Παθογένεια Οστικών Μεταστάσεων

Διονύσης Ι. Παπαχρήστου MD, PhD

Καθηγητής Ιατρικής Σχολής Παν/μιου Πατρών

Αντιπρόεδρος ΕΟΣΣΟ (Ελληνική Εταιρία Σαρκωμάτων και Σπανίων Όγκων)

Υπεύθυνος Μονάδας Μελέτης Οστών και Μαλακών Μορίων, Εργ. Ανατομίας-Ιστολογίας-Εμβρυολογίας, Παν/μιο Πατρών

Professor (Adj.) of Pathology, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Διευθυντής Τμήματος Ιστοπαθολογίας "Ολύμπιον" Γενική Κλινική Πατρών

Bone Mets: Introduction

- Bone Mets are **common feature** of advanced cancer
- Dear Dr., Are associated with significant morbidity and mortality

Athens, 10 [

The Hellenic Group of Sarcoma and Rare Cancer has decided to organize a Masterclass deal "Sarcoma and rare cancers" held on Athens, 20-21 March 2020.

This Educational Seminar will also include an international faculty and will provide an exce opportunity for scientific and didactic sessions to Greek physicians of various specialties, su

About 90% and 70% of pts of pts of gists, surgeons, radiation oncologists, pathologists etc. Of prostate and breast Ca, On behalf of the Organizers, we are delighted to invite you to participate in this Seminar an respectively, show bone mets at autopsy

Kindly note that the Organizer Committee will support your travel expenses and hotel accom Athens.

Please confirm your willingness to participate at your earliest convenience. Papachistou, personal files

We remain at your disposal for any further information or assistance you may need.

With Kind Regards,

On behalf of the Meeting Coordinators,

A. Stergioula	A. Kyriazoglou	D. Papachristou
MD, Radiation		Clin Cancer Res 2006
Oncologist,	Department of Clinical	
Department of	Therapeutics	

Frequency of skeletal metastases at autopsy

Garcia et al, 2007

Tumour	Bone metastases (%)
Breast	50-85
Prostate	60-85
Lung	32-64
Kidney	33-60
Thyroid	28-60
Oesophagus	6
GI tract/colon	3-10
Rectum	8-60
Bladder	42
Uterine/cervix	50
Ovaries	9
Liver	16
Melanoma	7

DISCOVERY MEDICINE

Table 1. Molecular subtypes of breast cancer and bone metastasis.

Subtype	Pathological definition		Bone metastases rate	
			(%)	
Luminal A	ER and /or	PR positive; HER2 negative; Ki-67	66.6	(2.2 yrs)
	low (<14%	b)		
	Luminal	ER and /or PR positive; HER2	71.4	(1.6 yrs)
Luminal B	B1	negative Ki-67 high (>14%)		
	Luminal	ER and/or PR positive; HER2	65	(1.3 yrs)
	B2	positive		
		Any Ki-67		
HER2(+)	HER2 ove	rexpression (non-luminal); ER/PR	59.6	(0.7 yrs)
	absent			
Basal-like	ER and/or	PR negative; HER2 negative	39	(0.5 vrs)
	EGFR positive and/or CK5/6 positive			. , ,
Triple-negative	ER and/or	PR negative; HER2 negative	43.1	(0.9 yrs)
	EGFR pos	itive and/or CK5/6 negative		

Yang, 2019; Chen et al, 2018

What the heck is "wrong" with bone? (or...the "seed and soil" theory revisited)

"Traveling" towards and "docking to" bone

Athens, 10 [

•1889: Stephen Paget: "Seed and Soil" Theory

The Hellenic Group of Sarcoma and Rare Cancer has decided to organize a Masterclass deal "Sarcoma and rare cancers" held on Athens, 20-21 March 2020.

•1940: Blood flow is increased to BM (Batson's plexus) This Educational seminar will also include an international faculty and will provide an excel opportunity for scientific and didactic sessions to Greek physicians of various specialties, suc oncologists, surgeons, radiation oncologists, pathologists etc.

•BM sinusoids? On behalf of the Organizers, we are delighted to invite you to participate in this Seminar an contribute to our effort by giving a lecture:

•Focusing on the role of metasticely fundly note that the Organizer Committee will support your travel expenses and hotel accon

Please confirm your willingness to participate at your earliest convenience.

•2000s: Seed and soil theory revisited

With Kind Regards, On behalf of the Meeting Coordinators,

A. Stergioula	A. Kyriazoglou Papachristou et al, Me	D. Papachristou ed Res Rev 2012
MD, Radiation	MD, PhD, Oncology Unit,	
Oncologist,	Department of Clinical	
Department of	Therapeutics	

"The best work in the pathology of cancer now is done by those who are studying the nature of the seed. They are like scientific botanísts, and he who turns over the records of cases of cancer is only a ploughman, but his observations of the properties of the soil might also be helpful"

St. Paget, 1889

Anderson et al. Nat Rev Clin Oncol 2019

From BM Colonization to Overt Metastasis: a long-lasting road trip

Microenvironment dependent

Johnson & Suva, Calcf Tis Int, 2018 Croucher et al. Nat Rev Cancer 2016

Molecular, "Dissection"

Athens, 10 [

The Hellenin Group of Sarcoma and Rare Cancer has decided to organize a Masterclass deals of Bone Ander and Sector Stocks, er Sarch 2020. This Educational Seminar will also include an international faculty and will provide an excel

opportunity for scientific and didactic sessions to Greek physicians of various specialties, su oncologists, surgeons, radiation oncologists, pathologists etc.

On behalf of the Organizers, we are delighted to invite you to participate in this Seminar an contribute to our effort by giving a lecture:

Kindly note that the Organizer Committee will support your travel expenses and hotel accom Athens.

Please confirm your willingness to participate at your earliest convenience.

We remain at your disposal for any further information or assistance you may need.

With Kind Regards, On behalf of the Meeting Coordinators,

A.	Stergioula	A. Kyriazoglou	D. Papachristou
----	------------	----------------	-----------------

MD, Radiation	MD, PhD, Oncology Unit,
Oncologist,	Department of Clinical
Department of	Therapeutics

Athens, 10 [

Bone Rhenn Grup furco and arcenthe deide or anize a Masterclass deal

This Educational Seminar will also include an international faculty and will provide an excer opportunity for scientific and didactic sessions to Greek physicians of various specialties, su oncologists, surgeons, radiation oncologists, pathologists etc.

On behalf of the Organizers, we are delighted to invite you to participate in this Seminar an contribute to our effort by giving a lecture:

Kindly note that the Organizer Committee will support your travel expenses and hotel accom Athens.

Please confirm your willingness to participate at your earliest convenience.

We remain at your disposal for any further information or assistance you may need.

With Kind Regards, On behalf of the Meeting Coordinators,

A.	Stergioula	A. Kyriazoglou	D. Papachristou

WD, Radiation	MD, PhD, Oncology Unit,
Oncologist,	Department of Clinical
Department of	Therapeutics

Cells of bone

- Osteoprogenitors
- Osteoblasts
- Osteocytes
- Lining cells
- Osteoclasts

Athens, 10 [

Dear Dr.,

The Hellenic Group of Sarcoma and Rare Cancer has decided to organize a Masterclass deal "Sarcoma and rare cancers" held on Athens, 20-21 March 2020.

This Educational Seminar will also include an international faculty and will provide an excel opportunity for scientific and didactic sessions to Greek physicians of various specialties, sur oncologists, surgeons, radiation oncologists, pathologists etc.

On behalf of the Organizers, we are delighted to invite you to participate in this Seminar an contribute to our effort by giving a lecture:

Kindly note that the Organizer Committee will support your travel expenses and hotel accom Athens.

Please confirm your willingness to participate at your earliest convenience.

We remain at your disposal for any further information or assistance you may need.

With Kind Regards, On behalf of the Meeting Coordinators,

A. Stergioula

A. Rapiazbgistou personal Darebiaehristou

MD, RadiationMD, PhD, Oncology Unit,Oncologist,Department of ClinicalDepartment ofTherapeutics

Papachristou et al, JCS 2021 (IN PRESS)

Croucher, Nat Rev Ca, 2016

Pathobiology of Osteolytic Bone Metastases

Athens, 10 [

Dear Dr.

The Hellenic Group of Sarcoma and Rare Cancer has decided to organize a Masterclass deal "Sarcoma and rare cancers" held on Athens, 20-21 March 2020.

This Educational Seminar will also include an international faculty and will provide an excel opportunity for scientific and didactic sessions to Greek physicians of various specialties, suc oncologists, surgeons, radiation oncologists, pathologists etc.

On behalf of the Organizers, we are delighted to invite you to participate in this Seminar an contribute to our effort by giving a lecture:

Kindly note that the Organizer Committee will support your travel expenses and hotel accome Athens.

Please confirm your willingness to participate at your earliest convenience.

We remain at your disposal for any further information or assistance you may need.

With Kind Regards, On behalf of the Meeting Coordinators,

A. Stergioula

A. Kyriazoglou

D. Papachristou

MD, Radiation MD, PhD, Oncology Unit, Kontogeorgakos V, Korompilias, A and Papaparately Decimicand Microsurg 2011

Department of

Therapeutics

Chin and Wang, Clin Cancer Res 2017

Bone Marrow: A "love nest" where bone and HSCs meet

Yin and Li, 2006, Pantel Davos CIBD meeting 2010

Niche Engagement and Induction of Dormancy

Wang et al, Cancer Cell 2015 Croucher et al. Nat Rev Cancer 2016

Emerge of Tumor Cells from Dormancy and Metastasis Overgrowth: The Dual Role of OCL

Lawson et al, Nat Commun 2015 Croucher et al. Nat Rev Cancer 2016

The Concept of Osteomimicry

Clezardin and Teti, 2008

Papachristou, 2010; Knowls et al, Abstract Davos 2010

Conceicao, Bone Res 2021

Molecules implicated in osteoblastic bone mets

- **TGF-B Family**: stimulates OBL proliferation and bone formation in vitro (is expressed in high levels in prostate Ca cells) and in vivo
- BMPs (2, 3, 4, 6, 7), FGFs (1, 2), PDGF (esp PDGF-BB isoform)
- Wnt/β-catenin signal transduction pathway
- **Proteases** (e.g. PSA), their **activators** (urokinase-type Plasminogen Activator-{**uPA**} from tumor cells) and their inhibitors (PAIs)

Morrissey and Vessella, 2007; Suva et al, 2011

Wnt Signalling in PCa Bone Mets

DKK: Dickkopf: Wnt antagonist

Hall et al, JCB 2006

Bone Morrow Fat and Bone Metastases

Tumour microenvironment in obese state

Sullivan et al, Nat Rev Gast Hepatol 2018

Sullivan et al, Nat Rev Gast Hepatol 2018

Cell Metabolism

Microbiota from Obese Mice Regulate Hematopoietic Stem Cell Differentiation by Altering the Bone Niche

Graphical Abstract

Authors

Yubin Luo, Guang-Liang Chen, Nicole Hannemann, ..., Stefan Wirtz, Georg Schett, Aline Bozec

Correspondence

georg.schett@uk-erlangen.de (G.S.), aline.bozec@uk-erlangen.de (A.B.)

In Brief

Luo et al. reveal how high-fat diet (HFD) shapes the gut microbiota to impact the bone microenvironment and regulate hematopoiesis. HFD alters the hematopoietic stem cell niche by increasing bone marrow adiposity via activation of PPAR γ 2, effects that can be recapitulated via microbiota transfer from obese mice.

Park and Scherer, 2011

The "Fat-Bone" Connection: Old Foes Meet Again at the Site of B-Mets

- Obesity and adipokines (leptin and adiponectin) are associated w/ increased risk for PCa B-Mets development
- PCa cells at Bone Mets exhibit **adipomimetic** properties

Hardaway et al, Cancer Metastasis Rev 2014 Cheng et al, CIBD, 2012 Podggorski et al, CIBD Lyon 2012

The "Fat-Bone" Connection: Old Foes Meet Again at the Site of B-Mets

- Obesity and adipokines (leptin and adiponectin) are associated w/ increased risk for PCa B-Mets development
- PCa cells at Bone Mets exhibit adipomimetic properties
- Introducing "Lipoblastic Niche"!!

Hardaway et al, Cancer Metastasis Rev 2014 Cheng et al, CIBD, 2012 Podggorski et al, CIBD Lyon 2012 Blair and Papachristou, WJO 2016

Highlights

- Alterations of hematopoietic stem cell differentiation after exposure to HFD
- HFD shifts MSC differentiation into adipocytes, altering the bone marrow HSC niche
- PPAR_γ inhibition blocks HFD-induced changes on the bone marrow niche
- Microbiota mediate the effects of HFD on the hematopoietic stem cells

Sullivan et al, Nat Rev Gast Hepatol 2018

Hypoxia

- · ↓ angiogenesis
- thypoxia
 i
 a
 i
 a
- TAN infiltration
- · 1 EMT
- TNBC/Claudin-low
- · † metastasis-initiating cells

Bousquenaud_Br Ca Res 2018

The role of OC, the orchestrators of bone remodelling in BMs

- Oc are numerous
- OC produce RANKL
- OC are the cardinal mechanoreceptors / mechanoregulators of the skeleton
- They can destroy bone (osteocytic osteolysis)

- OC may have a significant role in B-Mets development
- OC could serve as promising targets for **novel Tx**

- All & and

Ċs

cell-

d

of

Athens, 10 December 2019 Rare Cancer has decided to organice and storclass decing with Therapies on Athens, 20-21 March 2020. nclude an international faculty ar will rovide an excellent rging Concepts ologists, pathologisted calls of hariou special estates arging Concepts

delighted to invite you to participate in this Seminar and to lecture:

mittee will support your travel expenses and hotel accommodation in

articipate at your earliest convenience.

further information or assistance you may need.

ors,

Syriazoglou D. Papachristou

, Oncology Unit, ent of Clinical utics

Table 1

Inhibitors of bone resorption for the management of BM.

Drug class	Mechanism of action	Experimental phase	Indication for BM treatment	References
BPs	<u>N-BPs:</u> ↓ mevalonate pathway, essential for osteoclast activity and survival; Non–N-BPs: ↑ osteoclast apoptosis	Phase III	Treatment of BM and SRE prevention in MM, BC, CRPC and other solid tumors (if clinically indicated)	[2, 46–55]
Denosumab	Anti-RANK-L mAb: ↓ osteoclast differentiation and activity	Phase III	Treatment of BM and SRE prevention in BC, CRPC and other solid tumors (if clinically indicated). Recently approved by FDA in MM setting.	[2, 46, 56–60]
Cathepsin-K inhibitors	$\ensuremath{\downarrow}$ bone matrix degradation by osteoclasts	Discontinued	No indications	[28,62–64]
c-Src inhibitors	↓ RANK-L-induced osteoclast differentiation	Phase I/II	No indications	[28,67–71]
mTOR inhibitors	↓ osteoclast differentiation and activity; ↑ osteoclast apoptosis	Phase III in BC Phase II in other solid tumors Phase I in MM	Everolimus approved in association with exemestane in advanced HR + HER2-BC with bone-prevalent disease; BPs or Denosumab to be associated	[2, 74–82]
Proteasome inhibitors	↓ osteoclastogenesis; ↑ osteoblast differentiation; ↑ synthesis of collagen and BMP	Phase III in MM	Bortezomib and Carfilzomib + BPs (in association, or not, with cht, IMiDs and steroids) approved in MM	[83–87]
Abiraterone acetate	 ↓ osteoclastogenesis and osteoclast activity; ↑ osteoblast differentiation; ↑ bone matrix deposition; anti-tumor effect 	Phase III in CRPC	Treatment of BM and SRE prevention in CRPC	[88,89,92,93]

D'Oronzo, J Bone Oncol 2019

Drug class	Mechanism of action	Experimental phase	Indication for BM treatment	References
РТН	↑ Wnt pathway ↑ osteoblast differentiation ↓sclerostin and DKK-1	Pre-clinical	No indications	[94–98]
	↓ tumor cell migration towards bone			
Anti-sclerostin antibodies	Sclerostin inhibition: ↑ Wnt pathway ↑ osteoblast differentiation	Pre-clinical	No indications	[99–105]
DKK-1 inhibitors	↑ Wnt pathway	Phase I/II	No indications	[106–109]
Inhibitors of activin-A	 ↑ osteoblast differentiation ↓ osteoclastogenesis ↑ osteoblast differentiation ↓ tumor cell migration towards bone 	Phase I/II	No indications	[28,111–117]
ET-1 antagonists Cabozantinib	↓ osteoblast inhibition of sclerotic BM TKI; Inhibition of VEGF/VEGFR pathway	Phase II/III Phase III	No indications Metastatic renal cell carcinoma (with/without BM)	[24,118,119] [121–124]

Table 2Modulators of osteoblast activity for the management of BM.

D'Oronzo, J Bone Oncol 2019

Study	Phase	Agent	Mechanism	Status
NCT03292536	Phase1B	Merestinib	c-met inhibitor	Recruiting
NCT01015560	Phase 2	MLN1202	Anti-CCR2(anti-CD192) monoclonal antibody	Completed
NCT02517918	Phase1	Sirolimus	mTOR inhibitor combined with metronomic CT	Recruiting
NCT00466102	Phase 2	Everolimus	mTOR inhibitor	Unknown
NCT00429507	Phase 2	Samarium	sm-EDTMP(Sm-153 lexidronam pentasodium)	Completed
NCT03239756	Phase 1	TK006	Full human monoklonal anti-RANKL antibody	Recruiting
NCT01070485	Phase 2	Alpharadin	Radium-223	Completed
NCT00051779	Phase 1	CÁL	Humanized monoclonal antibody to the parathyroid hormone-related protein	Completed
NCT01644890	Phase 3	NK105	Nanoparticle drug delivery formulation	Completed
NCT00912639	Phase 4	Genexol-PM	Paclitaxel-loaded polymeric micelle	Unknown
NCT02646319	Phase 1	Nanoparticle	Nanoparticle albumin-bound rapamycin(mTOR)	Active, not recruiting
NCT00505271	Phase 2	Rexin-G	Nanoparticle bearing a dominant negative cyclin G1	Completed
NCT01441947	Phase 2	Cabozantinib	Tyrosine kinase inhibitor against met and VEGFR2	Active, not recruiting
NCT00692458	Phase 3	Odanacatib	Cathepsin K inhibitor	Withdrawn

Table 1. Ongoing trials on breast cancer patients with bone metastases.

Oruc et al. Exp Opion Pharmacol 2019

REVIEW

Bone-Targeted Therapies in Cancer-Induced Bone Disease

Sofia Sousa^{1,2} · Philippe Clézardin^{1,2,3}

and dexamethasone

S. Sousa, P. Clézardin: Bone-Targeted Therapies in Cancer-Induced Bone Disease

Table 5 Currently ongoing clinical trials of bone-targeted agents for cancer-induced bone disease

Bone- targeted therapy	Patient population	Clinical trial acronym/ number	Phase	Clinical trials.gov link
Denosumab	High-risk early breast cancer	D-CARE NCT01077154	3	https://clinicaltrials.gov/ct2/show/NCT01077154?term= NCT01077154&rank=1
Radium-223	Bone metastatic breast cancer with endocrine therapy	NCT02258464	2	https://clinicaltrials.gov/ct2/show/NCT02258464?term= NCT02258464&rank=1
Radium-223	Bone metastatic breast cancer treated with exemestane	NCT02258451	2	https://clinicaltrials.gov/ct2/show/NCT02258451?term= NCT02258451&rank=1
Radium-223	Osteosarcoma	NCT01833520	1–2	https://clinicaltrials.gov/ct2/show/NCT01833520?term= radium+223&cond=osteosarcoma&rank=1
Radium-223	Thyroid cancer refractory bone metastases	RAD-THYR NCT02390934	2	https://clinicaltrials.gov/ct2/show/NCT02390934?term= NCT02390934&rank=1
Bortezomib	Relapsed multiple myeloma (comparison carfilzomib and dexamethasone versus bortezomib)	NCT01568866	3	https://clinicaltrials.gov/ct2/show/NCT01568866?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=1
Bortezomib	Relapsed multiple myeloma (addition of daratumumab to bortezomib and dexamethasone)	NCT02136134	3	https://clinicaltrials.gov/ct2/show/NCT02136134?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=2
Bortezomib	Relapsed multiple myeloma (pomalidomide, bortezomib and low-dose dexamethasone)	OPTIMISMM NCT01734928	3	https://clinicaltrials.gov/ct2/show/NCT01734928?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=3
Bortezomib	Relapsed multiple myeloma (comparison carfilzomib, dexamethasose and once weekly bortezomib versus twice weekly bortezomib)	ARROW NCT02412878	3	https://clinicaltrials.gov/ct2/show/NCT02412878?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=4
Bortezomib	Relapsed multiple myeloma patients(pomalidomide, bortezomib and low-dose dexamethasone versus high-dose dexamethasone)	NIMBUS NCT01311687	3	https://clinicaltrials.gov/ct2/show/NCT01311687?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=5
Saracatinib	Cancer-induced bone pain	SarCaBon NCT02085603	2	https://clinicaltrials.gov/ct2/show/NCT02085603?term= NCT02085603&rank=1
Cabozantinib	Bone metastatic castration-resistant prostate cancer	NCT01599793	2	https://clinicaltrials.gov/ct2/show/NCT01599793?term= cabozantinib&cond=Bone+Metastases% 2C+cancer&rank=1
Cabozantinib	Advanced solid (non-breast, non- prostate) malignancies and bony metastases	NCT01588821	2	https://clinicaltrials.gov/ct2/show/NCT01588821?term= cabozantinib&cond=Bone+Metastases% 2C+cancer&rank=4
Cabozantinib	Non-metastatic and metastatic castration-resistant prostate cancer	NCT01703065	Pilot	https://clinicaltrials.gov/ct2/show/NCT01703065?term= cabozantinib&cond=Bone+Metastases% 2C+cancer&rank=5
Cabozantinib	Metastatic colorectal cancer	CaboMAb NCT02008383	1	https://clinicaltrials.gov/ct2/show/NCT02008383?term= cabozantinib&recrs=abd&draw=1&rank=2
Cabozantinib	Multiple myeloma	NCT03201250	1-2	https://clinicaltrials.gov/ct2/show/NCT03201250?term= cabozantinib&recrs=abd&draw=3&rank=11
Cabozantinib	Androgen-dependent metastatic prostate cancer	NCT01630590	2	https://clinicaltrials.gov/ct2/show/NCT01630590?term= cabozantinib&recrs=abd&draw=3&rank=12
Cabozantinib	Metastatic hormone receptor-positive breast cancer	NCT01441947	2	https://clinicaltrials.gov/ct2/show/NCT01441947?term= cabozantinib&recrs=abd&draw=3&rank=15
Cabozantinib	Relapsed osteosarcoma or Ewing sarcoma	NCT02243605	2	https://clinicaltrials.gov/ct2/show/NCT02243605?term= cabozantinib&recrs=abd&draw=4&rank=22
Sotatercept	Refractory multiple myeloma treated with lenalidomide or pomalidomide	NCT02406521	1	https://clinicaltrials.gov/ct2/show/NCT01562405?term= NCT01562405&recrs=abd&rank=1

ScienceDirect

CrossMark

241

Emerging therapies in bone metastasis Lise Clément-Demange^{1,2} and Philippe Clézardin^{1,2}

Target	Compound	Cancer Type	Stage	Description/Comment*	Ref.
Cathepsin K	Odanacatib	Breast	Phase II	Safety and efficacy in comparison with ZOL.	[4]
Src	Dasatinib	Prostate	Phase III	Dasatinib + docetaxel versus placebo + docetaxel in men with CRPC (READY trial)/Negative trial. Dasatinib doos not improve QS_pact time to first SPE	[7]
	Saracatinib	Breast/prostate	Phase II	Safety and efficacy in comparison with ZOL (ClinicalTrials.gov identifier NCT00558272).	[4]
	Bosutinib	Breast	Phase II	Effect of bosutinib on PFS in pretreated patients with locally advanced and metastatic cancer/bosutinib prolongs PFS in chemotherapy-pretreated patients. No effect of bosutinib on circulating levels of bone turnover markers.	[8]
mTOR	Everolimus	Breast	Approved	Everolimus + exemestane versus placebo + exemestane in metastatic ER-positive breast cancer (BOLERO-2 trial)/It is reported an early reduction in bone turnover markers prior to clinical response and reduced bone complications in the everolimus arm.	[9,12
		RCC	Phase II	Everolimus versus everolimus + ZOL in renal cell carcinoma patients with \geq 1 bone metastasis (RAZOR trial)/Median time to first SRE was 9.6 months on everolimus plus zoledronic acid vs 5.2 months on everolimus ($P = 0.03$).	[13]
Endothelin-1	Atrasentan	Prostate	Phase III	Docetaxel/prednisone + atrasentan versus docetaxel/ prednisone + placebo in men with metastatic CRPC (SWOG \$0421)/Does not improve OS or PFS.	[14]
	Zibotentan	Prostate	Phase III	Docetaxel + zibotentan versus docetaxel + placebo in men with metastatic CRPC (ClinicalTrials.gov identifier NCT00617669)/Does not improve OS or PES.	[14]
Activin A	Sotatercept	Myeloma	Phase IIa	Safety and tolerability in relapsed multiple myeloma patients/in patients without bisphosphonate use, anabolic improvements in bone mineral density and in bone formation relative to placebo occurred.	[18]
DKK-1	BHQ880	Myeloma	Phase Ib	Dose determination study.	[10]
VET/VEGFR2	Cabozantinib	Prostate	Phase III	Cabozantinib versus prednisone in men with metastatic CRPC (COMET-1 trial)/Despite striking results in phase II trials, this pivotal phase III trial did not meet the primary endpoint of demonstrating improved OS of patients treated with cabozantinib. However, the median PFS for the cabozantinib arm was 5.5 months versus 2.8 months for the prednisone arm ($P < 0.0001$).	[22]
NGF	Tanezumab	Prostate, breast, myeloma, RCC	Phase II	Safety and efficacy in cancer patients with pain due to bone metastasis/Study has been completed (ClinicalTrials.gov identifier NCT00830180). No data released.	-
Bone mineral	Radium-223	Prostate	Approved	Radium-223 + best standard of care versus placebo + best standard of care in men with CRPC and bone metastasis (ALSYMPCA trial)/the median time to first SRE in patients with bisphophosphonate use at entry is 19.6 months on radium-223 versus 10.2 months on placebo (P = 0.00048)	[25]
		Breast	Phase IIa	Safety and tolerability in women with breast cancer	[27]

CRPC: castration-resistant prostate cancer; DKK-1: dickkopf-1; mTOR: mammalian target of rapamycin; MET: hepatocyte growth factor receptor; NGF: nerve growth factor; OS: overall survival; PFS: progression-free survival; RCC: renal cell carcinoma; SRE: skeletal-related event; Src: protooncogene tyrosine-protein kinase; VEGFR2: vascular endothelial growth factor receptor 2; ZOL: zoledronic acid.

Clement-Demange L & Clezardin P, 2015 Hiraga T, 2016

Immune Check-Points and CIBD

Veenstra et al, Lab Invest 2018

Osteoimmunology

Osteoclast

CTLA-4: Cytotoxic T-Lymphocyte-Associated Protein 4 **PD-1**: Programmed cell Death 1

...but

Standard of care treatment of bone metastases.

Treatment	Mechanism	Effect on Bone metastases	Notes	Refs
SRE Treatments				
Zoledronic acid	inhibition of farnesyl pyrophosphate synthase	Inhibition of Osteolysis	Action against TAMs as well. Recommended for adjuvant use	(Vignani et al., 2016)
denosumab	mAb against RANKL	Reduces osteoclast activity	-	(Vignani et al., 2016)
Radium-223	Localizes to bone, releases alpha radiation	Cytotoxic to tumor cells by inducing dsDNA breaks	Offers less myelosuppression due to shorter range of alpha radiation	(Aragon-Ching and El-Amm, 2016)
Immunotherapies				
nivolumab	Anti-PD-1 mAb		Currently unstudied in bone	
ipilimumab	Anti-CTLA-4 mAb		metastases Currently unstudied in bone metastases	
pembrolizumab	Anti-PD-1 mAb		Currently unstudied in bone	
			metastases	
atezolizumab	Anti-PD-L1 mAB		Currently unstudied in bone	
Sipuleucel-T	Dendritic cells stimulated with GM-CSF and PAP	Unknown	metastases	(Vanneman and Dranoff, 2012)

Reinstein et al, CritRevOncol 2017

Contents lists available at ScienceDirect

Critical Reviews in Oncology/Hematology

2	
Oncology Hematolo Incorporating Geriatric C	PGV imcolegy

Tumor-targeted Osteoprotegerin	weelidiii5iii	metastases	outcomes	notes	10013	meannein	wicelldIII5III	LITCLE OIL DOLLE	Outcomes	notes	INC13
Tumor-targeted Osteoprotegerin								metastases			
Osteoprotegerin						Temsirolimus	mTOR inhibitor, acts on	Activates CD8+ T cells,	Better PFS in RCC		(Chen and Kuo, 2016;
	Natural inhibitor of	Inhibits ostaoslastogonosis and	Conflicting outcomes	New models have	(Morony et al., 2001; Ryser at al. 2012)		ibo patnway	innibits fregs	patients		Wang et al., 2011)
	KAINKL	subsequent bone	type of administration	dosages, need to be	et al., 2012)	RG7386	Tetravalent FAP-DR5	targets CAFs and	Stable disease and	Low toxicities	(Brünker et al., 2016)
		reabsorption	51	tested			Antibody	defective apoptosis	complete tumor		
Cabozantinib	TKI, inhibits MET,	inhibition of	PFS- 5.9 to 23.9	OS improvement not	(Basch et al., 2015;			pathway on tumor cens	doxorubicin in vivo		
	VEGFR-2, KE1, K11, AXL, FLT3	osteoDiastic and osteolytic lesions in	in 57% bone scan	seen in phase iii triai	Escudier et al. 2016;	Immune-targeted					
	1215	xenografts	response in 63%		Schimmoller et al., 2011;	Chitosan thermogels	Specific targeting of	More direct	Limited research in rat		(Monette et al., 2016)
					Smith et al., 2013; Smith		ACT to solid tumor	administration of ACT	models		
					et al., 2015, 2014; Yakes	Vaccines via whole	DCs activated against a	Better and more	Increased survival	Multiple trials done,	(de Gruijl et al., 2008;
AP12009 (trabedersen)	Nucleotide-based,	Reverses	No bone metastases		(Achyut and Yang, 2011;	tumor	variety of TAAs	specific activation of	among patients with	see 97	Kajihara et al., 2015)
	blocks production of	tumor-mediated	data reported		Hau et al., 2007)	lysates/fusions		DCs in bone microenvironment	metastatic disease		
	TGF-β2	immune suppression				Carbon black	Increase antigen	Significant increase of	Increased effectiveness		(Koike et al., 2008; Sheng
		metastases				nanoparticles &	uptake and activate	bone-marrow DC	of other vaccine-based		et al., 2008)
galunisertib	Small molecule	Inhibit the bone-tumor	Increased OS,	No specific end points	(de Gramont et al., 2017;	mannosylated	DCS	activation	therapies		
	inhibitor of TGF-β	viscous cycle	especially in patients	measured with bone	Melisi et al., 2016)	dendrimers					
			TGF-B	metastases		DC-derived exosomes	Endocytosis of exosomes for	Strong anti-tumoral T-cell response	High tolerability, with stable disease and	Only one phase II trial done, may be more	(Amigorena, 2000; Klippstein and Pozo, 2010;
belagenpumatucel-L	Vaccine with four	Target tumor cells in	OS benefits in patients	No specific end points	(de Gramont et al., 2017;		polyepitopic antigen		partial responses in	effective with different	Zitvogel et al., 1998)
	TGF-b2-antisense	bone	with prior	measured with bone	Nemunaitis et al., 2006;		presentation and		metastatic disease	TAA	
	irradiated, allogeneic	secrete TGF-B	radiotherapy	metastases	2014)	Sialidase	Exogenous sialic acid	Increased maturation	Increased tumor cell		(Silva et al., 2016)
	NSCLC cell lines		15				removal	and stimulation of	apoptosis in murine		
Abiraterone + prednison	e Androgen synthesis	Shown to inhibit	significantly increase	Only for use in mCRPC,	(Logothetis et al., 2012)	Toll-like receptor	Activation of	Alone or in	model Dramatic results seen	Considered adjuvants	(Liu et al., 2005: Sabado
	inhibition	lesions in the bone	decrease SREs	50C		agonists	macrophages DCs and	combination with	specifically with poly	Montanide also acts	et al., 2015; Salazar et al.,
P62 DNA Vaccine	P62 in plasmid	Decreases tumor size,	Suppression of	Currently only studied	(Durán et al., 2004; Gabai	(resiquimod,	other lymphocytes	vaccines, decrease	ICLC with complete	similarly	2014; Thapa et al., 2009; Valmori et al., 2007; Wang
	administered created	suppresses metastases,	osteoporosis	in animal models	et al., 2014; Sabbieti et al., 2015; Zhang et al., 2016)	ICLC)		tumor	tuinor regression		et al., 2008)
	antibody response	increased fill, and decreases			2015; Znang et al., 2016)			microenvironment, can			
		osteoclastogenesis						apoptosis of tumor			
Stromal-targeted								cells			
Zoledronic acid		Acts on TAMs, change				CRISPR-CaS9 edited CAR T-cells	PD-1 knockout	Increase CAR T-cell proliferation and	No study results posted		NCI02793856
		from M2 to M1						cytotoxicity			
PLX3397	Multi-targeted TKI,	Prevents recruitment	Significantly decreased	Preclinical data only	(Mok et al., 2014; Ngiow	TRUCKs	IL-12 secreting CAR	Overcomes	Increased efficacy of		(Chmielewski and Abken, 2012: Chmielewski et al
	inhibits CSF-1	of M2 TAMs/MDSCs,	tumor volume with		et al., 2016; Sluijter et al.,		1-cens	tumor	immunosuppression of		2012; Chinicie Waki et al., 2011)
		improves immune	ACT		2014)			microenvironment	bone-derived stroma		
Bindarit	Inhibits CCL2	Prevents macrophage	Reduced metastasis	Animal models only	(Steiner et al., 2014; Zollo	CAR T-cells with	CCR2 and CXCR4	Better T-cell trafficking	Dramatic increase of	CXCR4 can also be	(Asai et al., 2013; Bleul
		recruitment, Inhibits	formation		et al., 2012)	chemokine receptors	receptors engineered	to tumor metastases,	TIL including in bone	therapeutic target, but	et al., 1996; Craddock et al.
		establishment of tumor-stromal niche					into CAR T-cells	specifically prostatic metastases for CYCPA	microenvironment	inhibition increases	2010; Hillerdal and Essand 2015; Hirbe et al. 2010;
Tasquinimod	Blocks S100A9	inhibits angiogenesis,	patients with bone	No further research	(Pili et al., 2011; Sternberg			Inclastases for exert		osteoclastogenesis	Kantele et al., 2000; Moon
		immunomodulates	metastases 8.8 months	after failed phase III	et al., 2016)	Anti FAD CAR T colle	Targets CAEs	Bouorsos	Sup orm: with		et al., 2016) (Cottosbalk et al., 2012)
		through TAMs, prevents of the	vs 3.4 months (placebo) PFS_no_OS	trial		Aliti-rAP CAK I-tells	Targets CAPS	immunosuppression,	vaccination, decreasing		Kakarla et al., 2013;
		establishment of the	benefit seen					activates T-cells	tumor volume and OS		Kraman et al., 2010; Wang
		bone-metastatic niche						against TAAs	in mouse model		et al., 2014; Y. Zhang and Ertl. 2016)
Pirrenidone, and	Target CAFs			ivo data published	(Antonia et al., 2016)	Bispecific T-cell	Target TAA and CD3 for	Increased T-cell	Less efficacy compared	Low toxicities, easily	(Fan et al., 2015; Hillerdal
Ac-PhScN-NH2	α5β1 inhibition	prevents metastases	reduced intratibial	2nd generation is	(Jia et al., 2004; Yao et al.,	Engagers	T-cell activation	cytotoxicity in	to CARs due to inability	produced	and Essand, 2015)
inhibitor	through a small	and angiogenesis, due	colony progression by	100,000 x more potent.	2016)			unaffected by tumor	memory		
	peptide	to vicious cycle of	almost 80% in mouse	1st gen saw 14 months				immunosuppression	-		
Sunitinib	TKI, blocks STAT3 and	Decreases MDSCs,	Reduced tumor	Co-administered with	(Farsaci et al., 2012; Ko	Cryoablation	Direct destruction of metastases through	Rapid necrotic release of TAA induces	With anti-ALCAM antibody, complete	Use of Anti-CTLA antibody and adjuvants	(Brok, 2006; Brok et al., 2006: Gazzaniga et al.,
	IDO pathways	Tregs. Increased TIL	volume, increased OS	CEA vaccine	et al., 2009)		liquid-cooled probes	immune response	response in 100% of	also improves response	2001; Kudo-Saito et al.,
			in mouse model, No					throughout body	mouse models,		2016; Sabel, 2009; Baujadrapath et al. 2002;
			burden in RCC patients						palliation in patients		Udagawa et al., 2006;
Imatinib	TKI, blocks STAT3 and	activates CD8+ T cells,	Increased anti-tumor	In mouse models only	(Balachandran et al., 2011;	Maniau Iana ata marki ''	On a batic since bit 11	Townshi how on with	Commentation in the	Could be must line	Waitz et al., 2012)
	IDO pathways	induces Treg apoptosis	response with		Larmonier et al., 2008)	vesicular stomatitis virus	oncolytic virus, highly sensitive to IFN-B	defective IAK1	currently unstudied	could be next-line treatment after failure	Escobar-Zarate et al., 2015;
	A	Broughts dusfunction of	minulioulerapies				response	nathway associated		of immunotheranies	Folt at al. 2015; Craig
Bevacizumab	Anti-VEGF MAB	FIEVEIILS UVSIUNCTION OF	Ex vivo DCs from MM	At lower doses	(Huang et al., 2015: Yang		response	putting associated		or minimunotnerapies	Feit et al., 2015, Greig,
Bevacizumab	Anti-VEGF MAB	DC into MDSCs	Ex vivo DCs from MM patients functioned	At lower doses normalization of	(Huang et al., 2015; Yang et al., 2009)		response	with immune resistance		or minimunotiterapies	2016; Zaretsky et al., 2016; Zhou et al., 2016)

REVIEW

Bone-Targeted Therapies in Cancer-Induced Bone Disease

Sofia Sousa^{1,2} · Philippe Clézardin^{1,2,3}

S. Sousa, P. Clézardin: Bone-Targeted Therapies in Cancer-Induced Bone Disease

Table 5 Currently ongoing clinical trials of bone-targeted agents for cancer-induced bone disease

Bone- targeted therapy	Patient population	Clinical trial acronym/ number	Phase	Clinical trials.gov link
Denosumab	High-risk early breast cancer	D-CARE NCT01077154	3	https://clinicaltrials.gov/ct2/show/NCT01077154?term= NCT01077154&rank=1
Radium-223	Bone metastatic breast cancer with endocrine therapy	NCT02258464	2	https://clinicaltrials.gov/ct2/show/NCT02258464?term= NCT02258464&rank=1
Radium-223	Bone metastatic breast cancer treated with exemestane	NCT02258451	2	https://clinicaltrials.gov/ct2/show/NCT02258451?term= NCT02258451&rank=1
Radium-223	Osteosarcoma	NCT01833520	1–2	https://clinicaltrials.gov/ct2/show/NCT01833520?term= radium+223&cond=osteosarcoma&rank=1
Radium-223	Thyroid cancer refractory bone metastases	RAD-THYR NCT02390934	2	https://clinicaltrials.gov/ct2/show/NCT02390934?term= NCT02390934&rank=1
Bortezomib	Relapsed multiple myeloma (comparison carfilzomib and dexamethasone versus bortezomib)	NCT01568866	3	https://clinicaltrials.gov/ct2/show/NCT01568866?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=1
Bortezomib	Relapsed multiple myeloma (addition of daratumumab to bortezomib and dexamethasone)	NCT02136134	3	https://clinicaltrials.gov/ct2/show/NCT02136134?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=2
Bortezomib	Relapsed multiple myeloma (pomalidomide, bortezomib and low-dose dexamethasone)	OPTIMISMM NCT01734928	3	https://clinicaltrials.gov/ct2/show/NCT01734928?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=3
Bortezomib	Relapsed multiple myeloma (comparison carfilzomib, dexamethasose and once weekly bortezomib versus twice weekly bortezomib)	ARROW NCT02412878	3	https://clinicaltrials.gov/ct2/show/NCT02412878?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=4
Bortezomib	Relapsed multiple myeloma patients(pomalidomide, bortezomib and low-dose dexamethasone versus high-dose dexamethasone)	NIMBUS NCT01311687	3	https://clinicaltrials.gov/ct2/show/NCT01311687?term= Bortezomib&recrs=d&cond= Multiple+Myeloma+in+Relapse&phase=2&rank=5
Saracatinib	Cancer-induced bone pain	SarCaBon NCT02085603	2	https://clinicaltrials.gov/ct2/show/NCT02085603?term= NCT02085603&rank=1
Cabozantinib	Bone metastatic castration-resistant prostate cancer	NCT01599793	2	https://clinicaltrials.gov/ct2/show/NCT01599793?term= cabozantinib&cond=Bone+Metastases% 2C+cancer&rank=1
Cabozantinib	Advanced solid (non-breast, non- prostate) malignancies and bony metastases	NCT01588821	2	https://clinicaltrials.gov/ct2/show/NCT01588821?term= cabozantinib&cond=Bone+Metastases% 2C+cancer&rank=4
Cabozantinib	Non-metastatic and metastatic castration-resistant prostate cancer	NCT01703065	Pilot	https://clinicaltrials.gov/ct2/show/NCT01703065?term= cabozantinib&cond=Bone+Metastases% 2C+cancer&rank=5
Cabozantinib	Metastatic colorectal cancer	CaboMAb NCT02008383	1	https://clinicaltrials.gov/ct2/show/NCT02008383?term= cabozantinib&recrs=abd&draw=1&rank=2
Cabozantinib	Multiple myeloma	NCT03201250	1-2	https://clinicaltrials.gov/ct2/show/NCT03201250?term= cabozantinib&recrs=abd&draw=3&rank=11
Cabozantinib	Androgen-dependent metastatic prostate cancer	NCT01630590	2	https://clinicaltrials.gov/ct2/show/NCT01630590?term= cabozantinib&recrs=abd&draw=3&rank=12
Cabozantinib	Metastatic hormone receptor-positive breast cancer	NCT01441947	2	https://clinicaltrials.gov/ct2/show/NCT01441947?term= cabozantinib&recrs=abd&draw=3&rank=15
Cabozantinib	Relapsed osteosarcoma or Ewing sarcoma	NCT02243605	2	https://clinicaltrials.gov/ct2/show/NCT02243605?term= cabozantinib&recrs=abd&draw=4&rank=22
Sotatercept	Refractory multiple myeloma treated with lenalidomide or pomalidomide and dexamethasone	NCT02406521	1	https://clinicaltrials.gov/ct2/show/NCT01562405?term= NCT01562405&recrs=abd&rank=1

Translational Oncology Vol. 13, No. 2, 2020

Bone Metastasis: State of Play Turpin et al. **315**

Osteoimmunology and Bone Metastasis

...alarmingly, however!

Steeg, Nat Rev Ca 2016

...alarmingly, however!

Steeg, Nat Rev Ca 2016

Targeting a Concept: Niche-Targeted Tx for Bone Mets

b Long-term dormant cell retention

Chajar Nat Rev Cancer, 2015; Croucher et al. Nat Rev Cancer 2016

Targeting a Concept: Niche-Targeted Tx vs Bone Mets

Chajar Nat Rev Cancer, 2015; Croucher et al. Nat Rev Cancer 2016

Massague and Obenauf, Nature 2016

Future Directions

• Identification of metastasis mediators, common to different organs and tumor types that could serve as potential Tx TARGETs (e.g check-check-point ImmunoTx)

ed to organize G Tha Davas and Expire The, DTC analysis to monitor Tx response and early recurrence h 2020.

faculty and wither appendixelent rategies towards quiescent DTC/Ca stem cells and not just growing ysicians of various specialties, such as cancer cells

to participate in this Seminar and to

- Better understanding of CTC colonisation
- Unveil bone cell biology secrets
- r travel expenses and hotel accommodation in
 - Multidisciplinary approach
- est convenience.
- Further clinical investigation to confirm preclinical data
- assistance you may need.
 - Better priclinical models
 - Prevention (...lifestyle)!
- D. Papachristou

Thank you!

