PRINCIPLES AND APPLICATIONS OF
GENE THERAPY-CLINICAL TRIALS

Nikoleta Psatha, PhD

Assistant Professor

School of Biology, Aristotle University of Thessaloniki




ADVANCE THERAPY MEDICINAL PRODUCTS (ATMPs)

* Biomedicinal products for human use that are based on genes, tissues or cells,
offering groundbreaking new opportunities for the treatment of disease and
injury

» Can be classified into three main types

Tissue Engineered Products Somatic Cell Therapy Medicinal Products Gene Therapy Medicinal Products
(TEP) (sCTMP) (GTMP)




GENE THERAPY PRODUCTS

* Genes that lead to a therapeutic, prophylactic or
diagnostic effect. They work by inserting
'recombinant' genes into the body, usually to treat a
variety of diseases, including genetic disorders,
cancer or long-term diseases. A recombinant gene is
a stretch of DNA that 1s created in the laboratory,

Gene Therapy Medicinal Products o ,
bringing together DNA from different sources.

(GTMP)




BASIC PRINCIPLES OF GENE THERAPY

Gene therapy is a novel treatment method
which utilizes genes or short oligonucleotide

sequences as therapeutic molecules, instead of e 2@;‘«-’, el colletion
conventional drug compounds. | o w,
This technique is widely used to treat those f Y
defective genes which contribute to disease cell culturelexpansion
development.
Gene therapy involves the introduction of one
or more foreign genes into an organism to
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protein 1s packaged within a "vector", which

transports the DNA inside cells within or
outside the body.
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AAVs (Adeno-associated viral
vectors)

Oncolytic viral vectors




EXVIVO GENE THERAPY

This approach can be applied to the tissues like
hematopoietic cells and skin cells which can be
removed from the body, genetically corrected
outside the body and reintroduced into the patient
body where they become engrafted and survive for a
long period of time.

Genes are transferred to the cells grown in culture.
Modified cells are selected, multiplied and then
introduced into the patient.

The use of autologous cells avoids immune system
rejection of the introduced cells.

Target cell isolation Cell collection
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IN VIVO GENE THERAPY

» Transfer of desired genes directly into the tissues w,
of the patient. ’
* This 1s done in case of tissues whose individual
cells cannot be cultured in vitro in sufficient
numbers (like brain cells) and/or where re-
implantation of the cultured cells in the patient is « Adenoviral vectors
not efficient. «  AAVs (Adeno-associated viral
* The efficiency of gene transfer and expression vectors)
determines the success of this approach, because + Oncolytic viral vectors
of the lack of selection and amplification of cells
which take up and express the foreign gene.
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Differences Between in vivo and ex vivo Gene Delivery Systems

In vivo Ex vivo

Technically simple Technically complex

No requirement of specialized Requirement of specialized
infrastructure infrastructure

Vectors introduced directly No vectors introduced directly
QC not possible QC possible

Less invacive More invasive

More immunogenic Less immunogenic




WHAT CAN GENE THERAPY D0?
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GENE ADDITION

Gene addition is probably the most common gene therapy
technique being explored for monogenic diseases.

This usually involves the delivery of functional copies of a
gene (transgene) into a person’s cells by a vector.

Vectors deliver the functional gene to the patient’s cells,
either in vivo or ex vivo.

Once 1nside the cell, the transgene provides the cell with
instructions that lead to the production of functional
proteins. With gene addition therapy, the mutated gene does
not need to be replaced or removed. This provides the cell
with the instructions that lead to the production of functional
genes, while not needing to replace or remove the mutated
gene.
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the DNA, even in cells that divide) DMA and dilutes if the cell divides)

TREATED DISEASE TREATED DISEASE




TARGETED INHIBITION OF GENE EXPRESSION

This approach aims to block the expression of any diseased gene or a new gene expressing a protein
which 1s harmful for a cell or regulate gene regulators.
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TARGETED GENOMIC MODIFICATION
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* Gene addition in safe harbor loci
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ADENOVIRUS
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" HAdV genome (linear ds DNA, ~ 36 kbp)

Adenoviral virions are non-enveloped icosahedral-
shaped capsids ranging from 70 to 90 nm in diameter.
Each capsid encompasses a total of 252 proteins (240
trimeric hexons, 12 pentameric penton bases, and 12
trimeric fibre proteins).

The capsid contains linear double-stranded (ds) DNA
ranging from 26 to 46 kb.

The Ad genome is divided into 4 early (E) and 5 late
(L) transcriptional units.

* Early transcriptional units encode non-
structural proteins which regulate Ad DNA
replication and host cell metabolism.

« Late transcriptional units encode structural
proteins which form the Ad virion.




ADENOVIRUS
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Transgene

Helper-dependent or gutless Ads:

very attractive for gene therapy because of the
highly reduced in vivo immune response while
maintaining high transduction efficiency and
tropism.

Nowadays, gutless adenovirus is administered

in different organs, such as the liver, muscle or

the central nervous system achieving high-level
and long-term transgene expression in rodents

and primates.

However, as devoid of all viral coding regions,
gutless vectors require viral proteins supplied
in trans by a helper virus.




ADENO-ASSOCIATED VIRUS (AAV)

-fold axis

Adeno-associated viruses (AAVs) are small
viruses able to infect humans and other
primate species, however, are not
pathogenic.

They belong to the genus
Dependoparvovirus, which in turn belongs
to the family Parvoviridae.

They are small (approximately 26 nm in
diameter) replication-defective,
nonenveloped viruses and have linear
single-stranded DNA (ssDNA) genome of
approximately 4.7 kilobases (kb).

1ts life cycle is dependent on the presence of a helper
virus, such as AdV




ADENO-ASSOCIATED VIRUS (AAV)

AAV has a linear single-stranded DNA (ssDNA)
genome of approximately 4.7-kilobases (kb), with

two 145 nucleotide-long inverted terminal repeats : ~4.7 Kb

(ITR) at the termini. - -
ITRs are repeated sequences that self-complement: Copsid s o i

provide stability to each end of the genome, play a ¢ I—' ; ;

key role in integration, are involved in loading of the 7‘ Rep L Ca JpA
genome into the AAV capsid particle, act as o aav

promoters. -

The virus does not encode a polymerase and therefore Viral capsid | VP2 S —

relies on cellular polymerases for genome replication. - T —

The I'TRs flank the two viral genes — rep (replication) i o -

and cap (capsid), encoding non-structural and
structural proteins, respectively. For gene therapy
approaches, rep is only used during the AAV
production stage.




surface envelope protein (SU)

RETROVIRUS

transmembrane envelope protein (TM)

membrane

matrix protein (MA)
capsid (CA)
Retroviruses, consist of enveloped
particles about 100 nm in diameter.

RNA genome, bound by nucleocapsid (NC)
integrase (IN)

reverse transcriptase (RT)

The main virion components are: protease (PR)

Envelope: composed of lipids (obtained from the host) as well as glycoprotein encoded by the env gene.
three distinct functions: protection from the extracellular environment, enabling the retrovirus to
enter/exit host cells through endosomal membrane trafficking, and the ability to directly enter cells by
fusing with their membranes.

RNA: consists of two 1dentical single-stranded RNA molecules 7-10 kilobases in length. The two
molecules are present as a dimer, formed by base pairing between complementary sequences.

Proteins: consisting of gag proteins, protease (PR), pol proteins, and env proteins.




RETROVIRUS

After invading a host cell's cytoplasm, the virus
uses its own reverse transcriptase to produce
DNA from its RNA genome, the reverse of the
usual pattern, thus retro (backwards).

The new DNA is then incorporated into the host
cell genome by an integrase enzyme, at which
point the retroviral DNA 1is referred to as a
provirus.

The host cell then treats the viral DNA as part of
its own genome, transcribing and translating the
viral genes along with the cell's own genes,
producing the proteins required to assemble new
copies of the virus.







LENTIVIRUS

Lentivirus is a genus of retroviruses that
cause chronic and deadly diseases
characterized by long incubation periods, in
humans and other mammalian species (e.g.
HIV).

Lentiviruses can integrate a significant
amount of viral complementary DNA into
the DNA of the host cell and can efficiently
infect nondividing cells, so they are one of
the most efficient methods of gene delivery.
They can become endogenous, integrating
their genome into the host germline genome,
so that the virus 1s henceforth inherited by
the host's descendants.
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GT VECTOR COMPARISON

SIZE

GENOME

PACKAGING
CAPACITY

TRANSDUCTION

TRANSDUCTION
EFFICIENCY

INTEGRATION

EXPRESSION

BIOSAFETY LEVEL

IMMUNOGENICITY

GENE THERAPY
STRATEGY

ADENOVIRUS

~90-100 nm
dsDNA

~8 kb — 36 kb

Dividing and non-
dividing cells

High
Non-integrating
Transient
BSL-2
High

In vivo

AAV

~25 nm

ssDNA

~4.7 kb

Dividing and non-
dividing cells

Moderate
Non-integrating
Transient or stable
BSL-1
Low

In vivo

¥
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y-RETROVIRUS

~80-100 nm

ssRNA

10 kb

Dividing cells

Moderate

Integrating
Stable
BSL-2

Moderate-High

Ex vivo

LENTIVIRUS

~80-100 nm

ssRNA

8 kb

Dividing and non-
dividing cells

Moderate

Integrating
Stable
BSL-2

Moderate-High

Ex vivo

Drawbacks:
* Insertional genotoxicity

* Immune destruction of

genetically modified cells

* Immune reactions towards in
vivo viral-administration




OTHER GT VEHICLES
NANOPARTICLES

Many types of nanoparticles have been
evaluated as gene carriers, which include:
 lipid-based nanoparticles,

* polymer-based nanoparticles,

* 1norganic nanoparticles.

I'The most important challenges are encapsulation efficiency,
stability of nanoparticles, degradation in blood circulation,
endocytosis by target cells, endosomal escape, delivery efficiency,
and toxicity of pharmacology.
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GENE THERAPY'S INFANCY
3 March 1972, Volume 175, Number 4025 SCIE NCE

Gene Therapy for Human ‘ , ,
‘...In our view, gene therapy may ameliorate some

Genetic Disease? human genetic diseases in the future....For the

foreseeable future however, we oppose any further

attempts at gene therapy...because

difficult scientific and ethical problems. (i) Our understanding of gene regulation and

genetic recombination is inadequate

Our understanding of the details of the

relation between the molecular defect and the

disease state is rudimentary for all genetic

diseases

(ii1)) We have no information on the short-range
and long-term side effects of gene therapy...

Proposals for genetic manipulation in humans raise

Theodore Friedmann and Richard Roblin (11)




FIRST STEPS

Gene Therapy Death Prompts
Review of Adenovirus Vector

Jesse Gelsinger

1981 —1999 In the hot zone. James Wilson faced 2 days of ques-
tioning by colleagues and government advisers over the
death of an 18-year-old patient.




GT RENAISSANCE

Gene Therapy of Human Severe Combined Immunodeficiency
(SCID)-X1 Disease

Marina Cavazzana-Calvo et al.

Science 288, 669 (2000);

DOI: 10.1126/science.288.5466.669

Severe combined immunodeficiency (SCID) is a group of
rare disorders caused by mutations in different genes
involved in the development and function of infection-
fighting immune cells. Infants with SCID appear healthy at
birth but are highly susceptible to severe infections.

David Phillip Vetter, 1971-1984



EXVIVO GENE THERAPY FOR SCID

1. Bone marrow harvest

2. Lentiviral vector
transduction

Cells of interest harvested from the patient [

il

Cells modified by viral transduction ex vivo

Patient receives myeloablation

Cells are returned back to the patient

3. Cryopreservation
5. Cell Infusion

e NEW ENGLAND 4. Busulfan
JOURNAL of MEDICINE

SPECIALTIES » TOPICS ~ MULTIMEDIA ~  CURRENT ISSUE LEARNING/CME ~ AUTHOR CENTER  PUBLICATIONS

. Strimvelis,

Autologous Ex Vivo Lentiviral Gene Therapy for
Adenosine Deaminase Deficiency

Authors: Donald B. Kohn, M.D., Claire Booth, M.B., B.S., Kit L. Shaw, Ph.D., Jinhua Xu-Bayford, D.I.P,, Elizabeth
Garabedian, R.N., Valentina Trevisan, M.D., Denise A. Carbonaro-Sarracino, Ph.D., s , and H. Bobby Gaspar, M.B., APPROVED




GENE THERAPIES FOR MONOGENIC
DISEASES

THE PARADIGM OF -HEMOGLOBINOPATHIES




HEMOGLOBIN

o Chain B Chain

Heme group Oxygen

molecule

Iron

B Chain o Chain

Hemoglobin is an iron-rich protein in red
blood cells.

Oxygen entering the lungs attaches to
hemoglobin in the blood, which carries it to
tissues in the body.

When someone has insufficient red blood cells
or the ones they have do not work properly,
the body does not have enough of the oxygen
it needs to function. This condition 1s anemia.




HEMOGLOBINOPATHIES

Sickle cell disease (SCD)

GGA CTC CTC
CCT GAG GAG

I — HbA

NORMAL RBC

Normal
hemoglobin
molecules

GGA CAC CTC
CCT GTG GAG

I — Hbs

SICKLED RBC

Abnormal
hemoglobin
molecules

© AboutKidsHealth.ca

A MATTER OF QUALITY




HEMOGLOBINOPATHIES
B-thalassemia major A MATTER OF QUANTITY

O(-glObil’l B-globin Without a mutation With one mutation With two mutations
enough Hemoglobin less Hemoglobin no [i-globin
a 6} o [ o it

)E(>3OO mutations

| v e
6} o K a I
HbA Mo thalassemia [i-thalassemia carrier [i-thalassemia major
v carrier without illness, but less patient with severe
hemoglobin (slight aneamia
aneamia)

Hemolytic anemia
Free a-globin Bone marrow expansion
chains / Bone deformities
Iron accumulation




GLOBIN SWITCHING

Yolk sac  Liver Spleen Bone marrow

| y

Globin synthesis (%)
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GLOBIN SWITCHING

p15.4
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Paschoudi et al, JOMS 2023



HBF REGULATORS
BCL11a
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HBF REGULATORS
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VIRAL GENE THERAPY FOR f3-
HEMOGLOBINOPATHIES




GENE ADDITION IN B-HEMOGLOBINOPATHIES

One type of gene modification- Viral
mediated
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VIRAL VECTOR VARIATIONS

Absent in GLOBE and BCH_BB-LCRshRNA(miR) Absent in GLOBE and BCH_BB-LCRshRNA(miR)
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MAGRIN et al. Blood 2019




VIRAL VECTOR VARIATIONS

Absent in GLOBE and BCH_BB-LCRshRNA(miR) Absent in GLOBE and BCH_BB-LCRshRNA(miR)

l

B-globin gene (T87Q): HPV569 - BB305
B-globin gene: TNS9.3.55 - GLOBE
y/B-globin gene (T87Q): s-GbG
B-globin gene (AS3): Lenti-BAS3-FB
shRNAmIR: BCH_BB-LCRshRNA(miR)

TRANSGENE B-p ‘ M

MAGRIN et al. Blood 2019




VIRAL VECTOR VARIATIONS

Absent in GLOBE and BCH_BB-LCRshRNA(miR)
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VIRAL VECTOR VARIATIONS

Absent in GLOBE and BCH_BB-LCRshRNA(miR)
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VIRAL VECTOR VARIATIONS

Absent in GLOBE and BCH_BB-LCRshRNA(miR) Absent in GLOBE and BCH_BB-LCRshRNA(miR)
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MAGRIN et al. Blood 2019




VIRAL VECTOR VARIATIONS
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GT CLINICAL TRIALS The NEW ENGLAND
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ESTABLISHED IN 1812 FEBRUARY 3, 2022 VOL. 386 NO.5

Betibeglogene Autotemcel Gene Therapy for Non—8°/3°
Genotype (3-Thalassemia
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GT CLINICAL TRIALS

Nontrans- [l HbAT87Q HbF M HbA, HbS M HbA (transfused)
fused total
Hb
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5- EEEEEEER Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease
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LV GT LIMITATIONS

01

B-globin vectors

difficult to
package and
transduce HSCs

02

Low titers

03

High VCN

necessary for
therapeutic
effect

04

Risk of
hematologic
malignancies
due to random
integration




GENOME EDITING AS A THERAPEUTIC TOOL

* Mutations in >4,800 of the 25,000 annotated genes in the human genome, have already been
linked to disease phenotypes

 Disease linked mutations are located in both coding and noncoding regions of the genome

OMIM Morbid Map Scorecard (Updated April 2nd, 2024) :

Total number of phenotypes® for which the molecular basis is known 7.512
Total number of genes with phenotype-causing mutation 4 899

* Phenotypes include (1) single-gene mendelian disorders and traits; (2) susceptibilities to cancer and complex disease (e.g.,
BRCAT and familial breast-ovarian cancer susceptibility, 113705.0001, and CFH and macular degeneration, 134370.0008); (3)
variations that lead to abnormal but benign laboratory test values ("nondiseases”) and blood groups (e.g., lactate
dehydrogenase B deficiency, 150100.0001 and ABO blood group system, 110300.0001); and (4) select somatic cell genetic
disease (e.g., GNAS and McCune-Albright syndrome, 139320.0008 and IDH1 and glioblastoma multiforme, 147700.0001.)




GENOME EDITING AS A THERAPEUTIC TOOL

* Genome editing provides the possibility of removing or correcting deleterious mutations

 Altering the genome can be used as a therapeutic approach for both monogenic and non-monogenic
diseases such as cardiovascular disease, HIV, Alzheimer disease and hemoglobinopathies.

Dissected OMIM Morbid Map Scorecard (Updated May 20th, 2022) :

Class of phenotype Phenotype Gene *
Single gene disorders and traits 6,109 4,273
Susceptibility to complex disease or infection 690 501
"Nondiseases” 153 120
Somatic cell genetic disease 233 130

“Some genes may be counted more than once because mutations in a gene may cause maore than one phenotype and the
phenotypes may be of different classes (e.g.. activating somatic BRAF mutation underlying cancer, 164757.0001. and
germline BRAF mutation in Noonan syndrome, 164757.0022)




GENOME EDITING IN B-HEMOGLOBINOPATHIES

100+0ne types of gene modification

* Gene correction

* Gene addition in safe harbor loci

* (Gene deactivation targeting coding sequences

* (Gene deactivation targeting regulatory sequences
* (Gene reactivation targeting cis-acting elements

* (Gene reactivation targeting trans-acting elements
* Gene replacement

Combination of all the above




GENOME EDITING TOOLS: FIRST GENERATION OF CUSTOM
DESIGNED NUCLEASES
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THE REVOLUTIONARY CRISPR/CAS9 SYSTEM
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GENOME EDITING
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EXVIVO GENOME EDITING

Beta hemoglobinopathies as a disease model




GENOTYPE CORRECTION
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GLOBIN SWITCHING
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Globin synthesis (%)

Spleen

Bone marrow

l

54321 € Gy Ay
CL 0 a ] .
L1 L 1
LCRHSs Embryonic Fetal

Manipulating the globin
switch to achieve high level
expression of fetal

hemoglobin




GENOME EDITING APPROACHES TO ACHIEVE AN HPFH
PHENOTYPE
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HBF REGULATORS

Percentage Y-Globin Expression M
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THE ERYTHROID ENHANCER OF BCL11A
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ZFN BCL11A CODING VS ENHANCER KO
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EFFECT OF eBCL11A KO IN THALASSEMIC ERYTHROID CELLS
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GAMMA GLOBIN PROMOTER: ANOTHER ERYTHROID TARGET

Chip-Seq for BCL11A
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HBG-115(BCL11A BS) EDITING IN SDC ERYTHROID CELLS
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HBG-196 (LRF BS) EDITING IN SDC ERYTHROID CELLS
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COMPARISON OF THE CLINICALLY APPLICABLE MUTATIONS

*

20 45% 4
* % 40[}!(0 _
BCL11A 70 4 — %

* 359%, -

? 2 60 - -
| o = 309% |

r'x". - 8 20 )
N ¢
1 1 l ! { y . % 40 i 209, -

Eryth 'd'E"h" 30 A -+ ire

ry rol nhancer % 15 !,—D i
? ? HBG 201 10% -
) 10 4 5%
> X 0 - 0% |

197 115
Enucleated

mcntr mBCL11a mHBG-197 mHBG-115

Psatha, Georgakopoulou et al. Blood, 2021



MULTIPLEX MUTAGENESIS IN HUMAN HSCs
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Genome Editing Clinical Trials in the Hemoglobinopathies with IND Applications Received by the U.S. FDA

Clinical trial ID, # Subjects

Indication Goal Nuclease/target Sponsor, collaborator reference dosed Notes, references
SCD Elevate HbF Cas9/BCL11A enhancer Vertex Pharmaceuticals, NCT03745287 4 19
CRISPR Therapeutics
TDT Elevate HbF Cas9/BCL11A enhancer Vertex Pharmaceuticals, NCT03655678 6 19
CRISPR Therapeutics
SCD Elevate HbF ZFN/BCL11A enhancer Sangamo Therapeutics, Sanofi NCT03653247 — 20,38,39
TDT Elevate HbF ZFN/BCL11A enhancer Sangamo Therapeutics, Sanofi NCT03432364 4 20,3839
SCD Elevate HbF Cas9/HBG1/2 promoter Editas Medicine — — IND submitted 12/9/2020
TDT Elevate HbF Cas9/HBG1/2 promoter — — Guided to IND submission in 2021
SCD Elevate HbF Cas9/not disclosed Intellia Therapeutics, Novartis — — Novartis has not disclosed precise
strategy
TDT Elevate HbF Cas9/not disclosed Intellia Therapeutics, Novartis — — Novartis has not disclosed precise
strategy
SCD Repair HbS Cas9 HBB correction  Graphite Bio — — Developed and taken to IND by M.
mutation Porteus (Stanford) and then
transferred to Graphit&®
SCD Repair HbS  Cas9 HBB correction UCSF Benioffs, UCLA, IGI — Developed at the 1Gl, UCSF, and

mutation

UCLA, 3/ taken to IND Nov 2020
by same team

F.D.Urnov, The CRISPR Journal, 2021



Vertex-CRISPR's Casgevy Gets Positive EMA

Panel Opinion, Approval Decision in Q1
2024

Published: Dec 15, 2023 | By Kate Goodwin

¥

Vertex, CRISPR's gene-editing
therapy Casgevy wins early FDA

nod to treat beta thalassemia

By Kevin Dunleavy - Jan 16, 2024 3:40pm




BASE EDITING

nCas9 (= !

Cytosine base editors (CBEs):
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CBE TO CORRECT BETA-THALASSEMIA

the HBB-28 mutation +eBCL11a
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CBE TO CORRECT SCD
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PRIME EDITING
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IN VIVO GENOME EDITING




IN VIVO MODIFICATION OF HSCs
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IN VIVO HSC GENOME EDITING IN B-YAC MICE

ex vivo HSC genome editing
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A NOVEL HD AD-5/35++ VECTOR FOR MULTIPLEX MUTAGENESIS
OF HUMAN HSCs
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IMPROVED ERYTHROPOIESIS AFTER DOUBLE EDITING
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PHENOTYPE CORRECTION
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HDADS5/35++ MEDIATED IN VIVO BASE EDITING
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GENOME EDITING RISKS AND DRAWBACKS

* Unintended edits or “off-target” effects
* Introduction of unwanted mutations
* Chromosomal instability and genomic translocations

* DSB mediated genotoxicity




EPIGENOME EDITING

Editing beyond the genome




EPIGENOME EDITING

dCas-mediated occlusion of TFs Write or erase chromatin marks
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EPIGENOME EDITING TARGETING THE BETA GLOBIN LOCUS
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dCas9-LSD1
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EPIGENOME EDITING TARGETING THE BETA GLOBIN LOCUS
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COST OF GT

If you google “most expensive drugs”...

10. Luxturna
¢ Cost: $$850,000 per one-time dose
e Manufacturer: Spark Therapeutics
e Use: Biallelic RPE65-Mediated Inherited Retinal Disease

e FDA Approval Date: December 19, 2017

5. Zolgensma

¢ Cost: $2.1 million per one-time dose
e Manufacturer: Novartis
e Use: Spinal Muscular Atrophy

e FDA Approval Date: May 24, 2019

Zynteglo

Cost: $2.8 million per one-time dose
Manufacturer: Novartis

Use: Beta-thalassemia

FDA Approval Date: September 16, 2022




COST OF GT 1. Lenmeldy

Cost: $4.25 million per one time treatment

If you google “most expensive drugs”...

Manufacturer: Orchard Therapeutics

Use: Metachromatic leukodystrophy (MLD)

FDA Approval Date: March 18, 2024

%kysona jiﬁilevidys %emgenix

e Cost: $3 million per one-time dose e Cost: $3.2 million per one-time dose e Cost: $3.5 million per one-time dose
* Manufacturer: bluebird bio, Inc. * Manufacturer: Sarepta Therapeutics e Manufacturer: CSL Behring
* Use: Cerebral Adrenoleukodystrophy (CALD) e Use: Duchenne Muscular Dystrophy (DMD) e Use: Hemophilia B

* FDA Approval Date: September 16, 2022 e FDA Approval Date: June 22, 2023 e FDA Approval Date: November 22, 2022




Thank you
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