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Abstract: Memory impairment is a consistent feature of the schizophrenic syndrome. 

Hippocampal dysfunction has also been consistently demonstrated. This review will 

discuss neurophysiological and neuroanatomical aspects of memory formation and how 

they relate to memory impairment in schizophrenia. An understanding of the cellular 

physiology and connectivity of the hippocampus with other regions can also aid in 

understanding the relationship between schizophrenic declarative or relational memory 

deficits, working memory deficits and the clinical symptoms of the syndrome.  
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1. Introduction 

Declarative memory and working memory deficits have been consistently demonstrated to be 

associated with the schizophrenic syndrome [1,2]. Although individuals with hippocampal damage can 

rehearse information across small time intervals and retain it, under normal circumstances, the 

hippocampus is used to process and integrate information across very brief time intervals; and is active 

and used during working memory tasks [3–6]. In fact, many of the hippocampal-dependent memory 

tasks used with animals in conjunction with hippocampal single neuronal recordings and lesion studies 

could be classified as working memory tasks (e.g., T-maze, radial arm maze, etc.; reviewed in a later 
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section). Schizophrenia is most likely a disorder involving aberrant activation. For this reason, it is 

important to understand that the role of the hippocampus in memory depends on its functional and 

structural connection with cortex and, especially, with higher order perceptual areas, where memory is 

eventually stored. An understanding of the flow of activation and the nature of hippocampal function 

can illuminate the relationship between perception, misperception (hallucinations and delusions), 

memory and working memory. In this review, I will discuss the neural basis of declarative, relational 

and working memory. Evidence for the numerous types of hippocampal abnormality found in 

schizophrenia will be described [7]. Research will be summarized to show how the cellular 

physiology, connectivity and neuroanatomy of the hippocampal system may relate to the memory 

impairment seen in schizophrenia. The review will also present a framework for understanding how 

the properties of the hippocampal system may relate to other aspects of the schizophrenic syndrome, 

such as the age of onset and other symptoms of the syndrome [8]. This framework provides for an 

understanding of the relationship between declarative or relational memory deficits, working memory 

deficits and other aspects of the schizophrenic syndrome, such as the age of onset and positive and 

negative symptoms (hallucinations, delusions, attention deficits, flat affect, etc.). 

2. Review—Memory, the Hippocampus and Schizophrenia 

Learning and memory are profoundly impaired in schizophrenia, and the impairment is stable over 

time. A review of 110 studies reported that 101 of those studies found evidence of an impairment in 

verbal declarative memory [1]. The memory impairment in schizophrenia was found to be selective 

when compared to other functions, such as abstraction, verbal fluency and motor function [9]. Memory 

impairments were also shown to be stable and not affected by moderating factors, such as the duration 

or severity of illness [10].  

The hippocampus and related structures are essential for the declarative or relational memory 

function—the type of memory also affected in schizophrenia [6,11]. Correspondingly, abnormalities  

of the hippocampal system are the most consistently documented morphometric findings in 

schizophrenia [12,13]. Hippocampal volume reductions have also been confirmed using large numbers 

of subjects [14] and are convergent with numerous findings of abnormal neuropathology [15]. 

Hippocampal alterations in functional activity have also been consistently identified in schizophrenia; 

these will be discussed in more detail below [16].  

2.1. Hippocampal Function, Anatomy and Physiology as It Relates to Schizophrenia  

The role of the hippocampus in relational (declarative) memory is in binding together multiple 

inputs to create and allow for the storage of representations of the associations among the constituent 

elements of scenes and events [17]. This function ultimately results in the storage of long-term 

memory in widespread cortical regions. The hippocampus communicates with widespread regions of 

cortex through a group of highly interconnected brain regions in the medial temporal lobe (these 

regions will be collectively referred to as the hippocampal system). Hence, aberrant activation of the 

hippocampus would affect perceptual cortical regions; especially those showing high functional 

connectivity with the hippocampal system. The hippocampal system consists of the dentate gyrus, 

cornu ammonis (CA) fields and the subiculum. The dentate gyrus is an input region, which receives 
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input from the entorhinal cortex. The cornu ammonis (CA) fields of the hippocampus consist of 

pyramidal cells and are usually subdivided into four regions (CA1–CA4). The area that is often 

referred to as the parahippocampal gyrus in humans actually consists of several subregions. The dorsal 

part of the parahippocampal gyrus (inferior to the hippocampal fissure), throughout its extent, is called 

the subiculum (see Figure 1) [18–20]. The entorhinal cortex provides the major input to the 

hippocampus and also receives output from the CA1 layer via the subiculum [21]. The entorhinal 

cortex provides input to the hippocampus through two pathways, one projecting to the dentate gyrus 

and CA3 fields and the other to CA1 and the subiculum. The subiculum then sends a major input back 

to the entorhinal cortex. The subiculum undergoes an unusual and ―striking‖ increase in myelination 

during late adolescence; a time when individuals with schizophrenia typically experience the onset of 

the disease [22]. There is also an increase in hippocampal volume at this time in males, and 

schizophrenia is more prevalent in males [23]. 

Figure 1. A coronal slice showing the hippocampus and associated structures, including 

the cornu ammonis, or CA, layers, the dentate gyrus and the subiculum. The entorhinal and 

perirhinal areas are included in the parahippocampal gyrus. 

 

The entorhinal cortex has its main reciprocal connections with the perirhinal and parahippocampal 

cortices. Hence, the hippocampus communicates with widespread cortical areas through the entorhinal, 

perirhinal and parahippocampal cortices [24–26]. The hippocampus also contains fiber pathways that 

run longitudinally throughout its extent (for a discussion, see [27]). This would allow for the excitation 

between disparate portions of the hippocampal formation. The entorhinal cortex extends from the 

amygdala (anteriorly) to approximately 10 mm posterior to the most anterior aspect of the 

hippocampal fissure. The posterior parahippocampal region can be subdivided into cytoarchitechtonic 

areas, TH (medially) and TF (laterally) according to the nomenclature of von Economo, that extend 
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approximately from the posterior border of the entorhinal cortex to the posterior end of the 

hippocampus. These regions have a very complex configuration in humans [28]. For this reason, the 

entorhinal cortex, perirhinal cortex and the TH/TF areas are usually designated as the parahippocampal 

gyrus and measured together as one region in human morphometric and neuroimaging investigations. 

Ischemia and other trauma, such as closed head injury or traumatic brain injury, can produce 

selective damage to the hippocampus, and this damage is sometimes limited to one or a few subfields [29]. 

This fact has allowed for advances in understanding the function of the hippocampus. Ischemic 

damage to even a portion of the hippocampus is sufficient to produce anterograde amnesia for 

declarative memory and prevents the formation of new declarative or relational memories [30–32]. 

Retrograde memory is memory for information or events that were previously learned. The extent of 

retrograde memory impairment resulting from hippocampal damage may be dependent on how much 

of the hippocampal system is damaged. For example, an anterograde memory impairment was evident 

in patient R.B., who had damage limited to the CA1 layer of the hippocampus, but the impairment was 

limited to only one or two years [32]. In other words, R.B.‘s memory for events up to two years prior 

to the brain damage were missing, but more remote memories were intact. Patients who had more 

extensive damage to the hippocampal formation, including all of the CA cell fields, the dentate gyrus 

and portions of the entorhinal cortex, showed both an anterograde amnesia and a temporally graded 

retrograde amnesia for 15 to 25 years [30,33]. These findings are important, because they show that 

the role of the hippocampus is to allow for the consolidation of memory in other cortical regions and 

that this process proceeds over a number of years. Hence, long-term memory is not actually stored in 

the hippocampus or, if it is, the hippocampal representation is not necessary for the retrieval of  

long-term memories after a period of several years. The conceptualization of memory and perception 

as separate is at odds with this formulation of hippocampal function. Information flows from the cortex 

to the hippocampus and back out to cortex; this is how memories are formed. In other words, 

memories are formed via the interplay over time between perceptual regions (including higher order 

association cortex) and the hippocampus. 

The physiology of the hippocampus is unique and endows the region with a high level of plasticity 

that is important for learning and memory; this property also has important implications for 

schizophrenia. Neurogenesis also occurs in the hippocampus; hence, it undergoes changes throughout 

the lifespan [34]. The hippocampus and, in particular, one subfield, the CA1 layer (output layer), has 

the highest concentration of N-Methyl-D-aspartate (NMDA) receptors in the brain [35]. NMDA 

receptors are a type of glutamate receptor whose activity underlies long-term potentiation (LTP), a 

process that may underlie learning and memory [36]. With plasticity comes a propensity for 

excitotoxic damage; as discussed above, various insults can result in damage that is limited to the 

hippocampal region. Correspondingly, selective abnormalities of the CA1/subiculum have been shown 

to be present in prodromal schizophrenic individuals and to be differentially related to the subsequent 

conversion to psychosis. CA1/subiculum hyperactivity in prodromal individuals uniquely predicted 

conversion to psychosis and was the only brain region whose activity was correlated with clinical 

symptoms [37]. Conversion to psychosis was not predicted by activity in the other regions measured, 

such as amygdala, dorsolateral prefrontal cortex (DLPFC), basal ganglia, gyrus rectus or medial 

orbitofrontal cortex [37].  
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Hippocampal unit or neuronal activity reflects the fact that higher order representational regions 

from widespread cortical regions converge within the hippocampal system. Again, since aberrant 

activation likely underlies at least some phenomenon in schizophrenia, understanding the natural flow 

of neural activity and the potential consequences of hippocampal over-excitation is important. Single 

unit (neuronal) activity has been shown to be related to a wide variety of stimuli within various tasks 

or contexts in humans and other animals, including words, pictures locations, odors and sounds [38–45]. 

Unit recording studies also show that although hippocampal system function may not be necessary for 

the maintenance of short-term memory or working memory, it is active during these types of memory 

tasks [4]. In fact, if the contents of working memory cannot be actively rehearsed or if this process is 

interrupted, then the hippocampus is needed to ―hold‖ the memory, even at short time periods [5]. 

Hence, trace conditioning is often affected by hippocampal lesions (where there is a temporal gap 

between the stimuli used), whereas other types of conditioning are intact [46]. An examination of the 

connectivity of the hippocampal system along with data from single unit recording in the hippocampus 

necessitates the view that hippocampus is active during much of daily life. For example, the ―place 

cells‖ that are recorded in the hippocampus are active regardless of whether or not the memory of 

spatial location is required at the moment of recording [47,48]; a result also seen for nonspatial stimuli. 

The online or continuously active role of the hippocampus has recently been formally investigated in 

recent human neuroimaging studies [3]. 

The hippocampus may create memory using automatic, obligatory and ongoing binding operations. 

Relational memory theory [17,38,49] posits that hippocampal-dependent relational processing permits 

the integration and comparison of discrete experiences and items. In this manner, the hippocampus 

facilitates the maintenance and integration of the contents of consciousness (consciously perceived 

stimuli) with representations that are just outside the current contents of consciousness [3]. A relational 

memory impairment has also been documented recently in schizophrenia [50]. Co-temporal activation 

of cortical circuits has been shown to be an essential component in the reorganization of cortical 

representations [51]. The hippocampus may be essential for the association of cortical activation 

patterns that are in disparate cortical regions or that may be temporally discontiguous [6]. In this way, 

the hippocampus could allow for the near-simultaneous activation of representations in cortex that 

were originally processed with a longer time gap between them. This type of simple mechanism could 

allow for the association of perceptual stimuli with internally activated memories or representations, 

resulting in the integration of incoming stimuli with existing cortical associative networks.  

The unique physiology of the hippocampus and high concentrations of NMDA receptors allows for 

relatively high levels of plasticity that are needed for declarative learning and memory. However, as 

was discussed above, this property also confers a unique vulnerability; NMDA receptor abnormalities 

have also been proposed to play a major role in schizophrenia and other disorders [52]. In addition to 

being the most frequent cite of damage after anoxia or ischemia, the hippocampal system (along with 

the adjacent amygdala) is the most frequent cite of epileptic foci [53]. The sensitivity of the hippocampus 

to insult may play a role in the development of epilepsy following traumatic brain injury [54,55]. The 

hippocampus also contains the highest concentration of glucocorticoid (stress hormone) receptors in 

the brain. These stress hormones can regulate LTP and may increase the likelihood of excitotoxic cell 

death with prolonged exposure [56,57]. 
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A recent study found that epilepsy and schizophrenia have a familial association [58]. Individuals 

with a parental history of epilepsy had a two-fold increase in the risk of developing psychosis, 

compared with those without a parental history of epilepsy. Individuals having a parent with psychosis 

had a 2.7-fold increase in the risk of having epilepsy. Neurologists have known for some time that 

patients with temporal lobe epilepsy with a focus in the hippocampus may develop a recurring 

schizophrenia-like psychosis with delusions or hallucinations [59,60]. The condition can also progress 

to a longer more chronic psychosis [61]. Activity in the hippocampal system has been recorded using 

stereoelectroencephalography (SEEG) in patients with schizophrenia-like psychotic symptoms that 

were related to seizures [62]. These direct brain recordings showed that there was epileptic activity in 

limbic areas at the time of the psychotic ideation and hallucinations. A recent study reported that a 

recurrent schizophrenia-like psychosis was actually the first manifestation of what was later found to 

be epilepsy [63]. Abnormalities of the fast-spiking interneurons that contain the calcium-binding 

protein parvalbumin have been proposed to underlie schizophrenia (gamma band abnormalities [64]); 

these same abnormalities have also been implicated in epilepsy [65].  

These findings provide evidence that the overactivation within the hippocampus may be a cause of 

the psychotic symptoms that are experienced in schizophrenia [62]. Abnormal hippocampal function, 

often in the form of overactivation, has also been reported and was linked to schizophrenic symptoms. 

Abnormally increased activity in the hippocampus and parahippocampal gyrus has been consistently 

detected [66,67]. This overactivation has been found to precede and to be present during auditory 

hallucinations and other symptoms [68,69] Schizotypal individuals were found to have an increased 

duration of activity in the temporal-parietal junction (TPJ) that was highly correlated with symptoms [70]. 

As an aside, caution is in order when interpreting the data from FMRI studies of abnormal 

activation in schizophrenia. Whether or not abnormal activity results in a measurement of 

overactivation or reduced activation depends on the paradigm and types of experimental measures 

used. For example, in individuals with visual hallucinations (usually due to Charles Bonnet 

Syndrome), the hallucinations resulted in episodes of increased activation particular visual areas that 

corresponded to the hallucinatory experience. However, there was also, between hallucinations, a 

slightly increased baseline of activity in the affected visual regions [71,72]. Hence, neuroimaging tasks 

that rely on affected regions might show less activity related to the task, because the baseline or 

comparison condition is abnormally elevated even when the symptoms are not present. Neuroimaging 

data obtained during episodes of a symptom compared to data obtained when the symptom subsides 

should show abnormally increased activity that is related to the symptom. This would result in a net 

decrease in activity during a task condition when the task uses the same system(s) or an increase in 

resting state measures or connectivity measures. Measuring activity in systems that are normally active 

both in baseline and task conditions (such as the hippocampus and language regions) can further 

complicate the interpretation of neuroimaging data, and this must be kept in mind when weighing evidence. 

2.2. The Interconnectivity of the Hippocampal System: Functional Consequences and Implications  

for Schizophrenia  

The storage of memory occurs within those regions that are initially used to represent the perceptual 

or conceptual elements of the memory episode. Overactivation emanating from the hippocampus 

would activate interconnected cortical regions, resulting in abnormal activity in those regions (but, 
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perhaps, not as severe, long-lasting and with less spread than a seizure). A recent study examined 

detailed profiles of functional magnetic resonance imaging (FMRI) connectivity within subregions of 

the hippocampal system using data from 100 subjects [73]. It was found that the temporal-parietal 

junction (TPJ) was one region showing very high connectivity with the hippocampal system (see 

Figure 2). Activity in the TPJ predicts recollective success, as well as being a cortical hub and part of 

what was formerly referred to as the posterior default network [74–76]. In addition to being 

functionally connected, the posterior superior temporal sulcus and inferior parietal regions (part of the 

TPJ) are highly anatomically connected with the hippocampal system [77,78]. 

Figure 2. A reproduction of a figure showing regions correlated with hippocampal activity 

in resting state from reference [74]. These regions overlap with those showing activity 

related to recollective success. Disclaimer: this is an unofficial adaptation or translation of 

an article that appeared in a publication of the American Physiological Society. The 

American Physiological Society has not endorsed the content of this adaptation or 

translation or the context of its use. 

 

The inferior parietal and posterior superior temporal regions are also implicated in working 

memory. Lesions of the temporoparietal cortex, or TMS, applied to these regions result in working 

memory deficits [79–81]. Working memory deficits are thought to be a prevalent in schizophrenia and 

are widely assumed in psychiatry to be related to executive frontal lobe dysfunction and, in particular, 

to dysfunction of the dorsolateral prefrontal cortex, or DLPFC [2,82,83]. However, as a study 

performed over two decades ago by Frisk and Milner showed [84], the hypothesized link between 

working memory maintenance and frontal lobe function is not supported by the evidence [79,85–90]. 

In 1990, Frisk and Milner tested Baddeley‘s hypothesis that frontal lobe damage would affect its role 

as the central executive in working memory and result in a reduced working memory capacity [84]. 

They did not find evidence for Baddeley‘s model of working memory: ―Such a relationship was not 

observed: the number of trials completed correctly on the working memory task as well as the mean 

span-size of each frontal-lobe group were comparable to those of the other subject groups… ‖ These 

findings were replicated in numerous reports, as shown by a careful examination of the literature, 
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where patients with DLPFC lesions were tested in working memory paradigms [91]. It was concluded 

that none of the studies (representing the performance of 166 individual patients) found that forward 

verbal or spatial span were impaired as a consequence of frontal lobe damage. The role of the  

fronto-striatal circuitry in working memory may be in the selection of appropriate responses based on 

the contents of working memory, not in the maintenance or short-term storage of the items [92,93]. 

Working memory has been hypothesized to be an emergent property of the recruitment of regions 

(activity in regions) that are used in perception and representation [86]. Abnormal hippocampal 

activity coupled with high levels of connectivity between the hippocampus and the TPJ may not only 

account for some types of memory deficits, but also for other schizophrenic symptoms [8,94,95]. I 

discussed above how psychotic symptoms were found to stem from abnormal activity  

(overactivation). One mechanism alluded to above is the direct activation of areas, such as the TPJ by 

episodic hippocampal overactivation. However, in some cases, the overactivation of a region and, 

hence, the symptoms, can stem from a lack of input to the region (deafferentation), which subsequently 

leads to a decrease in the inhibitory tone; this has been well documented in tinnitus, for example; see 

the discussion in reference [96]. Another example comes from case studies of individuals with 

epilepsy. In one report, epileptics who underwent a temporal lobectomy (unilateral) and also had a 

(previously undetected) seizure focus in the remaining hippocampus acquired a psychosis as a result of 

the temporal lobectomy—and the psychosis evolved over time [97]. In another report, a patient with 

bilateral circumscribed hippocampal lesions subsequently started experiencing schizophrenia-like 

auditory verbal hallucinations of a derogatory and commanding nature; the hallucinations appeared 

concurrently with the patient‘s memory deficits [98].  

As an interesting aside, the patient‘s hippocampal lesions were also associated with poor 

performance on the Wisconsin Card Sorting Test (WCST) [98], which is also assumed to be related to 

abnormal dorsolateral prefrontal cortex function and has been frequently reported in patients with 

schizophrenia. This finding replicated an early report of a patient with amnesia; this patient  

had hippocampal, temporal lobe damage and parietal damage, but the frontal lobes were of normal 

volume [99]. Although the WCST is often considered to be diagnostic of frontal lobe dysfunction, this 

assumption is not consistent with the data; see a discussion in the Stefanacci et al. (2000) report [99]. 

For example, a study of 91 patients with focal frontal lobe damage found no consistent  

relationship between poor WCST performance and frontal damage [100] The Stefanacci and Anderson 

investigations [99,100] replicated an early study by Teuber reported in 1951, where 131 World War II 

veterans with brain lesions were studied [101]. 

There is direct evidence that activity in the human TPJ is correlated with psychosis. The right 

inferior parietal area was found to be active during delusions [102]. A magnetoencephalography 

(MEG) study reported that two patients with temporal lobe epilepsy were shown to have ―spikey 

activity‖ in the right inferior parietal region, concurrent with a delusional state. The activity 

disappeared when the delusions resolved.  

2.3. Hippocampal—TPJ Interaction and the Symptoms of Schizophrenia 

The interaction between the hippocampal system and the TPJ may account for the symptoms of 

schizophrenia. A framework has been proposed to account for the relationship between hippocampal 

abnormalities and the cognitive deficits and symptoms of schizophrenia [8,94,95]. This account 
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proposes that excitotoxic overactivation of the hippocampus (and possibly the magnocellular system) 

may excite the TPJ resulting in memory deficits and symptoms. I will briefly summarize this 

framework here, but see Wible (2012) [8] for a detailed discussion. The TPJ and, in particular, the 

posterior superior temporal sulcus, plays a key role in the perception of and reaction to dynamic social 

and emotional gestures, including prosody. This area is also involved in bottom up attention, social 

attention and the perception of joint attention and of eye gaze [103–105] and is differentially active 

during live social interaction [105]. The TPJ is a core area for theory of mind or understanding and 

predicting other‘s thoughts and actions [106,107]. This region is primarily involved in gesture 

representation and for the formation of intentions to act (inferior parietal), with audiovisual or speech 

representation playing a predominant role [108,109]. The region also contains the neural machinery 

that is essential for self-representation and for agency (visual perspective taking, body schema, vestibular 

and proprioceptive senses [110]). Inherent in the neuronal representation of dynamic gestures in the 

TPJ is the representation of intention, agency and anticipation or social expectancy ([111–113]; 

reviewed in reference [8]). The gesture representations are multimodal in the auditory, tactile and 

visual domain (reviewed in reference [8]). Hence, the erroneous activation of this region could produce 

the conscious hallucination of a voice with the feeling of an agent who is producing the voice 

(audiovisual speech), the hallucination of a touch or a conscious visual hallucination of human action 

or people. It could also produce the feeling of being in a social situation or of the presence of human 

action with intention, of being watched (eye-gaze) and followed with accompanying feelings of intent 

and agency; these experiences are present in many schizophrenic delusions, such as delusions of 

persecution. Aberrant activation in these regions would be expected to disrupt attention, as well as 

social and emotional perception and reaction, leading to the negative symptoms of schizophrenia. It 

has been shown experimentally that stimulation of the human TPJ can cause the feeling of a presence 

or multiple presences, bizarre tactile hallucinations and other experiences that could be classified as 

schizophrenic hallucinations and delusions [8,94,95,114,115]. The negative symptoms of 

schizophrenia and the social cognitive deficits also match this region‘s core involvement in social 

cognition, attention and affective responding [8,95]. 

 The medial parietal and medial prefrontal regions are also heavily interconnected with the 

hippocampus and have been implicated in social functions in neuroimaging studies; however, there 

have now been several reports of patients with circumscribed lesions of the medial prefrontal cortex in 

which the patients do not show theory of mind and social cognitive impairments (reviewed in 

reference [95]). Ventral medial frontal lobe damage (in addition to orbital damage) has been reported 

to result in a lack of empathy, euphoria, irresponsibility, a lack of concern for the future, as well as a 

lack of concern for social rules (in conjunction with the intact knowledge for social rules). This 

syndrome seems more closely aligned with mania, where the symptoms include euphoria, lack of 

empathy, impulsiveness and a lack of concern for the consequences of behavior, as well as for social 

rules. Hence, hippocampal overactivation of the TPJ may produce schizophrenic symptoms, whereas 

an abnormality of the connected medial prefrontal regions may relate more to the symptoms of bipolar 

disorder. The hippocampus has been implicated in depression, and patients with right TPJ damage 

sometimes present with syndromes that are similar to those of psychotic depression. These types of 

symptoms may be related to the region‘s role in self-representation and higher order somatic 

representation (e.g., Cotard‘s Syndrome, reviewed in reference [94]). Hence, there may be some 
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overlap between the neural systems involved in schizophrenia and in bipolar disorder, with the 

hippocampus being a core region. 

3. Summary and Conclusions 

In conclusion, the hippocampus is vulnerable to a number of insults and is prone to excitotoxic 

activity. Aberrant activity in the hippocampal system could result in the potentiation and activation of 

representations in highly interconnected regions, such as the TPJ. This proposed link between TPJ 

function, working memory and schizophrenic symptoms has been demonstrated experimentally [116]. 

Hence, schizophrenia and related psychoses could stem from a number of etiologies and either from 

early damage to the hippocampus and/or from some additional genetic abnormality that differentially 

affects the hippocampal system [117]. For example, mild levels of ischemia or low level exposure to 

environmental toxins, such as domoic acid, could produce a mild seizure-like state or the propensity 

for over-excitation in the hippocampus with subsequent progressive cell damage. As discussed above, 

the association between temporal lobe epilepsy and psychotic schizophrenia-like symptoms have been 

long noted in the literature [118]. Schizophrenia and epilepsy are genetically related. Domoic acid 

exposure has been proposed to play a role in temporal lobe epilepsy [119]. This type of disorder would 

be more difficult to detect than a frank seizure disorder and, hence, could go unchecked and untreated. 

Depending on the developmental timing of the exposure or insult, this damage could result in either 

interference in development (autism) or in the potentiation and erroneous activation (schizophrenia) of 

the representation of human action in the social, emotion and language domains, as well as memory 

problems. Abnormal activity shared between the hippocampus and TPJ could result either in a lack of 

development or in the abnormal processing (respectively) of several functions, such as language 

(audiovisual speech), emotional and social response, social attention, self-representation, theory of 

mind and the representation of social action, working memory and declarative or relational memory (to 

name a few functions). 
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