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NEW LOGARITHMIC SOBOLEV INEQUALITIES AND

AN ε-REGULARITY THEOREM FOR THE RICCI FLOW

HANS-JOACHIM HEIN AND AARON NABER

Abstract. In this note we prove a new ε-regularity theorem for the Ricci flow. Let (Mn, g(t)) with

t ∈ [−T, 0] be a Ricci flow and Hx0
the conjugate heat kernel centered at a point (x0, 0) in the final

time slice. Substituting Hx0
into Perelman’s W-functional produces a monotone function Wx0

(s) of

s ∈ [−T, 0], the pointed entropy, with Wx0
(s) ≤ 0, and Wx0

(s) = 0 iff (M, g(t)) is isometric to the

trivial flow on R
n. Our main theorem asserts the following: There exists an ε > 0, depending only

on T and on lower scalar curvature and µ-entropy bounds for (M, g(−T )), such that Wx0
(s) ≥ −ε

implies |Rm| ≤ r−2 on Pεr(x0, 0), where r2 = |s| and Pρ(x, t) ≡ Bρ(x, t)× (t− ρ2, t].

The main technical challenge of the theorem is to prove an effective Lipschitz bound in x for the

s-average of Wx(s). To accomplish this, we require a new log-Sobolev inequality. It is well known by

Perelman that the metric measure spaces (M, g(t), dvolg(t)) satisfy a log-Sobolev; however we prove

that this is also true for the conjugate heat kernel weighted spaces (M, g(t),Hx0
(−, t) dvolg(t)). Our

log-Sobolev constants for these weighted spaces are in fact universal and sharp.

The weighted log-Sobolev has other consequences as well, including an average Gaussian upper

bound on the conjugate heat kernel that only depends on a two-sided scalar curvature bound.

1. Introduction

Throughout this paper we will assume that the pair

(Mn, g(t)), t ∈ [−T, 0], (1.1)

is a smooth Ricci flow. For simplicity we assume each time slice is complete of bounded geometry. It

may also be convenient to assume M is compact when we rely on Perelman’s monotonicity formula.

However, our results will ultimately only depend on entropy and scalar curvature bounds.

Given a point (x0, 0) ∈M × [−T, 0] on the final time slice we write

Hx0(y, s) = H(x0, 0 | y, s) = (4π|s|)−n
2 exp(−fx0(y, s)) (1.2)

for the conjugate heat kernel based at (x0, 0), and

dνx0(y, s) = Hx0(y, s) dvolg(s)(y) (1.3)

for the associated probability measures on M ; see also Definition 2.6.

Definition 1.4 (Perelman [18]). Let (Mn, g) be a Riemannian manifold. Given an f ∈ C∞(M) and

τ > 0 such that (4πτ)−
n
2 e−fdvol has unit mass, we define associated entropy functionals

W(g, f, τ) ≡
ˆ

[τ(|∇f |2 +R) + f − n](4πτ)−
n
2 e−fdvol, (1.5)

µ(g, τ) ≡ inf

{

W(g, f, τ) :

ˆ

(4πτ)−
n
2 e−fdvol = 1

}

. (1.6)
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Perelman [18] discovered that W is nondecreasing in t = t0 − τ (t0 ∈ R) if (4πτ)−
n
2 e−f evolves by

the conjugate heat equation coupled to the Ricci flow in the time variable t < t0; see Theorem 2.14.

As a consequence, the quantity µ(g(t), t0 − t) is nondecreasing in t < t0 along any Ricci flow.

1.1. Pointed entropy and ε-regularity. Our primary concern in this paper will be a localized

version of the W-entropy. Namely, given a Ricci flow as in (1.1), there exists for each point (x0, 0)

in the 0-time slice and s ∈ [−T, 0) the canonical metric probability space (Mn, g(s), dνx0(s)), where

dνx0(s) ≡ Hx0(−, s) dvolg(s) is the conjugate heat kernel measure as in (1.3).

Definition 1.7. The pointed entropy at scale
√

|s| based at x0 is defined by

Wx0(s) ≡ W(g(s), fx0(s), |s|). (1.8)

It is a consequence of Perelman’s gradient formula, see Proposition 2.23, that

lim
s→0

Wx0(s) = 0,
d

ds
Wx0(s) ≥ 0. (1.9)

Moreover, the pointed entropy at a given point and scale vanishes if and only if the flow is isometric

to the trivial flow on Euclidean space. One can view this as an example of a rigidity theorem.

What is often useful in such situations is an “almost rigidity” statement: If the pointed entropy

at a single point x0 is close to 0, then the Ricci flow ought to be smoothly close to flat Rn near x0.

There are many examples of such statements in the literature. For instance, in the case of Einstein

manifolds one has an ε-regularity theorem based on the volume ratio Vx(r) ≡ log(Vol(Br(x))/ωnr
n)

going back to Anderson [1], which is at the backbone of the regularity theory in [6].

To make all of this precise we introduce the regularity scale of a point. Given (x, t) ∈M × [−T, 0]
a bound on the curvature |Rm|(x, t) at this point gives remarkably little information. On the other

hand, a bound on the curvature in a spacetime neighborhood of (x, t) tells us everything about the

local geometry of the Ricci flow. Thus we make the following definition:

Definition 1.10. Given a Ricci flow (Mn, g(t)) as in (1.1) we define the following.

(1) Given (x, t) ∈M × [−T, 0] and r > 0 with −T ≤ t− r2 we define the parabolic ball

Pr(x, t) ≡ Br(x, t)× (t− r2, t]. (1.11)

(2) Given (x, t) ∈M × [−T, 0] we define the regularity scale

r|Rm|(x, t) ≡ sup{r > 0 : sup
Pr(x,t)

|Rm| ≤ r−2}. (1.12)

Remark 1.13. The regularity scale is defined to be scale invariant: If r|Rm|(x, 0) = r and if we rescale

the Ricci flow by r−1, so that Pr(x, 0) is mapped to P1(x̃, 0), then we have |Rm| ≤ 1 on P1(x̃, 0).

Remark 1.14. The regularity scale controls not only the curvature but also its derivatives. Namely,

by standard parabolic estimates there exists for each k ∈ N a dimensional constant C(n, k) such

that if r|Rm|(x, t) ≡ r then we have the estimates

sup
P r

2
(x,t)

|∇kRm| ≤ C(n, k)r−2−k. (1.15)

Our main theorem then takes the following form: There exists an ε > 0 such that Wx0(s) ≥ −ε
implies r|Rm|(x0, 0)

2 ≥ ε|s|. Of course the use of such an estimate is only as good as what ε depends

on, and we are able to bound ε below purely in terms of T and lower scalar curvature and µ-entropy

bounds at the initial time −T , which is really the most one might hope for.
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Theorem 1.16. For each C > 0 there exists an ε = ε(n,C) > 0 such that the following holds. Let

(Mn, g(t)) be any Ricci flow as in (1.1) such that

R[g(s)] ≥ − C

|s| , inf
τ∈(0,2|s|)

µ(g(s), τ) ≥ −C, (1.17)

for some s ∈ [−T, 0). If the pointed entropy satisfies

Wx0(s) ≥ −ε (1.18)

for some point x0 in the 0-time slice, then we have

r|Rm|(x0, 0)
2 ≥ ε|s|. (1.19)

Remark 1.20. One typically takes the point of view that (M,g(−T )) is a fixed Riemannian manifold

but that the runtime T of the flow is variable. One would then like to derive (1.17) from information

about the initial time slice (M,g(−T )). The appropriate conditions to impose are

R[g(−T )] ≥ − C

|s| , inf
τ∈(T−|s|,T+|s|)

µ(g(−T ), τ) ≥ −C, (1.21)

because both inf R[g(t)] and µ(g(t), t0 − t) for any fixed t0 > t are nondecreasing in t. Even if one

then only cares about fixed values of s, (1.21) still exhibits an explicit T -dependence in the entropy

condition which may degenerate as T → ∞. This issue is familiar from [18].

The known ε-regularity theorems for the Ricci flow either allow ε to depend on a type I sectional

curvature bound [8], or require a smallness condition such as (1.18) to hold at every x in a definite

neighborhood of x0 [17], which clearly follows from (1.18) under a type I condition.

In order to understand the technical difficulties encountered in the proof of Theorem 1.16, let us

give a brief outline of the argument. We would like to follow Anderson’s proof [1] of his ε-regularity

theorem for Einstein manifolds as much as possible. Namely, assume the theorem fails. Then for all

ε > 0 we can find Ricci flows (Mε, gε(t)) and points (xε, 0) such that (1.17) and (1.18) are satisfied

but (1.19) fails. We can assume sε = 1 by rescaling. After a careful point picking we would then like

to say that xε more or less minimizes the function r|Rm|(x, 0) in a small but definite ball while still

satisfying Wxε
(1) ≥ −2ε. Then, after rescaling so that r|Rm|(x̃ε, 0) = 1, we can take a subsequence

converging smoothly to a complete pointed Ricci flow (M̃∞, g̃∞(t), x̃∞) such that r|Rm|(x̃∞, 0) = 1,

yet Wx̃∞
(s) = 0 for all s and hence (M̃∞, g̃∞(t)) ∼= R

n, which is the desired contradiction.

However, in order for this to go through we require Wx(s) to depend on x in a Lipschitz manner

(for the volume ratio Vx(r) in the Einstein case this is clear by volume comparison). We are in fact

unable to prove this assuming only (1.17). What does turn out to be possible under (1.17), though,

is to obtain Lipschitz control on the s-average of Ws(x), which is still enough for our purposes. To

accomplish this we introduce new log-Sobolev estimates for heat kernel measures. In addition, this

s-average turns out to be an interesting monotone quantity in its own right; we will put this to some

use in obtaining new integral bounds for the conjugate heat kernel, see Theorem 4.5.

1.2. Log-Sobolev inequalities for the conjugate heat kernel measure. Consider a smooth

metric probability space (M,g, dν), where dν = e−fdvolg. If the Bakry-Émery condition

Ric +∇2f ≥ 1

2
g (1.22)
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is satisfied, then a celebrated classical theorem from [2] asserts that (M,g, dν) satisfies a log-Sobolev

inequality. That is, for every smooth function φ with compact support on M we have
ˆ

φ2 dν = 1 =⇒
ˆ

φ2 log φ2 dν ≤ 4

ˆ

|∇φ|2 dν. (1.23)

The case of flat Rn equipped with the Gaussian measure dν = (4π)−
n
2 exp(−1

4 |x|2)dx is already very

interesting; this case is equivalent to the original log-Sobolev inequality proved by Gross [10].

The log-Sobolev (1.23) can be used to prove that the operator ∆fφ ≡ ∆φ − 〈∇f,∇φ〉, which is

dν-selfadjoint, has discrete spectrum. Linearizing (1.23) around φ ≡ 1 yields a Poincaré for dν that

tells us that the smallest positive eigenvalue of ∆f is at least 1
2 , and it follows from [2] that equality

holds if and only if M splits off a line, in which case the 1
2 -eigenfunction is linear.

Remark 1.24. If M is compact, an improvement depending on diamM for the spectral gap 1
2 was

recently proved in [9]. Intriguingly, on every nontrivial normalized gradient shrinking Ricci soliton,

Ric +∇2f = 1
2g, the soliton function f itself is always a 1-eigenfunction of ∆f .

In the context of a Ricci flow (Mn, g(t)) with its conjugate heat kernel measures (1.3), Perelman’s

monotonicity formula (2.16) would suggest that the metric probability spaces (M,g(s), dνx0(s)) are

typically well approximated by shrinking solitons. Thus the Bakry-Émery inequality (1.23) may at

least help to motivate (if not prove) the following result, which is our main technical tool.

Theorem 1.25. Let (Mn, g(t)) be a Ricci flow as in (1.1). Fix x0 ∈M and s ∈ [−T, 0).
(1) For all φ ∈ C∞

0 (M) with
´

φdνx0(s) = 0,
ˆ

φ2 dνx0(s) ≤ 2|s|
ˆ

|∇φ|2g(s) dνx0(s). (1.26)

Equality holds if and only if either φ ≡ 0, or (M,g(t)) = (M ′, g′(t)) × (R, dz2) isometrically for all

t ∈ [s, 0] with z(x0) = 0 and φ = λz for some constant λ ∈ R
∗.

(2) For all φ ∈ C∞
0 (M) with

´

φ2 dνx0(s) = 1,
ˆ

φ2 log φ2 dνx0(s) ≤ 4|s|
ˆ

|∇φ|2g(s) dνx0(s). (1.27)

Equality holds if and only if either φ ≡ 1, or (M,g(t)) = (M ′, g′(t)) × (R, dz2) isometrically for all

t ∈ [s, 0] with z(x0) = 0 and φ = exp(λz − 2λ2|s|) for some constant λ ∈ R
∗.

Remark 1.28. Perelman’s monotonicity formula implies an unweighted log-Sobolev inequality (2.19)

whose optimal constant depends on T and on various bounds for the geometry of (M,g(−T )). The
weighted inequalities in Theorem 1.25 on the other hand are sharp and completely universal. As far

as we can tell, however, the applications of (2.19) and (1.27) are essentially disjoint.

Remark 1.29. A static version of Theorem 1.25 for the heat kernel measure on complete Riemannian

manifolds with Ric ≥ 0 was proved independently by Bakry-Ledoux [3] and (with a spurious extra

factor of n) Bueler [4]. These papers inspired our proof of Theorem 1.25.

1.3. Integral and pointwise bounds for the conjugate heat kernel. Before returning to our

discussion of the ε-regularity result, Theorem 1.16, we wish to explain an interesting consequence of

Theorem 1.25. The basic idea is to test (1.27) with functions φ that are well adapted to the metric

geometry; this is the so-called “Herbst argument” in metric measure theory [14].

The following appears to be the sharpest possible result such methods can yield.
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Theorem 1.30. Let (Mn, g(t)) be a Ricci flow as in (1.1) and let dν = dνx0(s) be a conjugate heat

kernel measure as in (1.3). Then the Gaussian concentration inequality

ν(A)ν(B) ≤ exp

(

− 1

8|s|distg(s)(A,B)2
)

(1.31)

holds for all A,B ⊆M . Here dist refers to the usual set distance, not the Hausdorff distance.

Let us observe the following natural consequence. Given x1, x2 ∈ M in the s-time slice, we can

apply (1.31) to dν ≡ dνx2 , choosing A,B to be the metric balls Br(x1, s), Br(x2, s) with r
2 ≡ |s|. If

Br(x1, s) is in addition noncollapsed with a uniform constant, which is of course a fair assumption

after Perelman [18], then we obtain the following average Gaussian upper bound:

 

Br(x1,s)
Hx2(s) dvolg(s) ≤

C|s|−n
2

νx2(Br(x2, s))
exp

(

− 1

C|s|dg(s)(x1, x2)
2

)

. (1.32)

The primary concern with this estimate is a lack of effective lower bound on νx2(Br(x2, s)). We

can fix this to some extent by bringing in a pointwise Gaussian lower bound for Hx2 from [21], see

Theorem 2.37, however this forces us to work with time-0 balls, not time-s balls.

Corollary 1.33. For each C > 0 there exists a C ′ = C ′(n,C) > 0 such that the following holds. Let

(Mn, g(t)) be any Ricci flow as in (1.1) such that, for some s ∈ [−T, 0),

sup
t∈[s,0]

‖R[g(t)]‖∞ ≤ C

|s| , inf
τ∈(0,2|s|)

µ(g(s), τ) ≥ −C. (1.34)

Let x1, x2 ∈M and put r2 ≡ |s|. Then we have an average Gaussian upper bound

 

Br(x1,0)
Hx2(s) dvolg(s) ≤ C ′|s|−n

2 exp

(

− 1

C ′|s|distg(s)(Br(x1, 0), Br(x2, 0))
2

)

. (1.35)

As a consequence, we get the following distance distortion type estimate:

distg(s)(Br(x1, 0), Br(x2, 0)) ≤ C ′dg(0)(x1, x2). (1.36)

Remark 1.37. Both (1.32) and (1.35) fall short of what one might hope to have. For example, there

is a method of proving pointwise Gaussian upper bounds for heat kernels on static manifolds relying

on nothing more than a log-Sobolev [7]. Unfortunately this approach seems to break down for the

Ricci flow for lack of control on the distance distortion between different time slices.

1.4. Lipschitz continuity of the pointed Nash entropy. We now return to the main flow of

the argument and explain how the Poincaré inequality of Theorem 1.25(1) helps us to complete the

proof of Theorem 1.16. As we said at the end of Section 1.1, what we require is a Lipschitz bound

in x for Wx(s), or at least for a weaker quantity than Wx(s) that still controls the soliton behavior

of our Ricci flow near x. It turns out that we can work with the time average of Wx(s):

Definition 1.38. Given x0 ∈M and s ∈ [−T, 0), we define the pointed Nash entropy by

Nx0(s) ≡
1

|s|

ˆ 0

s
Wx0(r) dr =

ˆ

M
fx0(s) dνx0(s)−

n

2
. (1.39)

See Proposition 2.26 for the equality in (1.39) and other basic properties. Thus, Nx0(s) is closely

related to the quantity used by Nash [16] in proving Hölder continuity of weak solutions.
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Theorem 1.40. For each C > 0 there exists a C ′ = C ′(n,C) > 0 such that the following holds. Let

(Mn, g(t)) be any Ricci flow as in (1.1) such that

R[g(s)] ≥ − C

|s| , inf
τ∈(0,2|s|)

µ(g(s), τ) ≥ −C, (1.41)

for some s ∈ [−T, 0). Then the mapping

(M,g(0)) ∋ x 7→ fx(s)Hx(s) ∈ L1(M,dvolg(s)) (1.42)

is globally C ′|s|− 1
2 -Lipschitz. In particular this implies that

|Nx1(s)−Nx2(s)| ≤ C ′|s|− 1
2dg(0)(x1, x2). (1.43)

The idea here, and the reason for introducing Nx in the first place, is that Nx, unlike Wx, does

not depend on derivatives of H. Thus, ∇xNx can be bounded by the gradient estimates of [19, 20].

The Poincaré (1.26) comes in as a crucial tool to control the L2-norm of fx(s) in the process.

Finally, with Theorem 1.40 in hand it is not difficult to complete the proof of Theorem 1.16 (or in

fact of a slightly strengthened version in which Wx0 gets replaced by Nx0) because the contradiction

argument outlined in Section 1.1 works the same way with Nx0 in place of Wx0 .

2. Background material

2.1. The heat operator and its conjugate. Let (Mn, g(t)) be a Ricci flow as in (1.1).

Definition 2.1. The heat operator and its conjugate along the flow are defined by

� ≡ ∂t −∆, (2.2)

�
∗ ≡ −∂t −∆+R. (2.3)

This is a sensible definition because of the following identity.

Lemma 2.4. Let Ω be a smooth bounded domain in M and [t1, t2] ⊆ [−T, 0]. Then

ˆ t2

t1

ˆ

Ω
(�u)v − (�∗v)u =

ˆ

Ω
uv

∣

∣

∣

∣

t2

t1

−
ˆ t2

t1

ˆ

∂Ω

(

∂u

∂n
v − ∂v

∂n
u

)

(2.5)

for all smooth functions u, v :M × [t1, t2] → R.

Definition 2.6. For x, y ∈ M and s < t in [−T, 0], we let H(x, t | y, s) denote the conjugate heat

kernel based at (x, t), i.e. the unique minimal positive solution to the equations

�
∗
y,sH(x, t | y, s) = (−∂s −∆y, g(s) +R(y, s))H(x, t | y, s) = 0, (2.7)

lim
s→t

H(x, t | y, s) = δx(y). (2.8)

If we wish to fix a point x ∈M we may write Hx(y, s) ≡ H(x, 0 | y, s) ≡ (4π|s|)−n
2 e−fx(y,s).

Lemma 2.9. The conjugate heat kernel satisfies the following properties.

(1)
´

H(x, t | y, s) dvolg(s)(y) = 1.

(2) H(x, t | y, s) is also the fundamental solution of �x,t = ∂t −∆x, g(t) with pole at (y, s).

(3)
´

H(x, t | y, s) dvolg(t)(x) ≤ exp(ρ(t− s)), where ρ ≡ ‖R[g(−T )]−‖∞.
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Proof. (1) is simply the mass conserving property of the conjugate heat equation.

(2) requires some more care, and indeed reflects a very general fact concerning the fundamental

solutions of parabolic operators and their formal adjoints. Let us write

u ≡ H�(−,− | y, s), (2.10)

v ≡ H�∗(x, t | −,−), (2.11)

for the fundamental solutions of � and �
∗ with poles at (y, s) and (x, t) respectively. We then apply

(2.5) to u and v on the following three domains in the limit as ε→ 0:

[s, s+ ε2]× (M \Bε(y, s)), [s+ ε2, t− ε2]×M, [t− ε2, t]× (M \Bε(x, t)).

Using standard local asymptotics for u and v at their poles, this yields u(x, t) = v(y, s).

(3) follows by differentiating
´

H(x, t | y, s) dvolg(t)(x) by t, substituting �x,tH = 0 from (2), and

using that the minimum of the scalar curvature is nondecreasing along the Ricci flow. �

Finally, we recall a key tool that has already been put to good use in [15, 19].

Lemma 2.12. The following parabolic Bochner formula holds for all spacetime functions u:

�
1

2
|∇u|2 = −|∇2u|2 + 〈∇u,∇�u〉. (2.13)

Proof. Using ∂
∂t |∇u|2 = 2〈∇ ∂

∂tu,∇u〉 + 2Ric(∇u,∇u), this reduces to the usual computation. The

Ricci term here cancels with the Ricci term from the standard elliptic Bochner formula. �

2.2. Properties of the entropy functionals. We reviewed the definitions of Perelman’s entropy

functionals W(g, f, τ) and µ(g, τ) in Section 1. In addition we introduced localized versions Wx0(s)

and Nx0(s). In this section we collect basic properties and applications of these functionals.

We begin with Perelman’s foundational monotonicity formula and two corollaries [13, 18].

Theorem 2.14. Fix a smooth probability measure dv on M and let f(t), g(t) be families of functions

and metrics on M parametrized by t ∈ [−T, 0]. Fix any t0 ∈ R and put τ(t) ≡ t0 − t. If

∂g

∂t
= −2(Ric +∇2f), (4πτ)−

n
2 e−fdvol = dv, (2.15)

for all t < t0, then we have

d

dt
W(g, f, τ) = 2τ

ˆ

∣

∣

∣
Ric +∇2f − g

2τ

∣

∣

∣

2
dv. (2.16)

Up to correcting by the diffeomorphisms generated by ∇f , (2.15) is equivalent to g evolving by

Ricci flow and (4πτ)−
n
2 e−f evolving by the conjugate heat equation associated with this Ricci flow.

For the rest of the present section, (Mn, g(t)) will denote a Ricci flow as in (1.1).

Corollary 2.17. For all t0 ∈ R, the quantity µ(g(t), t0 − t) is nondecreasing in t < t0. The quantity

is constant if and only if the flow is isometric to a gradient shrinking soliton with singular time t0
and soliton function f(t), where f(t) denotes any minimizer in the definition of µ(g(t), t0 − t).

Corollary 2.18. For a fixed t0 ∈ R, define µ0 ≡ µ(g(−T ), t0 + T ) and write τ ≡ t0 − t. Then
ˆ

φ2 log φ2 dvol ≤ τ

ˆ

(4|∇φ|2 +Rφ2) dvol − n

2
log 4πτ − n− µ0 (2.19)

holds for all φ ∈ C∞
0 (M) with

´

φ2 dvol = 1 as long as t < t0.
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We will then also need to recall how (2.19) implies Perelman’s no local collapsing theorem [18].

We state an improved version of this result that only requires an upper scalar curvature bound [13].

As reported in [13], this is due to Perelman as well. The way we organize the proof may be slightly

simpler than the version in [13] and was inspired by an argument in [5]; see also [20].

Theorem 2.20. Fix any t ∈ [−T, 0], x ∈M , and r > 0, and suppose that we have

inf
ρ∈(0,r)

µ(g(−T ), t+ T + ρ2) ≥ −C, sup
Br(x,t)

R[g(t)] ≤ Cr−2. (2.21)

Defining κ ≡ exp(−(2n+4 + 2C)) it then follows that

|Br(x, t)| ≥ κrn. (2.22)

Proof. We work in the t-time slice. For ρ ∈ (0, r] define a Lipschitz function ψ to be ≡ 1 on B(x, ρ2 ),

≡ 0 off B(x, ρ), and linear in d(x,−) in between, and apply (2.19) to φ ≡ ψ/‖ψ‖2. Using Jensen’s

inequality with respect to dvol
|B(x,ρ)| on B(x, ρ) to bound the left-hand side from below, we obtain

log
1

|B(x, ρ)| ≤
16τ

ρ2

( |B(x, ρ)|
|B(x, ρ2 )|

− 1

)

+
Cτ

ρ2
− n

2
log(4πτ) − n− µ0.

This holds for any given τ > 0, with µ0 depending on τ by definition. We now make τ ≡ ρ2. Using

our definition of κ, it is then easy to prove the following implication:
∣

∣

∣
B
(

x,
ρ

2

)
∣

∣

∣
≥ κ

(ρ

2

)n
=⇒ |B(x, ρ)| ≥ κρn.

Since κ is smaller than the volume of BRn(1), the claim follows from this by iteration. �

Finally, we summarize some basic properties of the localized entropies Wx(s) and Nx(s) that we

introduced in Definitions 1.7 and 1.38. The first couple of facts are clear from Theorem 2.14.

Proposition 2.23. The following hold for all x ∈M and all s ∈ [−T, 0).
(1) lims→0Wx(s) = 0.

(2) µ(g(−T ), T ) ≤ Wx(s) ≤ 0.

(3) Wx(s) = −
´ 0
s 2|r|

´

|Ric +∇2fx − g
2|r| |2 dνx(r) dr.

The following straightforward computation explains the use of the Nash entropy.

Lemma 2.24. Let u be a smooth positive solution to the conjugate heat equation, of rapid decay and

of unit mass. Fix t0 ∈ R, put τ ≡ t0 − t for t < t0, and write u ≡ (4πτ)−
n
2 e−f . Then

d

dt

(

τ

ˆ

u log u dvol

)

= W(g, f, τ) + n+
n

2
log 4πτ. (2.25)

Let us then summarize what we learn from this together with Proposition 2.23.

Proposition 2.26. The following hold for all x ∈M and s ∈ [−T, 0).
(1) Wx(s) ≤ Nx(s) ≤ 0.

(2) d
dsNx(s) =

1
|s|(Nx(s)−Wx(s)) ≥ 0.

(3) Nx(s) = −
´

logHx(s) dνx(s)− n
2 (1 + log 4π|s|) =

´

fx(s) dνx(s)− n
2 .

(4) Nx(s) = −
´ 0
s 2|r|(1− r

s)
´

|Ric +∇2fx − g
2|r| |2 dνx(r) dr.
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2.3. Heat kernel estimates. Here we provide careful statements and applications of some useful

estimates due to Zhang [19, 20, 21]. As usual, we let (Mn, g(t)) denote a Ricci flow as in (1.1).

In [20], Davies’s method [7] for deriving L∞ heat kernel estimates from log-Sobolev inequalities

is applied to the Ricci flow, based on Corollary 2.18. During the proof, the scalar curvature term in

(2.19) gets compensated by the evolution of the Riemannian measure, so that the final result holds

without any upper scalar curvature assumptions.

Theorem 2.27. Define two auxiliary quantities

ρ ≡ ‖R[g(−T )]−‖∞, µ ≡ inf
τ∈(0,2T )

µ(g(−T ), τ). (2.28)

Let u :M × [t1, t2] → R
+ with [t1, t2] ⊆ [−T, 0] be a smooth positive solution to

∂u

∂t
= ∆g(t)u. (2.29)

For each t ∈ [t1, t2] we then have

‖u(t)‖∞ ≤ (4π(t− t1))
−n

2 eρ(t−t1)−µ‖u(t1)‖1. (2.30)

Hamilton [11] proved a Harnack inequality for positive solutions to the heat equation on manifolds

with lower Ricci bounds that only involves the gradient in the space variables. In [19] this idea was

applied to the Ricci flow, using the Bochner formula of Lemma 2.12 as the key tool.

Theorem 2.31. Let u :M × [t1, t2] → R
+ with [t1, t2] ⊆ [−T, 0] be a smooth positive solution to

∂u

∂t
= ∆g(t)u. (2.32)

Then we have a spatial Harnack estimate
∣

∣

∣

∣

∇
√

log
supu

u

∣

∣

∣

∣

≤ 1√
t− t1

. (2.33)

The following corollary was not stated in [19] but will be useful for us in Section 4.

Corollary 2.34. For each C > 0 there exists a C ′ = C ′(n,C) > 0 such that if we have

R[g(−s)] ≥ − C

|s| , inf
τ∈(0,2|s|)

µ(g(s), τ) ≥ −C, (2.35)

and if we write H(x, 0 | y, s) = (4π|s|)−n
2 exp(−fx(y, s)) as before, then

|∇xfx|2 ≤
C ′

|s| (C
′ + fx). (2.36)

Proof. Fix y, s and let u(x, t) ≡ H(x, t | y, s), so that u solves the heat equation by Lemma 2.9. We

can apply Theorem 2.27 with T = |s| and [t1, t2] = [s+ ε, 0] for ε→ 0 to conclude that

ū ≡ sup
[ s
2
,0]×M

u ≤ C ′|s|−n
2 .

On the other hand, Theorem 2.31 with [t1, t2] = [ s2 , 0] yields |∇xfx|2 ≤ C′

|s| log
ū
u at (x, 0). �

Finally, in [21], Perelman’s Harnack inequality from [18] is used to prove a Gaussian lower bound

for H in terms of distance in the final time slice, by bringing in Theorems 2.31 and 2.27.
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Theorem 2.37. Define ρ, µ as in (2.28) and write τ ≡ t− s for s < t in [−T, 0]. Then

H(x, t | y, s) ≥ (8πτ)−
n
2 exp

(

−4

τ
dg(t)(x, y)

2 − 1√
τ

ˆ τ

0

√
σR(y, t− σ) dσ − ρτ + µ

)

. (2.38)

Notice that (2.38) involves the g(t)-distance because Theorem 2.31 bounds the x-gradient.

3. Log-Sobolev and Gaussian concentration

Section 3.1 proves Theorem 1.25 using methods in the spirit of the papers [3, 4], which deal with

the analogous problem for static Riemannian manifolds with Ric ≥ 0. In fact, this proof is not far

removed from the usual proof of a log-Sobolev under the Bakry-Émery condition (1.22). Section 3.2

deduces the Gaussian concentration (Theorem 1.30), using a standard argument from the theory of

log-Sobolev inequalities. Corollary 1.33 is then deduced as a consequence.

3.1. Proof of the Poincaré and log-Sobolev inequalities. The starting point is to rewrite our

two inequalities in a more convenient way. Writing dν = dνx0(s) and passing to square roots in the

log-Sobolev, we need to prove that for all u ∈ C∞
0 (M), with u ≥ 0 in the second case,

ˆ

u2 dν −
(
ˆ

u dν

)2

≤ 2|s|
ˆ

|∇u|2 dν, (3.1)

ˆ

u log u dν −
(
ˆ

u dν

)

log

(
ˆ

u dν

)

≤ |s|
ˆ |∇u|2

u
dν. (3.2)

Note that (3.2) in fact implies (3.1) by linearizing around u ≡ 1, but information about the equality

case is lost in this way. However, we will prove (3.1) and (3.2) completely in parallel, with almost

identical discussions of the respective equality cases.

The key insight, not unlike [2], is that the heat kernel provides a homotopy between the two terms

that are being subtracted on the left-hand sides of (3.1), (3.2). The proof then reduces to deriving

a gradient estimate for the forward heat equation via the Bochner formula (Lemma 2.12).

In [4], this is done (in the static case) by bounding the Hodge heat kernel on 1-forms in terms of

the heat kernel on scalars using a Kato type inequality; unfortunately, see [12], this method loses a

factor of n = rank T ∗M , which is not accounted for in [4]. While the same idea works for the Ricci

flow, we will therefore instead follow in spirit the approach of [3], where a precise gradient estimate

is obtained (in the static case) by applying the heat kernel homotopy principle once again.

For s ≤ t in [−T, 0], we write Pstu for the evolution of u ∈ C∞
0 (M) from time s to time t under

the forward heat equation coupled to the Ricci flow. In other words, by Lemma 2.9,

(Pstu)(x) =

ˆ

u(y)H(x, t | y, s) dvolg(s)(y). (3.3)

Given this, the following lemma records the key homotopy principle.

Lemma 3.4. (1) For any family of smooth functions Ut parametrized by t ∈ [−T, 0],
d

dt
Pt0Ut = Pt0�tUt. (3.5)

(2) Let u ∈ C∞
0 (M) and put ut = Pstu, so that �tut = 0. Fix φ,ψ : R → R. Then we have

Ut ≡ φ(ut) =⇒ �U = −φ′′(u)|∇u|2, (3.6)

Ut ≡ ψ(ut)|∇ut|2g(t) =⇒ �U = −2ψ(u)|∇2u|2 − 4ψ′(u)〈∇2u, du⊗ du〉 − ψ′′(u)|du ⊗ du|2, (3.7)

omitting all subscripts t and g(t) on the right-hand side.
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Proof. (1) The representation formula (3.3) yields

d

dt
Pt0Ut(x0) =

d

dt

ˆ

Ut(x)H(x0, 0 |x, t) dvolg(t)(x).

Now use that H(x0, 0 |x, t) solves the conjugate heat equation in (x, t) and ∂
∂tdvol = −Rdvol.

(2) The first claim is straightforward. The key to the second claim is Lemma 2.12. �

Combining (3.5), (3.6), we can now rewrite the left-hand sides of (3.1), (3.2) as follows:
ˆ

φ(u) dν − φ

(
ˆ

u dν

)

= −
ˆ 0

s

d

dt
Pt0(φ(Pstu))(x0) dt

=

ˆ 0

s
Pt0(φ

′′(Pstu)|∇Pstu|2g(t))(x0) dt, (3.8)

with φ(x) = x2 and φ(x) = x log x, respectively. We next estimate the integrand by combining (3.5),

(3.7) with ψ = φ′′, replacing t, 0 by r, t for a new variable r ∈ [s, t]. Thus, in the x2 case,

|∇Pstu|2g(t) = Pst(|∇u|2g(s))− 2

ˆ t

s
Prt|∇2Psru|2g(r) dr. (3.9)

Substituting this into (3.8) immediately yields the Poincaré inequality of Theorem 1.25(1). In the

x log x case, (3.7) simplifies quite drastically and we obtain

|∇Pstu|2g(t)
Pstu

= Pst

(

|∇u|2g(s)
u

)

− 2

ˆ t

s
Prt((Psru)|∇2 logPsru|2g(r)) dr . (3.10)

Again we substitute this into (3.8) to prove the required log-Sobolev inequality. We can then finish

the proof of Theorem 1.25 by observing that equality can occur if and only if either u = const, or

the flow lines of ∇u or ∇ log u split off as isometric R-factors.

3.2. Gaussian concentration. Given the inequalities in Theorem 1.25, proving the concentration

estimate claimed in Theorem 1.30 is by now a standard exercise in abstract metric measure theory:

log-Sobolev inequalities yield Gaussian concentration (Herbst), and Poincaré inequalities, which are

weaker, still yield exponential concentration (Gromov-Milman). We refer to Ledoux [14] for a good

exposition; the following proof merely recalls the relevant points from [14].

Proof of Theorem 1.30. We proceed from the log-Sobolev in the version (1.27). The first idea is that

this allows us to bound, in a specific fashion, the Laplace transform of 1-Lipschitz functions with

zero average. The second idea is to apply this bound to the distance function from a set.

As for the Laplace transform bound, fix F ∈ C∞(M) with
ˆ

F dν = 0, |∇F | ≤ 1.

Let us define a Laplace type transform, or moment generating function, by

U(λ) ≡ 1

λ
log

ˆ

eλF dν.

This is O(λ) as λ→ 0. Moreover, (1.27) applied to φ2 = eλF /
´

eλF dν easily yields

dU

dλ
≤ |s|

for all λ > 0. Thus, altogether,
ˆ

eλF dν ≤ e|s|λ
2
.
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We now apply the preceding inequality to the two test functions

F ≡ ±(G−
ˆ

Gdν), G(y) ≡ dist(y,B).

Then we immediately obtain that

eλdist(A,B)ν(A)ν(B) ≤
ˆ

A

ˆ

B
eλ(F (y1)−F (y2)) dν(y1) dν(y2) ≤ e2|s|λ

2
,

and the theorem follows from this by optimizing in λ. �

Proof of Corollary 1.33. We begin by applying Theorem 1.30 with x0 replaced by x2 and

A = Br(x1, 0), B = Br(x2, 0).

In order to derive (1.35) we must bound the factor ν(B) on the left-hand side of (1.31) from below.

This can be done using two ingredients. First, using Zhang’s Theorem 2.37,

inf
Br(x2,0)

Hx2(s) ≥
1

C ′
|s|−n

2 .

Second, the evolution of the volume form under Ricci flow and Theorem 2.20 tell us that

Volg(s)(Br(x2, 0)) ≥
1

C ′
Volg(0)(Br(x2, 0)) ≥

1

C ′
rn.

Together these show that ν(B) ≥ 1
C′ . Then (1.35) follows by dividing through by Volg(s)(Br(x1, 0)),

which we can bound from below by the same argument we just used for Volg(s)(Br(x2, 0)).

Finally, Theorem 2.37 also tells us that

inf
Br(x1,0)

Hx2(s) ≥
1

C ′
|s|−n

2 exp

(

−C
′

|s|dg(0)(x1, x2)
2

)

,

which allows us to deduce (1.36) from (1.35). �

4. Lipschitz continuity of the pointed Nash entropy

We now prove Theorem 1.40 as a consequence of Corollary 2.34 and our weighted Poincaré (1.26).

The standing assumption throughout this section is that (Mn, g(t)) is a Ricci flow parametrized by

t ∈ [−T, 0] satisfying (1.41). In order to prove that the mapping x 7→ fx(s)Hx(s) from (M,g(0)) to

L1(M,dvolg(s)) is Lipschitz, clearly all we need to do is estimate the integral

I ≡
ˆ

|∇x(fx(y, s)Hx(y, s))| dvolg(s)(y). (4.1)

Inserting the expression for Hx in terms of fx, and writing dν ≡ dνx(s), we find that

I =

ˆ

|∇xfx − fx∇xfx| dν ≤ ‖∇xfx‖2(1 + ‖fx‖2), (4.2)

where the subscript 2 indicates the L2-norm with respect to the probability measure ν. Now using

Corollary 2.34 we have the pointwise estimate

|∇xfx|2 ≤
C ′

|s| (C
′ + fx). (4.3)

If we substitute this into (4.2) we therefore get

I ≤ C ′|s|− 1
2

(

1 +

ˆ

|fx|2 dν
)

. (4.4)
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To deal with this term we need the Poincaré inequality (1.26) and some simple observations based

on monotonicity of the Nash entropy. Precisely, the following lets us complete the proof.

Theorem 4.5. Under (1.41) the following hold.

(1)
´

fx dν ∈ [n2 − C, n2 ].

(2)
´

|∇fx|2 dν ≤ (n2 + C) 1
|s| .

(3)
´

|fx|2 dν ≤ 2(n + 2C)2.

Notice carefully that ∇fx means ∇yfx here, not ∇xfx as in (4.2).

Proof of Theorem 4.5. The first statement follows from Propositions 2.23 and 2.26. For the second

statement, notice that the inequality Wx(s) ≤ Nx(s) is equivalent to
ˆ

(|∇fx|2 +R) dν ≤ n

2|s| .

Finally, the Poincaré inequality of Theorem 1.25 gives us
ˆ

|fx|2 dν ≤ 2|s|
ˆ

|∇fx|2 dν +
(
ˆ

fx dν

)2

, (4.6)

and the two terms on the right-hand side are bounded by the first two statements. �

5. Proof of the ε-regularity theorem

Throughout this section we are considering a Ricci flow (Mn, g(t)) as in (1.1) that satisfies (1.17).

We begin by proving Proposition 5.2, which is a more restrictive version of Theorem 1.16, and then

use the continuity statement of Theorem 1.40 to complete the proof of Theorem 1.16 in full.

For a point y ∈M on the 0-time slice we define the normalized time-scale

t(y) ≡ −min{T, r|Rm|(y, 0)
2}. (5.1)

Proposition 5.2. There exists an ε = ε(n,C) > 0 such that if we have

∀y ∈ Bδ(x, 0) : Nt(y)(y) ≥ −ε (5.3)

for some x ∈M and 0 < δ ≤
√
T , then we also have

∀y ∈ Bδ(x, 0) : r|Rm|(y, 0) ≥ ε · dg(0)(y, ∂Bδ(x, 0)). (5.4)

Proof. (1) By rescaling there is no harm in assuming δ = 1 ≤ T . Let us assume for some n,C > 0

that the lemma fails. In this case we have for all i ∈ N that there exists a complete Ricci flow

(Mn
i , gi(t), (xi, 0))

with t ∈ [−1, 0] and xi ∈Mi such that for each y ∈ B1(xi, 0) we have

Nt(y)(y) ≥ −1

i
, (5.5)

whereas any point yi ∈ B1(xi, 0) minimizing the quantity

w(y) ≡ r|Rm|(y, 0)

dgi(0)(y, ∂B1(xi, 0))
(5.6)

must necessarily satisfy

0 < w(yi) ≤
1

i
. (5.7)
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(2) Choose any such yi, define ri ≡ r|Rm|(yi, 0), and consider the rescaled Ricci flows

(M̃i, g̃i(t), (ỹi, 0)), g̃i(t) ≡
1

r2i
gi(r

2
i t), t ∈ [− 1

r2i
, 0].

Certainly r|Rm|(ỹi, 0) = 1, and ỹi moves away from the boundary in that

di ≡
1

2
dg̃i(0)(ỹi, ∂B 1

ri

(x̃i, 0)) ≥
i

2
. (5.8)

On the other hand, since yi minimizes w, we find that

ỹ ∈ Bdi(ỹi, 0) =⇒ r|Rm|(ỹ, 0) ≥
1

2
. (5.9)

Moreover, by Perelman’s no local collapsing, see Theorem 2.20, we have that

Volg̃i(0)(B1(ỹ, 0)) ≥ κ(n). (5.10)

Thus we have uniform smooth bounds on P1/4(ỹ, 0) for all ỹ ∈ Bdi(ỹi, 0), and uniform noncollapsing

at scale 1 on Bdi(ỹi, 0). This allows us to pass to a subsequence to derive a pointed C∞ limit

(M̃i, g̃i(t), (ỹi, 0)) → (M̃∞, g̃∞(t), (ỹ∞, 0)).

The limit exists for t ∈ [− 1
16 , 0] and is complete with bounded curvature while satisfying

r|Rm|(ỹ∞, 0) = 1. (5.11)

(3) To contradict this with (5.5) we need a few estimates for the heat kernel. Namely,

(4π|t|)−n
2 exp(−l|t|ỹi (ỹ)) ≤ H(ỹi, 0 | ỹ, t) ≤ C ′(n,C)|t|−n

2 (5.12)

for all t ∈ [−1, 0) and ỹ ∈ M̃i in the rescaled flows (M̃i, g̃i(t), (ỹi, 0)), where l denotes the reduced

length function of Perelman. The lower bound follows from Perelman’s Harnack inequality [18], and

the upper bound follows from Zhang’s Theorem 2.27, originally proved in [20].

To clarify this point, note that in principle the required heat kernel estimates already follow from

(5.9) on Bdi(ỹi, 0) and neither depend on any special structure of the Ricci flow nor on the assumed

value of C. We used some results from [18, 20] instead just for the sake of simplicity.

(4) As usual, let us write

H(ỹi, 0 | ỹ, t) ≡ (4π|t|)−n
2 e−fi(ỹ,t). (5.13)

Then the two bounds in (5.12) together with the local regularity (5.9) tell us that

fi(ỹ, t) → f∞(ỹ, t) (5.14)

smoothly on compact subsets because the heat kernels Hỹi satisfy uniform derivative bounds. Now

the entropy smallness (5.5) together with Proposition 2.26 shows that
ˆ 0

− 1
16

2|t|(1 − 16|t|)
ˆ

M̃i

∣

∣

∣

∣

Ric[g̃i] +∇2fi −
g̃i
2|t|

∣

∣

∣

∣

2

dνỹi(t) dt ≤
1

i
. (5.15)

Thus, by Fatou’s lemma, the function f∞ constructed in (5.14) is a soliton potential for the limiting

Ricci flow with singular time t = 0. Hence the t-time slice of the limiting flow is isometric to the

16|t|-rescaling of the (− 1
16)-time slice. But then the only way for the curvature to stay bounded as

t→ 0 is if (M̃∞, g̃∞(t)) is flat for all t. This contradicts (5.11) and thus proves the lemma. �

We are now in good shape to in fact prove a strengthening of our main theorem.

Theorem 5.16. Theorem 1.16 is true and we can even replace (1.18) by Nx0(s) ≥ −ε.
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Proof. Define δ ≡ min{1, 1
2C′

1.40
ε5.2} and ε ≡ δ

2ε5.2. We can assume −s = T = 1 ≥ δ. Then

∀x ∈ Bδ(x0, 0) : Nx(1) ≥ −ε5.2
by Theorem 1.40. Thus Proposition 5.2 tells us that r|Rm|(x0, 0) ≥ ε5.2δ ≥ ε. �
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