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6Abstract

7Mendelian randomization (MR AU1) is becoming a popular approach to estimate the causal effect of an exposure
8on an outcome overcoming limitations of observational epidemiology. The advent of genome-wide associ-
9ation studies and the increasing accumulation of summarized data from large genetic consortia make MR a
10powerful technique. In this review, we give a primer in MRmethodology, describe efficient MR designs and
11analytical strategies, and focus on methods and practical guidance for conducting an MR study using
12summary association data. We show that the analysis is straightforward utilizing either the MR-base
13platform or available packages in R. However, further research is required for the development of
14specialized methodology to assess MR assumptions.
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161 Introduction

17Mendelian randomization (MR) is a technique that uses genetic
18variants to make causal inferences about the effect of an exposure
19on an outcome. MR is a special case of the instrumental variable
20(IV) methodology, initially introduced in econometrics, where
21genetic variants are used as IVs [1]. This approach is based on the
22principle of the random assignment of an individual’s genotype
23from his or her parental genotypes that occurs at conception, and
24is analogous to the random allocation of a treatment in randomized
25controlled trials. The reason for utilising the MR approach is to
26overcome residual confounding, reverse causation or exposure
27measurement error, which occur frequently in observational studies
28and may bias their results [2]. Genetic variants are, in general, not
29associated with environmental confounders. Reverse causality is not
30an issue in genetic epidemiology, as the genotype does not usually
31change through life. Finally, genotypes may index the tendency for
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32lifetime concentrations of an environmental exposure and may thus
33circumvent exposure measurement error that is frequent when
34exposures are evaluated at one point in time in observational
35studies [3].
36The use of MR is growing rapidly in popularity during the last
375 years [4]. MR studies have demonstrated causal effects of obesity
38and low-density lipoprotein cholesterol with cardiovascular disease,
39but lack of causal effects for high-density lipoprotein cholesterol
40and C-reactive protein [5–7]. Recent studies have also identified a
41number of potential causal associations between obesity and related
42metabolic traits with several cancers [8–11].
43Many review articles onMR exist, which include descriptions of
44MR assumptions and evaluation methods [12–14], commentaries
45on available study designs [15], statistical models for deriving a
46causal effect [16, 17], and guidance for the reporting of the MR
47findings [18, 19]. Many of the aforementioned issues have been
48recently presented in a unified framework [20]. We seek to comple-
49ment existing literature by contributing a review article to guide an
50interested reader to conduct an MR study with publicly available
51data. We begin with a general description of IV assumptions, MR
52statistical estimators and study designs when individual level data
53are available. We then switch to specific MR approaches used when
54summarized data are available. In particular, we describe general
55guidelines on the selection of IVs, statistical approaches for the
56estimation of causal effects and the assessment of IV assumptions.
57We proceed with demonstration of the MR-base platform [21], an
58online database of summary genetic association data and a tool to
59performMR analyses, as well as popular R packages. We close with a
60discussion of the advantages and limitations of the MR approach.

612 IV Assumptions in MR

62MR studies must fulfil IV assumptions. These assumptions are that
63(1) the genetic variant (G) is associated with the exposure (X);
64(2) the genetic variant is not associated with any confounder (U)
65of the exposure-outcome association; and (3) the genetic variant is
66conditionally independent of the outcome (Y) given the exposure
67and confounders (Fig. 1) [22, 23].
68For the first assumption to hold, it necessitates the use of
69genetic variants as IVs that are strongly associated with the expo-
70sure. This is the only assumption that can be formally tested and
71could be satisfied if genome-wide statistically significant variants are
72selected as candidate IVs. The second assumption is violated if the
73IVs are associated with confounders, although genes are not in
74general correlated with environmental confounders. The third
75assumption implies that all causal pathways from the genetic var-
76iants to the outcome pass through the exposure, and that there are
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77no alternative pathways [23]. The second and third assumptions are
78not testable, but we could get some intuition of their validity based
79on existing biological knowledge. The second assumption is vio-
80lated when population stratification exists, which is a type of con-
81founding due to different ancestry. It often occurs in genetic
82epidemiology, when the population under analysis can be decom-
83posed into different ancestries that have different allele frequencies
84for the genetic variant under study and different risks for the
85outcome under study. The third assumption can be violated by
86numerous phenomena including pleiotropy, linkage disequilibrium
87(LD), population stratification, and gene-environment or gene-
88gene interactions. There is evidence in the literature that several
89genetic variants have pleiotropic effects, which means that they are
90associated with several different phenotypes. Pleiotropy is often
91categorized as “balanced” if the average pleiotropic effects of the
92IVs that contribute in an MR analysis are zero or “directional”
93eitherwise. LD refers to the phenomenon that some genetic var-
94iants are jointly inherited due to their physical proximity on a
95chromosome. Overall, there is no way to prove that the second
96and third MR assumptions definitively hold. However, it is often
97possible to find empirical evidence suggesting that the putative IVs
98are invalid. One of the best ways to indirectly evaluate MR assump-
99tions is if there is high reproducibility of the MR causal estimates in
100different studies.

Fig. 1 Directed acyclic graph (DAG) for the instrumental variable assumptions in
Mendelian randomization. The exposure (X) is causally associated with the
outcome (Y ) if: (1) the genetic variant (G) is associated with X; (2) G is
independent of any confounding factors (U ), and (3) there is no association
between G and Y, except through X. The dashed lines represent the coefficient
from the regression of the outcome on G (βY) and the coefficient from the
regression of the exposure on G (βX)
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1013 MR Estimators Using Individual Level Data

102Several methods have been proposed for the estimation of the
103causal effect of the exposure on both continuous and binary out-
104comes using IVs, which include the ratio of the regression coeffi-
105cients method, several two-stage methods, likelihood-based
106methods and semi-parametric models. A thorough overview of
107these methods as well as guidelines for their use have been recently
108published [17].
109The ratio method, also known as the Wald method [24], is the
110simplest approach. The causal effect can be expressed as a ratio with
111nominator the coefficient from the regression of the outcome on
112the IV (βY) and denominator the coefficient from the regression of
113the exposure on the IV (βX) (Fig. 1). Confidence intervals for the
114ratio estimator can be calculated using a normal approximation,
115which however may be suboptimal when normality assumptions are
116violated particularly when small sample sizes are available. Alterna-
117tively, one could use the Fieller’s theorem (https://sb452.
118shinyapps.io/fieller/) [3, 25], bootstrapping [26], Anderson-
119Rubin test statistic [27] or the conditional likelihood ratio test
120statistic [28]. This approach can be extended to account for binary
121outcomes by simply employing log-linear or logistic regression
122models. The ratio method for calculating the MR estimator can
123be performed for single IVs. The sample size required under the
124ratio method for making causal inferences can be very large [29],
125and methods that can incorporate multiple IVs are preferable.
126Two-stage methods are widely used in MR and are formulated
127in two separate regression stages: the first-stage involves a regres-
128sion of the exposure on the IVs, and the second-stage a regression
129of the outcome on the predicted values of the exposure from the
130first stage. The first-stage regression model can incorporate multi-
131ple IVs. The causal estimate is the second-stage regression coeffi-
132cient. However, although this estimate is valid, the standard error is
133estimated imprecisely as the variability of the first-stage regression is
134not accounted for. Thus, an alternative formula for the calculation
135of the variance of the two-stage estimator has been presented when
136the size of the error terms do not differ across values of the
137independent variables (homoscedasticity assumption) [30], or
138alternatively robust standard errors can be reported. Binary out-
139comes can also be accounted for by using log-linear or logistic
140regression models in the second-stage regression, although these
141methods have been criticized as the residuals from the second-stage
142regression may be correlated with the IVs [30]. Under a similar
143perspective, the “control function” estimator [31] follows the same
144principle as the two-stage estimator but also includes the estimated
145residuals from the first-stage regression in the second-stage.
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146As already pointed out, two-stage methods do not account for
147the variance of the first-stage regression, and likelihood-based
148methods are preferable since the two stages are performed simulta-
149neously. These involve full information maximum likelihood
150(FIML) or limited information maximum likelihood (LIML) mod-
151els [32] and Bayesian methods [33]. Finally, there are also semi-
152parametric methods, which make a parametric assumption for the
153model relating the exposure to the outcome, but make no assump-
154tion on the distribution of the errors. These methods include the
155generalized method of moments (GMM) [34, 35], continuous
156updating estimator (CUE) [36] and structural mean models
157(SMM) [37–39]. However, a drawback with all these semi-
158parametric models is that a unique causal estimate may not be
159estimated when binary outcomes are assessed. It should also be
160noted that with a single IV, causal estimates obtained via the ratio,
161two-stage methods, LIML, GMM and SMM coincide [17].

1624 MR Study Designs Using Individual Level Data

163When data on the IV(s), exposure, and outcome are available for all
164participants in a single sample, estimation of the causal effect is
165straightforward using the appropriate method(s) described in the
166previous sections. However, in practice, in the era of large scale
167genome-wide association studies (GWAS), exposure data may not
168always be available. This may be the case, when the exposure is a
169biomarker difficult or prohibitively expensive to measure in tens of
170thousands of disease cases and controls. Therefore, efficient designs
171of MR studies were recently proposed [40]. A “subsample” IV
172estimation design can be used, when data on the IV-exposure
173association are available for a subset of participants but data on
174the IV-outcome association are available for all participants in the
175same dataset. A “two-sample” IV estimation design can also be
176used, when data for the association between the IV and exposure
177and the IV and outcome are available from different independent
178datasets. Simulation studies suggest that subsample IV designs
179obtain statistical power estimates comparable with studies with
180complete exposure data [40]. In particular, it was shown that
181power exceeds 90% even when exposure data was available for
18220% of the total sample size. Overall, power for MR studies is
183most efficiently increased by increasing the sample size of the
184gene-outcome association. Employing two-sample designs does
185not result in efficiency loss under the assumption that the two
186samples are selected randomly from the same underlying
187population.
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1885 MR Estimators Using Summary Association Data

189In the previous sections, we discussed MR study designs and esti-
190mation methods of the causal effect when individual level data on
191the genetic variant(s), exposure and outcome are available. If
192individual-level data are not available, then valid statistical inference
193can still be obtained from summarized data on the associations
194between the genetic variants with the exposure and the outcome.
195The increasing number of publicly available summary data from
196GWAS is a valuable source for estimating the causal effect of the
197exposure on an outcome with greater precision. By using summar-
198ized data, one can avoid additional complications arising from
199confidentiality agreements, especially when it comes to large con-
200sortia. Moreover, accumulating evidence from GWAS involving
201multiple genetic variants can be used to derive an overall causal
202effect more efficiently [41]. Efficient designs described in Subhead-
203ing 4 could be adopted. The subsequent sections will focus on
204details for designing and conducting summary data MR studies .

5.1 Selection of
the IVs

205Genetic variants used as IVs are selected on the basis of a strong
206association with the exposure of interest. Robustly and highly
207statistically significant variants can be selected if individual level
208data are available from GWAS. Alternatively, the GWAS Catalog,
209which is a curated repository of accumulating evidence from pub-
210licly available GWAS, is a valuable source for identifying summary
211gene-exposure associations [42]. There is a trade-off in including
212only genetic variants as IVs with a genome-wide significant associa-
213tion with the exposure, risking an underpowered estimate, or
214including all available variants with any association with the expo-
215sure, risking a biased estimate due to potential violation of the third
216MR assumption. The current safest recommendation is to select
217instruments that are genome-wide significantly associated with the
218exposure.
219

5.2 Estimation
Methods

220Two main statistical methods have been proposed for the estima-
221tion of causal effects when summarized data are available: the
222likelihood-based method and the inverse-variance weighted
223(IVW) method [43].
224Let us denote the estimate of association for the genetic variant
225k¼ 1,...,Kwith the exposure bybβXkwith standard error σXk, and the
226estimate of association with the outcome by bβYkwith standard error
227σYk. Under the likelihood-based method assuming linearity of the

228
exposure-outcome association, the causal effect bβL

! "
is estimated

229by the following model:
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bβXk " N ξk; σXk
2

# $

bβYk " N βLξk; σYk
2

# $ ð1Þ

230The parameters of the model in Eq. (1) can be estimated under
231standard likelihood or Bayesian approaches. This basic model is
232valid for two-sample designs. Modification is required to account
233for the correlation structure of gene-exposure and gene-outcome
234associations if they are estimated in the same or overlapping
235participants [43].

236Another approach is based on the idea to combine the ratio

237
estimates of the causal effects

bβYk

bβXk

from each genetic variant by

238employing an IVW meta-analysis [44]. The variance of the ratio
239estimate can be approximately estimated using the Delta method,

240
as

σ2Yk
bβ2
Xk

[45]. Further terms could be also incorporated to account for

241the uncertainty in the gene-exposure association. Thus, the IVW
242estimate can be expressed as:

bβIVW ¼
P

k
bβXk

bβYkσYk
%2

P
k
bβXk

2
σYk%2

ð2Þ

243with an approximated standard error given by:

se bβIVW

! "
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P
k
bβXk

2
σYk%2

s
ð3Þ

244Thus, the IVW method is a weighted average of the causal
245effects derived from the genetic variants k. Of course, if only one
246IV is available Eq. (2) is simplified to the classical ratio estimator. If
247the IVs are not in LD (uncorrelated IVs), the causal estimate
248obtained from the IVW method is equivalent to a two-stage
249approach using individual-level data. This basic model assumes
250that any differences in the causal estimates derived from multiple
251IVs can be explained by their variances, as these are assumed to
252represent the same underlying quantity (homogeneity assumption).
253This assumption can be tested using the classical Cohran’s
254Q heterogeneity statistic.

255Both the likelihood-based and the IVW methods assume that
256gene-gene interactions among the selected IVs are negligible and
257that the IVs are not in LD. Extensive simulation studies reveal that
258gene-gene interactions have little impact on the estimates obtained
259using summarized data MR methods [43]. On the other hand,
260when correlated variants are used as IVs the standard errors are
261underestimated, which may result in invalid statistical inferences.
262This warrants the need of statistical approaches that account for the
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263correlation structure of the IVs [16]. Overall, the estimates
264obtained from the likelihood-based approach including robustly
265associated variants that are not in LD are unbiased and precise
266when compared against those derived by employing two-stage
267methods using individual-level data. The IVW approach also gives
268similar point estimates to two-stage methods [43].
269The IVW and likelihood-based approaches are based on the
270idea to synthesize separate causal effects derived from multiple IVs
271in order to derive an overall causal estimate. Another perspective
272could be to combine multiple IVs and construct an allele score
273[46]. Unweighted or weighted scores can be constructed, and it
274has been shown that both approaches give unbiased results
275[46]. Formulas for the calculation of allele score based methods
276using summarized data have been presented and bias can be
277avoided if weights from an external population are used [47]. Allele
278scores accounting for variants in LD have been recently described
279allowing for the inclusion of multiple correlated IVs that further
280increase power of the causal estimates [47]. However, caution on
281the interpretation of the findings is necessary if the allele score is
282composed of invalid IVs. We conclude that synthesizing evidence
283using summarized data is a good compromise if individual-level
284data are not available.
285

5.3 Assessing IV
Assumptions

286We have discussed MR methods for estimating causal effects using
287summary association data. Here, we discuss methods that are used
288for assessing the validity of IV assumptions and present robust
289estimation methods that account for pleiotropy. Assessing IV
290assumptions is particularly challenging when individual level data
291are not available. To secure the non-violation of the first assump-
292tion of MR, genetic variants are selected that are robustly associated
293with the exposure of interest in GWAS. The strength of an instru-
294ment can be evaluated using the F statistic in the regression of the
295exposure on the IV [48]. In the case of summary data,

296F ¼ N%K%1
K

R2

1%R2, with R2 approximately equal to 2bβXk&
297MAF & 1%MAFð Þ, where N is the sample size, K is the number
298of genetic variants, R2 the proportion of the variance of the expo-
299sure explained by the IVandMAF the minor allele frequency. Thus,
300the F-statistic depends on the sample size, the number of IVs, MAF
301and the proportion of the variance explained by the IVs. If F is less
302than 10, this is an indication of weak instrument(s) [49]. However,
303this value is arbitrary and is valid only for two-stage methods [50];
304it fluctuates according to the sample size and is calculated post-hoc
305[51]. Alternatively, the instrument strength could be quantified
306by a modification of the classical I2 statistic [52], which is termed
307IGX

2 [53] attributing the excess of variability of gene-exposure
308associations to measurement error. This statistic fluctuates from
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3090 to 1, and a value of 0.9 is equivalent to an F statistic of 10.
310The second assumption is testable only for known confounders. If
311summarized data are available, this assumption could be at least
312partially tested acquiring information from the literature or from
313checking for possible associations between the selected IVs and
314known confounders in the GWAS Catalogue [42].
315Although the inclusion of multiple IVs derived from published
316GWAS can increase power to detect causal effects, it is more likely
317to introduce bias due to violation of the third MR assumption
318[46]. If the distinct causal estimates derived from each genetic
319variant differ, this may be an indication of pleiotropic effects. For-
320mal statistical tests exist to test for those discrepancies including the
321classical Cohran’s Q statistic, the I2 statistic [54] or likelihood ratio
322tests. Heterogenous effects could also be detected by plotting
323causal estimates from the each included IV.
324Moreover, pleiotropy could be tested applying the MR-Egger
325regression method [55]. We move back to the IVW estimate of
326Eq. (2), which is equivalent to fitting a weighted linear regression of
327the associations of the IVs with the outcome on the IVs with the
328exposure with no intercept term. This analysis assumes that all IVs
329are valid and no pleiotropic effects exist. The classical IVW method
330is a good fit only if pleiotropy is balanced. In order to account for
331directional pleiotropic effects, one could reformulate the aforemen-
332tioned regression model with no constraint on the intercept term
333resulting in the so-called MR-Egger regression method [55]. This
334intercept term captures the average pleiotropic effects of the IVs
335and values away from zero are an indication of directional pleiot-
336ropy. The slope of the MR-Egger regression is a robust estimate of
337the causal effect. This approach assumes that the pleiotropic effects
338of the IVs on the outcome are distributed independently of the
339associations of the IVs with the exposure (InSIDE assumption).
340The InSIDE assumption is more likely to be satisfied if IVs are not
341associated with a confounder of the exposure-outcome association.
342An additional assumption that is required to hold is the so-called
343“NO Measurement Error” (NOME) where the variance of the
344IV-exposure association is negligible [43, 56]. In a two-sample
345MR design, violation of the NOME assumption results in under-
346estimated causal effects and other approaches have been proposed
347[53], such as the simulation extrapolation approach (SIMEX)
348[57]. A limitation of the MR-Egger regression is the lack of
349power and poor performance when few instruments are used.
350MR-Egger regression is also more sensitive to the InSIDE assump-
351tion violation than IVW. Besides, the confidence intervals when the
352causal effect is not null are not precisely estimated and over-
353interpretation should be avoided.
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354Another robust method to account for directional pleiotropy is
355based on the simple idea to order the ratio estimates of the k genetic
356variants and report the median [58], which assumes that at least
35750% of the variants are valid. The InSIDE assumption is not neces-
358sary. Violations of the second and the third assumptions are also
359allowed. One could also derive a weighted median estimate assign-
360ing weights proportionally to the precision of the causal estimate
361derived from each IV [59]. This approach requires at least 50% of
362the weights to originate from valid IVs. Simulation studies reveal
363that the weighted median approach results in more precise esti-
364mates, when compared against the MR-Egger regression method
365[59]. Extensions of the classical additive or multiplicative random
366effects models used in meta-analysis can accommodate both bal-
367anced and directional pleiotropy [60].
368Statistical tests for assessing pleiotropy could be further
369enriched graphically. A typical graph presented in MR studies is
370to plot the gene-outcome against the gene-exposure associations.
371If pleiotropy is absent, we expect that a variant’s association with
372outcome is proportional to its association with exposure, and
373therefore the plotted points fall along a line that passes through
374the origin and has a slope equal to the MR estimate. Additionally,
375one could create a funnel plot of the reciprocal of the standard
376error versus the MR causal estimate and check for any asymmetry.
377Another aspect in an MR setting is that estimation methods of
378the causal effects assume linearity of the exposure-outcome associ-
379ation. This is important and most MR investigations do not check
380this, but future MR studies should check first if exposure-outcome
381relationships derived from multi-SNP scores are linear before using
382the suggested estimation methods.
383

5.4 MR in Practice 384In this section we will describe step by step how one can perform an
385MR study using publicly available summary data. We will focus on
386the twomost popular options, theMR-base platform (http://www.
387mrbase.org/) [21] and the MendelianRandomization package in
388R.MR-base is a database and an online platform that allows the user
389to run a two-sample MR analysis. Currently, it is a collective reper-
390toire of ‘complete summary data’ from 1094 GWAS analyses from
39144 consortia with approximately 4 billion associations between
392SNPs and phenotypes (i.e., diseases, risk factors, metabolites and
393immune system traits). This database populates information not
394only from the GWAS Catalog [42], but also gene expression quan-
395titative trait loci (QTLs) [61], methylation level QTLs [62], metab-
396olite level QTLs [63] and protein level QTLs [64]. In the first step,
397one has to select the exposure of interest from the appropriate
398source (GWAS catalog, gene expression QTLs, etc.), and robustly
399associated IVs (with the exposure) are extracted with respect to a
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400p-value threshold for inclusion and/or LD threshold for pruning
401IVs that can be modified by the user. Alternatively, the user can
402upload a specific list of IVs manually with pre-calculated effect sizes
403and standard errors. In a second step, the user chooses the outcome
404of interest. For instance, if we were interested in testing the causal
405association of body mass index (exposure) and lung cancer (out-
406come), originally published by Carreras-Torres and coworkers [8],
407we would select IVs for the exposure from the Genetic Investiga-
408tion of ANthropometric Traits (GIANT) consortium and for the
409outcome from the International Lung Cancer Consortium
410(ILCCO) by clicking on the respective GWAS [65, 66]. The plat-
411form also offers the functionality to use proxies if a particular IV is
412not present, harmonise gene-exposure and gene-outcome effect
413alleles to ensure a common effect allele is used in both associations,
414and correct for palindromic SNPs. The user then selects the
415method of analysis (e.g., IVW, maximum likelihood, etc.) and is
416navigated to the results window. One can retrieve summary infor-
417mation on the studies used for the exposure and outcome associa-
418tions, the number of variants extracted, and the MR causal
419estimates from each predefined method. The presence of pleiotropy
420can be evaluated using the reported heterogeneity statistics and the
421p-value of the intercept from the MR-Egger regression method.
422Using the example of body mass index and risk of lung cancer, we
423retrieved a total of 79 IVs using default settings (i.e., p-value
424threshold for including IVs at 5 & 10%8, LD R2 values for pruning
425IVs at 0.001, clumping distance at 10.000, LD R2 values for
426proxies at 0.8 and a MAF threshold for aligning palindromes at
4270.3). None of the IVW, MR-Egger or weighted median approaches
428yielded statistically significant causal estimates. There was some
429evidence for heterogeneity, but evidence for directional pleiotropy
430was not present. We urge investigators to check for associations of
431the selected IVs with known confounders such as smoking in the
432particular example, and re-evaluate MR estimates after excluding
433those variants. Four plots are also available (i.e., causal effects
434calculated from each IV, IV-outcome associations against
435IV-exposure, causal effects derived removing one IV sequentially
436and a funnel plot of the reciprocal of the standard error versus the
437MR causal estimate). MR results and associated plots can also be
438converted in an HTML format. An interested researcher can alter-
439natively use the TwoSampleMR package in R to perform the analy-
440sis (Box 1).
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Box 1. Estimating causal association of body mass index with 
lung cancer using TwoSampleMR R package.
# Load TwoSampleMR R package:

. library(TwoSampleMR)

# Obtain data from MR Base GWAS database:

. ao<- available_outcomes()
# Extract IVs for an exposure, for example to obtain IVs for body mass index 

using Locke et al. 2015 GIANT study, specifying the study ID: 

. exposure_dat<- extract_instruments(ao$id[c(2)])
*Options are also available: 
p1 = P-value threshold for keeping a SNP (default=5e-08)

clump = Whether or not to return independent SNPs only (default=TRUE)

r2 = The maximum LD R-square allowed between returned SNPs (default=0.001)

kb = The distance in which to search for LD R-square values (default=10.000)

# Extract IVs for an outcome, for example to obtain IVs for lung cancer 

using Wang et al. 2014 ILCCO study, specifying the study ID, LD Rsq values 

for proxies at 0.8 and a MAF threshold for aligning palindromes at 0.3: 

. outcome_dat<- extract_outcome_data(exposure_dat$SNP, c(966), proxies = 1, 
rsq = 0.8, align_alleles = 1, palindromes = 1, maf_threshold = 0.3)

# Harmonise exposure-outcome data to match the same reference allele, 

inferring forward strand using allele frequency: 

. dat<- harmonise_data(exposure_dat, outcome_dat, action = 2)
# Perform an MR analysis: 

. mr_results<- mr(dat)
## Sensitivity analyses: 

# Obtain heterogeneity statistics: 

. mr_heterogeneity<- mr_heterogeneity(dat)
# Test for directional pleiotropy: 

. mr_pleiotropy_test<- mr_pleiotropy_test(dat)
# Obtain MR estimates for each of the selected IVs: 
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441Another option is to use theMendelianRandomization package
442in R. This package offers the extra functionality to model the
443correlation of IVs that are in LD which is not feasible via the
444TwoSampleMR package. Moreover, overlapping samples for esti-
445mating IV-exposure and IV-outcome associations can be accounted
446for. The IGX

2 statistic [53] can be also calculated in order to
447measure the instrument strength. The user has to specify appropri-
448ately vectors including IV-exposure and IV-outcome beta estimates
449along with their standard errors and this information is not auto-
450matically retrieved as in MR-base. However, the authors are willing
451to directly import information from genetic association studies
452available in PhenoScanner (http://phenoscanner.medschl.cam.ac.
453uk) in the package in the near future. Optionally, names of the
454genetic variants, effect or non-effect alleles and effect allele frequen-
455cies can be provided by the user. For demonstration purposes, we
456reanalysed the harmonised data extracted from the MR Base for
457estimating the potential causal association of body mass index with
458lung cancer risk assuming that IVs are independent (Box 2).
459

. res_single<- mr_singlesnp(dat)
# Obtain MR estimates excluding one IV at a time: 

. res_loo<- mr_leaveoneout(dat)
## Creating plots: 

# Create scatter plot of IV-outcome associations against IV-exposure: 

. p1<- mr_scatter_plot(mr_result, dat)
# Create forest plot of causal effects calculated from each IV: 

. p2<- mr_forest_plot(res_single)
# Create plot of causal effects derived removing one IV sequentially: 

. p3<- mr_leaveoneout_plot(res_loo)
# Create funnel plot of of the reciprocal of the standard error versus the 

MR causal estimate: 

. p4<- mr_funnel_plot(res_single)
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Box 2.Estimating causal association of body mass index with 
lung cancer using MendelianRandomization R package.
# Load MendelianRandomzation R package:

. library(MendelianRandomization)

# Create MRInput object from the harmonised body mass index using Locke et 

al. 2015 GIANT study and lung cancer using Wang et al. 2014 ILCCO study

obtained from MR Base GWAS database:

. MRInputObject <- mr_input(bx = dat$beta.exposure, bxse = dat$se.exposure, 

by = dat$beta.outcome, byse = dat$se.outcome,exposure = "Body mass index", 

outcome = "Lung cancer", snps = dat$SNP)

# Run IVW MR method:

. IVW<- mr_ivw(MRInputObject,

model = "default",

robust = FALSE,

penalized = FALSE,

weights = "simple",

distribution = "normal",

alpha = 0.05)

*Options for IVW method: 

model = "default", "random" or "fixed" (default=fixed-effect with 3 IVs or 

fewer)

robust = robust instead of standard regression can be performed

(default=FALSE)

penalized = penalty can be applied to downweight the contribution of genetic 

variants with outlying ratio estimates (default=FALSE)

weights = "simple" or "delta", the latter option uses the delta method to 

calculate the variance of the ratio estimates (default=simple)

distribution = "normal" or "t-dist" (default=normal)

# Run MR Egger method:

. Egger<- mr_egger(MRInputObject,
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robust = FALSE,

penalized = FALSE,

distribution = "normal",

alpha = 0.05)
*Options as in IVW method 

# Run ML method:

. MaxLik<- mr_maxlik(MRInputObject,
model = "default",

distribution = "normal",

alpha = 0.05)

*Options as in IVW method 

# Run Median based method:

. Median<- mr_median(MRInputObject,

weighting = "weighted",

distribution = "normal",

alpha = 0.05,

iterations = 10000,

seed = 314159265)

*Options for median based methods:

weighting = "simple", "weighted" or "penalized" (default=weighted)

distribution = "normal" or "t-dist" (default=normal)

iterations = bootstrap samples for calculating standard errors

(default=10000)

seed = seed to use when generating bootstrap samples (default=314159265)

# Run all methods:

. MR_all<- mr_allmethods(MRInputObject, method = "all")

## Creating plots: 

# Create scatter plot of IV-outcome associations against IV-exposure: 
. p<- mr_plot(MRInputObject,

error = TRUE, 
orientate = FALSE,

Mendelian Randomization



4606 Discussion

461MR is a powerful approach for deriving causal inferences about the
462effect of an exposure on an outcome overcoming limitations of
463observational epidemiology (i.e., confounding and reverse causa-
464tion). As the sharing of summary data from consortia becomes
465common practice, numerous genetic variants can be utilized as
466possible IVs resulting in greater efficiency andmore powerful causal
467estimates. We described the methods for conducting an MR study
468using summary association data and provided practical guidance
469using available software.
470The MR methodology has great promise for advancing bio-
471medical research, but is also subject to assumptions and limitations
472caused by unsuitable IVs, population stratification, LD and pleiot-
473ropy. We showed that MR assumptions are difficult to be evaluated
474when individual level data are available, which becomes even more
475difficult when only summary association data are available. MR is a
476relatively new field, and additional methodology is warranted to
477increase the sensitivity and power to detect potential violation of IV
478assumptions. For instance, MR methods that allow for automatic
479identification of specific genetic variants with pleiotropic effects
480that could be excluded from subsequent analysis could strengthen
481the MR approach. Moreover, selected genetic variants usually
482explain a small proportion of the variance in the different expo-
483sures. Given that many of these environmental exposures/traits are
484highly heritable, further work using additional genetic variants as
485instruments, when they become available from future GWAS, will
486increase power of MR studies and will allow investigations in sub-
487groups. As in all science, replication of results from MR studies is
488vital.

interactive = TRUE,

labels = TRUE,

line = "ivw")

*Options for scatter plot:
error = include error bars (default=TRUE)

orientate = convert negative gene-exposure associations to positive (default=FALSE)

interactive = produces interactive plots (default=TRUE)

labels = displays IV labels (default=FALSE)

line = "ivw" or "egger" (default=ivw)
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