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Abstract: Purpose: To compare language networks derived from resting-state fMRI (rs-fMRI) with task-
fMRI in patients with brain tumors and investigate variables that affect rs-fMRI vs task-fMRI concord-
ance. Materials and Methods: Independent component analysis (ICA) of rs-fMRI was performed with 20,
30, 40, and 50 target components (ICA20 to ICA50) and language networks identified for patients pre-
senting for presurgical fMRI mapping between 1/1/2009 and 7/1/2015. 49 patients were analyzed ful-
filling criteria for presence of brain tumors, no prior brain surgery, and adequate task-fMRI performance.
Rs-vs-task-fMRI concordance was measured using Dice coefficients across varying fMRI thresholds
before and after noise removal. Multi-thresholded Dice coefficient volume under the surface (DiceVUS)
and maximum Dice coefficient (MaxDice) were calculated. One-way Analysis of Variance (ANOVA) was
performed to determine significance of DiceVUS and MaxDice between the four ICA order groups. Age,
Sex, Handedness, Tumor Side, Tumor Size, WHO Grade, number of scrubbed volumes, image intensity
root mean square (iRMS), and mean framewise displacement (FD) were used as predictors for VUS in a
linear regression. Results: Artificial elevation of rs-fMRI vs task-fMRI concordance is seen at low thresh-
olds due to noise. Noise-removed group-mean DiceVUS and MaxDice improved as ICA order increased,
however ANOVA demonstrated no statistically significant difference between the four groups. Linear
regression demonstrated an association between iRMS and DiceVUS for ICA30-50, and iRMS and Max-
Dice for ICA50. Conclusion: Overall there is moderate group level rs-vs-task fMRI language network
concordance, however substantial subject-level variability exists; iRMS may be used to determine reliabil-
ity of rs-fMRI derived language networks. Hum Brain Mapp 37:913–923, 2016. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Mapping of eloquent brain areas using functional mag-
netic resonance imaging (fMRI) is widely used for preop-
erative planning. There are varying accounts on the
accuracy of fMRI language mapping [Bizzi et al., 2008;
Giussani et al., 2010; Kuchcinski et al., 2015; Rutten et al.,
2002]. Nevertheless, the use of fMRI can result in reduced
surgical time, increased extent of resection, and reduced
craniotomy size [Petrella et al., 2006], as well as accurate
prediction of perioperative deficits [Bailey et al., 2015; Pil-
lai, 2010]. Furthermore, fMRI demonstrates high accuracy
in determining hemispheric language dominance, aiding
the neurosurgeon in assessing operative risk [Dym et al.,
2011]. Indeed, in many institutions, fMRI may be consid-
ered standard of care in the workup of patients for opera-
tive planning when the trajectory or resection involves
critical brain regions [Gabriel et al., 2014].

There are, however, several limitations of fMRI as it is
currently implemented. Brain activation is determined by
correlation of changes in blood oxygenation level depend-
ent (BOLD) signal with performance of a task that is
modulated across fMRI acquisition [Ogawa et al., 1993].
As direct neuronal activation is not being measured, a
hemodynamic response function (HRF) is used to model
task-related changes in BOLD signal. The task paradigm
must be constructed carefully to ensure that the design
accurately activates brain regions for a specific function,
while minimizing inclusion of confounding neurobehavio-
ral functions. Generally, for language mapping, a combina-
tion of multiple tasks is needed to ensure activation of the
global language network. Specialized stimulus presenta-
tion equipment and software are also needed for imple-
mentation of the paradigms, and highly trained personnel
are needed to assess the patient’s cognitive status prior to
fMRI scanning, select appropriate paradigms and evaluate
task performance. All the considerations aforementioned
contribute to added cost in the patient’s medical care. In
addition, ensuring adequate task compliance may be chal-
lenging in neurologically debilitated patients or in the
pediatric population.

Resting-state fMRI (rs-fMRI) has the potential to over-
come some of these limitations. In rs-fMRI, no explicit task
is given, and spontaneous fluctuations in BOLD signal
across brain regions are measured [Fox et al., 2005]. This
technique is attractive as it overcomes two common
shortcomings of task-fMRI: the necessity to model the
HRF to estimate task-related brain activity and the need
for patient compliance and capability in performing a task.

In rs-fMRI, spatially distinct but temporally synchronous
regions of signal changes are seen representing intrinsic
brain networks, with the motor network universally and
the language network variably being demonstrated in
group studies [Allen et al., 2011; Damoiseaux et al., 2006;
Kalcher et al., 2012]. Several studies have examined the
potential use of rs-fMRI in presurgical brain mapping.
There is a high overlap between rs-fMRI and task-fMRI

when comparing the motor network [Kokkonen et al.,
2009; Shimony et al., 2009; Zhang et al., 2009], with rs-
fMRI showing high concordance with cortical stimulation
mapping [Zhang et al., 2009]. Reproducibility of rs-fMRI-
derived motor maps is also comparable to that of task-
fMRI [Mannfolk et al., 2011]. There is moderate overlap of
the language network in healthy subjects between rs-fMRI
and task-fMRI [Tie et al., 2014] with high reproducibility
[Kollndorfer et al., 2013]. Mitchell et al. [2013] demon-
strated in a limited number of subjects that an artificial
neural network algorithm can reliably identify motor and
language networks even in cases of grossly altered anat-
omy due to lesion mass effect.

In this study, we investigated the concordance of rs-
fMRI-derived language networks with task-fMRI language
activation in a cohort of patients with brain tumors pre-
senting for presurgical mapping. We hypothesized that
there is variability in the concordance of rs-fMRI and task-
fMRI across subjects and explored variables that may
impact the reliability of rs-fMRI for presurgical mapping.

MATERIALS AND METHODS

Participants

For this IRB-approved retrospective study, the Johns
Hopkins Hospital radiology information system (RIS) was
interrogated for any patient who underwent fMRI for pre-
surgical brain mapping between 1/1/2009 and 7/1/2015.
Seventy-nine patients had rs-fMRI in addition to task-fMRI
during the same imaging session. Twenty-one of these
patients had prior history of brain surgery (including
biopsy) and were excluded. One patient demonstrated
imaging findings consistent with an intracranial arteriove-
nous malformation (AVM) and was excluded. Language
fMRI for presurgical brain mapping is tailored to each
individual patient in several ways. First, a task must be
selected that is within the performance capabilities of the
patient (e.g., a language task based on visual cues will not
be used on a patient who is not able to adequately see the
stimulus). Second, the location of the lesion influences the
type of task chosen as the goal is to identify language
related brain areas along the expected surgical trajectory
and in the immediate vicinity of the lesion. For a lesion
near the posterior temporal lobe for example, a receptive
language task that robustly activates Wernicke’s area is
necessary. For this study, we selected patients who had
performed three tasks that are most commonly utilized in
combination at our institution for assessment of global
language regions. The three tasks were rhyming (Rhym),
sentence completion (SC), and silent word generation
(SWG). Five patients who did not complete all three tasks
were excluded. Of the remaining fifty-two patients,
three patients were excluded due to lack of reliable
language-related activation on task-fMRI data, which was
assessed qualitatively by a subspecialty board-certified
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neuroradiologist with more than 5 years of experience in
presurgical brain mapping using fMRI. Forty-nine patients
were thus included for final analysis (age range 18–69/
mean 39.82 years; 31 males and 18 females).

Handedness

A laterality index (LI) for patient handedness was calcu-
lated using the Edinburgh Handedness Inventory ques-
tionnaire [Oldfield, 1971]. LI was calculated in a similar
manner to calculation of LI for hemispheric language dom-
inance in fMRI:

Number of responses RIGHT - Number of responses LEFT

Number of responses RIGHT 1 Number of responses LEFT

Lesion Characterization

For each patient, lesion location (left vs right hemi-
sphere), volume (in cubic millimeters), and pathology
(when available) were documented. For brain tumors, the
World Health Organization (WHO) histologic grade was
recorded. Lesion volume for each subject was calculated
by manual region-of-interest (ROI) drawing on T2-Fluid-
attenuated inversion recovery (FLAIR) images (parameters
below) in the Medical Image Processing, Analysis, and
Visualization (MIPAV) application (National Institutes of
Health, Bethesda, Maryland). For high-grade brain tumors,
MRI cannot assess the true extent of neoplasm, and there
are fractional contributions of edema and infiltrative neo-
plasm in areas of T2 signal hyperintensity. As our primary
interest was spatial extent of abnormality as a variable, we
included all areas of lesion-related T2 signal hyperintensity
as the final lesion volume.

Imaging

MR images were obtained using a 3.0 T Siemens Trio
Tim system (Siemens Medical Solutions, Erlangen, Ger-
many) with a 12-channel head matrix coil. Structural
images included a three-dimensional (3D) T1 sequence
(TR 5 2300 ms, TI 5 900 ms, TE 5 3.5 ms, flip angle 5 98,
field of view 5 24 cm, acquisition matrix 5 256 3 256 3

176, slice thickness 5 1 mm) and a two-dimensional (2D)
T2-FLAIR sequence (TR 5 9310 ms, TI 5 2500 ms, TE 5 116
ms, flip angle 5 1418, field of view 5 24 cm, acquisition
matrix 5 320 3 240 3 50, slice thickness 5 3 mm). Func-
tional T2*-weighted BOLD images for both task-fMRI and
rs-fMRI were acquired using 2D gradient-echo echo-planar
imaging (TR 5 2000 ms, TE 5 30 ms, flip angle 5 908, field
of view 5 24 cm, acquisition matrix 5 64 3 64 3 33, slice
thickness 5 4 mm, slice gap 5 1 mm, interleaved acquisi-
tion). For rs-fMRI, 180 volumes were acquired (6 min),
with three instructions: (1) try to keep still, (2) keep your
eyes closed, and (3) do not fall asleep.

Task-fMRI Paradigms

For each patient, instructions and practice sessions
were provided outside the scanner on each task to be
performed. During acquisition, real-time fMRI maps for
each task were monitored by the neuroradiologist to
assess for global data quality; any task performance that
was deemed suboptimal due to motion-related or other
artifact was repeated per our protocol. Language fMRI
tasks were implemented using stimulus presentation
software provided by Prism Clinical Imaging (Elm
Grove, Wisconsin).

All paradigms used a block design of either 30 s (Rhym)
or 20 s (SC, SWG) alternating task and control blocks for
total acquisition duration of 3 or 4 min, respectively [Pillai
and Zaca, 2011; Zac�a et al., 2012, 2013].

Image Processing

The fMRI imaging data was processed using Statistical
Parametric Mapping (SPM) version 8 (Wellcome Depart-
ment of Imaging Neuroscience, University College Lon-
don, UK) and custom MATLAB (Mathworks, Natick,
Massachusetts) scripts.

Task-fMRI underwent slice timing correction (STC) fol-
lowed by motion correction (MC), normalization to a Mon-
treal Neurological Institute (MNI-152) template, and
spatial smoothing using a 6 mm full width at half maxi-
mum (FWHM) Gaussian kernel.

Rs-fMRI underwent STC followed by MC. The ArtRe-
pair toolbox [Mazaika et al., 2009] was then used to
detect volumes with large shifts in global average signal
intensity related to scan-to-scan motion; both the outlier
volumes and additional volumes recommended for dew-
eighting were tagged for subsequent removal from anal-
ysis (i.e., for “scrubbing”). Rs-fMRI was linearly
detrended. Following coregistration of rs-fMRI and T1-
weighted images, physiological nuisance regression of
rs-fMRI was performed utilizing the CompCor method
[Behzadi et al., 2007] using signal extracted from eroded
white matter and cerebrospinal fluid masks. After band-
pass filtering from 0.01 to 0.1 Hz, smoothing was per-
formed with a 6 mm FWHM Gaussian kernel. Finally,
images tagged by ArtRepair were removed (“scrubbed”)
from the rs-fMRI volumes.

For each subject, the variance of signal intensity
across time was measured by calculating the average
root mean square fluctuation in signal intensity of all
voxels within subject-specific brain masks (image inten-
sity Root Mean Squared, or iRMS, denoted as percent
signal change). In addition, mean volume-to-volume
framewise displacement (FD) was calculated per Power
et al. [2012].

All task-fMRI and rs-fMRI images were visually
inspected throughout the different steps of processing for
quality control.
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IMAGE ANALYSIS

Task-fMRI

General linear model (GLM) analysis was used for task-
fMRI using SPM8 using the canonical HRF convolved with
the boxcar function for each task with the following param-
eters: no model derivatives; 128 s high-pass filter; no global
intensity normalization; autoregressive model (AR1) to
account for temporal autocorrelations; and no confound
matrix. A design matrix was constructed for each patient
with the contrast set to detect activation across all three
tasks compared to rest. The SPM T-contrast maps were gen-
erated without clustering or multiple comparison correc-
tion; the former was not performed due to the necessity of
multilevel thresholding (below), and the latter was not per-
formed as it would result in overly stringent thresholding
for clinical language activation maps.

Rs-fMRI

Rs-fMRI was analyzed using the group independent
component analysis (ICA) of fMRI Toolbox (GIFT, Medical

Image Analysis Lab, http://mialab.mrn.org/software/
gift). ICA was performed separately for each subject using
the InfoMax algorithm with ICASSO set at 5 repeats to
determine reliability of the ICA maps [Himberg et al.,
2004]. ICA maps were generated for 20, 30, 40, and 50
components, designated here as ICA20, ICA30, ICA40, and
ICA50, respectively. For each ICA order, to minimize
errors in identification of the language network, spatial
sorting was performed using the multiple regression
method implemented in GIFT and the task-fMRI T-maps
used as the reference template. Because the level of task-
fMRI T-map thresholding may affect the order of the best
matched rs-fMRI ICA component (e.g., at low thresholds,
more noise elements are present in the task-fMRI which
could result in selection of noise rs-fMRI ICA components
as the best match, and at high thresholds, limited active
voxels are present to determine the best rs-fMRI match),
we utilized 4 different levels of task-fMRI thresholding
after signal normalization (below) as the target maps; the 4
levels represented thresholds at 20%, 40%, 60%, and 80%
of the maximum fMRI signal value across the whole brain.
The top three rs-fMRI ICA components for each thresh-
olded task-fMRI target were then visually inspected to
select the one component for each ICA order that demon-
strated the highest spatial overlap with the task-fMRI
maps; this represented the best candidate for the rs-fMRI
language network. Because the level of noise in the task-
fMRI activation maps may differ across subjects for a par-
ticular threshold level, we qualitatively assessed the target
task-fMRI activation maps to weight the rs-fMRI network
selection to the task-fMRI threshold demonstrating the
least amount of noise. As an example, consider a condition
where the multiple regression algorithm listed rs-fMRI
component 5 as the best match for task-fMRI thresholded
at 20% and 40% and component 11 as the best match for
task-fMRI thresholded at 60% and 80%. If qualitative
review of the task-fMRI shows noise at the low levels of
thresholds (20% and 40%) with no clear localization of
language-specific activation, however, clear language-
specific activation is seen at 60% and 80% thresholding,
then component 11 rather than component 5 in this case is
chosen as the best candidate for the rs-fMRI language net-
work for subsequent analysis.

For each subject, we conservatively opted to force selec-
tion of a “best candidate” language network even when a
clear language network was not readily identified. Dis-
carding data where the rs-fMRI language network was not
reliably identified would limit subsequent analysis to data-
sets with good rs-task correlations, and would then artifi-
cially inflate the value of rs-task correlations.

FMRI Comparison

The choice of thresholding to determine regions of fMRI
activation for a single subject is somewhat arbitrary, with
low reproducibility at a given threshold even within a sub-
ject across scans [Voyvodic, 2012]. With a low threshold,

Figure 1.

Dice coefficient calculation across multiple thresholds. For each
subject, normalized task-fMRI and rs-fMRI were thresholded from 0
to 10 at 0.1 increments, and Dice coefficients calculated across all
thresholds to generate a 100 3 100 matrix of Dice coefficients.
The figure demonstrates brain maps corresponding to four random
levels of thresholding on the x (task-fMRI) and y (rs-fMRI) axes, and
three selected examples of spatial overlap maps as the target of the
arrows to demonstrate the contribution of noise in Dice calcula-
tion at low thresholds. The ellipses denote the presence of addi-
tional thresholds that are not shown. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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rs-task concordance will be artificially elevated due to
inclusion of noise elements. To overcome this issue, we
normalized the task-fMRI T-maps and the rs-fMRI ICA
maps as a fraction of maximum signal intensity across all
voxels to a value of 0–10 following elimination of negative
values, and thresholded each map at 0.1 increments. For
each of the 100 rs-fMRI and 100 task-fMRI thresholds,
Dice coefficients D between rs-fMRI and task-fMRI were
calculated to generate a 100 3 100 matrix of task-fMRI (t)
vs rs-fMRI (r) overlap (Fig. 1):

D 5
2jt\rj
jtj1jrj

At low thresholds, high Dice coefficients result from
overlap of random noise. We calculated the volume under
the surface (VUS) and the maximum Dice coefficient (Max-
Dice) for each Dice coefficient map before and after noise
removal. For calculation of noise, we selected an ICA com-
ponent representing anterior ventricular signal for each sub-

ject, and performed intensity normalization and
multithresholding after removal of negative values. Dice
coefficients between the noise and task maps were calcu-
lated. The resultant noise-vs-task Dice map was subtracted
from the rs-vs-task Dice map, and finally noise-corrected rs-
vs-task Dice map VUS (DiceVUS) and MaxDice values
were calculated (Fig. 2, top). One-way analysis of variance
(ANOVA) was performed to determine significant differen-
ces in DiceVUS and maxDice across the four ICA orders.

Predictor of DiceVUS

For each ICA order, a linear regression was performed
using R [R Core Team, 2015] to determine if there were
any predictors of DiceVUS and maxDice. The predictors
were: age, sex, LI, tumor side, tumor size, WHO grade,
number of scrubbed volumes, image intensity root mean
square percent variation (iRMS%), and mean framewise
displacement (FD).

Figure 2.

Dice coefficient matrix. On top, a Dice coefficient map across

multiple thresholds is shown for a single subject. From the raw

Dice coefficient map (left image), a noise map (middle image) is

subtracted to generate a noise-removed Dice coefficient map

(right image). Maps were averaged across all subjects for each

ICA order and noise-removed Group mean Dice coefficient maps

are shown on the bottom. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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RESULTS

Handedness

LI ranged from 20.91 (strongly left handed) to 1 (exclu-
sively right handed), with mean of 0.61 (right hand prefer-
ence). Using a LI cutoff of 60.2 from zero (completely
ambidextrous), there were 41 right-handed patients, 6 left-
handed patients, and 2 ambidextrous patients.

Lesions

Histopathology and WHO grade of lesions included in
this study are listed in Table I. Most lesions were primar-
ily located in the left cerebral hemisphere (38 lesions).
Eleven lesions were primarily in the right cerebral hemi-
sphere. Tumor size ranged from 1.02 3 103 mm3 to 1.59 3

105 mm3 (mean 4.12 3 104 mm3).

Rs-fMRI

iRMS% ranged from 1.41 to 4.04 (mean 2.22). ArtRepair
identified from 1 to 101 outlier volumes (mean 8.8 vol-
umes) which were tagged for scrubbing. Mean FD ranged
from 0.05 to 0.42 mm (mean 0.16).

FMRI Comparison

Group mean Dice maps for each ICA order are shown
in Figure 2, and sample images from three subjects with
varying levels of Dice coefficients are shown in Figure 3.

Group mean DiceVUS overall increased with ICA order
(Fig. 4). Mean DiceVUS was 425 for ICA20, 513 for ICA30,
546 for ICA40, and 566 for ICA50. One-way ANOVA dem-
onstrated no significant differences in DiceVUS among the
four ICA groups (Table II). Mean MaxDice was 0.28 for
ICA20, 0.31 for ICA30, 0.33 for ICA40, and 0.33 for ICA50,

Figure 3.

Sample subjects at varying Dice coefficients. Each row denotes a

different subject with fMRI overlays onto standard brain template

for comparison. Task-fMRI and rs-fMRI were thresholded at the

peak Dice coefficient value for each of these subjects. Task-fMRI

is shown in red, the rs-fMRI in green, and the overlapping areas

in yellow. For the subject in the top-most row, there is an excel-

lent concordance of task-fMRI and rs-fMRI. For the subject in the

bottom-most row, there is a low concordance of task-fMRI and

rs-fMRI, reflected in the low Dice coefficient. The subject in the

middle row demonstrates an intermediate level of task-fMRI and

rs-fMRI concordance. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 4.

Mean DiceVUS across ICA orders shown with standard error

bars. Mean DiceVUS overall increases as ICA order increases;

however, this effect does not reach statistical significance.

TABLE I. Summary of patient data

Tumor type

Age 39.8/18-69 Glioblastoma (9)
Sex 31M/18F Oligodendroglioma (10)
Handedness

LI
0.61/-0.91-1.00 Anaplastic

astrocytoma (7)
Oligoastrocytoma (5)
Diffuse glioma (5)
Infiltrating astrocytoma

with early anaplastic
transformation (4)

Anaplastic
oligoastrocytoma (1)

Gangliocytoma (1)
Glioblastoma with

oligodendroglial
component (1)

WHO grade
Diffuse large B-cell

lymphoma (1)
I 1
II 20 No pathology:
III 12 Likely low-grade glioma

on imaging (5)
IV 10
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with no significant differences among the four ICA groups
using one-way ANOVA (Table III and Fig. 5).

Predictor of DiceVUS and MaxDice

iRMS was predictive of DiceVUS for ICA30, ICA40, and
ICA50 (Table IV). iRMS trended toward significance for
ICA20. LI was predictive of DiceVUS for ICA30. iRMS was
predictive of MaxDice for only ICA50.

DISCUSSION

As rs-fMRI continues to gain popularity as a novel
method of examining brain function, considerable effort is
being made to apply this technique in a clinically relevant
fashion, from disease diagnosis to management [Castella-
nos et al., 2013; Lee et al., 2013]. Previous studies explored
the feasibility of rs-fMRI in presurgical brain mapping
[Qiu et al., 2014; Shimony et al., 2009; Tie et al., 2014]. Our

study directly compares task-fMRI to rs-fMRI in brain
tumor patients who presented for presurgical language
mapping, and to date (and our knowledge) represents the
largest cohort of this kind.

Although there is an excellent language network con-
cordance between rs-fMRI and task-fMRI in some subjects,
we demonstrate significant variability across subjects. We
found that the percent root mean square of image intensity
(iRMS) was predictive of concordance in three out of
four ICA orders (ICA30-ICA50) and trended toward signif-
icance in the remaining ICA order (ICA20). FD, however,
predicted neither DiceVUS nor MaxDice. Variations in
image intensity (primarily attributed to motion) rather
than absolute measurements of movement, therefore,
appear to be more sensitive to data quality, and may be
used as a general marker of rs-fMRI reliability for this pur-
pose. An alternative related method of calculating
intensity-based variance is the DVARS (“D” 5 temporal
derivative of time courses, “VARS” 5 RMS variance over
voxels) method [Power et al., 2012], which measures the

TABLE II. ANOVA and Tukey’s Honest Significant Difference (HSD) between the four ICA orders for DiceVUS

DiceVUS

Sum of Squares Df Mean Square F P

Between groups 567830 3 189277 1.76 0.156

Mean difference Lower Bound Upper bound p adj

ICA30 vs ICA20 88.02 283.70 259.73 0.55
ICA40 vs ICA20 121.04 250.67 292.76 0.26
ICA50 vs ICA20 140.48 231.23 312.19 0.15
ICA40 vs ICA30 33.03 2138.68 204.74 0.96
ICA50 vs ICA30 52.46 2119.25 224.18 0.86
ICA50 vs ICA40 19.43 2152.28 191.15 0.99

No significant differences were found in DiceVUS across the four groups. Lower and upper bounds are at 95% confidence interval.

TABLE III. ANOVA and Tukey’s Honest Significant Difference (HSD) between the four ICA orders for MaxDice

MaxDice

Sum of squares Df Mean square F p

Between groups 0.08 3 0.03 1.22 0.303

Mean difference Lower Bound Upper bound p adj

ICA30 vs ICA20 0.03 20.05 0.10 0.80
ICA40 vs ICA20 0.05 20.03 0.13 0.36
ICA50 vs ICA20 0.05 20.03 0.13 0.36
ICA40 vs ICA30 0.02 20.06 0.10 0.89
ICA50 vs ICA30 0.02 20.06 0.10 0.89
ICA50 vs ICA40 20.00002 20.07 0.07 1.0

No significant differences were found in MaxDice across the four groups. Lower and upper bounds are at 95% confidence interval.
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rate of change of BOLD signal between two successive
fMRI volumes. We opted to use the iRMS method as it is
implemented in a well-utilized toolbox, and there is vari-
ability in the exact method of calculation of DVARS (e.g.,
the method of intensity normalization, or the step at which
a brain mask is utilized, both of which can vary depend-
ing on the program used).

We demonstrate that the number of independent com-
ponents chosen in this study has no significant effect on
rs-task concordance. Although the group mean Dice coeffi-
cient increased slightly as ICA order increased, ANOVA
demonstrated no significant differences across the four
ICA groups at least in part due to high subject-level vari-
ability of DiceVUS. Estimation of the ideal number of
independent components poses a unique challenge in
fMRI due to the spatial and temporal dependence of
BOLD signal, with decreased repeated-measure stability of

independent component estimates using higher orders [Li
et al., 2007]. Under/overfitting can result in merging of
different brain networks at low orders and fragmentation
of canonical networks into subnetworks at high orders.
Various methods of optimal ICA order estimation using
information theory criteria (ITC) exist. Although a study
comparing various methods for order estimation con-
cluded that no perfect ITC can be determined for fMRI
data [Hui et al., 2011], using subject-specific ICA order
estimation may potentially improve the results and war-
rants future investigation.

We also demonstrate the effect of artificial elevation of
Dice coefficients at low thresholds of fMRI due to noise,
and implement a noise-removal method. The noise ele-
ments do not significantly change across ICA orders, and
substantially contribute to Dice measurements. These arti-
ficially elevated values will overestimate the potential of
rs-fMRI. Therefore, inclusion of noise removal steps and
calculating concordance using various thresholds is recom-
mended for future studies.

The choice of rs-fMRI processing technique may affect
connectivity estimates. A core aspect of rs-fMRI processing
involves attempting to diminish the effect of motion and
physiological noise [Birn, 2012]. Motion has a significant
effect on connectivity measurements [Van Dijk et al.,
2012]. Scrubbing can be performed to censor high motion
volumes [Power et al., 2012, 2014]. We opted to utilize a
range that has been typically used in prior studies of this
kind. Although we find that the number of outlier
volumes has no effect on concordance, nevertheless,
increasing scan length may improve rs-fMRI quality [Birn
et al., 2013].

Seed-based analysis is an alternative to ICA analysis of
rs-fMRI. We did not explore seed-based analysis in this
initial evaluation of this dataset for various reasons. Uni-
versal seed locations across subjects cannot be used in this
population due to the presence of brain lesions with mass
effect. This may be partially ameliorated with nonlinear

TABLE IV. Variables associated with DiceVUS and MaxDice across the four ICA orders (p values)

using linear regression

Dice VUS MaxDice

ICA order

20 30 40 50 20 30 40 50

Age 0.23 0.21 0.20 0.23 0.42 0.21 0.11 0.19
Sex 0.71 0.40 0.60 0.49 0.73 0.44 0.54 0.76
LI 0.16 0.02* 0.07 0.10 0.90 0.43 0.49 0.56
Tumor Side 0.87 0.27 0.09 0.42 0.58 0.32 0.17 0.28
Tumor Size 0.75 0.60 0.52 0.58 0.89 0.82 0.71 0.69
WHO Grade 0.27 0.78 0.23 0.58 0.27 0.54 0.57 0.52
#scrubbed 0.80 0.27 0.24 0.15 0.61 0.14 0.24 0.06
iRMS 0.08 0.04* 0.02* 0.006* 0.34 0.08 0.13 0.02*
Mean FD 0.43 0.15 0.13 0.12 0.27 0.14 0.10 0.12

*p< 0.05.

Figure 5.

Mean MaxDice coefficients across ICA orders shown with

standard error. MaxDice increases from ICA20 to ICA40; how-

ever, this effect does not reach statistical significance.
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normalization with lesion masking. While seed-based anal-
yses have shown promise in outlining motor networks in
both healthy controls [Kristo et al., 2014] and patients with
brain lesions [Rosazza et al., 2014], the choice of seed
placement is much more challenging for determination of
language networks due to the greater degree of intersub-
ject variability in language functional anatomy [Sanai
et al., 2008], which precludes ROI placement based solely
on a priori knowledge of classical language representation
areas. The motor cortex is relatively easily identified even
in patients with large brain shifts, and functional variabili-
ty of the motor cortex does not extend beyond motor net-
work subcomponents. On the other hand, the inferior
frontal gyrus (IFG) includes various functional subunits
[Xiang et al., 2010], and accurate determination of recep-
tive language areas along the posterior temporal lobe and
inferior parietal lobule is difficult based on anatomical
landmarks. As minor differences in seed placement can
significantly affect network metrics [Cole et al., 2010], this
method remains challenging for accurate characterization
of the language network, and for rs-fMRI to be used as a
clinically viable tool for presurgical brain mapping, any
element that introduces operator-dependent error needs to
be minimized. A potentially useful study utilizing our
dataset would be to use coordinates of productive and/or
receptive language activation from each subject’s task-
fMRI and use those coordinates as seeds for generating
the rs-fMRI language network. This would determine the
maximum inherent information on the subject’s language
network that can be extracted using rs-fMRI. If this
method yields superior rs-task concordance, it would
mean that the ICA method needs to be optimized. On the
other hand, if the concordance is similar to what is shown
in this study, then it represents the best information that is
available using these acquisition parameters, and modifica-
tion/optimization of other variables such as scanner field
strength or length of acquisition need to be explored.

Several limitations of task-fMRI analysis in this study
need to be addressed. Although we combined three of the
most commonly utilized tasks at our institution to maxi-
mize sensitivity and specificity for detecting language
areas, various non-language-specific cortical activations
can be commonly seen which may affect the overall rs-
task concordance. Depending on the strength of activation
of these regions, the rs-task concordance may be lowered.
However, exclusion of these so-called non-primary lan-
guage areas is also problematic due to the variable contri-
bution of non-language-specific regions to language
processing across subjects.

ICA has also been used to analyze task-fMRI data, and
potentially could separate language-specific vs non-
language-specific areas; however, in our experience we
find that at the single-subject level, the b-maps of task-
fMRI ICA analysis can also be significantly affected by
areas outside of primary language networks. Some of these
findings may be explained by the nonstationary (dynamic)

nature of functional connectivity, with intrinsic networks
engaging with other networks across time [Chang and
Glover, 2010; Fedorenko and Thompson-Schill, 2014;
Hutchison et al., 2013]. Future studies on spatially con-
strained ICA and its variants may be useful here [Lin
et al., 2010]. As ICA analysis of task-fMRI is far less com-
monly utilized (if ever) in actual clinical practice, we chose
to base our analysis on GLM maps.

Another important limitation in this study is the fact
that rs-fMRI was performed after task-fMRI and functional
connectivity can be influenced by prior tasks [de Chaste-
laine and Rugg, 2014; Wang et al., 2012]. This arrangement
was necessary in this clinical cohort to ensure that the
patients did not fatigue from the length of the scan that
could compromise their performance on task-fMRI. In
some patients who may have been unable to tolerate lon-
ger scan times, rs-fMRI acquisition may have been omit-
ted, potentially introducing another source of bias.

While we specifically instructed the patients to stay
awake during the rs-fMRI, there was no systematic way of
ensuring that this instruction was followed. Although
postscan questionnaires can be utilized, no such informa-
tion was available for this retrospective study. This is a
significant limitation as alterations in connectivity have
been described in sleep, or even with varying levels of vig-
ilance [Tagliazucchi and Laufs, 2014]. To date there is no
systematic study specifically detailing the effect of sleep
on the intrinsic language network. A single case report
demonstrates receptive language task activation during
sleep in a 6-year-old child that was concordant with areas
of language activation while awake [Wilke et al., 2003];
this raises the possibility that the language network may
be relatively intact during sleep. Nevertheless, the effect of
sleep on intrinsic language networks and whether sleep
influences concordance with task-fMRI should be charac-
terized in future studies.

Finally, our dataset represents a real-world sample of
patients with brain tumors presenting for brain mapping.
Brain tumors may cause reorganization of language net-
works depending on lesion location, recently demon-
strated using task-fMRI [Wang et al., 2013]. In this study,
we did not characterize the potential alterations in the
organization of the language network, as our goal was to
simply compare rs-fMRI to task-fMRI, and therefore we
used each subject’s task-fMRI as the target template to aid
in selection of the best rs-fMRI language network. How-
ever, in using rs-fMRI as the sole source for language
mapping, blinded rs-fMRI language network map selection
therefore may be challenging depending on the degree to
which the language network may be reorganized in spe-
cific subjects. Utilizing neural networks to classify resting-
state networks [Mitchell et al., 2013] may be a promising
approach although similar issues with classification of
reorganized networks may continue to exist.

In conclusion, despite moderate overall concordance of
rs-fMRI and task-fMRI language networks (and in some
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individual cases, excellent concordance), the high subject
level variability in the accuracy of rs-fMRI compared to
task-fMRI warrants a view of optimistic caution in deter-
mining whether rs-fMRI has the potential to replace or
supplement task-fMRI. iRMS may be used as a guide to
determine the reliability of rs-fMRI for language network
characterization. Improvements and standardization in rs-
fMRI processing and analysis methods may allow for bet-
ter delineation of language networks across subjects.
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