Emtiotun Asdopévwy Yyeiog 1
Eloaywyn otnv R

2024-2025

PART 1

The file data_exercise.csv contains data from a random sample of 200 individuals. The available
variables are the estimated glomerular filtration rate (eGFR) (in milliliters of cleansed blood per
minute per body surface (mL/min per 1.73 m?)), a reliable indicator of kidneys’ function, the age
(in years), the serum creatinine levels (in mg/dl), the gender and the race.

Using R programming language, complete the following tasks:

A. Import the dataset into R (use read.table() or read.csv() functions). Generate a random
positive integer k from the set {100, 101, ..., 180}. Then, pick a random subset of the dataset, of
size k, and save it to an object named data_sample. Make sure your results are reproducible (do
not forget to set a seed!). This will be the dataset you are going to work from now on. Create a
new variable in the dataset, named log_eGFR, as the natural logarithm of eGFR. Calculate descrip-
tive statistics for all the variables (mean(sd) or median(IQR) for the continuous ones, n(%) for the
categorical ones; you are advised to convert each categorical variable to a factor, with appropriate
labels for each label).

B. Construct a new variable in your dataset, named cat_SC, which takes the value of 1 when serum
creatinine < (0.8, the value of 2 when 0.8 < serum creatinine < 1 and the value of 3 when serum
creatinine > 1. Provide the labels low, normal, high to each value respectively.

C. Produce the following plots:

¢ a histogram of log_eGFR,

* boxplots of log_eGFR with separate color according to the levels of cat_SC

» ascatterplot of log_eGFR to serum creatinine, with points colored according to gender vari-
able.

For all the plots, provide titles, appropriate names for the axes and legends whererever is needed.

PART 2

A. Create a function, named count_down, that accepts a single natural number n as input and
returns a vector with elements all the natural numbers starting from n down to 0. For example, if
you input n = 8, the function should return {8,7,6,...,1,0}.



B. If x is a vector and element is a numeric value we know that the command sum(x == element)
essentially counts the appearances of element in x. Without using the above command, but in-
stead utilizing for loops and if statements, create a function, named count_appearances1, that
accepts two arguments, a numeric vector x and a numeric value object named element and re-
turns the number of times that element appears in x. Apply your function forx = c(1, 1, 1,
1, 2, 2, 3), element = 1 (it hastoreturn 4).

C. Extend the previous function for element being a vector of numbers. That is, create a function
named count_appearances2 that accepts two arguments: a numeric vector named x and a nu-
meric vector named elements. The function should return a vector of length equal to the length
of elements, which contains the number of times that each number in elements appears in x. Ap-
ply your function forx = c(1, 1, 1, 1, 2, 2, 3), elements = c(1, 2, 3, 4) (ithasto
returnc(4, 2, 1, 0)).

D. Write a function, named roll_dices, that accepts as input a numeric value named k. The function
has to simulate the rolling of 2 (independent and fair) dices until their sum equals k. It has two
return the number of attempts that were needed until the dice roll sum was found to be equal to k.
(OPTIONAL: Note that since the sum of two dices can only be a natural number out of {2, ..., 12},
it will be a good behavior of your function to account for it, that is to be forced to stop (and perhaps
return an informative message) if someone inputs a k other than them). TIP: Use appropriately
the function sample () to simulate the rolling of a fair dice.

(OPTIONAL) E. Consider a vector z = {x{, T, ..., x,, }. We define the moving average of x of or-
der k at the position p of the vector as the average of the subvector of x, {a:p_k, ey Ly ooy xp+k}.
If at the p-th position of the vector there aren’t k elements on the left or on the right of z,, we
define the moving average for this position to be missing (NA in R). Create a function, named
moving_average, that accepts two arguments: a numeric vector x and a natural number k. The
function has to return a vector of the same length as x, which will contain in each position the
moving average of x of order k. At the positions in which the moving average cannot be com-
puted, according to our definition, the returned vector will contain NAs. So, for the vector x =
{1,4,1,4,10} the function moving_average(x, k = 1) will return {NA, 2, 3, 5, NA} and for
the vector z = {1,4,1,4,10,6,9} the function moving_average(x, k = 2) will return {NA,
NA, 4,5, 6, NA, NA}.

The deliverable for the assignment is an R script file with your R code for all questions. Separate
with comments (use #) your answers between the different questions. Optionally, instead of the
above, you can submit an Rmarkdown file (html, pdf or word) that combines code with results,
comments, etc. (introduction and guide to Rmarkdown can be found here and here).


https://rmarkdown.rstudio.com/articles_intro.html
https://rmarkdown.rstudio.com/

	PART 1
	PART 2

