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Abstract: Colon cancer is among the most common cancers and the third cause of cancer deaths worldwide. 

If detected at an early stage, treatment might often lead to cure. The present review adduces the so far studied 

alterations in the expression of genes, as well as polymorphisms of genes engaged in DNA repair systems, 

with particular emphasis on indirect ones that are correlated with colorectal cancer. Such aberrations could be 

linked to an increased risk for the development of colorectal cancer and might serve as potential targets in the 

areas of prevention and therapy. 
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1. INTRODUCTION 

Colorectal cancer (CRC) is among the most 
common cancers worldwide and the third cause of 
cancer mortality [1]. Two different genetic pathways are 
involved in the evolution of normal mucosa to adenoma 
and carcinoma. The first is subjected to accumulation 
of mutations (chromosomal instability, CIN) in 
oncogenes and tumor-suppressor genes like K-Ras, 
TP53 and APC [2, 3]. APC germline mutations are 
correlated with the familial adenomatous polyposis 
(FAP) syndrome, a heritable type of colon cancer. The 
second pathway incorporates alterations in mismatch 
repair (MMR) genes [3, 4]. In this pathway the 
dominant syndrome is hereditary non-polyposis colon 
cancer (HNPCC), which is correlated with germline 
mutations. On the other hand, if the mutations are 
observed in somatic cells, the tumors are depicted as 
microsatellite instability (MSI) ones, a type that is more 
frequent and also responsible for sporadic tumors of 
the colon [4-7]. All the aforementioned pathways are 
characterized by impairment of DNA repair systems 
that predisposes cells to genetic instability, which is 
considered a hallmark of cancer. 

This review describes the malfunction of the DNA 
repair systems and discusses its relation to the risk of 
developing colorectal carcinoma. 

2. DNA REPAIR MECHANISMS 

DNA alterations can be imported either by the DNA 
replication system, mainly due to the replication 
slippage of DNA polymerase or due to insertion of false 
bases leading to mismatches. Environmental and 
intracellular factors can also induce modifications in 
sporadic DNA bases [8]. Depending on the specific 
type of alteration in DNA double helix and the phase of 
the cell cycle, different repair mechanisms are  
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potentiated to restore the damage. In most of the 
cases, cells use the unmodified complementary strand 
of the DNA or the sister chromatid as a template to 
restore the original strand. Without access to a 
template, cells use an error-prone recovery mechanism 
known as translesion synthesis as a last resort. 

Repair mechanisms are divided into direct and 
indirect ones. The first incorporate repair during 
replication, catalyzed by the main DNA polymerase, the 
methylguanine-DNA methyltransferase (MGMT) 
enzyme repair for damages in O6 position of guanine 
caused by endogenous and methylating (alkylating) 
agents and finally the repair of pyrimidine dimers in 
bacteria and plants catalyzed by photolyase [9-11]. 
Indirect repair mechanisms are divided into three 
categories: excision repair (ER), recombination repair 
(RR) and MMR. ER is further divided into two 
subcategories: base excision repair (BER) for abnormal 
bases such as uracil and breaks found only in one DNA 
strand and nucleotide excision repair (NER) for the 
removal of bulky adducts. In BER, DNA glycosylase is 
activated in alterations of DNA bases due to damages 
induced by intracellular factors and XRCC1 in removal 
of bases due to radiation breakage. APE1 recognizes 
the abasic site and hydrolyzes the phosphodiester 
bond. The repair is then catalyzed by DNA polymerase 

 and DNA is joined by DNA ligase [12-16]. In NER, 
XPC enzyme spots the damage and then DNA is 
unfolding from both sides in the position of damage due 
to the presence of helicases XPA, XPG and TFIIH. 
XPF and XPG enzymes are responsible for the double 
excision in 5´ and 3´ direction, respectively, around the 
damage. At a last step, the removal of the DNA follows 
the synthesis of a new strand [17]. RR corrects DNA 
double-strand breaks (DSBs) as well as interstrand 
crosslinks and involves two subpathways: homologous 
recombination (HR) that dominates during S and G2 
phase of the cell cycle, and non-homologous end 
joining (NHEJ) which is active in G1 phase. Ataxia 
Telangiectasia Mutated (ATM) kinase exerts an 
important role in both pathways [18-21]. MMR 
recognizes and repairs small loops in DNA either by 
base–base mismatches or by insertion/deletion loops 
that arise from nucleotide misincorporation [22-29]. 
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False base pairment or loops are recognized by 
hMSH2 protein that forms a heterodimer with either 
hMSH6 for classical mismatches and single-base loops 
or hMSH3 for bigger loops. The heterodimer MLH1–
PMS2 discriminates the old from the new strand and 
then FEN1 excises the new strand, followed by DNA 
polymerase and ligase. All the above mechanisms are 
summarized in Fig. (1). 

3. DNA REPAIR SYSTEMS IN COLORECTAL 
CARCINOGENESIS (FIG. (2)) 

3.1. NER and Colon Cancer 

DNA excision repair protein ERCC-1 holds a 
predominant role in the excision mechanism. The 
expression of this protein is frequently reduced or 
absent in CRC patients [30]. These aberrant 
expression levels create cells with augmented ability to 
survive due to blockade of apoptosis and increased 
mutability, suggesting that ERCC-1 abnormal 
expression may comprise an early step in colon cancer 
progression. 

Xeroderma pigmentosum group D (XPD) gene 
product bears an important role in NER pathway being 
responsible for opening DNA around the damaged site, 
a crucial step for the initiation of the NER mechanism 
that repairs bulky adducts and UV-induced DNA 

damage [31-33]. The XPD protein has ATP-dependent 
helicase activity and is linked to the initiation 
transcription factor IIH (TFIIH) [32]. Two XPD 
polymorphisms, Asp312Asn in exon 10 and Lys751Gln 
in exon 23, have been identified [34]. These genotypes 
are associated with a lower efficacy of damage 
repairing induced by UV and chemical carcinogens [35, 
36]. Moreover, it has been found that variation in the 
XPD Lys751Gln gene may alter the XPD protein’s 
function and modifies DNA repair capacity depending 
on different exposures, while it seems to favor higher 
proficiency in repairing the damage induced by ionizing 
radiation [35, 37]. Several studies have shown a minor 
correlation of XPD Lys751Gln polymorphism with CRC 
risk [38-42]. The 312Asn allele has no reported effect 
on DNA repair capacity [43]. 

3.2. BER and Colon Cancer 

Apurinic/apyrimidinic endonuclease 1 (APE1) is a 
bifunctional AP endonuclease/redox factor involved in 
DNA repair and redox signaling, and requires Mg

2+
 in 

its active site to actively participate in BER mechanism. 
APE1 has also been linked to radioresistance. 
Specifically, it was examined whether targeted 
inhibition of APE1 can sensitize tumor cells to 
irradiation in vitro and in vivo. Chimeric adenoviral 
vector Ad5/F35 carrying human APE1 small interfering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic overview of the DNA repair mechanisms (for abbreviations see text). Adapted and reprinted in modified form 

from Ref [29], with permission © 2010 Elsevier. 
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(si) RNA (Ad5/F35-APE1 siRNA) was constructed and 
its infectivity was found to be greater than that of Ad5 
alone in LOVO colon cancer cells. The expression of 
APE1 was as strong as that of nuclear factor-  (NF-

), the downstream molecule of APE1, known for its 
radioresistance activity. Ad5/F35-APE1 siRNA 
significantly enhanced sensitivity of LOVO cells to 
irradiation in clonogenic survival assays, and 
impairment of tumor growth by irradiation was 
demonstrated in a nude mouse colon cancer model 
once inhibiting the expression of APE1 protein in LOVO 
xenografts [44]. 

Growth arrest and DNA damage inducible protein 
alpha (Gadd45a) is a p53-regulated gene that has 
been shown to delay carcinogenesis and decrease 
mutation frequency. Its expression levels are elevated 
after stressful growth arrest conditions and treatment 
with DNA-damaging agents [45]. The gene is known to 
regulate NER mechanism in response to UV radiation, 
while an emerging role in BER mechanism has also 
been reported [46]. Gadd45a-null mouse embryo 
fibroblasts MEF and gadd45a-deficient human colon 
cancer cells exhibited slow BER after treatment with 
methyl methanesulfonate, a pure base-damaging 
agent. Moreover, the removal of AP sites by 
APE1/redox factor 1 (APE1/Ref1) was significantly 
delayed in gadd45a-null cells. Furthermore, APE1/Ref1 
was localized in the nucleus of gadd45a wild-type cells, 
whereas in gadd45a-deficient cells APE1 was 
distributed in the cytoplasm exhibiting a reduced 
interaction with proliferating cell nuclear antigen 
(PCNA). Therefore, gadd45a seems to play a crucial 
role as a component gene of the p53 pathway, being 

involved in protection from carcinogenic base damage 
and maintenance of genomic stability. 

DNA repair gene X-ray repair cross-complementing 
groups 1 (XRCC1) is involved in the efficient repair of 
DNA strand breaks formed by exposure to ionizing 
radiation and alkylating agents. The gene codes for a 
scaffolding protein that interacts with DNA polymerase 
beta, DNA ligase, polynucleotide kinase, poly(ADP-
ribose) polymerase and human AP endonuclease [47-
50]. The distributions of the single-nucleotide 
polymorphism (SNP) XRCC1 Arg399Gln and the 
associations of this genetic polymorphism, along with 
polymorphisms in other genes engaged in different 
DNA repair mechanisms, with CRC susceptibility have 
been detected, as well as the gene–gene and gene–
environment interactions [38]. The XRCC1 399Gln 
allele has been found to be correlated with a 
significantly increased rectal cancer risk among men. 

The human MutY homolog (MUTYH) functions as a 
DNA glycosylase responsible for excision of adenines 
misincorporated opposite 8-oxo-7,8-dihydro-2´ 
deoxyguanosine (8-oxoG), a stable product of oxidative 
DNA damage [51]. Cells defective in MUTYH display a 
mutator phenotype [52-54]. Inherited biallelic mutations 
in the human MUTYH gene have been implicated in 
adenomatous colorectal polyposis (MUTYH associated 
polyposis, MAP) and thus in an increased risk of CRC 
[55-61]. Mutations in both alleles of human MUTYH 
correlate with an increase in G:C to T:A transversions 
in the somatic APC gene in tumors of MAP patients, 
suggesting that MUTYH-dependent repair is defective 
[55, 57]. The Tyr165Cys, 1103delC and Gly382Asp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). DNA repair genes involved in colorectal carcinogenesis (for abbreviations see text). 
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gene mutations have been studied in cells [62]. 
Tyr165Cys is part of one of the two helix–hairpin–helix 
motifs, which is thought to be crucial for recognition 
and binding of the mispaired substrates and is 
evolutionarily highly conserved among MUTYH 
homologs [63]. MUTYH Tyr165Cys is homozygous for 
an A to G transition at position 494 in both MUTYH 
alleles, MUTYH Gly382Asp is homozygous for a G to A 
transition at position 1145 in both MUTYH alleles and 
MUTYH 1103delC/Gly382Asp is compound 
heterozygous with a G to A transition at position 1145 
in one allele and a deleted cytosine nucleotide at 
position 1103 in the other. The Tyr165Cys and 
1103delC mutations significantly reduce MUTYH 
protein stability hence repair activity, whereas the 
Gly382Asp mutation produces a dysfunctional protein 
only suggesting different molecular mechanisms by 
which the MAP phenotype may contribute to the 
development of CRC. 

Mediator of RNA polymerase II transcription subunit 
1 (MED1) is an enzyme encoded by MED1 gene. 
MED1 is a BER enzyme that interacts with MLH1 
protein which is involved in MMR and maintains 
genomic integrity by binding methylated DNA and 
repairing spontaneous deamination events [64, 65]. 
MED1 mutations have been associated with high MSI 
tumors and enhanced colorectal tumorigenesis. 
Promoter methylation of MED1 gene might constitute 
an alternative, epigenetic mechanism for gene 
suppression during sporadic colorectal tumorigenesis 
[66]. MED1 is also methylated and its expression is 
suppressed in normal-appearing colonic mucosa prior 
to the development of the adenoma–carcinoma 
sequence. The epigenetic alteration of the tumor-
suppressor gene MED1 seems to be associated with 
tumor initiation rather than tumor progression. This is 
confirmed by the lack of a significant decrease in 
MED1 expression correlated with more advanced 
tumor stages, a condition that would imply a role in 
tumor progression. 

3.3. HR and Colon Cancer 

Checkpoint kinases 1 and 2 (Chk1 and Chk2) are 
structurally unrelated but have a similar function as 
Ser/Thr kinases possessing a crucial role in cell-cycle 
control [67, 68]. Chk1 for entry into mitosis and Chk2 
as a cell-cycle checkpoint regulator and putative tumor 
suppressor, stabilize p53 leading to cell-cycle arrest in 
G1 [69]. Both kinases are known to relay the 
checkpoint signals from the upstream signal 
transducing kinases of the phosphatidylinositol kinase-
related family, particularly the ATM and ataxia 
telangiectasia and RAD3 (ATR) related, to the proximal 
substrates [70]. Chk1, which is activated by 
phosphorylation at Ser345 or Ser317, phosphorylates 
in turn Cdc25A/C ultimately arresting cells in late S or 
G2 phases, whereas activation of Chk2 in checkpoint 
signaling is initiated by phosphorylation at Thr68 in an 
ATM-dependent manner [71-73]. Recent studies have 
attributed some extra roles to Chks, such as DNA 

repair control, genomic stability and apoptosis [74-76]. 
Phosphorylation-mediated potentiation of Chk1 is 
mainly dependent on ATR, whereas Chk2 is activated 
by ATM. Camptotechin (CPT) has been used to inhibit 
topoisomerase I and to explore DNA damage response 
of Chk1 and Chk2 in human colon cancer HCT116 
cells. Degradation of Chk1 and abolishment of its 
phosphorylated (p) form was observed, while 
phosphorylation of Chk2 was increased [77]. These 
findings led to the conclusion that Chk1 is preferably 
involved in CPT-stimulated HR repair, whereas Chk2 
plays a predominant role in inducing G2–M-phase 
arrest as well as in protecting cells from apoptosis 
following CPT treatment. Another study reported that 
defects in these two Ser/Thr kinases might contribute 
to the development of both hereditary and sporadic 
human cancers [78], since expression of Chk2 and 
pChk2 was decreased in ~50% of the studied cases. 
Quantitative studies of pChk2 revealed significant 
decrease of pChk2 in early stages of colorectal 
carcinomas. Moreover, tumor invasion to local lymph 
nodes was associated with an increase of the pChk2 
pool. These findings point to a controversial role of 
Chk2, either as an inactivation factor in the very first 
steps of carcinogenesis but also as a progressive 
factor in tumor invasiveness. 

XRCC3 protein (encoding gene located on 
chromosome 14q32.3) is involved in the HR 
mechanism and is a member of the family of Rad51-
related proteins which are necessary for the efficient 
repair of DNA strand breaks and DNA cross-links, as 
well as for correct chromosome division [79, 80]. 
XRCC3 directly interacts with HsRad51 and XRCC3-
deficient cells cannot form Rad51 foci after radiation-
induced damages, and also exhibit genetic instability 
and increased sensitivity to DNA-damaging agents [81, 
82]. XRCC3 plays a key role in maintaining the genome 
integrity. Substitution of Thr to Met in codon 241 
(Thr241Met) due to the C18067T transition, is the most 
frequent polymorphism in XRCC3 that may affect the 
enzyme’s function and alter DNA repair capacity as 
well [83, 84]. It has also been observed that the 
XRCC3 241Met allele and family history of cancer 
might contribute to colorectal carcinogenesis, whereas 
no correlation between XRCC3 polymorphism and 
alcohol drinking or cigarette smoking has been noticed. 
XRCC3 241Met allele has been also shown a 
protective tendency against rectal cancer for both men 
and women [38]. 

RAD54 is one of the key proteins necessary for HR 
and DNA repair. RAD54 was initially described in the 
budding yeast Saccharomyces cerevisiae as a member 
of the evolutionarily conserved RAD52 epistasis group 
which is believed to participate in DNA recombination 
and repair mechanisms, especially those involving 
double-strand breaks during both mitosis and meiosis 
[85]. RAD54-deficient DT40 cells are extremely 
sensitive to ionizing radiation in G2 as well as G1 
phase, while wild-type DT40 cells are resistant to 
irradiation in G2 [86]. The main template for 
recombination in G2 phase are the sister chromatids. 
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Therefore, hypersensitivity to irradiation of the RAD54 
mutant in G2 suggests that RAD54 is required for DNA 
repair mediated by sister chromatids. 

These phenotypes of RAD54 mutants have not 
been confirmed in human RAD54B-deficient cells, 
supporting the notion that RAD54 acts in HR in a 
different manner to RAD54B. RAD54B is a protein 
which belongs to DEAD-like helicase superfamily [87]. 
It binds to double-stranded DNA, and displays ATPase 
activity in the presence of DNA [88]. It has been 
proposed that RAD54B plays a critical role in targeted 
integration in human cells, as experiments in a colon 
cancer cell line where RAD54B was inactivated 
resulted in severe reduction of targeted integration 
frequency. On the other hand, cell growth and cell 
survival to DNA-damaging agents or sister chromatids 
exchange were not affected. Given the fact that 
RAD54B shares structural similarity with 
Saccharomyces cerevisiae TID1/RDH54 not only in 
ATPase domains but also in the N-terminal region, it is 
possible that RAD54B is a human homolog of 
TID1/RDH54. In yeast, the complex TID1/RDH54 acts 
in the RR pathway through roles partially overlapping 
with those of RAD54 [86, 87]. 

DNA repair protein XRCC2 is a member of the 
RecA/Rad51-related protein family that participates in 
HR to maintain chromosome stability and repair DNA 
damage [89]. The results of a recent meta-analysis 
highlight the significant association between XRCC2 
intron 2 variant (rs3218499 G C) and increased risk of 
rectal cancer [90]. 

3.4. NHEJ and Colon Cancer 

Little is known about genes that are implicated in 
NHEJ in colon cancer. The product of DNA repair gene 
Ku86 which is active in DNA NHEJ and is required for 
telomere length maintenance and subtelomeric gene 
silencing (also interacting with cytochrome c oxidase 
subunit I that is involved in apoptosis), has been shown 
to present a decreased expression in mucosal areas 
close to colon cancers [30]. 

3.5. MMR and Colon Cancer 

Among MutL homologues, MLH1 mutations are by 
far the most common cause of HNPCC (Lynch 
Syndrome), whereas PMS1, PMS2 and MLH3 
mutations are rare [91-94]. A mouse model with 
deficiency in MLH3, or along with PMS2 deficiency has 
been examined and it was found that MLH3 gene 
contributes to mechanisms of tumor suppression. 
MLH3 deficiency alone causes MSI, impaired DNA 
damage response and increased gastrointestinal tumor 
susceptibility. Moreover, MLH3/PMS2 double-deficient 
mice have shorter life span, tumor susceptibility, MSI 
and DNA damage response phenotypes that are 
indistinguishable from MLH1-deficient mice [95]. Both 
MLH1–MLH3 and MLH1–PMS2 complexes seem to be 
involved in mismatch repair functions assigning tumor 
suppression, providing an explanation why among 

families with Lynch syndrome only MLH1 mutations are 
the most frequently presented. 

The core promoter of MLH1 contains a common 
SNP (-93G A, dbSNP ID: rs1800734) located in a 
region essential for maximum transcriptional activity. 
There are studies which associate this variant with an 
increased risk of developing hyperplastic colonic polyps 
in smokers, CRC in people with family history of the 
disease and presence of MSI [96-98]. In an analysis of 
1518 CRC patients, homozygosity for the MLH1 -93A 
variant was associated with a three-fold risk of CRC 
negative for MLH1 protein by immunohistochemistry. 
The analysis demonstrated a positive correlation 
between MLH1 -93A variant and risk of developing 
MMR-deficient CRC, particularly with somatic loss of 
MLH1 protein expression [99]. 

MutL homolog, human PMS2, a protein active in 
DNA mismatch repair and necessary for apoptosis of 
cells with excessive DNA damage can also cause a 
disruption of the MMR pathway in mammalian cells, 
resulting in hypermutability and DNA damage tolerance 
once the protein is overexpressed [100]. The 
overexpression of either wild-type or truncated human 
PMS2, in otherwise wild-type mouse cells, results in 
both spontaneous and damage-induced 
hypermutability [100]. PMS2 overexpression also 
assigns a DNA damage tolerance phenotype similar to 
that observed with MMR deficiency. These data 
indicate that aberrant expression of one component of 
the MMR complex can disrupt MMR function and 
contribute to genetic instability, thereby increasing the 
risk of carcinogenesis. 

MSI is a hypermutable phenotype caused by the 
loss of DNA MMR activity [101]. MSI occurs in 10-20% 
of CRCs and has been linked to MLH1 promoter 
hypermethylation as well as to germline mutations in 
MMR genes [102]. Colorectal tumors with MSI have 
defined characteristics, such as a tendency to arise in 
the proximal colon, lymphocytic infiltrate and a poorly 
differentiated mucinous or signet ring appearance 
[101]. High MSI is a feature of Lynch syndrome, which 
is a rare inherited disorder caused by germline 
mutation in MMR genes. Tumors with high MSI 
phenotype seem to have a slightly better prognosis 
than colorectal tumors without MSI and do not exhibit 
the same response to chemotherapeutics [102, 103].  

 Clinical studies focusing on the survival benefit 
from 5- fluorouracil (5-FU) chemotherapy are still 
contradictory. Some of them report associations 
between MSI-H tumors and good survival benefit or 
better response [104]. Other studies depict no apparent 
survival benefit [105]. MSI-H phenotype is related with 
resistance to cisplatin and carboplatin but not to 
oxaliplatin [106, 107], whereas adjuvant chemotherapy 
with FOLFOX (a combination of oxaliplatin, 5-FU and 
leucovorin) in this tumor category concluded zero effect 
[108]. Irinotecan, a topoisomerase I inhibitor, seems to 
possess a positive effect on MSI-H tumors being 
related with an increase in survival [109]. 
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 A study covering population-based and clinical-
based cases evaluated the molecular characteristics of 
high MSI CRC, in order to delineate whether all high 
MSI tumors can be explained by either germline 
mutation in one of the MMR genes or MLH1 gene 
methylation. MLH1 methylation was noted in 60% of 
population-based high MSI tumors and 13% of clinical-
based high MSI colorectal tumors. The data reveal that 
MLH1 methylation may explain high MSI CRC in the 
absence of a detected germline mutation in some of 
these cases. The low frequency of MLH1 methylation in 
clinical-based cases with a germline mutation also 
indicates that germline mutation and methylation are 
independent mechanisms for inactivation of MLH1, and 
that the remaining wild-type allele in most Lynch 
syndrome cases is not typically inactivated by DNA 
methylation. As far as the population-based study is 
concerned, germline mutation in one of the MMR 
genes was higher in cases diagnosed before the age of 
50 years than in cases diagnosed after the age of 50 
years (39% vs 9%, respectively), while the prevalence 
of MLH1 methylation was higher in cases diagnosed 
after the age of 50 years (63% vs 14% before the age 
of 50 years). These observations suggest that older 
age of diagnosis constitutes an independent predictor 
of MLH1 methylation, and that a vast majority of high 
MSI CRC could be explained by either germline 
mutation within one of the MMR genes or MLH1 
methylation [110]. 

4. THERAPEUTIC RELEVANCE OF DNA 
REPAIR MECHANISMS IN COLON CANCER 

 To our knowledge, treatment of colorectal cancer 
patients has not been based on the efficiency of DNA 
repair machinery. During the last decade exists only a 
strict number of studies targeting abnormalities in DNA 
repair mechanisms examining the possible effect of 
chemotherapy in a subgroup of patients subjected to 
such malfunctions.  

 In our days, it is well established that cells with a 
deficient DNA MMR system are resistant to radiation 
and to many classes of cytotoxic chemotherapy. The 
platinum-containing drugs cisplatin and carboplatin, 
alkylating (busulfan) and methylating agents 
(procarbazine and temozolomide), the antimetabolites 
6-thioguanine and 5-fluorouracil (5-FU), and the 
topoisomerase II inhibitors etoposide and doxorubicin 
are among these classes [111]. Yang and his team 
worked on Carboxyamidotriazole (CAI), a new 
generation calcium channel blocker (CCB) with 
antitumor activity [112, 113] and its effect in various cell 
lines (including colon cancer) with known MMR status, 
based on previous in vitro and in vivo studies depicting 
CAI to possess antiinvasive, antimetastatic and 
antiangiogenic properties [114, 115]. They concluded 
that CAI unlike high-dose nifedipine (another CCB) is 
better suited for clinical use, possessing a selective 
antiproliferative effect in DNA MMR deficient colon 
cancer cells. In addition, CAI (at 10 μM) can inhibit in 
vitro invasion by MMR-deficient cell lines, but not in 

their MMR-proficient counterparts. Moreover, CAI (3 
μM) induced a greater degree of apoptosis and similar 
level of G2/M arrest in MMR (hMLH1- or hMSH6-) 
deficient colon cancer cells than in the matched 
proficient cell lines [112]. 

 In the field of treatment with 5-FU, effects remain 
controversial as discussed previously in the section of 
the MSI-H tumors. Patients with deficient MMR colon 
cancers have reduced rates of tumor recurrence, 
delayed time to recurrence, and improved survival 
rates, compared with proficient MMR colon cancers. 
Furthermore, distant recurrences were reduced by 5-
FU based adjuvant treatment in deficient MMR stage III 
tumors, and a subset analysis suggested that any 
treatment benefit was restricted to suspected germline 
vs sporadic tumors [116]. Clinical data suggest that 
patients with MMR-deficient cancers do not benefit 
from therapies with fluorinated pyrimidine (FP) 
derivatives [117]. MSH2 deficiency, due to tumors’ 
resistance to standard treatments such as 5-FU, can 
be targeted by therapies that cause oxidative DNA 
damage, and in particular methotrexate [118].  

 NER, as mentioned before, is the main cellular 
process interfering in the removal of bulky adducts 
such as oxaliplatin–DNA platinum ones [119]. In this 
machinery, ERCC1 is the crucial enzyme leading to the 
5’ incision of the platinum DNA damage [120]. A 
combination of oxaliplatin/cetuximab found to inhibit 
oxaliplatin-induced overexpression of ERCC1 through 
transcriptional regulation in HCT-8 cells, inducing a 
dramatic decrease in cells in the S phase and 
enrichment in the G1 and G2/M phases. In addition, 
oxaliplatin/cetuximab combination seems to promote 
an early apoptotic effect and to inhibit survival through 
downregulation of AKT activation in HCT-8 cells. 
Moreover, the same study concluded that Cetuximab 
enhances oxaliplatin-induced downregulation of 
multiple targets involved in DNA replication, 
recombination, and repair [121]. 

5. CONCLUDING REMARKS 

This review summarizes the so far available 
information concerning indirect DNA repair 
mechanisms (excision, recombination and mismatch 
repair systems) and colorectal carcinogenesis. 
Alterations in specific genes have been characterized 
and appear to be related with tumor formation, 
progression and metastasis. Alterations have also been 
confirmed in normal mucosa and appear to serve as 
the initiative step in carcinogenesis. A variety of 
polymorphisms have been found to display different 
response to radiation or antitumor drugs. Discovery of 
specific alterations in colorectal tumors have increased 
awareness of the diversity of CRCs. We are now in a 
stage to search for possible biomarkers among these 
altered genes and among the genes they interact with 
through the different pathways that cross-talk. 

These perspectives may alter the general WHO 
guidelines to more specific ones according to each 
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person’s genetic profile, and adjuvant chemotherapy 
will be considered as a plus in cases that was not used 
before, e.g. patients in stage II who may not receive an 
extra therapy after surgery. Thus, the more prone to 
experience the disease again will take an advantage, 
while those without genetic alterations will be still away 
of any extra treatment. Given the fact that 
chemotherapy is accompanied by various side effects, 
it will be wise to divide patients in groups and 
administer therapy only to those with a greater 
possibility to face cancer again. 

On the other hand, it seems feasible to search for 
biomarkers in easy accessible material, like blood and 
other body fluids without any interventional method. 
Individuals will be more willing to be tested as the 
sampling will not cause injury, pain or deterioration of 
the material like other methods. Tests could be part of 
a routine examination as stands nowadays with PSA 
for prostate, covering all the carcinogenetic steps from 
alterations in normal mucosa that encrypt susceptibility, 
to deterioration to adenoma and progression to cancer 
and metastasis. DNA methylation patterns may also be 
prognostic factors of metastatic or aggressive CRC. 
Tumors will demonstrate a better response to 
chemotherapy, as according to the damage, they will 
be handled separately. Circulating tumor cells, another 
emerging field in the area of prognosis, may serve as 
well in this vein. The persistent presence of tumor cells 
in peripheral blood of the patients receiving 
chemotherapy may evince the inadequacy or the 
unsuitability of the followed therapy and alternative 
remedies will be examined in order to benefit the 
patient. Personalized treatment could serve as a 
powerful tool against cancer, as not only CRCs but also 
the majority of cancer types are characterized by 
diversity. Targeted and individually therapy raises as 
“the bump in the root of the problem”. 
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