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Introduction

Difficulties with data analyses

After design, implementation and monitoring of a clinical trial comes the
time to analyze the collected data in order to address the questions that
motivated the study in the first place. Invariably, the collected data do not
entirely reflect what was anticipated and suffer from a number of
“imperfections” that need to be addressed. These, can be coarsely
assigned into three categories:

Protocol non-adherence

Incomplete or missing observations

Methodological errors

The problem is how to reconcile these imperfections with the experimental
approach to ensure reliable inference. Two approaches have been followed,
which have significant downstream implications: A “pragmatic” and an
“explanatory” approach.
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Types of analyses

Pragmatic versus explanatory trials
The pragmatic perspective

The “pragmatic” versus “explanatory” approach has a huge impact both
on the design and analysis of a clinical trial.

The following is taken from
http://www.collemergencymed.ac.uk/CEM/Research/technical/guide/pragex.htm.
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Types of analyses

Pragmatic versus explanatory trials
The pragmatic perspective

The pragmatic perspective addresses the question of whether a treatment
works under real-life conditions and in terms of what is important to the
patients.

While, the pragmatic approach might seem eminently logical, it may not
be able to determine how or why an intervention works. For this reason,
pragmatic studies are useful for making policy decisions of what services
should be provided but may give limited insight into why interventions are
effective or not (we will discuss effectiveness later in this lecture).
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Types of analyses

Pragmatic versus explanatory trials
The Explanatory perspective

Explanatory studies, on the other hand, address the question of whether a
treatment works under ideal conditions or under very selective
circumstances.

The explanatory perspective is more concerned with how and why an
intervention works and is thus useful for understanding efficacy but may
have limited value in informing policy decisions for providing a service to
the general patient population or in a wide variety of circumstances not
considered in the study (for a look at the difference between efficacy and
effectiveness see discussion later in this lecture).
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Types of analyses

Impact of the pragmatic or explanatory point of view
Case study: Pre-operative chemotherapy in early NSCLC

Whether a study is pragmatic or explanatory has a number of important
consequences in the implementation of the clinical trial.

Consider a trial where pre-operative chemotherapy (C) is evaluated in the
treatment of early-stage non-small-cell lung cancer (NSCLC) for patients
going to surgery (S). So, the two approaches are C + S versus S.
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Types of analyses

Effect of the chosen approach in the case study

The effects of the pragmatic versus explanatory approach will have
important consequences in a number of characteristics of the resulting
study:

Patient selection
Under the pragmatic approach the patient cohort should reflect routine practice, so all

relevant patients should be studied, with exclusions limited to a small number patients.

For explanatory studies patients with co-morbidities or with a doubtful diagnosis will be

excluded. So while the explanatory approach will establish the efficacy of the treatment,

we will not know whether it will work in a “real-life setting.

Study design
The study design might also be radically different. Under the explanatory model, the

intervention must be identical in the two groups in all aspects except of the treatment

under evaluation. For example, under the explanatory model, surgery might have to be

delayed in the S group for the same period as in the chemotherapy group to allign the

two. Under the pragmatic approach, patients in the S group will have surgery

immediately after diagnosis.
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Types of analyses

Efficacy versus effectiveness

Depending on the perspective chosen, there are consequences of whether
the study measures efficacy or effectiveness. These two terms are not
equivalent.

Efficacy addresses the question of whether the intervention works under
ideal conditions. It is a proof of concept. It answers the question - Can it
work?

By contrast, effectiveness assesses whether the intervention works in
real-life conditions. It answers the question- Does it work?

For further reading see Roland & Torgerson (BMJ, 1998) and Haynes
(BMJ, 1999).
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Types of analyses

Impact of the pragmatic or explanatory point of view
Chosen analysis

Under the pragmatic model, patients are analyzed as they were assigned to
treatment and not as they were ultimately treated (we will take up this
issue at length later in this lecture). This is called an Intention-to-treat
analysis (ITT).

On the other hand, under the explanatory model, patients that changed
treatment group are analyzed according to treatment received (“TR” or
“as-treated) analysis. Another analysis is oen that discards non-adherent
patients (“adherers only” or “per-protocol” analysis).

The ITT approach addresses the question of how a treatment intervention
will fare when it is administered in general practice. On the other hand,
as-treated approaches permit insight into whether a treatment is
efficacious but do not address the real-life effectiveness of the treatment in
general use.
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Types of analyses

ITT versus per-protocol approaches

Suppose that, among patients accrued in an SA trial, NE received
treatment and, out of those, RE had a beneficial response. On the other
hand, N1 did not receive the assigned treatment, and R1 had a beneficial
response (usually R1 = 0).

Then, under the ITT (pragmatic) approach,

pITT =
RE +R1

NE +N1

while, under the per-protocol approach,

pPP =
RE

NE

Thus, unless, N1 = 0 or R1/N1 ≥ pITT (neither of which is plausible
usually) pITT < pPP . In other words, as-treated or per-protocol analyses
will exaggerate the effectiveness of an intervention. Seen from the opposite
viewpoint, ITT analysis will underestimate the efficacy of the intervention.
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Types of analyses

Advantages and problems with the two methods

While pITT does not measure the biological effect of the intervention,
there are serious problems with the explanatory analysis (or per-protocol
analysis) which leads to the estimation of pPP .

At the same time, pPP does not necessarily estimate a biological effect for
two reasons: The effect that pPP measures is confounded with adherence
to the treatment regimen. And, even if it did measure the biological effect,
it degenerates if patients cannot adhere to treatment.

12 / 45



Types of analyses

Difficulties of the per-protocol approach

A final technical issue arises when enrolling a patient. The explanatory,
per-protocol, analysis, conditions on patient adherence. This is of course
not known at the time of enrollment, so this approach conditions on a
future event.

This is both conceptually wrong and undermines fundamental
mathematical foundations of a number of models (e.g., what is called a
“predictable process” in survival analysis).

The ITT principle maintains the advantages of treatment randomization.
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Missing data

Analysis of completers and the vagaries of missing data

Frequently analysis is performed on patients that have completed a
regimen (i.e., have complete data). This analysis is slightly different from
a per-protocol analysis as it focuses on data availability and not protocol
or treatment adherence. This analytical approach is the default for all
statistical software.

However, excluding subjects with missing values may produce seriously
biased results if the underlying assumption that the observed data are
representative of the missing data does not hold.
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Missing data

The missing data hierarchy

The levels difficulty of interpreting missing data in a model of response Y ,
modeled according to a set of predictors (also known as covariates) X, are
given below (Little & Rubin, 1987):

MCAR
Data are missing completely at random. The missingness is not associated
with the actual true (but uknown) value and there are no other variables in
the data that can predict whether a missing value exists in a particular
variable. This is the difference between MCAR and MAR (below).

MAR
Data are missing at random. The pattern or probability of missingness is
associated with other variables in the data but not with the actual missing
value. This is the difference between MCAR and MNAR (see below).

MNAR
Data are missing not at random. The chance that the data are missing
depends on the actual missing value.
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Missing data

The missing data hierarchy
MCAR

These are data missing completely at random. In clinical trials measuring
a response Y based on measurements obtained from the subjects
(covariates) X.

MCAR means that missing responses and/or covariate measurements are
not dependent upon other responses or covariate measurements.
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Missing data

Examples of MCAR cases

Examples include the following:

A laboratory specimen is dropped or goes bad

A subject is run over by a bus

A survey is lost in the mail

However, if the lab specimen reflects practices at a specific lab (which, in
turn, may be associated with the outcome), the survey was lost because
the post office is in a certain part of town, or the subject was part of a
depression study and may have thrown himself under the bus, then the
missing pattern may not be MCAR.
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Missing data

The missing data hierarchy
Covariate-dependent missingness

An intermediate situation is missing data dependent only on values of the
covariates X but not on Y . This is called covariate-dependent missingness
by Little (1995, JASA). In this case, missing data are dependent only on
the covariates X but not on the outcomes Y . Examples include:

Cultural beliefs affect follow-up and retention in a clinical trial but are
unrelated to the outcome Y

Treatment-related dropout that is constant within each treatment group and
unrelated to the outcome Y can be considered MCAR

However, if the cultural beliefs reflect groups that have different overall
response to therapy (or are associated with certain risk factors, such as a
higher triple-negative breast cancer rates among African-American
women), or dropout within a treatment group is related to lack of efficacy,
the missing data will not be covariate-dependent MCAR.
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Missing data

The missing data hierarchy
MAR

MAR
Missing at random, is the situation where missingness depends on both the
observed covariates X and on the observed response Y . Despite its name,
there is little randomness about MAR. Examples of MAR missingness are as
follows:

Sicker patients might be less able to perform some of the tests required
by the study protocol
Laboratory animals are sacrificed for humane reasons when tumors
have grown too large

In both cases, missingness is MAR because the current (and missing)
response can be predicted (and thus imputed) by modeling it on previous
responses and/or the covariate measurements already collected on the
subjects.
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Missing data

The missing data hierarchy
MNAR or NMAR or non-ignorable missingness

MNAR
Missing not at random is the hardest case to deal with as data
missingness depends on unobserved covariates or missing response
observations. The hardest part of MNAR is that, based only on
available data, there is no way to determine whether missingess is
non-random or whether modeling is appropriate! Examples include:

Patients are lost to follow-up because they are dead (but vital status
is not available because of the death)

Tumors in laboratory animals are non-palpable because of treatment
success so tumor volume is missing (because of the current, and
missing, observation not past ones)
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Statistics to address missing data issues

Statistics can address some missing data issues

It would be illustrative to go over the mathematical notation of missing
data (just so we have some anchors for the components of the statistical
analysis).

The complete data is a vector Y = (Yobs,Ymis). We can also consider a
binary (zero/one) matrix M, with elements mij = 1 if observation from
the jth subject and ith variable is observed and mij = 0 if it is missing.
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Statistics to address missing data issues

Modeling with missing values

What we are trying to model is

f [Y,M|X,Θ] = f [(Yobs,Ymis)|X,Θ]︸ ︷︷ ︸ f [M|(Yobs,Ymis),X,Θ]︸ ︷︷ ︸
Data mechanism Missing data mechanism

where X are all the covariates and Θ are parameters (e.g., means,
variances, etc.).

So we are jointly modeling the data and the missing mechanism
f(M|(Yobs,Ymis),X,Θ).
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Statistics to address missing data issues

Statistics can address some missing data issues
Statistical modeling under different missing patterns

MCAR
f(M|Y,X) = f(M)

so this implies that f [(Yobs,Ymis)|X,Θ] = f [Yobs|X,Θ] and the
usual completer analysis can be carried out. In the case of
covariate-dependent missingness the above becomes
f(M|Y,X) = f(M|X) leading to the same analysis (i.e., excluding
subjects with any missing data) as above.

MAR
f(M|Y,X) = f(M|Yobs,X))

which implies that f [Ymis|M,X,Θ] = f [Ymis|Yobs,X,Θ], so a
correct completer model can be used to impute (fill in) the missing
data.
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Statistics to address missing data issues

Statistics can address some missing data issues
Statistical modeling under different missing patterns
(continued)

MNAR
f(M|Y,X) = f(M|(Yobs,Ymis),X))

this implies that we will need to explicitly model f [Ymis|M,X,Θ],
but there is nothing in the collected data that can give us any
comfort about how good our model is!
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Statistics to address missing data issues

Example: Simple linear regression with
covariate-dependent missingness

Consider the following contrived data set∗:

Unit X Y
1 3.4 5.67
2 3.9 4.81
3 2.6 4.93
4 1.9 6.21
5 2.2 6.83
6 3.3 5.61
7 1.7 5.45
8 2.4 4.94
9 2.8 5.73

10 3.6 .

∗Taken from http://www.lshtm.ac.uk/msu/missingdata/simple web/node5.html
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Statistics to address missing data issues

Example: Linear regression with covariate-dependent
missingness
Completer analysis

The completer analysis (regression of Y on X) is given as follows:
Call:

lm(formula = y ~ x, data = reg)

Residuals:

Min 1Q Median 3Q Max

-0.7413 -0.4876 0.1951 0.3456 1.0754

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.5601 0.8565 7.660 0.00012 ***

x -0.3662 0.3085 -1.187 0.27399

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6389 on 7 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.1675,Adjusted R-squared: 0.0486

F-statistic: 1.409 on 1 and 7 DF, p-value: 0.274
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Statistics to address missing data issues

Example: Linear regression with covariate-dependent
missingness
Analysis with imputed missing values

The above model suggests a way to perform an analysis on the complete
data set by imputing (filling in) a value for the missing observation Y .

This value is
Ŷ = 6.56 + (−0.366)(3.6) = 5.24
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Statistics to address missing data issues

Example: Linear regression with covariate-dependent
missingness

Pluging in Ŷ = 5.24 for the missing observation and repeating the analysis
results in the following output:

Residuals:

Min 1Q Median 3Q Max

-0.74134 -0.44626 0.09756 0.32374 1.07543

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.5601 0.7641 8.585 2.62e-05 ***

x -0.3662 0.2663 -1.375 0.206

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5977 on 8 degrees of freedom

Multiple R-squared: 0.1911,Adjusted R-squared: 0.09002

F-statistic: 1.89 on 1 and 8 DF, p-value: 0.2064
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Statistics to address missing data issues

Example: Linear regression with covariate-dependent
missingness
Accounting for the variability

We see that the estimate for the regression slope β̂ has remained the
same. We also see that the standard error of the estimation has been
reduced from s.e.β̂ = 0.309 to 0.266. This is because the imputed value of
Y did not account for the fact that it is an estimate of the true value of Y .

To deal with this issue we can simulate the data by imputing for the
missing Y an observation

Ŷ = 6.56 + (−0.366)(3.6) = 5.24 + ε

where ε ∼ N(0, 0.408) where 0.408 is the mean square error given above
in the ANOVA table.
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Statistics to address missing data issues

Example: Linear regression with covariate-dependent
missingness
Accounting for the variability (continued)

In the following figure and list of descriptive statistics, I have simulated the
data set 1,000 times and obtained an empirical distribution of the true
value of β with a more reasonable standard error.
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Figure 1: Histogram of 1,000 simulated data sets
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Statistics to address missing data issues

Estimated coefficients

The descriptive statistics of the generated estimates are as follows:

> apply(sample.beta,2,mean)

it betaHat0 betaHat1

500.5000000 6.5304405 -0.3557927

> apply(sample.beta,2,median)

it betaHat0 betaHat1

500.5000000 6.5044536 -0.3453537

>

> # The standard error is the sample SD

> apply(sample.beta,2,sd)

it betaHat0 betaHat1

288.8194361 0.9448023 0.3313254

This means that the average estimate of β̂ = −0.356 with an attendant
standard error s.e.(β̂) = 0.331, which is much more realistic than the one
produced by the näıve imputation procedure described earlier.
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Statistics to address missing data issues

Example: The OASIS smoking cessation study

Consider the following table of the OASIS smoking cessation study that
compares standard (ST) versus enhanced (ET) counseling interventions∗:

Table 1: The OASIS study

Month
Treatment 1 3 6 12

Abstinent 0.18 0.09 0.11 0.11
ET Smoking 0.83 0.47 0.42 0.34

Missing – 0.44 0.45 0.55
Abstinent 0.15 0.09 0.10 0.07

ST Smoking 0.85 0.54 0.52 0.52
Missing – 0.37 0.38 0.40

∗Taken from Daniels & Hogan, Misisng data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis,
Chapman & Hall/CRC, 2008.
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Statistics to address missing data issues

Example: The OASIS study
Analysis under MCAR

Analysis under the MCAR assumption assumes that all the missing smoking
statuses are missing randomly, so the analysis can be done ignoring all missing
observations.

If we perform a logistic-regression analysis, based on the subjects with known
smoking status (completers), the smoking rate at one year is pET = 0.76 and
pST = 0.88 for the enhanced and standard intervention groups respectively.

The odds ratio is OR = 2.225.
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Statistics to address missing data issues

Alternative analysis

The above analysis is equivalent to an analysis of the following 2× 2 table.

Group
Smoking status ET ST Total
Abstinent 16 (24%) 11 (12%) 27
Smoking 51 (76%) 78 (88%) 129
Total 67 89 156

The 95% CI of the odds-ratio is (0.96, 5.18). So the OR is not statistically
significant at the 95% level (since the value OR=1 is included in the
confidence interval). In other words, this analysis fails to show any
difference in the effectiveness of the interventions in groups ET and ST .
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Statistics to address missing data issues

Example: The OASIS study
Analysis under MAR

Under the MAR assumption, it is assumed that the missing smoking
statuses are missing randomly within each intervention group.

In other words, it is assumed that, within each intervention group, the
smoking rate among subjects with missing smoking status is the same as
the rate determined from subjects with known smoking status.
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Statistics to address missing data issues

Example: The OASIS study
Analysis under MAR (continued)

An analysis under MAR would impute (fill in) the missing statuses as
smoking in 76% and 88% of the missing subjects in group ET and ST
respectively and as non-smoking in 24% and 12%.

This is like analyzing the following table:

Group
Smoking status ET ST Total
Abstinent 36 (24%) 18 (12%) 54
Smoking 113 (76%) 131 (88%) 244
Total 149 149 298
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Statistics to address missing data issues

Example: The OASIS study
Analysis under MAR (continued)

The odds ratio is ÔR = (36× 131)/(18× 113) = 2.31, with an
approximate 95% CI(

elog(2.31)−1.96
√

1/36+1/113+1/18+1/131, elog(2.31)+1.96
√

1/36+1/113+1/18+1/131
)

(1.24, 4.29)

This analysis shows that the smoking rate in the standard is significantly
higher than the enhanced group (or, equivalently, that the enhanced
intervention is more effective).
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Statistics to address missing data issues

Example: The OASIS study
Analysis under MAR (continued)

The previous analysis has a significant drawback. It does not take into
account the fact that 55% of the missing observations in the ET group
and 40% of the missing observations in the ST group were
deterministically imputed.

Thus, the estimate of the variability of the odds ratio will be
underestimated.
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Statistics to address missing data issues

Example: The OASIS study
Analysis under MAR (continued)

To overcome this, we can perform simulations of the data where each
missing value is imputed with some degree of error in a random fashion.

In the following we show the analysis of the smoking cessation trial where
a uniform random number U ∈ (0, 1) was generated and the missing
observations in the ET group were replaced with one (smokers) if
U < 0.76 and zero otherwise.

Similarly, the missing observations in the ST group were replaced with one
if U < 0.88 and zero otherwise.
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Statistics to address missing data issues

Example: The OASIS study
Analysis under MAR: Simulations of the OR

In the following figure I present a histogram of 1,000 replications of the
imputed data and the resulting values of the OR.

Descriptive statistics are given in the next slide.
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Figure 2: Histogram of odds ratios from 1,000 simulated data sets
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Statistics to address missing data issues

Example: The OASIS study
Analysis under MAR: Simulations of the OR

The median of the simulated odds ratio is 2.45∗.

A way to obtain the two-sided 95% confidence interval for the odds ratio is
to determine the 2.5th and 97.5th percentiles.

> quantile(sampleOR[,4])

0% 25% 50% 75% 100%

0.6060277 1.8567031 2.4109671 3.1720622 12.4419048

> quantile(sampleOR[,4], probs=c(0.025, 0.975))

2.5% 97.5%

1.087558 6.065612

This interval is (1.09, 6.07), suggesting that, under the MAR assumption,
the enhanced intervention is significantly more effective than the standard
intervention.

∗Note: Since the distribution of the odds ratio is skewed to the right the median,
rather than the mean, should be used as a measure of central tendency
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Statistics to address missing data issues

Example: The OASIS study
Analysis under MNAR

While the MCAR assumption seems completely far-fetched for this
example, there are serious suspicions that the MAR hypothesis is a stretch
at best. It is commonly accepted that subjects that smoke tend to drop
out more readily from a program. This means that the smoking rates
among subjects with missing smoking status will be higher (potentially
significantly so) compared to the observed rates in each intervention group.

Since it is not known how well any model represents reality, a reasonable
approach is to consider a number of models and see how they affect the
results. This is called sensitivity analysis.
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Statistics to address missing data issues

Example: The OASIS study
Sensitivity analysis

In the OASIS study, one conservative approach would be to consider all
subjects with missing smoking status are smokers. Another is the approach
the investigators followed. They consulted with four experts about the
likely probability that subjects with missing smoking status are smokers.

While the analysis chosen is beyond the scope of this lecture, the resulting
probabilities from the five approaches are given in the following Table∗:

Model/Expert
Intervention MAR Conservative 1 2 3 4
ET 0.78 0.89 0.83 0.87 0.87 0.83
ST 0.88 0.93 0.90 0.91 0.90 0.90

OR 2.31 1.51 1.54 1.61 1.41 1.47

∗Note that we have considerably simplified the analysis. For more details refer to Daniels & Hogan (2008).

Note that we expressed the odds ratio as ST versus ET .

43 / 45



Statistics to address missing data issues

Example: The OASIS study
Sensitivity analysis (continued)
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Figure 3: Monte Carlo simulations under MAR (green) and the four experts
(grey).
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Statistics to address missing data issues

Implications of the analysis

The analysis shown in Figure 3 represents a histogram of 1,000 simulated
datasets with a smoother run through it.

It is obvious that the MAR assumption is the most optimistic viewpoint
and that most likely the treatment effect is, at best, minor, and certainly
not statistically significant at the 5% level.
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