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Outline

Data analysis versus good design

Analysis from a trial data and estimation of treatment effects is the penultimate
stage of the performance of a clinical study (the last being reporting of the
results, which we will discuss in the next lecture).

Analysis of trial data requires a number of statistical methods and models and is
considered the most important part of a study’s implementation. This is because
analysis appears closer to the results of the study.

However, the design of a study is much more important than the analysis of trial
data and the latter cannot supplant the former.

In this lecture we discuss analytical approaches having to do with a number of
contexts of clinical trials as well as context within a single trial (e.g., efficacy
versus toxicity considerations).
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Dose-finding and PK studies Dose-finding studies

Dose-finding and pharmacokinetic (PK) studies

Dose-finding studies have the following main outcomes of interest:

Maximal tolerated dose (MTD)

Absorption rate

Elimination rate

Area under the (drug concentration) curve

Peak concentration

Half life

Correlation between plasma drug levels and side effects

Proportion of patients who demonstrate evidence of efficacy

PK studies are instrumental in permitting investigators to address all of these
outcomes.
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Dose-finding and PK studies PK studies

A two-compartment PK model

Without going in too much detail about PK studies, we review here the basic
two-compartment model.
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Figure 1: The basic two-compartment PK model

In this model, a drug is infused into compartment X at a rate g(t). The drug is
transported from compartment X (e.g., blood) to Y (e.g., tissues) at a rate λ and
back to X at a rate µ and is eliminated from X at a rate γ.

Constantin T Yiannoutsos 5 / 64



Dose-finding and PK studies PK studies

Mathematical modeling of the two-compartment PK model

The mathematical analysis of the two-compartment PK model is based on a
system of differential (rate) equations such as

dX (t)
dt = −(λ+ γ)X (t)︸ ︷︷ ︸ + µY (t) + g(t)︸ ︷︷ ︸

levels leaving levels returning to X
compartment X

The solution to this system of equations is given by the following formulas:

X (t) = c1(t)eξ1t + c2(t)eξ2t

Y (t) = c1(t)
ξ1 + λ+ γ

µ
eξ1t + c2(t)

ξ2 + λ+ γ

µ
eξ2t

for appropriate ξ1, ξ2, and functions c1(t) and c2(t).
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Dose-finding and PK studies PK studies

Mathematics of the two-compartment PK model (continued)

In the special case where the drug is infused at a constant rate g(t) = g0 over
time t0 and the initial concentration in the X and Y compartment is X (0) = 0 and
Y (0) = 0 we obtain two models of the concentration in the two compartments.
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Figure 2: The basic two-compartment PK model
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Dose-finding and PK studies PK studies

Area under the (drug concentration) curve (AUC)

The area under the concentration curve for compartment X is given as

AUCx =

∫ t0

0

X (t)dt︸ ︷︷ ︸ +

∫ ∞
t0

X (t)dt︸ ︷︷ ︸
drug up to t0 in X drug after time t0 in X

So that,

AUCx =
g0t0 + X (0)

γ

Under the special circumstances mentioned earlier, AUCx = g0t
γ . Similarly,

AUCy =
λg0t0 + λX (0)

µγ
=
λ

µ
AUCx

and under the special circumstances mentioned earlier, AUCy = λg0t0

µγ .

Constantin T Yiannoutsos 8 / 64



Analysis of SA studies Introduction

Analysis of SA studies

SA studies are concerned with both efficacy and toxicity.

Often the efficacy and toxicity outcomes are expressed in terms of dichotomous
(yes/no probabilities). Often, analyzing these data involves the estimation of
absolute probabilities (proportions).
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Analysis of SA studies Alimta for thymoma

Case study: Study of Alimta for thymoma

For example, consider the following two-stage cancer trial of pemetrexed (Alimta)
in thymoma, a rare cancer involving the thymus. The study was designed as
follows:

First stage
Eighteen patients were to be accrued at the first stage. If one or more partial
or complete response (based on RECIST criteria) were observed, the study
would be continued to the second stage.

Second stage
Nine more patients were to be accrued in the second stage. If four or more
responses (defined above) were observed the study would be considered
successful.
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Analysis of SA studies Alimta for thymoma

Design of the thymoma study
Efficacy

The desired response (alternative hypothesis) was pA = 0.2 while, a response
below p0 = 0.05 would be considered of no interest. The above design is not
optimal in the sense of Simon but has the following characteristics:

Ensures that the probability of early termination (PET) under the alternative
hypothesis (i.e., under the assumption that p = pA = 20%) is less than 2%.

Generates power of about 80% (actually, power is 81.6%).

The exact type I error is < 5%
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Analysis of SA studies Alimta for thymoma

Design of the thymoma study
Safety

The estimate of the upper and lower limit of the toxicity is based on all evaluable
patients (n = 27 in this study). The confidence intervals are given at the 90% level, they
are two-sided and the exact binomial distribution is used instead of the normal
approximation. Given these considerations the 90% confidence interval for various
scenarios is as given in the following table:

Number of toxicities 1 90% CI

0 (0.000, 0.1052)
1 (0.002, 0.164)
2 (0.013, 0.215)
3 (0.031, 0.263)
4 (0.052, 0.308)
. .
. .
. .

1Grade 3 or higher toxicities (grade 3: Severe AE, 4: life-threatening, 5: death related to AE)
295% one-sided upper limit)

Constantin T Yiannoutsos 12 / 64



Analysis of SA studies Alimta for thymoma

Analysis of the thymoma study

Eighteen patients were accrued in the first stage. There were four responses
observed (two partial and two complete). The study was continued and nine more
patients were accrued with an additional partial response observed among the
latter nine patients.

Clearly the study was successful. Now we need to figure out what the estimate
and confidence interval of the response rate is.

We note that we cannot simply generate binomial confidence interval based on the
final number of patients, but we should account for the fact that an interim
analysis was performed.
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Analysis of SA studies Alimta for thymoma

Analysis of the thymoma study
Estimation of response

To generate confidence intervals, we use the program KSTAGE by Barry Brown.

The program essentially sums up (binomial) probabilities of all possible scenarios
that can lead to the current state of affairs (Atkinson & Brown, Biometrics, 1985).

The output from this software is as follows:

Enter Number of Stages and Cumulative Number of Trials for each Stage:
?
2 18 27

Enter Lo and Hi stopping values starting with stage 1:
(-1 indicates no stopping)

?
0 -1

Note that we entered -1 for the upper limit (of response events) because the study
will not stop regardless if the total number of responses required by the design is
reached during the first stage.
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Analysis of SA studies Alimta for thymoma

Analysis of the thymoma study
Estimation of response (continued)

Enter Stage Number and Event Number:
(from which C.I. is calculated)

?
2 5

K-Stage Design:

Number of Stages = 2

Stage # # of Trials Cum # of Trials Lo Quit Hi Quit

1 18 18 0 -1
2 9 27

Kstg= 2 Kevt= 5

The 94% Confidence Interval is ( .0630344, .3808469)

Thus, the 95% confidence interval for efficacy is between 6.3% and 38%, which
excludes 5% (the lower limit of efficacy). Thus, the study is a success!
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Analysis of SA studies Alimta for thymoma

Analysis of the thymoma study
Estimation of toxicity

There were 8 patients out of 27 that experienced at least one grade-3 toxicity
during the study.

Disregarding the sequential nature of the study (which was not based on toxicity
criteria anyway), the exact 90% binomial confidence interval for toxicity is
15.7%-47.1%.

On the other hand, no grade-4 or higher toxicities were observed, so the upper
bound of the 95% one-sided confidence interval for the rate of grade-4 or higher
toxicity is 10.5%.
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Analysis of SA studies Alimta for thymoma

Case study: The mesothelioma Phase II study

Rusch, Piantadosi and Holmes (J Thorac Cardiovasc Surg. 1991), report on a
study of mesothelioma, a rare form of lung cancer associated with asbestos
exposure. In that study, three approaches, biopsy, limited resection or extrapleural
pneumonectomy (EPP) were attempted on 83 patients suffering from
mesothelioma.

The complete data are given at
http://www.cancerbiostats.onc.jhmi.edu/Piantadosi clinicaltrials/Software/Data%2BPrograms.zip.

The survival of patients in the three groups is given in the following table:

age sex ps hist wtchg surg ptime prog stime dead X_st X_d X_t X_t0
1 69 1 0 136 1 1 175 1 725 0 1 0 725 0
2 61 1 0 131 2 1 61 1 294 1 1 1 294 0
3 71 1 0 136 1 1 133 1 316 1 1 1 316 0
4 68 1 0 136 1 1 1009 1 1029 0 1 0 1029 0
5 65 0 0 NA 2 1 117 1 545 0 1 0 545 0
6 68 1 1 136 1 1 20 1 122 1 1 1 122 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
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Analysis of SA studies The mesothelioma study

Case study: The mesothelioma Phase II study
Descriptive summaries

The survival status in the three groups is given in the following table:

Result
Group Dead Alive Total
Biopsy 32 5 37

Limited 21 5 26
EPP 15 5 20

We should observe the important fact that, in each group, five patients did not
die by the end of the study. Their survival was not observed fully (we know simply
that they did not die by the end of the study). These are “censored” observations.
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Analysis of SA studies The mesothelioma study

Case study: The mesothelioma Phase II study
Analysis of survival data

Survival data are unique in that not all events (deaths) are observed. We analyse
these data by breaking up the time scale in intervals according to observed deaths.
The probability of death is given by

pi =
di
ni

where di is the number of deaths observed in that interval and ni the number of
persons that were alive at the start of the interval. The probability of surviving
that interval is, therefore, 1− pi = 1− di

ni
. The probability of surviving past the

time of the kth failure tk is

Ŝ(tk) =
k−1∏
i=0

(
1− di

ni

)
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Analysis of SA studies The mesothelioma study

Case study: The mesothelioma Phase II study
Analysis of survival data (continued)

The results of the analysis are given in the following table:

Event Beg. Number Number Failure Std.
Time ti Total Fail Lost Probability Error

4 82 1 0 0.9878 0.0121
6 81 1 0 0.9756 0.0170
. . . . . .
. . . . . .
. . . . . .

475 28 1 0 0.3293 0.0519
499 27 0 1 0.3293 0.0519
503 26 1 0 0.3166 0.0514

. . . . . .

. . . . . .

. . . . . .
1265 2 1 0 0.0585 0.0502
1338 1 0 1 0.0585 0.0502
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Analysis of SA studies The mesothelioma study

Case study: The mesothelioma Phase II study
Analysis of survival data (continued)

From the previous table we see how survival probability estimates are generated.

Starting with 100% probability of survival at time t = 0, and excluding the
individual with zero survival, we drop to 1− 1

82 = 0.9878 after the first failure at
time t1 = 4 days.

The next failure occurs at time t2 = 6 at which point, the probability of survival is
p2 =

(
1− 1

82

) (
1− 1

81

)
= 0.9756.

By contrast, when an observation is censored (at time t = 499 days, the
probability of survival through that interval is 100% so there is no difference in the
probability for that subject. We see that the probability remains the same as that
of the 55th failure at time t55 = 475 days, i.e., p55 = 0.3293.
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Analysis of SA studies The mesothelioma study

Case study: The mesothelioma Phase II study
The Kaplan-Meier estimator of survival

We plot the estimate of survival over time by drawing a horizontal line between
successive failures and a vertical line of length di/ni at each event i . Censored
observations are ignored. This produces the so called “Kaplan-Meier” estimate of
survival.
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Figure 3: Kaplan-Meier plot of the mesothelioma data
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Analysis of SA studies The mesothelioma study

Case study: The mesothelioma Phase II study
Comparisons between groups

Summaries of the survival experience in the three groups are given in the following
Table:

time incidence no. of Survival time
surg at risk rate3 subjects 25% 50% 75%

biopsy 15042 .0021274 37 218 327 475
limited 9678 .0020665 25 165 310 730

EPP 10441 .0014366 20 139 320 1229
total 35161 .0019055 82 168 320 722

For example, the median survival in the three groups is 327, 310 and 320 days
respectively.

3Equals, number of deaths divided by time at risk. For example, in the biopsy group this is
32/15042 ≈ 0.00212.
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Analysis of SA studies The mesothelioma study

Case study: The mesothelioma Phase II study
Comparisons between groups:The log-rank test

To compare the survival in the three groups, we consider the so-called “log-rank”
test. This test is based on the inherent ordering of the deaths by the time they
occurred. At each death, we can construct a 3× 2 table. The table will look as
follows for the first failure that occurred at t = 4 days in the biopsy group4:

Result
Group Dead Alive Total

Biopsy 1 36 37
Limited 0 25 25

EPP 0 20 20

After generating these tables, we perform a Mantel-Haenszel test of association
between surgical group and survival status. This measures whether, on average,
the proportion of deaths falls inordinately on one or more of the three groups.

4Note that there is a failure at time t = 0 in the limited-resection group that is being ignored)
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Analysis of SA studies The mesothelioma study

Case study: The mesothelioma Phase II study
The log-rank test (continued)

Carrying out the log-rank test analysis we obtain the following output:

Call:
survdiff(formula = Surv(stime, dead) ~ group, data = mesoth)

N Observed Expected (O-E)^2/E (O-E)^2/V
group=biopsy 37 32 30.2 0.107 0.195
group=limited 26 21 18.5 0.346 0.483
group=EPP 20 15 19.3 0.969 1.401

Chisq= 1.5 on 2 degrees of freedom, p= 0.479

The p value of the log-rank test is 0.479 suggesting that there is no difference in
survival among the three surgical procedures.
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Analysis of SA studies Resampling methods

Resampling methods

A very powerful methodology to generate distributions of various statistics is
through resampling. The “bootstrap” as it’s called, involves generating repeated
analyses by resampling out of the dataset with replacement.

We can run a bootstrap analysis of the previous survival analysis to obtain the
distribution. The median and the associated 95% confidence interval, based on

the normal distribution, is Ŝ(0.5) = 320 days and (292–387) days respectively.
The bootstrap estimate of the median and the 95% confidence interval is 320
days and (276.1–363.9) days respectively.

The bootstrap, in this case, merely validated a known distributional result. The
true power of the bootstrap is that it can generate similar distributions more
difficult to calculate (e.g., the difference between two median survivals).
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Comparative efficacy trials

Comparative efficacy trials (Phase III)

While developmental studies such as DF and SA studies use mainly descriptive
means to present the treatment effects, comparative trials describe data, quantify
possible treatment differences and assess extraneous influence.

The usual approach is a test of statistical significance, i.e., determining to what
extent the observed differences are attributable to random variation.
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Comparative efficacy trials The FAP prevention study

Case study: FAP prevention study

The following is the Familial Adenomatous Polyposis (FAP) dataset (Giardiello et
al., NEJM, 1993):

polyp polyp polyp polyp
number at number at size at size at

id sex age month 0 month 12 month 0 month 12 rx
1 0 17 7 – 3.6 – 1
2 0 20 77 – 3.8 – 0
3 1 16 7 4 5.0 1.0 1
4 0 18 5 26 3.4 2.1 0
5 1 22 23 16 3.0 1.2 1
6 0 13 35 40 4.2 4.1 0
7 0 23 11 14 2.2 3.3 1
8 1 34 12 16 2.0 3.0 0
9 1 50 7 11 4.2 2.5 0

10 1 19 318 434 4.8 4.4 0
11 1 17 160 26 5.5 3.5 1
12 0 23 8 7 1.7 0.8 1
13 1 22 20 45 2.5 3.0 0
14 1 30 11 32 2.3 2.7 0
15 1 27 24 80 2.4 2.7 0
16 1 23 34 34 3.0 4.2 1
17 0 22 54 38 4.0 2.9 0
18 1 13 16 – 1.8 – 1
21 1 34 30 57 3.2 3.7 0
22 0 23 10 7 3.0 1.1 1
23 0 22 20 1 4.0 4.0 1
24 1 42 12 8 2.8 1.0 1
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Comparative efficacy trials The FAP prevention study

Case study: FAP prevention study
Comparisons of month-12 polyp number and size

The baseline (month-0) and month-12 number and size of polyps in each
treatment arm is shown in the following Table:

Treatment arm
Treatment 0 Treatment 1

Time point Mean (± SD) Mean (± SD) p-value5

Number of polyps
Month 0 53.9 (90.2) 28 (44.5) 0.403
Month 12 77.9 (126.7) 13 (10.8) 0.145

Polyp size
Month 0 3.3 (0.93) 3.2 (1.22) 0.816
Month 12 3.1 (0.73) 1.8 (1.41) 0.022

1T test

This suggests that, while there is no significant reduction in the number of polyps
in month 12, there might be a reduction of their size due to therapy (active
treatment=1, standard treatment=0).
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Comparative efficacy trials The FAP prevention study

Case study: FAP prevention study
Using differences from baseline

Instead of comparing the month-12 number of polyps or polyp size, we can
compare the difference between month-12 and month-0 in the number and size of
the polyps. The revised analysis is given in the following Table:

Treatment arm
Treatment 0 Treatment 1

Time point Mean (± SD) Mean (± SD) p-value
Number of polyps

Month 12 difference 26.3 (36.9) -18.7 (43.7) 0.026

Polyp size
Month 12 difference -0.2 (0.90) -1.5 (1.8) 0.053

This analysis shows how much the variability of the measures under comparison
has been reduced by removing the biological effect, which is the largest
component of the variability. Now, there is both a reduction in the number and,
possibly, in the size of the polyps associated with active treatment.
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Comparative efficacy trials The FAP prevention study

Case study: FAP prevention study
Analysis of covariance (ANCOVA) analysis

Another way to do this analysis is to adjust for the baseline number or size of the polyps.
This involves a model for each subject i as follows:

Y12 = β0︸︷︷︸ + β1Y0i︸ ︷︷ ︸ + β2Ti︸︷︷︸ + εi︸︷︷︸
intercept baseline quantity treatment effect error term

The results are given in the following table:

Dependent Model Parameter Standard
Terms Estimate Error p-value

Number of polyps β0 21.5 14.2 –
β1 1.1 0.1 <0.0001
β2 -43.2 18.9 0.037

Polyp size β0 1.13 0.90 –
β1 0.21 0.1 0.403
β2 -1.29 0.51 0.023

The ANCOVA analysis shows that the size and number of polyps are significantly
lowered in relation to the active treatment.
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Comparative efficacy trials The CAP lung cancer trial

Case study: NSCLC lung cancer trial

Lad, Rubinstein, Sadeghi, et al. J Clin Onc, 1988) report a randomized trial of
CAP (a combination of cytoxan, doxorubicin and platinum chemotherapy as
adjuvant treatment to radiotherapy in non-small-cell lung cancer (NSCLC).

The data are given in the following list:

celltype karn t n treat surv dead dfs event age race elig wtloss sex survyear
1 1 2 1 0 1 1046 1 413 1 70 1 0 1 1 2.8657530
2 1 2 2 2 0 342 1 342 0 67 1 0 1 1 0.9369863
3 1 2 2 2 1 54 1 18 1 61 1 0 0 1 0.1479452
4 1 2 2 2 0 303 1 264 1 52 1 0 0 1 0.8301370
5 1 2 1 2 1 295 1 248 1 59 0 0 0 1 0.8082192
6 2 1 3 2 1 88 1 59 1 39 0 0 0 0 0.2410959
7 2 2 2 2 1 241 1 241 0 46 0 0 0 0 0.6602740
8 2 2 1 2 1 567 1 252 1 44 0 0 0 1 1.5534250
9 2 2 2 2 0 286 1 211 1 38 0 0 1 0 0.7835616
10 2 2 2 1 0 265 1 262 1 62 1 0 0 1 0.7260274
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Comparative efficacy trials The CAP lung cancer trial

Case study: NSCLC lung cancer trial:
textitKaplan-Meier analysis

The Kaplan Meier plot is given in the following Figure:
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Figure 4: Survival by treatment group in the lung-cancer trial
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Comparative efficacy trials The CAP lung cancer trial

Case study: Lung cancer trial
The Cox proportional hazards model

An approach to assess the effect of various factors on survival is through the Cox
proportional hazards model. This model asserts that the hazard of death
dependent on a number of predictors X is given by

λ(t; X = λ0(t)eβX

in other words, the predictor effect is multiplicative and is constant over time.
This model is called proportional because the hazard in various subject subgroup
is proportion over time. The implication of this model is that

log

{
λ(t)

λ0(t)

}
= β1X1 + β2X1 + · · ·

so this is a linear regression model on the log hazard.
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Comparative efficacy trials The CAP lung cancer trial

Case study: Lung cancer trial
Analysis via the Cox proportional hazards model

The analysis of the Cox model is given in the following table:

Factor Haz. Ratio Std. Err. z P > |z| [95% Conf. Interval]
treat=“2” 1.30616 0.233470 1.49 0.135 0.920127 1.854151
cell type=“2” 1.31154 0.241337 1.47 0.141 0.914435 1.881098
t=“2” 0.91412 0.247078 -0.33 0.740 0.538186 1.552655
t=“3” 1.16275 0.362530 0.48 0.629 0.631092 2.142298
n=“1” 0.95181 0.356827 -0.13 0.895 0.456500 1.984541
n=“2” 1.26627 0.448955 0.67 0.506 0.632026 2.536994
age 1.00383 0.010218 0.38 0.707 0.984000 1.024057
sex 1.06313 0.222285 0.29 0.770 0.705692 1.601625
weight loss 1.10107 0.346521 0.31 0.760 0.594196 2.040323
race 1.28824 0.356660 0.91 0.360 0.748749 2.216457

For example, the hazard among subjects in treatment 2 (radiotherapy) is 30.6%
higher than treatment 1 (radiotherapy + CAP), or radiotherapy+CAP reduces the
hazard to 76% (≈ 1/1.31) regardless of the length of the survival. This is not a
statistically significant difference.
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Comparative efficacy trials The CAP lung cancer trial

A parenthesis
P-values do not measure evidence

The lack of a significant p-value (i.e., p < 0.05) for the treatment effect, adjusted
for the other factors in the model, may suggest to some that a larger sample size
might produce a significant p value.

What many people miss is that p values do not quantify the strength of the
evidence (here this is whether radiotherapy plus CAP reduces risk of death
compared to radiotherapy alone).

P values simply assess the extent of type-I error.
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Comparative efficacy trials The CAP lung cancer trial

A parenthesis
P-values don’t measure evidence (cont’d)

A related pitfall is to consider factors as “more significant” if they are associated
with a lower p value.

For example consider the following two 2× 2 tables below:

A Ā A Ā

B 1 7 1 6
B̄ 13 7 13 6

Both column proportions are the same but the Fisher’s exact test p values
associated with the two tables are 0.033 and 0.026 respectively.

Even though the first table has more information, one might consider the second
one as “more significant” based on the p values.
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Factorial designs Introduction

Factorial designs

Factorial designs are used to test the effect of more than one treatment and uses
a design that permits the assessment of interaction between them.

A typical 2× 2 factorial design comparing the effect of treatment A and treatment
B (assuming that A&B can be given in combination) is as follows:

Treatment B
Treatment

A No Yes Total
No n n 2n
Yes n n 2n
Total 2n 2n 4n
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Factorial designs Introduction

Effect estimation in factorial designs

The treatment effects in a typical 2× 2 factorial design comparing the effect of
treatment A and treatment B (assuming that A&B can be given in combination)
is as follows:

Treatment B
Treatment

A No Yes
No Ȳo ȲB

Yes ȲA ȲAB
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Factorial designs Interaction effects

Interaction effects

Interaction effect between factors A and B is the modification of the effect of
factor A by factor B. This, in the context of two drugs is either

Synergism
A positive (synergistic or potentiated) interaction between the two drugs
(i.e., a larger additive effect than would be expected by adding the individual
effects of the two drugs)

Antagonism
A negative (antagonistic) interaction between two drugs (i.e., a smaller
additive effect than would be expected by adding the individual effects of the
two drugs)
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Factorial designs Interaction effects

Efficiency of factorial designs

In the absence of interaction between factor A and B, the estimates of the effect
of these two factors can be averaged from the estimates of their treatment effect
versus placebo. This is

βA =
(ȲA − Ȳ0) + (ȲAB − ȲB)

2

for factor A and,

βB =
(ȲB − Ȳ0) + (ȲAB − ȲA)

2

for factor B.
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Factorial designs Interaction effects

Efficiency of factorial designs (continued)

The efficiency of the factorial design becomes obvious if one considers that, if the
variance of the patient response is σ2 and is the same in all treatment groups,
then the variance of βA (similarly for βB) is

var(βA) = var
(ȲA − Ȳ0) + (ȲAB − ȲB)

2

=
1

4

4σ2

n

=
σ2

n

Now, considering the variance of the treatment effect

var(β′A) = var(ȲA − Ȳo) = 2σ2

n , so the variance of the factorial design is equal to
a two-arm trial with 2n patients.
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Factorial designs Interaction effects

Testing of interactions

Factorial designs are the only designs where interactions between factor A and B
can be measured. The definition of an interaction is that the effect of A is
different in the presence versus absence of B.

This can be estimated by comparing with zero

βAB = (ȲA − Ȳ0) + (ȲAB − ȲB)

We note that the variance of βAB is

var(βAB) =
4σ2

n

which is four times larger than the variance of the individual effects when there is
no interaction. To get the same precision for estimating the interaction effect we
need four times the sample size. This shows that estimation of the main and
interaction effects cannot be met simultaneously in the same factorial study.
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Factorial designs Evaluation of combination therapy for hypertension

Example: Evaluation of combination therapy for hypertension

We consider the following example2 Various combinations of two anti-hypertensive
drugs, four doses of an ACE inhibitor (drug A) and three doses of a diuretic (drug
B) were considered.

The results and sample sizes are given in the following table:

Table 1: Table of the antihypertension study (Hung, 2000)

Sample size Mean mmHg in SiDBP
A0 A1 A2 A3 A0 A1 A2 A3

B0 75 75 74 48 0 1.4 2.7 4.6
B1 74 75 74 49 1.8 2.8 5.7 8.2
B2 48 50 48 48 2.8 4.5 7.2 10.9

2Hung HMJ. Evaluation of a combination drug with multiple doses in unbalanced factorial
design clinical trials.Stat Med, 2000; 19: 2079–2087.
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Factorial designs Evaluation of combination therapy for hypertension

Analysis of the hypertension 2× 2 factorial design

We consider data simulated from the sample sizes and means listed in Table 1
(with common variance s = 7.07 mmHg). We focus here on the 2× 2 factorial of
the A0, A1, B0 and B1 (top left-hand corner of the table). A box plot of the four
drug combinations is given in Figure 5.

−20

−10

0

10

20

A1B1 A1B0 A0B1 A0B0
Treatment Group

M
ea

n 
S

iD
B

P
 r

ed
uc

tio
n 

(m
m

H
g)

Figure 5: Box plot of the four treatment combinations in the 2 × 2 factorial design
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Factorial designs Evaluation of combination therapy for hypertension

Looking for interactions

The power of the 2× 2 factorial design is in the fact that it combines both groups
with the effect B1 (i.e., A1B1, A0B1) and the two groups without the effect B1
(i.e., A1B0, A0B0). This works only when there is no interaction effect. We can
assess the presence of interaction graphically:
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Figure 6: Interaction plot of A versus B

It does not appear that a significant interaction effect is present.
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Factorial designs Evaluation of combination therapy for hypertension

Analysis of the 2× 2 factorial design

We can run the 2× 2 factorial design without interaction as follows:

Call:
lm(formula = y ~ A + B, data = hungab)

Residuals:
Min 1Q Median 3Q Max

-22.5523 -4.4318 0.2277 4.6367 19.9064

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3003 0.7063 1.841 0.0666 .
AA1 -1.2007 0.8164 -1.471 0.1425
BB1 1.5993 0.8164 1.959 0.0511 .
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 7.059 on 296 degrees of freedom
Multiple R-squared: 0.01993,Adjusted R-squared: 0.01331
F-statistic: 3.01 on 2 and 296 DF, p-value: 0.05082
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Factorial designs Evaluation of combination therapy for hypertension

Analysis of the 2× 2 factorial design with interaction

We can run the 2× 2 factorial design with interaction as follows:

Call:
lm(formula = y ~ A * B, data = hungab)

Residuals:
Min 1Q Median 3Q Max

-22.453 -4.433 0.128 4.658 20.006

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.4000 0.8164 1.715 0.0874 .
AA1 -1.4000 1.1545 -1.213 0.2262
BB1 1.4000 1.1545 1.213 0.2262
AA1:BB1 0.4000 1.6355 0.245 0.8070
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 7.07 on 295 degrees of freedom
Multiple R-squared: 0.02013,Adjusted R-squared: 0.01016
F-statistic: 2.02 on 3 and 295 DF, p-value: 0.1112
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Factorial designs Evaluation of combination therapy for hypertension

Analysis of the four-way treatment comparison

We can run this a four-way comparison where each treatment combination is
considered separately.

Call:
lm(formula = y ~ AB, data = hungab)

Residuals:
Min 1Q Median 3Q Max

-22.453 -4.433 0.128 4.658 20.006

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8000 0.8219 2.190 0.0293 *
ABA1B0 -1.8000 1.1584 -1.554 0.1213
ABA0B1 1.0000 1.1584 0.863 0.3887
ABA0B0 -0.4000 1.1584 -0.345 0.7301
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 7.07 on 295 degrees of freedom
Multiple R-squared: 0.02013,Adjusted R-squared: 0.01016
F-statistic: 2.02 on 3 and 295 DF, p-value: 0.1112
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Factorial designs Evaluation of combination therapy for hypertension

Comments

1 Note that the effect of B (the diuretic) is almost statistically significant at
the 5% level and statistically significant at the 10% level in the no-interaction
model.

2 The interaction model is not statistically significant. Neither is the straight
four-way treatment model.
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Factorial designs Evaluation of combination therapy for hypertension

Equivalence of the interaction and four-way model

The interaction model is identical to the four-way comparison model (note the
overall F statistics in the two models). The p-values associated with the various
effects are not the same, since the two models are parametrized differently: The
interaction model is

E(yi ) = β0 + β1XA + β2XB + γXAXB =


E(yA0B0

) = β0

E(yA1B0
) = β0 + β1

E(yA0B1
) = β0 + β2

E(yA1B1
) = β0 + β1 + β2 + γ

where XA = 1 is equivalent to A1, XB = 1 with B1 and, respectively, zero values
denote A0 and B0. The four-way design is

E(yij ) = ζ + η + θ + κ =


E(yA0B0

) = ζ + κ
E(yA1B0

) = ζ + η
E(yA0B1

) = ζ + θ
E(yA1B1

) = ζ

so that (see previous output), β0 = ζ + κ, β0 + β1 = ζ + η, etc.

Constantin T Yiannoutsos 51 / 64



Crossover designs Introduction

Crossover designs

In contrast to the designs where participants are treated with a single or
combination treatment concurrently, in crossover designs, treatments are
administered sequentially. The main advantage of this study is that treatment
effects can be compared within the same subjects (thus eliminating within-subject
or biological variability).

Crossover designs are different in objective and scope from trials that give
treatments sequentially (e.g., A→ B → C versus A→ B) but assess the
incremental effect of a treatment (here treatment C ) or from factorial designs
where patients are administered a combination of treatments simultaneously.
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Crossover designs Efficiency

Efficiency of crossover studies

To see why crossover designs are efficient, we consider that each subject is its own
control. Thus, a potentially large component of treatment effect variability is
removed from the estimation.

To see this, consider the variance of the difference in treatment effects A and B,
∆̂AB , noted here as ȲA and ȲB respectively, will be:

var(∆̂AB) =
σ2

n
+
σ2

n
− 2cov(ȲA, ȲB)

= 2
σ2

n
(1− ρAB)

We note that, in comparative studies, ρAB = 0 because the groups receiving the
treatments A and B are independent.

So var(∆̂AB) = 2σ2/n. However, if ρAB > 0, as it is usually expected when
treatment is administered to the same patient, the variance of the effect difference
will be smaller in a crossover than a comparative study.
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Crossover designs The pronethalol trial

Example of cross-over trial design: Pronethalol for angina pectoris.

The drug pronethalol was tested in angina pectoris. A cross-over design was used
where patients were randomized to receive placebo or pronethalol. The number of
angina episodes while receiving one or the other treatment were counted. The
data can be stored in long format (i.e. one row per patient) or a wide format (i.e.,
one row per patient, where each column stores the response to pronethalol or
placebo. Here, the data (stored in text file angina.txt are in the wide format:

> # 5. Example of a Cross-over trial for angina pectoris
> angina <- read.table("C:/Clinical trials/R labs/lab1/data/angina.txt",
+ header=TRUE, quote="\"")
> head(angina)

Patient Placebo Pronethalol Difference
1 1 71 29 42
2 2 323 348 25
3 3 8 1 7
4 4 14 7 7
5 5 23 16 7
6 6 34 25 9
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Crossover designs The pronethalol trial

Exploratory data analysis

We can check the normality assumption for the differences of angina attacks or for
the actual measurements on the two groups.

> # (a) Check normality assumption for the difference in attacks of angina
> library(lattice)
> pdf("hist_diff.pdf",height = 5.5,width = 5.5)
> histogram( ~ Difference,data = angina)
> dev.off()
RStudioGD

2
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Crossover designs The pronethalol trial

Histogram of number of angina episodes

This produces the following pictorial representation:
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Figure 7: Histograms for the difference in angina pectoris episodes between pronethanol
and placebo groups.
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Crossover designs The pronethalol trial

Data manipulation

We turn the data in the long format (multiple lines per patient) as follows:

attacks trt
1 29 Pronethalol
2 348 Pronethalol
3 1 Pronethalol
4 7 Pronethalol
5 16 Pronethalol
6 25 Pronethalol
7 65 Pronethalol
8 41 Pronethalol
9 0 Pronethalol
. . .
. . .
. . .
21 2 Placebo
22 3 Placebo
23 17 Placebo
24 7 Placebo
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Crossover designs The pronethalol trial

Histogram of raw numbers of angina episodes by treatment group

The previous data set allows a by treatment histogram of the number of episodes:
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Figure 8: Histograms of the number of angina pectoris episodes between pronethanol
and placebo groups.
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Crossover designs The pronethalol trial

Checking the normality assumption

We can also check the normality of the distribution of the differences. The Q-Q
plot of the differences in the number of angina episodes is given in the following
Figure:
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Figure 9: Q-Q plot of the number of angina pectoris episodes between pronethanol and
placebo groups.
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More checks

... and the Q-Q plot of the differences as well:
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Figure 10: Q-Q plot of the differences in the number of angina pectoris episodes
between pronethanol and placebo groups.

The distribution is far from normal so we go on with nonparametric tests.
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Crossover designs The pronethalol trial

Data analysis
The wrong analysis

First, we ignore the study design and assume that the data come from two
independent populations. To do so, we have to use the data frame which includes
two rows per patient. Then, we perform a two-sample Wilcoxon test

Wilcoxon rank sum test with continuity correction

data: attacks by trt
W = 88, p-value = 0.3705
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(x = c(71L, 323L, 8L, 14L, 23L, 34L, 79L, :

cannot compute exact p-value with ties

This test suggests that there is no significant difference between the two groups
with respect to the number of attacks of angina.
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Crossover designs The pronethalol trial

Data analysis
The right analysis

Let’s see what happens if we take into account the matched study design. We are
to use the paired version of Wilcoxon test (i.e. a nonparametric equivalent of
Student’s t tests)

Wilcoxon signed rank test with continuity correction

data: angina$Placebo and angina$Pronethalol
V = 67, p-value = 0.03066
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(angina$Placebo, angina$Pronethalol, paired = T) :

cannot compute exact p-value with ties

Now the treatment effect becomes significant!
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Other analyses

Other analyses

The spectrum of analysis of data generated from clinical trials is extensive. Some
additional analyses used are:

Longitudinal analyses
These are analyses involving repeated measurements on the same subjects.

Time-dependent covariates
While many predictors are fixed at baseline and are assumed to have a
constant effect over time, time-updated factors attempt to model factors that
change over time.

Measurement error
While most analyses assume that all factors are measured exactly, a number
of analyses have been introduced that allow for some error in the
measurement of covariate predictors.
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Other analyses

Other analyses (continued)

Random versus fixed effects
Most statistical models assume that the effects of predictors are fixed
(non-random).

For example, in assessing the effect of institution in a multi-center study, a
fixed-effect analysis considers the institutions participating as fixed, while a
random-effect analysis considers these as a random sample from all possible
institutions.

This has also been applied in longitudinal models that increase the flexibility
of the statistical model by allowing different slopes or intercepts for each
subject thus more realistically modeling response.
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