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Clinical trials as experimental designs
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Phase I studies

Dose finding designs

In this lecture we will describe designs that attempt to determine the
optimal biological dose of a drug (OBD). These are usually undertaken
during the Phase I part of the process of drug development.

All dose finding studies are conducted with increasing doses until a
predefined clinical outcome is observed.
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Phase I studies

Goals of Phase I studies

All Phase I studies attempt to investigate toxicity of the drug and establish an
optimal biological dose, estimate the pharmacokinetics properties (PK) of the
drug and assess its tolerability and feasibility. A number of terms are used in
these studies:

Dose-ranging studies
these are designs that specify dose a priori along with decision rules for
moving from one dose to the next.

Dose-finding studies
These are studies that attempt to detect the optimum dose. They use does
from a continuum rather than a pre-specified set. In contrast to dose
ranging studies these studies use a large number of doses.

Everything that we will talk about will be compared or juxtaposed against the
classic Phase-I design of oncology studies.
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Phase I studies

The classic Phase I study of cytotoxic drugs

The basic design found in most oncology studies, but also in many other contexts
of cytotoxic medications, proceeds as follows: Once an a priori determine
schedule of progressive dose escalation, the following steps are performed:

Assign three (3) patients to the lowest dose

If no one experiences the response event of interest (usually a serious
toxicity or death) proceed to the next higher dose and expose three more
patients to that higher dose

Continue increasing the dose until one or more patients has the event then
proceed as follows:

If only one patient has the event then expose three more patients at
the same dose. If two or more out of the six patients have the event of
interest then the dose is reduced

Any dose where two or more toxicities happen is reduced
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Phase I studies

Different optimality criteria of the OBD

There are various optimality criteria for the OBD.

The minimum effective dose (MED)
For example, in an analgesic, this the optimal dose that completely relieves
mild to moderate pain in 90% of recipients

Maximum non-toxic dose (MND)
The optimal dose oof an antibiotic may be the dose that causes major side
effects in less than 5% of recipients

Maximum tolerated dose (MTD)
In cytotoxic drugs, traditionally the maximum dose that can be tolerated has
been thought optimal, such as the dose that yields serious or life-threatening
toxicity in no more than 30% of the recipients.

Most likely to succeed dose (MLS)
This is the dose that suppresses 99% of the molecular target activity in at
least 90% of patients.
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Phase I studies

Subjectivity

One of the problems with dose finding studies is the unavoidable
subjectivity that creeps in the design. This happens because:

The dose schedule

Escalation rules

Assessment and attribution (to the drug or not) of side effects

Reactions to unexpected side effects

The size of the cohort in each dose

The subjectivity results in lack of replication of the results (i.e., two
studies of the same drug with different dose and escalation schedules will
most likely reach a different result).
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Phase I studies

An idealized dose finding design

In the ideal world, a dose-finding design would proceed by assigning ni
patients to doses Di, where i = 1, 2, 3, · · · , and then observe the
proportion pi = ri/ni of patients that experience the event of interest
(usually a toxicity but also efficacy).

A mathematical model is then employed to find the optimal dose. In the
mathematical model, invariably, the probability of having the event of
interest πi is associated with a linear function of the dose Di as follows:

πi = f [a+ bg(Di)]

then f−1(πi) = a+ bg(Di), where f−1 is the inverse function of f(x).
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Phase I studies

Mathematical models in dose-finding studies
The logistic model

For example a logistic-regression model can be applied to the (unknown)
population proportion πi experiencing the event at dose Di is given by the
equation

πi =
exp [a+ b log(Di)]

1 + exp [a+ b log(Di)]

so that

f−1(πi) = log

[
πi

1− πi

]
= a+ b log(Di)
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Phase I studies

Mathematical models in dose-finding studies
The probit model

Another choice is the probit model. In this case the above equation
becomes

πi = Φ{a+ b(Di)}

where Φ(x) =
∫ x
−∞

1√
2
e−

u2

2 du is the standard normal distribution

function. The probit model for πi becomes

Φ−1 [πi] = a+ b log(Di)

where Φ−1(πi) is the inverse standard normal distribution.
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Phase I studies

Representation of the probit and logistic models
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Figure 1: Pictorial representation of the logistic and probit models of πi

The two models give similar answers except in the extreme high and low
percentiles of πi.
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Phase I studies

Why ideal study designs are not normally used

Despite their ability to reliably estimate the optimal dose, ideal designs,
such as the one presented above, are not used in clinical trials and are
instead used in pre-clinical studies.

There are two reasons that this is the case:

The ethical limitation of exposing subjects to doses that are expected
to cause serious toxicities versus slowly increasing the dose from lower
doses that are not expected to result in unacceptable toxicities

Expose as few patients as possible to the new experimental agent
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Phase I studies

Operating characteristics (OC) of dose finding
designs

We will go over the operating characteristics (OC) of the general
dose-escalation design and then apply these to the classic oncology Phase I
design. The OC of a study is the probability of stopping before the
optimal dose.

To compute the OC of a design, consider the binomial probability of
observing k responses out of n subjects as b(k;n, p). Then the cumulative
binomial probability

P (a < X ≤ c) = B(a, c;n, p) =

c∑
i=a

b(i;n, p)
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Phase I studies

OC of dose finding designs (continued)

If the true probability of the event is pi, since escalation happens if ri ≤ ui and
de-escalation if ri ≥ di while, if ui < ri < di mi additional subjects are placed in
the same dose, the conditional probability of escalating past the i dose
(conditioned on having arrived at this dose) is

Pi = B(0, ui;ni, pi)︸ ︷︷ ︸ +

di−1∑
j=ui+1

b(j;ni, pi)B(0, u′i − j;mi, pi)︸ ︷︷ ︸
Responses less than ri OR more than ui responses AND less than

u′i responses in expanded cohort

The unconditional stopping probability (considering all conceivable scenarios) and
thus the OC of the design is

1−Qi = 1−
i∏

k=1

B(0, uk;nk, pk) +

dk−1∑
j=ui+1

b(j;nk, pk)B(0, u′k − j;mk, pk)
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Phase I studies

OC of the classic Phase I design

In the case of the classic (three-up, three down) design, the previous
probability is modified by changing the ui = 0, all ni = mi = 3 as follows:

Pi = b(0; 3, pi)︸ ︷︷ ︸ + b(1; 3, pi)︸ ︷︷ ︸ × b(0, 3, pi)︸ ︷︷ ︸
No responses OR one response in AND no responses in

first three patients next three patients

The unconditional stopping probability (considering all conceivable
scenarios) and thus the OC of the classic design is

1−Qi = 1−
i∏

k=1

[b(0; 3, pk) + b(1; 3, pk)b(0; 3, pk)]
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Phase I studies

Example of a three-up/three-down design

What is the probability of continuing past the second dose d2, assuming
that the (unknown) proportion of patients experiencing the event is
p1 = 0.2 and p2 = 0.3?

The scenarios under p = 0.2 and p = 0.3 are

k b(k, 3, 0.2) B(k, 3, 0.2) b(k, 3, 0.3) B(k, 3, 0.3)

0 0.512 0.512 0.343 0.343
1 0.384 0.896 0.441 0.784
2 0.096 0.992 0.189 0.973
3 0.008 1.000 0.027 1.000
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Phase I studies

Example of a three-up/three-down design (cont’d)

We proceed considering the fact that b(0; 3, 0.2) = 0.512 and
b(1, 3, 0.2) = 0.384 and b(0; 3, 0.3) = 0.343 and b(1, 3, 0.3) = 0.441 in the
two doses respectively. Then the previous calculations become

1−Qi = 1−
2∏

k=1

[b(0; 3, pk) + b(1; 3, pk)b(0; 3, pk)]

= 1− [(0.512 + (0.384)(0.512)) (0.343 + (0.441)(0.343))]

≈ 0.65

There is 35% probability of continuing past the second dose or 65%
probability of stopping by the second dose (the OC of the design), with
20% toxicity in the first and 30% in the second dose.
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Phase II studies

Phase II single-sample designs

We will briefly present below the non-comparative designs for Phase II
studies based on single cohorts of subjects.

These designs will be of two main kinds:

Single-stage designs

Two-stage or multi-stage designs
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Phase II studies

A Phase-II example (single-stage design)

Consider the following situation:

In a Phase II non-comparative study (i.e, a small study of one treatment
that takes a first “stab” at efficacy assessment), we would like to know
whether the true response rate is at least as high as 15% (the current
standard).

Above that rate, the new therapy would be interesting and worth pursuing
further, while, below this rate, we would discontinue development of the
experimental therapy.

To perform power and sample size calculations we will have to specify an
alternative rate p1 > p0. We set for this example, p1 = 0.40.
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Phase II studies

Statistical approach

The null hypothesis to be tested is

H0 : p ≤ p0 = 0.15

versus the alternative

HA : p > p1 = 0.40

We would like to maintain α ≤ 0.1 and the power 1− β ≈ 0.80.

We will thus create a one-sided 90% confidence interval and see whether
its lower bound excludes (lies above) p0 = 0.15.

The power is the chance that the confidence interval will lie above p0 if
the true response is p1.

Monitoring toxicity is done in an identical manner by reversing the roles of
p0 and p1 and H0 and HA above.

20 / 90



Phase II studies

The null and alternative distributions

The null and alternative distributions (assuming n = 16 and p0 = 0.15 and
pA = 0.40 respectively) are as follows:

p = 0.15 p = 0.40
k P (X = k|p = 0.15) P (X ≤ k|p = 0.15) P (X = k|p = 0.40) P (X ≤ k|p = 0.40)
0 0.07425 0.07425 0.00028 0.00028
1 0.20965 0.28390 0.00301 0.00329
2 0.27748 0.56138 0.01505 0.01834
3 0.22851 0.78989 0.04681 0.06515
4 0.13106 0.92095 0.10142 0.16657
5 0.05551 0.97646 0.16227 0.32884
6 0.01796 0.99441 0.19833 0.52717
7 0.00453 0.99894 0.18889 0.71606
8 0.00090 0.99984 0.14167 0.85773
9 0.00014 0.99998 0.08395 0.94168

10 0.00002 1.00000 0.03918 0.98086
11 0.00000 1.00000 0.01425 0.99510
12 0.00000 1.00000 0.00396 0.99906
13 0.00000 1.00000 0.00081 0.99987
14 0.00000 1.00000 0.00012 0.99999
15 0.00000 1.00000 0.00001 1.00000
16 0.00000 1.00000 0.00000 1.00000
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Phase II studies

The null and alternative distributions (continued)

The decision of whether to accept or reject the null hypothesis
H0 : p ≤ p0 = 0.15 will be based on the number of responses X. For some
cutoff value of k, the null hypothesis will be rejected if the number of
responses is greater or equal to k. This cutoff needs to fulfill two
prerequisites:

1 P (X ≥ k|p = p0) ≤ α, i.e., the probability that we will see more than
k responses, if the true response rate is p0 = 0.15 is at most
α = 0.10. This is the probability of rejecting the null when it is true
(false positive rate) or P (X < k|p = p0) ≥ 1− α.

2 P (X ≥ k|p = pA) ≥ 1− β, i.e., the probability that we will see more
than k responses, if the true response rate is pA = 0.40 is at most
1− β = 0.80. This is the probability of rejecting the null when it is
false (power) or P (X < k|p = pA) < β.
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Phase II studies

Performing calculations

From the previous table with k = 5,

P (X < 5|p = 0.15) = 0.9209 > 1− α

so that
P (X ≥ 5|p = 0.15) = 1− 0.9209 = 0.0791 > α

and
P (X < 5|p = 0.40) = 0.1666 < β

so that
P (X ≥ 5|p = 0.40) = 1− 0.1666 = 0.8334

This fulfills both the alpha and beta (power) considerations.
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Phase II studies

Graphical representation

The previous situation is shown graphically below:
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Two-stage Phase II studies

Two-stage designs

Consider what would be required in order to be able to insert an interim
analysis (a first “stage”) in the study monitoring. The components of a
two-stage design are the following:

Hypotheses to be tested

H0 : p ≤ p0
HA : p ≥ pA

Type I (α), type II (β) errors and power (1− β)

Sample size (n) and total number of responses (r)

Stage I: Sample size (n1) and number of responses (r1)
Stage II: Sample size (n2) and number of responses (r2)

Two-stage designs attempt to control the alpha level and power
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Two-stage Phase II studies

The Gehan two-stage design

One way to determine the sample size, while controlling the alpha level is
to use the following algorithm (Gehan, J Chron Dis, 1961):

First stage
Enroll n1 subjects.
If at least one subject responds (i.e., if r1 ≥ 1) continue to the second
stage
n1 is selected so that P (X > 0|n1, p0) < α.

Second stage
Accrue remaining n2 subjects so that the true response rate p is
estimated with the required precision (e.g., based on a maximum
allowable half length of the confidence interval)
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Two-stage Phase II studies

Implementation of the Gehan two-stage design
First stage

For example, suppose that the null hypothesis is H0 : p ≤ p0 = 0.15 and
HA : p > p1 = 0.40 as before and that α = 0.10.

After some trial and error, we find that if we accrue n1 = 15 since
P (X = 0|n = 15, p = 0.15) = 0.0874 < α.
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Two-stage Phase II studies

Gehan design under the null hypothesis

This comes from the following table:

k P (X = k|p = 0.15) P (X ≤ k|p = 0.15)

0 0.08735 0.08735
1 0.23123 0.31859
2 0.28564 0.60423
3 0.21843 0.82266
4 0.11564 0.93829
5 0.04490 0.98319
6 0.01320 0.99639
7 0.00300 0.99939
8 0.00053 0.99992
9 0.00007 0.99999

10 0.00001 1.00000
11 0.00000 1.00000
12 0.00000 1.00000
13 0.00000 1.00000
14 0.00000 1.00000
15 0.00000 1.00000
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Two-stage Phase II studies

Implementation of the Gehan two-stage design
Second stage

How many additional subjects n2 will be needed in the second stage in
order to estimate the response rate within 20% of the truth?

This translates to selecting a sufficient number of subjects so that the
total number n = n1 + n2 will result in a (1− α)% confidence interval
with half length l = zα/2

√
p(1− p)/n < 0.20.

Solving the above inequality with p = pA = 0.40 we end up with

n >
z21−α/2p(1− p)

0.202
=

(1.645)20.40(1− 0.40)

0.202
= 16.24

Thus, n2 = 2 subjects (n = 17) will be needed to estimate the true
response rate pA = 0.40 with precision 20% and α = 0.10.
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Two-stage Phase II studies

The Simon and minimax two-stage designs

The most common type of two stage design unfolds as follows:

First stage
The study is stopped after the first stage for insufficient efficacy if r1
or less responses out of n1 total subjects are observed.

The probability of early termination under rate p is

PET (p) = P (X ≤ r1|n, p)

Second stage
The study is continued to the second stage if more than r1 out of n1
subjects respond during the first stage.

The study is considered successful (H0 is rejected) if more than
r = r1 + r2 out of N subjects respond by the end of the second stage.
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Two-stage Phase II studies

Components of the usual two-stage designs

Probability to reject the null hypothesis under true response rate p: R(p)

R(p) = 1−

(
P (K ≤ r1|n1, p)︸ ︷︷ ︸

Fail to reject at the first stage

+
P (K ≤ r|R1 > r1, n2, p)︸ ︷︷ ︸

Fail to reject at the second stage

)

= 1−

B(r1;n1, p) + b(k;n1, p)×
min(n1,n)∑
k=r−r1+1

b(R− k;n1, p)


where b(k;n, p) = P (K = k|n, p) and B(k;n, p) =

∑k
k=1 b(k;n, p) are the

binomial p.d.f. and distribution functions respectively. Then

α = R(p0)

1− β = R(pA)
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Two-stage Phase II studies

Expected versus maximum sample size

In the two-stage design the maximum sample size is random. The
expected sample size (also known as average sample number or ASN)
under rate p is given by the following formula:

ASN(p) = n1 + n2 × P (k > r1|n1, p)
= n1 + n2 × (1− PET (p))

that is, the average sample size equals the number of subjects to be
enrolled in the first stage, times the number of subjects enrolled in the
second stage probability of continuing to the second stage.
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Two-stage Phase II studies

The Simon and minimax two-stage designs

Simon (Cont Clin Trials, 1985) proposed a two-stage design which
minimizes the average sample size ASN(p0) (i.e., the average sample size
under the null hypothesis).

By contrast, the minimax design minimizes the maximum sample size n.
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Two-stage Phase II studies

Example of Simon’s two-stage design

For example, consider the two-stage design with n1 = 9, r1 = 1, n = 16 and
r = 4. Then under the null hypothesis p = p0 = 0.15 we have

n P (X = k|n = 9, p = 0.15) P (X ≤ k|n = 9, p = 0.15)
0 0.23162 0.23162
1 0.36786 0.59948
2 0.25967 0.85915
3 0.10692 0.96607
4 0.02830 0.99437
5 0.00499 0.99937
6 0.00059 0.99995
7 0.00004 1.00000
8 0.00000 1.00000
9 0.00000 1.00000
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Two-stage Phase II studies

Simon’s two-stage design (continued)

With r1 = 1 and n2 = 7, r2 = 3 (so that r = 4) we have

Probability of response p = 0.15
Stage I (n1 = 9) Stage II (n2 = 7)

responses responses Probability Cum. prob.
0 0.2316 0.2316
1 0.3679 0.5995

2 0 0.0832 0.6827
1 0.1028 0.7856
2 0.0544 0.8400

3 0 0.0343 0.8743
1 0.0423 0.9166

4 0 0.0091 0.9257
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Two-stage Phase II studies

Output interpretation: Attained size of the test

The previous output is interpreted as follows:

The probability of not rejecting the null hypothesis H0 : p ≤ p0 = 0.15 when this
is true is 1− α = 0.9257).

The cumulative probability 0.9257 above is the total probability associated with
all scenarios of non-rejection of H0. These are:

First stage
The number of responses is k ≤ r1 = 1, i.e., k = 0, or 1 (this would result in
stopping the trial).

Second stage
In order to proceed to the second stage, k > 1. In order not to reject the
null hypothesis, k ≤ r = 4, i.e., k = 2, 3, 4. The probability is given by
summing the binomial probabilities of the compatible scenarios.

Thus, the attained size of the test is α = 1− 0.9257 = 0.0743.
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Two-stage Phase II studies

Estimation of power

To estimate power we run the same routine with p = pA = 0.40. The
results are as follows:

n P (X = k|n = 9, p = 0.40) P (X ≤ k|n = 9, p = 0.40)

0 0.01008 0.01008
1 0.06047 0.07054

2 0.16124 0.23179
3 0.25082 0.48261
4 0.25082 0.73343
5 0.16722 0.90065
6 0.07432 0.97497
7 0.02123 0.99620
8 0.00354 0.99974
9 0.00026 1.00000

With r1 = 1 and n2 = 7, r2 = 3 (so that r = 4) we have
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Two-stage Phase II studies

Estimation of power (continued)

Probability of response p = 0.40

Stage I (n1 = 9) Stage II (n2 = 7)
responses responses Probability Cum. prob.

0 0.0101 0.0101
1 0.0605 0.0705

2 0 0.0045 0.0751
1 0.0211 0.0961
2 0.0421 0.1383

3 0 0.0070 0.1453
1 0.0328 0.1780

4 0 0.0070 0.1851
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Two-stage Phase II studies

Power of Simon’s two-stage design

The previous output is interpreted as follows:

The probability of not rejecting the null hypothesis H0 : p ≤ p0 = 0.15
when this is false (i.e., the Type II of this test) is β = 0.1851.

The cumulative probability 0.1851 is given in a manner similar to the
calculation of α above by summing the binomial probabilities of the
compatible scenarios, but with p = pA in this case.

The projected power of this study is 1− β = 0.8149.
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Two-stage Phase II studies

Expected sample size

From the output above we can calculate that

Under the null hypothesis

ASN(p0) = n1 + n2 × (1−B(r1;n1, p0))

= 9 + 7× (1− 0.59948) = 11.803

Under the alternative hypothesis

ASN(pA) = n1 + n2 × (1−B(r1;n1, pA))

= 9 + 7× (1− 0.07054) = 15.506

Recall that the one-stage design with the same parameters required
n = 16 subjects.

The advantage of this design is that the expected sample size of the
two-stage design (under the null hypothesis) is significantly lower than the
sample size of the comparable one-stage design.
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Two-stage Phase II studies

Implementation of the Simon two-stage design

Implementation of the Simon design above in R produces the follwoing
output:

> # Optimal and Minimax 2-stage Phase II designs

> # Assume p0 = 0.15, p1 = 0.15,

> # type-I error alpha = 0.10 (one-sided), type-II error beta = 0.20

> library(clinfun)

> ph2simon(pu = 0.15, pa = 0.40, ep1 = 0.10, ep2 = 0.20,nmax = 100)

Simon 2-stage Phase II design

Unacceptable response rate: 0.15

Desirable response rate: 0.4

Error rates: alpha = 0.1 ; beta = 0.2

r1 n1 r n EN(p0) PET(p0)

Optimal 1 7 4 18 10.12 0.7166

Minimax 1 9 4 16 11.80 0.5995
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Two-stage Phase II studies

Optimal two-stage design

The optimal two-stage design testing the null hypothesis H0 : p1 ≤ p0
versus the alternative H1 : p1 > p0 involves n = 18 total individuals, of
whom n1 = 7 are involved in the first stage. If r1 < 1 of them respond,
then the study will stop. If r1 ≥ 1 individuals respond, then n2 = 11
additional subjects will be enrolled in the second phase.

If r2 < 4 respond, then the study will not reject the null hypothesis (i.e.,
there won’t be enough evidence to reject the null hypothesis that the
response probability p1 ≤ p0 = 0.15. Otherwise, the null hypothesis will be
rejected and the conclusion will be that the response rate p1 > p0 = 0.15.

The optimal design is “optimal” in the sense that it exposes, on average,
ASN(p0) = EN0 = 10.1 individuals if H0 is true (i.e., if p1 ≤ p0).
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Two-stage Phase II studies

Minimax two-stage design

The minimax two-stage design testing the null hypothesis H0 : p1 ≤ p0
versus the alternative H1 : p1 > p0 involves n = 16 total individuals, of
whom n1 = 9 are involved in the first stage. If r1 < 1 of them respond,
then the study will stop. If r1 ≥ 1 individuals respond, then n2 = 7
additional subjects will be enrolled in the second phase.

If r2 < 4 respond, then the study will not reject the null hypothesis (i.e.,
there won’t be enough evidence to reject the null hypothesis that the
response probability p1 ≤ p0 = 0.15. Otherwise, the null hypothesis will be
rejected and the conclusion will be that the response rate p1 > p0 = 0.15.

The minimax design minimizes the total sample n but may result in larger
average sample under the null hypothesis, (here ASN(p0) = EN0 = 11.8
individuals) if H0 is true compared to the optimal two-stage design.
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Two-stage Phase II studies

Internet resources

A graphical software for the design of two-stage design is available at
http://cancer.unc.edu/biostatistics/program/ivanova/SimonsTwoStageDesign.aspx
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Two-stage Phase II studies

Output

The output of the program looks like this:
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Factorial designs

Factorial designs

Factorial designs are used to test the effect of more than one treatment
and uses a design that permits the assessment of interaction between
them.

A typical 2× 2 factorial design comparing the effect of treatment A and
treatment B (assuming that A&B can be given in combination) is as
follows:

Treatment B
Treatment

A No Yes Total

No n n 2n
Yes n n 2n
Total 2n 2n 4n
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Factorial designs

Effect estimation in factorial designs

The treatment effects in a factorial design in the previous slide are as
follows:

A typical 2× 2 factorial design comparing the effect of treatment A and
treatment B (assuming that A&B can be given in combination) is as
follows:

Treatment B
Treatment

A No Yes

No Ȳo ȲB
Yes ȲA ȲAB
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Factorial designs

Interaction effects

Interaction effect between factors A and B is the modification of the
effect of factor A by factor B. This, in the context of two drugs is either

Synergism
A positive (synergistic or potentiated) interaction between the two
drugs (i.e., a larger additive effect than would be expected by adding
the individual effects of the two drugs)

Antagonism
A negative (antagonistic) interaction between two drugs (i.e., a
smaller additive effect than would be expected by adding the
individual effects of the two drugs)
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Factorial designs

Efficiency of factorial designs

In the absence of interaction between factor A and B, the estimates of the
effect of these two factors can be averaged from the estimates of their
treatment effect versus placebo. This is

βA =
(ȲA − Ȳ0) + (ȲAB − ȲB)

2

for factor A and,

βB =
(ȲB − Ȳ0) + (ȲAB − ȲA)

2

for factor B.
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Factorial designs

Efficiency of factorial designs (continued)

The efficiency of the factorial design becomes obvious if one considers
that, if the variance of the patient response is σ2 and is the same in all
treatment groups, then the variance of βA (similarly for βB) is

var(βA) = var
(ȲA − Ȳ0) + (ȲAB − ȲB)

2

=
1

4

4σ2

n

=
σ2

n

Now, considering the variance of the treatment effect
var(β′A) = var(ȲA − Ȳo) = 2σ2

n , so the variance of the factorial design is
equal to a two-arm trial with 2n patients.
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Factorial designs

Testing of interactions

Factorial designs are the only designs where interactions between factor A
and B can be measured. The definition of an interaction is that the effect
of A is different in the presence versus absence of B.

This can be estimated by comparing with zero

βAB = (ȲA − Ȳ0) + (ȲAB − ȲB)

We note that the variance of βAB is

var(βAB) =
4σ2

n

which is four times larger than the variance of the individual effects when
there is no interaction.
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Factorial designs

Testing for interactions (continued)

To get the same precision for estimating the interaction effect we need
four times the sample size.

Alternatively, the interaction effect must be twice as large as the main
effects in order for it to be detected with the same power by the sample
size necessary to detect the effect size of the main effects. This is rarely, if
ever, the case.

This shows that estimation of the main and interaction effects cannot be
met simultaneously in the same factorial study.
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Factorial designs

Example: Omega-3 for the prevention of heart failure

In a (fictional∗) clinical trial of Omega-3 for the prevention of heart failure,
the following 2× 2 factorial design was adopted:

Marvistatin 5 mg Maristatin 80 mg Total

Omega-3 100 participants 100 participants 200
Placebo 100 participants 100 participants 200

Total 200 200 400

The primary endpoint was to see whether Omega-3 had a protective effect
for patients receiving statins and, secondarily, whether the effect, if any,
had an interaction with statin dose.

∗https://prsinfo.clinicaltrials.gov/trainTrainer/Factorial-Design-Fiction-Manuscript.pdf
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Factorial designs

Analysis of the Omega-3 study

The results corresponding to the primary endpoint were as follows:

Marvistatin 5 mg Maristatin 80 mg Total

Omega-3 27/100 events 25/100 events 52/200
Placebo 26/100 events 24/100 events 50/200

Total 53/200 events 49/200 events 102/400

It is obvious that the events corresponding to Omega-3 can be combined
across the two groups of subjects receiving Omega-3 and these cam be
compared against the combined groups receiving placebo.

If there is no interaction (which, in turn, will allow us to combine the two
groups in each case), this design effectively doubles the sample size versus
a study which would compare all four treatments in a straight 4-way
comparison.
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Crossover designs

Crossover designs

In contrast to the designs where participants are treated with a single or
combination treatment concurrently, in crossover designs, treatments are
administered sequentially. The main advantage of this study is that
treatment effects can be compared within the same subjects (thus
eliminating within-subject or biological variability).

Crossover designs are different in objective and scope from trials that give
treatments sequentially (e.g., A→ B → C versus A→ B) but assess the
incremental effect of a treatment (here treatment C) or from factorial
designs where patients are administered a combination of treatments
simultaneously.
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Crossover designs

Randomization in crossover studies

Crossover designs do not employ randomization in the same way that comparative
studies do. This is because, all patients receive all treatments.

There are randomized crossover studies where the order of treatment
administration is randomized among subjects (e.g., A→ B versus B → A). The
lack of randomization of treatment allocation is not a problem per se since the
homogeneity of the treatment groups is ensured by having the same subjects
receive all treatments.

Nevertheless, randomization of period of treatment administration is not sufficient
to ensure that treatment groups are similar because it is not know in advance
whether period of administration is significantly associated with the treatment
effect (which means that, only after analysis of the study data, will we know
whether the treatment groups defined by different sequence of treatment
administration will be comparable).
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Crossover designs

Efficiency of crossover studies

To see why crossover designs are efficient, we consider that each subject is
its own control. Thus, a potentially large component of treatment effect
variability is removed from the estimation. To see this, consider the
variance of the difference in treatment effects A and B, ∆̂AB, noted here
as ȲA and ȲB respectively, will be:

var(∆̂AB) =
σ2

n
+
σ2

n
− 2cov(ȲA, ȲB)

= 2
σ2

n
(1− ρAB)

We note that, in comparative studies, ρAB = 0 because the groups
receiving the treatments A and B are independent. So
var(∆̂AB) = 2σ2/n. However, if ρAB > 0, as it is usually expected when
treatment is administered to the same patient, the variance of the effect
difference will be smaller in a crossover than a comparative study.
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Crossover designs

Difficulties with crossover studies

There are several difficulties with crossover designs

Carryover effects.
This can happen because

Physiological persistence of the effects of the first treatment. This can
be addressed with longer “washout” periods.
The first treatment may change or cure the condition artificially
affecting the effect of the second drug

Dropout effects
Dropout rate between the first and second treatment may be
exacerbated because of the increased length of the study and the
effects of the first treatment. Dropouts have strong effect on the
analysis more so than in a comparative study.
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Crossover designs

Difficulties with crossover studies (continued)

Complexities with the analysis of crossover studies.
In particular, these are

Use a staged plan where carryover effects are studied in the first stage
and, if none are found, the main effects are estimated in the second
stage
Use baseline measurements in each period to test for carryover effect
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Crossover designs

Prerequisites for application of crossover designs

There are a number of factors that must be in place before undertaking a
crossover design

Ensure that there is a large positive correlation between successive
evaluations on the same patient

Disease intensity must be constant throughout the study

Small or no carryover effect (or if there is carryover effect, a sufficient
washout period is applied)

Expected (negative) view of the crossover trial by regulators (FDA
considers RCT as the de facto standard for proof of treatment effect)
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Crossover designs

Efficiency of the crossover design

To comment on the efficiency of the crossover design, we consider the
estimation of the treatment effects. In the absence of a treatment×period
interaction, the treatment effect difference of treatments A and B is

β̂1 =
1

2

(
ȲB2 − ȲA2 + ȲB1 − ȲA1

)
and the period effect is

β̂2 =
1

2

(
ȲB2 − ȲB1 + ȲA2 − ȲA1

)
where ȲAi and ȲBi, i = 1, 2 are the treatment effects of treatments A and
B during period 1 and 2 respectively. The variance of β̂1 and β̂2 is

var(β̂1) = var(β̂2) =
σ2

n
(1− ρ)
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Crossover designs

Efficiency of the crossover design (continued)

On the other hand, the treatment×period interaction effect, is

β̂3 =
{

(ȲA2 − ȲA1)− (ȲB2 − ȲB1)
}

If β̂3 6= 0 then the treatment effect is estimated by

β̂1 =
(
ȲB1 − ȲA1

)
The variance of β̂3 is

var(β̂3) = var(ȲA2 − ȲA1)−

= 4
σ2

n
(1 + ρ)

which is more than four times larger than the variance of β̂1 or β̂2 for
ρ ≥ 0. Thus, crossover studies are not as efficient in testing the carryover
effect (treatment×period interaction).
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Crossover designs

Example: Cross-over trial for angina pectoris

In a cross-over trial, the effects of pronethanol on angina pectoris were
investigated∗. Twelve patients received placebo for two weeks and
pronethalol for two weeks, in random order. The results of the study are as
follows:

Patient Placebo Pronethalol Difference

1 71 29 42
2 323 348 25
3 8 1 7
4 14 7 7
5 23 16 7
6 34 25 9
7 79 65 14
8 60 41 19
9 2 0 2
10 3 0 3
11 17 15 2
12 7 2 5

∗https://www-users.york.ac.uk/m̃b55/msc/trials/cross.htm
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Crossover designs

Analysis of the pronethanol trial

The summary statistics of the previous table are as follows:

Placebo Pronethalol Difference

Mean (Ȳ ) Std. dev (s) Mean (Ȳ ) Std. dev (s) Mean (Ȳ ) Std. dev (s)

53.42 89.07 45.75 97.19 7.67 15.11

It is obvious that analyzing this study as a two-independent-sample clinical
trial is associated with dramatically higher variability than the (correct)
analysis of a matched cross-over design.
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Crossover designs

Phase III studies
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Introduction

Definition and goals

Phase III studies large-scale clinical trials involving one or more
experimental therapy against standard therapy or, if standard therapy does
not exist, a placebo.

The main objective of Phase III clinical trials is the investigation of the
efficacy of the therapy and approval of the experimental therapy by
regulatory organizations (e.g., the Food and Drug Administration in the
United States).
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Introduction

Phase III Studies
Randomized Trials

Possible designs:
1 Direct tests (usually when no known treatment for this disease)

Z versus placebo (P )

2 Active control W (standard treatment for this disease)

Z versus W

3 Fairly direct tests of value of adding Z to a standard therapy Y

Y + Z versus Y + P

4 Amount, Timing of Z

Low dose versus high dose of Z
Z initially versus Z delayed
Z intermittently versus Z continuously
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Introduction

Designs vary as knowledge is gained:
AIDS therapy

Early studies compared single drug, e.g., AZT, to placebo. Once AZT was
demonstrated to be effective, studies compared other therapies to AZT, or
timing of AZT (based on CD4 count) and value of switching.

More recent studies have established the efficacy of combination therapies
(HAART) and have used factorial designs to test two questions (e.g., an
antiretroviral agent and a prophylactic agent for opportunistic infection) or
a drug combination at the same time.
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Introduction

Phase III clinical trials
Randomization and blinding

The main issue driving the design of any clinical trial is that the treatment
groups must ideally be different only in terms of the intervention.

This is accomplished by the following procedures:

The assignment of the treatments to patients must be performed
randomly (more on that later)

A further design “wrinkle” is to “blind” the patients (single-blind
studies) and the investigators (double-blind studies) to the true
assigned treatment

Assuming a large sample size, random treatment assignment ensures
that known or unknown confounding factors will be equally distributed
into the groups under comparison: Thus, any difference in patient
outcome can be causally associated with differences in the treatments
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Introduction

Phase III clinical trials
Broad design categories

Superiority trials
Superiority trials compare a new therapy against the established
therapy to develop more effective treatments

Equivalence trials
Equivalence trials address the question whether a new therapy is as
good as the established therapy. Equivalence trials attempt to
establish the effectiveness of treatments with favorable toxicity profile
compared to the established therapy

Non-inferiority trials
Non-inferiority trials address the question whether a new therapy is
not inferior compared to the established therapy. Just as with
equivalence trials, non-inferiority trials attempt to establish the
effectiveness of treatments with favorable toxicity profile compared to
the established therapy.

70 / 90



Introduction

Characteristics of various designs

Benny Chung-Ying Zee JCO 2006;24:1026-1028

©2006 by American Society of Clinical Oncology
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Superiority trials

Superiority trial example
Adjuvant chemotherapy for HER-2 positive breast cancer
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Superiority trials

HERA study
Randomization
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Superiority trials

HERA study
Statistical design

Statistical analysis Enrollment of 4482 patients was planned to detect a 23
percent relative reduction in the risk of a disease-freesurvival event with 80
percent power, with the use of a two-sided significance level of 2.5 percent
for each comparison:

Two years of trastuzumab versus observation

One year of trastuzumab versus observation.
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Superiority trials

HERA study
Sample size

A total of 951 disease-freesurvival events were required for the final
analysis.

One interim efficacy analysis was planned after 475 events, with a
specified significance level of P≤0.001 required, with the use of a
sequential plan according to the O’BrienFleming boundary∗ as
implemented by Lan and DeMets.

The independent data monitoring committee reviewed data on patient
enrollment, deaths, compliance, and safety every six months and
conducted the interim cardiac safety and efficacy reviews as preplanned.

∗More on this later.
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Superiority trials

HERA study
Pre-planned statistical analyses

The efficacy analyses were conducted according to the intention-to-treat
principle.

Chi-square tests for categorical data and log-rank tests for time-to event
end points provided two-sided P values.

KaplanMeier curves and Cox proportional hazards regression analysis was
to be used to estimate hazard ratios and 95 percent confidence intervals.
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Superiority trials

HERA study
Statistical considerations

Δ=ln(HR)= ln(0.77)=- ln(1-0.23)=-0.26
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Equivalence and non-inferiority trials

Equivalence trials
What can we learn

The null hypothesis in an equivalence trial is that the new therapy (N) is
not equivalent with the standard therapy (S).

Equivalence is shown when this null hypothesis is rejectied in which case
we conclude that N is equivalent with S within a pre-specified window.

Note: In equivalence studies one must select a treatment that has been
demonstrated to be superiod to placebo, since there is no internal control
within the trial itself (i.e., there is no placebo arm)
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Equivalence and non-inferiority trials

Characteristics of equivalence trials

In general we test whether the experimental deign is as effective as the
standard therapy.

Equivalence studies are aso called studies of proof of the null hypothesis
or, sometimes, non-inferiority studies (although non-inferiority studies are
somewhat different.

If the experimental treatment is “equivalent” but has lower cost or less
toxic side-effects, the improvement is self-evident.
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Equivalence and non-inferiority trials

Equivalence trial example
The GATE study

80 / 90



Equivalence and non-inferiority trials

The GATE trial
Premise

The idea behind the GATE study was, simply put, that “the patents for
the older treatments for relapsing-remitting multiple sclerosis are expiring,
creating the opportunity to develop generic alternatives” (Cohen et al.,
JAMA Neurology, 2015).

Thus, the objective of the study was “[t]o evaluate in the Glatiramer
Acetate Clinical Trial to Assess Equivalence With Copaxone (GATE)
study” (emphasis added).
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Equivalence and non-inferiority trials

The GATE study
Design

Participants were randomized 4.3:4.3:1 to receive generic glatiramer
acetate (20 mg), brand glatiramer acetate (20 mg), or placebo by daily
subcutaneous injection for 9 months.

The primary endpoint was the total number of gadolinium-enhancing
lesions during months 7, 8, and 9.

Secondary endpoints included other magnetic resonance imaging
parameters, annualized relapse rate, and Expanded Disability Status Scale
score.

Safety and tolerability were assessed by monitoring adverse events,
injection site reactions, and laboratory test results.
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Equivalence and non-inferiority trials

The GATE study
Statistical considerations
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Equivalence and non-inferiority trials

Non-inferiority trial example
Gefinitib vs. Docetaxel for non-small-cell lung cancer
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Equivalence and non-inferiority trials

Non-inferiority trial example
Randomization
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Equivalence and non-inferiority trials

Non-inferiority example
Study design

Multi-center, randomized, open-label, postmarketing clinical study of
gefitinib versus docetaxel in Japanese patients who had pretreated, locally
advanced/metastatic (stages IIIB to IV) or recurrent NSCLC.

Patients were randomly assigned by using stratification factors of sex,
performance status (PS; 0 to 1 versus 2), histology (adenocarcinoma
versus others), and study site.

The primary endpoint was overall survival, and the study aimed to show
non-inferiority of gefitinib versus docetaxel.

Secondary endpoints were progression-free survival (PFS), time to
treatment failure, objective response rate (ORR), disease control rate
(DCR), quality of life (QoL), disease-related symptoms, safety, and
tolerability.
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Equivalence and non-inferiority trials

Non-inferiority trial example
Pre-planned analyses

The primary overall survival analysis was conducted in the intent-to-treat
(ITT) population by estimating the HR and two-sided 95% CI for gefitinib
versus docetaxel, derived from a Cox regression model without covariates
(significance level adjusted because of interim analysis).

Non-inferiority was to be concluded if the upper CI limit was δ ≤ 1.25.

Superiority was concluded if the upper CI limit was less than 1.

A total of D = 296 death events were required for 90% power to
demonstrate non-inferiority, with the assumption that gefitinib had better
overall survival than docetaxel (median survival, 14 vs. 12 months), and
the study plan was to recruit 484 patients.
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Equivalence and non-inferiority trials

More on non-inferiority studies

From: Reporting of Noninferiority and Equivalence Randomized Trials: An Extension of the CONSORT Statement

JAMA. 2006;295(10):1152-1160. doi:10.1001/jama.295.10.1152

Error bars are 2-sided 95% confidence intervals. Tinted area is the zone of inferiority.
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Equivalence and non-inferiority trials

Comments

A: If the CI lies wholly to the left of zero, the new treatment is superior.

B and C: If the CI lies to the left of ∆ and includes zero, the new
treatment is noninferior but not shown to be superior.

D: If the CI lies wholly to the left of ∆ and wholly to the right of zero,
the new treatment is non-inferior in the sense already defined, but it is also
inferior in the sense that a null treatment difference is excluded. This
puzzling case is rare, since it requires a very large sample size. It can also
result from having too wide a non-inferiority margin∗.

∗This CI indicates noninferiority in the sense that it does not include ∆, but the new treatment is significantly worse than the
standard. Such a result is unlikely because it would require a very large sample size.
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Equivalence and non-inferiority trials

More comments

E and F : If the CI includes ∆ and zero, the difference is nonsignificant
but the result regarding noninferiority is inconclusive.

G: If the CI includes ∆ and is wholly to the right of zero, the difference is
statistically significant but the result is inconclusive regarding possible
inferiority of magnitude or worse∗.

H, If the CI is wholly above ∆, the new treatment is inferior.

∗This CI is inconclusive in that it is still plausible that the true treatment difference is less than ∆, but the new treatment is
significantly worse than the standard.

90 / 90


	Phase I studies
	Dose finding studies
	Phase I study design
	Alternative Phase I designs
	Modeling in Phase I studies
	Examples

	Phase II studies
	Phase II single-sample studies
	Statistica approach in the analysis of Phase II studies
	Illustration of Phase II studies

	Two-stage Phase II studies
	The Gehan two-stage design
	Illustration of the Gehan design
	The Simon two-stage design
	llustration of the Simon two-stage design
	Alternative two-stage Phase II designs

	Factorial designs
	Characteristics of the factorial design

	Crossover designs
	Characteristics of the crossover design

	Introduction
	Phase III trial designs

	Superiority trials
	Equivalence and non-inferiority trials
	Equivalence trials


