Investigating human brain development and neurological diseases using induced pluripotent stem cells (iPSCs)

Georgia Kouroupi Laboratory of Cellular and Molecular Neurobiology Hellenic Pasteur Institute

Overview

Overview

Sir John Shinya Gurdon Yamanaka

The Nobel Prize in Physiology or Medicine 2012

iPSCs are **pluripotent stem cells artificially derived** from a non-pluripotent cell, typically an adult somatic cell, by inducing a 'forced' expression of specific genes

Embryonic Stem Cells

Established embryonic stem cell cell cultures

Embryonic Stem Cells

Reprogramming approaches

Neural differentiation

Stages of neural differentiation in vitro and in vivo

- hPSCs transit through defined stages during which they resemble distinct neural progenitor cell (NPC) populations present during *in vivo* neurogenesis
- hPSCs differentiate into neuroepithelial stem cells in vitro, corresponding to the **neuroepithelial NPCs** that form the neural plate in vivo
- **Rosette-type NPCs** derived from hPSCs resemble NPCs that populate the early neural tube
- Radial glia-like NPCs generated from the rosette-type NPCs give rise to postmitotic neurons

Neural differentiation

You can study only what you can make

A number of different human neural subtypes can be efficiently generated by directed differentiation from pluripotent stem cells

Ichida & Kiskinis, EMBO J 2015

Neuronal subtype specification

Temporal course of glial differentiation

more than 100 days in vitro...

Modeling Human Brain Development

Modeling Neurological Disease

Modeling Human Brain Development

Cell Stem Cell

2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size

Graphical Abstract

Authors

Tomoki Otani, Maria C. Marchetto, Fred H. Gage, Benjamin D. Simons, Frederick J. Livesey

Correspondence rick@gurdon.cam.ac.uk

In Brief

Based on modeling of cortical neurogenesis with pluripotent cells in 2D and organoid systems, Otani et al. suggest that species-specific differences in cortical size and cognitive ability between human and other animals result at least in part from cell-autonomous differences in cortical progenitor proliferation before neurogenic differentiation.

Highlights

- Human and primate PSCs can replicate cortical development in culture
- PSC-derived cortical progenitors from different species expand to different degrees
- Clonal analysis reveals marked difference in neurogenesis output over time
- Species-specific timing differences in neurogenesis are regulated cell autonomously

Article

Modeling temporal and spatial patterning of cortical neurogenesis

Modeling cortical development

- the cortex of humans and other primates appears to follow different scaling rules than that of other mammals, including mouse, in terms of the relationship between cortical volume and cell number and overall body size
- In this study, they extended the use of stem cell systems to compare human, macaque, and chimpanzee cortical neurogenesis to understand the developmental mechanisms regulating increased cortical size in different primates

Macaca nemestrina

macaque ESCs

Macaca fascicularis

chimpanzee iPSCs

Pan Troglodytes

human ESCs & iPSCs

Modeling cortical development

After day 70 Late-born upper-layer neurons Satb2+, Cux1+ and Brn2+

3-months

~ equal proportions of deep- and upper-layer neurons

Species-appropriate timing of major developmental events in cortical development is maintained *in vitro*

Cell Stem Cell 2016 18, 467-480DOI: (10.1016/j.stem.2016.03.003) Copyright © 2016 The Authors <u>Terms and Conditions</u>

Modeling neurological diseases

Modeling neurological diseases

List of human neurological diseases with published iPSC studies

Alzheimer's Disease Amyotrophic Lateral Sclerosis (ALS) Angelman & Prader–Willi Syndrome Ataxia Telangiectasia **Best Disease Dravet Syndrome Familial Dysautonomia Fragile X Syndrome** Friedreich's Ataxia **Frontotemporal Dementia Gaucher's Disease Gyrate Atrophy Hereditary Spastic Paraplegia Huntington's Disease** Lesch–Nyhan Syndrome

Microcephaly Neuronal ceroid lipofuscinosis Niemann–Pick type C1 disease Parkinson's Disease Phelan–McDermid Syndrome Retinitis Pigmentosa Rett Syndrome Schizophrenia Spinal Muscular Atrophy Tauopathy Timothy Syndrome

26 Diseases >200 Publications

First report or patient-specific neurons

2008

rom www.sciencemag.org on September 9,

Induced Pluripotent Stem Cells Generated from Patients with ALS Can Be Differentiated into Motor Neurons John T. Dimos, *et al. Science* **321**, 1218 (2008); DOI: 10.1126/science.1158799

The following resources related to this article are available online at www.sciencemag.org (this information is current as of September 9, 2008):

Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/321/5893/1218

Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/1158799/DC1

A list of selected additional articles on the Science Web sites related to this article can be found at:

http://www.sciencemag.org/cgi/content/full/321/5893/1218#related-content

This article cites 26 articles, 8 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/321/5893/1218#otherarticles

This article appears in the following **subject collections**: Development http://www.sciencemag.org/cgi/collection/development

Information about obtaining **reprints** of this article or about obtaining **permission to reproduce this article** in whole or in part can be found at: http://www.sciencemag.org/about/permissions.dtl

Skin cells from ALS patients (82-year-old woman)

Yamanaka method Oct4 Sox2 Klf4 C-Myc

> iPS cells induced pluripotent stem cells

Dimos, JT et al. (2008). Induced Pluripotent Stem Cells Generated from Patients with ALS Can Be Differentiated into Motor Neurons.

Science 321: 1218-21.

ALS motor neurons

Lateral Sclerosis (ALS) Amyotrophic

ALS patient-derived neurons

SURVIVAL DEFICIT

В

Soma size (um²)

Modeling Parkinson's Disease

Cell Stem Cell

Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia

Graphical Abstract

Authors

Martha S. Windrem, Mikhail Osipovitch, Zhengshan Liu, ..., Robert L. Findling, Paul J. Tesar, Steven A. Goldman

Correspondence

steven_goldman@urmc.rochester.edu or goldman@sund.ku.dk

In Brief

Goldman and colleagues use mice chimerized with human patient-derived glial progenitor cells to find out whether glia contribute to childhood-onset schizophrenia. The defects in cell differentiation, myelination, and behavior they see strongly suggest that glial cells do, in fact, have a previously unappreciated role in the pathogenesis of this disease.

Human iPSCs can be directed into OPC fate

SCZ-derived hGPCs exhibit aberrant dispersal and relative hypomyelination

Schizophrenia (SCZ)

Astrocytic differentiation is impaired in SCZ hGPC chimeric brain

SCZ-derived hGPCs suppress glial differentiationassociated gene expression

P-Value

1.88E-06

2.18E-05

PLPPR5

BRINP3

WNT7B

DSCAM

SOX10

ZNF488

CA10

MT3

DGKG

VWC2

NR0B1 OPCML

LING01

BRINP2

OLIG2

OLIG1

DLL3

EPHB1

CNTN1

PLLP

UGT8

FA2H

GAL3ST1

CTTNBP2

OMG

From cell autonomy to more sophisticated systems

3D stem cell-based models

Organoids

Brain organoids

Nature. 2013 September 19; 501(7467): . doi:10.1038/nature12517.

Cerebral organoids model human brain development and microcephaly

Madeline A. Lancaster¹, Magdalena Renner¹, Carol-Anne Martin², Daniel Wenzel¹, S. Bicknell², Matthew E. Hurles³, Tessa Homfray⁴, Josef M. Penninger¹, Andrew F Jackson², and Juergen A. Knoblich¹

Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex

Taisuke Kadoshima^{a,b,1}, Hideya Sakaguchi^{a,b}, Tokushige Nakano^{a,2}, Mika Soen^a, Satoshi Ando^{a,2}, Mototsugu Eiral and Yoshiki Sasai^{a,b,3}

^aLaboratory of Organogenesis and Neurogenesis and ^cFour-Dimensional Tissue Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-004 and ^bDepartment of Medical Embryology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan

Edited by Chen-Ming Fan, Carnegie Institution of Washington, Baltimore, MD, and accepted by the Editorial Board October 17, 2013 (received fo August 21, 2013)

Therapeutic potential of organoids

Take home points

iPSC-based models: study disease mechanisms in the context of human neurons and in the context of each patient's own unique genetic background

- What is the **right cell type** to make and study?
- What are the **right controls** to use when assessing a **disease-related phenotype**?
- How do phenotypes identified in vitro relate to the clinical presentation of patients?
- Can we match an *in vivo* clinical trial with an *in vitro* iPSC-based clinical trial to monitor the correlation of outcome measures?
- Can we predict how patients will respond to a **potential therapeutic treatment** by studying their stem cell-derived neurons?

Perhaps the seemingly biggest advantage of this approach - **the ability to study disease in the genetic background of the patient** - has created the **biggest challenge**, as genetic background contributes to **high variability in the properties of the patient-derived cells**. This variability is a reality that neurologists have been facing for years, as often, two patients diagnosed with the same condition might present with **very different clinical profiles**.

The technology of **cellular reprogramming** has brought this reality of **clinical heterogeneity** seen in patients **from the bedside to the lab bench**.

The answers to these questions will help us conclude what are the **capabilities** and **limitations** of this **promising technological tool**.

Telephone interview with **Shinya Yamanaka** following the announcement of the **2012 Nobel Prize in Physiology or Medicine**, 8 October 2012

[AS] But I just wanted ask you one final question, which was what your greatest hopes for stem cells technologies are at the moment? What do you hope will be the first benefit?

[SY] Well, I will bring this technology to clinics. I really want to help as many patients as possible. As you may know, I started my career as a surgeon 25 years ago. But it turned out that I am not talented as a surgeon. So I decided to change my career, from clinics to laboratories. But I still feel that I am a doctor, I am a physician, so I really want to help patients. **So my goal, all my life, is to bring this technology, stem cell technology to the bedside, to patients, to clinics.**

Thank you

Pilot clinical study into iPS cell therapy for eye disease in Japan

Masayo Takahashi M.D., Ph. D. Laboratory for Retinal Regeneration RIKEN Center for Developmental Biology

First patient to receive iPSC-derived implant:

70 year old Japanese woman age-related macular degeneration

Human iPSCs

Human iPSC-derived Retinal Pigment Epithelium (RPE)

RPE cell sheet

Applications of iPSC technologies in spinal cord injury

Nagoshi & Okano, J Neurochemistry 2017

Applications of iPSC technologies

Table 1 Planned clinical trials of iPS cell-based therapies

Principal investigator (Institute/Location)	Cell type to transplant	Target disorders
Masayo Takahashi, (RIKEN)	Retinal Pigment Epithelium (sheet)	Age-related macular degeneration (wet type)
Alfred Lane, Anthony Oro, Marius Wernig (Stanford University)	Keratinocytes	Recessive dystrophic epidermolysis bullosa (RDEB)
Mahendra Rao (NIH)	DA neurons	Parkinson's disease
Koji Eto (Kyoto University)	Megakaryocyte	Thrombocytopenia
Jun Takahashi (Kyoto University)	DA neurons	Parkinson's disease
Steve Goldman, (University of Rochester)	Oligodendrocyte precursor cell	Multiple Sclerosis
Hideyuki Okano, Masaya Nakamura (Keio University)	Neural stem/progenitor cells	Spinal Cord Injury
Shigeto Shimmura (Keio University)	Corneal endothelial cells	Corneal endothelial dysfunction
Koji Nishida (Osaka University)	Corneal epithelial cells (sheet)	Corneal epithelial dysfunction and trauma (e.g. Stevens–Johnson syndrome)
Yoshiki Sawa (Osaka University)	Cardiomyocytes (sheet)	Heart Failure
Keiichi Fukuda (Keio University)	Cardiomyocytes (sphere)	Heart Failure
Yoshiki Sasai and Masayo Takahashi (RIKEN)	Neuroretinal sheet including photoreceptor cells	Retinitis pigmentosa
Advanced Cell Technology	Megakaryocytes	Refractory thrombocytopenia

Representative studies of iPS-based cell therapy with planned clinical trials are listed. References: [17,19-29].