Ο Κομβικός Ρόλος του Αρχέγονου Μεσεγχυματικού Κυττάρου στην Παθογένεια και Θεραπεία των Σαρκωμάτων

Dionysios J. Papachristou MD, PhD

Professor Unit of Bone and Soft Tissue Studies Dept. of Histology, Univ. of Patras School of Medicine, Patras, Greece Scientific Director, Dept. of Pathology "Olympion" General Clinic of Patras, Patras, Greece Adjunct Professor of Pathology University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA Vice President Hellenic Group of Sarcomas and Rare Cancers (EOSSO)

Fact: Sarcomas Display Tremendous variability!

- 1. Bone/Osteoid
- 2. Cartilage/Chondroid
- 3. Fibrous matrix
- 4. Muscle
- 5. Fat
- 6. Myxoid matrix
- 7. Any possible combination
- 8. Minimal/No ECM

The tremendous STS heterogeneity implies

Distinct cells of origin for each subtype Multipotent cell of origin for all subtypes

The tremendous STS heterogeneity implies

Distinct cells of origin for each subtype

Multipotent cell of origin for all subtypes

Infantile fibrosacoma	ST	int	ETV6-NTRK3 fusion
Mesoblastic nenephroma	kidney	ben	>>
Secretory Ca	SG	maligna	>>
Clear cell sarcoma	Extr	malign	EWSR1-CREB1, -ATF1
Angiomatoid FH	Ext/Tr	ben	>>
EWS	bones	mal	FUS-ERG fusion
AML	blood	mal	>>
different OS subtypes			

...but which cell could serve as the stem of sarcomatogenesis?

...but which cell could serve as the stem of sarcomatogenesis?

Multiple sources

Kalyvioti et al, Lab Invest 2017 Papachristou et al, 2018 10x

The Amazing Fascia

α-SMA.tram track.400X

Bahney et al. JOR 2019

Proliferative Fasciitis

Nodular Fasciitis

Proliferative Myositis

Florid Reactive Periostitis

Myositis Ossificans

BPOPs

Subungual Exostosis

...but are MSC the CSC of sarcomatogenesis?

The 3 minimal criteria for MSC characterization (ISCT)

- Plastic-adherent properties in standard culture medium
- CD105+, CD73+, CD90+, CD45-, CD34-, CD14- or CD11b-, CD19- or CD79a-, HLH-DR markers-
- The ability to differentiate into OBL, CHBL, LBL, MyoBL
- Bone Marrow Stromal cells
- Skeletal stem cells (CD146/MCAM+, and PDGFa+, CD45-, CD31-)

CSC are characterised by:

- asymmetric division
- high migratory ability
- resistance to systemic Tx
- sarcomatogenesis at high turnover locations (growth plate, fascia)
- immuomodulation
- these characteristics fit the "MSC=CSC" model

Hallmarks of cancer

- invasion
- migration
- angiogenesis
- immunosuppression
- homing
- metastasis
- drug resistance

Hallmarks of cancer

- invasion
- migration
- angiogenesis

- immunosuppression
- homing
- metastasis
- drug resistance

MSC and tumor invasion, transmigration and chemoattarction

Hmadcha et al., 2020

The tumor supportive function of MSC

Timanen et al, Sem Cancer Biol 2020

CAFs and Tumor Progression

Lea Monteran and Neta Erez, Frontiers in Immunology 2021

...there is also anti-tumoral role of MSC in cancer

Hmadcha et al., 2020

Mechanical Stimulation, MSCS and Sacromatogenesis

MSCs and Mechanotranduction

Francis J. Alenghat and Donald E. Ingber, Science 2002

Luu et al, IJMS 2020

Mechanotranduction Signaling and MSCs

Papachristou et al. BioEssays 2009; Papachristou et al. AOB

Papachristou et al, JCM 2021

Papachristou et al, JCM 2021

Kovar, Cells 2020, 9, 972

Kovar, Cells 2020, 9, 972

New Targets for OS Tx?

Luu et al, IJMS 2020

Mechanical Stimulation, MSCS and Bone Mets

Bone Loss

Negative Effects

- Increases mortality and risk of secondary complications
- Degrades skeletal microarchitecture
- Bone remodeling favors bone resorption
- Elevated tumor burden
- Decreases actin assembly
- Increases tumor invasiveness
- Increases adiposity

Pagnott , Bone 150 (2021)

Bone Gain

Pagnotti, Bone 150 (2021)

Pagnotti, Bone 150 (2021)

Is there a role of MSC in sarcoma Tx?

MSCs: the "Trojan Horse" for the battle against Cancer

Chulpanova et al, 2018

 TABLE 1 | Clinical studies using MSC-based therapies for cancer treatment.

STATES TO A
TranuaG

NCT Number	Purpose	Condition	Therapeutic agent	Phase	Start date	Status	Locations
NCT03896568	To determine the maximal tolerated and toxicity of allogeneic bone marrow-derived MSCs loaded with the oncolytic adenovirus DNX-2401 (BM-MSCs-DNX2401)	Glioma	BM-MSCs- DNX2401	I	2019	Recruiting	United States
NCT03608631	To determine the maximal tolerated and toxicity of MSC-derived exosomes loaded with KrasG12D siRNA (iExosomes)	Pancreatic cancer	iExosomes	I	2019	Not yet recruiting	United States
NCT03298763	To evaluate the safety and anti-tumor activity of MSCs genetically modified to express TRAIL (MSC-TRAIL)	Adenocarcinoma of lung	MSC-TRAIL	I, II	2019	Recruiting	United Kingdom
NCT03184935	To determine the safety and efficacy of human umbilical cord-derived MSCs (UC-MSC)	Myelodysplastic syndromes	UC-MSC	I, II	2017	Unknown	China
NCT02530047	To find the highest tolerable dose of bone marrow-derived MSCs expressing INFb (BM-MSC-INFβ) that can be given To patients with ovarian cancer and to test their safety	Ovarian cancer	BM-MSC-INFβ	I	2016	Active, not recruiting	United States
NCT02181478	To evaluate feasibility and safety of combining intra-osseous umbilical cord blood hematopoietic stem cells (UC-HSC) and MSC	Hematologic malignancies	MSCs UC-HSC	I	2015	Recruiting	United States
NCT02068794	To study the side effects and best dose of adipose tissue-derived MSCs infected with oncolytic measles virus encoding thyroidal sodium iodide symporter (AdMSC-MV-NIS)	Ovarian cancer	AdMSC-MV-NIS	I, II	2014	Recruiting	United States
NCT02079324	To determine maximum tolerable dose, safety and efficacy of intratumoral injected GX-051	Head and neck cancer	GX-051	I	2014	Unknown	Korea
NCT02270307	To evaluate the effectiveness of the use of MSCs and cyclophosphamide	Hematological malignancies	MSCs and cyclophosphamide	II, III	2014	Unknown	Russian Federation
NCT01983709	To evaluate home of bone marrow-derived MSCs (BM-MSCs) to sites of prostate cancer after systemic administration	Prostate cancer	BM-MSCs	I	2013	Terminated	United States
NCT01844661	To evaluate the safety of bone marrow-derived autologous MSCs infected with ICOVIR5 (CELYVIR) in children and adults with metastatic and refractory solid tumors	Solid tumors metastases	CELYVIR	I, II	2013	Completed	Spain
NCT01129739	To evaluate the safety and efficacy of MSCs derived from human umbilical cord/placenta (UC/PL-MSC) at a dose of 1.0E + 6 MSC/kg	Myelodysplastic syndromes	UC/PL-MSC	II	2010	Unknown	China
NCT01092026	To determine the feasibility of umbilical cord blood hematopoietic stem cell (UCB-HSC) transplantation with co-infusion of third party MSCs	Hematological malignancies	UCB-HSC with MSCs	I, II	2010	Unknown	Belgium
NCT01045382	To evaluate the capacity of MSCs to improve 1-year overall survival of patients transplanted with HLA-mismatched allogeneic hematopoietic cells	Hematological malignancies	MSCs	II	2010	Recruiting	Belgium

8

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

February 2020 | Volume 8 | Article 43

...conclusions and perspective

- MSC are a heterogenous mix of distinct cell subtypes with different morphology, function and immunoregulatory properties !
- Have we identified the true MSC? **NO**!!!
- Beware of the extraordinary pleomorphism of sarcoma esp. in small Bx (...sampling error)
- The significant heterogeneity of these cells strongly affects sarcoma Tx strategies and their response to Tx
- wide surgical/oncologic excision is needed!
- Promising role in sarcoma Tx (Trojan horses)
- Full characterisation of MSC is vital!—> another reclassification of sarcomas?

Thank you!

