

fMRI: Theoretical Principles and Clinical Applications

Sotirios Bisdas

Overview

- 1. Where does the fMRI signal come from
- 2. How is fMRI acquired
- 3. Block design
- 4. Event-related design
- 5. Experimental design
- 6. Caveats
- 7. The use of clinical fMRI

Where does the fMRI signal come from

Functional MRI

- Evaluating physiological alterations in brain tissue during normal activity
- Blood oxygen level dependent (BOLD) effect
 - Oxyhaemoglobin (diamagnetic)
 - Deoxyhaemoglobin (paramagnetic)

http://www.nature.com/nrn/journal/v3/n2/box/nrn730_BX1.html

Nature Reviews | Neuroscience

Visualising the brain at work

increase in T2* MR signal

Visualising the brain at work

increase in T2* MR signal

BOLD fMRI

- Indirect measure of neuronal activation
- Small contribution of veins to signal change
- Influence of pathology/drugs on BOLD contrast
 - Compression of microvasculature by tumor & edema
 - Metabolism changes induced by pathology, .e.g pH changes
 - Metabolism/CBF/CBV changes induced by drugs
 - => fMRI activation reduced or absent

How is fMRI acquired

Paradigm presentation

- Monitor or Screen + projector or goggles
- Computer with vendor or in-house software
- Connection Scanner Trigger to Computer
- Response device

MRI Basis: T₂*- contrast

- Gradient Echo
- Fast Imaging WHOLE HEAD
- EchoPlanarlmaging:
 - 64x64 matrix
 - TE ~ 30/50 ms (3T/1.5T)
 - up to 49 slices
 - TR ~ 2 to 3 s
- SMALL voxels
 - about 3 x 3 x 3 mm³
- Large bandwidth
- Parallel imaging / Multiband

MRI Basis: Subtraction

Finger movement

Rest

Changes < few %

Activation

UCL

MRI Basis: Subtraction

Task

Rest

Activation

Block design

PELA

Block design BOLD response, % 3 initial post stimulus undershoot dip 2 overshoot A A time stimulus A \otimes A HRF Predicted neural activity A time Δ Predicted response time

Block design

[•]UCL

The coloured (statistical) map represents the degree of confidence that a voxel signal has changed according to the paradigm

Postprocessing – first steps

- Reconstruction
 - create image and remove gross artefacts
- Motion Correction
 - Get consistent anatomical coordinates (always do this)
- Slice Timing
 - Get consistent acquisition timing (use temporal derivatives instead)
- Spatial Smoothing
 - Improves SNR & validate GLM

Postprocessing – statistical inference

- Multiple-comparison corrections
 - Bonferroni
 - Family Wise Error (FWE)

on average, 5% of all experiments have one or more false positive voxels

Event-related design

Block vs Event-related design

 Block/epoch designs examine responses to series of similar stimuli

 Event-related designs account for response to each single stimulus

Event related design

Event related design

Event related design

Advantages of event-related fMRI

- Randomised trial order
- Post-hoc subjective classification of trials
- Some events can only be indicated by participants
- Some events cannot be blocked due to stimulus context

Disadvantages of intermixed designs

- Less efficient for detecting effects than blocked designs
- Some psychological processes have to / may be better blocked (e.g. If difficult to switch between states, or to reduce surprise effects)
- Timing issue (sampling) particularly important for event-related design ("wrong" post-stimulus timing might miss peak signal)

Caveats

UCL

BOLD fMRI

↑neural activity → ↑ blood flow → ↑ oxyhemoglobin → ↑ T2* → ↑ MR signal

BOLD fMRI

- Statistical maps
 - \Rightarrow Controls false positives, not false negatives
- No distinction of essential vs expendable brain regions

Pitfalls / Caveats ...

• Absence of activation \neq no eloquent function

 Presence of activation ≠ eloquent area caution with activation in lesions!

'Activation' within lesion

... Pitfalls / Caveats

Distance between lesion and area of activity varies with varying tresholds

UCL

... Pitfalls / Caveats

• Artefacts: movement, ghosting, instability, distortions, signal drop: air/tissue interface, haemosiderin deposits

The use of clinical fMRI

Main clinical use today

Preoperative evaluation

- Surgical challenge:
 - maximize resection
 - minimize neurological deficit

Role of fMRI

- Assessing risk of neurological deficit following procedure
- Selecting pts for invasive intraoperative mapping
- Planning surgical approach

UCL

Language/motor 28 < 20 mm (Yetkin AJNR 1997)

... more recently

- Presurgical planning for tumor resectioning Sunaert S, JMRI 2006
- Localizing and Lateralizing Language in Patients with Brain Tumors: Feasibility of Routine Preoperative Functional MR Imaging in 81 Consecutive Patients

Stippich C, Radiology 2007

 Presurgical Functional MR Imaging of Language and Motor Functions: Validation with Intraoperative Electrocortical Mapping Bizzi A, Radiology 2008

Rule of thumb

 Δ = Distance between lesion and peak activation

- $\Delta < 1$ cm => deficit highly probable
- $1 \text{cm} < \Delta < 2 \text{cm} \Rightarrow \text{deficit possible}$
- $2 \text{cm} < \Delta$ => deficit unlikely

Advantages of BOLD fMRI

- High spatial and temporal resolution
- Short examination time
- Repetitive and longitudinal studies
- Non-invasive
- Cost effective
- Availability

...clinical applications

- Mass lesions Tumours, Vascular malformations
 - Avoid eloquent areas in the surgical approach
 - Distortion / effacement of anatomical landmarks
 - Plasticity / re-organization of functional activity
 - Hemispheric dominance

- Epilepsy
 - Language lateralisation (replaced WADA test)
 - Combined with DTI to avoid optic pathways (Meyer's loop)

UCL

Clinical Paradigms

- Sensori-Motor
 - hands, feet, lips, tongue, eyes

- Language
 - verb generation, verbal fluency, naming, sentence comprehension, reading
- Vision
- Often Combined with DTI

Language

Figure 8. Areas of activation for the phonologic paradigm as determined with a fixed-effects group analysis of six right-handed volunteers (T > 5, cluster >10 voxels). High-resolution T1-weighted MR images show superimposed activation in the frontal (a) and posterior parietotemporal (b) language areas, predominantly in the left hemisphere.

M Smits et al. RadioGraphics 2006; 26:S145-S158

Language network

ANTERIOR SEGMENT

Geschwind's territory

POSTERIOR

SEGMENT

Broca's territory

LONG SEGMENT

Wernicke's territory

Catani Ann Neurol 2005

R foot, R hand, Verbal Fluency1, Verbal Fluency2 Arcuate Fasciculus, CST: R foot, R hand

R foot, R hand, Verbal Fluency1, Verbal Fluency2 Arcuate Fasciculus, CST: R foot, R hand

UCL

Verbal Fluency, Verb Generation, Optic radiation

L hand, Lips CST: L hand, Lips

L hand, Lips CST: L hand, Lips

Fluency, Verb Generation

UCL

UCL

UCL

Verbal Fluency1, Verbal Fluency 2, R foot

Team Effort

- Radiographers
 - Helping with set-up and imaging
- Physicists
 - paradigm implementation/optimisation, data acquisition, data check, analysis
- Neuropsychologists
 - Identification of function to be tested/optimisation of paradigm
- Neurologists and Neurosurgeons
 - Identification of function to be tested/optimisation of paradigm
- Neuroradiologists
 - Identification of function to be tested, interpretation of results