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A 1
VEGF, GM-CSF, G-CSF, l

1L-10, BV8, CXCL1, CXCl
CXCLS

CCL2, SDF-1 (CXCL12),
CXCLs, VEGF, TNFa, IL-1§,
IL-6, G-CSF

SPLEEN

. ® -

Figure 34.1 From HSC to tumor-infiltrating myeloid cells. The TME consists of numerous components originating from mesenchymal,
epithelial, and hematopoietic origins. Within established tumors, both innate and adaptive immune subsets are present where the balance
between pro- and antitumorigenic actors is key to malignancy. Various immune cell subsets (such as tumor-associated macrophages, DCs,
mast cells, eosinophils, neutrophils with immunosuppressive functions) contribute to fuel tumor progression. These cells are generated during
induced myelopoiesis in bone marrow in response to secreted factors by TMEs where a spectrum of myeloid subsets reside. In tumor-bearing
context, splenic myelopoiesis is mediated through a distinct hematopoiesis progenitor response where generated cells migrate to TMEs and
maintain immunosuppressive environments by producing protumoral factors in a complex regulatory network.
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Immune evasion before tumour invasion in early
lung squamous carcinogenesis

Céline Mascaux!234 141518« Nihaela Angelova>®7816:18  Angela Vasaturo®®7”-8, Jennifer Beane?, Kahkeshan Hijazi2,
Geraldine Anthoine!, Bénédicte Buttard®®78, Francoise Rothe?, Karen Willard-Gallo!®, Annick Haller™, Vincent Ninane'?,

Arséne Burny'?, Jean-Paul Sculier!, Avi Spira? & Jérome Galon
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Fig. 1 | Temporal order of cancer hallmarks during carcinogenesis.
a, Nine morphological stages of development. The normal tissues were
split into stage 0 (normal fluorescence) and stage 1 (hypo-fluorescent;
hypo) on the basis of fluorescence bronchoscopy. CIS, in situ carcinoma.
b, Seven modules of co-expressed genes were identified with weighted
gene-correlation network analysis. The gene-expression measurement
represents the relative abundance of each gene compared to reference
RNA from bronchial biopsies from 16 people who had never smoked,
derived with two-colour gene-expression microarrays (mean =4 s.e.m.).
Over-representation analysis linked cancer hallmarks with several gene
modules (hypergeometric test, FDR < 0.05). Adjusted P values are

shown as bar plots after —log;o(P) transformation. ¢, Genes representing

8
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Immune evasion before tumour invasion in early
lung squamous carcinogenesis
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Fig. 2 | Evolving immune response during lung carcinogenesis. a, The
estimation of immune-cell abundance from gene-expression profiles
shows the evolving immune contexture for each developmental stage. DC,
dendritic cell; NK, natural killer. b, Several immune-cell types from innate
and adaptive immunity are co-regulated with increased abundance in late
developmental stages (mean =+ s.e.m.). ¢, Continuous shift of immune
status for mast cells, memory B cells, CD4 T cells and natural killer

cells (mean =+ s.e.m.). Significant differences per stage are highlighted
with black symbols at FDR <0.1, or otherwise with grey symbols. Mann-
Whitney U test. *#*P < 0.001, P < 0.01, *P < 0.05, #P < 0.1, FDR. See
Extended Data Fig. 4 for further analysis.
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Evolution of Metastases in Space and Time
under Immune Selection

Mihaela Angelova,’ Bernhard Mlecnik,’-2 Angela Vasaturo,! Gabriela Bindea,! Tessa Fredriksen,! Lucie Lafontaine,’
Beénedicte Buttard,' Erwan Morgand, Daniela Bruni,’ Anne Jouret-Mourin,? Catherine Hubert,® Alex Kartheuser,?
Yves Humblet,® Michele Ceccarelli,*> Najeeb Syed,® Francesco M. Marincola,”® Davide Bedognetti,® 19

Marc Van den Eynde,'-3-10 and Jéréme Galon®-11.*

1. Immune escape mechanisms

Immunoscore-Edltlng

2. Evolvogram under immune pressure

Genomics .
t i ]ﬂﬁunoe difin g] Unedited tumor clones
[ Ploidy | mIMH -
(" Tumor escape L L
I 1 Immunomics St *‘“"*’é
Ada tive immunit
IL1S [ P YJ Immunoedited tumor clones
LOH CD3+Ki67+ ]
lHLA CD45R0+ | V
LOH
A > o
Nnal evolution

Metastasis size+ i
Distance CD3:CK"Ki67

| S D — R

} e B D Immunoscore
/ T Immunoediting

11 o Time to Recurrence
ow , |
Recurrence Risk g
3. Predictive factors of recurrence
10/11/2021

Highlights
e Different escape mechanisms delineated by lack of adaptive
immunity or immunoediting

e Non-recurrent clones are immunoedited; progressing clones
are immune privileged

e Immunoediting and Immunoscore are predictive factors of
metastasis recurrence

e Parallel selection model describes clonal immunoediting and
tumor evolution

10
Cell 175, 751-765, October 18, 2018



Cancer immunotherapy comes of age

Ira Mellman', George Coukos? & Glenn Dranoft®
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Cancer immunotherapy comes of age

Ira Mellman', George Coukos? & Glenn Dranoft®
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Cancer immunotherapy comes of age
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The Cancer-lmmunity Cycle
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Dendritic Cells: Master Regulators of the Immune

Response @

Ira Meliman Cancer Immunol Res; 1(3); 145-9. ©2013
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( @ Tyt Celis
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© 2013 American Association for Cancer Research

Cancer Immunology Research: Masters of Inmunology

AR

Figure 1. Functional consequences of DC maturation. Depending onthe type of microbial, inflammatory, or steady-state signals aresting DC is exposed to, itis
converted into a tolerogenic or immunogenic state that programs the development of distinct subsets of T cells, each with distinct functions adapted
to the signal detected by the dendritic cell. Different arrays of cytokines released by these differentially matured dendritic cells play an important role in

i T-cell outcomes. It is possible that some of the variation in T-cell outcomes reflects the roles of distinct DC populations, although these must still 14

respond as indicated to microbial or steady-state signals.



Transcriptional determinants of tolerogenic and
immunogenic states during dendritic cell maturation

Bryan Vander Lugt,! Jeremy Riddell # Aly A. Khan,7 Jason A. Hackney,? Justin Lesch,® Jason DeVoss,?

Matthew T. Weirauch,* Harinder Singh,> and Ira Mellman’
JCB » VOLUME 2168 « NUMBER 3 «» 2017
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Human dendritic cells (DCs) are derived from distinct

circulating precursors that are precommitted to become
CDI1c" or CD141" DCs

Gaélle Breton,' Shiwei Zheng,>® Renan Valieris,* Israel Tojal da Silva,* Rahul Satija,>
and Michel C. Nussenzweig'”

J. Exp. Med. 2016 Vol. 213 No. 13 2861-2870
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Professional APCs

DCs an macrophages

Beells

Key features Key features
* Phagocytic * Internalize antigens via

e Express receptors for apoptotic
cells, DAMPs and PAMPs

* Localize to tissues

® Localize to T cell zone of lymph
nodes following activation (DCs)

* Constitutively express high levels
of MHC class Il molecules and
antigen processing machinery

* Express co-stimulatory molecules
following activation

BCRs

» Constitutively express
MHC class Il molecules
and antigen processing
machinery

* Express co-stimulatory
molecules following
activation

Atypical APCs

Mast cells  Basophils  Eosinophils IL3s

Key features

e Inducible expression of MHC class Il molecules

* Antigen-presenting functions limited to
specific immune environments (especially
type 2 immune settings)

* Lack of compelling evidence that they can
activate naive CD4" T cells in an antigen-
specific manner

10/11/2021
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Cancer immunotherapy comes of age

Ira Mellman', George Coukos? & Glenn Dranoft®
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REVIEW Open Access
@ CrossMark

Novel technologies and emerging
biomarkers for personalized cancer
immunotherapy

Jianda Yuan'", Priti S. Hegde”, Raphael Clynes®, Periklis G. Foukas®”, Alexandre Harari®, Thomas O. Kleen®,
Pia Kvistborg”, Cristina Maccalli®, Holden T. Maecker®, David B. Page'®, Harlan Robins'', Wenru Song'?,
Edward C. Stack'?, Ena Wang'?, Theresa L. Whiteside'®, Yingdong Zhao'®, Heinz Zwierzina'’,

Lisa H. Butterfield'® and Bernard A. Fox'"

( )

Novel immune monitoring assays for biomarker discovery and personalized cancer immunotherapy

Monitoring strategy Immunologically-unresponsive tumor Immunologically-responsive tumor
Whole exome sequencing Low mutational burden High mutational burden
Gene signature/patterns . activation signature 1 activation signature
- - 7 Treg/CD3 ratio . Treg/CD3 ratio
ERONcdo; modication . CD3 cells : CD3 cells
Poor general Robust general
Protein microamay antibody response antibody response
Low CD3 count High CD3 count
Bl T-cell receptor repertoire Low clonality High clonality
. effector cells + effector cells
Flow/Mass cytometry | TefffTreg ratio 1 TefffTreq ratio
S s | effector cells, 7 su ) |+ effector celis | suppressor
; wm1mmandmllﬁhaumtmmmls umm1mmmunuimmmmmw
Therapeutic strategy Vaccinatign , ablation, radigtherapy. chemothgrapy, Immune checkpoint blockadg thgrapies
oncolytic therapy, adaptive cellular therapy first and other immunotherapies first
Blood ¢nj, Lymph Live Dying \Nave /al% Memory Immature Mature
Legend vessel ‘3 node tumor tumor Tcel @) Tcel dendritic cell dendritic cell

Fig. 1 High-throughput immune assessment for biomarker discovery and personalized cancer immunotherapy. Immunologically-ignorant and

immunologically-responsive tumors are dassified by the presence of immune cells in the tumor microenvironment. Potential biomarkers identified
from high-throughput techndlogies can further differentiate these tumors by the mutation load, gene/protein/antibody signature profile, phenotype
and function of immune cells, and can also provide clinical strategies for personalized cancer immunotherapies. The new and innovative technologies
that can be utilized to identify potential biomarkers include whole exome sequencing, gene signature, epigenetic modification, protein microarray, B/T
cell receptor repertoire, flow/mass cytometry and multicolor IHC. Arows indicate a decrease (|) or increase (1)
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CANCER IMMUNOLOGY

The “cancer

iImmunogram”

Visualizing the state of
cancer-immune system
interactions may spur
personalized therapy

By Christian U. Blank,'? John B. Haanen,2
Antoni Ribas,* Ton N. Schumacher?

10/11/2021

Tumor foreignness
Mutational load

Tumor sensitivity

to immune effectors
MHC expression, .«
IFN-ysensitivity &

General immune status
Lymphocyte count

tumor metabolism Immune.
LDH, glucose utilization ~ cell infiltration
Intratumoral T cells

Absence of soluble inhibitors _—
IL-6, CRP Absence ;Bfr;ckpoim

The cancer immunogram. The radar plot depicts the seven parameters that characterize aspects of cancer-immune
interactions for which biomarkers have been identified or are plausible. Potential biomarkers for the different
parameters are shown initalics. Desirable states are located in blue; progressively undesirable states are shown inthe
red gradient. The black line connecting the data values for each parameter represents a plot for a single hypothetical
patient. In the case shown, it may be argued that single-agent PD-1 blockade, rather than combined PD-1and CTLA-4
blockade, could be a first treatment of choice. For details on this case and other hypothetical patient cases, see (2).

21
Science 352 (6286), 658-660.



Elements of cancer immunity and
the cancer-immune set point

Daniel S. Chen' & Ira Mellman' 19 JANUARY 2017 | VOL 541 | NATURE | 321
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Host tissue determinants of tumour
Immunity

Hélene Salmon’-23*, Romain Remark?*, Sacha Gnjatic'2* and Miriam Merad'2* NATURE REVIEWS | CANCER
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Fig. 1| The cellular and architectural heterogeneity of the tumour microemdironment at distinct cancer sites.
Schematics of representative histologica patterns of glioblatoma {part a), skin me lanoma(part b), pancreatic ductal
adenocarcinoma fpart ). lung adenocarcinoma (part di andclear-cel renal cell carcinoma {part €) areshown. Tumour
leslons at distinct tissue sites display different tumour mass organi zatlon, stroma to tumour ratios and levelsof Fbratic
reaction.|n addition to neoplastic cells, each tumour microe mdronment containscells derived from both circulating cells
and local cells such asfibroblasts, percytes and endothelizl cells that may differentially impact antitumour [mmu ne
rESpONSes a0 cancer sites. For each tumour type, a colour-coded heatmap{red: high; blue: low) showsthe level of
10/1 1/2021 dominanceof macrophage or lymphocyte infilirate, presence oftertlary lymphoid structures {TL5s), matrix deposition 27
and response to immune checkpolnt blodcade 1CB). CAE cancer-assod ated fibroblast; BCM, extrace! lular mat rbx;
Mac, macrophage: T.T cell.
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The natural (spontaneous) adaptive immune responses of cancer patients have been shown
to influence their survival

Intratumoral T Cells, Recurrence, and Survival
in Epithelial Ovarian Cancer

Lin Zhang, M.D., Jose R. Conejo-Garcia, M.D., Ph.D.,
Dionyssios Katsaros, M.D., Ph.D., Phyllis A. Gimotty, Ph.D.,
Marco Massabrio, M.D., Giorgia Regnani, M.D.,
Antonis Makrigiannakis, M.D., Ph.D., Heidi Gray, M.D.,
Katia Schlienger, M.D., Ph.D., Michael N. Liebman, Ph.D.,
Stephen C. Rubin, M.D., and George Coukos, M.D., Ph.D. N EnglJ Med 2003;348:203-13.

Type, Density, and Location of Inmune
Cells Within Human Colorectal Tumors
Predict Clinical Qutcome

Jérome Galon,l*'l' Anne Costes,! Fatima Sanchez-Cabo,> Amos I(irill:)\nrsky,1 Bernhard Mlecnik,?
Christine Lagorce-Pagés,® Marie Tosolini,® Matthieu Camus,® Anne Berger,* Philippe Wind,*
Franck Zinzindohoué,® Patrick Bruneval,® Paul-Henri Cugnem:,5 Zlatko Trajanor«.ki,2

Wolf-Herman Fridman,™” Franck Pages™’+ 29 SEPTEMBER 2006 VOL 313 SCIENCE
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The immune contexture in human
tumours: impact on clinical outcome

Wolf Herman Fridman, Franck Pagés, Catherine Sautés-Fridman and

Jerome Galon NATURE REVIEWS | CANCER  VOLUME 12 | APRIL 2012
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Figure 2 | The association of immune cell

% 5 infiltrates with prognosis in various types of
E_ ] cancer. The analysis of 124 published articles
g "M 48 4/8 studying the impact of cytotoxic T cells, memory
- 1o — T cells, requlatory T(T,, ) cells and T helper (T )
g — cell subpopulations wit-ﬁ regard to prognosis of
- B cancer patients {20 different cancer types were
B analysed) is represented. ‘Good’ means that the
20 cell type is associated with a good prognosis,
‘none’ means that there was no correlation and
10- ‘poor’ means that the cells are associated with a
poor prognosis. Please also refer to TABLE | for
ofllmll I.-. . . . | references.
ey T, 1 T2 T,17 T,
CD45RO*  cell cell ceall -:3?

10/11/2021 30



The immune contexture in cancer
prognosis and treatment

Wolf H. Fridman'=*, Laurence Zitvogel*, Catherine Sautes—Fridman'~3
and Guido Kroemer?3°-8
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Figure 3 | Effects of the immune infiltrate on the prognosis of patients with cancer. Data from 200 studies (cited in

Supplementary information 51 {table) and in the main-text). involving approximately 25,000 patients were analysed

regarding the relevance of CD8' T cells, tertiary lymphoid structures (TL5s). regulatory T cells (T_ ). CD68* macrophages (M)

and, more specifically. macrophages of an M1 or M2 subtype to overall survival outcomes. Bold colours indicate a positive

(green) or a negative (red) prognostic association following analysis of all relevant studies: lighter colours indicate a

predominantly positive (light green) or negative (orange) prognostic asseciation in the majority of studies analysed. White

circles indicate no statistically significant correlation, or that a dubious prognostic association was observed in a similar

number of studies. The size of the circles indicates the number of patients enrclled in the studies: small circles indicate 31
(0-100 patients, medium-sized circles indicate 100-1.000 patients and large circles indicate 1.000-10,000 patients.
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Figure ? | The association between CD8* T-cell density of the tumour infiltrate and overall survival among patients

with primary, or metastatic solid tumours. The graph summarizes the number of articles (cited in Supplementary

information 51 (table)) containing information on the influence of CD8* T-cell density, as assessed using immuno-

histochemistry. on the prognosis of patients with cancer. The colour of the columns indicates a correlation between 33
CD8" T-cell density and a good prognosis (green), no statistically significant correlation with prognosis (white), ora

correlation of CD8* T-cell density with a poor prognosis (red).
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Characteristics of tertiary lymphoid structures

in primary cancers

Jérémy Goc'23, Wolf-Herman Fridman'23, Catherine Sautés-Fridman'23, and Marie-Caroline Dieu-Nosjean'23*

'The Laboratory of Immune Microenvironment and Tumors; INSERM U872; Cordeliers Research Center; Paris, France;
2University Pierre and Marie Curie; UMRS872; Paris, France; *University Paris Descartes; UMRS872; Paris, France

Ectopic lymphoid formations found in:
* chronic infections,

* autoimmune diseases,

* chronic allograft rejection and

* solid cancers

10/11/2021

Table 1. Studies reporting the presence of tertiary lymphoid structures in human neoplasms

Studied

lung metastasis

Cancers Cellular composit of I hoid agreg TLS cases Stage of the disease References
T cells (including CD4* T cells), mature DCs 32 patients | carcinoma in situ to grade lll Bell etal, 1999
T cells, B cells (GC B cells and naive B cells), FDCs 3 patients grade ll to lll Coronella et al, 2002
T cells, B cells, PCs, FDCs 4 patients ND Mzula et al, 2003
Breast carcinoma lymphocytes (hematoxylin counterstaining) 191 patients grade Il to Il Gobert et al, 2009
T cells, B cells, HEVs 145 patients grade ltolll Martinet etal,, 2011
T cells (Trh, CD4+ T cells and few CD8* 70 patients deltoll Gu-Trantien
Tecells), B cells (GC B cells), FDCs paten gradelto etal, 2013
T cells, B cells, mature DCs, HEVs 146 patients gradeltolll Martinet etal,, 2013
T cells (including CD4* T cells, memory T cells, . R
few CD8* T cells), B cells, mature DCs 17 patients ND Suzuki etal, 2002
T cells, mature DCs 40 patients grade | to [V McMullen et al, 2010
Bergomas et
Colorectal carcinoma T cells, B cells, FDCs ND ND a1, 2011
T cells, B cells {including B cell precursors), FDCs 21 patients grade 0 to VA Coppola et al., 2011
T cells, B cells, HEVs 5 patients ND Martinet et al,, 2011
T cells, B cells, mature DCs 25 patients ND Remark et al, 2013
Colorectal carcinoma Miyagawa et
liver metastasis mature DCs 70 patients ND al., 2004
Colorectal i .
o orectalea rclnf)ma T cells, B cells, mature DCs 140 patients stage IV Remarket al, 2013
lung metastasis
T cells (including CD4* T cells and few CD8* T cells), . Dieu-Nosjean
h ' 74 patients tage Itoll
B cells (including GC B cells), mature DCs, FDCs panen stag= etal, 2008
Lung carcinoma no NK cells 86 patients stage | tolll PI:tIO;g\;al et
T cells (including memory T cells and few 15 pati ™ de Chaisemartin
naive T cells), mature DCs, HEVs patients stagelto etal, 2011
T cells, B cells, HEVs 5 patients ND Martinet et al,, 2011
memory T cells, mature DCs 82 patients stage IA to llIA Ladanyi et al,, 2007
T cells {including CD4* and CD8* T cells,
" 21 patients st v M t al, 2012
rare FoxP3* cells), B cells, mature DCs patien 298 sssina etal,
Mel
T cells, B cells, HEVs 18 patients ND Martinet etal,, 2012
T cells (including CD&* T cells), B cells (includ- .
ing AID* GC B cells), mature DCs, FDCs, HEV 29 patients stage |l to IV Cipponi et al, 2012
T cells, B cells {including naive B cells, AID* GC B cells, 18 patients | d Bombardieri
Mucosal-Associated marginal zone B cells, malignant B cells), FDCs patien ow grade etal, 2007
Lymphoid Tissue - -
lymphoma T cells, B cells {including naive B cells, AID* GC B cells, 20 patients ND Barone et al. 2008
marginal zone B cells, malignant B cells), FDCs pa N
Ovary carcinoma T cells, B cells, HEVs 18 patients ND Martinet etal,, 2011
Renal cell carcinoma T cells, B cells, mature DCs 24 patients ND Remarketal, 2013
Renal cell carcinoma T cells, B cells, mature DCs 52 patients stage IV

R%ﬁk etal, 2013

Abbreviations: DC, dendritic cell, FDC, follicular DG, GC, germinal center; HEV, high endothelial venule; ND, not determined, 115, tertiary lymphoid

structure.
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*  Cellular content and organization
»  Stromal components

*  Lymphoid chemokines

*  Vasculature (HEVs, LVs)
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Ectopic to canonical lymphoid organs.
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* Avrise in response to inflammation
*  No capsule (free diffusion of antigen?)
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Tertiary Lymphoid Structures
in Cancers: Prognostic Value,
Regulation, and Manipulation
for Therapeutic Intervention

Catherine Sautes-Fridman™23, Myriam Lawand'23, Nicolas A. Giraldo"?3, Helene Kaplon'23,
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FIGURE 1 | Prognostic value of TLS-associated biomarkers in primary and metastatic cancers. The number of publications studying the impact of mature
DCs, TLS-related gene signatures, B-cell aggregates, T cell aggregates, or H&E with regard to prognosis in human cancers is represented (12 cancer types have
been included). Blue, crange, and red circles represent an association with good, none, and poor prognosis, respectively. The diameter of the circles represents the
total number of tumors (n) that have been analyzed on these studies.
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Tertiary lymphoid structures in the era
of cancer immunotherapy
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Figure 3 | Effects of the immune infiltrate on the prognosis of patients with cancer. Data from 200 studies (cited in

Supplementary information 51 {table) and in the main-text). involving approximately 25,000 patients were analysed

regarding the relevance of CD8' T cells, tertiary lymphoid structures (TL5s). regulatory T cells (T_ ). CD68* macrophages (M)

and, more specifically. macrophages of an M1 or M2 subtype to overall survival outcomes. Bold colours indicate a positive

(green) or a negative (red) prognostic association following analysis of all relevant studies: lighter colours indicate a

predominantly positive (light green) or negative (orange) prognostic asseciation in the majority of studies analysed. White

circles indicate no statistically significant correlation, or that a dubious prognostic association was observed in a similar

number of studies. The size of the circles indicates the number of patients enrclled in the studies: small circles indicate 43
(0-100 patients, medium-sized circles indicate 100-1.000 patients and large circles indicate 1.000-10,000 patients.
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Figure 3 | Effects of the immune infiltrate on the prognosis of patients with cancer. Data from 200 studies (cited in
Supplementary information 51 {table) and in the main-text). involving approximately 25,000 patients were analysed
regarding the relevance of CD8' T cells, tertiary lymphoid structures (TLSs). regulatory T cells (T_ ). CD68* macrophages (M)
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Figure 1. Tumor-Associated Macrophages in the Primary Tumor
Promote Malignancy

In the primary tumor, microenvironment macrophages under the influence of
IL-4 produced by CD4" T cells and tumors and WNT7b promote tumor cell
invasion. This invasion is mediated via a paracrine loop involving tumor-syn-
thesized CSF1 and macrophage-produced EGF that drives migration of tumor
cells in lock-step with macrophages along collagen fibers that act as highways
toward blood vessels. This process also requires TGFp that drives an
epithelial-mesenchymal transition (EMT) in the tumor cells that promotes
migration and matrix remodeling via Cathepsins and matrix adhesion of tumor
cells via SPARC. This streaming of tumor cells results in their pileup on the
vessels where macrophages promote their intravasation into the circulation
through a structure named the “Tumor Microenvironment of Metastasis"
(TMEN). In addition to effect on tumor cell migration and invasion, TIE2"
macrophages produce VEGF and WNT7b that stimulates angiogenesis in the
tumor. Thus, there is an additive effect caused by macrophages of increased
migration of tumor cells toward vessels and increased vascular targets that
results in a large number of circulating tumor cells and thus increased malig-
nancy. Macrophages also suppress cytotoxic T cell responses through the
mechanisms described in Figure 2.
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Figure 3. Macrophages Promote Metastasis

Arrest of tumor cells in the vasculature of target organs through the formation of microclots (1) results in CCL2-mediated recruitment of CCR2-expressing
circulating inflammatory monocytes (2). These monocytes differentiate into metastasis-associated macrophages (MAMSs) that mediate tumor cell extravasation
via VEGF that increases vascular permeability (3). MAMS under the influence of C5F-1 further promote tumor cell survival (4) and persistent growth associated by
angiogenesis and might also prevent T cell cytotoxicity (5).

10/11/2021 48



Tumor-Associated Macrophages: From
Mechanisms to Therapy

Rioy Noy' and Jeffrey W. Pollard’->-" immunity 47, July 17, 2014

Lymph node

Inhibition of

\ Apoptosis T cells NK cell migration

to the lymph node

ILT2

()
COO4NKG2
HLA-G 1
()

Pro-tumor
Macrophage oo

T cells
FO-i_ PODL1PDLZ

.
NKT cells '\ f e
B cells | , 7 \/ s,

— 00
v —a cD4 1
Induction of
¥ L T cells regulatory
[] Arginase-l S CCL2D functlon

KEY:
) coLz?  — R

-}A‘rﬂgpﬁ fl. 10

iTreg
— Fm:pJ-T

I cTLMT

Figure Z. Protumor Macrophage Mechanisms of Effector Cells Inhibition

TAMs express an array of effector molecules that inhibit the antitumor immune esponses: this includes cell suface receptons, cytokines, chemokines, and

emnzymes. Inhibition of immune responses by direct call-to cell-contact is based on the interaction of TAMS receptors ligands with their counterpart death and/or

inhibitory receptors expressed by the tanget immune effector cells. TAMs express the ligand receptors for PD-1 and CTLA-4 that upon activation suppress

cytotowc functions of Teall, NKT calls and NK calls. TAMs also axpress the ligand for the death receptors FAS and TRAIL that triggers caspase-dependant call

death (apoptosis) in target cells. TAM s also express the nonclassical HLA-G that inhibits T cell function through interaction with the costimulatory signal of T cells

Z#d;é nd HLA-E that inhibit MK cells through CO94 (also known as NKG2). TAMs secrete the cytokines |L-10 and TGF-p that inhibit T cells effector functions and
10/11/ regulatory functions and chemokines CCLS, CCL20, and CCL22 that recruit nTreg cells. TAMSs secrete Arginase | that inhibit TCR £ chain re-expression in

activated T cells by the depletion of L-arginine.
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Predictive relevance of PD-L1 expression combined with
CDS8+ TIL density in stage 111 non-small cell lung cancer

patients receiving concurrent chemoradiotherapy
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Hidenobu Ishii “, Kazuhiko Yamada “, Norikazu Matsuo “,
Takashi Kinoshita *, Naohisa Mizukami “, Hirofumi Ono °,
Masayoshi Kage ", Tomoaki Hoshino *
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Fig. 2. Kaplan-Meier curves for progression-free survival (PFS) of stage II1 NSCLC patients with positive or negative for CDE+ TIL
density (A) and PD-L1 expression (B). Kaplan-Meter curves for overall survival (O8) of stage 111 NSCLC patients with positive or
negative for CDE+ TIL density (C) and PD-L1 expression (D). PD-LI, programmed cell death-ligand 1; TIL, tumour-infiltrating
Iymphocyte; NSCLC, non-small cell lung cancer; HR, hazard ratio; CI, confidence interval.
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adaptive immune resistance
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Figure 1 | Immunohistochemical analysis of CD8" T cells in samples
obtained before and during pembrolizumab treatment. a, b, Examples of
CD8 expression in melanoma tumours serially biopsied before PD-1 blocking
treatment (Tx) and 20-60 days after treatment began (Days +20-60) from a
patient in the response (a) and progression (b) groups. Red line separates
tumour parenchyma (below line) and invasive margin (above line).
Magnification, % 20. ¢, d, CD8"-cell density at the tumour parenchyma and
invasive margin in samples from all responders (c¢; # = 13) and progressors
(d; n = 12) who received a biopsy before and during treatment. Filled circle
indicates complete response; open cirdle indicates partial response; triangle
indicates delayed response.
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Heterogeneous Tumor-Immune Microenvironments
among Differentially Growing Metastases
in an Ovarian Cancer Patient
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Prognostic significance of tumor-infiltrating T cells in ovarian cancer: A meta-analysis

Wei-Ting Hwang *™!, Sarah F. Adams *', Emin Tahirovic ®, Ian S. Hagemann ©?, George Coukos **

2 Qvarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
b Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
t Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

Gynecologic Oncology 124 (2012) 192-198

CD3 or (D8 expression, intraepithelial CD8 TIL showed a more consistent
and stronger association with survival than CD3 TIL. Thus, CD8 staining
should be used as the standard for evaluation of intraepithelial TIL in
ovarian cancer specimens. Further, a significant difference was seen in
the HRs based on scoring method used to evaluate TIL While TIL scores
represent an underlying continuous variable, a standardized measure of
TIL positivity would facilitate future studies. Because significantly larger
HRs were noted in studies that used greater than zero cut-offs (e.g.,
3-10 cells/HPF) for a positive score, and 5 cells/HPF approximately repre-
sents the midpoint of those cut-off values, we propose that =5 CD8*
cells/200x HPF should be defined “TIL-positive” in ovarian tumors.
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The evaluation of tumor-infiltrating lymphocytes (TILSs)
in breast cancer: recommendations by an International
TILs Working Group 2014
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lymphocytes than predefined subgroup analyses and for
a tymor cells”. description of tumaors with a particularly

high immune infiltrate, however, keep in
mind that TILs are a continuous parameter
and the threshold for LPEC is still

arbitrary.
Stromal TILs
Indicator of Stromal TILs have been shown to be
increased predictive for increased response to
accumulation of neocadjuvant chemotherapy as well as
immune-cells in improved outcome after adjuvant
¥ tumor tissue chemotherapy. Based on current data,

this parameter is the best parameter for
characterization of TILs.

Intraturmoral TILs
TILs with direct Several studies have shown that
cell-cell contact with | intratumoral TILs and more difficult to
carcinoma cells, evaluate and do not provide additicnal
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indicator of direct compared to stromal TILs.
cell-based anti-
tumor effects.
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TILs assessment.
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Towards the introduction of the ‘Immunoscore’
In the classification of malignant tumours
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One analyte / per section

Immune contexture

Type CD3, CD8, CD45RO
Density Cells/mm?2 Immunoscore
Location Centre, Margin

Orientation Thl, cytotoxic, chemokines, adhesion

Ongoing tumor-immune-cell interactions
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CD3, CD8, CD45RO

Cells/mm?2 Immunoscore

Centre, Margin

Thl, cytotoxic, chemokines, adhesion

Simple and powerful immune biomarkers

10/11/2021
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Immune monitoring technology primer:
flow and mass cytometry

Holden T. Maecker'” and Alexandre Harari®
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0
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Wavelength Mass Units
Fig. 1 a Example of emission spectra of several dyes used in fluorescence flow cytometry, showing the degree of overlap and consequent
spillover between detectors. b lon signals detected by mass cytometry are by comparison very discrete, allowing many more simultaneous
probes to be used, with little or no spillover
J

Joumal for ImmunoTherapy of Cancer (2015) 3:44
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Important histological context is lost
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Stack et al. Journal for InmunoTherapy of Cancer (2016) 4:9 | f | Th
DOI 10.1186/540425-016-0115-3 Journal for Immuno erapy

of Cancer

Multiplexed tissue biomarker imaging L

Edward C Stack', Periklis G. Foukas®® and Peter P. Lee*

Fig. 1 Multiplexed Lymphocyte Assay in Ovarian Adenocarcinoma.
Representative TSA multiplex of CD3 (green), CD4 (red), CD8
(yellow), CD45RO (magenta), Cytokeratins (brown) and DAPI (blue)
in Ovarian Cancer. Multispectral imaging yields a composite image
where each marker-associated dye can be reliable separated for
10/11/2021 accurate phenotypic and expression analyses

74



CD141

CD1c

- El
' ’
o ¥k
v e
~
o
o
-

>
o
on
-y
™
a4 “wF
]
~
l‘\“i
z
o X
e
vV ]

>

%

B L5
&
o0&

s 3.5l
b I £,

® 2, )

15

w210/ 172021

GC




Multispectral Imaging

CCD camera with Liquid Crystal Tunable Filter

/ * Detection range: 420-720nm

(Separate up to 10 markers including autofluorescence)

Analysis software
* Spectral unmixing
* Learn by examples algorithm

* Quantitative data output
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Tissue segmentation
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Panel : PD1 / Granzyme B / NFAT2c / CD8 / Keratins / DAPI
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Panel : PD1 / Granzyme B / NFAT2c / CD8 / Keratins / DAPI

CD8+, PD1+, Granzyme B+ = terminal effector cells
CD8+, PD1+, Granzyme B- =dysfunctional / exhausted cells

CD8+, nuclearNFAT2c+ = TCR signaling

Consensus nomenclature for CD8' T cell phenotypes in cancer
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Outline

* Intoduction to the Tumor Immune Microenvironment (TIME)
* Prognostic / Predictive value
« Methodologies

* Mechanisms regulating TIME
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Understanding the tumor immune
microenvironment (TIME) for effective therapy

Mikhail Binnewies', Edward W. Roberts’, Kelly Kersten', Vincent Chan®?, Douglas F. Fearon?,
Miriam Merad®*, Lisa M. Coussens®, Dmitry |. Gabrilovich®, Suzanne Ostrand-Rosenberg®78,

Catherine C. Hedrick®, Robert H. Vonderheide, Mikael J. Pittet", Rakesh K. Jain'?, Weiping Zou™®,

T. Kevin Howcroft™, Elisa C. Woodhouse™, Robert A, Weinberg'®* and Matthew F. Krummel| ©"2*

MATURE MEDICINE | VOL 24 | MAY 2018 | 541-550 |
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Fig. 2 | How tumor genotypes and phenotypes shape the TIME. a, Tumors are known to establish protumoral and immunosuppressive environments to
support their growth and promote immune evasion. Central to building an immunosuppressive TIME are oncogenes and aberrant signaling pathways that
lead to the production of cytokines and chemokines with potent effects. The tumar shown is representative of a spectrum of cancer types. In melanoma,
BRAFYE0E (green triangle) has been shown to induce constitutive WNT/B-catenin signaling, which in turn decreases production of CCL4, a chemokine
important for the recruitment of CON03+ DCs. Additionally, BRAF has been shown to induce expression of factors such as [L-10 and IL-1a, which

can induce tolerogenic forms of DC and cancer-associated fibroblasts (CAFs), respectively. Oncogenic KEASSY in PDAC leads to the secretion of GM-
C5F, corresponding to increased development of CO11b+ myeloid cells with reported immunosuppressive function. Deficiency in p53 in hepatic stellate
cells, a stromal population, leads to production of factors that polarize TAMs from the immunoactivating M1 phenotype to the immunosuppressive M2
phenotype. Interestingly, many tumors have been shown to secrete high levels of the monocyte/macrophage-promoting cytokine C5F-1.
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Fig. 2 | How tumor genotypes and phenotypes shape the TIME. a, Tumors are known to establish protumoral and immunosuppressive environments to
support their growth and promote immune evasion. Central to building an immunosuppressive TIME are oncogenes and aberrant signaling pathways that
lead to the production of cytokines and chemokines with potent effects. The tumar shown is representative of a spectrum of cancer types. In melanoma,
BRAFYE0E (green triangle) has been shown to induce constitutive WNT/B-catenin signaling, which in turn decreases production of CCL4, a chemokine
important for the recruitment of CON03+ DCs. Additionally, BRAF has been shown to induce expression of factors such as [L-10 and IL-1a, which

can induce tolerogenic forms of DC and cancer-associated fibroblasts (CAFs), respectively. Oncogenic KEASSY in PDAC leads to the secretion of GM-
C5F, corresponding to increased development of CO11b+ myeloid cells with reported immunosuppressive function. Deficiency in p53 in hepatic stellate
cells, a stromal population, leads to production of factors that polarize TAMs from the immunoactivating M1 phenotype to the immunosuppressive M2
phenotype. Interestingly, many tumors have been shown to secrete high levels of the monocyte/macrophage-promoting cytokine C5F-1.
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T cell-induced CSF1 promotes melanoma
resistance to PD1 blockade

Natalie J. Neubert,'* Martina Schmittnaegel,?* Natacha Bordry,'* Sina Nassiri,2 Noémie Wald,’
Christophe Martignier,’ Laure Tillé," Krisztian Homicsko, 2 William Damsky,>
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George Coukos,’ Sabine Hoves,* Carola H. Ries,” Silvia A. Fuertes Marraco, Periklis G. Foukas,*"
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Fig. 2 | How tumor genotypes and phenotypes shape the TIME. a, Tumors are known to establish protumoral and immunosuppressive environments to
support their growth and promote immune evasion. Central to building an immunosuppressive TIME are oncogenes and aberrant signaling pathways that
lead to the production of cytokines and chemokines with potent effects. The tumar shown is representative of a spectrum of cancer types. In melanoma,
BRAFYE0E (green triangle) has been shown to induce constitutive WNT/B-catenin signaling, which in turn decreases production of CCL4, a chemokine
important for the recruitment of CON03+ DCs. Additionally, BRAF has been shown to induce expression of factors such as [L-10 and IL-1a, which

can induce tolerogenic forms of DC and cancer-associated fibroblasts (CAFs), respectively. Oncogenic KEASSY in PDAC leads to the secretion of GM-
C5F, corresponding to increased development of CO11b+ myeloid cells with reported immunosuppressive function. Deficiency in p53 in hepatic stellate
cells, a stromal population, leads to production of factors that polarize TAMs from the immunoactivating M1 phenotype to the immunosuppressive M2
phenotype. Interestingly, many tumors have been shown to secrete high levels of the monocyte/macrophage-promoting cytokine C5F-1.
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Fig. 2 | How tumor genotypes and phenotypes shape the TIME. a, Tumors are known to establish protumoral and immunosuppressive environments to
support their growth and promote immune evasion. Central to building an immunosuppressive TIME are oncogenes and aberrant signaling pathways that
lead to the production of cytokines and chemokines with potent effects. The tumor shown is representative of a spectrum of cancer types. In melanoma,
BRAFVSUE (green triangle) has been shown to induce constitutive WNT/B-catenin signaling, which in turn decreases production of CCL4, a chemokine
important for the recruitment of CD103+ DCs. Additionally, BRAFY¢°%F has been shown to induce expression of factors such as IL-10 and IL-1a, which

can induce tolerogenic forms of DC and cancer-associated fibroblasts (CAFs), respectively. Oncogenic KRASS2C in PDAC leads to the secretion of GM-
CSF, corresponding to increased development of CD11b* myeloid cells with reported immunosuppressive function. Deficiency in p53 in hepatic stellate
cells, a stromal population, leads to production of factors that polarize TAMs from the immunoactivating M1 phenotype to the immunosuppressive M2

phenotype. Interestingly, many tumors have been shown to secrete high levels of the monocyte/macrophage-promoting cytokine CSF-1. b, The mutational
landscape of tumors can profoundly affect the quality and character of the TIME. In CRC, there are four consensus molecular subtypes (CMS1-4). CMST is
defined by defects in DNA mismatch repair leading to microsatellite instability or hypermutation rates. Because of the abundance of possible neoepitopes,
CTL infiltration is generally high, and CTLs display gene expression patterns indicative of an ongoing immune response. Patients with CMS1 tumors have
2gfnera\ly more favorable outcomes with checkpoint-blockade treatment than do patients with CMS2-4. Although there are differences in the histological 99
and immunological character of CMS2, 3 and 4 CRC subtypes, they are generally less immune infiltrated, as is suggestive of antigenically cold tumors.
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The causes and consequences of genetic
heterogeneity in cancer evolution

Rebecca A. Burrell'*, Nicholas McGranahan'*, Jiri Bartek™ & Charles Swanton'*
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Figure 1 | Intertumour and intratumour heterogeneity. Genetic and population of tumour cells — shown here as a tumour section, hybridized to
phenotypic variation are observed between tumours of different tissue two fluorescent probes for the centromeres of two chromosomes (chromosome
and cell types, as well as between individuals with the same tumour type 2, red; chromosome 18, green) with DMNA (blue) — there is intercellular genetic
{intertumour heterogeneity). Within a tumour, subclonal diversity may be and non-genetic variation of, for example, chromosome copy number, somatic

observed (intratumour heterogeneity). Subclones may intermingle (asshown by point mutations or epigenetic modifications that results in phenotypic diversity.
subdones 1 and 2) or be spatially separated (as shown by subclone 3). Separation  Intercellular genetic heterogeneity is exacerbated by genomic instability, and
between subdones could reflect physical barriers such as blood vessels or may foster the emergence of tumowur subclones. Genomic instabil ity and tumour
micro-environmental changes. Tumour subclones may show differential gene subclonal architecture may vary further over time if influenced by, for example,
expression due to both genetic and epigenetic heterogeneity. Within a subcdonal — cancer treatment.
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Fig. 1 | Heterogeneity of immune infiltration in NSCLC. a, b, TRACERx
regions from lung adenocarcinoma (a) and lung squamous cell carcinoma (b)
are shown, clustered by the level of estimated immune infiltrate. Each row
represents an immune cell population, as estimated by the method used by
Danaher et al.'!. Immune populations are CD47 T cells (CD4),

B cells, regulatory T cells (Tr.g). exhausted CD8™ T cells (CD8 exhausted),
CD8' T cells (CD8), helper T cells (Tw1), natural killer CD56™ cells

{NK CD567), total TIL score (total TIL), total T cells (T cells), CD45% cells
{CD45), cytotoxic cells (cyto), natural killer cells (NK), neutrophils, mast
cells (mast), dendritic cells (dendritic) and macrophages. Each column
represents a tumour region. Regions classified as having low levels of
immune infiltration (low immune) are shown in blue; regions classified as
having high levels of immune infiltration (high immune) are shown in red.
If all the regions of a patient’s tumour are classified as having low levels of
immune infiltration, the patient is indicated in blue. If all the regions of a
patient’s tumour are classified as having high levels of immune infiltration,
the patient is indicated in red. Patients who have tumours that contain
heterogeneous levels of immune infiltration are indicated in orange. An
example pathology image from a heterogeneous tumour is shown below
each heat map to display a region with a high level of immune infiltration
and a region with a low level of immune infiltration from the same
tumour.
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C RUKooes Tegions from lung adenocarcinoma (a) and lung squamous cell carcinoma (b)
are shown, clustered by the level of estimated immune infiltrate. Each row

represents an immune cell population, as estimated by the method used by

Danaher et al.'!. Immune populations are CD47 T cells (CD4),
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having high levels of immune infiltration (high immune) are shown in red.
If all the regions of a patient’s tumour are classified as having low levels of
immune infiltration, the patient is indicated in blue. If all the regions of a
patient’s tumour are classified as having high levels of immune infiltration,
the patient is indicated in red. Patients who have tumours that contain
heterogeneous levels of immune infiltration are indicated in orange. An
example pathology image from a heterogeneous tumour is shown below
each heat map to display a region with a high level of immune infiltration
and a region with a low level of immune infiltration from the same
tumour.
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d Lung adenocarcinoma

Fig. 1 | Heterogeneity of immune infiltration in NSCLC. a, b, TRACERx
cRUKNoEs Tegions from lung adenocarcinoma (a) and lung squamous cell carcinoma (b)

i are shown, clustered by the level of estimated immune infiltrate. Each row

represents an immune cell population, as estimated by the method used by

Dianaher et al.'!. Immune populations are CD4t T cells (CD4),

B cells, regulatory T cells (Tr;). exhausted CD8" T cells (CD8 exhausted),

e B Low immune infilirate region CD8' T cells (CD8), helper T cells (Tu1), natural killer CD56 cells
o e Iate 0O it (NK CD567), total TIL score (total TIL), total T cells (T cells), CD45" cells
Y- A g:tienl {%gg h|gh”il:nmmu$e ||1ﬁ¥?a§3 {CD45), cytotoxic cells (cyto), natural killer cells (NK), neutrophils, mast
— Patient with heterogensous immune infilfrate cells (mast), dendritic cells (dendritic) and macrophages. Each column
CRUKO0DS CRUKD0G5 represents a tumour region. Regions classified as having low levels of

R3, low immune

10/11/2021

R2, low i R1, high immune

immune infiltration (low immune) are shown in blue; regions classified as
having high levels of immune infiltration (high immune) are shown in red.
If all the regions of a patient’s tumour are classified as having low levels of
immune infiltration, the patient is indicated in blue. If all the regions of a
patient’s tumour are classified as having high levels of immune infiltration,
the patient is indicated in red. Patients who have tumours that contain
heterogeneous levels of immune infiltration are indicated in orange. An
example pathology image from a heterogeneous tumour is shown below
each heat map to display a region with a high level of immune infiltration
and a region with a low level of immune infiltration from the same
tumour.
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Is there any relationship between genomic heterogeneity and the TIME?

Immune landscape heatmap

R1 R2 R3

Genomic distance
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Genomically similar tumour regions share similar
microenvironments

A Lung adenocarcinoma B Lung squamous cell carcinoma
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How tumours escape immune surveilance?
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Is there negative selection against neoantigens?

(only expressed peptides can result in neoantigens)
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Is there negative selection against neoantigens?

All High Hetero. Low

1.9 n.s

HLA HLA  HLA  HLA  HLA  HLA  HLA  HLA
LOH intact LOH intact LOH intact LOH intact

Odds ratio

Depletion of expressed neoantigens in hot tumours with
intact HLA alleles
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Conclusion

Close interaction between the immune and genomic landscape and emphasize

the strong selection pressure that the immune system imposes upon tumour evolution
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