Μηχανικός αερισμός σε αποφρακτικά νοσήματα

Prognosis

Εκπνοή

$$V_t = V_0 \times e^{-t/\tau}$$

 $\tau = \mathsf{RC}$

t = 0	Vt = Vo
t = τ	Vt = 0,37 Vo=37% Vo
t = 2τ	Vt = 0,15 Vo=15% Vo
t = 3τ	Vt = 0,05 Vo=5% Vo
$t = 4\tau$	Vt = 0,02 Vo= 0

Παθοφυσιολογία

Critical Care

Παθοφυσιολογία της παρόξυνσης ΧΑΠ

Stable COPD

COPD exacerbation

Παθοφυσιολογία

Cycling off criteria

Cycling off at 25% of peak flow (neural inspiratory time = 1 sec)

COPD

efforts

Double triggering

Missing efforts

Application of PEEPe in Pressure support

Diagnosis of dynamic hyperinflation

TABLE 31-1 Factors Determining Dynamic Pulmonary Hyperinflation and Intrinsic PEEP

Patient respiratory mechanics Pulmonary flow resistance Expiratory flow limitation Total respiratory system compliance Added flow resistance Endotracheal tube Ventilator tubings and circuits Patient breathing pattern and ventilator setting Tidal volume Frequency $T_I/T_T \sigma T$ End-inspiratory pause

Measurement of PEEPi

Static PEEPi

Dynamic PEEPi

Η ΡΕΕΡί είναι ανομοιογενής

Measurement of trapped volume

Missing efforts

Στόχοι μηχανικής υποστήριξης

Table 1. Goals of Mechanical Ventilation in the Patients with COPD

- (1) Avoid auto-PEEP
- 2 Prevent overdistention
- (3) Prevent overventilation and respiratory alkalosis
- (4) Prevent patient-ventilator dyssynchrony
- (5) Assess for continued need for mechanical ventilation: wean and extubate when respiratory failure has resolved

Ventilator settings

- 1. Decrease inspiratory time (30%)
- 2. Increase expiratory time (70%)
- 3. Low tidal volume (5~7 ml/kg)
- 4. Low respiratory rate (10~12/min)
- 5. High peak inspiratory flow (70~100 L/min)
- 6. Oxygen: Titrate so as to maintain SaO₂>90% and PaO₂>60 mmHg.
- 7. Add extrinsic PEEP up to 80% of auto-PEEP to reduce patient's work of breathing.
- 8. Accept hypercarbia
- Using volume cycle assist control ventilation in the initial management of the awake COPD patient may be associated with significant risk of increase in hyperinflation and hemodynamic instability.
- 10. Use non-compressible tubing to minimize inspiratory time.
- Decrease carbon dioxide load by sedation, minimizing carbohydrate load, treat hyperthermia and control infection.
- Judicious use of sedation and muscle relaxants (when necessary) to keep the patient calm and cooperative. Agitation, "fighting ventilator" can lead to an increase in the auto-PEEP.

Complicationd during mechanical ventilation

Complications	Likely Mechanism
Hypotension	Primary: Excessive hyperinflation, sedatives
	Secondary: Pneumothorax, myocardial depression
Barotrauma	Excessive hyperinflation
Myocardial dysfunction	Primary: "Stunned myocardium" secondary to massive catecholamine release
	Secondary: Severe myocardial hypoxia/acidosis
Rhabdomyolysis	Primary: Extreme muscle exertion with or without hypoxia
	Secondary: High dose propofol
Lactic acidosis	Primary: Excessive β_2 agonists
	Secondary: Extreme muscle exertion/hypoxia
CNS injury	Primary: Cerebral anoxia secondary to respiratory arrest
	Secondary: Hypercapnia-related cerebral edema, subarachnoid hemorrhage
Acute myopathy	Glucocorticoids plus prolonged paralysis or deep sedation

Hypotension, Barotrauma

Effects of increasing the cycling-off threshold according to prolonged (A) or short (B) time constant of the respiratory system. Increasing the cycling-off threshold (CT) (Galileo Gold, Hamilton Medical, Rhäzuns, Switzerland) from 10% to 50–75% in patients with a prolonged time constant (COPD) eliminates wasted efforts. In contrast, panel B shows that increasing the cycling-off threshold (Puritan-Bennett 840, Mallinckrodt, Pleasanton, California) from 5% to 45% in patients with a short time constant (acute lung injury or acute respiratory distress syndrome) induces double-triggering or premature opening of the exhalation valve. The arrows (A) point to wasted efforts. The first arrow (B) points to double-triggering. The second arrow (B) points to premature opening of the exhalation valve. P_{aw} = airway pressure. P_{TD} = transdiaphragmatic pressure. EMG = electromyogram signal of diaphragmatic electrical activity. V_T = tidal volume. P_{es} = esophageal pressure. (Adapted from References 23 and 24, with permission.)