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Course	contents	(week	I)	

•  Introduc=on	to	Gene=c	Epi	
	
•  Study	designs	in	Gene=c	Epi	

•  Gene=c	associa=on	studies	



Readings	
Chapters:		
2.	Key	concepts	in	gene=c	
epidemiology	
3.	Quality	control	of	common	
and	rare	variants	
4.	Genome-wide	associa=on	
studies	
5.	Assesing	rare	varia=on	in	
complex	traits	
6.	Meta-analysis	of	common	and	
rare	variants	
	



Addi=onal	Readings	
•  Warren	HR,	Evangelou	E,	Cabrera	et.	Al.	Genome-wide	associa=on	

analysis	iden=fies	novel	blood	pressure	loci	and	offers	biological	
insights	into	cardiovascular	risk.	Nat	Genet.	2017;49(3):403-415	

	
•  Evangelou	E,	Warren	HR,	Mosen-Ansorena	D	et	al.	Gene=c	analysis	

of	over	one	million	people	iden=fies	535	novel	loci	associated	with	
blood	pressure	traits.	Nature	Genet.	2018;	in	press	
•  		h]ps://www.biorxiv.org/content/early/2017/10/11/198234	

	
•  Evangelou	E,	Ioannidis	JP.	Meta-analysis	methods	for	genome-wide	

associa=on	studies	and	beyond.	Nat	Rev	Genet.	2013;14(6):379-89	

•  Visscher	PM	et	al.	10	years	of	GWAS	discovery:	Biology,	Func=on,	
and	Transla=on.	Amer	J	Human	Genet.	2017;101(1):5-22	

	
	
	



Introduc$on	to	Gene$c	
Epidemiology	



Learning	outcomes	
•  Describe	genome	structure	and	human	genetic	
variation	

	
•  Provide	an	account	of	key	concepts	of	popula=on	
gene=cs	and	genetic	epidemiology	(i.e.,	heritability,	
linkage	disequilibrium)	

•  Understand	the	goals	and	principles	of	family-	and	
popula=on-based	designs	in	gene=c	epidemiology	



Outline	

•  Genetic	Epidemiology	
•  Genome	structure	and	gene=c	varia=on	
•  Genetic	and	epidemiological	study	designs	

– Es=ma=on	of	gene=c	effects	

•  Key	concepts	
– Heritability	
– Linkage	disequilibrium	



Genetic Epidemiology 

Parent	sciences	(gene=cs	&	epidemiology)	share	common	goals	
but	they	differ	in	their	histories	&	perspec=ves.	

Gene$c	Epidemiology	

Gene$cs	 Epidemiology	

A	hybrid	science	focusing	on	complex	diseases	(where	both	gene=c	&	
environmental	factors	contribute	to	e=ology	of	disease)	



Gene=c	Epidemiology	

•  “A	field	of	science	that	focuses	on	the	role	of	
gene=c	factors	and	their	interac=on	with	
environmental	factors	in	the	occurrence	of	
disease	in	human	popula=ons”	

Fundamentals	of	Gene=c	Epidemiology.	Khoury	M,	et	al.	



Gene=c	Epidemiology	
•  Is	based	on	principles	of	popula=on	gene=cs	

•  U=lizes	sta=s=cal	approaches	to	detect	the	
gene=c	effects	on	suscep=bility	to	chronic	
diseases	and	quan=ta=ve	traits	
–  Type	2	Diabetes	
–  Prostate	cancer	
– Obesity	or	quan=ta=ve	trait,	e.g.	BMI	

 



Biosta=s=cs	

Molecular	biology	

Clinical	Epidemiology	

Bioinforma=cs	

Epidemiology	

Gene=cs	

Gene=c	epidemiology	

Gene=c	Epidemiology	



Landmarks in Genetics 
Year Event 
1865 Gregor Mendel publishes work on peas describing  

fundamentals of inheritance  

1871 DNA is isolated from the cell nucleus 

1900 3 people independently “re-discover” Mendel’s 
work (Correns, DeVries & vonTschermak) 

1901-02 Garrod discovers human example of Mendelian 
disease (alkaptonuria) & Landsteiner discovers 1st 
genetic marker (ABO) 

1908 Hardy & Weinberg lay the foundation for modeling 
genes in populations 



Landmarks in Genetics (cont’d) 
1930’s Biometrical school of genetics develops statistical 

models for genes in families & populations 

1953 Double helix structure of DNA identified by 
Watson & Crick (& R. Franklin) 

1966 Genetic code established (3 nucleotides per 
codon) 

1972 Recombinant DNA techniques developed 

1987 Human Genome Project proposed 

2001 Draft sequence of human genome available 

2008 1000 Genomes Project commences 



Central	ques=ons	in	Gene=c	
Epidemiology	

1.  Does	the	trait	cluster	in	families?	
2.  Can	familial	clustering	be	explained	by	

genes	or	shared	environment?	
3.  What	is	the	best	model	of	inheritance?	
4.  Can	we	locate	genes	for	complex	diseases/

traits?	
5.  How	does	the	gene	control	risk	of																

disease?	





Figure	1.	ROR	and	95%	CIs	for	Each	Comparison	of	an	Unrelated	Case-Control	Study	versus	Family-Based	Study	

Evangelou	E,	Trikalinos	TA,	Salan=	G,	Ioannidis	JPA	(2006)	Family-Based	versus	Unrelated	Case-Control	Designs	for	Gene=c	Associa=ons.	PLOS	
Gene=cs	2(8):	e123.	h]ps://doi.org/10.1371/journal.pgen.0020123	
h]p://journals.plos.org/plosgene=cs/ar=cle?id=10.1371/journal.pgen.0020123	





Organiza=on	of	the	human	genome	

•  Nuclear	genome	
– 3200	Mb	
– 23	(XX)	or	24	(XY)	linear	chromosomes	
– ~20,000	protein-coding	genes	
– 1	gene/30-60kb	
– Only	10%	is	coding	sequence	

– Introns	
– 3%	coding	
– Repeti=ve	DNA	sequences	(45%)	
– Recombina=on	
– Mendelian	inheritance	(X	+	auto,	paternal	Y)	



Organiza=on	of	the	human	genome	

•  Genes	vary	in	size	and	exon	content	



Human	Gene=c	varia=on	and	disease	

•  What	is	a	SNP?	

•  Types	of	SNP	

•  SNPs	as	genetic	markers	

•  GWAS	



Watson	and	Crick	



SNPs	
•  Single/simple	nucleo=de	polymorphism	–	SNP	
•  A	single	nucleo=de	variant	in	the	DNA	
•  SNP	is	a	DNA	sequence	varia=on	within	a	
single	nucleo=de—	A,	T,	C	or	G	—	in	the	genome	

•  E.g.	Adenine	to	Guanine,	Thymine	to	Cytosine	
•  Mostly	biallelic 	(two	alleles)	polymophism,	

•  AAGGTTA	σε	ATGGTTA	
– but	large	number	of	tri-	and	quadri-allelic	SNPs	is	now	
described	

•  Could	also	be	a	1bp	indel,	duplica=on,	etc	



SNP	or	muta=on?	

•  Typically	not	considered	to	have	a	functional	
effect,	hence	polymorphism	and	not	mutation	

•  However,	SNP	is	often	used	as	a	term	for	all	
single-base	changes,	functional	or	not.	

•  The	difference	is	that	a	mutation	has	a	
functional	effect	and	a	polymorphism	does	
not	necessarily	



Genetic	terms	
•  Each	variant	of	a	gene	(at	a	given	locus)	is	an	allele	

–  e.g.	A	or	a	
•  For	a	gene=c	marker,	the	two	parentally-inherited	
variants	combined	are	called	a	genotype	
–  e.g.	A,a	

•  The	site	or	loca=on	on	a	chromosome	occupied	by	a	
gene	is	called	a	locus	



Minor	Allele	Frequency	(MAF)	
•  This	is	how	often	the	less	frequent	allele	of	a	
biallelic	variant	occurs	in	a	group	(often	a	
percentage)	

•  As	the	total	allele	frequency	is	1	(100%),	a	MAF	
must	always	be	less	than	0.5	(50%),	otherwise	it	
would	be	a	major	allele	

•  E.g.	if	we	genotype	a	variant	(A/G)	in	1000	people	
–  550	are	(A,A),	400	are	(A,G)	and	50	are	(G,G)	
–  There	are	2000	alleles	in	total	
–  The	G	allele	is	less	common,	accoun=ng	for	500	alleles	
–  Therefore,	the	MAF	is	500/2000	=	0.25	or	25%	



Types	of	SNPs	based	on	MAF	

•  Common	SNPs	
•  MAF	>	5%	
•  ~7	M	in	human	genome	

•  Low	frequency	SNPs	
•  1%	<	MAF	<	5%.	
•  ~11	M	in	human	genome	

•  Rare	SNPs	
•  MAF	<	1%	
•  >100	M	in	human	genome	



Types	of	SNP	

•  Non-Synonymous	
•  Synonymous	
•  Promoter	
•  Terminator	
•  Splicing	
•  Neutral	



SNPs	as	Gene=c	Markers	

•  Bi-allelic	
•  Very	common	across	the	genome	
•  Good	evidence	that	they	can	directly	cause	
disease	

•  Easily	genotyped	using	high-throughput	
technologies	

•  Widely	used	for	association	and	linkage	
studies	



(db)SNP	
h-p://www.ncbi.nlm.nih.gov/snp	

Ø 	More	informa=on	on	gene=c	varia=on	
• 	genotype	
• 	allele	frequencies	
• 	chromosome	posi=on	
• 	sequence	
• 	popula=on	diversity	
• 	visual	displays	



PubMed	Gene	
h-p://www.ncbi.nlm.nih.gov/pubmed/gene/	

Ø 	Database	of	genes	in	humans	(n=43,828)	and	other	
organisms	

• 	gene	name	
• 	alias	(e.g.	TCF7L2)	
• 	func=on	
• 	lineage	in	other	organisms	
• 	biological	pathways	
	



•  Heritability	

•  Hardy-Weinberg	equilibrium	

•  Linkage	disequilibrium	

Step	back:	Key	concepts	of	
popula=on	gene=cs	



Heritability	(of	a	trait)	defini=ons	

•  Frac$on	of	phenotypic	variability	that	is	
attributable	to	gene$c	varia$on	

•  IS	NOT:	how	much	genetics	influences	trait	in	
one	person	

•  is	relative	to	specific	population	in	a	particular	
environment	(since	contribution	of	genetic	
factors	is	relative	to	contribution	of	other	
factors	such	as	environment)	



Heritability	
•  Phenotype	P	
•  Genotype	G	
•  Environment	E	
•  Var(P)	=	Var(G)+Var(E)+2Cov(G,E)	
 
Broad	Sense	Heritability:	
(includes	addi=ve,	epista=c,	
dominant	gene=c	effects)	
 
Narrow	Sense	Heritability	
(includes	only	addi=ve	gene=c	
effects)	



Heritability	

•  Classically,	in	twins,	heritability	of	a	trait	is	
twice	the	difference	in	the	correlation	
between	identical	(MZ)	and	non-identical	
twins	(DZ)	

•  H2=2(r(MZ)-r(DZ))	



Heritability	of	Traits	

Schizophrenia	
 
r(MZ)	=	0.7	
r(DZ)	=	0.3	
 
H2		=	2(0.7-0.3)	
 
Heritability	=	0.8	



Examples	of	es=mated	heritability	
•  Alcoholism	50-60%	
•  Alzheimer's	58-79%	
•  Asthma	30%	
•  Bipolar	Disorder	70%	
•  Depression	50%	
•  Hair	Curliness	85-95%	
•  Lung	Cancer	8%	
•  Height	81%	
•  Obesity	70%	
•  Longe=vity	26%	
•  Sexual	Orienta=on	60%	
•  Schizophrenia	81%	
•  Type	1	diabetes	88%	
•  Type	2	diabetes	26%	

http://snpedia.com/index.php/Heritability	



Hardy-Weinberg	Equilibrium	(HWE)	

Ø Mathema=cal	model	of	expected	genotype	
frequencies	in	a	popula=on	
Ø 	Allele	and	genotype	frequencies	will	remain	
constant	from	genera=on	to	genera=on	in	the	
absence	of	other	evolu=onary	influences	



Ø 	Viola=ons	of	HWE	could	be	due	to:	
•  Non-random	ma=ng	(i.e.,	inbreeding)	
•  Natural	selec=on	
•  Muta=on	
•  Migra=on	
•  Chance	(in	small	popula=ons)	

•  Genotypic	Errors	
•  Associa=on?	
	

Hardy-Weinberg	Equilibrium	(HWE)	



Ø 	Let’s	imagine	a	gene=c	locus	with	two	alleles	
(A	and	a)	
Ø 	p:	frequency	of	A	
Ø 	q=1-p:	frequency	of	a	
Ø 	p2:	frequency	of	AA	
Ø 	q2:	frequency	of	aa	
Ø 	2pq:	frequency	of	Aa		
Ø 	p2	+	2pq	+	q2	=	1	

Paternal	gametes	

Α	(p)	 α	(q)	

Maternal	
gametes	

Α	(p)	 AA	(p2)	 Aa	(pq)	

α	(q)	 Aa	(pq)	 Aa	(q2)	

Hardy-Weinberg	Equilibrium	(HWE)	



Example	of	HWE	

Ø 	p=(2*ΑΑ+1*Αα)/2Ν	
Ø 	q=1-p	
Ø 	Ν	popula=on	
Ø 	2Ν	alleles	

Genotype	 Number	

AA	 136	

Aa	 209	

aa	 80	

Total	(Ν)	 425	

p=(2*136+1*209)/2*425=0,57	

q=0,43	



Ø 	χ2=Σ(Οi	-	Ei)2/Ei	
Ø 	Η0:	HWE	
Ø 	χ2=0,003	with	1	df	
Ø 	Η0	cannot	be	rejected	
Ø 	If	χ2≥3,84	with	1	df	then	
P<0,05		

Genotype	 Observed	number	
(O)	

Expected	
number	(E)	

AA	 136	 p2*N=136,1	

Αa	 209	 2pq*N=208.8	

aa	 80	 q2*N=80.1	

Example	of	HWE	



Linkage	disequilibrium	(LD)	

Ø 	Non-random	associa=on	of	alleles	at	different	loci	
	
Ø Presence	of	sta=s=cal	associa=ons	between	alleles	at	
different	loci	that	are	different	from	what	would	be	expected	
if	alleles	were	independently	transmi]ed	from	genera=on	to	
genera=on		



Ø 	Measures	of	LD	
•  D’	
•  r2	

Linkage	disequilibrium	(LD)	



LD	is	diminished	with	=me	and	increased	
recombina=on	rate			



Linkage	disequilibrium	map	



Study	designs	in	Gene$c	
Epidemiology	



Case-control	studies	
	
Prospec=ve	cohorts	
	
Retrospec=ve	cohorts	
	
Cross-sec=onal	studies	
	
Nested	case-control	studies	

Study	designs	of	gene$c	associa$ons	



Case-control	study	design	

•  Design:	identify	participants	based	on	their	
disease/outcome	status,	compare	presence	of	
gene=c	variant	

Exposed	

Non-exposed	

Controls	

Cases	

Time	
Study	initiation	

Study	

Gene=c	varia=on	

Case-control	study	design	in	gene=cs	



Assumptions	

•  Cases	representa=ve	of	all	cases	of	disease	
•  Controls	drawn	from	the	same	popula=on	as	
cases	(and	at	risk	for	the	outcome)	

•  Exposure	data	(gene=c	informa=on)	collected	
similarly	in	cases	and	controls	
– Gene=cs:	T2D	cases	DNA	is	extracted	from	whole	
blood,	controls	DNA	is	from	cell	lines	



Advantages	of	a	case-control	study	

•  Suitable	for	rare	outcomes	
•  Suitable	for	outcomes	with	long	induc=on	period	
•  Cheaper	
•  Need	fewer	people	in	some	cases	
•  Readily	evaluate	multiple	exposures	
•  Convenient	
•  If	assump=ons	are	met,	valid	es=mates	of	rela=ve	
risk	



Disadvantages	of	a	case-control	study	
in	gene=cs	

•  Retrospective	(not	so	much	of	a	problem	in	gene=c	epi)	
•  Difficult	to	study	rare	exposures	
•  Gene=c	confounding	(popula=on	stra=fica=on)	
•  Problema=c	when	inves=ga=ng	G*E	interac=ons	
•  Special	considerations	(more	later)	

– Exposure-related	
•  Recall	bias:	Disease	status	may	influence	repor=ng	(not	so	
much	of	a	problem	in	gene=c	epidemiology	as	gene=c	
varia=on	is	determined	at	the	=me	of	gamete	forma=on)	

– Outcome-related	
•  is	studying	survivors	of	the	disease	



Subtypes	of	case-control	studies	
•  Nested	case-control	

– Within	a	cohort	study,	compares	all	cases	to	a	subset	
of	persons	who	did	not	develop	disease	

•  Case-cohort	
– Within	a	cohort	study,	compares	all	cases	to	a	random	
subsample	of	the	cohort	

–  Sub-cohort	can	be	used	for	mul=ple	case	groups	
•  Super-cases	and	super-controls	

–  Extremes	of	the	phenotypes	
– Maximizes	opportunity	to	detect	signal	



Cohort	studies	

•  Identify	individuals	based	on	their	exposure	
status,	follow-up	to	ascertain	disease/
outcome	status	

Exposed	

Non-exposed	

Non-diseased	

Diseased	

	
								Exposure	assessment	

Study	initiation	



Assumptions	

•  Exposed	and	non-exposed	groups	are	
representative	of	a	well-defined	general	
population	

•  Outcome	assessment	comparable	between	
exposed	and	non-exposed	



Measure	of	gene=c	effects	

•  Cohort	studies	are	o�en	used	for	quan=ta=ve	
outcomes	in	gene=c	studies	
–  BMI,	eye	colour,	blood	pressure	

•  Gene=c	model	assumes	addi=ve	gene=c	effects	
to	test	for	associa=on	
–  r-fold	increase	in	phenotype	values	for	each	risk	allele	
– Uses	linear	regression	with	number	of	risk	alleles	as	
predictor	and	trait	value	as	outcome	

–  Trend	test,	1df	



Advantages	of	a	cohort	study	in	gene=cs	

•  Able	to	directly	es=mate	disease	incidence	
•  Op=mal	for	short	induc=on	periods	

•  Induc=on	period	=	=me	from	exposure	to	manifest	disease	

•  Can	look	at	mul=ple	outcomes	
•  Poten=al	to	inves=gate	natural	history	of	disease	
•  Amenable	to	both	quan=ta=ve	and	binary	outcomes	
•  Risk	factors	ascertained	prior	to	disease	
•  Ideal	for	gene*environment	interac=on	analyses	



Disadvantages	of	a	cohort	study	

•  Not	suitable	for	rare	exposures	or	rare	
outcomes	

•  Requires	large	populations	
•  May	be	more	expensive,	time	consuming	



•  True	associa=on	
	
•  Indirect	associa=on	due	to	linkage	disequilibrium	
	
•  Associa=on	due	to	random	errors	
	
•  Associa=on	due	to	systema=c	errors	
	
•  Associa=on	due	to	random	and	systema=c	errors	

Gene=c	associa=ons	



Indirect tests of association using “tag SNP” genetic markers 

Kruglyak NRG APRIL 2008 
Vol.9 



Small	sample	sizes	
	
Small	effect	sizes	
	
Large	numbers	of	gene=c	variants	
	
Absence	of	replica=on	

Old	and	new	problems	



Genome-wide	associa$on	studies	

•  Research	based	on	previous	
hypothesis	

•  Biological-func=onal	
background	

•  Ad	hoc	analysis	of	published	
results	

•  Replica=on	

Candidate	gene	studies	

Two	different	approaches	

•  High-throughput	genotyping	
technologies	to	essay	hundred	
of	thousand	of	SNLs	

•  Hypothesis-free	agnos=c	
approach	

•  Millions	of	associa=ons	tested	
simultaneously	

•  Adjust	for	mul=ple	comparisons	
•  Two-stage	or	one-stage	designs	
•  Replica=on	



QC 

MACH-IMPUTE 

~2.5M SNPs (HapMap)-~90M 1KG Project/HRC 

Association testing 



Coverage	and	efficiency	in	current	SNP	chips		
	



Es=mated	effect	sizes	in	gene=c	epi	are	
small	



Αδυναμία	επικύρωσης	

Absence	of	replica=on	



Nature 1994 
TNFA associates with 
cerebral malaria 
>1000 εώς σήμερα 

Absence	of	replica=on	



Replica=on	efforts	



Differencies in the definition of the 
phenotype, can cause differences in 
the effect sizes of the associations 
 
The estimate of the genetic effect 
was larger in seroconverters 
 
Could be considered in optimizing 
power for discovering new 
associations 
 
 
 
 

Definition of the phenotype 
HIV GWAs 

Evangelou	et	al.	AJE,	2011	



Consortium Disease/Trait Teams Participants 
GEFOS	 Osteoporosis 40 133000 
TREATOA	 Osteoarthritis 20 30000 
GEOPD	  Parkinson’s 20 12000 
DIAGRAM	 Σ. Διαβήτης 30 100000 
GIANT	 Ύψος, βάρος 80 250000 

Interna=onal	consor=a	



Μέγα-αναλυση	

Mega-Analysis	



Era	of	Biobanks	

•  Popula=on-based	
•  UK	Biobank,	Japanese	biobank	

•  Deep	phenotyping	
•  Cartagene	



Large	sample	sizes	



	
•  Large	number	of	iden=fied	genes	
•  Inheritance	models	
•  Gene-gene	interac=ons	
•  Gene-environment	interac=ons	
•  Errors	in	genotyping	and	phenotyping	
•  Systema=c	errors	

More	problems	
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Figure	2		

The American Journal of Human Genetics 2017 101, 5-22DOI: (10.1016/j.ajhg.2017.06.005)  
Copyright © 2017 American Society of Human Genetics Terms and Conditions 

GWAS	SNP-Trait	Discovery	Timeline	



Figure	3		

The American Journal of Human Genetics 2017 101, 5-22DOI: (10.1016/j.ajhg.2017.06.005)  
Copyright © 2017 American Society of Human Genetics Terms and Conditions 

Examples	of	links	between	GWAS	discoveries	and	drugs	



Αλληλεπίδραση	
γονιδίων	

Large sample sizes 
are required to 
support evidence of 
gene-gene 
interactions 

Gene-Gene	interac=ons	



Gene-environment	interac=ons	

Stefanaki	I	et	al.	PLoS	One;	2013	

Kypreou	KP	et	al.		J	Invest	Dermatol;	2016	



Whole	exome	and	whole	genome	
sequencing	



	
• Exome	sequencing-Whole	genome	sequencing	

In	the	near	future	

Cost	reduc=ons	

Precise	Medicine	

Personal	Genome		



Articles

www.thelancet.com   Vol 375   May 1, 2010 1525

Lancet 2010; 375: 1525–35

See Comment page 1497

See Online/Viewpoint 
DOI:10.1016/S0140-
6736(10)60599-5
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Summary 
Background The cost of genomic information has fallen steeply, but the clinical translation of genetic risk estimates 
remains unclear. We aimed to undertake an integrated analysis of a complete human genome in a clinical context. 

Methods We assessed a patient with a family history of vascular disease and early sudden death. Clinical assessment 
included analysis of this patient’s full genome sequence, risk prediction for coronary artery disease, screening for 
causes of sudden cardiac death, and genetic counselling. Genetic analysis included the development of novel methods 
for the integration of whole genome and clinical risk. Disease and risk analysis focused on prediction of genetic risk 
of variants associated with mendelian disease, recognised drug responses, and pathogenicity for novel variants. We 
queried disease-specifi c mutation databases and pharmacogenomics databases to identify genes and mutations with 
known associations with disease and drug response. We estimated post-test probabilities of disease by applying 
likelihood ratios derived from integration of multiple common variants to age-appropriate and sex-appropriate pre-
test probabilities. We also accounted for gene-environment interactions and conditionally dependent risks.

Findings Analysis of 2·6 million single nucleotide polymorphisms and 752 copy number variations showed increased 
genetic risk for myocardial infarction, type 2 diabetes, and some cancers. We discovered rare variants in three genes 
that are clinically associated with sudden cardiac death—TMEM43, DSP, and MYBPC3. A variant in LPA was 
consistent with a family history of coronary artery disease. The patient had a heterozygous null mutation in CYP2C19 
suggesting probable clopidogrel resistance, several variants associated with a positive response to lipid-lowering 
therapy, and variants in CYP4F2 and VKORC1 that suggest he might have a low initial dosing requirement for 
warfarin. Many variants of uncertain importance were reported. 

Interpretation Although challenges remain, our results suggest that whole-genome sequencing can yield useful and 
clinically relevant information for individual patients.

Funding National Institute of General Medical Sciences; National Heart, Lung And Blood Institute; National Human 
Genome Research Institute; Howard Hughes Medical Institute; National Library of Medicine, Lucile Packard 
Foundation for Children’s Health; Hewlett Packard Foundation;  Breetwor Family Foundation.

Introduction
Technological advance has greatly reduced the cost of 
genetic information. However, the explanatory power and 
path to clinical translation of risk estimates for common 
variants reported in genome-wide association studies 
remain unclear. Much of the reason lies in the presence of 
rare and structural genetic variation. Since we are now able 
to rapidly and inexpensively sequence complete genomes,1–5 
comprehensive genetic risk assessment and individ ualisa-
tion of treatment might be possible.6 How ever, present ana-
lytical methods are insuffi  cient to make genetic data 
accessible in a clinical context, and the clinical usefulness of 
these data for individual patients has not been formally 
assessed. We aimed to undertake an inte grated 
analysis of a complete human genome in a clinical context. 

Methods
Patient
A patient with a family history of vascular disease and 
early sudden death was assessed at Stanford’s Center for 
Inherited Cardiovascular Disease by a cardiologist (EAA) 

and a board-certifi ed genetic counsellor (KEO). We took 
the patient’s medical history and he was clinically 
assessed. A four-generation pedigree was drawn. In view 
of his family history, he underwent electrocardiography, 
an echocardiogram, and a cardiopulmonary exercise test. 

Genome analysis
Technical details of genome sequencing for this patient 
have been described previously.7 In brief, genomic DNA 
was purifi ed from 2 mL of whole blood and sequenced 
with a Heliscope (Helicos BioSciences, Cambridge, MA, 
USA) genome sequencer. We mapped sequence data to 
the National Center for Biotechnology Information 
reference human genome build 36 using the open-source 
aligner IndexDP (Helicos BioSciences, Cambridge, MA, 
USA).7 Base calling was done with the UMKA algorithm.7 
A subset of single nucleotide polymorphism calls were 
independently validated with the Illumina BeadArray 
(San Diego, CA, USA) and all variants reported here and 
discussed with the patient were validated with Sanger 
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tumours. This variant might increase probability of future 
development of hyperparathyroidism or parathyroid 
tumours through a loss-of-heterozygosity mechanism. 
Consistent with a variant in a gene previously associated 
with osteoarthritis, there was a family history of 
osteoarthritis and the patient reported chronic knee pain 
without a formal diagnosis.

We noted 63 clinically relevant previously described 
pharmacogenomic variants (table 3, table 4; webappendix 
p 11)32–45 and six novel, non-conservative, aminoacid-
changing single nucleotide polymorphisms in genes that 
are important for drug response. There was a heterozygous 
null mutation in CYP2C19, the gene product of which is 
important for metabolism of many drugs, including 
proton-pump inhibitors, antiepileptic drugs, and the 
antiplatelet agent clopidogrel. Notably, the rate of 
cardiovascular events is raised in patients with CYP2C19 
loss-of-function mutations who take clopidogrel.46 
Additionally, the patient had two types of distinct genetic 
variations related to decreased maintenance dosing of 
warfarin. The patient had the single most important 
variant in VKORC1 associated with a low maintenance 
dose,47 and was homozygous for a CYP4F2 single 

nucleotide polymorphism that is associated with reduced 
dosing.48 Thus, if prescription of warfarin became 
necessary, loading could be individually tailored for this 
patient, with lowered expected doses. The patient had 
several variants that are associated with good response to 
statins (including reduced risk of myopathy) and one 
variant suggesting that he might need a raised dose to 
achieve a good response. Finally, the patient was wild type 
(with no copy number variations) for genes for important 
drug-metabolising enzymes (CYP2D6, CYP2C9, and 
CYP3A4) aff ecting hundreds of drug responses.

Although genome-wide association studies have provided 
strong association of many common variants with disease, 
integration of these small odds ratios in the context of the 
individual patient remains challenging. In particular, 
additive or multiplicative models of even strongly associated 
single nucleotide polymorphisms can add little to the 
classifi ed status of the patient.49,50 Furthermore, these 
approaches take no account of previous probability of 
disease. To counter some of these concerns, we adopted 
established methods from within evidence-based medicine 
that have rarely been applied to clinical genetics. We 
estimated pre-test probabilities from referenced sources 
for 121 diseases (webappendix p 7). Of the 55 diseases for 
which we could estimate a post-test probability, genetic 
risk was consistently increased (LR >2) for eight diseases 
and decreased (<0·5) for seven diseases (fi gure 3). The 
advantage of plotting pre-test and post-test probabilities is 
shown by several examples—eg, although the patient has 
increased genetic risk for Graves’ disease, because the pre-
test probability of this disease is very low, post-test 
probability also remains low. Conversely, although the 
patient has a low genetic contribution to his risk for 
prostate cancer, his estimated pre-test probability is high, 
resulting in a high overall post-test probability. 

Raised genetic risk did not always translate into high 
post-test probability. Post-test probabilities that were an 
order of magnitude higher or lower than pre-test 
probabilities were rare. Any decision towards acting on 
these predictions will necessarily be a function of the 
post-test probability threshold for action (eg, the post-test 
probability of type 2 diabetes), the consequences of action 
(eg, regular testing for fasting blood sugar), and the 
usefulness and eff ectiveness of action.

Figure 3: Clinical risk incorporating genetic-risk estimates for major diseases 
We calculated post-test probabilities by multiplying reported pre-test probabilities or disease prevalence (in white 
men in the patient’s age range; webappendix p 16) with a series of independent likelihood ratios for every patient 
allele. Only 32 diseases with available pre-test probabilities, more than one associated single nucleotide 
polymorphism, and with reported genotype frequencies are shown. Disorders such as abdominal aortic aneurysm 
and progressive supranuclear palsy are not listed, because they have only one available single nucleotide 
polymorphism. Backs of the arrowheads show pre-test probabilities and arrows point in the direction of change in 
probability. Blue lines show lowered post-test probabilities, and red increased post-test probabilities. n=number of 
independent single nucleotide polymorphisms used in calculation of post-test probability for that disorder.
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Figure 4: Contribution of individual alleles to overall risk of myocardial 
infarction (A), type 2 diabetes (B), prostate cancer (C), and Alzheimer’s 
disease (D)
We ordered single nucleotide polymorphisms (SNPs) with associations 
established from genome-wide association studies in decreasing order of 
sample size and number of studies showing association. Darkest colours show 
polymorphisms with the most studies reporting association with disease, and 
size of boxes scales with the logarithm of the number of samples used to 
calculate the likelihood ratio (LR). SNPs at the top of every graph are reported in 
the most and largest studies, and we have the most confi dence in their 
association with disease. We calculated test probabilities using the pre-test 
estimate as a starting point, and serially stepping down the list of SNPs and 
calculating an updated post-test probability including the contribution of that 
genotype. *Gene related to the SNP, if known. †Number of studies reporting an 
association. ‡Number of samples used to calculate the LR.
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Increased genetic risk for myocardial infarction took 
the form of fi ve single nucleotide polymorphisms 
associated with susceptibility to myocardial infarction 
and two protective polymorphisms (fi gure 4). The 
patient also had risk markers at the locus (9p21) that is 
most replicated in genome-wide association studies (an 
example is rs1333049, which is associated with an odds 
ratio of 1·5 for early onset myocardial infarction51—this 
marker is part of a commercial genetic risk test for 
myocardial infarction). Furthermore, the patient had 

one copy of the previously studied variant of LPA 
encoding the apolipoprotein A precursor. Notably, the 
patient had a very high lipoprotein(a) concentration 
(285 nmol/L, reference value <75 nmol/L; table 1), 
which is associated with increased risk of cardiovascular 
events. This variant is associated with a fi ve-fold 
increased median plasma lipoprotein(a) concentration, 
a 1·7 to two-fold15 increased risk of coronary artery 
disease, and a three-fold16 adjusted odds ratio versus 
non-carriers for severe coronary artery disease. This 
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Figure 5: Gene-environment interaction  
A conditional dependency diagram for diseases represented in the patient’s genetic-risk profi le. Only diseases for which calculable post-test risk probabilities were 
greater than 10% are shown. For every disease, text size is proportional to post-test risk probability. Solid black arrows are shown between disease names if one 
disease predisposes a patient to the other. Environmental factors that are potentially modifi able are shown around the circumference, and dashed arrows are shown 
between an environmental factor and a disease if the factor has been frequently reported in association with the cause of the disease. Text and circle sizes for 
environmental factors are proportional to the number of diseases that each factor is associated with in the circuit. Colour intensity of the circle for each 
environmental factor represents maximum post-test risk probability amongst diseases directly associated with that factor. NSAID=non-steroidal anti-infl ammatory 
drug. MAO=monoamine oxidase.
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