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Abstract

Schizophrenia (SZ) is a severe neuropsychiatric disorder. A leading hypothesis is that SZ is a 

brain dysconnection syndrome, involving abnormal interactions between wide-spread brain 

networks. Resting state functional magnetic resonance imaging (R-fMRI) is a powerful tool to 

explore the dysconnectivity of brain networks in SZ and other disorders. Seed-based functional 

connectivity analysis, spatial independent component analysis (ICA), and graph theory-based 

analysis are popular methods to quantify brain network connectivity in R-fMRI data. Wide-spread 

network dysconnectivity in SZ has been observed using both seed-based analysis and ICA, 

although most seed-based studies report decreased connectivity while ICA studies report both 

increases and decreases. Importantly, most of the findings from both techniques are also 

associated with typical symptoms of the illness. Disrupted topological properties and altered 

modular community structure of brain system in SZ have been shown using graph theory-based 

analysis. On the whole, the resting-state findings regarding brain networks deficits have advanced 

our understanding of the underlying pathology of SZ. In this article, we review aberrant brain 

connectivity networks in SZ measured in R-fMRI by the above approaches, and discuss future 

challenges.
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1. Introduction

Schizophrenia (SZ) is a severe mental illness characterized by symptoms including 

delusions, hallucinations, apathy, social withdrawal, and deficits in cognitive functions such 
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as attention and working memory [1]. This disorder affects about 1% of the population 

worldwide [2, 3]. Although SZ is one of the most complex mental disorders, decades of 

research which report altered brain structure and function have provided us with some 

understanding of the neurobiological mechanisms underlying its symptoms [4-7]. For 

example, structural brain studies which involved subjects with high risk for psychosis or 

first-episode psychosis suggest neuroanatomical alterations may underlie the clinical onset 

of psychotic symptoms [8-13]. In addition, a large number of findings from functional brain 

imaging studies support a leading hypothesis that SZ stems from dysconnectivity, that is, 

abnormal interactions between wide-spread brain networks [14-18]. Recently, resting state 

functional magnetic resonance imaging (R-fMRI) has become a powerful tool to examine 

the aberrant connectivity of brain networks in SZ, helping to understand the underlying 

pathology of this brain disorder.

During resting state experiments, participants are instructed to relax, stay awake and not to 

think of anything in particular while their patterns of spontaneous brain activation are 

measured [19]. Functional connectivity, which can be defined as the coordination of activity 

across brain regions [20-22], is often estimated as the temporal correlations of low 

frequency (0.01-0.10 HZ) oscillations in the blood oxygen level dependent (BOLD) signal 

between anatomically distinct brain areas [19]. In the resting state, brain regions are 

functionally connected with somewhat prototypical patterns, revealing the intrinsic 

organization of so-called resting state networks (RSNs). Researches demonstrate that RSNs 

are largely present in both rest and task, though they do change during tasks [23, 24] and 

between eyes open and closed conditions [25, 26]. Using R-fMRI, the motor network [27], 

default mode network [28, 29], and several other RSNs are readily identified [30-32].

There are a number of advantages of studying the functional organization of brain networks 

during the resting state, as opposed to during a task [33]. First, spontaneous activity accounts 

for the large majority of the brain's activity [34], whereas task-related increases in neuronal 

metabolism are usually small (<5%) [35]. It is important to assess the spontaneous activity 

of brain during resting state to fully understand brain function [36]. Secondly, in practice, it 

is difficult to attain equivalent level of performance in a task for healthy controls and 

patients whereas R-fMRI is largely free from this potentially confounding effect [33, 37]. In 

addition, R-fMRI experiments are less prone to multi-site variability stemming from 

differences in experimental design or implementation, allowing for a wider range of patients 

to be included and considered in analyses [38]. Finally, R-fMRI leads to less movement than 

task fMRI studies requiring subjects to respond with motor activity [32].

R-fMRI data have typically been investigated using seed-based functional connectivity 

analysis or spatial independent component analysis (ICA). In addition, graph theory-based 

complex network analysis methods have been applied to further characterize the underling 

networks in both seed-based/ROI-based and ICA (or network-based) analyses. In this paper, 

we review recent advances in the study of brain dysconnectivity in SZ discovered by these 

approaches in R-fMRI data and also discuss potential future challenges. The following 

sections of this article are organized into: dysconnectivity of SZ indentified by seed-based 

analysis; dysconnectivity of SZ indentified by ICA; dysconnectivity of SZ indentified by 

graph theory-based analysis; and summary and challenges of future works.
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2. Dysconnectivity of SZ indentified by seed-based analysis

In seed-based or region-of-interest (ROI)-based approaches to functional connectivity [32], 

BOLD time series are first extracted from an ROI (or seed). Then the temporal correlation 

between this extracted signal and the time series from all other brain voxels is determined 

after some preprocessing (e.g. band-pass filtering, autocorrelation correction, covarying for 

white matter variance or other confounding variables). For a schematic pipeline of this 

approach see Figure 1. Although this method has some disadvantages, such as dependence 

on a priori defined seed region, a limited ability to study multiple systems simultaneously 

and the extracted waveform may not be a true independent variable when assessing 

statistical significance [36], this approach is widely used owing to its inherent simplicity, 

sensitivity and ease of interpretation [20, 32, 36, 37]. It also gives results largely consistent 

with ICA measures [39].

Seed-based comparisons in functional connectivity have revealed widespread 

dysconnectivity in SZ when using a number of different ROIs as seeds. In most studies, 

patients with SZ show decreased connectivity. For example, when using the anterior 

hippocampus as a seed, functional connectivity between the bilateral hippocampi and some 

brain regions including postierior cingulate cortex, extrastriate cortex, medial prefrontal 

cortex, and parahippocampus gyrus is reduced in patients with paranoid SZ [40]. In Bluhm 

et al. [41], lower correlations in SZ between the retrosplenial cortex and both the temporal 

lobe and regions of the default network are observed. Bluhm et al. [42] find that 

Schizophrenic patients have significantly less correlation between posterior cingulate and 

lateral parietal, medial prefrontal, and cerebellar regions. When comparing the correlation of 

each pair of 116 ROIs of the whole brain, decreased connectivity is widely distributed 

throughout the entire brain in SZ [43]. In Zhou et al. [44], bilateral dorsolateral prefrontral 

cortex show reduced functional connectivity to the parietal lobe, posterior cingulated cortex, 

thalamus and striatum, whereas functional connectivity between the left dorsolateral 

prefrontal cortex and the left mid-posterior temporal lobe and the paralimbic regions is 

enhanced in patients with first-episode SZ. Most interestingly, some findings of 

dysconnectivity are associated with symptoms. For example, SZ patients with a history of 

auditory hallucinations have significantly reduced interhemispheric connectivity in primary 

and secondary auditory cortices when compared with SZ patients without auditory 

hallucinations and healthy controls [45]. When using a bilateral amygdala seed, Hoptman et 

al. [46] reveal reductions in connectivity between amygdala and ventral prefrontal cortex 

regions in patients with SZ or schizoaffective disorder. Furthermore, the lower connectivity 

in patients is associated with higher levels of self-rated aggression. When using bilateral 

temporo-parietal junction as seed regions, Vercammen et al. [47] reveal reduced 

connectivity between left temporo-parietal junction and the right homotope of Broca in SZ 

patients with auditory-verbal hallucinations. More severe auditory-verbal hallucinations are 

associated with reduced correlation between left temporo-parietal junction and bilateral 

anterior cingulate as well as the bilateral amygdale.

In terms of connectivity in RSNs, Whitfield-Gabrieli et al. [48] find abnormal high 

functional connectivity within the default mode network in SZ, consistent with Garrity et al. 

[49]. Woodward et al. [50] investigate the functional connectivity in several RSNs including 
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default mode, dorsal attention, executive control, and salience networks using seed-based 

method. A number of differences between patients with SZ and controls are revealed in 

default mode, dorsal attention, and executive control networks. Specifically, patients 

demonstrate greater connectivity between the posterior cingulated cortex and the left inferior 

gyrus, left middle frontal gyrus, and left middle temporal gyrus. These regions are more 

strongly connected to the executive control network in healthy controls. And less 

connectivity in the executive control and dorsal attention networks in SZ are discovered by 

calculating the correlation among clusters within each network. The findings suggest the 

process of functional specialization is altered in SZ. In another study, after identification of 

ROIs in “task-positive” network which is identified by using the right dorsolateral prefrontal 

cortex as seed and ROIs in “task-negative” network which is identified by using posterior 

cingulated cortex/precuneus as seed, connectivity between each pair of these brain regions is 

evaluated. Results reveal abnormal connectivity with the bilateral dorsal medial prefrontal 

cortex, the lateral parietal region, the inferior temporal gyrus, the right dorsolateral 

prefrontal cortex, and the right dorsal premotor cortex in patients with paranoid SZ [51].

3. Dysconnectivity of SZ indentified by ICA

Spatial ICA is a technique to decompose the spatio-temporal BOLD signal into spatial brain 

components and their associated time courses [52-55]. Each component provides a grouping 

of brain activity into regions that share the same response pattern thus providing a natural 

measure of functional connectivity [56]. Although the results are dependent on the number 

of components and the user must determine which components reflect noise and which 

components resemble neuro-anatomical systems [36], it is a data driven approach which 

does not require a priori definition of seed regions to analyze the functional connectivity 

networks in human brain. Spatial ICA has became a popular technique to identify 

temporally coherent networks and detect biomarkers in SZ by processing R-fMRI data [23].

In line with studies using seed-based analysis, multiple dysconnected brain networks in SZ 

have been observed using ICA approaches. In Ongur et al. [57], SZ subjects show greater 

recruitment (spatial extent) of the frontopolar cortex/basal ganglia and decreased recruitment 

in the dorsal anterior cingulate cortex, as well as reduced DMN connectivity in the medial 

prefrontal cortex. A number of findings have also been associated with symptoms. For 

example, Camchong et al. [58] find lower functional connectivity in medial frontal gyrus 

and anterior cingulate gyrus in patients with chronic SZ. Frontal connectivity in patients is 

positively associated with symptoms as well as with general cognitive ability measures. 

Wolf et al. [59] evaluate the functional connectivity of some RSNs in patients with SZ who 

have auditory verbal hallucinations (AVHs). Within a speech-related network, patients show 

increased connectivity in bilateral temporal regions and decreased connectivity in the 

cingulate cortex. Within two additional RSNs associated with attention and executive 

control, respectively, patients exhibit less connectivity in the left precuneus and increased 

connectivity in the right lateral prefrontal areas. They also find correlations between 

measures of AVH severity and functional connectivity of the left anterior cingulate, left 

superior temporal gyrus and right lateral prefrontal cortex. Sorg et al. [60] investigate the 

intrinsic activity of striatum underlining different disorder states using ICA. During 

psychosis, coherent intrinsic activity of the striatum is increased in the dorsal part and 

Yu et al. Page 4

Curr Top Med Chem. Author manuscript; available in PMC 2015 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlated with positive symptoms. In psychotic remission of the same patients, activity of 

the ventral striatum is increased and correlated with negative symptoms. Rotarska-Jagiela et 

al. [61] report that, SZ patients show decreased connectivity in posterior cingulate and 

hippocampus, which correlated with severity of hallucinations and delusions, and decreased 

hemispheric separation of fronto-parietal activity, which correlated with disorganization 

symptoms.

Other interesting findings based on ICA include altered functional network connectivity 

(FNC) in SZ. FNC is the functional connectivity of ICA components by evaluating the 

temporal relationships among ICA time courses across different components, rather than 

within components [62]. Jafri et al. [63] is the first study to evaluate the differences in FNC 

of resting state brain components in SZ patients versus healthy controls. They find higher 

correlation among most of the dominant resting state networks in SZ (Figure 2). Subsequent 

studies report both increased and decreased FNC in SZ. For example, Lui et al. [64] report 

increased connectivity within the frontoparietal-temporal network and decreased 

connectivity within the temporal-ventromedial frontal network, DMN, and medial frontal 

areas in drug naive first episode SZ patients. Meda et al. [65] find lower connectivity 

between Fronto/Occipital network and Anterior Default Mode/Prefrontal network, also 

between Meso/Paralimbic network and Sensory/Motor network in SZ patients.

4. Dysconnectivity of SZ indentified by graph theory-based analysis

Graph theory-based network analysis is another widely-used method to describe R-fMRI 

data in order to study mind-brain mechanisms [66]. Topological properties of brain networks 

described by nodes and edges can be investigated by graph theory-based analysis. In 

practice, graph measures such as clustering coefficient, degree, betweenness, path length, 

local efficiency, global efficiency and modularity (for the definition of these metrics see 

Rubinov and Sporns [67]) are often used to characterize system properties [68]. See Figure 3 

for a flow chart of the graph theory-based analysis implementing in R-fMRI studies. 

Applications of this approach demonstrated that the intrinsic activity of human brain tends to 

be organized as small-world, with significant modularity and highly connected hub regions 

which indicate high efficiency of brain systems [69, 70]. Recent studies implemented the 

graph-based analysis in brain disorders found altered network metrics in patients with SZ 

during resting state [71].

Most of the topological metrics of small-world brain networks have been found to be altered 

in SZ. For example, when using atlas-based ROIs as brain network nodes, Lui et al. [72] 

observe lower degree, lower connectivity strength, decreased clustering coefficient and 

longer characteristic path length in patients with SZ. The properties of particular brain 

regions in the prefrontal, parietal and temporal lobes are also altered. Lynall et al. [73] 

consistently find decreased connectivity strength, reduced clustering and small-worldness. In 

addition, reduced degree and clustering are locally significant in medial parietal, premotor 

and cingulated, and right orbitofrontal areas. Alexander-Bloch et al. [74] also reveal reduced 

connectivity strength, decreased clustering and local efficiency, but increased global 

efficiency and robustness in patients with childhood-onset SZ. Cortical regions with 

abnormally reduced local connectivity include the left and right superior temporal gyrus, left 
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ventral occipital cortex, right cingulate, right insula, and right frontal operculum; subcortical 

decreases of clustering bilaterally in the thalamus, caudate, and accumbens; increased 

efficiency in the right inferior parietal lobule, left ventral temporal cortex, bilateral frontal 

operculum, and right planum polare. When using brain components as network nodes, Yu et 

al. [75] discover higher clustering coefficient, higher local efficiency, higher characteristic 

path length, and lower global efficiency. The topological measures were locally altered in 

brain components involving frontal, parietal, occipital and cerebellar areas in SZ. 

Importantly, characteristic path length and global efficiency were correlated with negative 

scale of PANSS in patients.

Multi-level analysis can also be performed by combining graph theory-based analysis and 

other techniques. For example, Bassett et al. [76] quantitatively characterize the univariate 

wavelet entropy of regional activity, the bivariate pairwise functional connectivity between 

regions, and the multivariate network organization of connectivity patterns. The results 

indicated that univariate measures are less sensitive to disease state than higher level 

bivariate and multivariate measures. In addition, by considering the network structure as a 

function of correlation strength, network organization specifically of weak connections is 

strongly correlated with attention, memory, and negative symptom scores of patients with 

SZ and displays potential as a clinical biomarker. This study provides a new framework in 

which to explore the neuro-mechanism of SZ.

Modular community structure is repeatedly demonstrated in resting state functional brain 

connectivity networks [77-79]. Modular organization of brain networks may play a critical 

role in its evolution and neurodevelopment [80-82]. Since it has been hypothesized that 

brain disorders such as SZ are associated with developmental factors [83], the examination 

of modular organization in SZ may provide biomarkers of altered brain development in this 

psychosis [74]. Indeed, reduced modularity which implies proportionally less intra-modular 

edges and more inter-modular edges in patients with childhood-onset SZ is detected [74]. 

When using brain components as network nodes to build weighted networks, Yu et al. [84] 

find more and smaller modules with different hubs in SZ (see Figure 4). Alexander-Bloch et 

al. [85] also report altered modular community structure in patients with childhood-onset 

SZ. The difference in the modular partition is most striking for a module that consistently 

includes brain regions around the right anterior insula in healthy controls. In contrast, these 

regions are distributed over a number of other modules in patient group.

5. Summary and challenges of future works

In summary, widespread dysconnectivity across the whole brain in SZ is identified by both 

seed-based analysis and ICA studies. The majority of seed-based studies show decreased 

connectivity, while ICA studies report both increased and decreased connectivity in SZ (in 

different networks). Medial frontal cortex is often identified to be involved in aberrant 

connectivity in SZ by both approaches (see Table 1 and Table 2). Findings revealed by 

graph theory-based analysis which can examine the properties (such as efficiency and 

modular organization) of the whole system are good supplements to seed-based and ICA 

studies. For a summary of the findings by graph theory-based analysis see Table 3. All of 

the studies support a dysconnectivity hypothesis of SZ. Some studies also show relationships 
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between dysconnectivity and typical symptoms of the disorder. The findings are improving 

our understanding of the underlying deficits of brain networks in SZ. However, there are 

some limitations. For example, in most studies, medication effects are not distinguished 

from those related purely to the disease; because there are very few studies of unmedicated 

subjects. One approach to clarifying this is to examine unaffected first-degree relatives of 

schizophrenia patients see if abnormal connectivity is inherited as a marker of illness 

predisposition (i.e. an endophenotype) as opposed to a biological illness marker (e.g. Meda 

et al. [65]).

Specificity is another unresolved problem, i.e. whether abnormal connectivity detected in 

schizophrenia patients is unique to that disorder or shared with other psychotic illnesses such 

as psychotic bipolar disorder. Again, relatively few studies have attempted to clarify this 

distinction (see Meda et al. [65]).

Regarding the direction of alteration in connectivity, both decreased and increased 

connectivity in SZ have been reported, although most seed-based studies reveal reduced 

connectivity in SZ. Bi-directed topological metrics are also revealed by graph theory-based 

analysis. The explanation of these inconsistencies in direction is not clear, though 

methodological differences among studies (such as seeds definition in seed-based analysis, 

number of components in FNC analysis, nodes definition in graph theory-based analysis) 

may play a role.

In addition, all studies focused on dysconnectivity in SZ at a group level, and it is difficult to 

identify dysconnectivity at single subject level to be used in clinic. However, classification 

may be a potential approach to do discrimination on a case-by-case basis, because 

classification provides information for each individual subject [86]. Although it is not easy 

to design an accurate, robust classifier for classifying SZ patients based on small number of 

training samples and high dimensional data, a few studies have tried to design objective 

prognostic/diagnostic tools using R-fMRI data. For example, based on functional 

connectivity between pairs of 116 ROIs, Shen et al. [87] classify SZ patients from controls 

with a high accuracy (94% for patients and 75% for healthy controls). Arbabshirani et al. 

[88] also classify patients from healthy controls with high accuracy using FNC. These 

results suggest machine learning applied to resting fMRI may be a useful tool for improving 

the current diagnosis of SZ.

There are also some specific challenges for each technique. In studies using seed-based 

analysis, different seeds (or ROIs) are selected in different studies (for a summary see Table 

1). A criterion for determining seed(s) should be developed. In studies doing ICA-based 

FNC analysis, different numbers of brain components involving different areas were 

selected. How many brain components and involving which areas should be uniformed 

when doing FNC analysis. In graph theory-based analysis studies, nodes and edges are 

defined differently (see Table 3 for a summary). Nodes are usually defined by atlas-based 

ROIs or ICA components. Edges are usually defined by partial correlation or Pearson 

correlation. The best method of building brain graphs to explore brain networks is also not 

clear. The above challenges should be considered in future studies.
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Figure 1. 
Pipeline for seed-based functional connectivity analysis in R-fMRI studies. The first step is 

to select a brain region of interest as a seed. Next, time courses are extracted from the seed 

and all other brain voxels. After preprocessing (e.g. band-pass filtering, autocorrelation 

correction, covarying for white matter variance or other confounding variables), a functional 

connectivity brain map showing the temporal correlation between the given seed and all 

other brain voxels is produced.
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Figure 2. 
Group differences of FNC (from Jafri et al. [63]). Out of 21 possible correlation 

combinations between 7 components, only 5 combinations passed the two sample t-test (p < 

0.01). The solid line represents the significant connectivity where controls have higher mean 

correlation than patients, while dotted line represents connectivity where patients have 

higher mean correlation. Presence of dotted lines rejects the hypothesis that controls should 

have more correlation between two components than patients.
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Figure 3. 
A schematic flow chart for implementing graph theory-based analysis into R-fMRI data. The 

first step is defining nodes based on ROIs of brain atlas, voxels or brain components. 

Secondly, the time courses of all nodes are extracted followed by preprocessing (e.g. band-

pass filtering, autocorrelation correction, covarying for white matter variance or other 

confounding variables). Subsequently, a correlation matrix represents the temporal 

correlation between any pair nodes is computed. Next, a brain graph with nodes and edges 

could be built based on the correlation matrix. Then, some properties of the graph such as 

clustering, efficiencies, path length could be evaluated. (The brain maps with nodes/edges 

were from the manual of the BrainNet Viewer http://www.nitrc.org/projects/bnv/).
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Figure 4. 
Schematic modular architecture of FNC for healthy controls (HC) and patients with SZ 

(from Yu et al. [84]). Nodes in a given module are placed in a small circle. To show how 

edges disappear with threshold (T) change, graphs (each consisted of 57 brain components) 

built by T at 0.4, 0.5, 0.6, and 0.7 are shown respectively. An edge (either- or intra-module 

edge) is shown in the graph if its weight bigger than T. the thicker and the darker an edge, 

the higher its weight. Hubs are indicated by square nodes.
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