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Abstract
Traditionally the function of proaf has been seen almost ex-
clusively in terms of the verification of the correctness of
mathematical statements. This paper strongly crilicizes this
view as one-sided, and instead proposes a model which dis-
tinguishes between five different functions of proof in math-
ematics. This analysis is based on epistemological con-
siderations, as well as the personal testimonies of practis-
ing mathematicians. Verification being only one of the five
_ functions, is then shown in some situations to be of far less
importance than some of the other functions. Finally, it is
argued that the meaningful presentation of proof at school
may be highly dependent on the appropriate negotiation of
these functions of proof to pupils.

1. Introduction
The problems that pupils have with perceiving a need for
proof is well-known to all high school teachers and is
identified without exception in all educational research
as a major problem in the teaching of proof. Who has not
yet experienced frustration when confronted by pupils
asking “why do we have to prove this?” The following con-
clusion by Gonobolin (1954:61) exemplifies the problem:
“.. the pupils ... do not ... recognize the necessity
of the logical proof of geometric thegrems, especially
when these proofs are of a visually obvious charac-
ter or can easily be established empirically.”

According to Afanasjewa in Freudenthal (1958:29) pu-
pils’ problems with proof should not simply be attributed
to slow cognitive development (e.g. an inability to reason
logically), but also that they may not see the function
(meaning, purpose and usefulness) of proof. In fact, sev-
eral recent studies in opposition to Piaget have shown that
very young children are quite capable of logical reason-
ing in situations which are real and meaningful to them
(Wason & Johnson-Laird, 1972; Wallington, 1974; Hew-
son, 1977; Donaldson, 1979). Furthermore, attempts by
researchers to teach logic to pupils have frequently pro-
vided no statistically significant differences in pupils’ per-
formance and ~npreciation of proof (e.g. Deer, 1969,
Walter, 1972; Mueller, 1975). More than anything else, it
seems that the fundamental issue at hand is the appropri-
ate negotiation of the various functions of proof to pupils.

The question is, however, “what functions does proof have
within mathematics itself which can potentially be utilized
in the mathematics classroom to make proof a more
meaningful activity?” The purpose of this article is to pro-
vide a meta-analysis of some important functions of proof,
and briefly discuss some implications for the teaching of
proof,

2. The functions of proof in mathematics
Traditionally the function of proof has been seen almost
exclusively in terms of the verification (conviction or jus-
tification) of the correctness of mathematical statements.
The idea is that proof is used mainly to remove either per-
sonal doubt and/or those of skeptics; an idea which has
one-sidedly dominated teaching practice and most dis-
cussions and research on the teaching of proof. For in-
stance, according to Wilder (1944:318) a proof is

"only a testing process that we apply to these sugges-

tions of our intuitions" {bold added).

“a proof is only meaningful when it answers the stu-
dent’s doubts, when it proves what is not obvious.”
(bold added) — Kline (1973:151)

“... the necessity, the functionality, of proof car only
surface in situations in which the students meet un-
certainty about the truth of mathematical proposi-
tions.” (bold added) — Alibert (1988:31)
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... a proof is an argument needed to validate a
statement, an argument that may assume several dif-
ferent forms as long as it is convincing.” (bold
added) — Hanna (1989:20)

Recentlyin an article in Pythagoras, Volmink (1990:8; 10)
also distinguished conviction (verification) as the most
important function of proof by defining it as follows:
“Why do we bother to prove theorems? I make the
claim here that the answer is: so that we may con-
vince people (including ourselves) ... we may regard
a proof as an argument sufficient to convince a
reasonable skeptic.”

Although many authors (e.g.Van Dormolen (1977), Van
Hiele (1973) and Freudenthal (1973) and others) have ar-
gued that one’s need for deductive rigour may undergo

"This article is an adapted version of papers presented at the National Subject Didactics Symposium, 26-28 Septem-
ber 1990, University of Stellenbosch and the Amtek Conference, 28-29 September 1990, Durban under the title "Proof

in the mathematics curriculum."
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change and become more sophisticated with time, this
point is also argued from the viewpoint that the function
of proof is mainly that of verification, for example:
“.. to progress in rigour, the first step is to doubt the
rigour one believes in at this moment. Without this
doubt there is no letting other people prescribe one-
self new criteria of rigour.” (bold added) —
Freudenthal (1973:151)

Many authors have also proposed specific stages in the
development of rigour, e.g. Tall (1989:30) proposes three
stages in the putting up of a convincing argument, name-
ly the convincing of oneself, the convincing of a friend and
- the convincing of an enemy. Although extremely useful
distinctions, it clearly also falls into the same category as
the above.

it is furthermore suspected that most secondary.

school teachers of mathematics almost exclusively hold
this rather formalistic view on the verification/conviction
function of proof in mathematics. In fact, during 1984 in
a country-wide survey at 11 South African universities it
was found that more than half the HE.D. (postgraduate)
students in mathematics education agreed with the state-
ment that the only function of proof was that of “making
sure”, i.e. the verification of the truth of results (De Vil-
Liers, 1987:38).

However, as pointed out by Bell (1976:24) this view of
verification/conviction being the main function of proof
“avoids consideration of the real nature of proof”, since
conviction in mathematics is often obtained “by quite
other means than that of following a logical proof.” Re-
search mathematicians for instance seldom scrutinize the
published proofs of results in detail, but are rather led by
the established authority of the author, the testing of spe-
cial cases and an informal evaluation whether “the meth-
ods and result fit in, seem reasonable ...” (Davis & Hersh,
1986:67). It is therefore within the context of the actual
practice of modern mathematical research that a more
complete analysis of the various functions and roles of
proof is called for. Although laying claim to neither com-
pleteness nor uniqueness, the author and his colleagues
have found the foowing mode! for the functions of proof
useful in their research over the past few years. As will be
noted, it is a slight expansion of Bell’s (1976) original dis-
tinction between the functions of verification, i%unina-
tion and systematisation. The model is now presented (in
no specific order of importance) and discussed further
on:

e verification (concerned with the truth of a statement)
e explanation (providing insight into why it is true)

e systematisation (the organisation of various results .

icto a deductive system of axioms, major concepts
and theorems)
e discovery (the discovery or invention of new results)

e communication (the transmission of mathematical
knowledge)

2.1 Proof as a means of verification/conviction
With very few exceptions, teachers of mathematics seem
to believe that a proof for the mathematician provides ab-
solute certainty and that it is therefore the absolute auth-
ority in the establishment of the validity of a conjecture.
They seem to hold the naive view described by Davis &
Hersh (1986:65) that behind each theorem in the mathe-
matical literature there stands a sequence of logical trans-
formations moving from hypothesis to conclusion, abso-
lutely comprehensible, and irrefutably guaranteeing
truth. However, this view is completely false. Proof is not
necessarily a prerequisite for conviction — to the con-
trary, conviction is probably far more frequently a prereq-
uisite for the finding of a proof (For what other, weird and
obscure reasons, would we then sometimes spend months
or years to prove certain conjectures, if we weren’t already
convinced of their truth?).

Proof is not necessarily a prerequisite
for conviction — conviction is far more
frequently a prerequisite for proof

The well-known George Polya (1954:83-84) writes for
example in this regard:

“.. having verified the thebrem in several particular

cases, we gathered strong inductive evidence for it.

The inductive phase overcame ouir initial suspicion

and gave us a strong confidence in the theorem..

Without such confidence we would have scarcely

found the courage to undertake the proof which did

not look at all a routine job. When you have satis-

fied yourself that the theorem is true, you start prove
ing it." (bold added)
In situations like the above where conviction provides the
motivation for a proof, the function of such a proof for
the mathematician clearly cannot be that of verifica-
tion/conviction, but has to be looked for in terms of the
other functions of proof (see further on).

Absolute certainty also does not exist in real mathe-
matical research, and personal conviction usually de-
pends on a combination of intuition, quasi-empirical
verification and the existence of a logical (but not necess-
arily rigourous) proof. In fact, a very high level of convic-
tion may sometimes be reached even in the absence of a
proof. For instance, in their discussion of the "heuristic evi-
dence”in support of the still unproved twin prime pair the-
orem and the famous Riemann Hypothcsisl, Davis &
Hersh (1983:369) conclude that this evidence is "so strong
that it carries conviction even without rigorous proof."

! Although Hideya Matsumoto advanced a proof for the Riemann Hypothesis in 1984, the proof has not yet been stu-
died nor accepted by the whole mathematical community (Devlin, 1985).
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That conviction for mathematicians is not reached by
proof alone is also strikingly borne out by'the remark of
a previous editor of the Mathematical Reviews that ap-
proximately one half of the proofs published in it were in-
complete and/or contained errors, although the theorems
they were purported to prove were essentially truc
(Hanna, 1983:71). It therefore seems that the reasonable-
ness of results often enjoy priority over the existence of a
completely rigourous proof. It is furthermore a commonly
held view among today’s mathematicians that there is no
such thing as a rigourously complete proof (e.g. consult
Hanna, 1983 & 198%b; Kline, 1982), Firstly, there is the
problem that no absolute standards exist for the evalu-
ation of the logical correctness of a proof nor for its ac-
ceptance by the mathematical community as a whole. Sec-
ondly, as Davis & Hersh (1986:66) point out, mathemati-
cians usually only publish those parts of their arguments
which they deem important for the sake of conviction,
thus leaving out all routine calculations and manipula-
tions which can be done by the reader. Therefore a "com-
plete proof® according to them “simply means proof in suf-
ficient detail to convince the intended audience” (Davis &
Hersh, 1986:73).

In addition, attempts to construct rigourously com-
plete proofs lead to such long complicated proofs that an
evaluative overview becomes impossible, while the prob-
ability of errors becomes dangerously high at the same
time. For example, Manin (1981:105) estimates that "rig-
ourous™ proofs of the two Burnside conjectures would
consist of about five hundred pages cach, while a "com-
plete” proof for Ramanujan’s conjecture would consist of
about two thousand pages. Even the well-known, but rela-
tively simple Theorem of Pythagoras would take up at
least eighty pages according to Renz (1981:85).

Limitative theorems by Godel, Tarski and others dur-
ing the early part of this century have high-lighted the in-
adequacy of deductive proof. Lakatos (1976, 1978) has
also argued from an epistemological analysis of some
examples from the history of mathematics, that proof is
by nature fallible, and that it provides no absolute guar-
antee for the attainment of certainty. For instance:

*There have been considerable and partly successful

efforts to simplify Russell’s Principia and similar

logistic systems. But while the results were mathe-
matically interesting and important they could not
retrieve the lost philosophical position. The grandes
logiques cannot be proved true — nor even consist-

ent; they can only be proved false — or even incon-

sistent.” — Lakatos (1978:31)
When investigating the validity ofan unknown conjecture,
mathematicians do not (should not) only look for proofs,
but also try to construct counter-examples at the same
time by means of quasi-empirical testing, since such test-
ing may expose hidden contradictions, crrors or unstated
assumptions. (For example, see the letter "4 counter-
example to Kendal’s theorem" in this issue). In this way
counter-examples arc frequently produced which

necessitate a reconsideration of old proofs, and the con-
struction of new ones. Actually the majority of today’s
mathematicians are only too aware of the inadequacies of
deductive proof, not only from the host of cxamples of
false and incomplete proofs from the history of mathema-
tics, but also from personal t.-,:upv.-.rielme.z Personal cer-
tainty consequently also depends on the continued ab-
sence of counter-examples in the face of quasi-empirical
evaluation. In the attainment of conviction, the quasi-cm-
pirical process of failed falsification therefore plays just
as an important a role as the process of (deductive) jus-
tification. _

Of course, in view of the well-known limitations of in-
tuition and quasi-empirical methods themselves, the
above arguments are definitely not meant to disregard the
importance of proof as an extremely useful means of veri-
fication, especially in the case of surprising non-intuitive or
doubtful results. Rather it is intended to place proofin a
more proper perspective in opposition to &
somewhat distorted idolization of proof as the only (and
absolute) means of verification/conviction.

2.2 Proof as a means of explanation

Although it i possible to achieve quite a high level of con-
fidence in the validity of a conjecture by means of quasi-
empirical verification (c.g. accurate constructions and
measurement; numerical substitution, etc.), this ganeranx
provides no satisfactory explanation why it may be true.
It merely confirms that it is true, and even though the con-
sideration of more and more examples mayincrease one’s
confidence even more, it gives no psychological satisfac-
tory sense of illumination, ie. an Insight or under-
standing into how it is the consequence of other familiar
results, For instance, despite the convincing heuristic evi-
dence in support of the earlicr mentioned Ricmann Hy-
pothesis, one may still have a burning need for explana-
tion as stated by Davis & Hersh (1983:368):

2The author recently had two experiences where the quasi-empirical testing of theorems he had proved carlier on,
necessitated it “he one case a clarification of certain undefined terms (De Villiers, 1989a) and in the other case a radi-
cal reformulation of the conjecture itself (De Villiers, in press (a)).

31t should however, be mentioned that sometimes a heuristic argument (¢.g. the use of analogical reasoning in the ex-
tension of certain relationships in two dimensions to higher dimensions), may actually provide sufficicnt explanation
by itself. The purpose of a deductive proof in the case wheze one’s needs for verification and explanation have both
been a priori fulfilled, would then probably be much more that of systematisation, i.c. the inclusion of the result in a
deductive system o to shed a different light on it (see par. 2.3), than to provide insight into why it is true (or to verify

that it is {rue).
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“It is interesting to ask, in a context such as this, why
we still feel the need for aproof ... It seems clear that
we want a proof because ... if something is true and
we can’t deduce it in this way, this is a sign of a lack
of understanding on our part. We believe, in other
words, that a proof would be a way of understanding
why the Riemann conjecture is true, which is some-
thing more than just knowing from convincing heur-
istic reasoning that it I8 true.”

Quasi-empirical verification provides
no explanation why results are true
— it merely corifirms

Recently Gale (1990:4) also clearly emphasized as fol-
lows, with reference to Feigenbaum’s experimental dis-
- coveries in fractal geometry, that the function of their
eventual proofs was that of explanation and not that of
verification at all:
“Lanford and other mathematicians were not trying
to validate Feigenbaum’s results any more than, say,
Newton was trying to validate the discoveries of Ke-
pler on the planetary orbits. In both cases the validity
of the results was never in question. What was mis-
sing was the explanation. Why were the orbits ellip-
ses? Why did they satisfy these particular relations?
... there’s a world of difference between validating
and explaining.” (bold added))

Thus, in most cases when the results concerned are intui-
tively self-evident and/or they are supported by convinc-
ing quasi-empirical evidence, the function of proof for
mathematicians is certamly not that of verification, but
rather that of explanauon It is not a question of "making
sure”, but rather a question of "explaining why Of course,
not ali proofs are equally explanatory, so it is possible to
dlstmgmsh between proofs that "verify" and proofs that
"clarify"> Steiner (1978:143) as quoted by Hanna
(1989a:48) characterizes an explanatory proof as follows:
"... an explanatory proof makes reference to a char-
acterizing property of an entity or structure men-
tioned in the theorem, such that from the proof it is
evident that the result depends on the property. It

must be evident, that is, that if we substitute in the
proof a different object of the same domain, the the-
orem collapses; more, we shonld be able to see as
we vary the object how the theorem changes in re-
sponse.”

Furthermore, for probably most mathematicians the
clarification/explanation aspect of a proof is genegally of
greater importance than the aspect of verification. For in-
stance, the well-known Paul Halmos stated some time ago
that although the computer-assisted proof of the four col-
our theorem by Appel & Haken convinced him that it was
true, he would still persenally prefer a proof which also
gives an “understanding” (Albers, 1982:239-240). Also to
Manin (1981:107) and Bell (1976:24), explanation is a
criterion for a "good” proof when stating respectively that
it is "one which makes us wiser" and that it is expected "to
convey an insight into why the proposition is true.”

2.3 Proof as a means of systematisation

In contrast to proof which manages to expose the under-

lying logical relationships between statements, no amount

of quasi-empirical testing nor pure intuition will suffice in
this respect. Proof is therefore an indispensable tool in
the systematisation of various known results into a deduc-
tive system of axioms, definitions and theorems. Thus, it
is intricately involved in the mathematical processes of ¢
posteriori  axiomatization and defining (Krygowska,

1971:129-130; Human, 1978:164-165) which form the

backbones of both local and global systemiatisation

(Freudenthal, 1973: 451-461). Some of the most import-

ant functions of a deductive systematisation of known re-

sults arc given as follows by De Villiers (1986):

o it helps with the Identification of inconsistencies, cir-
cular arguments and hidden or not explicitly stated
assumptions

e it unifies and simplifies mathematical theories by in-
tegrating unrelated statements, theorems and con-
cepts with onc another, thus leading to an economical
presentation of results

e it provides a useful global perspective or bird’s
eyevlewofatoplcbyexposmgtheundeﬁ}nngano-
matic structure of that topic from which all the other
propertics may be derived

o itis helpful for applications both within and outside
mathematics, since it aids checking the applicability

“In De Villiers (1989b) an easily accessible example in high school geometry is given where the author himself first
reached conviction through quasi-empirical methods, before seeking a deductive explanation.

SSome examples are given in Hanna (1989a) and De Villiers (1990). It is also possible to make additional distinctions
between proofs that “systematize” and proofs that “discover” (consult De Villiers, 1990). For example the traditional
proof of the concurrency of the perpendicular bisectors of the sides of a triangle in terms of concruency instead of a
simpler more explanatory proof by symmetry) is purely for the purpose of systematization (to show that it is the con-
sequence of the concruency statements, which are accepted as axioms in our sillabus). Furthermore while a certain
proof may easily lend itself to the further generalization of the result in question (e.g. scc cxample in par. 2.4 further
on), another proof (for instance by analytic geometry) may not necessarily provide sufficient insight to lead to new dis-
coveries by means of immediate generalization (also consult De Villiers, 1989d).
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of a whole complex structure or theory simply by

evaluating the suitability of its axioms and definitions
e it often leads to alternative deductive systems which

provide new perspectives and/or are more economi-

cal, elegant and powerful than existing ones
Although some elements of verification are obviously also
present here, the main objective clearly is not “fo check
whether certain statements are really true", but to organize
logically unrclated individual statements which are al-
ready known to be true, into " coherent unified whole".
Due to the global perspective provided by such simplifi-
cation and unification, there is of course also a distinct
element of illumination present when proof is used as a
means of systematization. In this case, however, the focus
falls on global rather than local illumination. Thus, it is in
reality a completely false perspective to say at school
when proving self-evident statements such as those found
in introductory Euclidean geometry, that one is "making
sure", In such cases, mathematicians are actually far less
concerned about their truth, than with their systematisa-
tion into a deductive system. For example, the primary
function of a proof for the intermediate value theorem for
continuous functions is purely that of systematization, as
a simple picture combined with an informal argument is
sufficient for the purposes of both verification and illumi-
nation.

It is furthermore important to note that a mathemati-
cian’s need for systematization may be fulfilled in a totally
different manner than the fulfillment of his/her need for
explanation and verification. For instance to use a per-
sonal example again, the author (De Villiers, in press(a))
felt an additional need to construct proofs for two dual
statements regarding the point and line symmetrics of dif-
ferentiable functions strictly in terms of analysis for the
purpose of systematization, although he had already sat-
isfied himself sufficiently of their truth by quasi-empirical
testing and had also constructed a satisfactory geometric
explanation.

2.4 Proof as a means of discovery

It is often popularly said by critics of the amount of de-
ductive rigour at school level, that deduction in general
(and proof in particular) is not a particularly useful heur-
istic device in the actual discovery of new mathematical
results. Such people naively seem to believe that theorems
are virtually always first discovered by means of intuition
and/or quasi-emptrical methods, before they are verified
by the production of proofs. For example, Hanna
(1983:66) claims: "mathematical concepts and proposi-
tions are... cov-eived and formulated before proofs are put
in place.” (bold added). Often there is in this regard also
referred to mathematicians like Ramanujan (1887-1920)

or Joseph Fourier (1768-1830) who did not himself prove

a single theorem of the topic which he invented, namely
Fourier Analysis. Perhaps this perception is due also in
part to the stereotyped way in which proof is normally
taught (first the result is presented followed by the proof).

This view is however completely false, asthere are numer-
ous examples in the history of mathematics where new re-
sults were discovered/invented in a purely deductive man-
ner; in fact, it is completely unlikely that some results (e.g.
the non-Euclidean geometries) could ever have been
chanced upon merely by intuition and/or only using quasi-
empirical methods. Even within the context of such for-
inal deductive processes as @ priori axiomatization and de-
fining, proof can frequently lead to new results. To the
working mathematician proof is therefore not merely a
means of a posterion verification, but often also a means
of exploration, analysis, discovery and invention (e.g.
compare Schoenfeld, 1986 & De Jager, 1990).

Figure 1 The generalisation of a result.

For instance, consider the following illustrative example
from De Villiers (1990). Suppose we one day accidentally -
formulated the visually acceptable hypothesis that EFGH
was always a rectangle when we connected the midpoints
of the sides of a kite as shown by the first figure in Figure
1. Although we may gain a very high level of confidence
in the truth of this hypothesis by the accurate construc-
tion and measurement of different kites (including con-
cave ones), this provides no satisfactory explanation why
it is true (as was mentioned in par.2.2). However, if we
produce a deductive proof for it, we immediately notice
that the perpendicularity of the diagonals is the essential
characteristic upon which it depends, and that the
property of equal adjacent sides is thercfore not required.
(The proof is left to the reader), In other words, we can
immediately generalize the result to any quadrilateral
with perpendicular diagonals (a perpendicular quadrilat-
eral) as shown by the second figure in Figure 1. In con-
trast, the general result is not at all suggested by the pure-
ly empirical verification of the original hypothesis. Even
a systematic empirical investigation of various types of
guadrilaterals would probably not have helped to dis-
cover the general case, since such a person would prob-
ably have restricted his/her investigation to the familiar
quadrilaterals such as parallelograms, rectangles, thom-
bi, squares and isosceles trapezia.

Pythagoras
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Figure 2

" The deductive analysis of the properties of 2 mathemali-
cal object

The Theorem of Ceva (1678) was probably discovered in
a similar deductive fashion by generalizing from a proof
for the concurrency of the medians of a triangle, and not
by actual construction and measurement (¢.g. consult De
Villiers, 1988). Another example where this process of
deductive discovery via deductive generalization hap-
pened in precisely this way, is described in De Villiers
(1980d). However, new results can also be discovered a
priori by simply deductively analysing the properties of
given objects. For example, without resorting to actual
construction and measurement it is possible to quickly de-
duce that AB + CD = BC + DA for the circumscribed
quadrilateral ABCD shown in Figure 2 (a proof is given
in De Villiers, in press(b)).

2.5 Proof as a means of communication

Several recent authors have stressed the importance of

the communleative function of proof, for example:
“.. it appears that proof is a form of discourse, a
means of communication among people doing
mathematics.” (bold added) — Volmink (1990:8)

“ .. we recognize that mathematical argument is ad-
dressed to a human audience, which possesses a
background knowledge enabling it to understand the
intentions of the speaker or author. In stating that
mathematical argument is not mechanical or for-
mal, we have also stated implicitly what it is —
namely, @ human interchange based on shared
meanings, not all of which are verbal or formulaic.”
(bold added) — Davis & Hersh (1986:73).

Similarly, Davis (1976) has also mentioned that one of the
real values of proof is that it creates a forum for critical
debate. According to this view proof is a unigue way of
communicating mathematical results between profes-
sional mathematicians, between lecturers and students,
between teachers and pupils, and.among students and pu-
pils themselves. The emphasis thus falls on the social pro-
cess of reporting and disseminating mathematical knowl-
edge in society. Proof as a form of social interaction there-
fore also involves the subjective negotiation of not only
the meanings of concepts concerned, but implicitly also
of the criteria for an acceptable argument. In turn such a
social filtration of a proofin various communications con-
tributes to its refinement and the identification of errors,
as well as sometimes to its rejection by the discovery of a
counter-example.

According to Thom (1971:679) it is precisely this regu-
latory influence of the social process that has so far en-
sured the avoidance of real catastrophic mistakes which
could have led the whole mathematical community astray

Functions Logical Intuition Quasi-
deduction ~ empirical

The e / / v

ety v v X

of xing knowledge v X X

D e ~+ ‘

';‘P:ezszmunication / \X X

Table 1: A comparison between some of the functions of deduction, intuition and quasi-empirical methods.
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for an indefinite time. As Hanna (1989b:20) has further-
more pointed out, this social process is usually far more
important in the acceptance of a particular result and its
proof by practising mathematicians than the mere appli-
cation of certain formal criteria in judgement of the logi-
cal rigour of the given argument.

Finally, although the five functions of proof above can
be distinguished from one another, they are often intri-
cately interlinked in specific cases. In some cases certain
functions may dominate others, while in some cases cer-
tain functions may not feature at all, In Table 1 a compari-
son is made between the discussed functions of proof in
relation to those of intuition and quasi-empirical meth-
ods (compare De Villiers, 1990:49). From this it becomes
clear that proof plays a rather unigue role in the explana-
tion, systematisation and communication of results, some-
thing which is not possible to the same degree using only
intuitive and/or quasi-empirical methods. On the other
hand it also shows that proof is neither a prerequisite for
the discovery of new results nor a sufficient condition for
their verification,

This list of functions is however by no means complete.
For instance, we could easily add an aesthetic function or
that of personal self-realisation where the production of
a proof as such, is viewed as a “testing ground for the stami-
na and ingenuity of the mathematician.” (Davis & Hersh,
1983:369). But it was felt that such aspects fell beyond the
mtended scope of this article,

3. Some concluding comments about the teach-
ing of proof

Traditionally the role and function of proof in the class-
room has either been completely ignored {the fact that it
is in the syllabus and will be examined is considered suf-
ficient reason for its treatment in class), or it has been
presented as a means of obtaining certainty (i.e. within
the context of verification/conviction). However, as

Conviction is not a bijective function of
proof

pointed out in this article, mathematicians often construct
proofs for quite other reasons than that of verifica-
tion/conviction. The popular formalistic idea of many
present mathematics teachers that conviction is a one-to-
one mapping of deductive proof (i.e. a bijective function)
should therefore be completely abandoned; conviction is
not gained exck :ively from proof alone nor is the only func-
tion of proof that of verification/conviction. Not only does
such an approach represent intelicctual dishonesty, but it
also does not make sense to pupils, especially where self-
evident or casily verifiable statements are concerned.
Rather than one-sidedly focussing only on proof as a
means of verification, the more fundamental function of
explanation should be exploited to preseat proof as a
meaningful activity to pupils. At the same time attention

should be given to the discovery function of proof as well
as the communicative aspects thereof by actually nego-
tiating with one’s pupils the criteria for acceptable evi-
dence, explanations and/or arguments. Furthermore, in

-real mathematics, as anyone with a bit of experience will

testify, the purely systematization function of proof comes
to the fore only at a very advanced stage, and should
therefore be with-held in an introductory course to proof.

In conclusion this article therefore calls for a more
comprehensive view and treatment of the function and
role of proof than the traditional one on the basis of the
following assumptions:

(1) the teaching of mathematics should (at least in
part) reflect the nature of mathematics and that
which is really meantngful to practising mathem-
ticians

(2) as cognitive functioning human beings, pupils
basically have the same need for meaningful ac-
tivities as mathematicians, which include know-
ing, understanding or cxperiencing the
functionality (usefulness) of the activities they
are involved in.
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