Methocarbamol

241.24 $C_{11}H_{15}NO_{5}$ 1,2-Propanediol, 3-(2-methoxyphenoxy)-, 1-carbamate,

 (\pm) -3-(o-Methoxyphenoxy)-1,2-propanediol 1-carbamate [532-03-6].

DEFINITION

Methocarbamol contains NLT 98.5% and NMT 101.5% of methocarbamol (C₁₁H₁₅NO₅), calculated on the dried basis.

IDENTIFICATION

• A. INFRARED ABSORPTION (197K)

Change to read:

▲The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay. ▲USP38

ASSAY

Change to read:

PROCEDURE

▲Buffer: 6.8 g/L of monobasic potassium phosphate in water. Adjust with phosphoric acid or sodium hydroxide to a pH of 4.5.

Mobile phase: Methanol and Buffer (30:70)

System suitability solution: 1.0 mg/mL of USP Methocarbamol RS and 0.005 mg/mL of USP Guaifenesin RS in Mobile phase

Standard solution: 0.1 mg/mL of USP Methocarbamol RS in Mobile phase

Sample solution: 0.1 mg/mL of Methocarbamol in Mobile phase

Chromatographic system

(See Chromatography (621), System Suitability.)

Mode: LC

Detector: UV 274 nm

Column: 4.6-mm \times 15-cm; 3- μ m packing L1

Column temperature: 30° Flow rate: 0.8 mL/min Injection volume: 20 µL

Run time: 1.5 times the retention time of

methocarbamol System suitability

Samples: System suitability solution and Standard

solution

[NOTE—See *Table 1* for relative retention times.]

Suitability requirements

Resolution: NLT 3.5 between methocarbamol and

guaifenesin, System suitability solution Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 0.73%, Standard solution

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of methocarbamol $(C_{11}H_{15}NO_5)$ in the portion of Methocarbamol taken:

Result = $(r_U/r_S) \times (C_S/C_U) \times 100$

= peak response of methocarbamol from the r_U Sample solution

rs = peak response of methocarbamol from the Standard solution

= concentration of USP Methocarbamol RS in C_{S} the Standard solution (mg/mL)

 C_U = concentration of Methocarbamol in the Sample solution (mg/mL) ▲ USP38

Acceptance criteria: 98.5%-101.5% on the dried basis

• Residue on Ignition (281): NMT 0.1%

Delete the following:

HEAVY METALS, Method I (231)

Sample solution: 1.0 g in a 10-mL mixture of methanol and 1 N acetic acid (7:3), diluted with water to 25 mL

Acceptance criteria: NMT 20 ppm_{● (Official 1-Dec-2015)}

Change to read:

ORGANIC IMPURITIES

▲Mobile phase, System suitability solution, and Chromatographic system: Proceed as directed in the Assay

Standard solution: 0.005 mg/mL of USP Metho-

carbamol RS in Mobile phase

Sample solution: 1 mg/mL of Methocarbamol in Mobile phase

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See *Table 1* for relative retention times.]

Suitability requirements

Resolution: NLT 3.5 between methocarbamol and guaifenesin, System suitability solution

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 5.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution Calculate the percentage of each impurity in the portion of Methocarbamol taken:

Result =
$$(r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

= peak response of each impurity from the r_U Sample solution

= peak response of methocarbamol from the r_{ς} Standard solution

 C_{S} = concentration of USP Methocarbamol RS in the Standard solution (mg/mL)

 C_U = concentration of Methocarbamol in the Sample solution (mg/mL)

= relative response factor (see *Table 1*)

Acceptance criteria: See Table 1.

2 Methocarbamol

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Guaifenesin	0.84	1.2	Post- poned ● (RB 1- May-2015)
Methocarbamol isomer ^a	0.90	1.0	post- poned ● (RB 1- May-2015)
Methocarbamol	1.0	_	post- poned (RB 1- May-2015)
Methocarbamol dioxolone ^b	1.3	1.0	post- poned • (RB 1- May-2015)
Any individual unspecified impurity	_	_	post-poned • (RB 1-
Total impurities	_	_	2.0

^a 1-Hydroxy-3-(2-methoxyphenoxy)propan-2-yl carbamate.

▲USP38

SPECIFIC TESTS

• Loss on Drying (731) Analysis: Dry at 60° for 2 h. Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

Change to read:

- PACKAGING AND STORAGE: Preserve in tight containers.
 ▲Store at controlled room temperature. ▲USP38

 USP REFERENCE STANDARDS 〈11〉
 USP Guaifenesin RS
- USP Methocarbamol RS

^b 4-[(2-Methoxyphenoxy)methyl]-1,3-dioxolan-2-one.