Weaning

Definition

The process of liberating patients from the ventilator, begins as soon as the patient is intubated by tailoring settings to the needs of the patient

Hall J, Wood L JAMA 1987

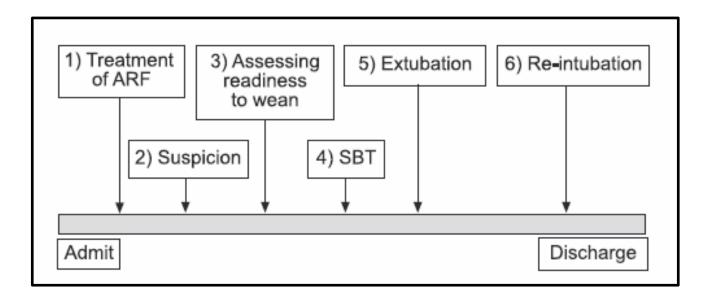
Weaning is important

 weaning tends to be delayed, exposing the patient to unnecessary discomfort and increased risk of complications

Subjects receiving prolonged mechanical ventilation account for 6% of all ventilated patients but consume 37% of intensive care unit (ICU) resources

Weaning is Delayed

Unplanned extubation 179 (3.4%) patients


reintubation was required in 74 (41.3%)

Andrés Esteban, MD, PhD
Antonio Anzueto, MD
Fernando Frutos, MD
Inmaculada Alía, MD
Laurent Brochard, MD
Thomas E. Stewart, MD
Salvador Benito, MD
Scott K. Epstein, MD
Carlos Apezteguía, MD
Peter Nightingale, MD
Alejandro C. Arroliga, MD
Martin J. Tobin, MD
for the Mechanical Ventilation
International Study Group

Characteristics and Outcomes in Adult Patients Receiving Mechanical Ventilation A 28-Day International Study

JAMA, January 16, 2002-Vol 287, No. 3

Admission to Discharge

The weaning process begins with the first SBT, defined as a T-tube trial or a low-level pressure support (<8 cmH2O)

Definitions

Treatment of ARF	Period of care and resolution of the disorder that caused respiratory failure and prompted mechanical ventilation
Suspicion	The point at which the clinician suspects the patient may be ready to begin the weaning process
Assessing readiness to wean	Daily testing of physiological measures of readiness for weaning (MIP, fR/Vt) to determine probability of weaning success
Spontaneous breathing trial	Assessment of the patient's ability to breathe spontaneously
Extubation	Removal of the endotracheal tube
Reintubation	Replacement of the endotracheal tube for patients who are unable to sustain spontaneous ventilation

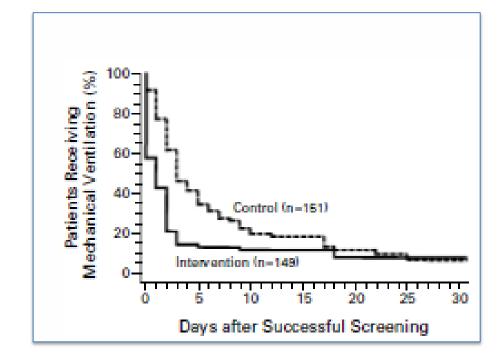
Pooled Analysis of Weaning trials

First author [Ref.]	Yr	Subjects	Failed initial SBT	Passed Initial SBT	Re-intubated	Total failed weaning	Successful weaning
Farias [24]	2001	257	56 (22)	201	28 (14)	84 (32.7)	173
ESTEBAN [22]	1999	526	73 (14)	453	61 (13)	134 (25.5)	392
VALLVERDU [17]	1998	217	69 (32)	148	23 (16)	92 (42.4)	125
ESTEBAN [25]	1997	484	87 (18)	397	74 (19)	161 (33.3)	323
ESTEBAN [16]	1995	546	130 (24)	416	58 (14)	188 (34.4)	358
BROCHARD [18]	1994	456	109 (24)	347	8 (3)	117 (25.6)	339
Total		2486	524/2486 (21%)	1962/2486 (79%)	252/1962 (13%)	776 (31.2%)	1710/2486 (68.8%)

EFFECT ON THE DURATION OF MECHANICAL VENTILATION OF IDENTIFYING PATIENTS CAPABLE OF BREATHING SPONTANEOUSLY

E. WESLEY ELY, M.D., M.P.H., ALBERT M. BAKER, M.D., DONNIE P. DUNAGAN, M.D., HENRY L. BURKE, M.D., ALLEN C. SMITH, M.D., PATRICK T. KELLY, M.D., MARGARET M. JOHNSON, M.D., RICK W. BROWDER, M.D., DAVID L. BOWTON, M.D., AND EDWARD F. HAPONIK, M.D.

The New England Journal of Medicine


Design of the study

Daily screening of respiratory function $PaO_2/FiO_2 > 200$ $PEEP < 5 cmH_2O$ f/V⊤ < 105 No vasopressors or sedatives \geq A 2 hour trial of spontaneous breathing Notification of the physician of the successful results

The New England Journal of Medicine

EFFECT ON THE DURATION OF MECHANICAL VENTILATION OF IDENTIFYING PATIENTS CAPABLE OF BREATHING SPONTANEOUSLY

E. WESLEY ELY, M.D., M.P.H., ALBERT M. BAKER, M.D., DONNIE P. DUNAGAN, M.D., HENRY L. BURKE, M.D., ALLEN C. SMITH, M.D., PATRICK T. KELLY, M.D., MARGARET M. JOHNSON, M.D., RICK W. BROWDER, M.D., DAVID L. BOWTON, M.D., AND EDWARD F. HAPONIK, M.D.

The New England Journal of Medicine

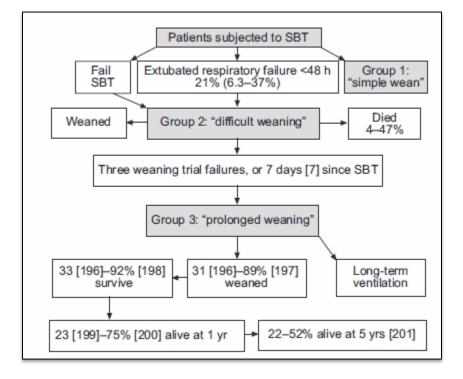
1864 · December 19, 1996

EFFECT ON THE DURATION OF MECHANICAL VENTILATION OF IDENTIFYING PATIENTS CAPABLE OF BREATHING SPONTANEOUSLY

E. WESLEY ELY, M.D., M.P.H., ALBERT M. BAKER, M.D., DONNIE P. DUNAGAN, M.D., HENRY L. BURKE, M.D., Allen C. Smith, M.D., Patrick T. Kelly, M.D., Margaret M. Johnson, M.D., Rick W. Browder, M.D., David L. Bowton, M.D., and Edward F. Haponik, M.D.

TABLE 3. COMPLICATIONS OF RESPIRATORY FAILURE.

COMPLICATION	INTERVENTION GROUP (N = 149)	Control Group (N = 151)	P Value
	no. of pati	ents (%)	
Any	30 (20)	62 (41)	0.001
Reintubation within 48 hr	5 (3)	12 (8)	0.08
Any reintubation	6 (4)	15 (10)	0.04
Self-extubation	2(1)	5 (3)	0.25
Tracheostomy	13 (9)	22 (15)	0.10
Mechanical ventilation for >21 days	9 (6)	20 (13)	0.04

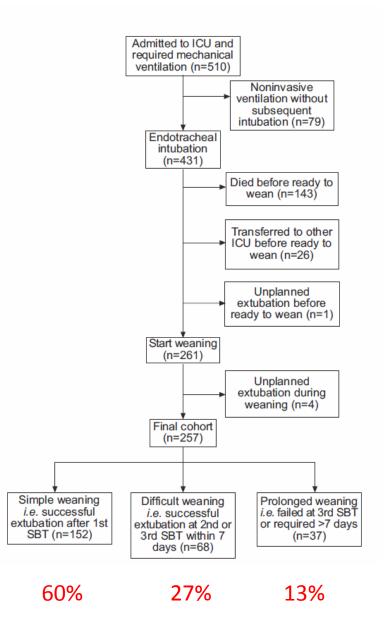

Weaning classification

Simple weaning	Patients who proceed from the initiation of weaning
	to successful extubation on the first attempt
	without difficulty

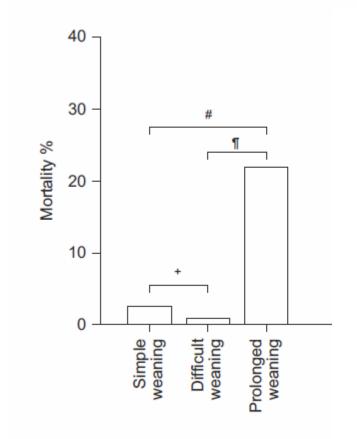
Patients who fail initial weaning and require up to
three spontaneous breathing trials or as long as 7
days from the first spontaneous breathing trial to
achieve successful weaning

Prolonged weaning	Patients who fail at least three weaning attempts or
	require >7 days of weaning after the first
	spontaneous breathing trial

Mortality and prolonged weaning



Incidence and outcome of weaning from mechanical ventilation according to new categories

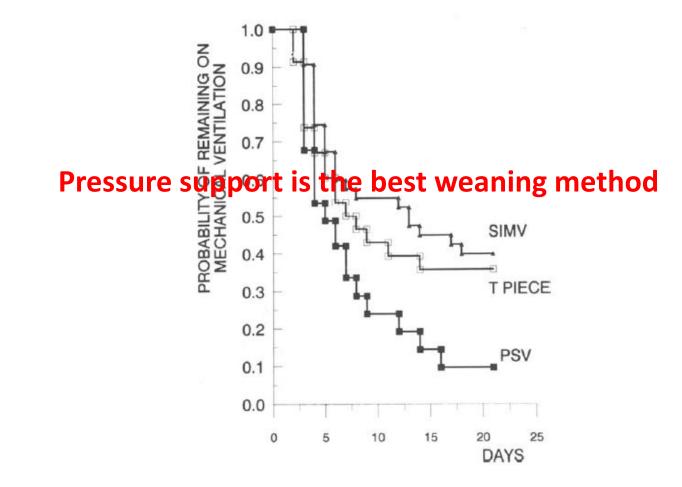

G-C. Funk*, S. Anders*, M-K. Breyer*, O.C. Burghuber*, G. Edelmann[#], W. Heindl*, G. Hinterholzer¹, R. Kohansal*, R. Schuster⁺, A. Schwarzmaier-D'Assie[§], A. Valentin[§] and S. Hartl*

Characteristics of the patient

	Simple weaning	Difficult weaning	Prolonged weaning	p-value
Subjects	152 (59)	68 (26)	37 (14)	
Age yrs	60±17	61 <u>+</u> 13	64 <u>+</u> 12	0.5786
Males	81 (53)	33 (49)	22 (59)	0.8831
Number of comorbidities on ICU admission	1 (0–1)	0 (0–1)	1 (0–1.5)	0.4341
Types of comorbidity				
Non-metastasising malignancy	17 (11)	3 (4)	1 (3)	0.0402#
Chronic renal failure	10 (7)	7 (10)	4 (11)	0.2851
Chronic respiratory failure	19 (13)	11 (16)	10 (27)	0.0346 [¶]
Chronic heart failure	11 (7)	0 (0)	1 (3)	0.0616
Insulin-dependent diabetes	8 (5)	3 (4)	5 (14)	0.1391
Types of ICU admission				
Medical	88 (58)	43 (63)	25 (68)	0.2348
Surgery: elective	22 (14)	8 (12)	4 (11)	0.4832
Surgery: emergency	40 (26)	17 (25)	8 (22)	0.5675
SAPS II score	45±19	48 <u>+</u> 18	45 <u>+</u> 16	0.5552
SAPS II predicted mortality %	39±29	42 <u>+</u> 29	37 <u>+</u> 28	0.5582
Cause of admission				
Gastrointestinal surgery	10 (7)	10 (15)	5 (14)	0.0756
Cardiovascular surgery	0 (0)	0 (0)	1 (3)	0.0479
Neurosurgery	18 (12)	5 (7)	5 (14)	0.8977
Other types of surgery	22 (14)	3 (4)	0 (0)	0.0019+
Cardiovascular disease	21 (14)	8 (12)	4 (11)	0.5699
Neurological disease	23 (15)	11 (16)	3 (8)	0.4038
Respiratory disease	25 (16)	17 (25)	14 (38)	0.0038 ^s

Mortality and weaning

Which mode is best for SBT


Pressure support

• T piece trial

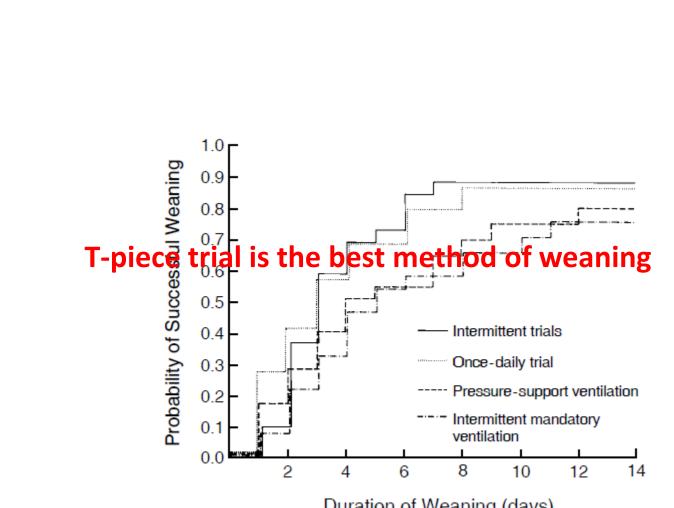
 Synchronized intermittent Mandatory Ventilation

Comparison of Three Methods of Gradual Withdrawal from Ventilatory Support during Weaning from Mechanical Ventilation

LAURENT BROCHARD, ALAIN RAUSS, SALVADOR BENITO, GIORGIO CONTI, JORDI MANCEBO, NOURREDINE REKIK, ALESSANDRO GASPARETTO, and FRANÇOIS LEMAIRE

The New England Journal of Medicine

©Copyright, 1995, by the Massachusetts Medical Society


Volume 332

FEBRUARY 9, 1995

Number 6

A COMPARISON OF FOUR METHODS OF WEANING PATIENTS FROM MECHANICAL VENTILATION

 ANDRÉS ESTEBAN, M.D., PH.D., FERNANDO FRUTOS, M.D., MARTIN J. TOBIN, M.D., INMACULADA ALÍA, M.D., JOSÉ F. SOLSONA, M.D., INMACULADA VALVERDÚ, M.D., RAFAEL FERNÁNDEZ, M.D., MIGUEL A. DE LA CAL, M.D., SALVADOR BENITO, M.D., PH.D., ROSER TOMÁS, M.D., DEMETRIO CARRIEDO, M.D., SANTIAGO MACÍAS, M.D., AND JESÚS BLANCO, M.D., FOR THE SPANISH LUNG FAILURE COLLABORATIVE GROUP*

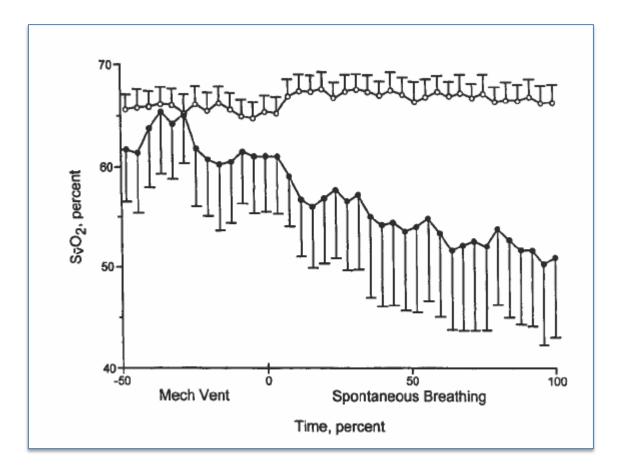
Duration of Weaning (days)

Hemodynamic changes during a Spontaneous Breathing Trial

Weaning and Cardiovascular stress

• Spontaneous breathing is exercise

 Spontaneous breathing increases intrathoracic blood volume/preload

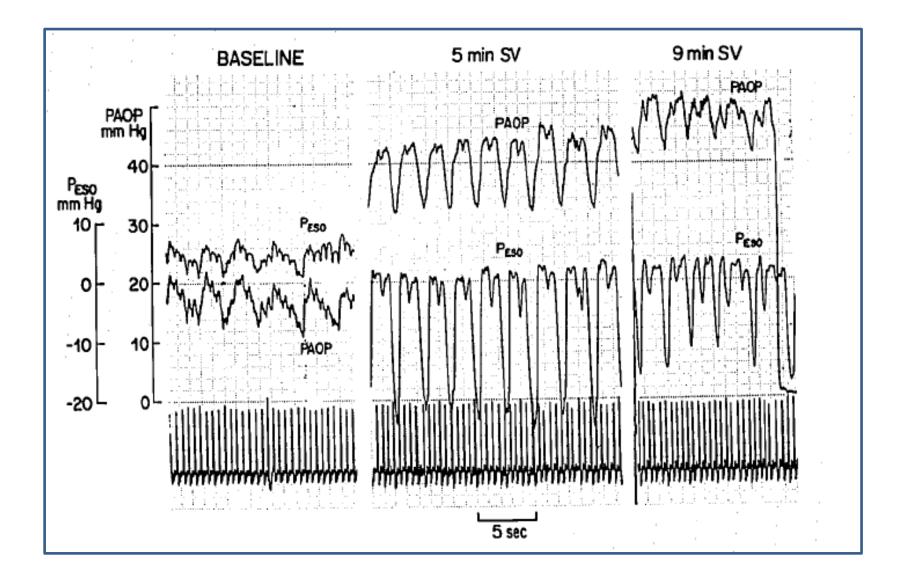

Spontaneous breathing increases LV afterload

Continuous Recordings of Mixed Venous Oxygen Saturation during Weaning from Mechanical Ventilation and the Ramifications Thereof

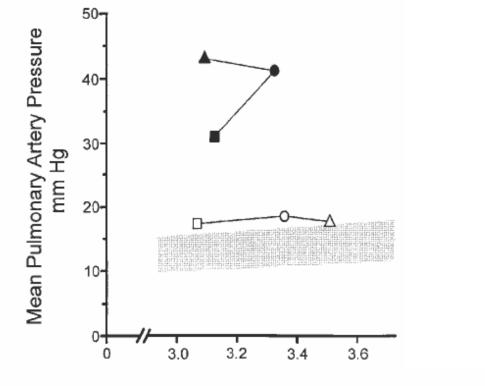
AMAL JUBRAN, MALI MATHRU, DAVID DRIES, and MARTIN J. TOBIN

Division of Pulmonary and Critical Care Medicine, Edward Hines Jr. Veterans Administration Hospital, Loyola University of Chicago Stritch School of Medicine, Hines; and RML Specialty Hospital, Hinsdale, Illinois

AM J RESPIR CRIT CARE MED 1998;158:1763-1769.


AM J RESPIR CRIT CARE MED 1998;158:1763-1769.

Weaning is a cardiac stress test


Anesthesiology 69:171–179, 1988

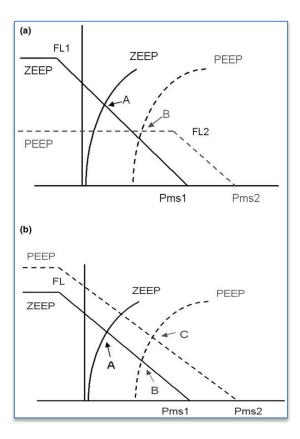
Acute Left Ventricular Dysfunction during Unsuccessful Weaning from Mechanical Ventilation

Francois Lemaire, M.D.,* Jean-Louis Teboul, M.D.,† Luc Cinotti, M.D.,‡ Guillen Giotto, M.D.,§ Fekri Abrouk, M.D.,§ Gabriel Steg, M.D.,§ Isabelle Macquin-Mavier, M.D.,¶ Warren M. Zapol, M.D.**

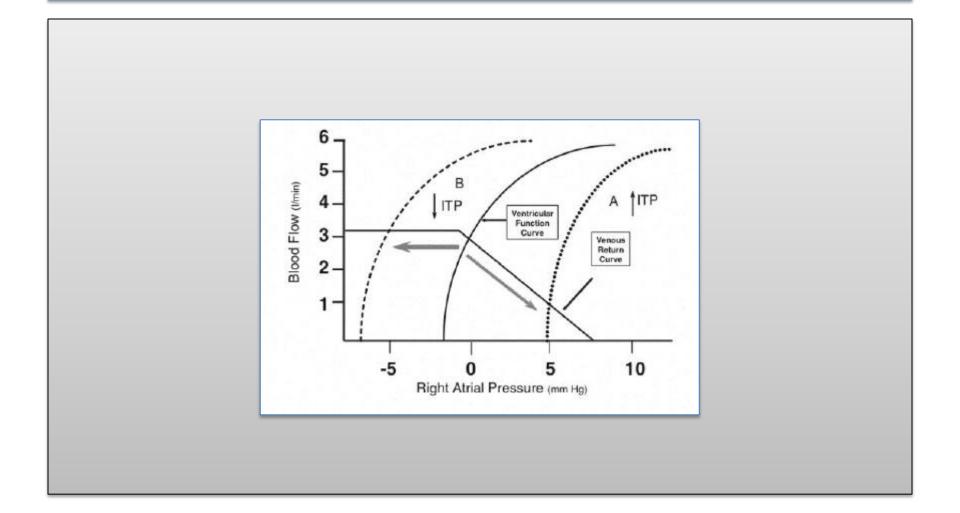
Cardiac response during weaning

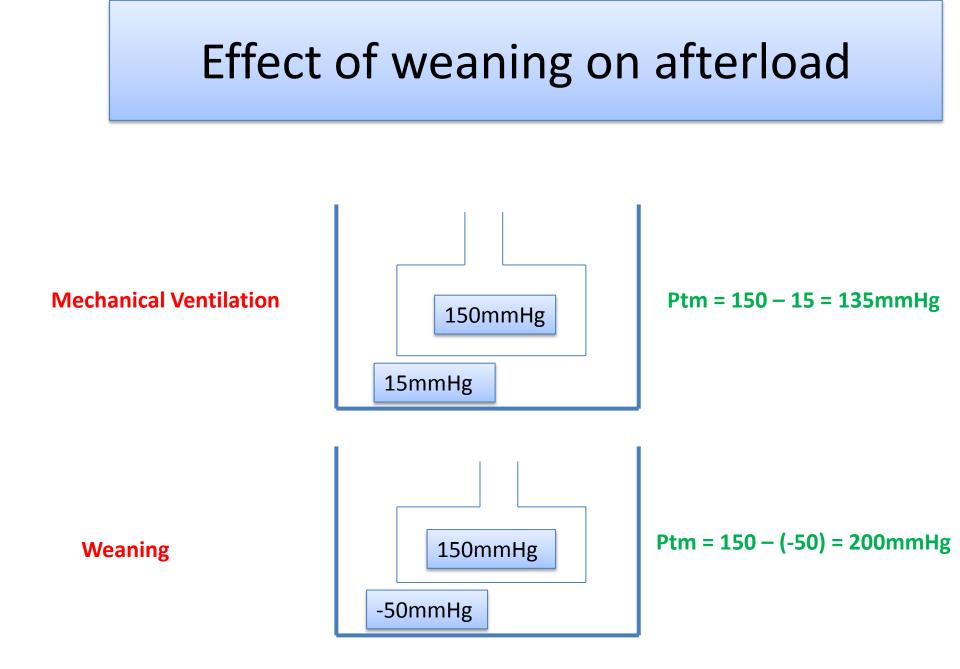
Cardiac Index, L/min/m²

Factors increasing PAOP during weaning failure


1. Increased Preload

- Decreased picural pressure
- Sympathetic discharge (stress, hypercapnia)
- Reduced LV compliance
 - Myocardial ischemia
 - O₂ Supply reduced
 - Pao, SaO2
 - **†LVEDP** and **†HR**, reducing coronary blood flow
 - O₂ Demand increased
 - **†**Catecholamines
 - **†HR**, **†**Systolic BP
 - **†Work of breathing**
 - LV Enlargement
 - RV Enlargement (ventricular interdependence)
 - Compression of heart chambers by regionally


2. Reduced Contractility Ischema 3. Increased Afterload


3. Increased afterload

Effect of mechanical ventilation on preload/venous return

Effect of weaning on preload

Mechanisms of difficult weaning

- Weaning possible but unidentified
- Fluid overload
- Respiratory muscle weakness
- Severe underlying cardiac disease
- Severe underlying lung disease

Common pathophysiologies which may impact on the ability to wean a patient from mechanical ventilation

Respiratory Load

- Increased work of breathing: inappropriate ventilator settings
- Reduced compliance: pneumonia (ventilator-acquired); cardiogenic or noncardiogenic oedema; pulmonary fibrosis; pulmonary haemorrhage; diffuse pulmonary infiltrates
- Airway bronchoconstriction
- Increased resistive load

During SBT: endotracheal tube

Post-extubation: glottic oedema; increased airway secretions; sputum retention

- Cardiac load Cardiac dysfunction prior to critical illness Increased cardiac workload leading to myocardial dysfunction, dynamic hyperinflation
- Neuromuscular Depressed central drive: metabolic alkalosis; mechanical ventilation; sedative/hypnotic medications primary causes of neuromuscular weakness;
- **Neuropsychological** Delirium Anxiety, depression
- Metabolic Metabolic disturbances Role of corticosteroids Hyperglycaemia
- Nutrition
 Overweight Malnutrition
- Ventilator-induced diaphragm dysfunction
- Anaemia

Failure Criteria of Spontaneous Breathing Trial

Clinical assessment and subjective indices

- Agitation and anxiety
- Depressed mental status
- Diaphoresis
- Cyanosis
- Evidence of increasing effort

Increased accessory muscle activity Facial signs of distress

Dyspnoea

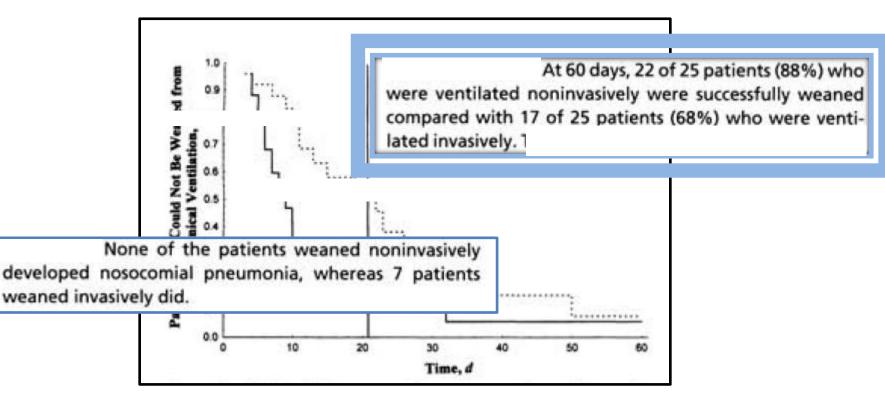
Objective measurements (1)

- PaO₂ < 50–60 mmHg on FiO₂ >0.5 or SaO₂ <90%
- PaCO₂ >50 mmHg or increase in PaCO₂ >8 mmHg
- pH < 7.32 or a decrease in pH >0.07 pH units
- $f_R/V_T > 105$ breaths/min/L

Objective measurements (2)

- f_R >35 breaths/min or increased by >50%
- fc >140 beats/min or increased by >20%
- Systolic BP >180 mmHg or increased by >20%
- Systolic BP <90 mmHg
- Cardiac arrhythmias

NIV for Weaning


Noninvasive Mechanical Ventilation in the Weaning of Patients with Respiratory Failure Due to Chronic Obstructive Pulmonary Disease

A Randomized, Controlled Trial

Stefano Nava, MD; Nicolino Ambrosino, MD; Enrico Clini, MD; Maurizio Prato, MD; Giacomo Orlando, MD; Michele Vitacca, MD; Paolo Brigada, MD; Claudio Fracchia, MD; and Fiorenzo Rubini, MD

Ann Intern Med. 1998;128:721-728.

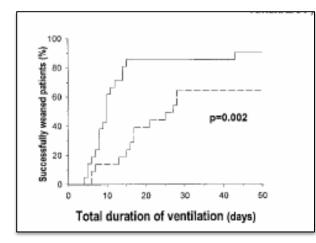
Survival rates at 60 days differed (92% for patients who received noninvasive ventilation and 72% for patients who received invasive ventilation; P = 0.009).

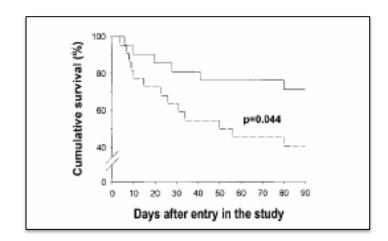
Noninvasive Ventilation during Persistent Weaning Failure

A Randomized Controlled Trial

Miquel Ferrer, Antonio Esquinas, Francisco Arancibia, Torsten Thomas Bauer, Gumersindo Gonzalez, Andres Carrillo, Robert Rodriguez-Roisin, and Antoni Torres

AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 168 2003


	NIV Group $(n = 27)$	Conventional-Weaning Group (n = 22)	p Value
Duration of invasive ventilation, d	9.5 ± 8.3	20.1 ± 13.1	0.003
Total period of ventilatory support*, d	11.4 ± 8.0	20.1 ± 13.1	0.012
ICU stay, d	14.1 ± 9.2	25.0 ± 12.5	0.002
Hospital stay, d	27.8 ± 14.6	40.8 ± 21.4	0.026
Reintubation, n (%)	3 (14)	6 (27)	0.457
Main causes of reintubation, n			
Severe persistent hypoxemia	1	3	
Severe dyspnea	-	2	
Inability to manage secretions	2	-	
Hemodynamic instability	-	1	
Tracheotomy, n (%)	1 (5)	13 (59)	<0.001
ICH survival in (%)	19 (90)	13 (59)	0.045
Causes of death within 90d after entry in the study			
Septic shock/MOF	1	9	
Refractory hypoxemia	1	2	
Cardiac árrest	2	1	
Pneumothorax	-	1	
Stroke	1	-	
Pulmonary embolism	1	-	


TABLE 3. WEANING RESULTS, LENGTH OF STAY, OUTCOME VARIABLES, AND CAUSES OF DEATH FOR THE NONINVASIVE VENTILATION AND THE CONVENTIONAL-WEANING GROUPS

Noninvasive Ventilation during Persistent Weaning Failure

A Randomized Controlled Trial

Miquel Ferrer, Antonio Esquinas, Francisco Arancibia, Torsten Thomas Bauer, Gumersindo Gonzalez, Andres Carrillo, Robert Rodriguez-Roisin, and Antoni Torres

Conclusions-Recommendations

Reversible pathology should be aggressively and repeatedly sought in all patients in groups 2 and 3.

Weaning should be considered as early as possible in patients receiving mechanical ventilation

The initial SBT should last 30 min and consist of either Ttube breathing or low levels of PS (5–8 cmH2O in adults) with or without 5 cmH2O PEEP

Conclusions-Recommendations

SIMV should be avoided as a weaning modality

NIV techniques to shorten the duration of intubation should be considered in selected patients, especially those with hypercapnic respiratory failure

Ευχαριστώ

