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Abstract Imaging plays an important role in the diagnosis and
management of dementia. This review covers the imaging
features of the most common dementing illnesses: Alzheimer’s
disease (AD), vascular dementia (VaD), dementia with Lewy
bodies (DLB) and frontotemporal lobar degeneration (FTLD).
It describes typical findings on structural neuroimaging and
discusses functional and molecular imaging techniques such
as FDG PET, amyloid PET, magnetic resonance (MR) perfu-
sion imaging, diffusion tensor imaging (DTI) and functional
MR imaging (fMRI).
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Introduction

Imaging plays an important role in the diagnosis and
management of dementia. This review covers the imag-
ing features of the most common dementing illnesses:
Alzheimer’s disease (AD), vascular dementia (VaD),

dementia with Lewy bodies (DLB) and frontotemporal
lobar degeneration (FTLD).

The standard structural magnetic resonance imaging (MRI)
protocol for dementia should include the following sequences:
three-dimensional T1-weighted gradient echo with 1-mm iso-
tropic voxels, axial T2-weighted fast spin echo, coronal or axial
fluid-attenuated inversion recovery (FLAIR), diffusion weight-
ed images (DWI) and a haemorrhage-sensitive sequence (either
T2*-weighted or susceptibility-weighted). A structured ap-
proach to reporting these images [1] is helpful and should
consider: (1) surgically treatable lesions such as a mass lesion,
subdural haematoma or hydrocephalus; (2) presence, extent and
location of small and large vessel disease; (3) presence and
distribution of cerebral micro bleeds; (4) degree and pattern of
general cortical atrophy; (5) focal atrophy with particular atten-
tion to the hippocampi, temporal lobes, precuneus, frontal
lobes, midbrain and pons.

Of the advanced imaging methods, 18F-fluorodeoxyglucose
(FDG) positron emission tomography (PET) and amyloid PET
are increasingly used in clinical practice, particularly at an early
stage of the disease. More recently, advanced MR imaging
techniques such as arterial spin labelling (ASL), DTI and fMRI
have emerged as candidate imaging biomarkers in a range of
neurodegenerative conditions. These techniques allow in vivo
assessment of functional and structural brain networks and may
offer improved ability to detect and monitor neurodegenerative
conditions.

Alzheimer’s disease

Alzheimer’s disease (AD) is the most common cause of demen-
tia and was originally described by Alois Alzheimer in 1906.

The pathological hallmarks of AD are two abnormal pro-
tein aggregates: amyloid plaques and neurofibrillary tangles
[2–6]. Amyloid plaques are extracellular beta-amyloid
surrounded by inflammatory cells; neurofibrillary tangles are
intracellular aggregates of pathological tau protein.
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The disease typically presents with a progressive decline in
episodic memory. Less frequently it may manifest with lan-
guage or visual processing difficulties. Not uncommonly,
multiple cognitive domains will become impaired with a
global dementia emerging over time.

Most cases of AD are preceded by a period of mild cogni-
tive impairment (MCI). This pre-dementia stage most com-
monly presents with impairment of episodic memory
(amnestic MCI) with up 10–15 % of individuals progressing
to dementia each year [7]. Some imaging features in MCI
resemble those seen in AD; hippocampal atrophy being a
particularly robust marker for predicting progression from
MCI to AD [8].

Clinical diagnostic criteria for AD were defined in 1984.
Recently the National Institute on Aging-Alzheimer’s Asso-
ciation updated their diagnostic guidelines for AD, incorpo-
rating imaging and cerebrospinal fluid (CSF) biomarkers [9,
10]. They defined five major biomarkers, reflecting either an
amyloid β accumulation (abnormal amyloid PET and low
CSF levels of Aβ42) or neuronal injury (elevated levels of
CSF tau, decreased FDG uptake on PET, atrophy on structural
MRI). A hypothetical model of evolution of AD biomarkers
proposes markers of amyloid accumulation precede the onset
of clinical symptoms by 15 or more years [11].

AD can be categorised into early and late onset, with 95% of
cases occurring after the age of 65 (late onset), with the inci-
dence of AD doubling every 5 years after the age of 60 [12].

The ApoE e4 lipoprotein allele has been associated with an
approximately 10–15 times increased risk for developing AD
[1]. Autosomal dominant AD is rare and usually found in
individuals with younger onset [13]. Three major genetic mu-
tations have been identified that lead to familial AD: the amy-
loid precursor protein gene on chromosome 21; the presenilin 1
gene on chromosome 14 and the presenilin 2 gene on chromo-
some 1. All three mutations are involved in the metabolism of
amyloid [14–19].

Cerebral volume loss is best assessed on high resolution
volumetric T1-weighted MRI images. Focal volume loss clas-
sically starts in the entorhinal cortex, involves the medial

temporal lobe and hippocampus, as well as medial parietal
lobe [10]. Atrophy of the amygdala has also been recognised
as a feature of AD [20]. A loss of volume in the region of 5 %
per year has been reported in the hippocampus [21, 22]. In
addition to focal atrophy, patients with AD also show more
rapid global volume loss.

The degree of hippocampal atrophy correlates with clinical
cognitive impairment [23–25].

The degree of medial temporal lobe atrophy (MTA) can be
assessed using a five-point visual rating scale (ranging from 0
to 4) described by Scheltens et al. [26] (Fig. 1). Although
mostly used for coronal T1 weighted MR images, this scale is
also applicable to coronally reformatted CT images [27].

Ratings scales are very useful in a routine clinical setting and
a dedicated centre may provide more advanced techniques of
analysis. These include measurements of hippocampal volumes
using either manual outlining or segmentation based ap-
proaches [28]. The assessment of volume changes over time
is facilitated by spatial registration of serial T1-weighted volu-
metric images [1] and a diagnosis of AD can be corroborated if
there is an appreciable hippocampal volume change within a
12- to 18-month interval (Fig. 2).

FDG-PET measures the glucose metabolism, which re-
flects predominantly synaptic activity. Hypometabolism on
FDG PET can be detected before the onset of clinical symp-
toms, showing a typical topographic pattern: the posterior
cingulate-precuneus region is affected first, followed by the
lateral temporoparietal region (Fig. 3) [10, 11].

In addition, several PET tracers are now available for in vivo
imaging of cerebral amyloid. The most extensively studied
amyloid ligand is the Pittsburgh compound B (11C -PIB). In
patients with AD this tracer shows increased cortical uptake
with the highest retention in the frontal, cingulated, precuneus,
striatum, parietal and lateral temporal cortex (Fig. 4) [29].
Amyloid PET may also be potentially useful at detecting an
underlying cause for MCI [30], but caution is required as
abnormal tracer uptake is found in up to 30 % of cognitively
normal elderly subjects [10]. Amyloid PET is therefore highly
sensitive but not very specific for a diagnosis of AD. The use of

Fig. 1 Coronal T1-weightedMR images demonstrating different degrees of
MTA. The visual rating scale incorporates the width of the choroid fissure,
the width of the temporal horn and the height of the hippocampal formation.
a Score 0—no atrophy. b Score 1—mild widening of the choroid fissure

only. c Score 2—moderate widening of choroid fissure and temporal horn,
with mild loss of hippocampal height. d Score 3—severe widening of
choroid fissure and temporal horn, with moderate loss of hippocampal
height. e Score 4—as for 3, but with severe loss of hippocampal height
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amyloid imaging for the diagnosis of dementia is likely to
increase as fluorinated tracers become more widely available.

Amongst the advanced MR imaging techniques, perfusion
imaging using arterial spin labelling (ASL), DTI and fMRI
appear promising in dementia imaging. Regional hypo-
perfusion on ASL studies correlates well with hypometa-
bolism on FDG PET [31] and the usefulness of ASL in
diagnosing AD is becoming clear [32]. DTI measures micro-
structural change in white matter. Studies in AD have sug-
gested that rather than being a focal process, white matter
changes are distributed throughout the brain [33]. In particu-
lar, damage to limbic fibres such as the cingulum and fornix
have been reported and changes here may provide greater
specificity in the diagnosis of AD [34]. Functional MRI has
been used to identify changes in resting state networks, with
reduced activation of the default mode network most com-
monly reported [35]. Task-based fMRI utilising memory re-
call has also identified changes within limbic brain networks
in individuals at higher risk of developing AD [36]. Whilst

these techniques are not as yet readily used in clinical practice,
preliminary studies suggest they may have a particular
strength in determining the onset of disease and could be
exploited as disease proximity biomarkers.

Posterior cortical atrophy

Posterior cortical atrophy (PCA) is characterised by a decline
in functions that depend on posterior hemisphere structures.
Patients typically present between 50 and 65 years of age with
a decline in visuospatial and visuoperceptual skills, as well as
problems with literacy and praxis, whilst memory and execu-
tive functions may be well preserved in the early stages of the
disease. Pathological studies have shown that AD is the most
common underlying cause of PCA [37, 38].

Structural imaging shows loss of volume in the occipital and
parietal lobes with progressive involvement of the temporal
lobes [39, 40]. A robust and reproducible rating scale for

Fig. 2 Co-registered volumetric
coronal T1-weighted images in a
patient with AD, taken at baseline
(a) and 12 months later (b)
demonstrate clear volume loss of
the hippocampi (arrows) and
enlargement of the lateral
ventricles with much less evident
volume loss in the remainder of
the brain

Fig. 3 FDG PET MRI in a
patient with early AD
demonstrating glucose
hypometabolism in the parietal
and temporal lobes. The lateral
part of the temporal lobes is more
severely affected than the medial
part, which is a typical FDG PET
finding of AD and distinct from
the temporal lobe atrophy which
is more prominent medially
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PCA has been developed, based on the degree of widening of
the posterior cingulate, parietal and parieto-occipital sulci [41].
FDG-PET studies also demonstrate hypometabolism in these
regions (Fig. 5) [42].

Vascular dementia

The notion of a potential link between dementia and
compromised cerebral perfusion was first mentioned by

Fig. 4 Axial images of an
amyloid PET CT using the tracer
11C-PIB in a patient with
progressive supranuclear palsy
(PSP) (a) and Alzheimer’s
disease (b). The patient in a
shows normal distribution of the
tracer, whereas the patient with
AD shows a high tracer uptake in
the cortices of the frontal,
temporal and occipital lobes
consistent with a heavy amyloid
burden

Fig. 5 A 55-year-old woman with posterior cortical atrophy (PCA).
Axial T2 (a), sagittal FLAIR (b) and coronal T1-weighted (c) images
demonstrate subtle enlargement of the inter-parietal, parieto-occipital and

postcentral sulci . The FDG-PET CT (d-f ) demonstrates marked
hypometabolism in both parietal and occipital lobes and normal tracer
uptake in the frontal lobes
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Pratensis [43, 44]. Subsequently Alois Alzheimer and Otto
Binswanger independently established a definite link between
the two [43].

Today, vascular dementia (VaD) is the second most com-
mon cause of cognitive impairment after AD in the elderly
[45], accounting for 20–40 % of cases [45–47]. Men are
affected more frequently than women [48, 49] and a higher
prevalence is seen in East Asia [49, 50]. Strong positive
associations have also been demonstrated with age, low edu-
cation level and vascular risk factors, including hypertension,
diabetes mellitus, hyperlipidaemia and smoking [45].

It is increasingly recognised that VaD and AD interact and
have additive effects [48]. Many of the predisposing cardio-
vascular risk factors associated with VaD are also linked to
AD [44–52], and the co-existence of vascular and AD pathol-
ogy is common with advancing age [51].

VaD may be caused by large or small vessel disease. Large
vessel disease can cause single or multiple cortical and subcor-
tical infarcts (Fig. 6) which may be associated with cognitive
impairment, particularly if they involve strategic regions such as
the hippocampus, thalamus, cingulate gyrus or angular gyrus.

An international workshop of the National Institute of
Neurological Disorders and Stroke (NINDS) and the Associ-
ation Internationale pour la Recherche et l’Enseignement en
Neurosciences (AIREN) laid down criteria for VaD. The
radiological component of the NINDS AIREN criteria show
considerable interobserver variability and the operational def-
initions for these criteria improve the agreement for experi-
enced observers [53].

Small vessel disease is the commonest cause of VaD.
Imaging findings include focal and/or confluent white matter
lesions, lacunes and small infarcts in the territory of the deep
perforating vessels. The imaging manifestations of small ves-
sel disease have recently been summarised in an excellent
position paper aiming to provide Standards for Reporting
Vascular changes on neuroimaging (STRIVE) [54].

A number of rating scales have been developed to describe
the extent of white matter changes (WMC) in small vessel
disease [1, 54]. The Fazekas scale , which uses four steps, is
the simplest of these scales and can easily be used in clinical
practice: 0=noWMC; 1=only punctate small WMC; 2=early
confluent WMC; 3=confluent WMC. A score of 1 can be

Fig. 6 Axial T2-weighted (a)
and coronal FLAIR (b) images
show extensive confluent
hyperintense white matter lesions
of presumed vascular origin,
corresponding to Fazekas grade 3
small vessel disease. There is also
predominantly central volume
loss

Fig. 7 Coronal T2-weighted and
FLAIR images in a patient with
small vessel disease and bilateral
lacunes in the thalami. Confluent
T2/FLAIR hyperintense signal in
the periventricular white matter is
typical for small vessel disease.
The lacunes in the thalamus
(arrows) appear bright on T2-
weighted images but dark on the
FLAIR images. Note also that the
brainstem lesions are less well
seen on FLAIR images
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considered normal above the age of 65 years, a score of 2 is
abnormal below 70 years and a score of 3 is always abnormal.

VaD is most frequently seen with extensive confluent white
matter lesions, multiple lacunes or bilateral small thalamic
infarcts (Fig. 7). The clinical phenotypes of VaD are hetero-
geneous. Cortical infarcts may lead to aphasia, apraxia and
seizures, whilst subcortical lesions are associated with execu-
tive dysfunction, gait disturbance, urinary incontinence, Par-
kinsonism and bradyphrenia [50, 52, 55].

In multi-infarct dementia (MID), large artery infarct episodes
occur in close temporal relation to the onset of dementia [45].
Focal neurological signs occur with classically a stepwise progres-
sion of cognitive impairment [45]. In contrast, subcortical vascular
dementia due to small vessel disease follows a more insidious
course [45]. Depression occurs in up to 20%of patienswithVaD,
particularly with frontal white matter involvement [45, 56].

Whilst large cortical infarcts and extensive small vessel
disease can readily be detected with CT, MRI is much more

sensitive at detecting subtle white matter lesions [27] and
smaller infarcts [1]. White matter lesions in small vessel
disease appear hyperintense on T2 and FLAIR images and
tend to spare the subcortical U fibres and temporal lobe, in
contrast to multiple sclerosis [9]. Lacunes appear bright in T2-
weighted images but dark on FLAIR images (Fig. 7).

Another advantage of MR imaging is that diffusion-
weighted imaging (DWI) can identify acute infarcts and that
T2*-weighted or susceptibility-weighted imaging enables the
detection of cerebral microbleeds, which have an important
association with cognitive impairment and an increased inci-
dence in AD and cerebral amyloid angiopathy [57].

Compromise of cerebral blood flow in small or large vessel
disease can be detected with MR perfusion imaging. A study
using arterial spin-labelling (ASL) demonstrated that subjects with
diffuse confluent white matter hyperintensities (WMH) have ap-
proximately 20% lower cerebral blood flow (CBF)measurements
than subjects with punctiform or early confluent WMH [58].

Fig. 8 A patient with proven CADASIL. Coronal FLAIR image (a)
shows widespread and confluent white matter hyperintensities with in-
volvement of the external capsules and temporal lobes bilaterally . The
susceptibility-weighted (SWI) image shows multiple microhaemorrhages

in both thalami, which is a typical location for CADASIL. The central
location of microhaemorrhages is distinct from the peripheral distribution
of these lesions seen in cerebral amyloid angiopathy and AD

Fig. 9 Normal DAT scan (a) for comparison. DAT scan of a patient with DLB (b) showing lack of tracer uptake in the putamen bilaterally. Axial T2-
weighted image (c) of the same patient shows non-specific generalised supratentorial volume loss
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CADASIL (cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy) is the most
common genetic cerebrovascular disease and due to a muta-
tion of the notch-3 gene [59]. Strokes usually occur in the 4th
or 5th decade of life, with progression to a subcortical demen-
tia. The radiological features of CADASIL are extensive white
matter lesions with involvement of the temporal lobes and
external capsules. Infratentorial and basal ganglia microbleeds
are also a feature (Fig. 8).

Dementia with lewy bodies

Lewy bodies are intracellular pathological aggregations of
alpha synuclein that were originally described in 1912 by
Frederich Lewy. It is believed that dementia with Lewy bodies
(DLB) accounts for between 15–20 % [60, 61] of dementia
cases in the elderly. Clinically the diagnostic features are
ranked as central, core, suggestive and supportive. The central
feature required for the diagnosis is a progressive decline in
cognition that is of sufficient magnitude to interfere with
normal occupational or social function. Core features include
fluctuating cognition with a decline in executive and
visuoperceptual skills being common in addition to recurrent,
well formed three-dimensional visual hallucinations and spon-
taneous features of Parkinsonism. Prominent episodic memo-
ry impairment is not uncommon and may mimic AD.

There is an overlap between DLB and Parkinson’s disease,
which can be regarded as ends of a continuous spectrum.
Consensus agreement recommends that the diagnosis of
DLB should be made if the dementia precedes the motor
symptoms or has occurred within 12 months of the motor
symptoms [62], whereas Parkinson’s disease dementia (PDD)
should be considered if motor features are present for at least
12 months before the onset of the dementia [63]. Differentia-
tion of DLB from AD is important given the sensitivity of
patients with DLB to neuroleptics. In contrast to AD, the
memory impairment is often not as severe and visual halluci-
nations are more likely to occur in DLB.

Imaging findings of DLB are non-specific global and sub-
cortical volume loss with relative preservation of the hippo-
campi, which can be a distinguishing feature from AD [64].
However, medial temporal lobe atrophy does not exclude DLB
as it becomes more prominent with increasing age and severity.

Imaging of the dopaminergic pathway using single-photon
emission computed tomography (SPECT) with the I123 pre-
synaptic ligand, FP-CIT, has proven useful and is currently
recommended by the National Institute for Health and Clinical
Excellence (NICE) in the U.K. In normal healthy subjects and
in patients with AD this ligand is readily taken up in both the
caudate and putamen; however, in patients with DLB, uptake
in the putamen is almost absent and in the caudate it is
markedly reduced (Fig. 9). Several studies have shown that

FP-CIT SPECT imaging has a sensitivity and specificity for
DLB/PDD in the region of 80–90 % [65–67].

Cardiac sympathetic denervation, reflected by a decreased
tracer uptake on iodine-123-metaiodobenzylguanidine
(MIBG) myocardial scintigraphy has been detected in DLB
but not in AD. This technique has been shown to have a 98 %
sensitivity of differentiating DLB from other dementias [68]
and is currently part of the latest guidelines as one of the
supportive features for diagnosing DLB.

Frontotemporal lobar degeneration

Frontotemporal lobar degeneration (FTLD) refers to the path-
ological entities that underlie a number of clinical syndromes
often with focal cortical atrophy. It is estimated to be the third
most common cause of primary dementia [69], and the second
most common cause of early-onset dementia. Broadly speak-
ing two main sub-types exist: a behavioural-led syndrome
(bvFTD) and a language-led syndrome (primary progressive
aphasia [PPA]) (Fig. 10).

BvFTD is a clinical syndrome characterised by progressive
deterioration in social cognition. Common early features may
include combinations of behavioural disinhibition, apathy,
loss of empathy, compulsive behaviour and hyperorality [70].

PPA encompasses three distinct clinical subtypes:

1. Semantic variant PPA (sv-PPA), characterised by fluent
speech, anomia and loss of object knowledge

2. Non-fluent/agrammatic PPA (nv-PPA), characterised by
effortful speech production and orofacial apraxia

3. Logopenic variant PPA (lv-PPA) characterised by word-
finding pauses and poor sentence repetition [71]

With the advent of modern immunohistochemistry, the
protein basis for these diseases have become clearer. BvFTD
is most commonly associated with tau or TDP-43 protein
deposition; sv-PPA most commonly with TDP-43 and nv-
PPA with tau and to a lesser degree TDP-43. AD pathology
is found commonly in those with lv-PPA and occasionally in
cases of nv-PPA [72, 73]. In a significant proportion of these
cases a movement disorder will also emerge (Fig. 10) [74].

Structural neuroimaging, preferably with MRI, is an essen-
tial part of the evaluation of suspected FTLD. The classical
description of FTLD is atrophy of the frontal and temporal
cortices, which is often asymmetrical, with relative sparing of
the parietal and occipital lobes [75].

Characteristic patterns of atrophy have been described for
each of the clinical subtypes of FTLD.

Typically bvFTD shows symmetrical frontal lobe atrophy
(Fig. 11), although asymmetric patterns of atrophy predomi-
nantly involving the right frontal [76] and/or right temporal
lobe [75] can occur (Fig. 12).
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Fig. 12 Coronal FLAIR images in a patient with a right temporal variant
of bvFTD . There is marked asymmetrical volume loss of the right
temporal lobe affecting all the temporal gyri and resulting in marked

dilatation of the right temporal horn. There is much less marked atrophy
of the left temporal lobe and dilatation of both lateral ventricles

Fig. 11 Axial (a) and coronal (b) volumetric T1 weighted images in a patient with bvFLTshowingmarked symmetrical volume loss in the frontal lobes
with a “knife edge” appearance of the superior and middle frontal gyri

Fig. 10 Schematic diagram of FTLD subtypes, separating those with a behaviour-led presentation from those with a language-led clinical presentation.
The bottom line of the diagram indicates the common pathological findings associated with these clinical presentations
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In contrast, patients with the language variants often dem-
onstrate left-sided asymmetric volume loss. In semantic vari-
ant PPA, there is typically atrophy in the left anterior inferior
temporal lobe (with “knife-edge”–type gyri) affecting partic-
ularly the fusiform gyrus but the entire left temporal lobe can
be involved (Fig. 13) [77, 78]. In addition, there is often
involvement of the ventromedial and superior frontal lobes
and, as the disease progresses, the right temporal lobe can also
show a less marked degree of volume loss.

The findings in non-fluent/agrammatic PPA are of selective
left perisylvian and frontal atrophy. In logopenic variant PPA,
the atrophy is mainly left-sided and more posterior, involving
the angular and middle temporal gyri (Fig. 14) [68, 71].

Unlike AD, up to 40% of individuals with FTLDwill have a
genetic explanation for their syndrome [74]. A number of
autosomal dominant mutations have been described with par-
ticular patterns of brain atrophy. Focal medial temporal lobe

atrophy with parahippocampal and bilateral anterior-inferior
temporal lobe atrophy is seen in microtubule-associated tau
protein (MAPT) mutations. Highly asymmetric hemispheric
atrophy has been associated with mutations in the progranulin
gene (GRN) (Fig. 15) [69]. More recently, a major new muta-
tion has been identified as a cause of FTLD and motor neurone
disease (C9ORF72 gene expansion) showing a heterogeneous
but predominantly symmetrical pattern of atrophy [79].

Quantitative MRI studies, using automated image analysis
techniques, have refined these visual observations, with par-
ticular patterns of atrophy having a strong predictive value for
particular underlying pathologies [80, 81]. These techniques
are not routinely available in a clinical setting at present and,
as for AD and PCA, visual rating scales for clinical use have
also been developed for frontotemporal dementia [78].

FDG-PET and amyloid PET help to differentiate FTLD
from AD [82, 83]. FTLD is not associated with increased

Fig. 14 Axial T1-weighted MRI images in two different types of lan-
guage led FLTD: non-fluent/agrammatic PPA (a) and logopenic variant
PPA (b). Both cases show a markedly asymmetrical atrophy affecting
predominantly the left hemisphere. In non-fluent/agrammatic PPA, the

volume loss is centred around the left perisylvian region with resulting
enlargement of the left Sylvian fissure (a). In the logopenic variant PPA,
there is much more marked involvement of the left angular gyrus and
posterior temporal lobe as well as occipital lobe (b)

Fig. 13 Coronal T1-weighted images (a, b) and fused FDG PET MRI
image (c) in a patient with sematic variant PPA (semantic dementia). a, b
Marked asymmetrical volume loss is found in the left temporal lobe affecting

all temporal gyri and particularly the fusiform gyrus (arrow). c The FDG
PETMRI demonstrates glucose hypometabolism not only in the left but also
in the right temporal lobe, which shows much less marked atrophy
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amyloid burden and shows distinct patterns of hypometabolism
in specific clinical syndromes, with frontal hypometabolism
being associated with bvFTD, temporal with sv-PPA and left
perisylvian with nv-PPA [83, 84].

Diffusion tensor imaging (DTI) can demonstrate involve-
ment of specific white matter tracts in various subtypes of
FTLD (Fig. 16).

There are fewer DTI studies of white matter alterations in
bvFTD than AD. Widespread changes in white matter have
been reported, with a particular emphasis on anterior tracts
including the uncinate fasciculus, inferior longitudinal fascicu-
lus and anterior commissural fibres [85]. PPA damage to the
following tracts has been reported: inferior longitudinal fascic-
ulus and uncinate fasciculus in sv-PPA; left superior longitudi-
nal fasciculus and anterior thalamic radiations in nv-PPA and
widespread dorsal and ventral white matter tracts in lv-PPA [86,

87]. There have been few fMRI studies in bvFTD, although one
major study examining resting state activity identified reduced
activity within a ‘Salience Network’, an area overlapping the
anterior cingulate and frontoinsular cortices, an important brain
region for the interpretation of social cognition [88]. One task-
based fMRI study using non-verbal sounds identified different
patterns of brain activation within the superior temporal cortex
in sv-PPAwhen compared with healthy individuals.

Conclusions

The role of neuroimaging in dementia has changed in the past
decade; it is no longer merely performed as a means to exclude
underlying conditions such as brain tumours or infarcts. MR
imaging, especially volumetric T1-weighted images, can

Fig. 16 Diffusion tensor imaging (DTI) with two different cases of
FTLD: right temporal lobe bvFTD (a) and semantic variant PPA (b)
showing asymmetry of the inferior longitudinal fasciculi (ILF), which are

major association fibres connecting the temporal and occipital lobes. In a
there is atrophy of the right ILF (white arrow) and in b there is atrophy of
the left ILF (red arrow)

Fig. 15 Coronal T1-weighted images of two different cases of autosomal
dominant FTLD: microtubule associated tau protein (MAPT) mutation
(a) and mutation of the progranulin gene (b). The MAPT mutation (a)
shows symmetrical atrophy of the medial temporal lobes with

characteristic “ballooning” of the temporal horn of the lateral ventricles.
The progranulin mutation (b) showedmarkedly asymmetric atrophy with
“knife edge” appearance of the left temporal and frontal gyri, and marked
expansion of the left lateral ventricle and Sylvian fissure
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show specific patterns of focal atrophy which have a high
positive predictive value for a number of dementia subtypes. It
is important for radiologists to be aware of the typical imaging
appearances of the common causes of dementia. In addition,
functional and molecular imaging techniques can improve the
diagnostic accuracy and help early disease detection.
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Editor’s note

Readers will notice that this issue contains two rather similar review articles
on the imaging of dementia. Both articles try to help the average radiologist
identify key features which may require expert neuroradiological attention.
Two groups spontaneously submitted a review article at roughly the same
time. Thereweremerits in both papers; bothwere favourably reviewed. It was
an impossible editorial choice to select one paper over another and hence both
are published alongside each other. It will be interesting to see whether the
astute readers will identify differences. Indeed this may lead to some inter-
esting discussion in the opinion column on the journal’s website.
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