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 Challenges to the Importance of Proof
 GILA HANNA

 An informed view of the role of proof in mathematics leads
 one to the conclusion that proof should be part of any math-
 ematics curriculum that purports to reflect mathematics
 itself, and furthermore that the main function of proof in the
 classroom reflects one of its key functions in mathematics
 itself: The promotion of understanding. Yet developments
 in both mathematics and mathematics education have now

 caused the very place of proof in the teaching of mathemat-
 ics to be called into question. Examining these develop-
 ments, this paper concludes that proof is alive and well in
 mathematical practice, and that it continues to deserve a
 prominent place in the mathematics curriculum. This paper
 also argues that the most important challenge to mathemat-
 ics educators in the context of proof is to enhance its role in
 the classroom by finding more effective ways of using it as
 a vehicle to promote mathematical understanding.

 Proof and understanding
 For some time I have been asking myself what role proof
 ought to play in mathematics education. My initial
 inquiries led me to publish a critique of the view of proof
 adopted by the "new math" movement of the 1950s and
 1960s, in which I examined the belief implicit in the "new
 math" that the secondary-school mathematics curriculum
 better reflects mathematics when it stresses formal logic
 and rigorous proof [Hanna, 1983].

 I found that this belief rested upon two key assumptions:
 (1) that in modern mathematical theory there are generally
 accepted criteria for the validity of a mathematical proof,
 and (2) that rigorous proof is the hallmark of modern
 mathematical practice. Both of these I came to reject. First
 of all, after examining the major accounts of the founda-
 tions of mathematics (logicism, formalism, intuitionism
 and quasi-empiricism), I concluded that these significant
 schools of mathematical thought hold widely differing
 views on the role of proof in mathematics and on the crite-
 ria for the validity of a mathematical proof.

 Secondly, through an examination of mathematical prac-
 tice I came to the conclusion that in the eyes of practising
 mathematicians rigour is clearly secondary in importance
 to understanding and significance, and that a proof actually
 becomes legitimate and convincing to a mathematician
 only when it leads to real mathematical understanding.
 Specifically, I concluded that mathematicians accept a new
 theorem only when some combination of the following
 holds: The theorem and its implications are understand-
 able and not obviously in doubt, the theorem is significant
 enough to warrant study, the theorem is consistent with the
 body of accepted results, the author has an unimpeachable
 reputation in the field, and there is a convincing mathemat-
 ical argument for the theorem, rigorous or otherwise.

 In light of the theory and the practice of mathematics,
 then, I argued that we can impart to students a greater
 understanding of proof and of a mathematical topic by

 concentrating our attention on the communication of
 meaning rather than on formal derivation. I stated that:

 the primary implication of this conclusion for curricu-
 lum planning is that a secondary-school mathematics
 which aims to reflect the real role of rigorous proof in
 the theory and practice of mathematics must present
 rigorous proof as an indispensable tool of mathemat-
 ics rather than as the very core of that science [Hanna,
 1983, p. 89].

 Several mathematicians have expressed similar points of
 view [Davis and Hersh, 1981, 1986; Kline, 1980; Manin,
 1977]. In particular, I have been both gratified and reas-
 sured to find corroboration of my views in a recent paper
 by William Thurston [1994]. Along with 15 other math-
 ematicians, Thurston was responding to an article by Jaffe
 and Quinn [1993], who had cautioned against weakening
 the standards of proof. Jaffe and Quinn had proposed that
 heuristic work be labelled "speculation" or "theoretical
 mathematics", to distinguish it from what they regard as
 proper mathematics, in which theorems are to be proven
 rigorously.

 Thurston maintains that in attempting to answer the
 question "What is it that mathematicians can accomplish?"
 one should not begin with the question "How do math-
 ematicians prove theorems?". He points out that the latter
 question carries with it two hidden assumptions, (1) that
 there is a uniform, objective, and firmly established theory
 and practice of mathematical proof and (2) that progress
 made by mathematicians consists of proving theorems [p.
 161], and he goes on to state that these assumptions will
 not stand up to careful scrutiny. One will note that these
 hidden assumptions are in effect the same as the assump-
 tions of the "new math" which I discussed earlier.

 For Thurston the right question to ask is "How do math-
 ematicians advance human understanding of mathemat-
 ics?". And he adds: "We [mathematicians] are not trying to
 meet some abstract production quota of definitions, theo-
 rems and proofs. The measure of our success is whether
 what we do enables people to understand and think more
 clearly and effectively about mathematics" [p. 163].

 My own research has led me to stress the importance of
 understanding, but I have never seen this as a criticism of
 formal proof as such. Thus I find myself in agreement with
 Thurston:

 I am not advocating the weakening of our community
 standard of proof; I am trying to describe how the
 process works. Careful proofs that will stand up to
 scrutiny are very important. ... Second, I am not criti-
 cizing the mathematical study of formal proofs, nor
 am I criticizing people who put energy into making
 arguments more explicit and more formal. These are
 both useful activities that shed new insights on math-
 ematics [Hanna, 1983, p. 169].
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 Challenges to proof from mathematics
 Not all agree with Thurston on this point, however. A
 number of recent developments in the practice of math-
 ematics, all of them reflecting in some way the growing
 use of computers, have caused some mathematicians and
 others to call into question the continuing importance of
 proof.

 The computer has acted as a leavening agent in math-
 ematics, reviving an interest in algorithmic and discrete
 methods, leading to increased reliance on constructive
 proofs, and making possible new ways of justification,
 such as those that make use of computer graphics [Davis,
 1993]. The striking novelty of its uses, on the other hand,
 has lent a tone of urgency to the discussions among math-
 ematicians about its implications for the nature of proof
 [Jaffe & Quinn, 1993; Thurston, 1994; Tymoczko, 1986].

 Indeed, the use of the computer has led some to
 announce the imminent death of proof itself [Horgan,
 1993]. On the basis of interviews with several mathemati-
 cians, John Horgan makes this prediction in a thought-pro-
 voking article entitled "The death of proof that appeared
 in the October 1993 issue of Scientific American. He
 claims that mathematicians can now establish the validity
 of propositions by running experiments on computers, and
 maintains that it is increasingly acceptable for them to do
 mathematics without concerning themselves with proof at
 all.

 One of the developments that prompted Horgan's
 announcement is the use of computers to create or validate
 enormously long proofs, such as the recently published
 proofs of the four-colour theorem (Appel and Haken) or of
 the solution to the party problem (Radziszowski and
 McKay). These proofs could not conceivably be construct-
 ed in any other way, because it is impossible for any
 human being to perform the long computations which they
 require. Nor could a human being hope to verify these
 computations after they have been carried out by a com-
 puter. Because computers and computer programs are falli-
 ble, then, mathematicians will have to accept that asser-
 tions proved in this way can never be more than provision-
 ally true.

 A second and particularly fascinating development is the
 recently introduced concept of zero-knowledge proof
 [Blum, 1986], originally defined by Goldwasser, Micali
 and Rackoff [1985]. This is an interactive protocol involv-
 ing two parties, a prover and a verifier. It enables the
 prover to provide to the verifier convincing evidence that a
 proof exists, without disclosing any information about the
 proof itself. As a result of such an interaction the verifier is
 convinced that the theorem in question is true and that the
 prover knows a proof, but the verifier has zero knowledge
 of the proof itself and thus is not in a position to convince
 others.

 In principle a zero-knowledge proof may be carried out
 with or without a computer. In terms of our topic, however,
 the most significant feature of the zero-knowledge method
 is that it is entirely at odds with the traditional view of
 proof as a demonstration open to inspection. This clearly
 thwarts the exchange of opinion among mathematicians by
 which a proof has traditionally come to be accepted.

 Another interesting innovation is that of holographic
 proof [Babai, 1994; Cipra, 1993]. Like zero-knowledge
 proof, this concept was introduced by computer scientists
 in collaboration with mathematicians. It consists of trans-

 forming a proof into a so-called transparent form that is
 verified by spot checks, rather than by checking every line.
 The authors of this concept have shown that it is possible
 to rewrite a proof (in great detail, using a formal language)
 in such a way that if there is an error at any point in the
 original proof it will be spread more or less evenly
 throughout the rewritten proof (the transparent form). Thus
 to determine whether the proof is free of error one need
 only check randomly selected lines in the transparent form.

 By using a computer to increase the number of spot
 checks, the probability that an erroneous proof will be
 accepted as correct can be made as small as desired
 (though of course not infinitely small). Thus a holographic
 proof can yield near-certainty, and in fact the degree of
 near-certainty can be precisely quantified. Nevertheless, a
 holographic proof, like a zero-knowledge proof, is entirely
 at odds with the traditional view of mathematical proof,
 because it does not meet the requirement that every single
 line of the proof be open to verification.

 Zero-knowledge proofs, holographic proofs, and the cre-
 ation and verification of extremely long proofs such as that
 of the four-colour theorem are feasible only because of
 computers. Yet even these innovative types of proof are
 traditional, in the sense that they remain analytic proofs.
 More and more mathematicians appear to be going beyond
 the bounds of deductive proof, however, using the comput-
 er to confirm mathematical properties experimentally.

 Horgan quotes several mathematicians who concede that
 experimental methods, though perhaps not new, have
 acquired a new respectability. They have certainly
 received increased attention and funding following the
 development of graphics-oriented fields such as chaos the-
 ory and non-linear dynamics. As a result, more mathemati-
 cians have come to appreciate the power of computational
 experiments and of computer graphics in the communica-
 tion of mathematical concepts.

 They are going well beyond communication, however.
 In a clear departure from previous practice, it now seems
 to be quite legitimate for mathematicians to engage in
 experimental mathematics as a form of mathematical justi-
 fication that does not include pencil-and-paper proof.
 Horgan claims, in fact, that some mathematicians think
 "the validity of certain propositions may be better estab-
 lished by comparing them with experiments run on com-
 puters or real-world phenomena" [1993, p. 94].

 A case in point is the University of Minnesota's
 Geometry Center, where mathematicians examine the
 properties of four-dimensional hypercubes and other fig-
 ures, or study transformations such as the twisting and
 smashing of spheres, by representing them graphically
 with the aid of computers. Horgan also cites the so-called
 computer-generated video proof called "Not Knot" pre-
 pared by the mathematician William Thurston at Berkeley.

 Exploration itself is not inconsistent with the traditional
 view of mathematics as an analytic science. But in drawing
 general conclusions from such explorations these math-
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 ematicians would appear to be turning to the methods of
 the empirical sciences. Indeed, the Geometry Center has
 helped found a new journal called Experimental
 Mathematics. Such a radical shift in mathematical practice
 is entirely justified, according to Philip Davis, a math-
 ematician who strongly advocates greater use of computer
 graphics. He argues that the concept of visual proof is an
 ancient one that was unfortunately overshadowed by the
 rise of formal logic and deserves to regain its important
 place in mathematics [Davis, 1993].

 One must admit that visual proofs and other experimen-
 tal methods are easier to grasp than some new methods
 such as holographic proof. Babai himself points out that
 holographic proofs "may not provide either insight or illus-
 tration." On the other hand, as he adds, they do enjoy the
 advantage of yielding near-certainty, and in this respect
 they "differ fundamentally from experimental mathemat-
 ics" [1994, p. 454].

 The developments I have tried to describe here certainly
 pose intriguing questions for practitioners and philoso-
 phers of mathematics [Horgan, 1993; Krantz, 1994]. In
 discussing zero-knowledge and holographic proofs, for
 example, Babai [1994] asks the following questions: "Are
 such proofs going to be the way of the future?", "Do such
 proofs have a place in mathematics? Are we even allowed
 to call them proofsT.

 Others have posed similar questions. Should mathemati-
 cians accept mathematical propositions which are only
 highly probably true as the equivalent of propositions
 which are true in the usual sense? If not, what is their sta-
 tus? Should mathematicians accept proofs that cannot be
 verified by others, or proofs that can be verified only sta-
 tistically? Can mathematical truths be established by com-
 puter graphics and other forms of experimentation? Where
 should mathematicians draw the line between experimen-
 tation and deductive methods?

 Mathematicians continue to debate these and other ques-
 tions in meetings, on the Internet and in the Forum section
 of the Notices of the American Mathematics Society. Yet
 the very existence of this debate is a confirmation of the
 central role that proof is seen to play. It is difficult to know
 just how mathematicians will eventually answer such ques-
 tions, and in any case one should not expect unanimity. If a
 loose consensus does evolve, it will undoubtedly redefine
 the concept of proof to some degree. Perhaps this consen-
 sus will recognise a multiplicity of types of justification,
 perhaps even one that is hierarchically ordered.

 But the point we must not lose sight of, I believe, is that
 the existence of such a new consensus, even one with large
 remaining areas of disagreement, would not create a situa-
 tion which would differ in principle from that which has
 prevailed up to now. As discussed above, there has never
 been a single set of universally accepted criteria for the
 validity of a mathematical proof. Yet mathematicians have
 been united in their insistence on the importance of proof.
 This is an apparent contradiction, but mathematics has
 lived with this contradiction and flourished. Why would
 one expect or want this to change?

 This is why I think Horgan's article is mistitled. It actu-
 ally provides evidence that proof is thriving, albeit under a

 number of exciting disguises. To be sure, some of the
 things being done today, in the name of proof or as an
 alternative to proof, may in the end lose the battle for gen-
 eral acceptance, but proof itself appears to be alive and
 well. In using the power of technology, mathematicians are
 certainly creating new ways of proving and even new ways
 of thinking about mathematics. But by no means are they
 abandoning the idea of proof.

 Challenges to proof from mathematics
 education
 The influence of educational theories

 Since the demise of the "new math," with its exaggerated
 emphasis on formal proof, we have witnessed in the North
 American mathematics curriculum a gradual decline in the
 use of any kind of proof at all. This can be attributed in
 large part, I believe, to the curriculum reforms and the the-
 ories of mathematics education which have come to domi-

 nate the scene since the 1960s. In their views of proof,
 mathematics educators have probably been influenced
 more by these developments in their own field than by
 innovations in mathematics itself.

 The first important movement, back-to-basics, was fol-
 lowed by a number of others, such as instruction by dis-
 covery, cooperative learning, focus on problem-solving,
 and classroom interaction. None was ever universally
 accepted, but all exercised significant influence on the cur-
 riculum. While none of them attacked the teaching of
 proof specifically, they did shift the emphasis away from
 it, relegating it to heuristics [Polya, 1973; Silver, 1985].

 The most influential theory of education at present,
 judging by the attention it receives from mathematics edu-
 cators, is undoubtedly constructivism in its various forms,
 all of which subscribe to the central tenet that knowledge
 cannot be transmitted, but must be constructed by the
 learner [Cobb, 1988; Kieren & Steffe, 1994; von
 Glasersfeld, 1983]. It too may come to be seen as having
 had a deleterious effect on the teaching of proof, if only
 because it has been interpreted in a way that undermines
 the importance of the teacher in the classroom.

 Paradoxically this has happened at the very time that a
 number of experimental studies have confirmed just how
 important the teacher really is. In exploring new ways to
 teach proof, these studies have shown the value of such
 approaches as debating, restructuring, and preformal pre-
 sentation, all of which posit a crucial role for the teacher in
 helping students to identify the structure of a proof, to pre-
 sent arguments, and to distinguish between correct and
 incorrect arguments [Alibert, 1988; Balacheff, 1988; Blum
 and Kirsch, 1991; Leron, 1983; Movshovitz-Hadar, 1988]

 These interesting new methods encourage students to
 interact with each other, but they also require the active
 intervention of the teacher. They are thus inconsistent with
 the passive role seemingly inspired by constructivist theo-
 ries. Where classroom practice is informed by these theo-
 ries, there is evidence that teachers tend not to present
 mathematical arguments or take a substantive part in their
 discussion. They tend to provide only limited support to
 students, leaving them in large measure to make sense of
 arguments by themselves. The idea clearly seems to be to
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 let students "form their own intuition about the structures
 of mathematics" without the intervention of the teacher

 [Koehler & Grouws, 1992; Pine, 1988].
 Lampert, Rittenhouse and Crumbaugh [1994], for exam-

 ple, report with approval a classroom in which fifth
 graders engaged in group discussion and where the context
 of instruction was such that it was possible, as they put it,
 "for the teacher to step out of the role of validator of ideas
 and into the role of moderator of mathematical argu-
 ments."

 It should be said that there does not appear to be any-
 thing in the constructivist theory of learning itself that
 would deny to the teacher an active role. In fact Cobb
 [1994], one of its proponents, decried just such an interpre-
 tation of constructivist theory, and added:

 Pedagogies derived from constructivist theory fre-
 quently involve a collection of questionable claims
 that sanctify the student at the expense of mathemati-
 cal and scientific ways of knowing. In such accounts,
 the teacher's role is typically characterized as that of
 facilitating students' investigations and explorations.
 Thus, although the teacher might have a variety of
 responsibilities, these do not necessarily include that
 of proactively supporting students' mathematical
 development. Romantic views of this type arise at
 least in part because a maxim about learning, namely
 that students necessarily construct their mathematical
 and scientific ways of knowing, is interpreted as a
 direct instructional recommendation. As John Dewey
 observed, it is then a short step to the conclusion that
 teachers are guilty of teaching by transmission if they
 do more than stimulate students' reflection and prob-
 lem solving [p. 4].

 Indeed, Yackel and Cobb have been quite specific about
 the active role of the teacher:

 ... when students give explanations and arguments in
 the mathematics classroom their purpose is to
 describe and clarify their thinking for others, to con-
 vince others of the appropriateness of their solution
 methods, but not to establish the veracity of a new
 mathematical "truth." ... The meaning of what counts
 as an acceptable mathematical explanation is interac-
 tively constituted by the teacher and the children."
 [Yackel & Cobb, 1994, p. 3].

 Yet the constructivist theory of learning has been translat-
 ed into classroom strategies which are inimical to the
 teaching of proof. As mentioned, recent studies confirm
 that it is crucial for the teacher to take an active part in
 helping students understand why a proof is needed and
 when it is valid. A passive role for the teacher also means
 that students are denied access to available methods of
 proving: It would seem unrealistic to expect students to
 rediscover sophisticated mathematical methods or even the
 accepted modes of argumentation.

 Current theories of mathematics education have

 undoubtedly made us more aware of the construction of
 knowledge by the learner, of the social and cultural envi-
 ronment, and of the need to foster among students a critical

 perspective. We do need to ensure, however, that students
 develop the ability to assess each step in a proof and make
 an informed judgment on the validity of an argument as a
 whole. It would seem unwise to avoid methods that

 promise to help do this effectively, simply because they
 require active intervention by the teacher.

 The influence of Lakatos

 Some current initiatives influenced by the work of Lakatos
 [1976] and set out by NCTM in the Professional Standards
 for Teaching Mathematics advocate classroom discourse
 among students. I have already pointed out that this idea
 can unfortunately be interpreted in such a way as to down-
 play the role of the teacher. But there is also an inherent
 problem with these initiatives, in that they recommend
 having students develop among themselves "agreed upon
 rules" for appropriate mathematical behaviour.
 Underpinning this approach is the belief that it is possible
 and desirable to emulate in the classroom the heuristic

 proof analysis described by Lakatos in Proofs and refuta-
 tions.

 The publication of Proofs and refutations provoked
 much discussion among philosophers, mathematicians, and
 mathematics educators. Fascinated by this new and engag-
 ing way of looking at mathematical discovery, however,
 mathematics educators may have assumed that Lakatos'
 approach is more widely applicable than in fact it is. The
 case for heuristic proof analysis as a general method rests
 only upon its successful use in the study of polyhedra, an
 area in which it is relatively easy to suggest the counterex-
 amples which this method requires [Anapolitanos, 1989;
 Hacking, 1979; Steiner, 1983]. Should one really general-
 ize from a sample of one?

 It is not difficult, in fact, to find examples where the
 way in which a proof is found or a mathematical discovery
 is made would be radically different from the process of
 heuristic refutation described in Proofs and refutations.
 Even the proof of Euler's theorem cited by Lakatos, for
 example, is a case in which refutation is redundant; as soon
 as adequate definitions are formulated the theorem can be
 proved for all possible cases without further discussion. In
 fact, whenever mathematicians work with adequate defini-
 tions (or with an adequate "conceptual setting," to use
 Bourbaki's term), the process of proof is not one of heuris-
 tic refutation. In "A renaissance of empiricism in the
 recent philosophy of mathematics" (1978, p. 36), Lakatos
 himself says:

 Not all formal mathematical theories are in equal dan-
 ger of heuristic refutations in a given period. For
 instance, elementary group theory is scarcely in any
 danger; in this case the original informal theories have
 been so radically replaced by the axiomatic theory
 that heuristic refutations seem to be inconceivable.

 The application of Lakatos' ideas to the classroom raises
 additional issues. One must question, for example, the
 extent to which a group of students can emulate in the
 course of a lesson or series of lessons the drawn-out pro-
 cess of examination and discussion through which new
 mathematical results are subjected to potential refutation
 [Hanna & Jahnke, 1993].
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 More relevant here, however, is that the application of
 Lakatos' ideas may convey in the classroom a misleading
 picture of mathematical practice. His concepts of "infor-
 mal falsifiers" and of the "fallibility" of mathematics seem
 to have led many mathematics educators to believe that we
 should eliminate any reference to "formal" mathematics in
 the curriculum and in particular that we should downplay
 formal proof [Dossey, 1992; Ernest, 1991].

 In my opinion this attitude is misguided. In the first
 place, formal proof arose as a response to a persistent con-
 cern for justification, a concern reaching back to Aristotle
 and Euclid, through Frege and Leibniz. There has always
 been a need to justify new results (and often previous
 results as well), not only in the limited sense of establish-
 ing their truth, but also in the broader sense of providing
 grounds for their plausibility. Formal mathematical proof
 has been and remains one quite useful answer to this con-
 cern for justification.

 Secondly, it is a mistake to think that the curriculum
 would be more reflective of mathematical practice if it
 were to limit itself to the use of informal counterexamples.
 The history of mathematics clearly shows that it is not the
 case, as Lakatos seems to have implied, that only heuristics
 and other "informal" mathematics are capable of providing
 counterexamples. Indeed, formal proofs themselves have
 often provided counterexamples to previously accepted
 theories or definitions. For instance, as Mark Steiner
 [1983] points out, Peano provided a counterexample to the
 definition of a curve as "the path of a continuously moving
 point" by showing formally that a moving point could fill a
 two-dimensional area.

 Gôdel's famous incompleteness proofs are another
 example, with an interesting and ironic twist. In this case
 formal proofs were employed to demonstrate that the
 axiomatic method itself has inherent limitations. Gôdel

 could not have produced these proofs without using a com-
 prehensive system of notation for the statements of pure
 arithmetic and a systematic codification of formal logic,
 both developed in the Principia for the purpose of arguing
 the Frege-Russell thesis that mathematics can be reduced
 to logic. His proofs could certainly not have been produced
 in informal mathematics or reduced to direct inspection.

 Nor does it seem reasonable to assume that Gôdel's con-

 clusions could have been arrived at through a discovery of
 counterexamples ("monster-barring") followed by a denial
 ("monster-adjusting"), or by finding unexplained excep-
 tions ("exception-barring") or unstated assumptions ("hid-
 den-lemmas"). Curiously enough, however, when some
 mathematics educators make a case that formal proof and
 rigour should be downplayed in the curriculum they rest
 their case on the most formal of Gôdel's proofs.

 Informal methods clearly have an important place in the
 mathematics curriculum. Those who would insist upon the
 total exclusion of formal methods, however, run the risk of
 creating a curriculum unreflective of the richness of cur-
 rent mathematical practice. In so doing they would also
 deny to teachers and students accepted methods of justifi-
 cation which in certain situations may also be the most
 appropriate and effective teaching tool.

 The influence of social values

 Proof has also been challenged by the claim that it is a key
 element in an authoritarian view of mathematics [Confrey,
 1994; Ernest, 1991; Nickson, 1994]. This claim owes
 much, including its terminology, to Lakatos [1976], who
 was attempting to offer what he saw as a "long overdue
 challenge" to the "Euclidean programme," as he termed it,
 a programme which in his opinion aimed to create an
 "authoritative, infallible, irrefutable mathematics."

 Supporters of this claim would argue that this so-called
 "Euclidian" view of mathematics is in conflict with the

 present values of society, which dictate that we not bow
 down to authority and not regard knowledge as infallible
 or irrefutable. They appear to see proof in general, and rig-
 orous proof in particular, as a mechanism of control wield-
 ed by an authoritarian establishment to help impose upon
 students a body of knowledge that it regards as predeter-
 mined and infallible.

 Now, it may be true that mathematics has sometimes
 been presented as infallible and taught in an authoritarian
 way, but I do not think there has been a recent consensus
 among educators that it should be. Whatever the case, I
 find it rather strange that proof should have become the
 main target of what in the end may be no more than a mis-
 guided desire to impose a sort of political correctness on
 mathematics education.

 I am not sure, in the first place, what it means to say that
 mathematics or a mathematical proof is "authoritative," to
 use a term taken from Lakatos. Certainly a proof offered
 by a very reputable mathematician would initially be given
 the benefit of the doubt, and in that sense the fact that this
 mathematician is considered an "authority" by other math-
 ematicians would play some role in the eventual accep-
 tance of the proof. But the claim seems to be that the very
 use of proof is authoritarian, and I must say I am at a loss
 to understand this.

 In fact the opposite is true. A proof is a transparent argu-
 ment, in which all the information used and all the rules of
 reasoning are clearly displayed and open to criticism. It is
 in the very nature of proof that the validity of the conclu-
 sion flows from the proof itself, not from any external
 authority. Proof conveys to students the message that they
 can reason for themselves, that they do not need to bow
 down to authority. Thus the use of proof in the classroom
 is actually a nn-authoritarian.

 Of course one could claim that the use of proof requires
 that the students accept certain "authoritative" rules of
 deduction, and so move the argument to a new, meta-math-
 ematical plane. But one would hope that those who chal-
 lenge the role of proof are not also challenging the very
 idea of rules of reasoning. It would be disturbing indeed to
 see mathematics teachers ranging themselves on the side
 of a revolt against rationality.

 It has also been claimed that the use of proof strengthens
 the idea that mathematics is infallible. Looking at this first
 from the point of view of theory, however, it is clear that
 any mathematical truth arrived at through a proof or series
 of proofs is contingent truth, rather than absolute or infalli-
 ble truth, in the sense that its validity hinges upon other
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 assumed mathematical truths (and upon assumed rules of
 reasoning). If we look at this claim from the point of view
 of mathematical practice, we know that mathematicians,
 much as they would like to avoid errors, are as prone to
 making them as anyone else, in proof and elsewhere. The
 history of mathematics can supply many examples of erro-
 neous results which were later corrected. Thus it is hard to

 see how proof strengthens "infallibility" in any way.
 The use of proof in the classroom has also been called

 into question on the grounds that it would encourage the
 idea that mathematics is an a priori science. The support-
 ers of this claim appear to see a conflict between this idea
 and their view that mathematics is "socially constructed"
 [Ernest, 1991]. Their use of the term a priori is not clear to
 me, but I suspect that what they reject is not the idea that
 mathematics is a priori in the sense of being analytic, non-
 empirical. One presumes that what they have in mind is a
 priori in the sense of given, pre-existing, waiting to be dis-
 covered, a view of mathematics which of course they
 might well see as standing in opposition to "socially con-
 structed."

 On this point I would agree with Kitcher [1984], howev-
 er, when he says that the pursuit of proof and rigour does
 not carry with it a commitment to looking at mathematics
 as a body of a priori knowledge. Nor do I believe that the
 value of proof in mathematics education hinges upon a res-
 olution of this ongoing philosophical debate. As Kitcher
 put it: "To demand rigor in mathematics is to ask for a set
 of reasonings which stands in a particular relation to the
 set of reasonings which are currently accepted" [page 213].
 Whether the set of reasonings currently accepted is regard-
 ed as given a priori or as socially constructed has no bear-
 ing on the value of proof in the classroom.

 Those who challenge the use of proof in general would
 challenge even more strongly the use of rigorous proof in
 particular. Yet rigour is a question of degree, and in math-
 ematical practice the level of rigour is often a rather prag-
 matic choice. Kitcher explains that it is quite rational to
 accept unrigorous reasoning when it has proven its worth
 in solving problems (as has been the case in physics). He
 adds that mathematicians begin to worry about defects in
 rigour only when they "come to appreciate that their cur-
 rent understanding ... is so inadequate that it prevents them
 from tackling the urgent research problems that they face"
 [p. 217].

 Mathematics educators could profitably ask themselves
 the question Kitcher asked about mathematicians: When is
 it rational to replace less rigorous with more rigorous rea-
 soning? Kitcher's answer is: "when the benefits it [rigo-
 rization] brings in terms of enhancing understanding out-
 weigh the costs involved in sacrificing problem-solving
 ability." A more rigorous mathematical argument may
 sometimes be more enlightening. It is the teacher who
 must judge when more careful proving might be expected
 to promote the elusive but most important classroom goal
 of understanding.

 In sum, I find myself out of sympathy with those who
 have challenged the use of proof in the classroom as being
 an expression of authoritarianism and infallibility. There
 are no grounds for the belief that proof is in conflict with

 present-day social values or with the reality of mathematics
 as a human enterprise open to error. Nor does a significant
 role for proof in the classroom require mathematics educa-
 tors to embrace a specific, a priori view of mathematics.

 The true function of proof in the classroom
 In trying to define the true function of proof in mathemat-
 ics education it is helpful to look at the function of proof in
 mathematics itself. Its main role is clearly that of justifica-
 tion and verification. Mathematicians are not inclined to

 accept new results without seeing a proof, even though
 other types of demonstration may play a supplementary
 role in convincing them.

 But, as we have seen, mathematicians expect more of
 proof than justification. As Manin has said [1977], they
 would also like a proof to make them wiser. This means
 that the best proof is one which also helps mathematicians
 understand the meaning of the theorem being proved: to
 see not only that it is true, but also why it is true. Of course
 such a proof is also more convincing and more likely to
 lead to further discoveries. There may also be other valu-
 able benefits: A proof may demonstrate the need for better
 definitions or yield a useful algorithm; it may even make a
 contribution to the systematization of results, to the com-
 munication of results, or to the formalization of mathemat-
 ical knowledge.

 But not all these functions of proof are relevant to learn-
 ing mathematics, so they should not be given the same
 weight in instruction [de Villiers, 1990; Hersh, 1993].
 While in mathematical practice the main function of proof
 is justification and verification, its main function in math-
 ematics education is surely that of explanation. (For this
 very reason proof should not be undertaken in the class-
 room as a ritual, aimed vaguely at reflecting mathematical
 practice, but rather as a meaningful instructional activity.)

 To say that a proof should be explanatory is not to say it
 cannot take different forms. It might be a calculation, a
 visual demonstration, a guided discussion observing proper
 rules of argumentation, a preformal proof, an informal
 proof, or even a proof that conforms to strict norms of
 rigour, all depending on the grade level and the context of
 instruction. What is common to all levels and contexts,
 however, is that the students are learning mathematics that
 is new to them but consists of known results [Hanna &
 Jahnke, 1993]. They know that the results are true. Clearly
 the challenge is to have them understand why they are true.

 Prerequisites for the successful use of proof
 To meet this challenge one must make sure the students
 understand the concepts used, one must structure and pre-
 sent the proof in such a way that is clear and convincing,
 and one must equip the students with the tools that will
 allow them to understand a proof.

 In Proof as a source of truth, Michael D. Resnik [1992]
 asks how it is that a proof induces us to believe its conclu-
 sion, and says that this happens because in the course of
 our mathematical education we have been prepared "to
 understand its component statements and to follow its rea-
 soning. We have been prepared to evaluate its inferences
 as well as data upon which it is based" [p. 30].
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 Resnik states that a proof addresses psychological, logi-
 cal, and cultural challenges. It succeeds in the psychologi-
 cal task because it is clearly stated and uses a notation that
 is understood by the reader. It is logical because it presents
 the ideas in an order which follows certain accepted rules,
 and so makes clear how the argument leads to the conclu-
 sion. Finally, it fits the cultural context because it is aimed
 at an audience that has the required level of experience,
 understands the language and has been taught to follow a
 mathematical argument.

 A proof would not succeed with students who had never
 learned to follow an argument, however. Resnik says we
 believe a proof in part because we have been prepared
 through our mathematics education to follow its reasoning.
 Here the role of the teacher is crucial. In addition to con-

 cepts specific to the mathematical topic at hand, the teach-
 er has to make the students familiar with patterns of argu-
 mentation and with terms such as assumption, conjecture,
 example, counterexample, refutation and generalisation.
 Only as the students learn modes of logical thinking will
 they acquire the ability and the confidence needed to eval-
 uate and to construct a proof.

 Thurston [1994] points out that "people familiar with
 ways of doing things ... recognize various patterns of state-
 ments or formulas as idioms or circumlocution for certain

 concepts or mental images ..." [p. 167]. The problem, as
 he says, is that "... to people not already familiar with
 what's going on the same patterns are not very illuminat-
 ing; they are often misleading. The language is not alive
 except to those who use it." Thus mathematics educators
 risk confusion if they assume that their students are con-
 versant even with the tools of argumentation in the most
 general sense, much less with specifically mathematical
 ones.

 Proofs that prove and proofs that explain
 A proof that we propose to use in the classroom must be
 well structured, and almost any proof could presumably be
 restructured to make it more teachable. Yet proofs do dif-
 fer greatly in their inherent explanatory power. In previous
 papers [Hanna, 1989; 1990] I pointed out that it is useful to
 distinguish between proofs that prove and proofs that
 explain. A proof that proves shows that a theorem is true.
 A proof that explains does that as well, but the evidence
 which it presents derives from the phenomenon itself
 [Steiner, 1978]. This distinction has been expressed in dif-
 ferent ways by many others, and goes back at least to the
 18th-century mathematician Clairaut [Barbin, 1988].

 As an illustration, let us look at different ways of prov-
 ing that the sum of the first n positive integers, S(n)9 is
 equal to n(n + l)/2. As we know, this theorem can easily
 be proved by mathematical induction. Such a proof has lit-
 tle explanatory value, however. It demonstrates that the
 theorem is true, but gives the student no inkling of why it is
 true.

 A proof that explains, on the other hand, could show
 why the theorem is true by basing itself upon the symme-
 try of two representations of that sum, as follows:

 5=1 +2 + ... +n

 5 = n +(/!- 1)+ ... + 1

 25 = (n+ l) + (n+l)+ ... + (n + 1)

 = n (n + 1)

 5 = n(n+l)/2

 Other explanatory proofs of this theorem could be based
 upon the geometric representation of the first n integers by
 an isosceles right triangle or by a staircase-shaped area.

 We have seen that even the most experienced math-
 ematicians prefer a proof that explains. For teachers it is all
 the more important to take the time to search out those
 proofs which best promote understanding. Such a proof is
 much more likely to yield not only "knowledge that" but
 also "knowledge why." Unfortunately there is no guaran-
 tee that every theorem we might like to use will have a
 proof that explains. But let us reserve proofs by mathemat-
 ical induction, or other proofs which are non-explanatory,
 for those limited situations in which we simply cannot find
 a proof that "makes us wiser."

 A good proof, however, must not only be correct and
 explanatory, it must also take into account, especially in its
 level of detail, the classroom context and the experience of
 the students. To achieve the key goal of understanding it
 may be necessary to emphasize some points at the expense
 of others, and it may even be appropriate to leave some out
 entirely where that can be done without loss of integrity.
 Related ideas have been put forward convincingly by
 Blum and Kirsch [1991] in their plea for "doing mathemat-
 ics on a preformal level," as well as by Wittmann and
 Muller [1988] in supporting the concept of the inhaltlich-
 anschaulicher Beweis, in which the demonstration makes
 use of the meaning of the terms employed rather than rely-
 ing on abstract methods.

 A summing-up
 I have identified some challenges to the status of proof in
 mathematics and presented some assessments that have
 even predicted the death of proof. But I hope to have
 shown that proof continues to thrive, sometimes in unfa-
 miliar but fascinating forms. I have also looked at some
 developments in mathematics education that seem to chal-
 lenge the position of proof as a necessary and respected
 classroom activity. I hope to have shown that these chal-
 lenges are unfounded, and that giving proof the attention it
 deserves in the curriculum is not in conflict with any of our
 shared educational or social values.

 In my initial research on proof I found myself criticizing
 the excessive emphasis on proof in the curriculum and
 arguing that it was misguided. Little did I know then that
 the time would come when I would need to deplore the
 neglect of proof, but this is precisely what I am doing now.
 This paper is in large part a plea for recognizing the right-
 ful place of proof in the mathematics curriculum as a key
 tool for the promotion of understanding.
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 In reply to the question "Do we need proof in school
 mathematics?" Schoenfeld [1994] gives an unequivocal
 reply: "Absolutely. Need I say more? Absolutely." I could
 not agree more.

 Note

 A previous version of this paper was presented as a keynote address at the
 29th Tagung fur Didaktik der Mathematik, Kassel, Germany, March
 1995. Preparation of the paper was supported in part by the Social
 Science and Humanities Research Council of Canada.
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