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TRENDS IN MATHEMATICS

THE DEATH OF PROOF
by John Horgan, senior writer
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Computers are transforming the way
mathematicians discover, prove and

communicate ideas, but is there a place
for absolute certainty in this brave new world?

L
egend has it that when Pythagoras and his followers dis-

covered the theorem that bears his name in the sixth
century B.C., they slaughtered an ox and feasted in cel-

ebration. And well they might. The relation they found be-
tween the sides of a right triangle held true not sometimes or
most of the time but alwaysÑregardless of whether the trian-
gle was a piece of silk or a plot of land or marks on papyrus. It
seemed like magic, a gift from the gods. No wonder so many
thinkers, from Plato to Kant, came to believe that mathematics
oÝers the purest truths humans are permitted to know.

That faith seemed reaÛrmed this past June when Andrew J.
Wiles of Princeton University revealed during a meeting at the
University of Cambridge that he had solved FermatÕs last the-
orem. This problem, one of the most famous in mathematics,
was posed more than 350 years ago, and its roots extend back
to Pythagoras himself. Since no oxen were available, WilesÕs
listeners showed their appreciation by clapping their hands.

But was the proof of FermatÕs last theorem the last gasp of a
dying culture? Mathematics, that most tradition-bound of in-
tellectual enterprises, is undergoing profound changes. For
millennia, mathematicians have measured progress in terms
of what they can demonstrate through proofsÑthat is, a se-
ries of logical steps leading from a set of axioms to an irre-
futable conclusion. Now the doubts riddling modern human
thought have Þnally infected mathematics. Mathematicians
may at last be forced to accept what many scientists and phi-
losophers already have admitted: their assertions are, at best,
only provisionally true, true until proved false.

This uncertainty stems, in part, from the growing complexity
of mathematics. Proofs are often so long and complicated that

they are diÛcult to evaluate.
WilesÕs demonstration runs to
200 pagesÑand experts esti-
mate it could be Þve times
longer if he spelled out all 
its elements. One observer as-

ÒVIDEO PROOFÓ dramatizes a theo-
rem, proved by William P. Thurston
of the Mathematical Sciences Re-
search Institute (left), that establish-
es a profound connection between
topology and geometry. The theo-
rem shows how the space surround-
ing a complex knot (represented by
the lattice in this scene) yields a Òhy-
perbolicÓ geometry, in which par-
allel lines diverge and the sides of
pentagons form right angles. The
computer-generated video, called
Not Knot, was produced at the Ge-
ometry Center in Minnesota.
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serted that only one tenth of 1 percent
of the mathematics community was
qualiÞed to evaluate the proof. WilesÕs
claim was accepted largely on the ba-
sis of his reputation and the reputa-
tions of those whose work he built on.
Mathematicians who had not yet exam-
ined the argument in detail nonethe-
less commented that it Òlooks beauti-
fulÓ and Òhas the ring of truth.Ó

Another catalyst of change is the
computer, which is compelling mathe-
maticians to reconsider the very nature
of proof and, hence, of truth. In recent
years, some proofs have required enor-
mous calculations by computers. No
mere human can verify these so-called
computer proofs, just other comput-
ers. Recently investigators have pro-
posed a computational proof that of-
fers only the probabilityÑnot the cer-
taintyÑof truth, a statement that some
mathematicians consider an oxymoron.
Still others are generating Òvideo proofsÓ
in the hopes that they will be more per-
suasive than page on page of formal
terminology.

At the same time, some mathemati-
cians are challenging the notion that
formal proofs should be the supreme
standard of truth. Although no one ad-

vocates doing away with proofs alto-
gether, some practitioners think the va-
lidity of certain propositions may be
better established by comparing them
with experiments run on computers or
with real-world phenomena. ÒWithin the
next 50 years I think the importance of
proof in mathematics will diminish,Ó
says Keith Devlin of Colby College, who
writes a column on computers for No-

tices of the American Mathematical So-

ciety. ÒYou will see many more people
doing mathematics without necessarily
doing proofs.Ó

Powerful institutional forces are pro-
mulgating these heresies. For several
years, the National Science Foundation
has been urging mathematicians to be-
come more involved in computer sci-
ence and other Þelds with potential ap-
plications. Some leading lights, notably
Phillip A. GriÛths, director of the Insti-
tute for Advanced Study in Princeton,
N.J., and Michael Atiyah, who won a
Fields Medal (often called the Nobel
Prize of mathematics) in 1966 and now
heads CambridgeÕs Isaac Newton Insti-
tute for Mathematical Sciences, have
likewise encouraged mathematicians to
venture forth from their ivory towers
and mingle with the real world. At a

time when funds and jobs are scarce,
young mathematicians cannot aÝord to
ignore these exhortations.

There are pockets of resistance, of
course. Some workers are complaining
bitterly about the computerization of
their Þeld and the growing emphasis
on (oh, dirty word) Òapplications.Ó One
of the most vocal champions of tra-
dition is Steven G. Krantz of Washing-
ton University. In speeches and articles,
Krantz has urged students to choose
mathematics over computer science,
which he warns could be a passing fad.
Last year, he recalls, a National Science
Foundation representative came to his
university and announced that the agen-
cy could no longer aÝord to support
mathematics that was not Ògoal-orient-
ed.Ó ÒWe could stand up and say this is
wrong,Ó Krantz grumbles, Òbut mathe-
maticians are spineless slobs, and they
donÕt have a tradition of doing that.Ó

David Mumford of Harvard Universi-
ty, who won a Fields Medal in 1974 for
research in pure mathematics and is
now studying artiÞcial vision, wrote re-
cently that Òdespite all the hype, the
press, the pressure from funding agen-
cies, et cetera, the pure mathematical
community by and large still regards
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A Splendid Anachronism?

hose who consider experimental mathematics and
computer proofs to be abominations rather than inno-

vations have a special reason to delight in the conquest of
Fermat’s last theorem by Andrew J. Wiles of Princeton Uni-
versity. Wiles’s achievement was a triumph of tradition, run-
ning against every current in modern mathematics.

Wiles is a staunch believer in mathematics for its own
sake. “I certainly wouldn’t want to see mathematics just
being a servant to applications, because it’s not even in
the interests of the applications themselves,” he says.

The problem he solved, first posed
more than 350 years ago by the
French polymath Pierre de Fermat, is
a glorious example of a purely math-
ematical puzzle. Fermat claimed to
have found a proof of the following
proposition: for the equation X N + Y N

= Z N, there are no integral solutions
for any value of N greater than 2.
The efforts of mathematicians to find
the proof (which Fermat never did
disclose) helped to lay the founda-
tion of modern number theory, the
study of whole numbers, which has
recently become useful in cryptogra-
phy. Yet Fermat’s last theorem itself
“is very unlikely to have any applica-
tions,” Wiles says.

Although funding agencies have
been encouraging mathematicians to
collaborate, both with each other and

with scientists, Wiles worked in virtual solitude for seven
years. He shared his ideas with only a few colleagues to-
ward the end of his quest.

Wiles’s proof has essentially the same classical, deductive
form that Euclid’s geometric theorems did. It does not in-
volve any computation, and it claims to be absolutely—not
probably—true. Nor did Wiles employ computers to repre-
sent ideas graphically, to perform calculations or even to
compose his paper; a secretary typed his hand-written notes.

He concedes that testing conjectures with computers
may be helpful. In the 1970s comput-
er tests suggested that a far-fetched
proposal called the Taniyama conjec-
ture might be true. The tests spurred
work that laid the foundation for
Wiles’s own proof.

Nevertheless, Wiles doubts he will
take the trouble to learn how to per-
form computer investigations. “It’s 
a separate skill,” he explains, “and if
you’re investing that much time on a
separate skill, it’s quite likely it’s tak-
ing you away from your real work
on the problem.”

He rejects the possibility that there
may be a finite number of truths ac-
cessible to traditional forms of in-
quiry. “I disagree vehemently with
the idea that good theorems are run-
ning out,” he says. “I think we’ve
barely scratched the surface.”

T
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computers as invaders, despoilers of the
sacred ground.Ó Last year Mumford pro-
posed a course in which instructors
would show students how to program a
computer to Þnd solutions in advanced
calculus. ÒI was vetoed,Ó he recalled,
Òand not on the groundsÑwhich I ex-
pectedÑthat the students would com-
plain, but because half of my fellow
teachers couldnÕt program!Ó

That situation is changing fast, if 
the University of MinnesotaÕs Geometry
Center is any indication. Founded two
years ago, the Geometry Center occu-
pies the Þfth ßoor of a gleaming, steel
and glass polyhedron in Minneapolis. 
It receives $2 million a year from the 
National Science Foundation, the De-
partment of Energy and the university. 
The centerÕs permanent faculty mem-
bers, most of whom hold positions else-
where, include some of the most promi-
nent mathematicians in the world.

On a recent day there, several young
staÝ members are editing a video dem-
onstrating how a sphere can be mashed,
twisted, yanked and Þnally turned in-
side out. In a conference room, three
computer scientists from major univer-
sities are telling a score of high school
teachers how to create computer graph-
ics programs to teach mathematics.
Other researchers sit at charcoal-col-
ored NeXT terminals, pondering luridly
hued pictures of four-dimensional Òhy-
percubes,Ó whirlpooling fractals and lat-
tices that plunge toward inÞnity. No
paper or pencils are in sight.

At one terminal is David Ben-Zvi, a
Harpo MarxÐhaired junior at Princeton
who is spending six months here explor-
ing nonlinear dynamics. He dismisses
the fears of some mathematicians that
computers will lure them away from 
the methods that have served them so 
well for so long. ÒTheyÕre just afraid of
change,Ó he says mildly.

The Geometry Center is a hotbed of
what is known as experimental mathe-
matics, in which investigators test their
ideas by representing them graphical-

ly and doing calculations on comput-
ers. Last year some of the centerÕs facul-
ty helped to found a journal, Experimen-

tal Mathematics, that showcases such
work. ÒExperimental methods are not 
a new thing in mathematics,Ó observes
the journalÕs editor, David B. A. Epstein
of the University of Warwick in England,
noting that Carl Friedrich Gauss and
other giants often performed experi-
mental calculations before constructing
formal proofs. ÒWhatÕs new is that itÕs
respectable.Ó Epstein acknowledges that
not all his co-workers are so accepting.
ÒOne of my colleagues said, ÔYour jour-
nal should be called the Journal of Un-

proved Theorems.Õ Ó

Bubbles and Tortellini

A mathematician who epitomizes the
new style of mathematics is Jean E.
Taylor of Rutgers University. ÒThe idea
that you donÕt use computers is going
to be increasingly foreign to the next
generation,Ó she says. For two decades,
Taylor has investigated minimal surfac-
es, which represent the smallest possi-
ble area or volume bounded by a curve
or surface. Perhaps the most elegant
and simple minimal surfaces found in
nature are soap bubbles and Þlms. Tay-
lor has always had an experimental
bent. Early in her career she tested her
handwritten models of minimal sur-
faces by dunking loops of wire into a
sink of soapy water.

Now she is more likely to model 

bubbles with a sophisticated computer
graphics program. She has also graduat-
ed from soap bubbles to crystals, which
conform to somewhat more complicat-
ed rules about minimal surfaces. To-
gether with Frederick J. Almgren of
Princeton and Robert F. Almgren of the
University of Chicago (her husband and
stepson, respectively) and Andrew R.
Roosen of the National Institute of Stan-
dards and Technology, Taylor is trying
to mimic the growth of snowßakes and
other crystals on a computer. Increas-
ingly, she is collaborating with materi-
als scientists and physicists, swapping
mathematical ideas and programming
techniques in exchange for clues about
how real crystals grow.

Another mathematician who has
prowled cyberspace in search of novel
minimal surfaces is David A. HoÝman
of the University of Massachusetts at
Amherst. Among his favorite quarry are
catenoids and helicoids, which resemble
the pasta known as tortellini and were
Þrst discovered in the 18th century. ÒWe
gain a tremendous amount of intuition
by looking at images of these surfaces
on computers,Ó he says.

In 1992 HoÝman, Fusheng Wei of Am-
herst and Hermann Karcher of the Uni-
versity of Bonn speculated on the exis-
tence of a new class of helicoids, ones
with handles. They succeeded in repre-
senting these helicoidsÑthe Þrst discov-
ered since the 18th centuryÑon a com-
puter and went on to produce a formal
proof of their existence. ÒHad we not
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EXPERIMENTAL MATHEMATICIAN Jean E. Taylor of Rutgers University seeks the
rules governing minimal surfaces by studying real phenomena, such as soap bub-
bles, and computer-generated ones, such as idealized crystals (left).

Copyright 1993 Scientific American, Inc.

This content downloaded from 
�������������85.72.172.97 on Fri, 30 Sep 2022 07:16:26 UTC�������������� 

All use subject to https://about.jstor.org/terms



been able to see a picture that roughly
corresponded to what we believed, we
would never have been able to do it,Ó
HoÝman says.

The area of experimental mathemat-
ics that has received the lionÕs share 
of attention over the past decade is
known as nonlinear dynamics or, more
popularly, chaos. In general, nonlinear
systems are governed by a set of sim-
ple rules that, through feedback and
related eÝects, give rise to complicated
phenomena. Nonlinear systems were in-
vestigated in the precomputer era, but
computers allow mathematicians to ex-
plore these systems and watch them
evolve in ways that Henri Poincar� and
other pioneers of this branch of mathe-
matics could not.

Cellular automata, which divide a
computer screen into a set of cells
(equivalent to pixels), provide a partic-
ularly dramatic illustration of the prin-

ciples of nonlinearity. In general, the
color, or Òstate,Ó of each cell is deter-
mined by the state of its neighbors. A
change in the state of a single cell trig-
gers a cascade of changes throughout
the system.

One of the most celebrated of cel-
lular automata was invented by John
H. Conway of Princeton in the early
1970s. Conway has proved that his au-
tomaton, which he calls ÒLife,Ó is Òunde-
cidableÓ: one cannot determine wheth-
er its patterns are endlessly variegated 
or eventually repeat themselves. Scien-
tists have seized on cellular automata as
tools for studying the origin and evolu-
tion of life. The computer scientist and
physicist Edward Fredkin of Boston Uni-
versity has even argued that the entire
universe is a cellular automaton.

More famous still is the Mandelbrot
set, whose image has become an icon
for the entire Þeld of chaos since it was
popularized in the early 1980s by Be-
noit B. Mandelbrot of the IBM Thomas J.
Watson Research Center. The set stems
from a simple equation containing a
complex term (based on the square root
of a negative number). The equation

spits out solutions, which are then iter-
ated, or fed back, into the equation.

The mathematics underlying the set
had been invented more than 70 years
ago by two Frenchmen, Gaston Julia
and Pierre Fatou, but computers laid
bare their baroque beauty for all to 
see. When plotted on a computer, the
Mandelbrot set coalesces into an image
that has been likened to a tumorous
heart, a badly burned chicken and a
warty snowman. The image is a fractal:
its fuzzy borders are inÞnitely long,
and it displays patterns that recur at
diÝerent scales.

Researchers are now studying sets
that are similar to the Mandelbrot set
but inhabit four dimensions. ÒThe kinds
of complications you get here are the
kinds you get in many diÝerent scienc-
es,Ó says John Milnor of the State Uni-
versity of New York at Stony Brook.
Milnor is trying to fathom the proper-
ties of the four-dimensional set by ex-
amining two-dimensional slices of it
generated by a computer. His prelimi-
nary Þndings led oÝ the inaugural issue
of Experimental Mathematics last year.
Milnor, a 1962 Fields Medalist, says he
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HELICOID WITH A HOLE (bottom left) was discovered last year by David A. HoÝ-
man of the University of Massachusetts at Amherst and his colleagues, with the
help of computer graphics. Edward C. Thayer, one of HoÝmanÕs graduate students,
recently found a structure (below) that mimics the pattern of certain polymers.
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occasionally performed computer ex-
periments in the days of punch cards,
but Òit was a miserable process. It has
become much easier.Ó

The popularity of graphics-orient-
ed mathematics has provoked a back-
lash. Krantz of Washington University
charged four years ago in the Mathe-

matical Intelligencer that Òin some cir-
cles, it is easier to obtain funding to
buy hardware to generate pictures of
fractals than to obtain funding to study
algebraic geometry.Ó

A broader warning about Òspecula-
tiveÓ mathematics was voiced this past
July in the Bulletin of the American

Mathematical Society by Arthur JaÝe of
Harvard and Frank S. Quinn of the Vir-
ginia Polytechnic Institute. They sug-
gested that computer experiments and
correspondence with natural phenome-
na are no substitute for proofs in es-
tablishing truth. ÒGroups and individu-
als within the mathematics community
have from time to time tried being less
compulsive about details of arguments,Ó
JaÝe and Quinn wrote. ÒThe results
have been mixed, and they have occa-
sionally been disastrous.Ó

Most mathematicians exploiting com-
puter graphics and other experimental
techniques agree that seeing should
not be believing and that proofs are
still needed to verify the conjectures
they arrive at through computation. ÒI
think mathematicians were contem-
plating their navels for too long, but
that doesnÕt mean I think proofs are ir-
relevant,Ó Taylor says. HoÝman oÝers
an even stronger defense of traditional
proofs. ÒProofs are the only laboratory
instrument mathematicians have,Ó he
remarks, Òand they are in danger of be-
ing thrown out.Ó Although computer
graphics are Òunbelievably wonderful,Ó
he adds, Òin the 1960s drugs were un-
believably wonderful, and some people
didnÕt survive.Ó

Indeed, veteran computer enthusiasts
know better than most that computa-
tional experimentsÑwhether involving
graphics or numerical calculationsÑ
can be deceiving. One cautionary tale
involves the Riemann hypothesis, a fa-
mous prediction about the patterns dis-
played by prime numbers as they march
toward inÞnity. First posed more than
100 years ago by Bernhard Riemann,
the hypothesis is considered to be one
of the most important unsolved prob-
lems in mathematics.

A contemporary of RiemannÕs, Franz
Mertens, proposed a related conjecture
involving positive whole numbers; if
true, the conjecture would have provid-
ed strong evidence that the Riemann
hypothesis was also true. By the early
1980s computers had shown that Mer-
tensÕs proposal did indeed hold for 

at least the Þrst 10 billion integers. In
1984, however, more extensive com-
putations revealed that eventuallyÑat
numbers as high as 10(10 70 )Ñthe pat-
tern predicted by Mertens vanishes.

One potential drawback of comput-
ers is that all their calculations are
based on the manipulation of discrete,
whole numbersÑin fact, ones and ze-
ros. Computers can only approximate
real numbers, such as pi or the square
root of two. Someone knowledgeable
about the rounding-oÝ functions of a
simple pocket calculator can easily in-
duce it to generate incorrect answers
to calculations. More sophisticated pro-
grams can make more complicated and
elusive errors. In 1991 David R. Stoute-
myer, a software specialist at the Uni-
versity of Hawaii, presented 18 experi-
ments in algebra that gave wrong an-
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UNEARTHLY LANDSCAPES emerge when a computer generates ÒslicesÓ of a four-
dimensional map similar to the well-known Mandelbrot set. John Milnor of the State
University of New York at Stony Brook studies similar two-dimensional images in
order to understand the properties of the complex mathematical object.
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swers when performed with standard
mathematics software.

Stephen Smale of the University of
California at Berkeley, a 1966 Fields
Medalist, has sought to place mathe-
matical computation on a more secure
foundationÑor at least to point out the
size and location of the cracks running
through the foundation. Together with
Lenore Blum of the Mathematical Sci-
ences Research Institute at Berkeley and
Michael Shub of IBM, he has created 
a theoretical model of a computer that
can process real numbers rather than
just integers.

Blum and Smale recently concluded
that the Mandelbrot set is, in a technical
sense, uncomputable. That is, one can-
not determine with certainty whether
any given point on the complex plane
resides within or outside the setÕs hir-
sute border. These results suggest that
Òyou have to be carefulÓ in extrapolat-
ing from the results of computer ex-
periments, Smale says.

These concerns are dismissed by Ste-
phen Wolfram, a mathematical phys-
icist at the University of Illinois. Wol-
fram is the creator of Mathematica,
which has become the leading mathe-
matics software since Þrst being mar-
keted Þve years ago. He acknowledg-
es that Òthere are indeed pitfalls in ex-

perimental mathematics. As in all other
kinds of experiments, you can do them
wrong.Ó But he emphasizes that compu-
tational experiments, intelligently per-
formed and analyzed, can yield more re-
sults than the old-fashioned conjecture-
proof method. ÒIn every other Þeld of
science there are a lot more experimen-
talists than theorists,Ó Wolfram says. ÒI
suspect that will increasingly be the
case with mathematics.Ó

ÒThe obsession with proof,Ó Wolfram
declares, has kept mathematicians from
discovering the vast new realms of phe-
nomena accessible to computers. Even
the most intrepid mathematical exper-
imentalists are for the most part Ònot
going far enough,Ó he says. ÒTheyÕre
taking existing questions in mathemat-
ics and investigating those. They are
adding a few little curlicues to the top
of a gigantic structure.Ó

Mathematicians may take this view
with a grain of salt. Although he shares
WolframÕs fascination with cellular auto-
mata, Conway contends that WolframÕs
careerÑas well as his contempt for
proofsÑshows he is not a real mathe-
matician. ÒPure mathematicians usually
donÕt found companies and deal with
the world in an aggressive way,Ó LifeÕs
creator says. ÒWe sit in our ivory tow-
ers and think about things.Ó

Purists may have a harder time ignor-
ing William P. Thurston, who is also an
enthusiastic booster of experimental
mathematics and of computers in math-
ematics. Thurston, who heads the Math-
ematical Sciences Research Institute at
Berkeley and is a co-director of the Ge-
ometry Center (with Albert Marden of
the University of Minnesota), has im-
peccable credentials. In the mid-1970s
he pointed out a deep potential con-
nection between two separate branches
of mathematicsÑtopology and geome-
try. Thurston won a Fields Medal for
this work in 1982.

Thurston emphasizes that he be-
lieves mathematical truths are discov-
ered and not invented. But on the sub-
ject of proofs, he sounds less like a dis-
ciple of Plato than of Thomas S. Kuhn,
the philosopher who argued in his 1962
book, The Structure of Scientific Revo-

lutions, that scientiÞc theories are ac-
cepted for social reasons rather than
because they are in any objective sense
Òtrue.Ó ÒThat mathematics reduces in
principle to formal proofs is a shaky
ideaÓ peculiar to this century, Thurston
asserts. ÒIn practice, mathematicians
prove theorems in a social context,Ó he
says. ÒIt is a socially conditioned body
of knowledge and techniques.Ó

The logician Kurt G�del demonstrat-
ed more than 60 years ago through his
incompleteness theorem that Òit is im-
possible to codify mathematics,Ó Thur-
ston notes. Any set of axioms yields
statements that are self-evidently true
but cannot be demonstrated with those
axioms. Bertrand Russell pointed out
even earlier that set theory, which is the
basis of much of mathematics, is rife
with logical contradictions related to
the problem of self-reference. (The self-
contradicting statement ÒThis sentence
is falseÓ illustrates the problem.) ÒSet
theory is based on polite lies, things we
agree on even though we know theyÕre
not true,Ó Thurston says. ÒIn some ways,
the foundation of mathematics has an
air of unreality.Ó

Thurston thinks highly formal proofs
are more likely to be ßawed than those
appealing to a more intuitive level of
understanding. He is particularly enam-
ored of the ability of computer graphics
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PARTY PROBLEM was solved after a vast
computation by Stanislaw P. Radziszow-
ski and Brendan D. McKay. They calcu-
lated that at least 25 people are required
to ensure either that four people are all
mutual acquaintances or that Þve are
mutual strangers. This diagram, in which
red lines connect friends and yellow
lines link strangers, shows that a party
of 24 violates the dictum.
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to communicate abstract mathematical
concepts to others both within and out-
side the professional community. Two
years ago, at his urging, the Geometry
Center produced a computer-generated
Òvideo proof,Ó called Not Knot, that dra-
matizes a ground-breaking conjecture
he proved a decade ago [see illustration

on pages 92 and 93 ]. Thurston men-
tions proudly that the rock band the
Grateful Dead has shown the Not Knot
video at its concerts.

Whether Deadheads grok the sub-
stance of the videoÑwhich concerns
how mathematical objects called three-
manifolds behave in a non-Euclidean
ÒhyperbolicÓ spaceÑis another matter.
Thurston concedes that the video is dif-
Þcult for nonmathematicians, and even
some professionals, to fathom, but he
is undaunted. The Geometry Center is
now producing a video of yet another
of his theorems, which demonstrates
how a sphere can be turned inside out
[see cover illustration]. Last fall, more-
over, Thurston organized a workshop
at which participants discussed how
virtual reality and other advanced tech-
nologies could be adapted for mathe-
matical visualization.

Paradoxically, computers have cat-
alyzed a countertrend in which truth is
obtained at the expense of comprehensi-
bility. In 1976 Kenneth Appel and Wolf-
gang Haken of the University of Illinois
claimed they had proved the four-color

conjecture, which stated that four hues
are suÛcient to construct even an inÞ-
nitely broad map so that no identical-
ly colored countries share a border. In
some respects, the proof of Appel and
Haken was conventionalÑthat is, it con-
sisted of a series of logical, traceable
steps proceeding to a conclusion. The
conclusion was that the conjecture could
be reduced to a prediction about the
behavior of some 2,000 diÝerent maps.

Since checking this prediction by
hand would be prohibitively time-con-
suming, Appel and Haken programmed
a computer to do the job for them.
Some 1,000 hours of computing time
later, the machine concluded that the
2,000 maps behave as expected: the
four-color conjecture was true.

The Party Problem

Other computer-assisted proofs have
followed. Just this year, a proof of the
so-called party problem was announced
by Stanislaw P. Radziszowski of the
Rochester Institute of Technology and
Brendan D. McKay of the Australian Na-
tional University in Canberra. The prob-
lem, which derives from work in set the-
ory by the British mathematician Frank
P. Ramsey in the 1920s, can be phrased
as a question about relationships be-
tween people at a party. What is the
minimum number of guests that must
be invited to guarantee that at least X

people are all mutual acquaintances or
at least Y are mutual strangers? This
number is known as a Ramsey number.

Previous proofs had established that
18 guests are required to ensure that
there are either four mutual acquain-
tances or four strangers. In their proof,
Radziszowski and McKay showed that
the Ramsey number for four friends or
Þve strangers is 25. Socialites might
think twice about trying to calculate the
Ramsey number for greater XÕs and YÕs.
Radziszowski and McKay estimate that
their proof consumed the equivalent of
11 years of computation by a standard
desktop machine. That may be a rec-
ord, Radziszowski says, for a problem
in pure mathematics.

The value of this work has been de-
bated in an unlikely forumÑthe news-
paper column of advice-dispenser Ann
Landers. In June a correspondent com-
plained to Landers that resources spent
on the party problem should have been
used to help Òstarving children in war-
torn countries around the world.Ó Some
mathematicians raise another objection
to computer-assisted proofs. ÒI donÕt be-
lieve in a proof done by a computer,
says Pierre Deligne of the Institute for
Advanced Study, an algebraic geometer
and 1978 Fields Medalist. ÒIn a way, I
am very egocentric. I believe in a proof
if I understand it, if itÕs clear.Ó While rec-
ognizing that humans can make mis-
takes, he adds: ÒA computer will also
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he continuing penetration of computers into mathe-
matics has revived an old debate: Can mathematics

be entirely automated? Will the great mathematicians of
the next century be made of silicon?

In fact, computer scientists have been working for de-
cades on programs that generate mathematical conjec-
tures and proofs. In the late 1950s the artificial-intelli-
gence guru Marvin Minsky showed how a computer could
“rediscover” some of Euclid’s basic theorems in geometry.
In the 1970’s Douglas Lenat, a former student of Minsky’s,
presented a program that devised even more advanced
geometry theorems. Skeptics contended that the results
were, in effect, embedded in the original program.

A decade ago the computer scientist and entrepreneur
Edward Fredkin sought to revive the sagging interest in
machine mathematics by creating what came to be known
as the Leibniz Prize. The prize, administered by Carnegie
Mellon University, offers $100,000 for the first computer
program to devise a theorem that has a “profound effect”
on mathematics.

Some practitioners of what is known as automated rea-
soning think they may be ready to claim the prize. One is
Larry Wos of Argonne National Laboratory, editor of the
Journal of Automated Reasoning. He claims to have devel-
oped a program that has solved problems in mathematics

and logic “that have stumped people for years.” Another
is Siemeon Fajtlowicz of the University of Houston, inven-
tor of a program, called Graffiti, that has proposed “thou-
sands” of conjectures in graph theory.

None of these achievements comes close to satisfying
the “profound effect” criterion, according to David Mum-
ford of Harvard University, a judge for the prize. “Not now,
not 100 years from now,” Mumford replies when asked to
predict when the prize might be claimed.

Some observers think computers will eventually surpass
our mathematical abilities. After all, notes Ronald L. Gra-
ham of AT&T Bell Laboratories, “we’re not very well adapt-
ed for thinking about the space-time continuum or the Rie-
mann hypothesis. We’re designed for picking berries or
avoiding being eaten.”

Others side with the mathematical physicist Roger 
Penrose of the University of Oxford, who in his 1989
book, The Emperor’s New Mind, asserted that computers
can never replace mathematicians. Penrose’s argument
drew on quantum theory and Gödel’s incompleteness the-
orem, but he may have been most convincing when dis-
cussing his personal experience. At its best, he suggest-
ed, mathematics is an art, a creative act, that cannot be
reduced to logic any more than King Lear or Beethoven’s
Fifth can.

Silicon Mathematicians

T
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make mistakes, but they are much more
diÛcult to Þnd.Ó

Others take a more functional point
of view, arguing that establishing truth
is more important than giving mathe-
maticians an aesthetic glow, particularly
if a result is ever to Þnd an application.
Defenders of this approach, who tend
to be computer scientists, point out that
conventional proofs are far from im-
mune to error. At the turn of the cen-
tury, most theorems were short enough
to read in one sitting and were pro-
duced by a single author. Now proofs
often extend to hundreds of pages or
more and are so complicated that years
may pass before they are conÞrmed 
by others.

The current record holder of all con-
ventional proofs was completed in the
early 1980s and is called the classiÞca-
tion of Þnite, simple groups. (A group
is a set of elements, such as integers,
together with an operation, such as ad-
dition, that combines two elements to 
get a third one.) The demonstration con-
sists of some 500 articles totaling near-
ly 15,000 pages and written by more
than 100 workers. It has been said that
the only person who grasped the entire
proof was its general contractor, Daniel
Gorenstein of Rutgers. Gorenstein died
last year.

Much shorter proofs can also raise
doubts. Three years ago Wu-Yi Hsiang
of Berkeley announced he had proved
an old conjecture that one can pack 
the most spheres in a given volume by
stacking them like cannonballs. Today
some skeptics are convinced the 100-
page proof is ßawed; others are equal-
ly certain it is basically correct.

Indeed, the key to greater reliability,
according to some computer scientists,
is not less computerization but more.
Robert S. Boyer of the University of
Texas at Austin has led an eÝort to
squeeze the entire sprawling corpus of
modern mathematics into a single data
base whose consistency can be veriÞed
through automated Òproof checkers.Ó

The manifesto of the so-called QED
Project states that such a data base will
enable users to Òscan the entirety of
mathematical knowledge for relevant
results and, using tools of the QED sys-
tem, build upon such results with re-
liability and conÞdence but without 
the need for minute comprehension of 
the details or even the ultimate founda-
tions.Ó The QED system, the manifesto
proclaims rather grandly, can even Òpro-
vide some antidote to the degenerative
eÝects of cultural relativism and nihil-
ismÓ and, presumably, protect mathe-
matics from the all-too-human willing-
ness to succumb to fashion.

The debate over computer proofs has

intensiÞed recently with the advent of
a technique that oÝers not certainty but
only a statistical probability of truth.
Such proofs exploit methods similar to
those underlying error-correction codes,
which ensure that transmitted messag-
es are not lost to noise and other ef-
fects by making them highly redundant.
The proof must Þrst be spelled out pre-
cisely in a rigorous form of mathemat-
ical logic. The logic then undergoes a
further transformation called arithmet-
ization, in which Òand,Ó ÒorÓ and oth-
er functions are translated into arith-
metic operations, such as addition and 
multiplication.

Like a message transformed by an
error-correction code, the ÒanswerÓ of a
probabilistic demonstration is distribut-
ed throughout its lengthÑas are any
errors. One checks the proof by query-
ing it at diÝerent points and determin-
ing whether the answers are consistent;
as the number of checks increases, so
does the certainty that the argument is
correct. Laszlo Babai of the University
of Chicago, who developed the proofs
two years ago (along with Lance Fort-
now, Carsten Lund and Mario Szegedy
of Chicago and Leonid A. Levin of Bos-
ton University), calls them Òtranspar-
ent.Ó Manuel Blum of Berkeley, whose
work helped to pave the way for BabaiÕs
group, suggests the term Òholographic.Ó

The Uncertain Future

Whatever they are named, such proofs
have practical drawbacks. Szegedy ac-
knowledges that transforming a con-
ventional demonstration into the prob-
abilistic form is diÛcult, and the result
can be a Òmuch bigger and uglier ani-
mal.Ó A 1,000-line proof, for example,
could easily balloon to 1,0003 (1,000,-
000,000) lines. Yet Szegedy contends
that if he and his colleagues can simplify
the transformation process, probabilis-
tic proofs might become a useful meth-
od for verifying mathematical proposi-
tions and large computationsÑsuch as
those leading to the four-color theorem.
ÒThe philosophical cost of this eÛcient
method is that we lose the absolute cer-
tainty of a Euclidean proof,Ó Babai not-
ed in a recent essay. ÒBut if you do have
doubts, will you bet with me?Ó

Such a bet would be ill advised, Levin
believes, since a relatively few checks
can make the chance of error vanish-
ingly small : one divided by the num-
ber of particles in the universe. Even 
the most straightforward conventional
proofs, Levin points out, are suscepti-
ble to doubts of this scale. ÒAt the mo-
ment you Þnd an error, your brain may
disappear because of the Heisenberg
uncertainty principle and be replaced
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by a new brain that thinks the proof is
correct,Ó he says.

Ronald L. Graham of AT&T Bell Lab-
oratories suggests that the trend away
from short, clear, conventional proofs
that are beyond reasonable doubt 
may be inevitable. ÒThe things you can
prove may be just tiny islands, excep-
tions, compared to the vast sea of re-
sults that cannot be proved by human
thought alone,Ó he explains. Mathema-
ticians seeking to navigate uncharted
waters may become increasingly de-
pendent on experiments, probabilistic
proofs and other guides. ÒYou may not
be able to provide proofs in a classical
sense,Ó Graham says.

Of course, mathematics may yield
fewer aesthetic satisfactions as inves-
tigators become more dependent on
computers. ÒIt would be very discour-
aging,Ó Graham remarks, Òif somewhere
down the line you could ask a comput-
er if the Riemann hypothesis is correct
and it said, ÔYes, it is true, but you wonÕt
be able to understand the proof.Õ Ó

Traditionalists no doubt shudder at
the thought. For now, at least, they can
rally behind heros like Wiles, the con-
queror of FermatÕs last theorem, who
eschews computers, applications and
other abominations. But there may be
fewer Wileses in the future if reports
from the front of precollege education
are any guide. The Mathematical Scienc-
es Research Institute at Berkeley, which
is overseen by Thurston, has been hold-
ing an ongoing series of seminars with
high school teachers to Þnd new ways to
entice students into mathematics. This
past January Lenore Blum, the instituteÕs
deputy director, organized a seminar
devoted to the question ÒAre Proofs in
High School Geometry Obsolete?Ó

The mathematicians insisted that
proofs are crucial to ensure that a result
is true. The high school teachers de-
murred, pointing out that students no
longer considered traditional, axiomatic
proofs to be as convincing as, say, visu-
al arguments. ÒThe high school teach-
ers overwhelmingly declared that most
students now (Nintendo/joystick/MTV
generation) do not relate to or see the
importance of Ôproofs,Õ Ó the minutes of
the meeting stated. Note the quotation
marks around the word Òproofs.Ó
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FURTHER READING
ISLANDS OF TRUTH: A MATHEMATICAL
MYSTERY CRUISE. Ivars Peterson. W. H.
Freeman and Company, 1990.

THE PROBLEMS OF MATHEMATICS. Ian
Stewart. Oxford University Press, 1992.

PI IN THE SKY: COUNTING, THINKING, AND
BEING. John D. Barrow. Oxford Universi-
ty Press, 1992.
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