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ABSTRACT
Mathematicians routinely pass judgements on mathematical proofs. A proof
might be elegant, cumbersome, beautiful, or awkward. Perhaps the highest
praise is that a proof is right, that is, that the proof fits the theorem in an
optimal way. It is also common to judge that one proof fits better than another,
or that a proof does not fit a theorem at all. This paper attempts to clar-
ify the notion of mathematical fit. We suggest six criteria that distinguish
proofs as being more or less fitting, and provide examples from several different
mathematical fields.

1. INTRODUCTION
Mathematics, as a subject, stands out from other fields in at least one essential
way. Even though proofs derive from axioms, claims can be shown to be true or
false. This is part of what makes mathematics satisfying. Similar to the feeling
one gets from establishing the truth of a claim, one can often experience a
feeling in mathematics that a claim is right, that a certain proof fits a theorem,
or that a particular argument is exactly the one needed. These are stronger
and somewhat more mysterious requirements than those needed to assert that
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a particular claim is true. Similarly one can feel that one proof has a better fit for
a certain theorem than another, or that another proof, while being technically
correct, jars with the statement of a theorem, being somehow the wrong kind
of argument for the given claim.

The purpose of this paper is to clarify different aspects of fit and give con-
crete examples of proofs that fit or do not fit in different ways. While fit has
been discussed, in more or less informal ways in the literature (see [Wechsler,
1978; Sinclair, 2002; 2004] for discussions of fit in mathematics and science,
and [Beardsley, 1981] for fit in aesthetics more generally), this paper is to
our knowledge the first attempt to specify concretely what fit could be in
mathematics.

Before embarking on this task, we consider briefly how the term is used out-
side of mathematics. The word ‘fit’ and the related word ‘fitting’ are somewhat
vague terms which can mean many things. The connotations we will appeal to
in our characterization of fit include (1) ‘snug and correctly in place’, (2) ‘to
be the proper size and shape’, and (3) ‘be in agreement or harmony with’ or
‘suitable for a specific purpose’. We will not use these characterisations directly,
but they give a flavor of the kind of fit we would like to describe. Notice that
some of the characterizations of fit are exact (the key fits the lock) and some
gradable (this shoe fits better than that one). In our analyses we will see exam-
ples of both the exact and gradable types of fit. The intuition that a particular
proof is ‘right’ is an example of the exact use of fit. The idea that one proof
‘fits better than another’, is an example of the gradable use.

Proofs are not the only mathematical objects that can possess fit. Definitions,
diagrams, even theories, might be fitting, but in this paper we will limit the
discussion to proofs. And by proof, we mean in this paper the written proof,
which may or may not correspond to ideas or pictures or arguments held in
the mind. This distinction will be important, for instance, when discussing the
amount of detail given in a proof. In particular we will distinguish between
three different kinds of fit — direct fit, presentational fit, and familial fit —
which, roughly, relate a particular proof to its underlying ideas, to the form in
which it is presented, and to other proofs and theorems.

The game plan is as follows: we will first describe the criteria for mathemati-
cal fit (Section 2), then apply these criteria to a set of contrasting proofs of four
different theorems (Section 3) which will be summarized in a table (Section 4),
and finally we will discuss, rather speculatively, the possible connection between
the notion of fit, which we believe is somewhat tractable to systematic analysis,
and the notions of mathematical explanation and beauty, which appear at first
sight to be less amenable (Section 5).

2. PROPOSED CRITERIA FOR MATHEMATICAL FIT
The criteria for fit presented below came about by analysing a set of approx-
imately twenty proofs, eight of which are given in this paper. This list is not
meant to be comprehensive, but contains the criteria that were most salient to
our group of mathematicians who discussed the different proofs.
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Our focus here is on the description of the criteria rather than the relations
between them (though a short comment about the interdependence of criteria
will be made after the criteria are introduced). We will also deliberately avoid
the question of what makes us value one proof more than another, even though
fit might play a role in that judgement. To say that a proof fits is just to say to
what extent and in what ways the proof fulfills the criteria discussed here. We
are interested only in the question of how a proof fits, not in passing judgement
on other kinds of claims, such as whether a proof is nice or memorable or
surprising.1

As stated above, we will distinguish three different kinds of fit: direct fit,
which deals with the relation between the proof and a theorem, presentational
fit, which deals with the relation between the proof and the reader, and familial
fit, which deals with the relation between a proof and mathematics as a whole
(e.g., other theorems). The rationale for these terms will be indicated below.
In the following sections we present examples of proofs that exemplify different
combinations of these different aspects of fit. We use contrasting proofs of the
same theorems to illustrate how a proof could be a better or worse fit for a
particular theorem, in each of these different dimensions.

2.1. Criteria for Direct Fit
Direct fit refers to the relationship between a theorem and a proof. We call it
direct because it does not rely upon any sort of mediation, such as the psycho-
logical process of reading nor the existence of other proofs. This is perhaps the
first kind of fit that comes to mind, and the one that most directly captures
the feeling that a certain proof is right. We identify two aspects of direct fit,
the first of which we call coherence, which deals with the concepts used in the
proof, and the second of which we call specificity, which deals with the choice
of proof technique or method.

D1:Coherence. The proof is stated in the same terms as the theorem.

This criterion deals with the language and the conceptual apparatus used in
the theorem. If a theorem is stated, for example, in terms of areas, then a
proof that coheres will also be stated in terms of areas. If the proof is stated
in other terms, such as angle measures, it would not cohere. The introduction
of a seemingly unrelated conceptual apparatus would impact the coherence
negatively.2

1While fit has positive connotations, that is to say that all other things being equal we
would prefer a proof that fits to one that does not, there are certainly other features a proof
might have that could trump the quality of fit. For instance the novelty of a cumbersome
proof might make it preferable in some contexts to a well-known slick or elegant proof.
But this discussion already diverges from the simple aim of this paper, which is to provide
criteria for identifying the fit of a given proof.

2Note that this criterion is similar to ‘purity of method’, that is the idea, dating
back at least as far as Aristotle, that resources used in solving or in proving a theorem
should synchronize with those being used in understanding [Detlefsen and Arana, 2011].
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D2:Specificity. The proof employs a tool that uses exactly the right level of
technical power for the task.

This criterion deals with the method used to prove a theorem. It captures
the intuitive feeling that certain methods or tools are ‘right’ for a particular
proof. The tool should be something that goes above and beyond the stan-
dard brute-force methods for approaching a proof of a theorem at hand. For
a proof to be specific the tool should seem to be appropriate, ‘just the right
one needed’ to get the proof done; it supplies all that is needed and nothing
more.

2.2. Criteria for Presentational Fit
Presentational fit refers to the way a proof is communicated and the extent to
which the proof write-up makes the underlying ideas accessible to the reader.
This type of fit has a psychological component and is dependent in part on the
reader’s background knowledge. We deliberately choose the term presentational
rather than representational to avoid the many varied connotations of the latter
term. We will underscore that throughout this paper we are interested in the
write-up of the proof, not how the proof might be represented in the mind. We
distinguish between two aspects of presentational fit, the first of which, level of
detail, refers to the appropriateness of detail in the written-up version of the
proof, and the second of which, transparency, deals with how well the written
proof matches the ideas the proof conveys.

P1:Level of detail. The underlying ideas are presented with the appropriate
amount of detail.

This criterion measures the extent to which a given written proof has an
appropriate amount of detail, given the background knowledge that can be
assumed of the reader. For instance, it seems proper to give the proof of
an entry-level theorem in a field with details regarding basic calculations,
but for a higher-level theorem this would be superfluous, as any reader who
would be prepared to understand even the statement of the theorem must
be expected to know certain basics of the theory.
A proof might fail to have the right level of detail in two ways — it might
have too much, for instance including computations that readers could easily
do on their own, or it might have too little, leaving to readers arguments
or steps that are difficult and not obvious. While to some extent this cri-
terion is subjective, there may be norms of adequacy depending on the
given population (for instance, among well-trained topologists) and on the
theorem. A proof with the appropriate level of detail allows the main ideas to

Historically this distinction was used to separate algebraic and geometric methods, and
was employed famously by Hilbert in his Grundlagen der Geometrie [1899]. Our notion
of coherence is more specific than that of purity of method, though we do not make any
claims about understanding and focus only on the resources employed in a proof.
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be foregrounded and other aspects of the proof, such as tedious calculations,
to be backgrounded, and this is what brings about this feeling of fit.3

P2:Transparency. The structure of the argument is clear.

In a proof that is strong on this criterion, it is easy see ‘what is going on’. In
other words, the structure of the proof is natural for the particular argument,
and there is no deus ex machina component. A certain kind of argument, like
proof by contradiction, could be natural in some contexts and not others.
For instance, to prove the infiniteness of a set it is natural to set up a proof
by contradiction because the infiniteness is formulated as being not finite.
However, using a proof by contradiction to prove the Fundamental Theorem
of Arithmetic would obscure the central ideas. While the ability to grasp
ideas depends on the background of the reader, the criterion of transparency
deals with a proof’s potential to make clear the underlying ideas. In other
words, if a proof is transparent, a reader with the appropriate background
should be in an ideal position to grasp the ideas of the proof.

2.3. Criteria for Familial Fit
Familial fit refers to the relationship between a particular proof and a family
of proofs. We identify two basic ways that a family membership can be estab-
lished. One, which we call generality, connects proofs via generalization. The
other, which we call connectedness, connects proofs via similarities between
their ideas. This aspect of fit deals less with the feeling that this proof is the
‘right’ one, and more about the positioning of a particular proof relative to the
rest of mathematics.

F1:Generality. The idea of the proof generalizes to a larger class of theorems.

This criterion deals with how well an underlying idea generalizes to prove a
class of theorems. The theorem at hand can be seen as a specific instance of
a more general claim, which is still provable by means of the same general
proof idea. This type of family relation might be thought of as being vertical,
like nested cups, because the more general proof subsumes the less general
one, without adding additional ideas or techniques.

F2:Connectedness. The proof idea connects to proof ideas of other theorems.

This criterion also deals with family membership but not via generalization.
The proofs may be related via ideas or techniques, but one proof does not
subsume the other (though a third, more general, proof might subsume both
of them.) This type of family relation might be thought of as being horizontal
— if generality is a relationship between parent and child, connectedness is
a relationship between siblings. Connectedness is a matter of degree — the
more proofs a given proof is related to, in this way, the more connected it is.

3The foregrounding and backgrounding of information might be connected Lange’s
[2015] notion of salience in the context of mathematical explanation.
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2.4. Comment on Interdependence of Criteria
In the course of analyzing the examples below we will see that these criteria
distinguish between different proofs. It seems that the criteria are pairwise
independent, in the sense that not all proofs scoring high on criterion A always
score high on criterion B, for any choice of A and B. However, it may still
be the case that scoring high on some subset of the criteria (say, A, B, and
C) always implies scoring high on some other criterion (say, D), so that the
set of criteria as a whole is not independent. We have not made an effort to
investigate these kinds of relationships; we merely note that they might exist.

Another natural question that might arise is whether the different aspects
of fit could work against each other; so a few words about that are in order. In
particular, two of the criteria that might appear at first glance to be in conflict
are generality, F1, and specificity, D2. It does seem to be the case that a very
specific proof is unlikely to be general, and vice versa. However it is also the
case that some proofs involve special cases which are both specific and general
at the same time. A generic example4 is a specific example which captures
the generality of a claim while at the same time grounding the argument in a
concrete situation. Some of our examples have this character, and in that case
specificity and generality are not at all in conflict.

3. EXAMPLES
We will consider proofs of four theorems in this paper: the square root of 2 is
irrational, the Pythagorean theorem, the complex-conjugate-root theorem, and
Pick’s theorem. We have purposely chosen theorems that are familiar and have
a number of well-known proofs so that the focus can be on the analysis of these
proofs, in terms of fit, rather than on the technical details of the proofs. In the
first three examples we contrast two proofs for each theorem, the first of which
will fit the theorem in some way, and the second of which will not fit to the
same extent. We will then consider two proofs of Pick’s theorem where there
is no clear winner regarding the fit. A table is given in Section 4 to summarize
the analyses done in this section.

3.1. The Square Root of 2 is Irrational
Below we contrast two proofs of the theorem that the square root of two is
irrational. The first is a standard proof, which we claim fits the theorem in all
three ways. The second proof, using base 3 representation, is less well-known.
We will see that based on several of our criteria, this proof fits less well than
the standard proof.

Theorem 3.1. The square root of 2 is irrational, that is
√

2 cannot be written
as

√
2 = p/q where p and q are positive integers.

4See [Balacheff, 1988] for further discussion of generic examples.
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For the first proof, we will use the result that any positive integer p has a
unique factorization into prime numbers — that is, a version of the fundamen-
tal theorem of arithmetic — which we phrase as a lemma. The fundamental
theorem of arithmetic was known already by Aristotle, but not proved until
Gauss had recognized the need to supply a rigorous proof (see [Agargün and
Özkan, 2001]). We omit the proof of the lemma.

Lemma 3.2. Let p be a positive integer. Then p can be written as

p = pα1
1 · pα2

2 · pα3
3 · . . . ,

where the αi are uniquely determined non-negative integers, and {p1, p2, p3, . . .}
is the set of prime numbers.

First proof of Theorem 3.1. Assume, for the sake of contradiction, that
√

2 =
p/q, where p and q are positive integers. By Lemma 3.2, we may then write p
and q as

p = 2α1 · 3α2 · 5α3 · . . . and q = 2β1 · 3β2 · 5β3 · . . .

respectively. Now, since
√

2 = p/q, we get 2 = p2/q2, and subsequently 2q2 =
p2.

Observe that

p2 = 22α1 · 32α2 · 52α3 · . . . and q2 = 22β1 · 32β2 · 52β3 · . . .

by standard laws of arithmetic. When multiplying q2 by 2, the exponent of the
prime factor 2 goes up by one, so that

2q2 = 22β1+1 · 32β2 · 52β3 · . . .

Now, from p2 = 2q2, we get that

22α1 · 32α2 · 52α3 · . . . = 22β1+1 · 32β2 · 52β3 · . . .

Since the prime factorization is unique by Lemma 3.2, we can equate exponents
on either side to find that 2α1 = 2β1 + 1, 2α2 = 2β2, 2α3 = 2β3, . . .. The
equation 2α1 = 2β1 + 1 amounts to an even number being equal to an odd
number, which is clearly absurd. We thus have a contradiction, and the original
assumption must be false. The result follows by reductio ad absurdum. �

To what extent does this proof exhibit the three different kinds of fit?

D1:Coherence. The proof is coherent, as the theorem concerns the structure of
the integers, and the line of argument in the proof uses only these concepts.
In particular, the proof idea, i.e., the idea by virtue of which Theorem 3.1 is
true, is that equal integers have equal exponents in their prime factorizations.
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D2:Specificity. The proof does not seem to fulfill the criterion of specificity. The
technical tool at work in this case is prime factorization. This is adequate
to prove the theorem, but is overly powerful. In fact, only the number of
factors 2 in p and q is needed for the conclusion to be drawn.

P1:Level of Detail. We have deliberately written this proof so that the level
of detail criterion is not fulfilled.5 This proof gives the relevant information
simply and concisely, but some unnecessary trivial steps are included, as for
example in the move from the prime factorizations of p and q via

√
2 = p/q to

the equation of the prime factorizations of p2 and 2q2. Also, some extraneous
information is presented, like the details of equating exponents of prime
factors other than 2. Note that a less detailed proof is not necessarily the
most pedagogical. The steps given in a less detailed proof may be helpful if
you do not have the appropriate background to fill in the missing steps, but
given the level of the theorem, and the concepts needed to understand the
statement of the theorem, these details seem unnecessary.

P2:Transparency. The transparency criterion is fulfilled. The underlying idea,
namely that the parities of the exponent of the prime factor 2 in the expres-
sions for p2 and q2 will be different, is easily graspable. As regards the
structure of the rest of the argument, the moves from

√
2 = p/q to 2 = p2/q2,

to p2 = 2q2 are directly motivated by how fractions and square roots are
introduced in terms of the integers: since fractions are introduced as ordered
pairs of integers, and square roots are introduced (in the standard way) as
those elements x that satisfy an equation x2 = n, the rewriting steps can be
read as a very natural unwinding of the definitions in terms of more basic
concepts.

F1:Generality. The proof fulfills the criterion of generality. The proof idea can
be adapted without effort to prove that the square root of p is irrational for
any prime p (by looking at the exponent of the prime factor p in the final
step of the proof), and with some minor effort to the case when n is any
integer which is not a perfect square (in which case the prime factorization
of n, and the exponents of several prime factors must be examined).

F2:Connectedness. The proof is connected. To establish this, we must describe
how the proof idea figures in a range of other proofs in such a way that the
proof at hand is a particular instance. For example, the basic divisibility
theorems p|n2 =⇒ p|n for p prime, and p|ab =⇒ p|a ∨ p|b for p prime,
could be quoted.

5Compare this proof with the following sparser one.
Assume, for the sake of contradiction, that

√
2 = p/q, where p and q are positive

integers. By Lemma 3.2, we may then write p and q as p = 2α1 · 3α2 · 5α3 · . . . and
q = 2β1 · 3β2 · 5β3 · . . . . Now, from p2 = 2q2, we get that 22α1 · 32α2 · 52α3 · . . . =
22β1+1 ·32β2 ·52β3 ·. . . . Since the prime factorization is unique by Lemma 3.2, we can equate
exponents on either side to find that 2α1 = 2β1 + 1, which amounts to an even number
being equal to an odd number, which is clearly absurd. We thus have a contradiction, and
the original assumption must be false.
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We can see here a clear example of two criteria pulling in different directions:
A proof using only the number of factors 2 in p and q would have been more
specific, but less general. It should not, however, be concluded from this that
specificity and generality are always negatively correlated. This is the one proof
in our sample that fails the criterion for level of detail. It is, in general, fairly
easy to imagine proofs that vary in level of detail; so we have not bothered to
alter the other proofs. The failure to fulfill this criterion comes from the fact
that the details are at a fairly low level compared to what is being proven.
These details might be appropriate when first introducing a proof but are not
necessary for someone with adequate background knowledge.

The second proof, in contrast, exhibits fewer of the criteria of fit than the first
proof. This second proof uses base 3 representation to get a contradiction, which
proves the specific claim that the square root of 2 is irrational, but the argument
does not carry over to similar claims (i.e., square roots of other primes). The
proof relies on the following lemma which can be proven independently of the
irrationality of

√
2.

Lemma 3.3. Let p be an integer, represented in base 3. Then the last non-zero
digit of p2 represented in base 3 must be a 1.

Proof of Lemma 3.3. We write the congruence a ≡ b (mod 3) as a ≡3 b. First
observe that any zero digits at the end of p will only contribute zeros to the
end of p2; so we may assume that p does not end with a zero. Now, suppose
the last digits of p are . . . , a4, a3, a2, a1, where a1 �= 0, and the last digits of p2

are . . . , b4, b3, b2, b1. We have two cases: a1 = 1 and a1 = 2. If a1 = 1 then by
standard laws of arithmetic (in base 3), we have

b1 ≡3 a2
1 = 12 = 1;

so b1 = 1 and we are finished. If a1 = 2, we have

b1 ≡3 a2
1 = 22 ≡3 1,

and again we are finished. �

Second proof of Theorem 3.1. Assume, for the sake of contradiction, that
√

2 =
p/q, where p and q are integers. By standard arithmetic we get that p2 = 2q2.

By Lemma 3.3, the last non-zero digit of p2 represented in base 3 must be 1,
but the last non-zero digit in the representation of 2q2 must be 2, since by the
same lemma, the last non-zero digit in q2 must be 1. This is a contradiction,
and the original assumption must be false; so the result follows by reductio ad
absurdum. �

To what extent does this proof exhibit the three different kinds of fit?

D1:Coherence. The proof is not coherent, since the argument in terms of base
3 is in different terms than the statement of the theorem. Of course, if

√
2 is
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irrational, it is irrational regardless of the base representation. However, the
fact that in one of these representations it is possible to get a contradiction
is not immediately obvious. Moreover, the statement of the theorem makes
no reference to the specific representation of the integers; so choosing a
particular base to carry out the argument imposes a restriction that breaks
any possible parallel between the theorem and proof.

D2:Specificity. The proof is specific. The technical tool that works in this case
is expressing the integers in base 3. This turns out to be just what is needed
to draw the desired conclusion (the different last digits), and it is hard to
see how one would reduce this idea while still maintaining this possibility.
Arguably, one could restrict this proof to looking at p and q modulo 3,
considering only the last digits, but this seems very similar to the present
proof.

P1:Level of detail. The proof has an appropriate level of detail. It gives only
information relevant for the level of the theorem, simply and concisely.

P2:Transparency. This proof is not transparent. It is not clear why rewriting
the integers p and q in base 3 should be relevant, and it seems like a trick
— it just happens to work.

F1:Generality. The proof is not general. The base 3 representation cannot be
used to prove, for instance, that

√
19 is irrational in this way, and neither

can it prove irrationality for the square root of any other prime whose base
3 representation ends with a 1: Let a3 denote the representation of the
integer a in base 3, and observe that 19 = 2013. Now consider the equation
2013·q2

3 = p2
3. The last non-zero digit on each side will be 1, and no conclusion

can be drawn.6

F2:Connectedness. The proof is not connected, as far as we can tell. We know of
no other proof that uses this kind of argument. For any given prime number
one could try to use a similar argument, but we do not know of any current
set of proofs that have this character.

While this proof satisfies one criterion for presentational fit — relating to
the level of detail — and one criterion for direct fit — being specific — it seems
fair to say that the proof is not a very good fit in general for the theorem. The
proof is not general, as noted above. The first proof, in contrast, uses prime

6By studying the possible last digits of squares in different bases, the proof can be
adapted to show that other square roots of primes are irrational. For example, the only
possible last non-zero digits of squares in base 5 are 1 and 4; so the square roots of 2 and
3 can be shown to be irrational using a similar proof in base 5. In fact, it may even be
possible to find, for a given prime p, a suitable base b, in which the only possible last
non-zero digits of squares do not coincide with the last non-zero digit of p in base b so
that the same proof idea would carry over.

However, given a prime p, the proof as it stands gives no indication of how to find such
a suitable base b, and therefore the proof can not be said to be general.
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Fig. 1. Dissection of a right triangle

factorization, which allows us to get quickly to the essence of why the theorem
must hold. The first proof involves simply writing out what the terms mean,
and using the uniqueness of the prime factorization to get a contradiction. This
argument can be easily generalized to square roots of any prime numbers, as
mentioned above.

3.2. The Pythagorean Theorem
The second example we will consider is the Pythagorean theorem. Again we
will contrast a well-known proof, which we claim fits the theorem, with a lesser
known one that does not fit. Whereas with the previous example the proof that
fits does so mostly based on its algebraic structure, which was presented by
prime factorization, in this case the proof that fits does so based on geometric
properties. The first proof comes from Euclid’s Elements, VI. 31, and the second
proof is contemporary.

Theorem 3.4. Let c be the hypotenuse of a right triangle T0, and let a, b be
other two sides. Then the sum of the areas of the squares constructed on sides
a and b of T0 equals the area of the square constructed on the hypotenuse.

First proof of Theorem 3.4. Consider Figure 1 with line d perpendicular to c.
This figure contains three similar triangles, T1, T2, and T0, which lie on sides
a, b, and c, respectively. Clearly, the sum of the areas of T1 and T2 equals that
of T0. But it is also the case that each of the triangles lies on one of the sides
of the original triangle; so the sum of the areas on sides a and b must be the
same as the area on side c. Changing the scale factor gives the classic result
involving squares on each side. The algebraic details of this argument are given
in the Appendix. �

To what extent does this proof exhibit the three different kinds of fit?

D1:Coherence. The proof is coherent. The theorem is stated in terms of areas,
as is the proof. We also note that the idea of preserving areas is in line with
the more famous proof in Euclid’s Elements, I. 47, where the areas of the
squares constructed on either side are shown to be equal by area-preserving
steps, a method that was standard for theorems involving area in ancient
Greek mathematics.
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D2:Specificity. The proof fulfills the criterion of specificity. The technical tool
that works in this case is dividing the original triangle into similar triangles
(put more generally, this could be described as dissection). This division
allows us to see the crucial relationship, namely that all three triangles are
similar and their areas add up. Other dissections could be used, but the
present dissection supplies precisely what is needed for the proof.

P1:Level of detail. The proof has an appropriate level of detail. It gives only
information relevant for the level of the theorem, simply and concisely.

P2:Transparency. This proof is transparent. The proof consists of two main
ideas, presented clearly and in a logical succession, namely the dissection of
the triangle into similar triangles, and that the scaling of the areas carries
over to arbitrary shapes. The particular choice of the dissecting line may be
seen as a trick, but drawing the height in a right-angled triangle and getting
similar triangles in this way is a rather standard procedure.

F1:Generality. The proof is general.7 The generality comes from the fact that
the proof works for arbitrary similar shapes constructed on the sides of the
triangle.

F2:Connectedness. Whether or not the proof is connected is not as clear as the
other criteria, but we are inclined to consider the proof connected. The class
of proofs to which the proof can be seen to belong (other classes may be
possible) might be taken to be proofs by area preservation, for instance the
other ancient Greek proofs that used this method.

The second proof, which uses trigonometry, is in some ways remarkable. It
was long thought that the Pythagorean theorem could not be proven using
trigonometry, because it would be impossible not to use the fact that sin2 x +
cos2 x = 1, which is equivalent to the Pythagorean theorem, and thus make
the argument circular. Zimba [2009] found the following proof which avoids
circularity, using the subtraction formulas for sine and cosine. We assume that
we have the subtraction formulas for sine and cosine,

cos(α − β) = cos α cos β + sin α sin β
sin(α − β) = sin α cos β − cos α sin β.

A sketch of how to prove the subtraction formulas for sine and cosine without
relying on the Pythagorean theorem is given in the Appendix.

Second proof of Theorem 3.4.. Suppose that α is the angle opposite side a, and
β is the angle opposite side b, and without loss of generality that 0 < β ≤ α <
90◦. We now have

cos β = cos(α − (α − β))

7Steiner [1978] gives an account of this generality. He claims that this proof is the most
explanatory and most general of all proofs of the Pythagorean theorem.
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= cos α cos(α − β) + sin α sin(α − β)
= cos α(cos α cos β + sin α sin β) +

sin α(sin α cos β − cos α sin β)
= (cos2 α + sin2 α) cos β,

from which it follows that cos2 α + sin2 α = 1, since cos β is the ratio between
one leg and the hypotenuse of a right triangle, and as such is never zero. The
theorem now follows from the definitions of sine and cosine and scaling. �

To what extent does this proof exhibit the three different kinds of fit?

D1:Coherence. The proof is not coherent. Although it may be possible to
rephrase the introduction to the proof, at least in its historical context,
it seems that the underlying idea was something along the lines of ‘is
it even possible to give a trigonometric proof of the Pythagorean theo-
rem?’, not something more mathematically motivated. The trigonometric
language is clearly a different framework from the one in the statement of the
theorem.

D2:Specificity. The proof exhibits specificity, in that the tool used (the sub-
traction formulas) works out to be just what is needed for the conclusion to
be drawn. We note that the subtraction formulas can of course be used for
proving many other results, but this does not detract much from the speci-
ficity. To indicate what would have been a less specific proof, it might have
made reference to some abstract generalization of the subtraction formulas
to Hilbert spaces.

P1:Level of detail. The proof has an appropriate level of detail. It gives only
information relevant for the level of the theorem, simply and concisely.

P2:Transparency. This proof is not transparent. There is no clear sense of direc-
tion in the calculations performed. The structure of the proof is clear enough,
but it seems that there is little in the way of a natural sequence of ideas, and
the introduction of trigonometric quantities seems extraneous. It is hard to
see, for instance, why one would want to rewrite cos β as cos(α − (α − β)).

F1:Generality. The proof as it stands is not general. It is true that once cos2 α+
sin2 α = 1 is established, one can add the scaling argument to show that the
result holds for arbitrary similar shapes, but the scaling argument is not an
integral part of the proof.

F2:Connectedness. The proof is not connected. The fact that this proof was
only found in 2009 bears witness to its singular nature, and we have not been
able to give a family of proofs, of which this is a special case. Arguably, the
proof belongs to the loosely defined family of proofs employing trigonometric
identities, but it seems this is too general a family to be meaningful.

What is it that makes the first proof seem to fit better than the second? As
in the case of the proofs that the square root of two is irrational, the first proof
fulfills many more of the criteria for fit, in all three categories, while the second
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proof fulfills only a few criteria. The fact that the second proof satisfies the
detail and specificity criteria does not seem to compensate for the lack of being
transparent and coherent or general and connected. The geometric argument
of the first proof gets very quickly to what the Pythagorean theorem is about.
The relationship between the areas on the sides of the right triangle is very
easy to see once the similarity is established (which is also not very hard to
do), and we see that we are proving a more general, deeper claim than what
the Pythagorean theorem states. The result is not based on the specific shape
of the triangle but on the areas of congruent figures.

3.3. The Complex-Conjugate-Root Theorem
The third theorem that we will consider is the complex conjugate root theorem,
which was first proven by d’Alembert [1746] as a corollary of the Fundamental
Theorem of Algebra. In this case the two proofs we will consider are not so
radically different in terms of fit as the pairs of proofs in the previous examples.
Both of the proofs fit to some extent, but one (we claim) fits better. In the two
proofs of the conjugate-root theorem, the arguments are very similar, differing
mostly in the amount and type of detail provided, and the aspects of the proof
that are foregrounded or backgrounded. In the first example, the algebraic
details to establish the claim are in the foreground, and in the second example
the details are left to the reader and the proof idea is foregrounded.

Theorem 3.5. Let f(z) = anzn + an−1z
n−1 + . . . + a1z + a0 be a polynomial

in the complex variable z, and suppose all ai are real numbers. If z0 is a root
of the equation f(z) = 0, then so is the complex conjugate z0.

Theorem 3.5, compared with Theorems 3.1 and 3.4, deals with mathematics
that is not entirely trivial to all working mathematicians. The first proof, which
might be considered brute force is a fairly straightforward algebraic treatment,
requiring not much more than high-school mathematics to follow. It evaluates
the polynomial at the relevant value. The second proof is a bit more sophis-
ticated, and fleshing out the details requires some abstract algebra. However,
one might still expect that any research-level mathematician would feel that
the idea given in the second proof would be enough for her to be able to supply
the missing details. We will use the following lemma, which can be confirmed
by straightforward calculation.

Lemma 3.6. Let z and w be arbitrary complex numbers. Then zw = z w and
z + w = z + w.

The proof proceeds by calculation, by showing that f(z0) = 0 implies
f(z0) = 0.

First proof of Theorem 3.5. Assume that f(z0) = 0. We must show that
f(z0) = 0, or in other words that anz0

n + an−1z0
n−1 + . . . + a1z0 + a0 = 0.
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By applying Lemma 3.6 iteratively, and using the fact that ai = ai for any real
number ai in the second equality, we get

f(z0) = anz0
n + an−1z0

n−1 + . . . + a1z0 + a0

= anzn
0 + an−1z

n−1
0 + . . . + a1z0 + a0

= anzn
0 + an−1z

n−1
0 + . . . + a1z0 + a0

= f(z0) = 0 = 0. �

To what extent does this proof exhibit the three different kinds of fit?

D1:Coherence. The proof is coherent. It proceeds using only concepts intro-
duced in the statement of the theorem.

D2:Specificity. This proof involves only carrying out a simple computation; so
it is not specific.

P1:Level of detail. The proof has an appropriate level of detail. It gives only
information relevant for the level of the theorem, simply and concisely.

P2:Transparency. This proof is transparent. The direct calculations have a clear
beginning and end, and the steps in between follow in a natural order. It is
easy to follow the calculations, with the conjugation being undistributed.

F1:Generality. The proof is to some extent general. The proof works for any
polynomial with real coefficients; so in this sense it is more general than,
for instance, calculating that both i2 + 1 = 0 and (−i)2 + 1 = 0, that is
the polynomial f(z) = z2 + 1. However, proofs by direct calculation are
particular to the specific claim to be proven.

F2:Connectedness. In a rather weak sense, the proof is connected. It is, at least,
a particular instance of the family of proofs weakly held together by being
proofs by direct calculation. One can imagine saying something along the
lines of ‘Aha, so you can prove this by direct calculation’.

The second proof builds on the simple observation that both i and −i when
squared equal −1. This symmetry is at the heart of why the algebra above
works, and the proof moves forward with reasoning based on this idea.

Second proof of Theorem 3.5. Since the defining property of the imaginary unit
i is that i2 = −1, there is nothing that sets it apart from its negative counterpart
−i in relation to the real numbers, as we also have (−i)2 = −1. Thus when
introducing the imaginary unit, we may take −i for i, and vice versa, and the
complex conjugation operation only takes us from one version of the complex
numbers to the other indistinguishable one.

Therefore any polynomial in a complex variable with real coefficients cannot
tell i and −i apart, and so evaluation at z0 or z0 makes no difference for the
value of the polynomial. A geometric interpretation is that the complex plane
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is reflected over the real axis. This of course leaves the real axis fixed. So the
right-hand side of f(z0) = 0 is not changed when f is evaluated at z0. �

In order to make this second proof more formal, one would introduce the
mapping σ : z → z from the field extension R(i) to the field extension R(−i),
and establish that σ is an isomorphism. The algebra involved in checking this
is in fact exactly Lemma 3.6.

To what extent does this proof exhibit the three different kinds of fit?

D1:Coherence. The proof is coherent. The statement of the theorem regards a
sort of indistinguishability of z0 and z0, and it is exactly the indistinguisha-
bility of i and −i that is the driving idea in the theorem.

D2:Specificity. The proof is specific. A less specific proof could have talked
about general mappings preserving certain identities in field extensions, but
here only the pertinent observations regarding i and −i are given. Giving
the particulars of the mapping σ : z → z would have further contributed to
the specificity.

P1:Level of detail. The proof has a reasonable level of detail given the level of
the theorem, but much more is left to the reader than in the first proof.
For instance, the geometric argument is said to follow from the algebraic
assumptions without an explicit mapping of one to the other.

P2:Transparency. The proof is not completely transparent since it is only a
sketch, but the ideas here are clear and easy to grasp, namely that −i and
i function interchangeably as far as the complex numbers are concerned.

F1:Generality. The proof is general, in the sense that the symmetry idea can
be employed to prove a range of theorems regarding polynomials in field
extensions. One example of such a theorem is the following: ‘Let f(x) be a
polynomial with integer coefficients. Suppose that a + b

√
c is a root of the

equation f(x) = 0, where a and b are rational and
√

c is irrational. Then
a − b

√
c is also a root of the equation.’

F2:Connectedness. The proof is connected. It is a particular instance of a family
of results regarding polynomials in field extensions, as indicated above. It is
also an instance of the types of theorems proved in Galois theory on roots
of polynomials.

Unlike the other pairs of proofs which seemed very different in nature, these
two proofs are fairly similar. Actually, it could be argued that the two proofs
are really just the same proof, but presented with different levels of abstraction.
However there are several differences between the proofs, which while subtle,
could make a difference to their sense of fit. Whereas the first proof emphasizes
the calculation aspect, which does not seem to be at the heart of the statement,
the second proof emphasizes the symmetry, which does seem to be at the heart
of the statement. The second proof, by emphasizing the symmetry, helps us
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see an underlying mechanism, getting at the heart of why the computational
argument works. The difference between the proofs seems to be what aspects
get foregrounded and backgrounded. This might, in turn, be connected to what
is considered salient about the proofs.8

3.4. Pick’s Theorem
In this section we will look at two proofs that demonstrate familial fit (and
some other aspects of fit) in different ways. The proofs both demonstrate Pick’s
theorem, which gives a formula for the area of lattice polygons based on the
number of lattice points inside and on the boundary of the polygon. Pick’s
theorem gives a simple formula for calculating the area of a lattice polygon,
that is, a polygon constructed on a grid of evenly spaced points. The theorem,
first proven by Georg Alexander Pick in 1899, is a classic result of geometry.9

The first proof gets its sense of family membership through the technical tool
used to make the proof tractable (in this case via angle measures). In the second
case the sense of family membership comes via its key idea, which places the
proof in a family connected by the relationship established in Euler’s formula.

We shall restrict ourselves to the lattice Z
2, that is the set of points in

the plane with integer coordinates. In this case, a lattice polygon is simply a
polygon in the plane, all of whose vertices have integer coordinates. An interior
(lattice) point is a point of the lattice that is properly contained in the polygon,
and a boundary (lattice) point is a point of the lattice that lies on the boundary
of the polygon.

Theorem 3.7 (Pick’s Theorem). Let A be the area of a lattice polygon, let
I be the number of interior lattice points, and let B be the number of boundary
lattice points, including vertices. Then A = I + 1

2B − 1.

For example, in the lattice polygon given in Figure 2a, there are 10 boundary
points and 11 interior points; so the area is 11 + 10/2 − 1 = 15.

In both proofs, we will draw on the following two lemmas, which we state
here without proof, as they will not figure in the analysis and discussion. An
elementary triangle is a triangle whose vertices are lattice points, and which
has no further boundary points and no interior points.

Lemma 3.8. Any lattice polygon can be triangulated by elementary triangles.

Lemma 3.9. The area of any elementary triangle in the lattice Z
2 is 1/2.

8See [Lange, 2014] for a discussion of salience in connection to mathematical explana-
tion.

9The original proof is found in [Pick, 1899]. A short historical account is given at
http://jsoles.myweb.uga.edu/history.html. An initial analysis of these proofs can be found
in [Raman and Öhman, 2011]. The first proof was suggested to us by Bjorn Poonen, and
the second appears in [Aigner and Ziegler, 2010].
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(a) (b)

Fig. 2. a. Example of a lattice polygon. b. One possible triangulation.

Fig. 3. Lattice polygon, with two exterior angles marked

From Lemma 3.8 and Lemma 3.9, it follows that the number of triangles in any
triangulation of a given lattice polygon is the same.

First proof of Theorem 3.7, using angles. We begin by partitioning the poly-
gon P into N elementary triangles, which is possible by Lemma 3.8 (see
Figure 2b).

We now sum up the internal angles of all of these triangles in two different
ways. On the one hand, the angle sum of any triangle is π; so the sum of all
the angles is S = N · π.

On the other hand, at each interior point i, the angles of the elementary
triangles meeting at i add up to 2π. At each boundary point b that is not a
vertex, the angles of the elementary triangles meeting at b sum to π. At the
vertices, the angles do not add up to π, but if we add the interior angles at
all the vertices, we get kπ − 2π, where k is the number of vertices, since the
sum of the exterior angles is 2π (see Figure 3). One can argue for this result
by noting that walking along the perimeter of the polygon, one completes one
full turn, that is 2π. Note that some exterior angles contribute a positive term,
and others a negative term.
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Let I be the number of interior points and B be the number of boundary
points. In all, the sum of the angles at boundary points is B · π − 2π, and the
sum of the angles at internal points is I · 2π. Therefore, S = I · 2π + B · π − 2π.

We conclude that N · π = I · 2π + B · π − 2π; so canceling π we get N =
2I + B − 2. Since by Lemma 3.9 the area of any elementary triangle is 1

2 , we
have A = 1

2N = I + 1
2B − 1. �

To what extent does this proof exhibit the three different kinds of fit?

D1:Coherence. The proof is not coherent. The use of angle measures seems
rather extraneous.

D2:Specificity. The proof fulfills the criterion of specificity. The introduction of
the angle measures turns out to be adequate to prove the result, yet there is
a quality of surprise to the proof, arising from the fact that angle measures
seem to be extraneous to the question.

P1:Level of detail. The proof has an appropriate level of detail. It gives only
information relevant for the level of the theorem, simply and concisely.

P2:Transparency. This proof is not transparent. It is easy enough to follow the
steps, but it is not clear why we should wish to investigate the angle sums of
a triangulation. Therefore, the proof has the character of ‘bear with me for
a while’, which is not transparent. The step of dissecting the polygon into
elementary triangles, however, is rather natural since areas of triangles are
more easily calculated than areas of general polygons, and such dissection is
commonly used to facilitate area calculations.

F1:Generality. The proof is not general. The conclusion of the theorem holds for
other lattices and geometries as well, with appropriate scaling. For instance,
if one applies a dilation along an axis, the present proof can be adapted to
prove a corresponding theorem for the new lattice (the areas of the elemen-
tary triangles will have changed). However, angle measures are not conserved
under such a transformation, which detracts from the generality of the proof
idea. Also, for area-preserving transformations, the proof idea may not work,
since the angle sums of the elementary triangles may no longer be constant.

F2:Connectedness. This proof has some weak features of connectedness. One
can see it as an example of a proof that involves double counting, and it
is also an example of a proof that involves angle measure (a feature not
directly related to the theorem’s meaning). It is probably not the case that
many mathematicians consider all proofs that involve angle measure to be
a natural and/or important way to categorize proofs. The use of double
counting is certainly a more natural candidate for a family resemblance, but
still, since double counting is such a low-level principle, this would be akin
to grouping proofs that make use of, for instance, the distributive law.

For the second proof, we will also need the well-known Euler’s formula.
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Lemma 3.10. (Euler’s formula) Let f be the number of faces, e be the number
of edges and v the number of nodes in a connected plane graph. Then

v − e + f = 2.

Second proof of Theorem 3.7, using Euler’s formula. We begin by partitioning
P into elementary triangles, which is possible by Lemma 3.8 (again, see Figure
2b).

We then interpret the triangulation as a connected plane graph, where nodes
in the graph are vertices of the triangles in the triangulation, and edges in the
graph are edges of the triangles in the triangulation. This graph subdivides the
plane into f faces, one of which is the unbounded face (the area outside the
polygon), and the remaining f −1 faces are the triangles inside the polygon. By
Lemma 3.9, each triangle has area 1

2 , and thus A = 1
2 (f − 1). (This of course

proves nothing; it is a simple consequence of how we defined f .)
An interior edge borders on two triangles, and a boundary edge borders on

a single triangle and forms part of the boundary of the polygon itself. Let eint

be the number of interior edges, and ebd be the number of boundary edges.
Counting the number of edges in two different ways, we get

3(f − 1) = 2eint + ebd. (1)

Note that we are overcounting here, that is, counting each interior edge twice
and each bounded face three times. In other words, the left-hand side counts
the edges using the fact that each triangle (bounded face) has 3 edges, giving
the effect that each interior edge has been counted twice, and each boundary
edge has been counted once, which exactly amounts to the quantity on the
right-hand side.

We can also observe that the number of boundary edges is the same as the
number of boundary vertices, B = ebd, and that the number of nodes in the
graph is the sum of all the interior and boundary points, v = I + B. Euler’s
formula for the graph at hand states that

(I + B) − e + f = 2 or e − f = (I + B) − 2,

where e = eint +ebd is the total number of edges. We aim to use this to express
f − 1 in terms of I and B. With some algebraic rearrangements and suitable
substitutions, starting with (1), we get

f − 1 = −2f + 2 + 2eint + ebd

= −2f + 2 + 2e − ebd

= 2(e − f) − ebd + 2
= 2(I + B − 2) − B + 2
= 2I + B − 2,

and consequently A = 1
2 (f − 1) = 1

2 (2I + B − 2) = I + 1
2B − 1. �
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To what extent does this proof exhibit the three different kinds of fit?

D1:Coherence. The proof is not coherent. Faces and edges are not mentioned
in the theorem.

D2:Specificity. The proof does to some extent fulfill the criterion of specificity.
Euler’s formula is adequate to prove the theorem, but is decidedly more
generally applicable. Arguably, the proof using angle measure makes use of
a simpler tool, which still gets the job done, and thus there is a more specific
tool available.

P1:Level of detail. The proof has an appropriate level of detail. It gives only
information relevant for the level of the theorem, simply and concisely.

P2:Transparency. This proof is not transparent, though it is a little more trans-
parent than the previous proof. Again, it is easy enough to follow the steps,
and the dissection into elementary triangles is reasonable. If one has previ-
ous knowledge of Euler’s theorem, it should at least seem reasonable to try
to apply it to the graph and expect something useful to fall out.

F1:Generality. The proof is rather general. The lattice points are inherent in
the formulation of the theorem; so the generality of the proof should only
measured against similar results on lattice polygons. The exact same proof
works for a lattice that results from Z

2 by applying any area-preserving
mapping (a shear, for example). The number of lattice points and the number
of boundaries between elementary triangles in a triangulation is invariant
under such transformations, and it is this fact that allows the proof idea to
be applied in general lattices without modification.

F2:Connectedness. This second proof exhibits connectedness. Here, the use of
Euler’s theorem situates the proof in a natural class of theorems. The feeling
is that ‘so this works even here’.

While both of these proofs exhibit some aspects of fit, they derive their sense
of fit from different sources. The first proof derives its sense of fit by the choice
of looking at angle measures. This is a surprising choice, given that angles have
nothing to do either with the setup of the problem nor the result. However,
this choice leads to the relationship we want. It allows us to match the givens
of the situation with the formula we want to establish. The sense of fit feels
like finding exactly the right tool (in this case angle measure) which happens
to crack open the problem.

The second proof derives its sense of fit by fitting into a family of proofs that
are applications of the same theorem (Euler’s formula). Unlike angle measure,
which seems like a means to an end (we do not tend to group proofs under a
heading such as ‘those that can use angle measures’), the identity of the second
proof as one that uses Euler’s formula is enough to place it in a family. Euler’s
formula is a significant result, and its significance arises in part from how it
appears in new and surprising settings.
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Table 1 Summary of Proof Evaluations

Sqrt1 Sqrt2 Pyth1 Pyth2 CC1 CC2 Pick1 Pick2

D1 Coherence X X X X
D2 Specificity X X X X X (X)
P1 Level of detail X X X X X X X
P2 Transparency X X X
F1 Generality X X (X) X X
F2 Connectedness X (X) (X) X (X) X

4. SUMMARY OF PROOF EVALUATIONS
The Table 1 summarizes the evaluations we have done so far of the different
proofs. An X means the proof fulfills the criterion, (X) means it partially fulfills
the criterion, and a blank space means the proof does not fulfill the criterion
at all.

5. DISCUSSION
For the analysis above to have more general interest beyond a mere exercise of
classification, we should point to some ways in which the notion of fit might
connect to other properties we might want a proof to have, both cognitive
and aesthetic. The comments below are more stubs than full articulations,
highlighting a few ways the framework presented in this paper connects to
current discussions in the philosophy of mathematics and related fields.

5.1. Relation to Explanation in Mathematics
Two of the most prominent theories in the area of mathematical explanation
are due to Steiner and Kitcher. We will very superficially consider the relation
between these two theories and our framework on fit. We will also briefly discuss
more recent work by Lange.

Steiner [1978] provides an account of mathematical explanation in terms of
the characterizing property. He described this as ‘a property unique to a given
entity or structure within a family or domain of such entities or structures’. This
description of characterizing property has an obvious parallel with our notion
of coherence. Familial membership is central, both in identifying an entity as
one that could explain, as well as in finding the grounds for the explanation.
As Steiner continues, ‘an explanatory proof makes reference to a characterizing
property of an entity or structure mentioned in the theorem, such that from
the proof it is evident that the result depends on the property’. Similar, but
not identical, to our notion of coherence, the relationship between the entity or
structure and the result is central for determining whether a proof explains (or
has fit). A proof that has the same terms as a theorem, which is how we have
characterized coherence, seems similar to a proof that evidently gives rise to a
particular result.
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Steiner’s notion of explanation involves a process he calls deformation. A
proof that explains can be modified for members of a particular family (e.g.,
the set of all polygons) while keeping the proof idea the same. An explanatory
proof can be deformed to produce a new theorem. While problematic,10 the
idea behind deformation, that an explanatory proof contains an idea that is
invariant to certain intra-family sorts of transformations, is not completely
counter-intuitive. The set-up of a proof is what gives it its basic character, an
intuition that is behind both what makes a proof a member of a family in the
case of familial fit, and what brings about the coherence in the case of direct fit.

Kitcher [1981] offers a view of explanation that is considered to be a counter-
proposal to Steiner’s view, based on the notion of unification. Kitcher says that
explanation arises from the use of arguments that have the same form.11 These
explanations can be found in what Kitcher calls the explanatory store and the
main task of a theory of explanation is to ‘specify conditions on the explanatory
store’ [1981, p. 80]. While the details of what gives rise to an explanation
differ greatly in Kitcher’s and Steiner’s accounts, one similarity seems to be
the emphasis on familial membership, or what we would call connectedness. In
Steiner’s account the membership comes about via characterizing properties,
and in Kitcher’s account it comes about via the explanatory store. The fact that
there is some kind of unification or some sort of family traits that naturally
carry over to similar entities or structures seems central both in these two
accounts of mathematical explanation and in our account of mathematical fit.

In contrast to Steiner and Kitcher, whose views of explanation seem to have
some component similar to that of connectedness, Lange [2014] suggests a view
that, at least in part, relates to our notion of coherence. Lange’s account of
mathematical explanation has three components: unity, salience, and symmetry.
While salience and symmetry might have some counterparts in our framework
that are a bit harder to see, the relation between unity and coherence seems
fairly straightforward. To Lange, ‘A proof is unified when it exploits a prop-
erty that all of the cases covered by the theorem have in common and treats
all of those cases in the same way’ (personal communication). Unlike Kitcher
and Steiner, whose unification and characterizing property ideas involve family
membership, Lange’s notion of unity, similar to our notion of coherence, is one
that is directly related to the proof. Lange’s concept of salience might also
overlap with our concepts of coherence and/or transparency. Salience is a fea-
ture that is ‘worthy of attention’ [Lange, 2014, p. 27]. Coherence is what could
warrant us to focus our attention, while transparency allows us to access the
underlying ideas.

5.2. Relation to Beauty
Less clear than the relation between fit and explanation is the relation between
fit and beauty (in part because it is difficult to nail down exactly what beauty

10See [Hafner and Mancosu, 2005].
11See [Lange, 2014] for a summary of this view.
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is). The criteria in this paper that we guess are most likely to connect to
aesthetic properties such as beauty are those of level of detail, transparency,
and connectedness. Level of detail is related to brevity, a quality often suggested
as a feature of beauty. We know that mathematicians, even after finding a
correct proof, will work hard to find one that is shorter and more concise. This
drive, while having some cognitive component (a shorter proof might be easier
to understand), seems certainly to be aesthetic (hence the terms ‘elegant’ and
‘beautiful’). Simple proofs are nice.

Transparency, which deals with the structure of the proof, may relate to
beauty via the idea that it helps make a proof graspable. This intuition is similar
to Rota’s suggestion [1997] that a beautiful proof is enlightening. Moreover the
foregrounding and backgrounding of information, which is easier to do with a
transparent proof than one which is not transparent, might be precisely what
renders a proof ‘salient’, to use a term in Lange’s [2015] terms. Proofs which
are transparent are those in which the key ideas are salient. This salience may
in turn give rise to aesthetic features that make a proof attractive.

The feature of connectedness could also be aesthetic. A connection allows
you to see a proof or theorem in a new way, as in the second proof of Pick’s
theorem which allowed us to see how Euler’s theorem could be used in a new
unexpected setting. The number of connections a result has tends to be some
measure of how deep a theorem is (see [Lange, 2015] and [Stillwell, 2015]).

Finally, with a little effort one might also see even specificity and gener-
ality as aesthetic. Family memberships are a kind of grouping which simplify
complex relations (the feeling of ‘All I need to remember is that this is one of
those!’). This kind of simplification, in turn, might increase mental processing
speed, a factor that has recently been found to play a central role in beauty
judgements.12

6. FINAL COMMENTS
There are many attributes a proof might have. It might be elegant, clumsy,
enlightening, explanatory, deep, simple, and so on. Some of these properties
are more cognitive, relating to how we understand a proof. Others are more
aesthetic, relating to how we experience the proof, perhaps similar to how one
might experience a piece of music or a work of art. In this paper we have chosen
to explore the notion of fit, in part because it could relate both to the cognitive
and the aesthetic aspects of proof, and in part because it seems more tractable
than the more explored notions of mathematical explanation and beauty.

We hope we have shown via the examples above that even a fairly simple
framework does real work to distinguish proofs and to specify the extent to
which they possess different aspects of fit. The intuitive ideas of direct fit,

12See [Mason and Hanna, 2014] for a discussion of the relation between transparency
and Gowers’s [2007] concept of the ‘width’ of a proof. The width of a proof, which is
connected to the number of ideas it contains, may be related to memorability, which
in turn could be related to aesthetic judgements (some data suggest that shortness of
processing time correlates with positive aesthetic judgement [Reber et al., 2004]).
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which describes the relation between a proof and its theorem, presentational
fit, which describes the relationship between a proof and a reader, and familial
fit, which describes the relation between a proof and the rest of mathematics,
capture several central aspects of the feeling that a proof is ‘right’, or somehow
does the job better than another.

While we have attempted to be careful and systematic in our analysis, we
have tried wherever possible to choose criteria that are fairly basic, which cap-
ture as simply as possible the reasons why a particular proof might appear to
fit. It is our hope, perhaps precisely because these criteria are basic, that we
might find them lurking near other topics such as mathematical explanation
and beauty, which we would also like to understand better.

APPENDIX
In this appendix, we give further technical details on aspects of the two proofs
of the Pythagorean theorem given above.

First Proof of the Pythagorean Theorem
The missing algebra, establishing that it is indeed the equation |a|2 + |b|2 = |c|2
that follows from the scaling considerations, can be presented in the following
manner.

The linear scaling factor from T1 to T2 is |b|/|a|, from T2 to T0 is |c|/|b|,
and so on. If we let Si be the area of Ti, for i = 0, 1, 2, it follows that S0 =
S1 + S2 = (|a|/|c|)2S0 + (|b|/|c|)2S0, from which we get |c|2 = |a|2 + |b|2 by
cancelling S0 �= 0 and multiplying through by |c|2. This calculation establishes
the claim.

One can also derive the conclusion from the fact that the area of each triangle
is a constant fraction of the corresponding square, say T0 = r|c|2, T1 = r|a|2,
and T2 = r|b|2. The algebra to reach the conclusion is trivial: r|c|2 = r|a|2 +
r|b|2 ⇐⇒ |c|2 = |a|2 + |b|2.

Second Proof of the Pythagorean Theorem
Note that the subtraction formulas for sine and cosine are perhaps most
commonly proved using the notion of distance, and hence indirectly the
Pythagorean theorem itself. It might seem, therefore, that the trigonometric
proof of this theorem, presented above, is circular. However, when restricting
the angles to 0 < α, β < 90◦ these identities may be proven entirely without
recourse to the general notion of distance between two points, and hence the
second proof is not circular. One appealing way of proving these formulas is
indicated in Figure 4, where the triangle ABC has a right angle at B.

We see that the angles BAD and ABF are α. We can express the length of
side AD in two ways, as |AD| = |AE|+ |ED| = |FB|+ |GC|. If we consider the
triangle BGC, we may note that |GC| = sin α sin β, and similarly, considering
the triangle ABF , we note that |FB| = cos α cos β, from which it follows that

cos(α − β) = cos α cos β + sin α sin β.
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Fig. 4. Deriving the subtraction formulas

A similar argument for the lengths of FA, BG, and CD yields the subtraction
formula for sin(α − β).
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