Mechanism of Action of Deep Brain Stimulation In Parkinson Disease Samer D. Tabbal, M.D. **Associate Professor of Neurology** Washington University at St Louis **Department of Neurology June 2011**

Conflict of Interest Statement

No drug company pays me any money

NIH, American Parkinson Disease Association (APDA), Greater St. Louis Chapter of the APDA, McDonnell Center for Higher Brain Function, Barnes-Jewish Hospital Foundation

Bilateral STN DBS in PD

STN DBS is effective and safe in advanced PD patients with disabling motor fluctuations:

- Improves UPDRS scores
- Improves motor fluctuations:
 - Decreases OFF time
 - Improves dyskinesia
- Decreases daily dose of levodopa and other PD medications
- (Improves sleep)
- (Weight gain)
- Improves quality of life measures

Quality of Life in STN DBS

Deuschl at al NEJM, vol 355;pp 896-908, August 31, 2006

Why Do We Need to Learn About the Mechanism of Action of DBS?

If we know how it works, we may be able to make it work better:

- To optimize motor benefit ("sweet spot")
- To minimize adverse effects (cognitive, psychiatric, visual ...)
- To look for tentative new DBS targets for other disorders (dystonia, tics, depression, obsessivecompulsive disorders, seizure...)

What Are We Stimulating And/Or Inhibiting?

Likely stimulating axons
With monopolar stimulation: (Holsheimer 2000)

- Nearby axons may be blocked (by high currents)
- Distant axons are unlikely affected by stimulation
- Intermediately located axons may be activated ("shell of activation")

STN Efferent & Afferent Projections

Neurophysiology of STN DBS in Animals & Humans

In MPTP monkeys: (Hashimoto 2003, Kita 2005)
 GPe and GPi: Increased firing

- In PD patients:
 - Following 500 msec: ¹/₂ of STN cells were inhibited (Filali 2004)
 - Following 20 seconds: all STN cells were inhibited (Welter 2004)

Net Effects of DBS on Basal Ganglia Circuitry and Cortical Targets

Bilateral STN DBS Reduces Blood Flow to the Cortex (measured by H_2O^{15} PET) Decrease

Increase

STN output is increased

cortical targets

ST

thalamus

GPi/SNp

Unilateral STN DBS Improves Rigidity Bilaterally

(N=24)

Unilateral STN DBS Improves Bradykinesia Bilaterally

(N=25)

Effect of Unilateral STN DBS on Gait

Effect of Unilateral STN DBS on Motor Function & Working Memory

Working memory:

- ability to maintain, monitor and use internal information to guide behavior
- essential for carrying more complex executive functions, affected in PD
- measured using Spatial Delayed Response (SDR) test
- Mean UPDRS and Spatial Delayed Response (SDR) responses to Left DBS vs Right DBS did not differ

On the more affected side of the brain (compared to the less affected side):

- contralateral UPDRS improvement was greater
- SDR performance was more impaired (p=0.008)
- Variability among patients

What Accounts For The Variability in Motor Benefit From STN DBS? Disease duration at surgery? **Age** at surgery? **Oisease severity?** Stimulation parameters? Brain atrophy? **Ability to generate** dyskinesia? • Location of electrode?

Sites of Neurodegeneration in Parkinson Disease

ASubstantia nigra pars compacta **A**Substantia innominata **Amygdala A** Ventral tegmental area **Locus ceruleus A**Raphe nuclei **A** Dorsal motor nucleus of vagus nerve **A** Intermediolateral column/Sympathetic ganglia

Functional Sections of the STN

Dorsolateral: Sensori-motor (SM)

- Afferents from motor and supplementary motor cortex, thalamus, GPe
- Efferents to putamen, GPe/GPi

Ventrolateral: Associative (AS)

- Afferents from prefrontal cortex
- Efferents to caudate, putamen, GPi/SNpr

🔶 Ventromedial: Limbic (Li)

- Afferents from GPm/GPv, caudate, putamen, thalamus, medial frontal, orbitofrontal and anterior cingulate cortex
- Efferents to caudate, GPe/GPi, SNpr
- Is just dorsal of white matter tracts connecting the amygdala and hypothalamus

Coronal view of the STN

(Parent & Hazrati 1995)

Is the Subthalamic Nucleus Hypointense on T2-Weighted Images? A Correlation Study Using MR Imaging and Stereotactic Atlas Data

AJNR Am J Neuroradiol 25:1516-1523, October 2004

Didier Dormont, Kenneth G. Ricciardi, Dominique Tandé, Karine Parain, Carole Menuel, Damien Galanaud, Soledad Navarro, Philippe Cornu, Yves Agid, and Jérôme Yelnik

Active Contact Localization

The Uncertainty of The Zona Incerta

J. Mitrofanis / Neuroscience 130 (2005) 1-15

Intra-Operative MRI: Intensity Inverted

Overlap MRI/CT Images Using AIR* (Roger Woods, UCLA)

🗙 Image 3

_ IIX

Overlap Coronal MRI on Whole Brain Co-registered MRI/CT

Overlap Active Contacts on Coronal MRI

Active Contact Localization

Unilateral Dorsal vs Ventral STN DBS

No difference in motor function:

- Bradykinesia UPDRS and hand rotation velocity
- Rigidity UPDRS and impedance (rigidity analyzer)
- Gait

 Ventral STN DBS caused definite impairment of response inhibition (Go-No-Go)

Mentor
Best Friend
Best Squash partner!

Sami Harik

Active Contact Localization

Active Contact Localization

Volume of Activation

Cameron McIntyre Cleveland Clinic, Dept of Biochemical Engineering

Spatial Delayed Response Task

STN DBS May Affect Higher Cognitive Function

Spatial Delayed Response

Response Inhibition

Hershey at al, 2004

Effect Of Active Contact Location On Spatial Working Memory

Spatial working memory (rated by SDR performance):

- *improved* on DBS when the active contact was located *out* of the STN.
- worsened when the active contact was located in the STN.

Unilateral STN DBS Improves Bradykinesia Bilaterally

Unilateral STN DBS Improves Rigidity Bilaterally

Levodopa-Equivalents Reduction at 6 Months After STN DBS

Effect of STN DBS on UPDRS Motor Scores

	6-Month Follow-Up OFF Stimulation UPDRS Score	6-Month Follow-Up ON Stimulation UPDRS Score	Average Percent Change*	Significance of Change (P value)
Total (0-108)	43.4 <u>+</u> 16.1	22.8 <u>+</u> 11.6	47%	≤ 0.001
Tremor ** (0- 28)	7.3 <u>+</u> 0.8	0.7 <u>+</u> 0.2	74%	<u>≤ 0.001</u>
Rigidity (0-20)	9.0 <u>+</u> 4.3	4.1 <u>+</u> 3.2	58%	≤ 0.001
Bradykinesia (0-36)	17.9 <u>+</u> 6.9	11.0 <u>+</u> 6.1	37%	≤ 0.001
Speech (0-4)	1.5 <u>+</u> 0.6	1.3 ± 0.7	13%	= 0.002
Postural Instability (0-4)	1.8 <u>+</u> 1.2	1.1 <u>+</u> 1.1	35%	≤ 0.001
Gait (0-4)	2.1 <u>+</u> 0.9	1.2 ± 0.9	44%	<u>≤ 0.001</u>
Axial (0-16)	7.5 <u>+</u> 3.8	4.3 <u>+</u> 3.1	42%	≤ 0.001

Demographic Profile

	All operated patients (N=110)	Outcome Analysis Subgroup (N=72)
Gender		
Male	66	41
Female	44	31
Age at onset of symptoms	47.9 <u>+</u> 10.2	48.4 <u>+</u> 9.8
(in years)	(22-69)	(28-69)
Age at time of surgery	62.6 <u>+</u> 8.8	63. 0 <u>+</u> 8.2
(in years)	(31-84)	(45-78)
Duration of Parkinson	14.5 <u>+</u> 6.3	14.5 <u>+</u> 6.5
disease at time of surgery (in years)	(4-29)	(4-29)

Leading Author	Year of publication	Number of patients	Duration of follow-up (months)	Reduction in motor UPDRS score	Reduction in daily levodopa-equivalent dose
Limousin	1998	24	12	60 %	50 %
Kumar	1998	7	6-12	58 %	40 %
Moro	1999	7	16	42 %	65 %
Burchiel	1999	5	12	44 %	51 %
Pinter	1999	9	3-12	45 %	-
Bejjani	2000	12	6	64 %	70 %
Houeto	2000	23	6	67 %	61 %
Rodriguez-Oroz	2000	15	6	60 %	-
Molinuevo	2000	15	6	66 %	80 %
DBS for PD Study Group	2001	91	6	51 %	37 % *
Lopiano	2001	16	3	56 %	72 %
Volkmann	2001	16	12	67 %	65 %
Ostergaard	2002	26	12	64 %	19 %
Simuni	2002	12	12	47 %	55 %
Starr	2002	10	12	45 %	-
Thobois	2002	18	6	55 %	66 %
Vesper	2002	38	12	52 %	53 %
Voges	2002	15	6-12	61 %	59 % **
Pahwa	2003	33	12	28 %	57 %
Herzog	2003	48	6	51 %	49 %
Ford	2004	30	12	30 %	30 %
Tabbal	2006	72	3-12	47 %	45 %

First 110 STN DBS Patients at Washington University in St Louis Retrospective analysis:

- First 110 patients assessed at around 6 months post-DBS surgery
- 47% improvement in UPDRS motor score ON vs OFF DBS (OFF medication)
- 45% mean reduction in daily levodopa-equivalent dose
- **Orefore Average weight gain 5.1 ± 0.7 kg**
 - median 3.7 kg ; range -3.6 kg to +23.9 kg
- Operating room time (from the mounting of the stereotactic frame to its removal):
 - Median 5 hours 25 minutes
- Mild and transient adverse events

STN DBS Studies from 1998 to 2006: UPDRS & Levodopa-Equivalent % Reduction

STN DBS Studies from 1998 to 2006: UPDRS vs Levodopa-Equivalent % Reduction

STN DBS Parameters

DBS parameter programming

- Voltage (volts)
- Pulse width (µsec)
- Pulse frequency (Hz)
- Electric contacts combination

Stimulation pattern:

- Monopolar in 74%
- Multipolar in 26%
- None were set in bipolar pattern
- Optimal contact:
 - contact #2 in 58%
 - contact #1 in 34%
 - contact #3 in 27%

Post-Operative DBS Programming

Programming starts 2-4 weeks after electrode implantation **OFF** medication **Frequency: 130 to 185 Hz •** Pulse width: 60, 90 or 120 μsec Voltage: 2.5 to 4 volts Contact configuration: usually monopolar or multipolar Decrease medication gradually

STN Spans

No significant correlation between the STN span and improvement of UPDRS motor scores

Average STN span:

- on the right 4.5 ± 0.9 mm (range 2.0 to 6.8 mm)

- on the left 4.9 ± 0.8 mm (range 3.2 to 7.4 mm)

Overlap Atlas on MRI/CT

Fiducials used to stretch the atlas images:

- Anterior commissure
- Posterior commissure
- Optic chiasm
- Optic tract (in mid-commisural plane)
- Anterior tip of the putamen (in commisural plane)
- Red nucleus
- Brain edge (in commisural plane)
- Using reformatted MRI images:
 - Transverse:
 - 3D windowed sinc (sharpest but artifacts near optic chiasm)
 - trilinear interpolation
 - Coronal:
 - nearest neighbor (sharpest but abrupt jumps between planes)
 - trilinear interpolation