cambridge, MA: MIT dissertation.

Abusch, Dorit. 1988. Sequence of tense, intensionality and scope.
In Hagit Borer (ed.), Proceedings of WCCFL 7, 1–14.

Anderson, Jill. 2014. Misreading like a lawyer: Cognitive bias in
statutory interpretation. Harvard Law Review 1521. 1563–68.

Barker, Chris & Chung-chieh Shan. 2014. Continuations and nat-
ural langauge. Oxford, UK: Oxford University Press.

Barwise, Jon & Robin Cooper. 1981. Generalized quantifiers and
natural language. Linguistics and Philosophy 4(2). 159–219. doi:
10.1007/bf00350139.

Bayer, Joseph. 1984. Towards an explanation of certain that-i phe-
nomena: The COMP-node in Bavarian. In Wim de Geest & Yvan
Putseys (eds.), Sentential complementation, 23–32. Dordrecht,
Netherlands: De Gruyter. doi:10.1515/9783110882698-004.

Beaver, David & Emiel Krahmer. 2001. A partial account of pre-
supposition projection. Journal of Logic, Language and Infor-
mation 10. 147–182.

Bennett, Jonathan. 2003. A philosophical guide to conditionals.
Oxford, UK: Oxford University Press. doi:10.1093/0199258872.
001.0001.

535

536 BIBLIOGRAPHY

Bernard, Timothée & Lucas Champollion. 2018. Negative events
in compositional semantics. Semantics and Linguistic Theory
28. 512. doi:10.3765/salt.v28i0.4429. https://doi.org/10.
3765/salt.v28i0.4429.

Black, Max & Peter Thomas Geach. 1961. Translations from the
philosophical writings of Gottlob Frege. Basil Blackwell 2nd edn.

Bochnak, Ryan. 2016. Past time reference in a language with op-
tional tense. Linguistics and Philosophy 39. 247–294.

Bresnan, Joan. 2001. Lexical-functional syntax. Malden, MA:
Blackwell.

Bruening, Benjamin. 2001. Syntax at the edge: Cross-clausal phe-
nomena and the syntax of Passamaquoddy: MIT dissertation.

Bruening, Benjamin. 2008. Quantification in Passamaquoddy. In
Quantification: A cross-linguistic perspective, 67–103. Emerald
Group Publishing.

Cable, Seth. 2008. Tense, aspect and aktionsart. Lecture notes,
Theoretical Perspectives on Languages of the Pacific North-
west, Proseminar on Semantic Theory.

Cable, Seth. 2017. The implicatures of optional past tense in Tlin-
git and the implications for ‘discontinuous past’. Natural Lan-
guage and Linguistic Theory 35(3). 635–681.

Carlson, Gregory N. 1984. Thematic roles and their role in seman-
tic interpretation. Linguistics 22(3). 259–280. doi:10.1515/ling.
1984.22.3.259.

Carnie, Andrew. 2013. Syntax: A generative introduction. Black-
well.

Carpenter, Bob. 1998. Type-logical semantics. MIT Press.

Draft January 18, 2022

https://doi.org/10.3765/salt.v28i0.4429
https://doi.org/10.3765/salt.v28i0.4429

BIBLIOGRAPHY 537

Castañeda, Hector-Neri. 1967. Comments. In Nicholas Rescher
(ed.), The logic of decision and action, University of Pittsburgh
Press.

Champollion, Lucas. 2014. The interaction of compositional se-
mantics and event semantics. Linguistics and Philosophy 38(1).
31–66.

Champollion, Lucas. 2015. The interaction of compositional se-
mantics and event semantics. Linguistics and Philosophy 38(1).
31–66. doi:10.1007/s10988-014-9162-8.

Champollion, Lucas, Josh Tauberer & Maribel Romero. 2007. The
penn lambda calculator: Pedagogical software for natural lan-
guage semantics. In Tracy Holloway King & Emily M. Bender
(eds.), Proceedings of the grammar engineering across frame-
works (geaf) 2007 workshop, CSLI On-line Publications.

Chierchia, Gennaro & Sally McConnell-Ginet. 2000. Meaning and
grammar: An introduction to semantics. Cambridge, MA: MIT
Press 2nd edn.

Chomsky, Noam. 1957. Syntactic structures. The Hague: Mouton.

Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge,
MA: MIT Press.

Chomsky, Noam. 1973. Conditions on transformations. In
Stephen Anderson & Paul Kiparsky (eds.), A festschrift for Morris
Halle, 232–286. New York: Holt, Rinehart and Winston.

Chomsky, Noam. 1995. The minimalist program. Cambridge, MA:
MIT Press.

Chomsky, Noam & Howard Lasnik. 1977. Filters and control. Lin-
guistic Inquiry 8. 435–504.

Church, Alonso. 1940. A formulation of the simple theory of types.
Journal of Symbolic Logic 5. 56–68.

Draft January 18, 2022

538 BIBLIOGRAPHY

Cooper, Robin. 1983. Quantification and syntactic theory. Reidel.

Coppock, Elizabeth & David Beaver. 2015. Definiteness and de-
terminacy. Linguistics and Philosophy 38(5). 377–435. doi:
10.1007/s1098.

Cresswell, Max J. 2012. Entities and indices Studies in Linguistics
and Philosophy. Dordrecht, Netherlands: Kluwer.

Croft, William A. & David Alan Cruse. 2004. Cognitive linguis-
tics. Cambridge, UK: Cambridge University Press. doi:10.1017/
CBO9780511803864.

Curry, Haskell B. & Robert Feys. 1958. Combinatory logic, vol. 1.
Amsterdam: North-Holland.

Davidson, Donald. 1967. The logical form of action sentences.
In Nicholas Rescher (ed.), The logic of decision and action, 81–
95. Pittsburgh, PA: University of Pittsburgh Press. doi:10.1093/
0199246270.003.0006.

Dowty, David, Robert E. Wall & Stanley Peters. 1981. Introduction
to Montague semantics. Dordrecht: Kluwer.

Farkas, Donka. 2002. Specificity distinctions. Journal of Semantics
19(3). 213–43.

Fauconnier, Gilles. 1975. Pragmatic scales and logical structure.
Linguistic Inquiry 6(3). 353–375.

von Fintel, Kai. 1994. Restrictions on quantifier domains: Univer-
sity of Massachusetts at Amherst dissertation.

von Fintel, Kai. 1999. NPI licensing, Strawson entailment, and
context-dependency. Journal of Semantics 16. 97–148.

von Fintel, Kai. 2004. Would you believe it? The King of France
is back! (presuppositions and truth-value intuitions). In

Draft January 18, 2022

BIBLIOGRAPHY 539

A. Bezuidenhout & M. Reimer (eds.), Descriptions and beyond,
315–342. Oxford: Oxford University Press.

von Fintel, Kai. 2011. Conditionals. In Klaus von Heusinger,
Claudia Maienborn & Paul Portner (eds.), Semantics: An in-
ternational handbook of natural language meaning, vol. 3
Handbücher zur Sprach- und Kommunikationswissenschaft /
Handbooks of Linguistics and Communication Science (HSK),
chap. 59, 1515–1538. de Gruyter. doi:10.1515/9783110255072.

Fox, Danny. 2002. Antecedent-contained deletion and the copy
theory of movement. Linguistic Inquiry 33(1). 63–96. doi:10.
1162/002438902317382189.

Frege, Gottlob. 1891. Function und Begriff. Jena, Germany: Her-
mann Pohle. Translated in Black & Geach (1961), 21-41.

Frege, Gottlob. 1892 [reprinted 1948]. Sense and reference. The
Philosophical Review 57(3). 209–230.

Frege, Gottlob. 1983. Grundgesetze der Arithmetik. Verlag Her-
mann Pohle, Jena. Reprinted 1962 by Georg Olms, Hildesheim,
Germany and 1966 as No. 32 in Olms Paperbacks series.

Gallin, Daniel. 1975. Intensional and higher order modal logic.
Amsterdam: North Holland Press.

Geach, Peter. 1962. Reference and generality. Ithaca, NY: Cornell
University Press.

Geurts, Bart & David Beaver. 2011. Discourse representation the-
ory. In Edward Zalta, Uri Nodelman & Colin Allen (eds.), Stan-
ford encyclopedia of philosophy, CSLI, Stanford.

Giannakidou, Anastasia. 1999. Affective dependencies. Linguistics
and Philosophy 22. 367–421.

Draft January 18, 2022

540 BIBLIOGRAPHY

Grice, Paul. 1975. Logic and conversation. In Peter Cole & Jerry
Morgan (eds.), Syntax and semantics, vol. 3, 41–58. New York:
Academic Press.

Groenendijk, Jeroen, Theo Janssen & Martin Stokhof (eds.). 1984.
Truth, interpretation and information: selected papers from the
third amsterdam colloquium. Dordrecht, Netherlands: Foris.

Groenendijk, Jeroen & Martin Stokhof. 1990a. Dynamic Montague
grammar. Proceedings of the Second Symposion on Logic and
Language 3–48.

Groenendijk, Jeroen & Martin Stokhof. 1990b. Dynamic Montague
grammar. In Proceedings of the second symposium on logic and
language, 3–48. Budapest.

Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate
logic. Linguistics and Philosophy 14. 39–100.

Gruber, Jeffrey S. 1965. Studies in lexical relations. Cambridge,
MA: Massachusetts Institute of Technology dissertation. http:
//hdl.handle.net/1721.1/13010.

Halle, Morris & Alec Marantz. 1993. Distributed morphology and
the pieces of inflection. The view from building 20. 111–176.

Heim, Irene. 1982a. On the semantics of definite and indefinite
noun phrases: Umass. Amherst dissertation.

Heim, Irene. 1982b. The semantics of definite and indefinite noun
phrases: U. Mass Amherst dissertation.

Heim, Irene. 1983a. File change semantics and the familiarity the-
ory of definiteness. In Rainer Bäuerle, Christoph Schwarze &
Arnim von Stechow (eds.), Meaning, use, and the interpretation
of language, 164–189. Berlin: Walter de Gruyter.

Draft January 18, 2022

http://hdl.handle.net/1721.1/13010
http://hdl.handle.net/1721.1/13010

BIBLIOGRAPHY 541

Heim, Irene. 1983b. On the projection problem for presupposi-
tions. In Daniel Flickinger, Michael Barlow & Michael Westcoat
(eds.), Proceedings of the second west coast conference on formal
linguistics, 114–125. Stanford, CA: Stanford University Press.

Heim, Irene. 1983c. On the projection problem for presupposi-
tions. In M. Barlow, D. Flickinger & M. Wescoat (eds.), Proceed-
ing of the second annual west coast conference on formal lin-
guistics (wccfl), .

Heim, Irene. 1992. Presupposition projection and the semantics
of attitude verbs. Journal of Semantics 9. 183–221.

Heim, Irene. 1994. Comments on Abusch’s theory of tense. Ms.,
MIT.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative
grammar. Oxford: Blackwell.

Hendriks, Hermann. 1993. Studied flexibility: ILLC dissertation.

Higginbotham, James. 1983. The logic of perceptual reports: An
extensional alternative to situation semantics. The Journal of
Philosophy 80(2). 100–127. doi:10.2307/2026237.

Hindley, J. Roger & Jonathan P. Seldin. 2008. Lambda-calculus and
combinators: An introduction. Cambridge: Cambridge Univer-
sity Press.

Horn, Laurence R. 1985. Metalinguistic negation and pragmatic
ambiguity. Language 61(1). 121–174. doi:10.2307/413423.

Horn, Lawrence. 2018. Contradiction. In The Stanford Encyclope-
dia of Philosophy, Metaphysics Research Lab, Stanford Univer-
sity Winter 2018 edn.

Hovda, Peter. 2009. What is classical mereology? Journal of Philo-
sophical Logic 38(1). 55–82. doi:10.1007/s10992-008-9092-4.

Draft January 18, 2022

542 BIBLIOGRAPHY

Huang, Shuan-Fan. 1981. On the scope phenomena of Chinese
quantifiers. Journal of Chinese Linguistics 9(2). 226–243.

Hughes, G.E. & M. J. Cresswell. 1968. An introduction to modal
logic. London: Methuen and Co Ltd.

Jackendoff, Ray S. 1972. Semantic interpretation in generative
grammar. Cambridge, MA: MIT Press.

Jacobson, Pauline. 1999. Towards a variable-free semantics. Lin-
guistics and Philosophy 22. 117–184.

Jacobson, Pauline. 2000. Paycheck pronouns, Bach-Peters sen-
tences, and variable-free semantics. Natural Language Seman-
tics 8. 77–155.

Jacobson, Pauline. 2012. Direct compositionality. In The Ox-
ford handbook of compositionality, 109–129. Oxford University
Press.

Jespersen, Bjorn & Marie Duží. 2015. Introduction. Synthese
192(3). 525–534.

Kamp, Hans. 1971. Formal properties of ‘now’. Theoria 37(3). 227–
273.

Kamp, Hans & Uwe Reyle. 1993. From discourse to logic. Dor-
drecht: Kluwer Academic Publishers.

Kaplan, David. 1977. Demonstratives: An essay on the seman-
tics, logic, metaphysics, and epistemology of demonstratives
and other indexicals. In Joseph Almog, John Perry & Howard
Wettstein (eds.), Themes from Kaplan, 267–298. Oxford: Oxford
University Press.

Kaplan, David. 1989. Afterthoughts. In Joseph Almog, John Perry
& Howard Wettstein (eds.), Themes from kaplan, Oxford Uni-
versity Press.

Draft January 18, 2022

BIBLIOGRAPHY 543

Karttunen, L. 1973a. Presuppositions of compound sentences.
Linguistic inquiry 4(2). 169–193.

Karttunen, Lauri. 1973b. Presuppositions of compound sen-
tences. Linguistic Inquiry 4(2). 169–193.

Karttunen, Lauri. 1974. Presuppositions and linguistic context.
Theoretical Linguistics 1. 181–194.

Karttunen, Lauri. 1976. Discourse referents. In James D. McCaw-
ley (ed.), Notes from the linguistic underground (Syntax and Se-
mantics 7), 363–385. New York: Academic Press.

Kennedy, Christopher & Louise McNally. 2005. Scale structure,
degree modification, and the semantics of gradable predicates.
Language 81(2). 345–381.

Kipper-Schuler, Karin. 2005. Verbnet: A broad-coverage, compre-
hensive verb lexicon. Philadelphia, PA: University of Pennsylva-
nia dissertation.

Klein, Wolfgang. 1994. Time in language. London and New York:
Routledge.

Kratzer, Angelika. 1998. More structural analogies between pro-
nouns and tense. In Devon Strolovitch & Aaron Lawson (eds.),
SALT VIII: Proceedings of the second conference on semantics
and linguistic theory, 92–110. Ithaca, NY: CLC Publications.

Kratzer, Angelika. 2000. The event argument and the semantics
of verbs, chapter 2. Manuscript. Amherst: University of Mas-
sachusetts, Amherst, MA. http://semanticsarchive.net/
Archive/GU1NWM4Z/.

Krifka, Manfred. 1992. Thematic relations as links between nomi-
nal reference and temporal constitution. In Ivan A. Sag & Anna
Szabolcsi (eds.), Lexical matters, 29–53. Stanford, CA: CSLI Pub-
lications.

Draft January 18, 2022

http://semanticsarchive.net/Archive/GU1NWM4Z/
http://semanticsarchive.net/Archive/GU1NWM4Z/

544 BIBLIOGRAPHY

Kripke, Saul. 1963. Semantical considerations on modal logic.
Acta Philosophica Fennica 16. 83–89.

Kroch, Anthony S. 1974. The semantics of scope in English. Cam-
bridge, MA: Massachusetts Institute of Technology dissertation.

Ladusaw, William A. 1980. On the notion ‘affective’ in the analysis
of negative polarity items. Journal of Linguistic Research 1. 1–
16.

Landman, Fred. 1996. Plurality. In Shalom Lappin (ed.), Hand-
book of contemporary semantic theory, 425–457. Oxford, UK:
Blackwell Publishing.

Landman, Fred. 2000. Events and plurality: The Jerusalem lec-
tures, vol. 76 Studies in Linguistics and Philosophy. Dordrecht,
Netherlands: Kluwer. doi:10.1007/978-94-011-4359-2.

Landman, Fred. 2004. Indefinites and the type of sets. Malden, MA:
Blackwell.

LaPierre, Serge. 1992. A functional partial semantics for Inten-
sional Logic. Notre Dame Journal of Formal Logic 33(4). 517–
541.

Lasnik, Howard & Terje Lohndal. 2013. Brief overview of the his-
tory of generative syntax. In The Cambridge handbook of gener-
ative syntax, 26–60. Cambridge: Cambridge University Press.

Levin, Beth. 1993. English verb classes and alternations: A prelim-
inary investigation. Chicago, IL: University of Chicago Press.

Lewis, David. 1968. Counterpart theory and quantified modal
logic. Journal of Philosophy 65. 113–126.

Link, Godehard. 1983a. The logical analysis of plurals and mass
terms: A lattice-theoretical approach. In Rainer Bäuerle,
Christoph Schwartze & Arnim von Stechow (eds.), Meaning,

Draft January 18, 2022

BIBLIOGRAPHY 545

use, and the interpretation of language, 302–323. Berlin: Walter
de Gruyter.

Link, Godehard. 1983b. The logical analysis of plurals and
mass terms: A lattice-theoretical approach. In Reiner Bäuerle,
Christoph Schwarze & Arnim von Stechow (eds.), Meaning, use
and interpretation of language, 303–323. Berlin, Germany: de
Gruyter.

Link, Godehard. 1987. Generalized quantifiers and plurals. In
Peter Gärdenfors (ed.), Generalized quantifiers: Linguistic and
logical approaches, 151–180. Dordrecht: Reidel.

Matthewson, Lisa. 2006. Temporal semantics in a superficially
tenseless language. Linguistics and Philosophy 29. 673–713.

May, Robert. 1985. Logical form: Its structure and derivation. MIT
Press.

Montague, R. 1973a. The proper treatment of quantification in
ordinary English. Approaches to natural language 49. 221–242.

Montague, Richard. 1970. English as a formal language. In Bruno
Visentini & Camillo Olivetti (eds.), Linguaggi nella societá e
nella tecnica, vol. 87 Saggi di cultura contemporanea, 188–221.
Edizioni di Comunitá.

Montague, Richard. 1973b. The proper treatment of quantifica-
tion in ordinary English. In Jaakko Hintikka, Julius Moravcsik &
Patrick Suppes (eds.), Approaches to natural language: Proceed-
ings of the 1970 Stanford workshop on grammar and seman-
tics, vol. 49 Synthese Library, 221–242. Dordrecht, Netherlands:
Dordrecht. doi:10.1007/978-94-010-2506-5_10.

Montague, Richard. 1979. The proper treatment of mass terms
in English. In Francis Jeffry Pelletier (ed.), Mass terms: Some
philosophical problems, vol. 6, 173–178. Dordrecht, Nether-
lands: Reidel. doi:10.1007/978-1-4020-4110-5_12.

Draft January 18, 2022

546 BIBLIOGRAPHY

Muskens, Reinhard. 1995a. Meaning and partiality. Stanford, CA:
CSLI Publications.

Muskens, Reinhard. 1995b. Tense and the logic of change. In Urs
Egli, Peter E. Pause, Christoph Schwarze, Arnim Von Stechow
& Gotz Wienold (eds.), Lexical knowledge in the organization of
language, 147–183. Amsterdam: John Benjamins.

Muskens, Reinhard. 1996. Combining Montague semantics and
discourse representation. Linguistics and Philosophy 19. 143–
186.

Muskens, Reinhard. 2005a. Lambda grammars and hyperinten-
sionality. Talk presented at NII, Tokyo, 19 February 2005.

Muskens, Reinhard. 2005b. Sense and the computation of refer-
ence. Linguistics and Philosophy 28(4). 473–504.

Muskens, Reinhard. 2011. A squib on anaphora and coindex-
ing. Linguistics and Philosophy 34(1). 85–89. doi:10.1007/
s10988-011-9091-8.

Ogihara, Toshiyuki. 1989. Temporal reference in english and
japanese: University of Texas dissertation.

Oliver, Alex & Timothy Smiley. 2013. Plural logic. Oxford Univer-
sity Press.

Paris, Scott G. 1973. Comprehension of language connectives
and propositional logical relationships. Journal of Experimen-
tal Child Psychology 16(2). 278–291. doi:10.1016/0022-0965(73)
90167-7.

Parsons, Terence. 1990. Events in the semantics of English. Cam-
bridge, MA: MIT Press.

Parsons, Terence. 1995. Thematic relations and arguments.
Linguistic Inquiry 26(4). 635–662. http://www.jstor.org/
stable/4178917.

Draft January 18, 2022

http://www.jstor.org/stable/4178917
http://www.jstor.org/stable/4178917

BIBLIOGRAPHY 547

Partee, Barbara. 1973. Some structural analogies between tenses
and pronouns in English. Journal of Philosophy 70. 601–609.

Partee, Barbara. 1984. Compositionality. In Fred Landman &
Frank Veltman (eds.), Varieties of formal semantics, 281–312.
Dordrecht: Foris.

Partee, Barbara. 2006. Lecture 1: Introduction to formal semantics
and compositionality. Lecture notes for Ling 310 The Structure
of Meaning.

Partee, Barbara H. & Mats Rooth. 1983. Generalized conjunction
and type ambiguity. In Rainer Bäuerle, Christoph Schwarze &
Arnim von Stechow (eds.), Meaning, use and interpretation of
language, 361–383. Berlin, Germany: de Gruyter. doi:10.1515/
9783110852820.361.

Partee, Barbara H., Alice ter Meulen & Robert E. Wall. 1990. Math-
ematical methods in linguistics. Dordrecht: Kluwer.

Pasternak, Robert. 2020. Compositional trace conversion. Seman-
tics and Pragmatics 13(14). doi:10.3765/sp.13.14.

Penka, Doris. 2016. Negation and polarity. In Nick Riemer (ed.),
The routledge handbook of semantics, 303–319. Routledge.

Poesio, Massimo & Alessandro Zucchi. 1992. On telescoping. In
Proceedings of salt ii, 347–366.

Pollard, Carl & Ivan A. Sag. 1994. Head-driven phrase structure
grammar. Chicago: University of Chicago Press.

Quine, Willard. 1956. Quantifiers and propositional attitudes.
Journal of Philosophy 53. 101–111.

Reichenbach, Hans. 1947. Elements of symbolic logic. Macmillan.

Russell, Bertrand. 1905. On denoting. Mind 14. 479–93.

Draft January 18, 2022

548 BIBLIOGRAPHY

Sapir, Edward. 1944. Grading: A study in semantics. Philosophy of
Science 11. 93–116.

Scha, Remko. 1981. Distributive, collective and cumulative quan-
tification. In Jeroen Groenendijk, Theo Janssen & Martin
Stokhof (eds.), Formal methods in the study of language, Am-
sterdam, Netherlands: Mathematical Center Tracts. Reprinted
in Groenendijk et al. (1984).

Schönfinkel, Moses. 1924. Über die Bausteine der mathematis-
chen Logik. Matematische Annalen 92. 305–316.

Schwarz, Florian, Charles Clifton & Lyn Frazier. 2008. Strength-
ening ‘or’: Effects of focus and downward entailing contexts
on scalar implicatures. In Jan Anderssen, Keir Moulton, Flo-
rian Schwarz & Cherlon Ussery (eds.), Semantics and process-
ing, vol. 39 University of Massachusetts Occasional Papers in
Linguistics, Amherst, MA: Graduate Linguistic Student Associ-
ation.

Segerberg, Krister. 2005. Modal logic. Url.
https://www.encyclopedia.com/humanities/
encyclopedias-almanacs-transcripts-and-maps/
modal-logic.

Sharvy, Richard. 1980. A more general theory of definite descrip-
tions. The Philosophical Review 89(4). 607–624.

Siegel, Muffy E. 1976. Capturing the adjective: University of Mas-
sachusetts, Amherst dissertation.

Smith, Carlota S. 1997. The parameter of aspect. Dordrecht:
Kluwer.

Solan, Lawrence M. & Peter M. Tiersma. 2014. Speaking of crime:
The language of criminal justice. University of Chicago Press.

Draft January 18, 2022

https://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/modal-logic
https://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/modal-logic
https://www.encyclopedia.com/humanities/encyclopedias-almanacs-transcripts-and-maps/modal-logic

BIBLIOGRAPHY 549

Stalnaker, Robert. 1978. Assertion. In Syntax and semantics, vol. 9,
Academic Press.

Strawson, P. F. 1950. On referring. Mind 59(235). 320–344.

Strawson, Peter. 1964. Identifying reference and truth-values.
Theoria 30(2). 96–118.

Vendler, Zeno. 1957. Verbs and times. Philosophical Review 66.
143–160.

von Fintel, Kai & Irene Heim. 2011. Intensional semantics. MIT
lecture notes.

von Stechow, Arnim & Atle Gronn. 2013a. Tense in adjuncts part 1:
Relative clauses. Language and Linguistics Compass 7. 295–310.

von Stechow, Arnim & Atle Gronn. 2013b. Tense in adjuncts part 2:
Temporal adverbial clauses. Language and Linguistics Compass
7. 311–327.

Wasow, Thomas A. 1972. Anaphoric relations in English: MIT dis-
sertation.

Winter, Yoad. 2001. Flexibility principles in Boolean semantics.
Cambridge, MA: MIT Press.

Wittgenstein, Ludwig. 1921. Logisch-Philosophische Abhand-
lung. Annalen der Naturphilosophie 14. 185–262. doi:
Alsoknownas{\emTractatusLogico-Philophicus}.

Wunderlich, Dieter. 2012. Operations on argument structure.
In Klaus von Heusinger, Claudia Maienborn & Paul Portner
(eds.), Semantics: An international handbook of natural lan-
guage meaning, vol. 3 Handbücher zur Sprach- und Kommu-
nikationswissenschaft / Handbooks of Linguistics and Com-
munication Science (HSK), chap. 84, 2224–2259. de Gruyter.
doi:10.1515/9783110253382.2224.

Draft January 18, 2022

550 BIBLIOGRAPHY

Zwarts, Frans. 1995. Nonveridical contexts. Linguistic Analysis 25.
286–312.

Draft January 18, 2022

	Introduction
	Implication
	Varieties of implication
	Defining entailment
	Entailment vs. implicature
	Entailment vs. presupposition

	Theoretical foundations
	Truth-conditional semantics
	Compositionality
	Indirect interpretation

	Sets, relations, and functions
	Introduction
	Negative polarity items: the puzzle
	Sets
	Negative polarity items revisited
	Relations and functions
	Ordered pairs
	Relations
	Functions

	Propositional logic
	Introduction
	Propositional logic
	Formulas and propositional letters
	Boolean connectives
	Conditionals and biconditionals
	Equivalence, contradiction and tautology

	Summary: Propositional logic
	Syntax of L-Prop
	Semantics of L-Prop

	Predicate logic
	From propositional logic to predicate logic
	Individual constants
	Predication
	Functions
	Identity

	Quantification
	Syntax of L-1
	Semantics of L-1

	Typed lambda calculus
	Introduction
	Lambda abstraction
	Types
	Syntax and semantics
	Application and beta reduction
	Some applications

	Summary
	Syntax of L
	Semantics of L

	Further reading

	Function Application
	Introduction
	Fun with Function Application
	Agnetha loves Björn
	Björn is kind
	Björn is not kind
	Frida is with Benny
	Benny is proud of Frida
	Agnetha is a singer

	Quantifiers: type e,t,t
	Empirical diagnostics against type e
	Generalized quantifiers
	Toy fragment

	Beyond Function Application
	Introduction
	Adjectives
	Relative clauses
	Quantifiers in object position
	Quantifier raising
	A type-shifting approach

	Pronouns

	Presupposition
	Introduction
	The definite determiner
	Definedness conditions
	Designing a three-valued logic
	The projection problem

	Dynamic semantics
	Introduction
	Presupposition in dynamic semantics
	Presupposition accommodation
	Pronouns with indefinite antecedents
	File change semantics
	Discourse representation theory
	Compositional DRT

	Coordination and plurals
	Coordination
	Mereology
	The plural
	Algebraic closure
	Plural definite descriptions

	Cumulative readings
	Formal mereology
	A formal fragment
	Logic syntax
	Logic semantics
	English syntax
	Translations

	Event semantics
	Why event semantics
	The Neo-Davidsonian turn

	Composition in Neo-Davidsonian event semantics
	Verbs as predicates of events
	A formal fragment

	Quantification in event semantics
	Verbs as event quantifiers
	Another formal fragment

	Conjunction in event semantics
	Negation in event semantics

	Tense and aspect
	Introduction
	Aspect
	Aktionsart
	Viewpoint aspect

	Indexicality
	Tense
	Priorean tense logic
	Shortcomings of the Priorean theory of tense

	A formal theory of tense
	Anaphoric theory of the past

	Future (in English)
	Sequence of tense

	Modality
	Introduction
	Opacity
	Modal logic
	Alethic logic

	Intensional logic
	Introducing intensional logic
	Formal fragment

	Fregean sense and hyperintensionality
	Explicit quantification over worlds
	Limitations of Intensional Logic
	Modal auxiliaries

	Indexicals and necessity

	Appendix
	Logic: Partial typed lambda calculus (L-3)
	Syntax of L-3
	Semantics of L-3

	Syntax of English fragment
	Translations
	Lexical entries
	Composition rules

