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1Chapter 6

2Meta-Analysis of Common and Rare Variants

3Kyriaki Michailidou

4Abstract

5Meta-analysis is a statistical technique AU1that is widely used for improving the power to detect associations, by
6synthesizing data from independent studies, and is extensively used in the genomic analyses of complex
7traits. Estimates from different studies are combined and the results effectively provide the power of a much
8larger study. Meta-analysis also has the potential of discovering heterogeneity in the effects among the
9different studies. This chapter provides an overview of the methods used for meta-analysis of common and
10rare single variants and also for gene/region-based analyses; common variants are mainly identified via
11genome-wide association studies (GWAS) and rare variants through various types of sequencing
12experiments.

13Key words Meta-analysis, Common variants, Rare variants, Aggregation analysis, Single variant
14analysis, GWAS, NGS

151 Introduction

16Meta-analysis provides a powerful AU2approach to combine data from
17different resources. It has been widely used in genomics in order to
18increase the power of single studies to detect associations with a
19specific trait or disease of interest [1, 2]. Sharing of genotype data
20between studies is not always possible, even within well-established
21collaborations, thus the need for alternative approaches for com-
22bining the effects from different studies has led to the wide use of
23meta-analyses in the field. The different meta-analysis techniques
24use summary statistics, are easy and quick to perform, are powerful,
25and practically provide the power of a much larger study.
26Meta-analysis has been extensively used in order to assess
27Genome-wide association study (GWAS) data for millions of geno-
28typed or imputed SNPs [2]. GWAS provide a cost-effective method
29for assessing the effect of common genetic variation across the
30genome [3, 4] and have been widely informed using imputation
31to publicly available genotype reference panels such as the HapMap
32[5], the 1000 Genomes Project Consortium [6], and the
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33Haplotype Reference Consortium [7]. Over the last decade
34thousands of common variants, which are associated with complex
35diseases or traits, have been identified through imputation and
36meta-analyses of GWAS [8, 9]. More recently, custom arrays that
37focus on the replication of rare variants from sequencing experi-
38ments have been developed [10]. The identification of rare variants
39through genotyping arrays and imputation has been more prob-
40lematic compared to common variants [11]. With the tremendous
41advances in next generation sequencing (NGS) technologies [12],
42it is now feasible to conduct large-scale whole-genome, whole-
43exome, and targeted sequencing experiments. Recently, novel sta-
44tistical techniques have been developed for the analysis of the rare
45variants as single entities and also for their collective analysis in gene
46or regional tests. As in the common variant analysis, meta-analysis
47techniques will aid the increase of power to detect associations with
48rare variants. In the following sections, the different aspects of
49meta-analysis for common and rare variants are discussed.

1.1 Meta-Analysis
Pre-Steps and Quality
Control

50Meta-analysis usually begins with the individual studies sharing
51summary statistics for each variant, including a regression estimate,
52standard error, p-value, sample size, imputation accuracy, and
53minor allele frequency (MAF). There are various steps that need
54to be taken into account before performing the meta-analysis in
55order to minimize bias. Studies need to harmonize their quality
56control measures and perform the analysis in the same/comparable
57way before being able to combine the results. Standardized quality
58control measures that need to be followed in each of the participat-
59ing studies, for example in GWAS, include the removal of low call
60rate individuals and variants, removal of variants with genotype
61frequencies deviating from those expected under Hardy-Weinberg
62Equilibrium and variants with poor clusterplots [4]. Parameters for
63adjustments need to be set upfront so that the analyses are per-
64formed in a comparable way. Principal components should be
65calculated and adjusted for in the analyses [13] and appropriate
66genomic control can be applied to individual studies [14] in order
67to minimize bias due to population stratification. If the studies
68perform imputation they need to use the same reference panel
69and the same filters afterward (MAF and imputation accuracy)
70[15]. Different programs produce different quality metrics that
71need to be accounted for when performing the meta-analysis, for
72example “info score” from IMPUTE2 [16], “R2” from MACH
73[17] and BEAGLE [18]. The individual study effect estimates need
74to be aligned to the same strand (usually more difficult for the
75ambiguous SNPs with A/T and C/G genotypes) and variants
76with large differences from the mean MAF need to be checked in
77more detail. Short insertion/deletions (INDEL) that are now
78being successfully imputed, using the 1000 Genomes Project data
79as reference, can have different annotations across the different
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80imputation software that need to be carefully matched. For example
81some software keep the actual alleles from the reference panel
82whereas others provide the INDELs as D/I. Furthermore, in the
831000 Genomes Project reference dataset one base is subtracted
84from the genomic location of the INDELs and this results in
85different genomic locations for the same variants across the differ-
86ent reference resources.
87If the data come from sequencing experiments they need to be
88aligned on the same reference genome and low-quality variants
89need to be removed before the meta-analysis is performed, to
90avoid spurious associations due to sequencing errors. Furthermore,
91special care needs to be taken when combining the results of
92sequencing experiments that have been produced using different
93technologies. Different depth/coverage of the regions of interest
94or genotyping bias due to the differences in sequencing technolo-
95gies can lead to the wrong conclusions. If the analyses are based on
96genes or regions with variable thresholds the classifications for
97SNPs/variants to be included in each gene/region need to be the
98same (for example minor allele frequency threshold). Before
99performing meta—analysis, a common statistical analysis plan
100needs to be adopted to ensure compatibility of the results and to
101aid a smooth execution [2].
102

1032 Common Variants

104Different analytical approaches have been proposed and have been
105extensively used for common variant meta-analyses [1, 2].

2.1 Fixed Effects 106The most widely used technique for meta-analysis of common
107variants is the fixed-effects meta-analysis [1, 2]. The assumption
108behind the fixed-effect meta-analysis is that there is a single com-
109mon underlying genetic effect in the different studies. This has
110been proven a powerful approach for discovery of common genetic
111variants and provides practically the same information as a pooled
112analysis of the raw data [19]. Different weights have been proposed
113with the most optimal weight being the inverse variance [20]; other
114weighting methods have also been used, such as the Mantel-
115Haesnzel method [21] or weights proportional to the sample
116size. The weighted effect and variance are calculated as:

β ¼
P k

i wiβiP k
i wi

!v ¼ 1
P k

i wi

117
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118where βi is the effect estimate from each study, wi is the weight
119assigned to each study and k is the number of studies. For the fixed-
120effects inverse variance meta-analysis, wi ¼ 1

vi
, where vi is the vari-

121ance of each study [22]. The fixed-effect weighted test statistic
122follows a standard normal distribution:

βffiffiffi
!v

p eN 0; 1ð Þ

123

2.2 Random Effects 124When the underlying effects for each of the studies are assumed to
125be different but drawn from the same distribution with variance τ,
126random-effects meta-analysis should be used. When there is no
127presence of heterogeneity across the different studies, the random-
128and fixed-effects estimates will give approximately the same results.
129The most common methods for calculating the variance of the
130effect distribution are the method of moments [23] or likelihood-
131based methods [24]. Random-effects models have been used
132mainly for the determination of the generalizability of the results
133of the meta-analysis rather than for discovery purposes, as they are
134less powerful [2]. Most commonly researchers report both fixed-
135and random-effects meta-analysis results. The classic random-
136effects meta-analysis follows the inverse-variance scheme with the
137difference that the variance is now the sum of the within-study
138variance (vi) plus the between-studies variance (τ

2) [22]:

w∗
i ¼ 1

v∗i

v∗i ¼ vi þ τ2

τ2 ¼ Q % k % 1ð Þ
P k

i wi %
P k

i
w2
iP k

i
wi

Q ¼
X k

i
wiβ

2
i %

P k
i wiβi

" #2

P k
i wi

139where βi is the effect estimate from each study, wi is the weight
140assigned to each study, and k is the number of studies. The
141weighted effect and variance becomes

β∗ ¼
P k

i w
∗
i βiP k

i w
∗
i
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!v∗ ¼ 1
P k

i w
∗
i

142The test statistic then follows

β∗ffiffiffiffiffiffi
!v∗

p eN 0;1ð Þ

143Han and Eskin [25] observed that classical random effect mod-
144els are underperforming even when there is heterogeneity present
145among the different studies. They proposed an alternative method
146for performing random effects meta-analysis whereby under the
147null hypothesis it is assumed that there is no heterogeneity. Han
148and Eskin [26] proposed the Binary Effects Assumption as another
149method for random effects meta-analysis. This method is based on
150two hypotheses; first that the effect is either present or absent in a
151study and second that if the studies have an effect then the effect is
152expected to be similar between the studies. A novel random effects
153model, based on a kernel machine framework, has been proposed
154by Shi et al. [27] for the meta-analysis of trans-ethnic studies. In the
155presence of substantial heterogeneity between the results in the
156different studies, further checking needs to be made to explore
157the potential reasons behind this heterogeneity [25].

158

2.3 P Value and
Z Score Meta-Analyses

159A more simplistic meta-analysis approach is the meta-analysis using
160the p-values of the individual studies [28] and the test statistic takes
161the form:

X 2
2k ¼ %2

X k

i
log pi

$ %
eX 2

2k

162where k is the number of studies and pi the individual study p-value.
163Z score statistics-based meta-analysis [29] has also been used, the
164test statistic can be derived using the p-values together with the
165sample size information and direction of the effect. The Z-score can
166be calculated using the following equation:

Z ¼
P k

i Z iwiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP k
i w

2
i

q eN 0; 1ð Þ,

167where

Z i ¼ Φ%1 1% pi
2

" #
& direction of effect

168where wi is the square root of the sample size and Φ is the standard
169normal cumulative distribution function. Although these methods
170are more straightforward to perform there is a substantial loss of
171power as no information regarding the direction of the effects in
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172each study is used (for the p-value meta-analysis), a combined effect
173cannot be calculated and measures of heterogeneity cannot be
174obtained [2].

175

2.4 Bayesian Meta-
Analysis

176Although not as widely used as the other classical methods for
177meta-analysis, different Bayesian methods have been also adapted
178for different scenarios, with both fixed and random effects. Results
179obtained from Bayesian meta-analyses are directly comparable
180among/across different SNPs without the need for comparing
181power and adjusting for differences in the frequencies among dif-
182ferent variants [30]. Choosing a suitable prior to be used for the
183meta-analysis is an important issue and certain assumptions need to
184be made. Results obtained via Bayesian meta-analysis include the
185Bayes Factor (BF). The conventional cutoff for a test to be signifi-
186cant (BF > 10) is not sufficient for GWAS, not due to issues of
187multiple testing as in frequentist testing but because the number of
188truly associated variants we expect to have is small [30]. Bayesian
189methods have also been developed for the meta-analysis of trans-
190ethnic GWAS data, where the studies are assigned into ethnic
191clusters and the effects are assumed to be the same in each ethnic
192group [31].
193

1943 Rare Variants

195The significant reduction in the cost of whole-exome and whole-
196genome sequencing in recent years has enabled large-scale sequenc-
197ing experiments to be conducted [7, 32]. Chip-based rare variant
198experiments [10, 33] have also been performed for the assessment
199of rare variation.
200Single variant tests for rare variants are more challenging to
201perform compared to common variants. The statistical tests need to
202be adapted for rare variants as there is usually only a small number
203of alternative allele counts and the current methods might not be as
204accurate [11]. Score type statistics have been shown to be more
205stable for rare variant association testing, especially for binary traits
206[34]; Wald statistics can be too conservative and likelihood type
207statistics too liberal.

3.1 Aggregation
Tests

208Rare variant experiments are underpowered to identify single var-
209iants associated with modest effects, even within a large sample size
210[11]. Different methods have been proposed to increase the power
211to detect associations by grouping variants into units of interest
212(regions). A large number of different aggregation tests have been
213developed to combine the effects of a subset of variants in order to
214obtain a region-level test statistic [11]. Aggregation testing
215increases the power to detect associations by combining the
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216cumulative effects of rare variants and by reducing the number of
217tests performed [11, 34].
218The various aggregation tests can be extended to include any
219subset of variants of interest and for convenience, for the rest of this
220chapter, these subsets will be referred to as a “region” of interest.
221For example, in exome or whole-exome studies the region can be a
222specific exon of a single gene, all the exons of a single gene or all the
223exons of all the expressed genes in a genome. In the case of whole-
224genome studies the region can also be a genomic region (for
225example a sliding window of a pre-specified genomic length) or a
226subset of variants belonging to the same category (for example
227non-synonymous variants or variants that have a specific functional
228annotation according to functional classification software [35]).
229Some of the most widely used aggregation tests are discussed in
230more detail elsewhere in this book (see Chapter 5). These include
231the burden test or collapsing test, where a score is created for each
232set of variants in a region, for each study sample, and then this is
233compared to the disease/trait of interest. Collapsing tests can either
234calculate a binary value (0 rare alleles or at least one rare allele) such
235as CAST [36], or count the rare variants in each gene [37], or
236calculate a weighted sum of the rare alleles in the region
237[38]. Another form of collapsing test is the CMC test where the
238variants are grouped according to their MAF and then CAST is
239performed [39]. A different set of approaches are the variable
240threshold (VT) methods, where the decision of the MAF threshold
241for variants to be included in the region is obtained so that it gives
242the most significant result [34, 40]. Other methods developed are
243the variance-component (VC) tests that can detect associations in
244regions when variants are allowed to have opposite effects such as
245the C-alpha and SKAT [41, 42]. A combination of the burden and
246variance-component tests has also been developed such as the
247optimal unified SKAT-O, which takes the most significant linear
248combination of the burden and SKAT tests [43]. The majority of
249the different methods are applicable for quantitative measures,
250binary traits, and survival analysis data. Even when aggregating
251rare variants in regions of interest the power to detect associations
252is still small [11] and thus appropriate techniques for the meta-
253analysis of regional tests have been developed in order to increase
254the power to detect associations. Both fixed- and random-effects
255meta-analysis methods have been proposed for the regional tests.
256As estimates based on individual rare-variant regression are not
257stable the most optimal methods for meta-analysis of regional
258tests have been based on the meta-analysis of score statistics.
259

3.2 Meta-Analysis of
Regional Tests

3.2.1 P Value and

Z Score

260Following a similar concept as the single variant meta-analysis the
261most straightforward method for regional meta-analysis is a p-value
262[28] or a Z score statistic [29] meta-analysis. A regional p-value or
263Z score is obtained from each study and then these are meta-
264analyzed. This is an attractive method when effect estimates cannot
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265be calculated or shared between the different studies. However,
266these methods have been shown to suffer from substantial loss of
267information, especially when no information of sample size and
268direction of the effects is used, and thus these methods are not
269widely used [44]. Another simple method has been proposed by
270Lumley et al. [45] and is performed by the summation of the test
271statistics for each individual study, though it is not as powerful if
272variants are shared between studies.
273More sophisticated methods that do not result in loss of infor-
274mation and provide results that are as powerful as a pooled analysis
275of individual level data have also been proposed. In the following
276sections a general framework for the meta-analysis of rare variant
277regional association tests will be described. These tests are based on
278the individual study score test summary statistics and the fact that
279the regional test statistic can be reconstructed using the individual
280variant score statistic from each study [44–48]. Fixed effects and
281random effects meta-analysis methods have been proposed for the
282most widely used regional tests. Individual studies share the sum-
283mary score statistic for each variant and an average variance-
284covariance matrix for the region [44–48]. Others have also pro-
285posed meta-analysis methods for aggregation tests that are recon-
286structed using the effects and standard errors from the usual
287regression analyses together with the correlation matrix of the
288individual variants (which can also be obtained from public
289resources) [49]. This is an attractive method when score statistics
290cannot be obtained but there is a substantial loss of information
291since variants that do not produce valid effect estimates are not used
292[49]. In the next sections score-based meta-analysis tests will be
293described; these methods have been shown to be as powerful as the
294analysis of the pooled genotype data [44, 46, 47].
295

3.2.2 Fixed Effects 296The main assumption behind fixed effect meta-analysis for regional
297tests is that there is a shared common genetic effect across the
298different k studies. If we assume that there are j variants in the
299region of interest, we can get the combined score (Uj) and com-
300bined variance (Vj) for each variant [44, 50]:

301U j ¼
P k

i U j ;ið Þ and V j ¼
P k

i V jj ;ið Þ

w ¼ w1;w2; . . . ;wj

$ %T

302where w is a vector of weights. If a variant is not present in a specific
303study then the corresponding score and variance are set equal to
3040. The regional score (U) and variance/covariance matrix (V) are
305defined as

U ¼ U 1;U 2; . . . ;U j

$ %T
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V ¼ cov Uð Þ

306

307The majority of the different methods use a normalized score
308statistic (for quantitative traits) for each variant [34, 46, 47]
309whereas Liu et al. [44] uses non-normalized scores.
310

Burden Tests 311For the burden test, the assumption is that the combined score for
312the region is the same across the different studies β1¼ β2¼ . . .¼ βk.
313For testing the null hypothesis that βk¼ 0, under the additive mode
314of inheritance, the meta-analysis test statistic takes the form [46]:

QM%Burden ¼ U∗2

V ∗ eX 2
1

315where U* ¼ wTU and V* ¼ wTVw.

316Equivalently form Liu et al. [44]:

QM%Burden ¼ wTUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTVwð Þ

p eN O;1ð Þ

317Weights are usually based on MAF threshold cutoff (for exam-
318ple MAF < 0.05 or MAF < 0.01) or the Madsen-Browning [38]
319weights, which up-weight rarer variants.
320

Variable Threshold

(VT) Tests

321AVT test can be constructed by calculating the burden test statistic
322at each MAF threshold (p):

QM%VT ¼ max
p

Q M%Burden pð Þ

323The p-value can then be calculated by comparing the test
324statistic to a multivariate normal distribution of U [34].

325

Variance Components

(VC) Test, SKAT,

and SKAT-0

326For the VC tests, the mean of the genetic variants in the region is
327assumed to be the same across studies. The mean μ of the variants in
328the region is assumed to follow a multivariate normal distribution
329with mean 0 and covariance matrix τwW. For testing the null
330hypothesis that the mean of the variant level effects μ ¼ 0, the
331meta-analysis test statistic takes the form [44, 46]:

QM%SKAT ¼ UTWU

332where W is an jxj diagonal matrix of rare variant-specific weights,
333usually a function of the MAF, for example if W is a diagonal Beta
334(MAFi,a1,a2) this is equal to the SKAT statistic [41] and if W is an
335identity matrix then it produces the meta-analysis statistic for the
336C-alpha test [42]. The p-value of the test statistic can then be
337obtained by comparing the test statistic to a mixture of χ21 distribu-
338tions,

P j
i λiχ

2
1, i where λi is the ith eigenvalue of V1/2WV1/2

339[44, 46, 47].
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340An optimal unified test, SKAT-O [43], has been proposed; for
341this test the most optimal linear combination of SKAT and burden
342test is selected. The meta-analysis formula for SKAT-O takes the
343form [34, 43]

Q hom%SKAT%O ¼ ρQM%Burden þ 1% ρð ÞQM%SKAT

344Intuitively if ρ ¼ 1 the test correspond to the meta-analysis of
345burden test and if ρ¼ 0, to the meta-analysis of the SKAT statistic. ρ
346is calculated so that it produces the most significant result, the
347p-value of the test can be obtained using a one-dimensional numer-
348ical integration [43].

349

3.2.3 Random-Effects 350Random-effects meta-analysis for regional tests assumes that the
351genetic effects of the different studies are not the same but are
352derived from the same distribution [51]. Heterogeneity between
353and across studies is expected to be a bigger issue for rare variants
354compared to common variants, as they are population specific
355[51]. Random-effects models for aggregation tests have been
356based on the Han and Eskin [25] single variant meta-analysis
357method that has been shown to be more powerful compared to
358other classical methods.

359

Burden Test 360Under the random effects model for the burden test, the combined
361effects of the different studies are drawn from:

βi ¼ μþ ξi, i ¼ 1, . . . , k

362where μ represents the average combined genetic effect among
363studies and ξi represents the deviation of the effect of study k
364from the mean μ, and is assumed to follow a multivariate normal
365distribution with mean 0 and variance σ. The test for μ ¼ 0 and
366σ ¼ 0 takes the form [51]:

Q RM%Burden ¼ QM%Burden þ

P k
i U

2
i %

P k
i V i

" #2

2
P k

i V
2
i

367For the VT test we test:

Q RM%VT ¼ max
p

Q RM%Burden pð Þ,

368which is the maximum of the random-effects burden tests obtained
369with a MAF threshold p [51].

370

SKAT and SKAT-O 371In order to obtain the test statistic for the SKAT meta-analysis we
372assume that the mean of the genetic effects of the variants in each
373region, for each study, is drawn from the distribution:
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βi ¼ μþ ξi, i ¼ 1, . . . , k

374where μ is the mean of the effects of the j variants across the
375k studies and ξi is the deviation of the effects of the kth study from
376the mean effect [34, 51]. Random effects models have been pro-
377posed for the SKAT and SKAT-O tests, by Lee et al. [47], the
378Het-SKAT and Het-SKAT-O and by Tang et al. [51], the
379RE-SKAT and RE-SKAT-O. RE-SKAT aims to detect mean effects
380and heterogeneity and HET-SKAT aims to detect heterogeneity in
381the absence of mean effects [46].

382Tang and Lin [46] performed extensive simulation testing to
383compare the power of the different statistical models. They com-
384pared three different genetic structure models: rare variant model
385(for this model it is assumed that 50% of the variants with
386MAF < 0.5% are causal), low-frequency-variant model (where
38750% of all variants are assumed to be causal), and opposite effects
388model (where 50% of the variants are assumed to be causal, 80% of
389the causal variants are risk, and 20% of the causal variants are
390protective) [46]. Under these genetic models they evaluated the
391different meta-analysis methods for the fixed- and random-effects
392burden, VT, SKAT, and SKAT-O models using normalized score
393statistics [46]. The tests were performed assuming that the effect of
394each study is a random variable with mean μ and variance τ. Two
395different mean effect values, μ ¼ 0 and μ ¼ 0.25, were tested and
396the variance τ was allowed to vary between 0 and 0.25. For μ¼ 0.25
397and when genetic heterogeneity was small the fixed-effects burden
398and VT models were more powerful than their equivalent random-
399effects models and the fixed-effect SKAT and SKAT-O had similar
400power to their corresponding random-effects models [46]. In the
401presence of strong heterogeneity the random-effect models were
402more powerful to the equivalent fixed-effects. The simulations
403showed that under the rare variant model VT tests were the most
404powerful whereas for the opposite effects model SKAT and SKAT-
405O were more powerful than burden and VT models [46]. Under
406the opposite effects structure model, the random effects models for
407SKAT and SKAT-O (HET-SKAT and HET-SKAT-O) proposed by
408Lee et al. [47] were less powerful compared to random effects
409models proposed by Tang et al. [51] (RE-SKAT and RE-SKAT-
410O) when the heterogeneity was low, and slightly more powerful
411when the heterogeneity was large [46]. Under the assumption that
412μ ¼ 0, the random effects models were more powerful in the
413presence of strong heterogeneity. For the rare and low-frequency
414variant models RE-SKAT-O was the most powerful whereas for the
415opposite effects model HET-SKAT and HET-SKAT-O were more
416powerful [46]. Tang and Lin [46] further compared the different
417methods using normalized and non-normalized score statistics and
418illustrated that the use of non-normalized score-type statistics can
419result in power loss. It is obvious that no single test is more
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420powerful under all different genetic models and since the underly-
421ing genetic model is not known upfront, it is important that the
422different methods are explored in each different case.
423

4244 Heterogeneity

425There can be numerous reasons underlying between-study hetero-
426geneity in genomic studies, including differences due to different
427populations being studied and environmental or lifestyle factors.
428Other potential sources of heterogeneity include genotyping
429errors, differences in genotyping platforms, variants being imputed
430or genotyped in the different studies, or differences in the defini-
431tions of the phenotype or trait [2]. Different measures of heteroge-
432neity have been proposed and used in the literature for assessing the
433between-study differences in underlying models for the common
434variants in GWAS. The Cochran’s Q-statistic [20] and the I2 metric
435[52] have been widely used in common variant meta-analyses. Q
436statistic is used for testing the hypothesis of no heterogeneity
437between studies and I2 is a measure of the proportion of the total
438variability that is due to heterogeneity and takes values between
4390 and 100%. Usually, a Q statistic p-value of <0.1 is regarded as
440significant heterogeneity, I2 > 50% is considered moderate hetero-
441geneity and I2 > 75% is considered as high heterogeneity [52].
442Heterogeneity is expected to play a more significant role in the
443meta-analyses of rare variant studies as rare variants are population
444specific [53] and can be more sensitive to sequencing technologies
445errors, quality control measures, and differences in regional
446annotations [51].

4475 Meta-Analysis Software

448The majority of the software developed for the common variant
449meta-analysis will perform both fixed- and random–effects meta-
450analysis for binary and quantitative traits and also allow for geno-
451typed and imputed variants. For the common variant single variant
452meta-analysis, METAL [54], META [55], GWAMA [56], PLINK
453[57] and different R packages [58] like MetABEL [59] have been
454most widely used. MANTRA [31] and TransMeta [27] have been
455used for the meta-analysis of results from multiethnic studies and
456METASOFT for the new random effects model proposed by Han
457and Eskin [25] and the binary effects assumption [26].
458The different software require input of individual study summary
459statistics including p-values, sample size, estimate of the regression
460coefficient, standard errors, and imputation quality metrics.
461GWAMA, META, and METASOFT perform both fixed- and
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462random effects meta-analysis whereas METAL, PLINK, and MetA-
463BEL perform only fixed effects meta-analysis. META and METAL
464also perform z-score-based meta-analysis and METASOFT imple-
465ments two additional random-effects meta-analysis tests; a test that
466is optimal for detecting associations in the presence of heterogene-
467ity and a test that is optimal when some studies have an effect and
468others do not. All software allow for genomic control adjustments
469and also produce measures of heterogeneity across the different
470studies (Cochran’s Q p-value and I2).
471Different software have been developed for the meta-analysis of
472the regional rare variant test statistics including meta-analysis of
473score statistics (MASS) [50], RAREMETAL [60], MAGA and
474different R packages like MetaSKAT [47] and seqMeta [48]. Each
475package has their own function or complementary software for the
476calculation of the score statistics and covariance matrices of each
477individual study to be used subsequently for the meta-analysis.
478MASS, MetaSKAT, and seqMeta can be used to obtain summary
479statistics for both quantitative and binary traits whereas RAREME-
480TAL can currently only be used for quantitative traits. seqMETA
481can also be used for survival analysis data and allows for different
482selection weights for the Burden and SKAT part of the SKAT-O.
483RAREMETAL and seqMeta also support the analysis of family data
484and conditional analyses. Furthermore, Tang and Lin developed a
485software to convert the summary statistics of the different rare
486variant meta-analysis software (PreMeta) as they are not always
487compatible [46]. This allows for the easier exchange of summary
488level statistics across the different studies without the need for each
489analyst to perform the analysis using the same software. Tang and
490Lin [46] have also proposed different transformation methods that
491are implemented in PreMeta which aim to achieve normality and
492reduce the type I error; the inverse-normal transformation (INT)
493and rescaled INT (R-INT). MAGA allows for the reconstruction of
494the regional test statistic using the single variant results from each
495study (effect estimates and standard errors) and uses correlation
496matrices from one of the component studies or publicly available
497resources [49]. The method implemented in MAGA is attractive
498when each of the component studies cannot obtain the score
499statistics and information matrices, but has limitation due to the
500fact that rare variants for which the effect cannot be estimated are
501not used in the analysis [49].

5026 Discussion

503Meta-analysis provides a powerful tool for the combination of the
504results of different studies in order to identify associations that
505would have not been found through a single study. This has proven
506an extremely successful method in GWAS and aided the
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507identification of thousands of robustly associated common variants
508with complex traits. Although different meta-analysis techniques
509have been proposed, the fixed-effects meta-analysis has been most
510widely used in GWAS. The field of genetics is currently being driven
511by rare variant studies and a large number of sequencing experi-
512ments are currently being performed. Larger power will need to be
513achieved in order to identify rare variant associations and aggrega-
514tion methods and meta-analysis will clearly play an important role
515in this identification. As the underlying genetic effects of rare-
516variants are not known upfront and currently there is not a univer-
517sally more powerful rare variant meta-analysis method, a collection
518of approaches need to be explored. Further validation will need to

519 be performed to regions identified through meta-analyses of aggre-
520 gation tests.
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