Proc. of the 13th International Symposium on CMMR, Matosinhos, Portugal, Sept. 25-28, 2017

Melody transformation with semiotic patterns
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Abstract. This paper presents a music generation method based on
the extraction of a semiotic structure from a template piece followed by
generation into this semiotic structure using a statistical model of a cor-
pus. To describe the semiotic structure of a template piece, a pattern
discovery method is applied, covering the template piece with signifi-
cant patterns using melodic viewpoints at varying levels of abstraction.
Melodies are generated into this structure using a stochastic optimiza-
tion method. A selection of melodies was performed in a public concert,
and audience evaluation results show that the method generates good
coherent melodies.

1 Introduction

In recent years the topic of computational music generation has experienced
a dynamic renewal of interest, though automation of music composition has
intrigued people for hundreds of years. Even before the age of computers the idea
of automatic music composition existed. A classical example of the automatic
composition idea is the Musikalisches Wiirfelspiel or musical dice game, like the
one published in 1792 that was attributed to Mozart [16].

Statistical models of symbolic music have been prevalent in computational
modelling of musical style, since they can easily capture local musical features by
training on large corpora rather than hand coding of stylistic rules [1,7,12,15].
The lasting impact of statistical models on the topic of music generation spans
from the earliest Markov models [5] to new variants of statistical models based
on deep learning [4] and grammatical methods [20].

An issue faced by all methods for music generation is the coherence problem:
ensuring that music material repeats or recalls in a more abstract sense material
presented earlier in the piece. Nearly all forms of music involve repetition [17],
either at the surface or deeper structural levels, and repetition imparts meaning
to music [18]. Though early knowledge-based methods [13] explicitly considered
repetition, the problem of achieving coherence in music generated from machine
learning models remains largely unsolved.

A natural way to describe the coherence of a piece of music is by construct-
ing a semiotic structure, defined as a representation of similar segments by a
limited set of arbitrary symbols, each symbol representing an equivalence class
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of segments [3]. A key observation is that a semiotic structure can be “inverted”,
generating new music by instantiating the symbols and retaining the abstract
equivalence structure though having completely new music material [9]. The pro-
cedure can therefore be seen as generation by transformation: retaining abstract
aspects of a template piece while modifying specific material.

Progress on the coherence problem was made recently in the music generation
method of Collins et al. [6], where similar segments are identified by patterns in-
dicating transposed repetitions in Chopin mazurkas. These “geometric” patterns
are only suitable for carefully selected examples, because repetition in music need
not be restricted to rigid transpositions. Consider, as an illustration, the simple
melodic fragment of Figure 1. Though the two indicated phrases are clearly re-
lated, apparent in the score and to any listener, this is not by sharing an interval
sequence, but rather an abstract contour sequence. The method described in this
paper is able to naturally handle such musical phenomena using heterogeneous
patterns discovered automatically using various viewpoints.

Fig. 1. First two phrases of the melody Begiztatua nuen'. The two phrases are related
by an abstract melodic contour relation and there is no transposition that carries one
into the other.

The style chosen to model is the folk style of bertsos. These are improvised
Basque songs, sung by bertsolaris, that respect various melodic and rhyming
patterns and which have fixed rhythmic structures. They can be classified into
traditional folk melodies, new melodies, and melodies that are specifically com-
posed. Bertso melodies usually have repeated and similar phrases, making them
a challenge for statistical models and a good style for exploring the coherence
problem. In this paper rhythmic aspects are conserved, so that the new melody
can be used with lyrics created for the original melody.

The corpus used for this study is the Bertso Doinutegia, a collection of bertso
melodies compiled by Joanito Dorronsoro and published for the first time in
1995 [14]. It currently contains 2379 melodies and is maintained and updated
every year by Xenpelar Dokumentazio Zentroa? with new melodies that were
used in competitions and exhibitions. Scores in the collection were encoded in
Finale and exported to MIDI. Metadata associated with each song includes the

! http://bdb.bertsozale.eus/en/web/doinutegia/view/137-begiztatua-nuen-
euskaldun-makila
2 http://bdb.bertsozale.eus/es/
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melody name, the name or type of the strophe, type of the melody, composer,
bertsolari who has used it, name and location of the person who has collected
the melody, and year of the collection. Some of the melodies in the collection
have links to recordings of exhibitions or competitions where those melodies were
used.

2 Methods

The transformation process presented in this paper has five main components:
viewpoint representation; pattern discovery applied to a template piece to iden-
tify similar segments; pattern ranking and covering to form the semiotic struc-
ture; statistical model construction; and generation from the statistical model.

2.1 Viewpoint representation

To describe the template piece on different levels of abstraction a multiple view-
point representation [9,12] is used. A viewpoint T is a function that maps an
event sequence ey, ...,ey to a more abstract derived sequence 7(e1),...,7(es),
comprising elements in the codomain of the function 7.

viewpoint codomain

pitch {50,52,53,...,83}

dur {1,2,3,...}

onset {0,1,2,...}

intpc {0,...,11}

int {14, -12,—11,...,14,15,17}
3pc {d,eq,u}

5pc {Id,sd, eq, su, lu}

d3pc {d,eq,u}

Table 1. A specification for a small set of viewpoints.

Table 1 presents five melodic viewpoints pitch, int, intpc, 3pc and 5pc, and
three rhythmic viewpoints dur, onset, and d3pc. The viewpoint pitch represents
the MIDI number of each event; the viewpoint int computes the interval between
an event and the preceding one; the viewpoint intpc computes the pitch class
interval (interval modulo 12) between an event and the previous one. A three-
point contour viewpoint 3pc computes the melodic contour between two events:
upward (u), downward (d) or equal (eq); and a five-point contour viewpoint 5pc
computes whether the contour between two contiguous events is more than a
scale step down (Id), is one scale step down (sd), is more than a scale step up (lu),
is one scale step up (su), or stays equal (eq). The duration contour viewpoint
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d3pc computes if the duration of a note is shorter (d) than the previous one,
longer (u) or equal (eq). The viewpoint representation of an example segment,
using several viewpoints of Table 1, is shown in Figure 2.
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d3pc: L[ d eq u eq | eq [ d eq u eq |
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Fig.2. A fragment from the melody Abiatu da bere bidean® and its viewpoint repre-
sentation. Two patterns are highlighted.

To represent the interaction between melodic and rhythmic viewpoints,
melodic viewpoints are linked with the rhythmic viewpoint d3pc. A linked view-
point 71 ® T represents events as pairs of values from its constituent viewpoints
71 and 7. Each new linked viewpoint is used to represent the template piece in-
dependently; using the four melodic viewpoints of Table 1 we get four different
linked viewpoints: pitch ® d3pc, intpc ® d3pc, 3pc ® d3pc, and 5pc ® d3pc. An
example representation of one of these (5pc ® d3pc) can be seen in Figure 2. To
establish the semiotic structure, pattern discovery is performed on the template
piece for each linked viewpoint independently.

2.2 Patterns and semiotic structure

To construct a semiotic structure of a template piece it is necessary to identify in-
teresting repeated patterns which provide a dense covering of the template piece.
Patterns are defined as sequences of event features described using viewpoints,
and an event sequence instantiates a pattern if the components of the pattern
are instantiated by successive events in the sequence. More precisely, a pattern
of length m is a structure 7:(v1,...,vn), where 7 is a viewpoint and the v; are
elements of the codomain of 7. For example, in Figure 2 two simple patterns,
each instantiated twice, are highlighted; 3pc:(u,d) and d3pc:(d, eq, u, eq).
Patterns in a template piece can be found by applying a sequential pattern
discovery method [2,8] to each viewpoint representation of the template piece,
identifying all patterns occurring more than once. This resulting list is then

3 http://bdb.bertsozale.eus/en/web/doinutegia/view/2627-abiatu-da-bere-
bidean
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sorted according to an interestingness measure of patterns, and the ones that
will form the coherence structure are chosen using a covering algorithm. These
steps are now described in the remainder of this section.

Pattern distinctiveness and ranking Pattern interestingness is very impor-
tant: in a given piece many patterns may exist but not all patterns are statisti-
cally or perceptually significant to a listener. For example, the 3pc pattern shown
in Figure 2 would likely be instantiated many times in any template piece, but
its occurrences (simply three notes with an up-down contour motion) are prob-
ably not structurally related or distinctive to the template piece, while the d3pc
pattern is more interesting. In order to build a good semiotic structure of the
template piece, distinctive and interesting repetitions can be identified using a
statistical method which provides the probability of seeing an indicated pattern
at least the observed number of times in a template piece. Then a pattern is
interesting if it occurs more frequently than expected. This is a standard model
for assessing discovered motifs in music informatics [11] and bioinformatics [21].

More precisely, we derive a function I measuring the interest of a pattern.
First, we note that the background probability p of finding a pattern P = 7:
(v1,...,0m) in a segment of exactly m events can be computed using a zero-order
model of the corpus:

p=1

=1

where ¢(v;) is the total count of the feature 7 : v; and ¢ is the total number
of places in the corpus where the viewpoint 7 is defined. Then the binomial
distribution IB%(k; n, p) gives the probability of finding the pattern exactly k times
in n events, and therefore the negative log probability of finding k£ or more
occurrences of the pattern in a template piece with £ events is

I(P)=—1nB. (k;n,p), (1)

where B. is the upper tail of the binomial distribution, with n = £ —m+1 being
the maximum number of positions where the pattern could possibly occur in the
template piece.

Template covering Following pattern discovery, the template piece is covered,
trying to use the most interesting patterns but also striving for a dense covering.
Though finding a covering jointly optimal in those requirements is intractable,
a greedy method can be used to rapidly find a reasonable semiotic structure. In
the greedy covering method, discovered patterns are sorted from most to least
interesting using Equation 1, then this sorted list is processed to choose the
patterns that fit into the positions of the template piece that have not been yet
covered by any pattern, not allowing overlapping between contiguous patterns.
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Example In Figure 3 the pattern structure of the template Erletroak lorean®

after the covering process is shown, patterns represented by the viewpoints
pitch ® d3pc and 3pc ® d3pc. Above each pattern is the the viewpoint name,
the pattern label, and the I value in brackets.

The template is a short piece with four phrases, having two sections in an
overall ABA'B structure. The music is syllabic with each phrase having 13 notes,
in the key of Gm, briefly visiting BbM in the third phrase (established at the high
Fh). The B phrase is perfectly captured by a discovered pitch pattern, and though
a few notes at the beginning of A and A’ have not been covered by patterns,
the discovered three-point contour pattern successfully captures the similarity
between the second and fourth phrases. Note that there is no rigid transposition
that relates these two phrases, but they have similar melodic contours that are
captured by viewpoint patterns.

3pced3pc:A (33.4) pitch®d3pc:B (83.8)

Fig. 3. Schema of a possible semiotic structure for the template piece Erletzoak lorean.

2.3 Statistical model

The semiotic structure defines the coherence within the template piece that
will be conserved. To generate into the structure, stylistically coherent surface
material is generated using a statistical model of the bertso corpus. In this work
a trigram statistical model is built from a corpus to generate musical material
into a template described by a semiotic structure. The exact probability of a
piece using a trigram viewpoint model can be computed as described in [9].
Letting v; = 7(e;|e;—1) be the viewpoint 7 value of event e; in the context of its

preceding event e; 1, the probability of a piece e = eq, ..., e, is computed as:
‘
P(e) = [ [ P(vilvi-1,vi-2) x P(ei]vi, e5-1). (2)
i=3

To elaborate, the product of all features in the sequence according to a trigram
model is represented by the first term. Trigram probabilities of the viewpoint 7

4 http://bdb.bertsozale.eus/en/web/doinutegia/view/241-erletxoak-lorean-
orain-kantatuko-det-ii

333



Proc. of the 13th International Symposium on CMMR, Matosinhos, Portugal, Sept. 25-28, 2017

are computed from the entire corpus. The second term is the probability of the
particular event given the feature, defined as a uniform distribution over events
having the property v;:

Ple;|vi,eim1) = {z € £ T(x]e;—1) = vi}\fl,

where ¢ is the set of possible pitches (see Table 1).

The model above can be applied for any viewpoint. To select a viewpoint
for modelling stylistic aspects of the bertso corpus in this study, every melodic
viewpoint presented in Section 2.1 was evaluated with leave-one-out cross val-
idation. Probabilities of every piece, according to Equation 2, were computed.
Applied to the entire corpus of 2379 melodies, the product of all these probabil-
ities gives a measure of the fit of the model to the corpus. The negative base-2
logarithm of this product is called the cross-entropy and lower cross-entropies are
preferred. Every melodic viewpoint was tested, as were two linked melodic view-
points intpc ® 5pc and intpc ® 3pc. The results of this procedure are shown in
Table 2, which shows that the interval viewpoint int has the lowest cross-entropy
on the corpus and is a good viewpoint to use for generation.

Viewpoint Trigram Model
3pc 4.45

pitch 2.62

int
intpc 3.83

5pc 3.38

intpc ® bpc 2.71

intpc ® 3pc 3.13

Table 2. Cross-entropy of different viewpoints, determined by leave-one-out cross val-
idation on the corpus.

2.4 Generation

In this work a semiotic structure is used along with the trigram statistical model
to generate new melodies. Generated sequences having high probability are as-
sumed to retain more aspects of the music style under consideration than se-
quences with low probability. The process of optimization is concerned with
drawing high probability sequences from statistical models.

A stochastic hill climbing optimization method is used to obtain high prob-
ability melodies. The method starts with a random piece that respects the co-
herence structure extracted from the template piece, using pitches from a pitch
set ¢ that defines the admissible pitches for the generated piece. This set is
typically the scale defined by the desired tonality of the generated piece and will
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be a subset of the complete pitch domain £. This initial piece is created with
a left-to-right random walk, which samples a new note in every position of the
template, and every time a complete pattern is instantiated, all of the future
locations of the pattern are also instantiated, in this way conserving the original
relation between them. The piece is then iteratively modified: in each iteration
of the process a random location ¢ in the current piece e is chosen. A pitch
e; is uniformly chosen from ¢’ and is substituted into that position, producing
a new piece € with an updated probability P(e’). If P(e’) > P(e), then €’ is
taken as the new current piece. Every time a position is changed, the pattern to
which that note belongs is identified, and all other instances of that pattern are
also updated. Thus at every iteration the generated piece conserves the semiotic
structure. The optimization process is iterated up to 10* times, and after each
update the probability of the new piece is computed using Equation 2. If the
new probability is higher than the last saved one the change is retained.

3 Results

To illustrate the generality of the method, new melodies are generated using two
different templates, and properties of generated melodies are discussed. For the
second template, two songs were peformed and evaluated by an audience in a
live concert setting in a jazz club in London.

3.1 Illustration on a full piece

The template used is Erletzoak lorean, which was discussed earlier in Figure 3.
The pitch vocabulary used is ¢ = {66, 67,69, 70,72, 74,75,77} and two different
viewpoints were used for the statistical model (Equation 2): 5pc and int. The
three transformations shown in Figure 4 conserve the semiotic structure shown
in Figure 3. The first transformation contains within the B phrase a leap down
by a diminished seventh, which though perhaps difficult to sing is interesting
and is resolved properly by a step up. The A and A’ phrases are somewhat
reserved in their ambitus, though A contains an interesting ascending broken
triad. The second transformation follows an overall smooth melodic contour and
is a singable melody with internal coherence. Its shortcoming might be identified
within the A’ phrase which has a non-idiomatic leap which further exposes an
Ff and Ff together in close proximity. This could be corrected by including
another segmental viewpoint to ensure that the scale of each phrase is internally
coherent. The final transformation of Figure 4, done with the int viewpoint as
the statistical model, corrects to some extent the problems with excessive leaps
with the general 5pc model, but is confined to a rather small ambitus.

3.2 London concert and listener evaluation

A small suite of pieces was performed live in a public concert named “Meet
the Computer Composer” at the Vortex Jazz Club in London on September 28,
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10 13 10 13
— A B — A B
334 83.8 33.4 83.8

transformation 5pc

Fig. 4. Three transformations of the template piece Erletroak lorean. Top: its semiotic
structure with the number of notes in each pattern and their I value. The first two
transformations use a 5pc statistical model and the bottom one uses a int model.

2016. A bertso melody Tzoriak eta troriburuak was sung (by the first author IG)
along with two generations that used the original as a template. The full scores
of all three melodies can be seen in Figure 5. Following the bertso tradition of
new lyrics to existing melodies, the three melodies were sung each with the same
new lyrics that were specially written for the concert.

An audience questionnaire (Table 3, top) was given at the beginning of the
concert to all the members of the audience, where they would note which one
of the three melodies they thought was the original, and how confident they
were in their decision. A total of 52 questionnaires (from approximately 100 dis-
tributed) was returned. In Table 3 the results obtained from the questionnaires
can be seen. The majority (55%) of respondents incorrectly identifed one of the
two transformations as the original piece, though the 44% identifying correctly
the original had overall higher confidence in their decision. Regarding transfor-
mation 1, it must be noted that this was the first of three pieces performed, and
the singer had not yet achieved perfect intonation: this no doubt affected the
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lower (15%, with 37.5% not confident in their response) audience result for that
transformation.

original®
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Fig. 5. Three pieces performed at the London concert.

4 Conclusions and future work

In this paper a method for transforming bertso melodies conserving the internal
coherence of a template piece is presented. The basis of the method is a trigram
statistical model combined with the strong constraints provided by a semiotic
structure, which is identified using a sequential pattern discovery algorithm fol-
lowed by a pattern ranking and covering method. New musical content is created

® http://bdb.bertsozale.eus/en/web/doinutegia/view/1564-txoriak-eta-

txoriburuak
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Which piece is the original?
01 02 03

How confident are you on a scale of 1 to 5?7 (1=not confident, 5=very confident)

01 02 0s 04 05

transformation 1 transformation 2 original
is original? 8 (15%) 21 (40%) 23 (44%)
confidence| 1 2 3 4 5|1 2 3 4 5|1 2 3 4 5
% 37.5 50 0 12.5 0|38 28.6 23.8 4.8 4.8 |26 23.8 23.8 23.8 8.7

Table 3. Top: the audience questionnaire distributed at the London concert. Bottom:
results obtained. The original piece was the third melody sung.

using a statistical model which iteratively changes a template piece to improve
the final result.

The generation method presented in this paper extends the method of Collins
et al. [6] in some important ways. Not restricted to patterns conserving exact in-
tervals, the method here allows a heterogeneous semiotic structure comprising a
variety of abstract viewpoints. The generated pieces are not single random walks
from a model, rather some effort is made to generate high probability solutions
which are expected to be more stylistically valid. The method can be extended
to polyphony and some initial work in those directions has been completed for
counterpoint generation in the style of Palestrina [19] and multilayer textures in
electronic dance music [10].
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