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Spectral gap, logarithmic Sobolev constant, and geometric
bounds

Michel Ledoux

Abstract. We survey recent works on the connection between spectral gap
and logarithmic Sobolev constants, and exponential integrability of Lipschitz
functions. In particular, tools from measure concentration are used to describe
bounds on the diameter of a (compact) Riemannian manifold and of Markov
chains in terms of the first eigenvalue of the Laplacian and the logarithmic
Sobolev constant. We examine similarly dimension free isoperimetric bounds
using these parameters.
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1. Introduction

In the recent years, it has been realized that simple measure theoretic argu-
ments may be used to produce (sharp) bounds on geometric objects, such as the
diameter of manifolds or graphs, in terms of spectral or logarithmic Sobolev con-
stants. This question has of course a long run in Riemannian geometry and this
work focuses more on the (elementary) methods than on the conclusions them-
selves. The key argument is described through the measure concentration and
exponential integrability properties of distance functions under Poincaré or loga-
rithmic Sobolev inequalities going back to the work of M. Gromov and V. Milman
[G-M] and I. Herbst (cf. [Le5]). In particular, the approach avoids any type of
purely geometric arguments and delicate heat kernel bounds, and produces bounds
of the correct order of magnitude in the dimension. The investigation at the level
of logarithmic Sobolev constants turns out to be of crucial interest in the study of
rates of convergence to equilibrium, especially for Markov chains as developed by
P. Diaconis and L. Saloff-Coste (cf. [D-SC], [SC3]).
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To describe the connection between spectral and logarithmic Sobolev inequal-
ities, and integrability properties of distance functions, it will be convenient to use
the language of metric measure spaces and of measure concentration (cf. [Le5]).
Let thus (X, d, μ) be a metric measure space in the sense of [Grom2], that is (X, d)
is a metric space and μ is a finite non-negative Borel measure on (X, d), normalized
to be a probability measure (μ(X) = 1). Define, for λ ∈ R, the Laplace functional
of μ on (X, d) as

E(X,d,μ)(λ) = sup
∫
X

eλFdμ

where the supremum runs over all (bounded) 1-Lipschitz functions F on (X, d)
such that

∫
XFdμ = 0. By 1-Lipschitz, we understand that |F (x)− F (y)| ≤ d(x, y)

for all x, y ∈ X . We often write more simply Eμ = E(X,d,μ). Note that Eμ is an
even function, non-decreasing on [0,∞). We will say, following [Grom2] (cf. [Le5])
that (X, d, μ) has exponential concentration whenever E(X,d,μ)(λ0) < ∞ for some
λ0 > 0, and that (X, d, μ) has normal concentration if for some constant C > 0,

E(X,d,μ)(λ) ≤ eCλ2/2, λ ∈ R.
This terminology is motivated by the following elementary lemma that describes
the geometric aspects, in terms of measure concentration, of these properties. For
any two sets A,B in (X, d), set

d(A,B) = inf
{
d(x, y);x ∈ A, y ∈ B

}
.

Lemma 1.1. For any two sets A,B in (X, d), and any λ ≥ 0,
μ(A)μ(B) ≤ e−λd(A,B) Eμ(λ)2.

In particular, if (X, d, μ) has normal concentration (with constant C)

μ(A)μ(B) ≤ e−d(A,B)2/4C .

Proof. By definition of the Laplace functional Eμ of (X, d, μ), for any (bounded)
1-Lipschitz function F on X and any λ ≥ 0,∫

A

∫
B

eλ[F (x)−F (y)]dμ(x)dμ(y) ≤
∫
X

eλ(F−M)dμ

∫
X

eλ(M−F )dμ ≤ Eμ(λ)2

where M =
∫
XFdμ. Choose now F (x) = min(d(x,B), r), x ∈ X , so that∫
A

∫
B

eλ[F (x)−F (y)]dμ(x)dμ(y) ≥ eλmin(d(A,B),r)μ(A)μ(B).

Let then r →∞. If (X, d, μ) has normal concentration, optimize in λ. Lemma 1.1
is proved.

If A is a subset of (X, d), denote by

Ar = {x ∈ X ; d(x,A) < r}
its (open) neighborhood of order r > 0.

Corollary 1.2. If (X, d, μ) has exponential concentration (respectively normal
concentration), for every Borel set A in (X, d) such that μ(A) ≥ 1

2 ,

μ(Ar) ≥ 1− 2Eμ(λ0)2 e−λ0r

(respectively
μ(Ar) ≥ 1− 2 e−r

2/4C)
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for all r > 0.

It is worthwhile mentioning for further comparison that whenever the diameter
D of (X, d) is finite, (X, d, μ) has normal concentration with constant D2 for any
probability measure μ on the Borel sets of (X, d). Indeed, let F be a mean zero
1-Lipschitz function on (X, d). By Jensen’s inequality, for every λ ∈ R,∫

X

eλF dμ ≤
∫
X

∫
X

eλ[F (x)−F (y)]dμ(x)dμ(y) ≤
∞∑
i=0

(Dλ)2i

(2i)!
≤ eD2λ2/2.

The claim follows.
In these notes, we survey recent developments on spectral and logarithmic

Sobolev bounds by the preceding measure concentration tools, mainly taken from
the references [SC2], [D-SC], [Le3]. In Section 2, we show how the existence of
a spectral gap, or Poincaré inequality, implies exponential concentration. This
observation turns out to have rather useful consequences to bounds on the diameter
to which we turn next in Section 3. All these results have analogous counterparts
on graphs and discrete structures. In Section 4, we develop the corresponding
investigation at the level of logarithmic Sobolev inequalities that provide more
precise bounds. Namely, together with the Herbst argument, we show how the
logarithmic Sobolev constant entails normal concentration of Lipschitz functions
and deduce then sharp bounds on the diameter. Again, the discrete case leads to
a number of considerations of interest in connection with geometric bounds. We
briefly discuss the analogous conclusions under the entropic constant. In the last
part, we investigate isoperimetric bounds under spectral and logarithmic Sobolev
constants using some simple semigroup tools, and describe, as a main feature,
dimension free inequalities of isoperimetric type.

2. Spectrum and exponential integrability

Assume first we are given a smooth complete connected Riemannian mani-
fold (X, g) (without boundary) with Riemannian metric g and finite volume V .
Denote by d the distance function induced by g on X and by dμ = dv

V the normal-
ized Riemannian volume element on (X, g). Let furthermore λ1 = λ1(X) be the
first non-trivial eigenvalue of the Laplacian Δg on X . By the Raleigh-Ritz varia-
tional principle (cf. [Cha1], [G-H-L]...), λ1 is characterized by the spectral gap, or
Poincaré, inequality

λ1

∫
X

f2dμ ≤
∫
X

f(−Δgf)dμ =
∫
X

|∇f |2dμ (2.1)

for all smooth real-valued functions f on (X, g) such that
∫
Xfdμ = 0, where |∇f |

denotes the Riemannian length of the gradient of f .
The following result goes back independently to M. Gromov and V. Milman

[G-M] (in a geometric context) and A. Borovkov and S. Utev [B-U] (in a proba-
bilistic context). (See also [Br].) It has been investigated in [A-M-S] and [A-S]
using moment bounds, and in [Sc] using a differential inequality on Laplace trans-
forms (similar to the Herbst argument presented in Section 4). We follow here the
approach by S. Aida and D. Stroock [A-S].

Theorem 2.1. Let (X, g) be a smooth complete connected Riemannian manifold
with finite volume and normalized Riemannian measure μ. Denote by λ1 = λ1(X)
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the first non-trivial eigenvalue of the Laplacian Δg on (X, g). Then,

E(X,d,μ)

(√
λ1

)
≤ 3.

In particular (X, d, μ) has exponential concentration whenever λ1 > 0.

Proof. Set u(λ) =
∫
X
eλF dμ, λ ≥ 0, where F is bounded and such that∫

X
Fdμ = 0. Since F may be assumed smooth enough, we can have that |∇F | ≤ 1

everywhere. Apply (2.1) to f = eλF/2, λ ≥ 0. Since∫
X

|∇f |2dμ = λ2

4

∫
X

|∇F |2eλFdμ ≤ λ2

4

∫
X

eλFdμ,

we get that

u(λ)− u
(λ
2

)2

≤ λ2

4λ1
u(λ).

Hence, for every λ < 2
√
λ1,

u(λ) ≤ 1
1− λ2/4λ1

u
(λ
2

)2

.

Applying the same inequality for λ/2 and iterating, yields, after n steps,

u(λ) ≤
n−1∏
k=0

(
1

1− λ2/4k+1λ1

)2k

u
( λ

2n
)2n

.

Since u(λ) = 1 + o(λ), we have that u(λ/2n)2
n → 1 as n→ 0. Therefore,

u(λ) ≤
∞∏
k=0

(
1

1− λ2/4k+1λ1

)2k

where the infinite product converges whenever λ < 2
√
λ1. Setting for example

λ =
√
λ1 yields that ∫

X

e
√
λ1Fdμ = u

(√
λ1

)
≤ 3.

The proof of Theorem 2.1 is complete.

It is a simple yet non-trivial observation that λ1(X × Y ) = min(λ1(X), λ1(Y ))
for Riemannian manifolds X and Y . Theorem 2.1 therefore provides a useful tool
to concentration in product spaces (cf. [Le5]).

Theorem 2.1 has an analogue on graphs to which we turn now. It is convenient
to deal with finite state Markov chains.

Let X be a finite (or countable) set. Let Π(x, y) ≥ 0, x, y ∈ X , satisfy∑
y∈X

Π(x, y) = 1

for every x ∈ X . Assume furthermore that there is a symmetric invariant proba-
bility measure μ on X for Π, that is Π(x, y)μ({x}) is symmetric in x and y and∑

xΠ(x, y)μ({x}) = μ({y}) for every y ∈ X . In other words, (Π, μ) is a reversible
Markov chain (cf. e.g. [SC3] and the references therein). Define, for f, g : X → R
say finitely supported, the Dirichlet form

Q(f, g) =
∑

x,y∈X

[
f(x)− f(y)

][
g(x)− g(y)

]
Π(x, y)μ

(
{x}
)
.
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We may speak of the spectral gap, or the Poincaré constant, of the chain (Π, μ) as
the largest λ1 such that for all f ’s (with finite support) such that

∫
Xfdμ = 0,

λ1

∫
X

f2dμ ≤ Q(f, f). (2.2)

Set also
|||f |||2∞ = sup

x∈X

∑
y∈X

∣∣f(x)− f(y)
∣∣2Π(x, y).

The triple norm ||| · |||∞ may be thought of as a discrete version of the Lipschitz
norm in the continuous setting. Although it may not be well adapted to all dis-
crete structures, it behaves similarly for what concerns spectrum and exponential
concentration. Equip X with the distance associated with ||| · |||∞ defined as

dQ(x, y) = sup
|||f |||∞≤1

[
f(x)− f(y)

]
, x, y ∈ X.

Theorem 2.2 below is the analogue of Theorem 2.1 in this discrete setting (cf. [A-S]).
The proof is essentially the same.

Theorem 2.2. Let (Π, μ) be a reversible Markov chain on X as before with
spectral gap λ1. Then

E(X,dQ,μ)

(√
λ1/2

)
≤ 3.

In particular (X, dQ, μ) has exponential concentration whenever λ1 > 0.

Proof. We proceed as for Theorem 2.1. The main observation is that, for
every F on X and every λ ≥ 0,

Q
(
eλF/2, eλF/2

)
≤ 1
2
|||F |||2∞ λ2

∫
X

eλFdμ. (2.3)

Indeed, by symmetry,

Q
(
eλF/2, eλF/2

)
=

∑
x,y∈X

[
eλF (x)/2 − eλF (y)/2

]2
Π(x, y)μ

(
{x}
)

= 2
∑

F (y)<F (x)

[
eλF (x)/2 − eλF (y)/2

]2
Π(x, y)μ

(
{x}
)

≤ λ2

2

∑
x,y∈X

[
F (x) − F (y)

]2eλF (x)Π(x, y)μ
(
{x}
)

from which (2.3) follows by definition of |||F |||∞.
Assume now that F is bounded with mean zero and |||F |||∞ ≤ 1. Set u(λ) =∫

X
eλFdμ, λ ≥ 0. Applying (2.2) to eλF/2 yields, together with (2.3),

u(λ)− u
(λ
2

)2

≤ λ2

2λ1
u(λ),

that is, for every 0 ≤ λ <
√
2λ1,

u(λ) ≤ 1
1− λ2/2λ1

u
(λ
2

)2

.

We then conclude as for Theorem 2.1, with λ1 replaced by λ1/2.
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The distance most often used in such contexts is however not dQ but the com-
binatoric distance dc associated with the graph with vertex-set X and edge-set
{(x, y) : Π(x, y) > 0}. This distance can be defined as the minimal number of edges
one has to cross to go from x to y. Equivalently,

dc(x, y) = sup
‖∇f‖∞≤1

[
f(x)− f(y)

]
where

‖∇f‖∞ = sup
{∣∣f(x)− f(y)

∣∣; Π(x, y) > 0
}
.

Now since
∑

y Π(x, y) = 1,

|||f |||2∞ ≤ ‖∇f‖
2
∞.

In particular dc ≤ dQ so that Theorem 2.2 also holds for the metric measure space
(X, dc, μ).

As an example, let X = (V, E) be a finite connected graph with set of vertices
V and symmetric set of edges E . Equip V with the normalized uniform measure μ
and the graph distance dc. We may consider Π(x, y) = 1

k(x) whenever x and y are
adjacent in V and 0 otherwise where k(x) is the number of neighbors of x. Consider
the quadratic form

Q̃(f, f) =
∑
x∼y

[
f(x)− f(y)

]2
where the sum runs over all neighbors x ∼ y inX . SinceX is connected, Q̃(f, f) ≥ 0
for all f ’s and is zero whenever f is constant. Let λ1 > 0 be the first non-trivial
eigenvalue of Q̃ (that is of the Laplace operator on X). As a consequence of
Theorem 2.2, we have the following result.

Corollary 2.3. Let k0 = max{k(x);x ∈ V } <∞. Then

E(X,d,μ)

(√
λ1

2k0

)
≤ 3.

The most important examples of applications of the preceding corollary are the
Cayley graphs. If V is a finite group and S ⊂ V a symmetric set of generators of
V , we may join x and y in V by an edge if x = s−1y for some s ∈ S. The path
distance on X = (V, E) is the word distance in V induced by S and k0 = Card(S).
For oriented graphs, see [Al], [A-M].

To conclude this section, we show, on the basis of Lemma 1.1, how the preceding
exponential integrability results may be applied to bounds on the spectral gap λ1

in terms of distances between disjoints sets. Letting indeed λ0 =
√
λ1 in Lemma

1.1, it follows from Theorem 2.1 that, for every sets A,B in X ,

λ1 ≤
1

d(A,B)2
log2

(
C

μ(A)μ(B)

)
(2.4)

with C = 9. (In the context of Theorem 2.2, replace λ1 by λ1/2.) As discussed in
[Bo-L], the preceding arguments may easily be improved to reach C = 1 in (2.4). In-
equalities such as (2.4) have been considered by F. R. K. Chung, A. Grigory’an and
S.-T. Yau [C-G-Y1] who showed (2.4) (with C = 4) using heat kernel expansions,
and then using the wave equation [C-G-Y2] (with C = e). They actually establish
similar inequalities for the all sequence of eigenvalues, something not considered
here. They also establish similar results on graphs.
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3. Spectral and diameter bounds

On the basis of the results of the preceding section, we investigate here some
relationships between spectral and diameter bounds. The following result is taken
from [Le5], and may be traced back in the work by R. Brooks [Br].

Assume that we are given a smooth complete connected Riemannian manifold
(X, g), (without boundary), not necessarily compact but with finite volume V .
Denote by dμ = dv

V the normalized Riemannian volume element. Let as before
λ1 = λ1(X) be the first non-trivial eigenvalue of the Laplace operator Δg on (X, g).

If B(x, r) is the (open) ball with center x and radius r > 0 in X , it follows from
Theorem 2.1 together with Corollary 1.2 that λ1 = λ1(X) = 0 as soon as

lim sup
r→∞

1
r
log
(
1− μ

(
B(x, r)

))
= 0 (3.1)

for some (all) x in X (cf. [Br]). The following is a kind of converse.

Theorem 3.1. Let (X, g) be a smooth complete connected Riemannian manifold
with dimension n and finite volume. Let μ be the normalized Riemannian volume
on (X, g). Assume that the Ricci curvature of (X, g) is bounded below. Then (X, g)
is compact as soon as

lim inf
r→∞

1
r
log
(
1− μ

(
B(x, r)

))
= −∞

for some (or all) x ∈ X. In particular λ1 = λ1(X) > 0 under this condition.
Furthermore, if (X, g) has non-negative Ricci curvature and if D is the diameter of
X, then

λ1 ≤
Cn

D2
(3.2)

where Cn > 0 only depends on the dimension n of X.

The upper bound (3.2) goes back to the work by S.-Y. Cheng [Chen] in Rie-
mannian geometry (see also [Cha1], [L-Y1] and below). In the opposite direction,
it has been shown by P. Li [Li] and H. C. Yang and J. Q. Zhong [Y-Z] that when
(X, g) has non-negative Ricci curvature,

λ1 ≥
π2

D2
. (3.3)

This lower bound is optimal since achieved on the one-dimensional torus.

Proof of Theorem 3.1. We proceed by contradiction and assume that X is
not compact. Choose B(x, r0) a geodesic ball in X with center x and radius r0 > 0
such that μ(B(x, r0)) ≥ 1

2 . By non-compactness (and completeness), for every r >
0, we can take z at distance r0+2r from x. In particular, B(x, r0) ⊂ B(z, 2(r0+r)).
By the Riemannian volume comparison theorem [C-E], [Cha2], for every y ∈ X and
0 < s < t,

μ(B(y, t))
μ(B(y, s))

≤
( t
s

)n
et
√

(n−1)K (3.4)

where −K, K ≥ 0, is the lower bound on the Ricci curvature of (X, g). Therefore,

μ
(
B(z, r)

)
≥

( r

2(r0 + r)

)n
e−2(r+r0)

√
(n−1)K μ

(
B
(
(z, 2(r0 + r)

))
≥ 1

2

( r

2(r0 + r)

)n
e−2(r0+r)

√
(n−1)K



226 MICHEL LEDOUX

where we used that μ(B(z, 2(r0 + r))) ≥ μ(B(x, r0)) ≥ 1
2 . Since B(z, r) is included

into the complement of B(x, r0 + r),

1− μ
(
B(x, r + r0)

)
≥ 1
2

( r

2(r0 + r)

)n
e−2(r0+r)

√
(n−1)K (3.5)

which is impossible as r →∞ by the assumption. The first part of the theorem is
established.

Thus (X, g) is compact. Denote by D its diameter. Assume that (X, g) has
non-negative Ricci curvature. That is, we may take K = 0 in (3.4) and (3.5). By
Theorem 2.1 together with Corollary 1.2, for every measurable subset A in X such
that μ(A) ≥ 1

2 , and every r > 0,

1− μ(Ar) ≤ 18 e−
√
λ1 r. (3.6)

We distinguish between two cases. If μ(B(x, D8 )) ≥ 1
2 , apply (3.6) to A = B(x, D8 ).

By definition of D, we may choose r = r0 = D
8 in (3.5) to get

1
2 · 4n ≤ 1− μ(AD/8) ≤ 18 e−

√
λ1 D/8.

If μ(B(x, D8 )) <
1
2 , apply (3.6) to A the complement of B(x, D8 ). Since the ball

B(x, D
16 ) is included into the complement of AD/16 and since by (3.4) with t = D,

μ
(
B
(
x,

D

16

))
≥ 1
16n

,

we get from (3.6) with r = D
16 that

1
16n
≤ 1− μ(AD/16) ≤ 18 e−

√
λ1 D/16.

The conclusion easily follows from either case, with a constant Cn of the order of
n2 as n is large. Theorem 3.1 is established.

Analogous conclusions may be obtained in the discrete case. Let as before
Π(x, y) be a Markov chain on a finite state space X with symmetric invariant
probability measure μ. Recall λ1 the spectral gap of (Π, μ) and dQ the distance
defined from the norm

|||f |||2∞ = sup
x∈X

∑
y∈X

∣∣f(x)− f(y)
∣∣2Π(x, y).

Denote by DQ the diameter of X for dQ.

Proposition 3.2. If μ is nearly constant, that is if there exists C > 0 such
that, for every x, μ({x}) ≤ Cminy∈X μ({y}), then

D2
Q ≤

(
4 log(3C|X |)

)2
λ1

where |X | is the cardinal of X.

Proof. Consider two points x, y ∈ X such that d(x, y) = DQ. By Lemma 1.1
and Theorem 2.2,

μ
(
{x}
)
μ
(
{y}
)
≤ 9 e−DQ

√
λ1/2.

Since, by the hypothesis on μ, minz∈X μ({z}) ≥ (C|X |)−1, the conclusion follows.



SPECTRAL GAP 227

Recall that the combinatoric diameter Dc is less than or equal to DQ. As such,
Proposition 3.2 goes back to [A-M] (see also [Al], [Chu]), where it is observed that
the bound on Dc of Proposition 3.2 is optimal on the class of regular graphs.

4. Logarithmic Sobolev constant and diameter bounds

In this section, we turn to the corresponding investigation for logarithmic
Sobolev inequalities. Logarithmic Sobolev constants actually provide sharper bounds
than spectral gaps, and are of importance in the study of rates of convergence to
equilibrium.

To start with, let as before (X, g) be a complete connected Riemannian manifold
(without boundary) with finite volume V . Let d be the distance function associated
to g and dμ = dv

V the normalized volume element. In analogy with the first non-
trivial eigenvalue λ1 = λ1(X) of Δg on X , define the logarithmic Sobolev constant
ρ0 = ρ0(X) of Δg as the largest constant ρ such that for every smooth function f
on X with

∫
X
f2dμ = 1,

ρ

∫
X

f2 log f2dμ ≤ 2
∫
X

f(−Δgf)dμ = 2
∫
X

|∇f |2dμ. (4.1)

Applying (4.1) to 1 + εf , a simple Taylor expansion as ε→ 0 shows that λ1 ≥ ρ0.
Note that, as for λ1 = λ1(X), one may show (cf. [Gros], [Le3]) that ρ0(X×Y ) =

min(ρ0(X), ρ0(Y )) for Riemannian manifolds X and Y .
It is a non-trivial result, due to O. Rothaus [Ro1], that whenever X is compact,

λ1 ≥ ρ0 > 0. (4.2)

When the Ricci curvature of (X, g) is uniformly bounded below by a strictly positive
constant R, it goes back to A. Lichnerowicz (cf. [Cha1], [G-H-L]) that λ1 ≥ Rn

where Rn = R
1− 1

n

, with equality if and only if X is a sphere (Obata’s theorem).
This lower bound has been shown to hold similarly for the logarithmic Sobolev
constant by D. Bakry and M. Emery [B-E] (cf. [Ba]) so that

λ1 ≥ ρ0 ≥ Rn. (4.3)

The case of equality for ρ0 is a consequence of Obata’s theorem due to an im-
provement of the preceding by O. Rothaus [Ro2] who showed that when (X, g) is
compact and Ricg ≥ R (R ∈ R),

ρ0 ≥ αnλ1 + (1− αn)Rn (4.4)

where αn = 4n/(n+1)2. In particular, λ1 and ρ0 are of the same order if (X, g) has
non-negative Ricci curvature. As examples, ρ0 = λ1 = n on the n-sphere [M-W]. On
the n-dimensional torus, λ1 = ρ0 = 1. The question whether ρ0 < λ1 in this setting
has been open for some time until the geometric investigation by L. Saloff-Coste
[SC2]. He actually proved, using heat kernel bounds and equilibrium rates, that
the existence of a logarithmic Sobolev inequality in a Riemannian manifold with
finite volume and Ricci curvature bounded from below forces the manifold to be
compact. It is known that there exist non-compact manifolds of finite volume with
λ1 > 0. In particular, there exist compact manifolds of constant negative sectional
curvature with spectral gaps uniformly bounded away from zero, and arbitrarily
large diameters (cf. [SC2]. This yield examples for which the ratio ρ0/λ1 can be
made arbitrarily small.
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We present below a simplified argument of this result based on Theorem 3.1
and normal concentration. To this task, we develop, for the logarithmic Sobolev
inequality, the connection with exponential integrability and measure concentration
as for the spectral inequalities in Sections 2 and 3. This will be achieved by the
Herbst argument from a logarithmic Sobolev inequality to exponential integrability.
It goes back to an unpublished argument by I. Herbst [Da-S], revived in the past
years by S. Aida, T. Masuda and I. Shigekawa [A-M-S]. Relevance to measure
concentration was emphasized in [Le2], and further developed in [Le3] (cf. [Le5] for
the historical developments).

The principle is similar to the application of spectral properties to concentration
presented in Section 2.1, but logarithmic Sobolev inequalities allow us to reach
normal concentration. Let F be a smooth bounded 1-Lipschitz function on X such
that

∫
XFdμ = 0. In particular, since F is assumed to be regular enough, we can

have that |∇F | ≤ 1 at every point. We apply (4.1) to f2 = eλF for every λ ∈ R.
We have ∫

X

|∇f |2dμ = λ2

4

∫
X

|∇F |2eλFdμ ≤ λ2

4

∫
X

eλFdμ.

Setting u(λ) =
∫
X
eλFdμ, λ ∈ R, by the definition of entropy,

λu′(λ)− u(λ) log u(λ) ≤ 1
2ρ0

λ2u(λ).

In other words, if U(λ) = 1
λ log u(λ), U(0) =

∫
X
Fdμ = 0, then

U ′(λ) ≤ 1
2ρ0

, λ ∈ R.

Therefore U(λ) ≤ λ
2ρ0

from which we immediately conclude that

u(λ) =
∫
X

eλF dμ ≤ eλ2/2ρ0

for every λ ∈ R.
We summarize the preceding argument in the following statement. Recall the

Laplace functional E(X,d,μ) of μ on X .

Theorem 4.1. Let (X, g) be a smooth complete connected Riemannian mani-
fold with finite volume and normalized Riemannian measure μ. Denote by ρ0 the
logarithmic Sobolev constant of Δg on (X, g). Then,

E(X,d,μ)(λ) ≤ eλ
2/2ρ0 , λ ∈ R.

In particular, (X, d, μ) has normal concentration whenever ρ0 > 0.

As announced, it was shown by L. Saloff-Coste [SC2] that the existence of ρ0 =
ρ0(X) > 0 forces a Riemannian manifold with finite volume and Ricci curvature
bounded from below to be compact. Together with Theorem 4.1, we may present,
along the lines of the proof of Theorem 3.1, a sharp improvement of the quantitative
bound on the diameter of X in terms of the logarithmic Sobolev constant ρ0.

Theorem 4.2. Let (X, g) be a smooth complete connected Riemannian manifold
with dimension n and finite volume. Let μ be the normalized Riemannian volume
element on (X, g) and denote by ρ0 = ρ0(X) the logarithmic Sobolev constant of
Δg on (X, g). Assume that Ricg ≥ −K, K ≥ 0. If ρ0 > 0, then (X, g) is compact.
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Furthermore, if D is the diameter of X, there exists a numerical constant C > 0
such that

D ≤ C
√
n max

(√
K

ρ0
,
1√
ρ

0

)
.

It is known from the theory of hypercontractive semigroups (cf. [De-S]) that
conversely there exists C(n,K, ε) such that

ρ0 ≥
C(n,K, ε)

D

whenever λ1 ≥ ε > 0.

Proof. By Theorem 4.1 and Corollary 1.2,

1− μ(Ar) ≤ 2 e−ρ0r
2/4 (4.5)

for every r > 0 and A ⊂ X such that μ(A) ≥ 1
2 . It is thus clear that

lim inf
r→∞

1
r
log
(
1− μ

(
B(x, r)

))
= −∞

so that (X, g) is compact by Theorem 3.1. To establish the bound on the diameter
D, we repeat the proof of Theorem 3.1, replacing (3.6) by (4.5). Let B(x, D8 )
be the ball with center x and radius D

8 . We distinguish between two cases. If
μ(B(x, D8 )) ≥ 1

2 , apply (4.5) to A = B(x, D8 ). By definition of D, we may choose
r = r0 = D

8 in (3.5) to get

1
2
· 1
4n
e−
√

(n−1)KD/2 ≤ 1− μ(AD/8) ≤ 2 e−ρ0D
2/256.

If μ(B(x, D8 )) <
1
2 , apply (4.5) to A the complement of B(x, D8 ). Since the ball

B(x, D
16 ) is included into the complement of AD/16 and since by (3.4)

μ
(
x0,

D

16

)
≥ 1
16n

e−
√

(n−1)KD,

it follows from (4.5) with r = D
16 that

1
16n

e−
√

(n−1)KD ≤ 1− μ(AD/16) ≤ 2 e−ρ0D
2/1024.

In both cases,
ρ0D

2 − C
√
(n− 1)KD − Cn ≤ 0

for some numerical constant C > 0. Hence

D ≤ C
√
(n− 1)K +

√
C2(n− 1)K + 4Cρ0n

2ρ0

and thus

D ≤ C
√
(n− 1)K +

√
Cρ0n

ρ0

which yields the conclusion. The theorem is established.

Corollary 4.3. Let X be a compact Riemannian manifold with dimension n
and non-negative Ricci curvature. Then

ρ0 ≤
Cn

D2

for some numerical constant C > 0.
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Corollary 4.3 has to be compared to Cheng’s upper bound [Chen] on the spectral
gap of compact manifolds with non-negative Ricci curvature

λ1 ≤
2n(n+ 4)

D2
. (4.6)

Hence, generically, the difference between the upper bound on λ1 and ρ0 seems to be
of the order of n. Moreover, it is mentioned in [Chen] that there exist examples with
λ1 ≈ n2/D2. They indicate that both Rothaus’ lower bound (4.4) and Corollary
4.3 could be sharp. Note also that (4.4) together with Corollary 4.3 allows us to
recover Cheng’s upper bound on λ1 of the same order in n.

Corollary 4.3 is stated for (compact) manifolds without boundary but it also
holds for compact manifolds of non-negative Ricci curvature with convex boundary
(and Neuman’s conditions). In particular, this result applies to convex bounded
domains in Rn equipped with normalized Lebesgue measure. If we indeed closely
inspect the proof of Theorem 4.2 in the latter case for example, we see that what is
only required is (4.5), that holds similarly, and the volume comparisons. These are
however well-known and easy to establish for bounded convex domains in Rn. In
this direction, it might be worthwhile mentioning moreover that the first non-zero
Neumann eigenvalue λ1 of the Laplacian on radial functions on the Euclidean ball
B in Rn behaves as n2. It may be identified indeed as the square of the first positive
zero κn of the Bessel function Jn/2 of order n/2 (cf. [Cha1] e.g.). (On a sphere
of radius r, there will be a factor r−2 by homogeneity.) In particular, standard
methods or references [Wat] show that κn ≈ n as n is large. Denoting by ρ0 the
logarithmic Sobolev constant on radial functions on B, a simple adaption of the
proof of Theorem 4.2 shows that ρ0 ≤ Cn for some numerical constant C > 0.
Actually, ρ0 is of the order of n and this may be shown directly in dimension
one by a simple analysis of the measure with density nxn−1 on the interval [0, 1].
We are indebted to S. Bobkov for this observation. One can further measure on
this example the difference between the spectral gap and the logarithmic Sobolev
constant as the dimension n is large. (On general functions, λ1 and ρ0 are both of
the order of n, see [Bo].)

As another application, assume Ricg ≥ R > 0. As we have seen, by the Bakry-
Emery inequality [B-E], ρ0 ≥ Rn where Rn = R

1− 1
n

. Therefore, by Corollary 4.3,

D ≤ C

√
n− 1
R

.

Up to the numerical constant, this is just Myers’ theorem on the diameter of a

compact manifold D ≤ π
√

n−1
R (cf. [Cha2]). This could suggest that the best

numerical constant in Corollary 4.3 is π2.
Dimension free lower bounds on the logarithmic Sobolev constant in manifolds

with non-negative Ricci curvature, similar to the lower bound (3.3) on the spectral
gap, are also available. It has been shown by F.-Y. Wang [Wan] (see also [B-L-Q]
and [Le3] for slightly improved quantitative estimates) that, if Ricg ≥ 0,

ρ0 ≥
λ1

1 + 2D
√
λ1

.

In particular, together with (3.1),

ρ0 ≥
π2

(1 + 2π)D2
.



SPECTRAL GAP 231

The preceding lower bound holds more generally for the logarithmic Sobolev
constants of Laplace operators with drift L = Δg −∇U · ∇ for a smooth function
U (with finite, time reversible measure dμ = e−Udv) of non-negative curvature in
the sense that, as symmetric tensors,

Ricg −∇∇U ≥ 0.
Under this condition, it is actually shown in [Wan] that if for some c > 0 and some
(all) x in X , ∫

X

ecd(x,·)2dμ ≤ C <∞,

then ρ0 > 0, with a lower bound depending on c, C. In Rn with U convex, S.
Bobkov [Bo] showed that λ1 > 0 with a lower bound depending on n. It would
be a challenging question in this context to establish a lower bound on λ1 only
depending on c, C > 0 such that∫

X

ecd(x,·)dμ ≤ C <∞.

We refer to the previous references for further details.

Next, we describe analagous results in the discrete case. As in Section 2.1,
let Π(x, y) be a Markov chain on a finite state space X with symmetric invariant
probability measure μ. Let ρ0 be the logarithmic Sobolev constant of (Π, μ) defined
as the largest ρ such that

ρ

∫
X

f2 log f2dμ ≤ 2Q(f, f)

for every f on X with
∫
Xf2dμ = 1. Recall that here

Q(f, f) =
∑

x,y∈X

[
f(x)− f(y)

]2Π(x, y)μ({x}).
Recall also we set

|||f |||2∞ = sup
x∈X

∑
y∈X

∣∣f(x)− f(y)
∣∣2Π(x, y)

and denote by dQ the associated metric.
Arguing as for Theorem 4.1, and using (2.3), we may obtain similarly normal

concentration from the logarithmic Sobolev constant ρ0.

Theorem 4.4. Let (Π, μ) be a reversible Markov chain on X as before with
logarithmic Sobolev constant ρ0. Then

E(X,dQ,μ)(λ) ≤ eλ
2/ρ0 , λ ∈ R.

In particular (X, dQ, μ) has normal concentration whenever ρ0 > 0.

In the context of Corollary 2.3, we have similarly that whenever k0 = max{k(x);x ∈
V } <∞,

E(X,dc,μ)(λ) ≤ ek0λ
2/ρ0 , λ ∈ R.

The next statement is analagous to Proposition 3.2 for the logarithmic Sobolev
constant. Denote by DQ the diameter of X for dQ. The proof is an immediate
consequence of Lemma 1.1 and Theorem 4.4. The numerical constant is not sharp.
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Proposition 4.5. If μ is nearly constant, that is if there exists C such that,
for every x, μ({x}) ≤ Cminy∈X μ({y}), then

D2
Q ≤

16 log(C|X |)
ρ0

where |X | is the cardinal of X.

As already discussed, the distance most often used in the present setting is not
d but the combinatoric distance dc associated with the graph with vertex-set X
and edge-set {(x, y) : Π(x, y) > 0}. Recall that dc ≤ d (so that in particular, the
combinatoric diameter Dc satisfies Dc ≤ DQ.) Hence, Proposition 4.5 also holds
with Dc.

It is worthwhile mentioning that a small improvement of the concentration
bound may be obtained with the graph distance dc. Indeed, reproducing the argu-
ment leading to (2.3) actually shows that when

‖∇f‖∞ = sup
{∣∣f(x)− f(y)

∣∣; Π(x, y) > 0
}
≤ 1,

for every λ ≥ 0,

Q
(
eλF/2, eλF/2

)
= 2

∑
F (y)<F (x)

(
1− e−λ[F (x)−F (y)]/2

)2

eλF (x)Π(x, y)μ
(
{x}
)

≤ 2
(
1− e−λ/2

)2 ∫
X

eλFdμ

≤ 2min
(
1,

λ2

4

)∫
X

eλF dμ. (4.7)

The proof of Theorem 4.1 then yields that

E(X,dc,μ)(λ) ≤ e2φ(λ)/ρ0 , λ ≥ 0,
where φ(λ) = λ2 if λ ≤ 2 and φ(λ) = 4(λ− 1) if λ ≥ 2. Together with Lemma 1.1,
we thus draw, under the assumption of Proposition 4.5, an upper bound on ρ0 in
term of the graph diameter Dc as

ρ0 ≤ min
(
8
Dc

,
16 log(C|X |)

D2
c

)
. (4.8)

Results such as Proposition 4.5 and (4.8) may be used as efficient upper bounds
on the logarithmic Sobolev constant ρ0 in terms of simple geometric objects such
as the graph diameter Dc. These are of interest in the study of rates of convergence
to equilibrium for finite Markov chains. While it is classical that the spectral gap
λ1 governs the asymptotic exponential rate of convergence to equilibrium, it has
been shown by P. Diaconis and L. Saloff-Coste [SC1], [SC2], [SC3], [D-SC], both in
the continuous and discrete cases actually, that the logarithmic Sobolev constant
ρ0 is more closely related to convergence to stationarity than λ1 is. Let us now
survey a few of examples of interest, kindly communicated to us by L. Saloff-Coste
(cf. [D-SC], [SC3] for the necessary background).

Consider first the hypercube {0, 1}n with Π(x, y) = 1/n if x, y differ by exactly
one coordinate and Π(x, y) = 0 otherwise. The reversible measure is the uniform
distribution and it is classical (see [D-SC]) that ρ0 = 4/n. The bound (4.8) tells us
that ρ0 ≤ 8/n.
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Consider the Bernoulli-Laplace model of diffusion. This is a Markov chain on
the n-sets of an N -set with n ≤ N/2. If the current state is an n-set A, we pick an
element x at random in A, an element y at random in the complement Ac of A and
change A to B = (A\{x})∪{y}. The kernel Π is given by Π(A,B) = 1/[n(N−n)] if
|A∩B| = n−2 and Π(A,B) = 0 otherwise. The uniform distribution π(A) =

(
N
n

)−1

is the reversible measure. Clearly, Dc = n. Hence, by (4.8), ρ0 ≤ 8/n which is the
right order of magnitude [L-Y].

Let now the random transposition chain on the symmetric group Sn, n ≥ 2.
Here, Π(σ, θ) = 2/[n(n − 1)] if θ = στ for some transposition τ and Π(σ, θ) = 0
otherwise and π ≡ (n!)−1, The diameter is Dc = n − 1 and one knows that ρ0 is
of order 1/n logn [D-SC], [L-Y]. Here (4.8) only yields ρ0 ≤ 16/n. Since we know
that ρ0 ≥ (2n logn)−1 [D-SC], we can also conclude from Proposition 4.5 that

DQ ≤
√
32n logn

ρ0
≤ 8n logn. (4.9)

It is not clear whether or not this bound can be obtained more easily. Note that
the upper bound

dQ(σ, θ) ≤
(
min

Π(σ,θ)>0
Π(σ, θ)

)−1/2
dc(x, y)

only yields DQ ≤ n2, up to a multiplicative constant. It might be worthwhile
observing that in this example, ρ0 is of order 1/n logn while it has been shown
by B. Maurey [Ma] that concentration (with respect to the combinatoric metric) is
satisfied at a rate of the order of 1/n (see below).

Consider a N -regular graph with N fixed. Let Π(x, y) = 1/N if they are
neighbors and Π(x, y) = 0 otherwise. Then μ({x}) = 1/|X |. Assume that for some
constant C > 0, and all x ∈ X and t > 0,∣∣B(x, 2t)∣∣ ≤ C

∣∣B(x, t)∣∣ (4.10)

where B(x, t) is the ball with center x and radius t in the graph distance dc, and
|B(x, t)| its number of elements. Fix x, y ∈ X such that dc(x, y) = Dc. Set
A = B(x, Dc

2 ) and B = B(y, Dc

4 ). By (4.10), |B(x,
Dc

2 )| ≥ C−1|X | and |B(y, Dc

4 )| ≥
C−2|X | so that

μ(A) ≥ 1
C

and μ(B) ≥ 1
C2

.

Since dc(A,B) ≥ Dc

4 , by Theorem 4.4 and Lemma 1.1,

ρ0 ≤
192 logC

D2
c

.

For N and C fixed, this is the right order of magnitude in the class of Cayley
graphs of finite groups satisfying the volume doubling condition (4.10). See [D-SC,
Theorem 4.1].

As a last example, consider anyN -regular graph on a finite setX . Let Π(x, y) =
1/N if they are neighbors and Π(x, y) = 0 otherwise. Then μ({x}) = 1/|X | and
|X | ≤ NDc (at least if Dc ≥ 2). From (4.8), ρ0 ≤ 8/Dc. Compare with the results
of [D-SC] and the Riemannian case. This is, in a sense, optimal generically. Indeed,
if |X | ≥ 4, one also have the lower bound [D-SC]

ρ0 ≥
λ

Dc logN
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where 1 − λ is the second largest eigenvalue of Π. There are many known families
of N -regular graphs (N fixed) such that |X | → ∞ whereas λ ≥ ε > 0 stays
bounded away from zero (the so-called expanders graphs). Moreover graphs with
this property are “generic” amongst N -regular graphs [Al].

In the study of birth and death Markov chains, and especially Poisson point
processes, some modified versions of the logarithmic Sobolev inequalities have been
recently considered [B-T]. One of them is the entropic inequality that gives rise to
the entropic constant ρ1 defined as the largest ρ such that

2ρ
∫

f log fdμ ≤ Q(f, log f)

when f runs over all finitely supported functions f : X → R+ such that
∫
X
fdμ = 1.

The entropic inequality and constant have been considered in [Wu] for Poisson
measure on N, and in the present context in the recent contributions [B-T], [G-Q],
[Go]. It is pointed out there that, in general,

λ1 ≥ ρ1 ≥ ρ0

and that ρ1 is also suited to control convergence to equilibrium in the total variation
distance. In some typical examples, the entropic constant ρ1 however turns out to
be a much better rate than the logarithmic Sobolev constant ρ0. For example,
while on the symmetric discrete cube {0, 1}n, ρ0 = ρ1 = λ1 = 4/n, on the cube
with weight p and q (p + q = 1), ρ1 ∼ λ1 but ρ0 << λ1 as pq → 0. Similarly, on
the symmetric group Sn with the random transposition chain, ρ1 ∼ λ1 ∼ 1/n (as
n → ∞) (cf. the previous references), while, as mentioned above, ρ0 ∼ 1/n logn.
With respect to the logarithmic Sobolev constant, the entropic constant seems
however inadequate to control convergence in �2 (cf. [Go]).

Arguing as for the proof of Theorem 4.4, we may get a concentration bound
from the entropic inequality. Indeed, as for (2.3), we see that for every λ ≥ 0,

Q
(
λF, eλF

)
≤ 2λ2|||F |||2

∫
X

eλFdμ,

yielding thus Theorem 4.4, and similarly Proposition 4.5, but with the improved
entropic constant ρ1 ≥ ρ0. In particular, since ρ1 ≥ 1/2(n− 1) on Sn, we recover
Maurey’s concentration result [Ma]. Furthermore,

DQ ≤ 8n
√
logn

that improves upon (4.9).
Again, the graph distance dc yields some improved bounds (cf. [B-T], [Go]).

Namely, arguing as for (4.7), we have that, for every λ ≥ 0 and every F with
‖∇F‖∞ ≤ 1,

Q
(
λF, eλF

)
≤ 2λ

(
1− e−λ

) ∫
X

eλFdμ ≤ 2min(λ, λ2)
∫
X

eλFdμ.

The Herbst argument then applies to yield the following consequence.

Theorem 4.6. Let (Π, μ) be a reversible Markov chain on X as before with
entropic constant ρ1. Then

E(X,dc,μ)(λ) ≤ emin(λ2,λ(1+log+ λ))/ρ1 , λ ≥ 0.
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By Lemma 1.1, we deduce from Theorem 4.6 a bound, to be compared to (4.8),
on the entropic constant ρ1 in terms of the graph diameter Dc, namely

ρ1 ≤ min
(
2
Dc

log
(
2e2

Dc
log
(
C|X |

)
∨ e
)
,
16 log(C|X |)

D2
c

)
. (4.11)

The previous Markov chains examples may then be analyzed via the entropic con-
stant ρ1 to yield, depending on the cases, possibly sharper bounds.

We refer to [B-T], [G-Q], [Go] for further results and details on the entropic
constant.

5. Dimension free isoperimetric bounds

In this last section, we investigate some inequalities of isoperimetric type that
may be produced from spectral and logarithmic Sobolev informations. While
sharper dimensional bounds are known and classical, we emphasize here dimen-
sion free estimates of interest in the study of diffusion operators with drifts (cf.
[Ba], [Le4]). The result improve upon [Le1] (see also [Ba-L]).

Let (X, g) be a smooth complete connected Riemanian manifold, and let Δg

be the Laplace operator on (X, g). Let (Pt)t≥0 be the heat semigroup (cf. [Da]).
It is worthwhile mentioning that, whenever (X, g) is of finite volume V , both the
spectral gap λ1 and logarithmic Sobolev constants admit equivalent description
in terms of smoothing properties of (Pt)t≥0. Denote by dμ = dv

V the normalized
volume element. By the spectral theorem

‖Ptf‖2 ≤ e−λ1t‖f‖2, t ≥ 0, (5.1)

for every f with
∫
X
f dμ = 0, where ‖ · ‖p is the Lp-norm (1 ≤ p ≤ ∞) with respect

to μ. A fundamental theorem of L. Gross [Gros] shows that ρ0 may be characterized
by the hypercontractivity property

‖Ptf‖q ≤ ‖f‖p (5.2)

for every f whenever 1 < p < q <∞ and eρ0t ≥ [(q − 1)/(p− 1)]1/2.
The next lemma is a reversed Poincaré inequality for heat kernel measures (cf.

[Le4]). We use it below as a weak, dimension free, form of the Li-Yau parabolic
gradient inequality [L-Y2].

Lemma 5.1. Assume that Ricg ≥ −K, K ≥ 0. Then, for every t ≥ 0 and every
smooth function f on (X, g), at every point,

c(t) |∇Ptf |2 ≤ Pt(f2)− (Ptf)2

where

c(t) =
1− e−2Kt

K
(= 2t if K = 0).

Proof. For a smooth function f on (X, g), and t > 0 fixed, set

ϕ(s) = e2KsPs(|∇Pt−sf |2), 0 ≤ s ≤ t

(evaluated at some point in X). By the chain rule for differentiation,

ϕ′(s) = 2 e2Ks
[
KPs

(
|∇Pt−sf |2

)
+ Ps

(
1
2 ΔgPt−sf −∇Pt−sf · ∇ΔgPt−sf

)]
.

By the Bochner formula,
1
2
ΔgPt−sf −∇Pt−sf · ∇ΔgPt−sf ≥ −K|∇Pt−sf |2.
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Hence ϕ is non-decreasing so that, for every t ≥ 0, and at every point,
|∇Ptf |2 ≤ e2KtPt

(
|∇f |2

)
. (5.3)

Write then

Pt(f2)− (Ptf)2 =
∫ t

0

d

ds
Ps

(
(Pt−sf)2

)
ds = 2

∫ t

0

Ps

(
|∇Pt−sf |2

)
ds.

By (5.3), Ps(|∇Pt−sf |2) ≥ e−2Ks|∇Ptf |2 so that the claim follows. The proof is
complete.

As a consequence of this lemma, and since 1 − e−u ≥ u
2 for every 0 ≤ u ≤ 1,

note that for every 0 < t ≤ 1
2K , and every smooth bounded function f on (X, g),

‖∇Ptf‖∞ ≤
1√
t
‖f‖∞. (5.4)

In particular, integrating (5.4) yields, by duality, that for every smooth function f
and every 0 < t ≤ 1

2K ,
‖f − Ptf‖1 ≤ 2

√
t ‖∇f‖1. (5.5)

Indeed, for every g smooth with ‖g‖∞ ≤ 1,∫
X

g (f − Ptf) dμ = −
∫ t

0

(∫
X

gΔgPsf dμ

)
ds

=
∫ t

0

(∫
X

∇Psg · ∇f dμ
)
ds

≤ ‖∇f‖1
∫ t

0

‖∇Psg‖∞ ds

≤ 2
√
t ‖∇f‖1

and the claim follows.
Provided with this result, the next theorems describe isoperimetric type bounds

under spectral and logarithmic Sobolev constants. If A is an open subset of X with
smooth boundary ∂A, we denote by μs(∂A) the surface measure of ∂A.

Theorem 5.2. Let (X, g) be a smooth complete connected Riemannian manifold
without boundary with finite volume V , and denote by dμ = dv

V the normalized
volume element. Assume that Ricg ≥ −K, K ≥ 0. Then, if λ1 denotes the first
non-trivial eigenvalue of Δg on (X, g), for any open subset A of X with smooth
boundary ∂A,

μs(∂A) ≥
1
3
min
(

λ1√
K

,
√
λ1

)
μ(A)

(
1− μ(A)

)
.

Theorem 5.2 produces equivalently a lower bound on the Cheeger constant
defined as the largest h such that

μs(∂A) ≥ h min
(
μ(A), 1 − μ(A)

)
(5.6)

for all open subsets A of X with smooth boundary ∂A. Recall from [Chee] that
h ≤ 2

√
λ1. In this form, Theorem 5.2 goes back to the work by P. Buser [Bu]. It

is a remarkable fact however that Theorem 5.2 yields constants independent of the
dimension of the manifold.
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Proof. We apply (5.5) to smooth functions approximating the characteristic
function χA of an open set A in X with smooth boundary ∂A. It yields, for every
0 < t ≤ 1

2K ,

2
√
t μs(∂A) ≥

∫
A

[
1− Pt(χA)

]
dμ+

∫
Ac

Pt(χA) dμ

= 2
(
μ(A)−

∫
A

Pt(χA) dμ
)

= 2
(
μ(A) −

∥∥Pt/2(χA)
∥∥2

2

)
where we used reversibility of the heat semigroup (Pt)t≥0 with respect to the Rie-
mannian volume element (cf. [Da]). Now, by (5.1),∥∥Pt/2(χA)

∥∥2

2
= μ(A)2 +

∥∥Pt/2

(
χA − μ(A)

)∥∥2

2

≤ μ(A)2 + e−λ1t
∥∥χA − μ(A)

∥∥2

2

so that, with the preceding,
√
t μs(∂A) ≥ μ(A)

(
1− μ(A)

)(
1− e−λ1t

)
for every 0 < t ≤ 1

2K . We need simply optimize in 0 < t ≤ 1
2K to conclude: if

λ1 ≥ 2K, we can choose t = 1
λ1
while if λ1 ≤ 2K, we simply take t = 1

2K . The
result follows.

The next statement is the corresponding result for the logarithmic Sobolev
constant. The numerical constant is not sharp.

Theorem 5.3. Let (X, g) be a smooth complete connected Riemannian mani-
fold without boundary with finite volume V , and denote by dμ = dv

V the normalized
volume element. Assume that Ricg ≥ −K, K ≥ 0. Then, if ρ0 denotes the loga-
rithmic Sobolev constant of Δg on (X, g), for any open subset A of X with smooth
boundary ∂A such that μ(A) ≤ 1

2 ,

μs(∂A) ≥
1
34

min
(

ρ0√
K

,
√
ρ0

)
μ(A)

(
log

1
μ(A)

)1/2

.

Proof. We follow the proof of Theorem 5.2 using now that ρ0 is characterized
by the hypercontractivity property (5.2). As we have seen in the proof of Theorem
5.2, for every open set A in X with smooth boundary ∂A, and every 0 < t ≤ 1

2K ,
√
t μs(∂A) ≥ μ(A)−

∥∥Pt/2(χA)
∥∥2

2
.

Now, by (5.2) with p = 2 and q = 1 + e−ρ0t,∥∥Pt/2(χA)
∥∥2

2
≤ μ(A)2/(1+e−ρ0t).

Since 1− e−u ≥ u
2 , 0 ≤ u ≤ 1, it follows that
√
t μs(∂A) ≥ μ(A)

[
1− exp

(
−ρ0t

4
log

1
μ(A)

)]
. (5.7)

Set t0 = min( 1
2K , 1

ρ0
). Choose then 0 < t ≤ t0 such that

t = 4t0

(
log

1
μ(A)

)−1
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provided μ(A) is small enough so that μ(A) ≤ e−4. For this value of t, (5.7) yields

μs(∂A) ≥
1

2
√
t0

(
1− e−ρ0t0

)
μ(A)

(
log

1
μ(A)

)1/2

≥ 1
4
ρ0

√
t0 μ(A)

(
log

1
μ(A)

)1/2

since ρ0t0 ≤ 1. This inequality holds for μ(A) ≤ e−4. In general however, when
0 ≤ μ(A) ≤ 1

2 , we can always apply (5.7) with t = t0 to get

μs(∂A) ≥
1√
t0

μ(A)
[
1− exp

(
−ρ0t0

4
log 2

)]
≥ 1
12

ρ0

√
t0 μ(A).

Combined with the preceding, Theorem 5.3 is established.

The preceding results hold, with the same proofs, in the context of diffusion
operators Δg −∇U · ∇ with non-negative curvature in the sense that

Ricg −∇∇U ≥ 0
(cf. [Ba-L]). In particular, if μ is a log-concave probability measure on Rn, its
Cheeger constant h (of (5.6)) and Poincaré constant λ1 satisfy

1
6

√
λ1 ≤ h ≤ 2

√
λ1 . (5.8)

A deep conjecture of R. Kannan, L. Lovàsz and M. Simonovits [K-L-S] asserts that
the Cheeger constant h should be bounded below by a universal strictly positive
constant in the class of all log-concave probability measures μ under the isotropic
condition ∫

Rn

〈x, θ〉2dμ(x) = |θ|2 for all θ ∈ Rn.

By (5.8), the question is thus reduced to the corresponding one for the easier
Poincaré constant.

Discrete versions of Theorems 5.2 and 5.3 are studied in [B-H-T] and [H-T].
While only of logarithmic type with respect to the (power type) isoperimet-

ric comparison theorems of M. Gromov [Grom1] (cf. [Grom2]) and [B-B-G], the
isoperimetric bound of Theorem 5.3, on the other hand, involves ρ0 rather than
the diameter of the manifold, and is independent of the dimension of the manifold
(dimension is actually hidden in Theorem 4.2). In the context of diffusion opera-
tors of the preceding type, this information is a weaker one since (in contrast with
the Sobolev constants) the hypercontractivity constant does not usually control the
diameter of the manifold, as is shown by the example of Δ − x · ∇ on Rn (with
the standard Gaussian measure as invariant measure). Actually, the isoperimetric
function in Theorem 5.3 is a form of the isoperimetric function in Gauss space (cf.
[Le4], [Le5]) for which the “infinite dimensional” extension of the Lévy-Gromov
isoperimetric inequality of [Grom1 (cf. [Grom2]) is studied in [Ba-L].
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St-Flour 1996. Lecture Notes in Math. 1665, 301–413 (1997). Springer-Verlag.

[Sc] M. Schmuckenschläger. Martingales, Poincaré type inequalities and deviations in-
equalities. J. Funct. Anal. 155, 303–323 (1998).

[Wan] F.-Y. Wang. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds.
Probab. Theory Relat. Fields 109, 417–424 (1997).

[Wat] G. N. Watson. A treatise on the theory of Bessel functions. Cambridge Univ. Press
(1944).

[Ya] S.-T. Yau. Isoperimetric constants and the first eigenvalue of a compact Riemannian
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