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 EXPLICIT CONSTANTS FOR GAUSSIAN UPPER BOUNDS ON

 HEAT KERNELS

 By E. B. DAVIES

 1. Introduction. We use logarithmic Sobolev inequalities to obtain

 Gaussian upper bounds on the heat kernels associated with various second

 order elliptic or hypoelliptic operators. These bounds are valid without any

 continuity conditions on the coefficients, and under very weak curvature

 conditions in the case of Laplace-Beltrami operators. Moreover the con-

 stants are completely explicit and the bounds are close to optimal.

 If K(t, x, y) is the heat kernel for a second order elliptic operator H )

 0 on a manifold M of dimension N, we say that e-Ht is ultracontractive if

 there is a uniform bound of the type

 (. 1) 0 ? K(t, x, y) < c(t)

 where c(t) < oo for all t > 0. There are a great variety of different ways of

 proving such bounds, and for the case

 (1.2) c(t) = al t-FL2

 which is the only one we shall treat here, it is known that (1. 1) is equivalent

 to a Sobolev inequality

 (1.3) if 112/(IL2) < a2<Hf, f >

 and also to a logarithmic Sobolev inequality

 (1.4) t f2 log f S e(Hf, f > + 1(C)IIfII1 + jf logjjfjj2
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 320 E. B. DAVIE S

 for all 0 < f E Cc and all 0 < e < oo, where

 (1.5) 3(c-) = a3- - loge.

 We refer to [2, 8, 16, 17] for explicit expression relating the various con-

 stants.

 If H is a Laplace-Beltrami operator then (1.1) and (1.2) hold with ,u =

 N if the isoperimetric constant is nonzero [3, p. 1011 or if the Ricci curva-

 ture is bounded below and the injectivity radius is nonzero [3, p. 127, 198].

 A number of other cases are treated in [6].

 Although we shall only treat cases for which (1.4) and (1.5) hold for all

 0 < e < oo, we mention other situations in which our method may be

 applied. We first remark that (1.1) and (1.2) hold for small t > 0 if (1.4)

 and (1.5) hold for 0 < c < 1. This enables us to deal with Example 15 Case

 A of [6], where ,u > N and M is a compact manifold with a power cusp. It

 is also possible to replace (1.5) by

 j3(C) = 0 + 1I3

 However the integral M(t) computed in Theorem 3 can only be finite for

 the given choice of e(p) if X > 1 and 0 < a < 1. Thus we can obtain

 Gaussian upper bounds for the heat kernel of the Laplace-Beltrami opera-

 tor of a compact manifold with an exponential cusp, as discussed in Exam-

 ple 15, Case B of [6].

 Although the bound (1.1) is nontrivial it is only really efficient when x

 = y, and away from the diagonal one expects a bound of the form

 (1.6) 0 < K(t, x, y) < a6t-A12 exp -4(1 +y6)2

 in the case of Laplace-Beltrami operators, where d is the metric and 6 > 0

 is arbitrary. Such results have indeed been proved under a variety of condi-

 tions [3, 4, 12], but our point here is to show that (1.6) is a simple conse-

 quence of (1.1), and that no further hypotheses are needed.

 In the majority of this paper we consider Laplace-Beltrami operators,

 but our technique is also applicable to second order elliptic operators on

 L2(RN) and even to certain hypoelliptic operators. The passage from (1.1)

 to (1.6) then requires boundedness of the coefficients but no continuity
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 BOUNDS ON HEAT KERNELS 321

 hypotheses. In spite of the extensive work on this problem [1, 13], we

 present this explicitly in Section 3 because of its simplicity and the explicit

 constants obtained.

 If M is a Riemannian manifold of dimension N with volume element

 dv and metric d, the Laplace-Beltrami operator H is associated with the

 quadratic form

 Q(f)W= I vf12dv.

 This form is closable on Cc and its closure is associated in a standard way

 with a self-adjoint operator H > 0, which coincides on Cc with - A.

 Since Q is a Dirichlet form we have [9]

 (1.7) 11 eHf II,, < If Ilp

 for all t > 0 and 1 p < oo. Moreover e-Ht has a C- kernel K(t, x, y)

 and the bound (1.1) may be rewritten as an operator bound

 (1.8) 11 e HJf ?1 . < c(t) 11 |f l1.

 One may interpolate between (1.7) and (1.8) to obtain other LP to Lq

 bounds, and ultimately to get (1.3) or (1.4).

 We shall obtain our off-diagonal heat kernel bounds by proving ultra-

 contractivity for the weighted semigroup l- I e-Htk, where 0 is chosen ap-
 propriately. This is done by proving an Li, logarithmic Sobolev inequality

 for /7'Ho for all 2 < p < oo, and then integrating it in the standard
 manner [8, 10]. The use of such operators /r'Ho has been commonplace
 for several years [5, 15] but we believe that its combination with logarith-

 mic Sobolev inequalities is new.

 Throughout the paper we assume that H satisfies (1.4) and (1.5) with

 given constants a3 and ,u. We make fundamental use of the fact [8, 10] that

 these imply

 (1.9) \fl log fdv ? c(Hf, f" '> + 20(c) || ffor + f IIf logf ICaf

 for allO0 ?f cC' and all12 ?,p < 00.
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 322 E. B. DAVIES

 2. Weighted ultracontractive bounds. We put 0 = e"a where a ce R
 and 4: M -+ R satisfies I v 4 I < 1 everywhere. In order to avoid technical
 problems we shall initially assume that 4 is CX and bounded, but this con-

 dition will be removed later by a limiting argument.

 LEMMA 1. If 0 < f e C> and 2 < p < oo then

 (2.1) <Hf,fP-'> < 2<('-HOf, fP-> + a2PlIf IIP.

 Proof. Elementary calculus yields

 <c-'Hvf, fP-> = v (of)* v (.- 7fP-I)dv

 = (f v 0 + 0 vf)* (-(-2fP-1 v 0 + /-1(p - 1)fP-2 vf )dv

 = j(-2fp( V 4)2 + cx(p - I)fP- vf* v 4.

 - ofPI vf. v 4 + (p - )fP-2( vf)2)dv

 > _a2 jfPdv - I aI(p -2) ifP-1I vfldv + vf. v(fP-I)dv.

 Using the bound

 2 fP-1I vfIdv < s (fP/2-11 vf l)2dv +s- fPdv

 (2.2) < (Hf,fP-> + s-IIfIIP
 p o

 we obtain
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 BOUNDS ON HEAT KERNELS 323

 The estimate now follows upon putting

 p-1

 (p - 2)1 Io

 LEMMA2. If 2 < p < oo andO < f E Cc then

 |fP log fdv ? e c -HOf, fP >

 (2.3) + -Y(c, P) If 1P + lf 1P log lf 11P

 where

 (y, p) =-i(a3k- -log )? +jP

 Proof. By combining (1.9) and (2.1) we obtain

 f logfdv ? 2E<1-'H'f,fl->

 + Ccx2p Ill P + 2p(c) | + iogiijip
 p

 from which the result follows upon replacing e by e/2.

 THEOREM 3. We have

 (2.4) 11 /0- le-H"f 11. < a6t-A'4e( +6)2t ilf 11 2

 for all6 > 0, t > OandfeL2.

 Proof. We follow [8, 10] closely. We put

 e(p) = X2Xtp-x

 where X > 1, and define p(s) for 0 S s < t by the implicit formula

 p \e(q) s- dq
 2 q
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 324 E. B. DAVIES

 so that p(s) -+ oo as s -+ t. If we also put

 I1=(s) y(c-(q), q) N(s) = dq
 2 q

 then an explicit calculation using the formulae

 dp p dN _y(c(p), p) dp

 ds e(p)' ds p ds

 yields the inequality

 (2.5) ds | le'HsOf 11,(s)e } < 0

 for all 0 < s < t. This implies that

 1O'e'HSq$f lip(s) < eN(s) lf 112

 In the limit s -+ t putting

 M(t) = |y(c(P) dp)
 m ~~~~dp 2 p

 we obtain

 || ?-le-HtIf 1, <.- eM(t)llf 112.

 The validity of (2.5) depends upon the choice of a suitable domain D

 on which the formal calculation may be justified. This is a technical prob-
 lem which we defer to Section 4.

 It remains to calculate M(t). We have

 00

 M(t)= -y(X2xtp-, p)p-ldp
 2

 j)p (a3- l0g(X\22-1tp-x2)dp
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 BOUNDS ON HEAT KERNELS 325

 + 2 X22Xtp-xdX

 = _ 141logt + a&2t + const.
 4 X -I

 We now choose X so that

 =+.

 COROLLARY 4. We have

 0 < K(t, x, y) < a6t-A12 exp[(1 + 6)&2t + U(d(x) -{(y

 for all t > 0, x, y e M and oa e R.

 Proof. Replacing 0 by /-1 and then taking adjoints of (2.4) we ob-
 tain

 11- le -Hlof 11 2 -< g(t) lif III

 where

 g(t) = abt-A/4e( +0a2t

 Composing this estimate with (2.4) yields

 11 le -Htf |l o g(t/2)2 If III

 or equivalently

 0 <? O(x)-K(t, x, y)O(y) < g(t/2)2

 THEOREM 5. We have

 [ (4'(X) - g'y))21
 (2.6) 0 ?, K(t, x, y) ? abt-AI2 exp L ( ) for6) a > aM4(1 + )t]

 for all t > 0 and x, y cM.
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 326 E. B. DAVIES

 Proof. This depends upon making the choice

 (y) - { (x)
 2(1 + 6)t

 COROLLARY 6. We have

 O < K(t, x, y) < abat-A2 exp L d-4( + y)2 ]

 for allt> Oandx,yeM.

 Proof. If we put

 /(s) = min {d(s, x), d(y, x)}

 into Theorem 5 we obtain the required bound. Now t is bounded, constant

 outside the ball with centre x and radius d(y, x). Moreover 4 satisfies

 v I ? tin the weak sense that

 I 4(so) - 0(sI)I S d(so, sl).

 However 4 is not C-. We therefore construct a sequence ',, of C- func-

 tions which converge uniformly to 4, equal d(x, y) outside the stated ball,

 and satisfy I v 0, I <? 1. This yields the required bound in the limit.

 3. Other second order operators. We now consider a very general

 second order operator on L2(RN) starting with a quadratic form Q defined

 on Cc by

 Q(f)= V 2aij(x) af af dNx.

 We assume that 0 < a(x) e L', so that Q is well-defined and nonnegative.
 We assume that the form Q is closable so that the closure is associated with

 a self-adjoint operator H ) 0 on L2(RN) whose associated semigroup e-Ht

 is positively preserving and satisfies
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 BOUNDS ON HEAT KERNELS 327

 for all t ) 0 and 1 < p S oo. The condition that Q is closable holds [9] if
 a(x) E Cl or a-1(x) E L,oc.

 We next assume that e-Ht has a kernel K(t, x, y) which satisfies

 0 < K(t, x, y) < at-z'2

 for all t > O and x, y E RN. This holds with it = N if O < a(x) for some
 1 > 0 and all x E RN, because the relevant logarithmic Sobolev inequality
 holds by a simple comparison of H with -1 A. It also holds for 0 < t < 1
 with some , > N for certain hypoelliptic operators with C- coefficients

 [11, 14].

 Finally let a E R and let A: RN -- R be a CcO bounded function such
 that

 (3.1) aij(x) I ij axi axJ
 almost everywhere. All the estimates in Section 2 remain valid, and we are

 able to deduce the bound (2.6) of Theorem 5 in our new situation. This

 leads to an explicit bound for uniformly elliptic operators. Although we do

 not obtain lower bounds or bounds on the derivatives of the heat kernel as

 in [1, 13] our upper bound is close to optimal.

 THEOREM 7. If a(x) is measurable and

 (3.2) 0 < 1 3< a(x) <, y < oo

 for all x E RN, then the kernel K(t, x, y) of e satisfies

 0 < K(t, x, y) < a,t-N/2 expL- I(1? Y |

 forall6 > 0, t > Oandx,yERN.

 Proof. If we put

 A(S) _y Y- 12 min(Is- y 1, I-Y I)

 then 4 is bounded and satisfies (3.1) but is not C . By a simple regularisa-

 tion procedure we obtain a sequence 4,, of C- bounded functions which
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 328 E. B. DAVIES

 converge uniformly to / and all satisfy (3.1). We deduce that 4 still satis-

 fies (2.6) and obtain the stated bound.

 If we let 9 be the set of CX bounded functions t on RN which satisfy

 (3.1) then we may define a metric d,, on RN by

 d,,(x, y) = sup{ I (x) - 4(y): 4 E }

 We conjecture that this metric coincides with the metric dL defined in [14]

 for hypoelliptic operators. If so the next theorem would yield stronger heat

 kernel bounds than those of [14].

 THEOREM 8. If 6 > 0 then there is a bound

 0 < K(t, x, y) S ast-A12 exp d-X4 Iy)2

 validfor all O < t < l and x, y E RN.

 Returning to the situation where the coefficients a i(x) satisfy (3.2) so
 that H is uniformly elliptic, we now use Theorem 7 to deduce a similar

 bound for the heat kernel Kx(t, x, y) associated with

 Hx = H + XV

 under the assumption that the potential V satisfies

 (3.3) 1 VI ? EH + -yo + -yiEy2

 for all c > 0 and some -yi < oo. This condition is slightly stronger than the
 condition V E KN unless we restrict to a region Q c RN, in which case it

 allows strong singularities of V at the boundary of Q by [7]. The point of

 (3.3) is that it implies a bound

 0 < Kx(t, x, y) < a(X)t-N12ec(X)t

 by [7]. Our next result follows Theorem B.7.1. of [15].

 THEOREM 9. If a satisfies (3.2) and Vsatisfies (3.3) then for any 6 >
 0 we have
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 BOUNDS ON HEAT KERNELS 329

 0 < K,(t, x, y) < at N/2 exp-4 -(1 +y )t + ct

 where a and c depend upon 6, 13, y, X, yoY, 'Yi, 72, N.

 Proof. It is a standard observation [15], following from functional

 integration or the Trotter product formula, that

 X -+ logKx(t, x, y)

 is convex. Therefore if 0 < s < 1 we have

 0 < Kx(t, x, y) < KO(t, x, y)l-sKxis(t, x, y)S

 < al-sa /st-N2 exp| s(1) I x y 12 + sc(X/s)t

 We now choose s so that

 1-s 1

 1 + 6/2 1 + 6'

 4. Some technical problems. We describe how to justify the formal
 calculation (2.5) of Theorem 3. We put

 SI1i = U e"-H(Li nL L)

 and

 0 -ID1.

 Since j+IH are bounded it is clear that D is dense in LP for all 2 < p < oo
 and that D is invariant under the semigroup

 e Kt = -le-Ht .

 Since H ) 0 is self-adjoint one sees by interpolation that e-Ht is holo-

 morphic on Li, for all 2 < p < oo, so the same holds for eK'. In particular
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 330 E. B. DAVIES

 D lies in the domain of K" for all n and 2 < p < oo, where K, is the

 generator of e-Kt on LP. Although K, is given formally by

 Kpf = O'Hof

 we cannot assume that Cc C Dom(Kp), particularly in Section 3. There is
 now no difficulty in justifying the differentiation in (2.5) but we have to

 prove that (2.3) holds for all 0 ( f E SD, or equivalently

 |(0- lg)P log (O- g)dv <, e<Hg, O-PgP- l>

 (4.1) + -y(E, p) I -g IIPP + II g1pp log I -'g Ilp

 for all 0 < g E ) 1, starting from the fact that this holds for all g E Cc by
 Lemma 2.

 We now note that 5, C 2 where

 D2= Quad(H) n L fl cn L C]

 We shall use the inner product

 <f, g>' = <f, g> + <H"'2f, H12g>

 on Quad(H) and note that Quad(H) is complete for the norm

 Illf III = I <f, f> ' }1/2

 We say f,, -_ f in Quad(H) if

 I, g>' I, g>'

 for all g E Quad(H). A sufficient condition for this is that 111f, III is uni-

 formly bounded and f,l -f 11 -O 0.

 LEMMA 10. If 0 < g e D2 thenO'19g G D2andgs e 5D2for any 1 <
 s < oo. Therefore (4.1) is implied by the condition that
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 BOUNDS ON HEAT KERNELS 331

 | ) g) " log +--'g) dv <1 E < H 12g , H' 12(0-pigp- )>

 (4.2) + y(C, p) II -Ig I'K) + II - IgI'/') log 1j -g IIgj1,

 for allO ?ge iD2and2 < p < oo.

 Proof. It is evident thatL ois invariant under + .The invariance of

 Quad(H) depends upon an easy computation which shows that Illf 111 and
 11 11+ 111 are equivalent norms on the dense linear subspace C' of
 Quad(H). If g e D2 then

 gS = F(g)

 where F has bounded derivative and vanishes as 0. Since Q is a Dirichlet

 form one concludes that

 Q(F(g)) < cQ(g) < oo.

 The passage from (4.1) to (4.2) depends only on the fact that

 <Hu, v> = <H'12u, Hi12v>

 if u e 5)I C Dom(H) and v e Quad(H).

 PROPOSITION 11. If 2 < p < oo and (4.2) holds for all 0 < g e Cc
 theni it also holds for all 0 < g e 5D2.

 Proof. If 0 < g e D2 then there exists a sequence h,, e C' such that

 III h,, -g gIl -+ 0. If g11 = k then there exist F,, e Co with 0 < F,, ( 2k,
 0 < F,' < 1 and F,,(O) = 0 such that g,, = F,,(h,,) satisfy g,, e C', 0 <

 g,, < 2k, lIg,, - g 11 0 and Q(g,,) < Q(g). Since these bounds imply ,-+ g and
 lim sup llg,, 1 ll glll

 we deduce that

 (4.3) lulg,, -g gIl 0
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 332 E. B. DAVIES

 Next 0 < g,, < 2k implies g>- I = G(g,,) where G has bounded deriv-
 ative and G(O) = 0. Since Q is a Dirichlet form it follows that

 Q(g91,-) < cQ(g,,) cQ(g).

 Using the fact that multiplication by (/7" is bounded operator on Quad(H)

 we deduce that

 1110-11gS, 1il < d < Xo

 for all n. This implies

 (4.4) -+

 Finally the equations (4.3) and (4.4) imply that

 <g,,, gI 1> -I + (g, o-F)gP-l>'

 The convergence to the left-hand side of (4.2) as n -+ oo is proved by
 applying Fatou's lemma to the positive and negative parts of the integrand

 separately and using the facts that

 I|/ )?l 2dX I(0-1 g,2dX

 A0- I9 I d (<g ) +I dx

 Acknowledgements. It is a pleasure to thank E. A. Carlen and

 I. Chavel for very stimulating discussions.
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