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Preface

This book is a study of linear, self-adjoint, second order, elliptic differential
operators. The goal is to investigate spectral properties and obtain
pointwise bounds on eigenfunctions by studying the heat kernels.

There is an enormous literature on heat kernels which stretches back half
a century, so it is easy to imagine that the subject has already reached its
final form. However, we shall make almost no reference to this literature,
and shall rely entirely upon results proved within the last five years
using quadratic form techniques and logarithmic Sobolev inequalities.
These new techniques have led to radically better global bounds on the
heat kernels.

We shall be concerned to obtain pointwise upper and lower bounds on
various functions in terms of effectively computable constants. In a number
of cases the new methods yield constants which are sharp or at least of the
correct order of magnitude. This is in sharp distinction to much of the older
theory, where various constants appeared to depend upon the magnitudes
of the derivatives of the second order coefficients of the differential operator,
although in fact they do not.

Because of our approach we are able to deal simply and naturally with
operators in divergence form whose second order coefficients are measur-
able. Earlier treatments of this problem such as that of Gilbarg and
Trudinger have relied heavily upon Moser’s Harnack inequality. In spite of
its fundamental historical and conceptual importance, we make no mention
of Moser’s approach. The reason is that the proof is fairly lengthy and the
constants it produces bear little relationship to the true values. Our lower
bounds depend instead upon the reworking of earlier ideas of Nash by
Fabes and Stroock.

In spite of the obvious probabilistic undercurrents we work in a purely
analytical setting, and make no use of techniques such as functional
integration or stochastic differential equations. One cannot predict the
future, but at present one gets the sharpest information about operators in
divergence form by analytical techniques, while for operators in non-
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divergence form (which we do not study) one gets the sharpest information
by probabilistic techniques.

We have also avoided the use of the wave equation, which has yielded
profound and detailed results, but which appears to require smooth
coefficients. The reason for this is that the heat equation can be studied on
L* for all 1 < p < o, but the wave equation can only be studied in Sobolev
spaces if p = 2. Pointwise bounds therefore necessitate the availability of
suitable elliptic regularity theorems, if the wave equation is used. Even
when this is possible their use leads to some loss of sharpness of the bounds.

Although the theory which we describe could have been carried out on a
manifold from the start, we have chosen to develop it on a region in
Euclidean space. It is our hope that this will make the material more
accessible to those interested in Schrodinger operators or variable coeffi-
cient elliptic differential operators. However the techniques are applied to
study the heat kernels of Laplace—Beltrami operators on Riemannian
manifolds in Chapter 5.

The core of the book is Chapter 2, where we present Gross’ theory of
logarithmic Sobolev inequalities, as adapted by Davies and Simon to yield
ultracontractive bounds. Although the ideas are basically simple, the theory
is presented in a very abstract and general setting. We were forced to do this
by the many variations of the basic argument which are needed to cope with
the applications. While many of the applications can also be worked out by
means of Sobolev or Nash inequalities, we believe that the use of
logarithmic Sobolev inequalities is more natural. Be that as it may, the use
of logarithmic Sobolev inequalities is certainly necessary in order to deal
with anharmonic Schrodinger operators in Chapter 4.

In Chapter 3 we use the ultracontractive bounds to obtain Gaussian
upper bounds on heat kernels. These bounds are sharp in a certain sense
and improve greatly upon what was available a decade ago. As well as being
important for their own sake, the upper bounds are used to obtain the lower
bounds, thus completing the approach which Nash introduced many years
ago.

Chapter 4 is an introduction to the study of the behaviour of heat kernels
and eigenfunctions near the boundary of the region on which the elliptic
operator acts. Upon examining some examples, one realises that this is an
extraordinarily complicated subject, even if the coefficients and boundary
are piecewise smooth. The main conclusion of the chapter is that the
behaviour of the heat kernel and Green function near the boundary is
controlled by the behaviour of the ground state. The corresponding
statement for Schrodinger operators, however, depends upon the rate at
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which the potential increases at infinity, the harmonic oscillator being the
borderline case.

In the final chapter, where we study Laplace—Beltrami operators on
Riemannian manifolds, we make much less effort to give a self-contained
treatment. We study only complete Riemannian manifolds whose Ricci
curvature is bounded below, but make no hypothesis of bounded geometry.
We present the parabolic Harnack inequality of Li and Yau and also a
modification of their approach to the proof of heat kernel bounds for
manifolds of non-negative Ricci curvature. By contrast to the case where
the Ricci curvature may be negative, the above theory is fairly complete.

At the end of each chapter we have included some historical notes as well
as supplementary information. We have made no attempt to cover
literature prior to Gross’ fundamental paper of 1976, and have taken
Chavel (1984), Davies (1980), Gilbarg and Trudinger (1977), and Stein
(1970) as standard references. Our task has been made easier by the fact that
many of the most important papers are less than five years old, but we wish
to apologise to all those whose contributions have not been acknowledged.

I wish to conclude by offering my thanks to the many colleagues who
have influenced my thinking in the field, and who have helped me to avoid
at least some of the historical and mathematical blunders in early versions
of this book. I would particularly like to mention Eric Carlen, Nikolaos
Mandouvalos, Barry Simon, Daniel Stroock and Nicholas Varopoulos,
with whom I have had many stimulating conversations, and without whose
help this book might never have been started.

King’s College, London E. B. Davies
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Introductory concepts

1.1 Some classical analysis

Let Q be a locally compact, second countable, Hausdorff topological space
and let dx be a Borel measure on Q. If 1 < p < oo then we define the real
Banach space LP(Q,dx) to be the vector space of measurable functions
f:Q— R for which the norm

1/p
||f||p={fnlf(x)l"dx}

is finite. We identify two functions which coincide outside a null set without
further comment. The space L*(Q, dx) is defined to be the space of functions
f for which

I f Il = min { ::meas {|f] > 1} =0}
is finite. It may be shown that

Ifle= lm |Ifl,
p~+ o

whenever felf for all large enough p.
The spaces I[P are all Banach lattices in the sense that

1Al =11,
and
lgll, < IS,
whenever
-f<g<sf

We shall make much use of the ordering of I*, and introduce the notation

(f A 9)(x) = min {f(x),g(x)}

(f v 9)(x) =max { f(x),g(x)}

fo=fvO, fo=(=f)vO
so that

|f|=f++f—’ f=f+_f—-
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The complex Banach space L% is the algebraic sum [ @iL?, and the
norm is

n 1/p
||f+ig||p={cf f |fcos(9+gsin0|pd0dx}
QJ)-n

-n

n 1/p
={cf ||fcos(9+gsin0||§d0} (1.1.1)

where

c 1= f |cos 8|7 d6. (1.1.2)

Every bounded linear operator A on L[F(Q) extends uniquely to a bounded
linear operator A on L%(Q) which has the same norm and satisfies

Af)=(Acf)”
for all f eLL(Q). Although we shall deal mainly with the real Banach spaces,
we will use the complex spaces when discussing questions involving
analyticity or spectral theory, and will not distinguish between the two
notationally.
We will use the following standard results from I? theory frequently, and
without comment.

1.1.1 Duality

If 1 < p < oo then (IF)* can be identified with L where
l/p+1/g=1.

1.1.2 Hélder’s inequality
Let fel” and gelf where 1 <p< o and 1 <g< 0. If

I/p+1/g=1/r
and 1 <r< oo then fgeL and

Ifgll. <1 Nl glly

1.1.3 The Hausdorf{-Y oung inequality

Let dx be the Lebesgue measure on Q= R". We define the Fourier
transform & f of the function feL'nI? by

Zf(y)=@2n)~"2 f Jgemdx.
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Ifigp<2and p '+g '=1 then
| Z fll, <@mN2=NP| £,

for all feL'nI? Therefore # may be extended to a bounded linear
operator from Lf to I* for such p.

1.14 Young's inequality
Let dx be the Lebesgue measure on Q= R" and let fel?, gel? where
l<spgoand 1<g<o0. If1<r< o0 and
l+1/r=1/p+1/q
then the convolution f xg lies in L and

If*gl. < Il fll,Ngll,

1.1.5 The Riesz—Thorin interpolation theorem

Let 1 < po,P1>90,9; < o0 and let 4 be a linear operator from LF° L to
L% + [ which satisfies
IASf Nl < Ml £,
for all fand i=1,2. Let 0 <t <1 and define p,q by
1/p=t/py +(L = 10)/po, 1/q9=t/q; +(1—1)/q,.
Then
NAS g < MIMGTH I,
for all feI”°~ LP'. Hence A can be extended to a bounded operator from L?
to L with norm at most M\ M} ™"
This is a special case of the following.

1.1.6 The Stein interpolation theorem

Let p;, g, p.q,t be as above and let
S={zeC:0<Rez<1}.

Let A, be linear operators from LF°n L' to L + [* for all zeS with the
following properties.

(i) {A,f,g> is uniformly bounded and continuous on § and analytic in the
interior of S whenever fel”°nL?* and geL'°n L™ where

/gi+1/r;i=1

(i) | Aip S llge < Moll S g
for all fel’n I and yeR.
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(iif) [Ageif g <M Sp,
for all felP°n[** and yeR.
Then

lAS g < MM 11,

for all fel”°nLP'. Hence A, can be extended to a bounded operator from
LP to L? with norm at most M, M} ~".

In this theorem the initial domain L~ L** of A, can be replaced by other
domains, such as the set of all functions of the form

f= =Zl aer(r)

where «,€R and xg,, are the characteristic functions of the sets E(r),
assumed all to have finite measure.

We now give some standard results and formulae for the Laplace
operator acting on [*(R").

1.1.7 Domain and spectrum of — A

The Laplacian Hy= — A is defined on the space CZ(R") of infinitely
differentiable functions of compact support by

Hof == ¥ o*f/ox?

and satisfies
N
CHofsf0=| | Zl |0f/0x,|* dx
RN r=
on that domain, so that H, > 0. It is known that H, is essentially self-

adjoint on Schwartz space &, or even on C®(R"). The spectral resolution of
H, is achieved using the Fourier transform. Explicitly we have

(Ho)™(y) =y 1 ()
on the maximal domain for which the RHS lies in 2. It follows that the
spectrum of H is [0, co) and is purely absolutely continuous.

1.1.8 The heat kernel and Green function
By the use of Fourier transforms one sees that
e Hoif =K,xf
for all ¢t > 0 and feL*([R") where

K(x) = (4mt)~ N2 g=*/4t,
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Using the formula

[¢9]

uu+zr1=f e Hoe itdy

0
one deduces that if Re A > 0 one has

(Ho+ A" 1=G *f

where

G,(x)= f (4mt)~N2e~*dte= At gy
0

The kernel G, is strictly positive and becomes infinite as x—0. It is
dominated pointwise by the kernel G, of the unbounded operator H, ?,
which is given by

%@=I@mw%ﬂ%m
0

=cy|x|"" 72

provided N > 2.

1.1.9 Other functions of the Laplacian

If FeL'(R") is a spherically symmetric function then there is a bounded
continuous function ¢ on R such that

Fxf =¢Ho)f
for all f €I?, where ¢(H,) is defined using the spectral calculus. F and ¢ are
related explicitly by

o(y*) = fN F(x)e ™™ dx.

This relationship can be extended to other classes of F and ¢ without
difficulty.

1.1.10 Minimax

If H is a non-negative self-adjoint operator on a Hilbert space then the
spectrum of H is real, and the bottom of the spectrum is given by
a=inf{{Hf, f>:feDom(H)and || f | = 1}
=inf{|H*f|*: feDom(H¥and || f|| = 1}.
A point 1 of the spectrum is said to be in the discrete spectrum if it is isolated
and of finite multiplicity; otherwise it is said to be in the essential spectrum.
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If L is a finite dimensional subspace of Dom (H?*) we define
An(L)=sup {|H*f |*:feLand | f| = 1}.
We then put
E,=inf{ig(L):dimL=n+1}

sothat E, = a and E, is an increasing sequence. The minimax theorem gives
the following information. The least upper bound of {E,} equals the
bottom B of the essential spectrum. The sequence { E, }, omitting all values
equal to g if there are such, coincides with the discrete spectrum of H in the
interval [«, ), and each eigenvalue is repeated according to its multiplicity.

1.1.11 Comparison of spectra

If H, K are two self-adjoint operators and H < K then it is immediate from
the definition that

Au(L) < Ag(L)

for all finite-dimensional subspaces L of Dom (H?). It follows that
E(H)< E,(K)

for all n. The bottoms of the essential spectra of the operators are related by

B(H) < B(K).

1.1.12 The regularised distance function

If Q is an open set in R then the distance function d on R" defined by
d(x) = min {|x — y|: y&§Q}
is Lipschitz in the sense that
|d(x) —d(y)| < |x —

but need not be smooth. A theorem of Whitney states that there exists a
constant ¢ >0 and a C* function d:Q — (0, o0) such that

¢™1d(x) < d(x) < cd(x),
Vd(x)| <,
|Ad(x)| < cd(x) !
for all xeQ.

1.2 Quadratic forms

We shall make extensive use of the theory of quadratic forms, and
summarise some of the important results.
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If 2 is a linear subspace of a Hilbert space s a quadratic form on & is
defined to be a map Q': 2 x 2 — C such that

@® Q'S + Bg. ) =2 Q'(f, h) + BQ' (9. h)
(1) Q'(h,af + Bg)=aQ'(h, f) + BQ'(h,g)
(iii) Q(59)=0191)

for all f,g,he2 and a, feC. We shall not distinguish between Q' and the
map @ from # to (— oo, + o] defined by

o(f) = {Q’(f,f) if fez

+ otherwise.
We say that Q is bounded below if there exists ceR such that

o(f)zcl fI? (1.2.1)

for all f es#, and that Q is non-negative if one may take c =0in (1.2.1). If Q
is bounded below, we say that it is closed if for all sequences f,,€ 2 such that
lim | f,—fII=0, lim Q(f,—f)=0

it follows that fe2 and
lim Q(f, — f)=0.
If H >0 is a self-adjoint operator on a closed linear subspace ¥ of #
then we define its form by

4 4 i 3
Q(f)={<H f,HYf> if feDom(H?)

+ o0 otherwise
and we write Dom (Q) or Quad (H) for the domain of H* as convenient. We
quote the following fundamental result.

Theorem 1.2.1. If Q is a non-negative form on # with domain 9, then the
Sollowing conditions are equivalent.
(i) Q is the form of a self-adjoint operator H>0 on £ = 2.
(i) Q is closed.
(ii)) Q is lower semicontinuous as a function from ¥ to [0, + o0].
If @ is a non-negative form then its domain is an inner product space with
inner product

f.9>9=Xf9>+ Q.9 (1.2.2)

and is complete if and only if Q is closed. A subspace of Dom (Q)is said to be
a form core of Q if it is dense with respect to the norm|| ||, associated to
(1.2.2). Q is said to be closable if it has a closed extension and the closure Q is
then the least closed extension. It is obvious from Theorem 1.2.1 (iii) that
the sum of two closed forms is closed. We shall need two limit theorems.
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Theorem 1.2.2. Let H, be an increasing sequence of non-negative self-adjoint
operators on . Let Q, be the associated forms and define Q on 3 by

(f) = lim Q,(f)

n— oo

so that

Dom (Q) < () Quad (H,).

Then there exists a self-adjoint operator H >0 on the closure #, of
Dom (Q) such that

CHAf,Hf ) = lim CHYf,Hif>

n— o

for all feDom(Q).

The operator H will be called the form limit of H,, and we shall mostly use
this theorem with #, = J#.

Theorem 1.2.3. Let H, and H be non-negative self-adjoint operators on #
such that

HnZHn+1 >H

for all n. Suppose also that the associated forms satisfy

lim 0,(f)=Q(f)

n—w

for all fin a form core of Q. Then H, converges to H in the strong resolvent
sense.

We shall use the following notation frequently. If 2(Q) is a Banach space of
functions on a region (open connected set) Q in RY, such as I7(Q), then we
write 2 (Q) for the set of f in £(Q) which have compact support, and #,(2)
for the completion of Z.(Q) in B(Q). We also write 2,,.(Q) for the class of
functions on Q which coincide on any compact subset K of Q with some
(K-dependent) element of #(Q).

We shall make particular use of the Sobolev space

Who(Q) = {felP(Q):VfelP(Q)}

where V f is calculated in the weak sense, and we always assume 1 < p < c0.
It is easy to see that W1'P(Q) is a Banach space for an appropriate norm. If
1 € p < o0 we shall take the norm to be

1A= N+ VS 12 (1.2.3)
so that W'*(Q) is a Hilbert space.

Lemma 1.24. If1 < p < co then W§P(Q) is the closure in W1?(Q) of CZ(Q).
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Proof. This depends upon a standard mollifier argument which we shall
use frequently. Let ¢ be a non-negative C® function on R" with support in
the unit ball and integral equal to 1. If fe W} 'P(Q)and ¢ >0 put f, = f * ¢,
where

dx) =&~ Vplx/e).
It is easy to see that f,e C2(Q) for small enough ¢ and that f, converges to f
in the norm (1.2.3) as ¢—0.

We shall be concerned with self-adjoint second order partial differential
operators on I*(Q) where Q is a region in R". These operators will be
constructed starting from quadratic forms on CZ(Q) of the type

an= [ TapZ Lo (124

Qij J
where a(x) is a locally integrable function on Q with values in the non-
negative real symmetric matrices. There are two standard conditions under
which Q may be proved to be closable.

Theorem 1.2.5. Ifac Wi2(Q) then Q is closable and the self-adjoint operator
H associated with the closure is an extension of the operator

0 0
Lf = — ;E(aijgf) (1.2.5)
defined on CZ(Q).

Proof. The condition on a implies that L maps C* into L[*€Q) and
integration by parts yields the identity

LS ) =0(f)
for all feCZ,so L >0. We may now apply Davies (1980), Theorem 4.14.

Theorem 1.2.6. IfacLi (Q)and a(x) = A(x) 1 for all xeQ where A is a strictly
positive continuous function, then Q is closable on CF(Q). If f lies in the
domain of the closure then (1.2.4) is valid where V f € L} is interpreted in the
weak sense.

Proof. Let 2 < [*(Q) consist of all functions which lie in W52(Q) and for
which the integral

- of of 4.

of)=| La ”(x)a [ ox,

Qij

is finite. A routine calculation shows that 2 is complete for the norm

A= (£ 13+ O
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Therefore the form § is complete on 2. But Q is a restriction of § so Q is
closable.

If H >0 is the self-adjoint operator on [*(Q) associated with the closed
form Q obtained in Theorem 1.2.5 or 1.2.6, then we say that H satisfies
Dirichlet boundary conditions (in the generalised sense). Although one has

_ o f da;of

Hf =-— ;““_ax,.axj_ & x, Ox,

in a formal sense, we shall be particularly concerned not to assume that

a;{x) is differentiable. If, however, Q has smooth boundary and a;{(x) are

smooth then the operator H is indeed given by (1.2.6) with Dirichlet
boundary conditions in the classical sense.

Henceforth the phrase ‘H is an elliptic operator’ will mean that H is
constructed by the procedure of Theorem 1.2.6 and that

)1 < a(x) < p(x)l (1.2.7)

where A and yu are two positive continuous functions on Q. We will say that
H is strictly elliptic if we can take 4 to be a positive constant, and uniformly
elliptic if we can take A and p to be positive constants. For uniformly elliptic
operators we have

(1.2.6)

Dom (Q) = Quad (H) = W} Q).

Theorem 1.2.7. If H is uniformly elliptic on L[*(Q) then feDom(H) if
feWLHQ) and there exists g €L? such that Lf = g in the sense that

Ya of a—udx = fgﬁdx

Qij ija_xi axj
for all ue C?. We then have Hf = g.

Proof. In abstract terms this is the assertion that f eDom (H) if and only if
feDom (H?*) and there exists geI? such that

CHEf,HYu) =<{g,u) (1.2.8)
for all u in the core CZ of Dom (H?). By taking limits we may assume that
(1.2.8) holds for all ue Dom (H?) and then appeal to the spectral theorem as
in Davies (1980), Theorem 4.12.

We next give another condition for a non-negative quadratic form to be
closable.

Theorem 1.2.8. Let 9 be a dense linear subspace of # and let

Qf)=<Hf,f>=0
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for all fe 2 where H is a symmetric linear operator with domain 9. Then Q is
closable and its closure is associated with a self-adjoint operator K = 0 on J#,
which is an extension of H, and called its Friedrichs extension.

We shall need the next lemma to deal with elliptic operators satisfying
Neumann boundary conditions.

Lemma 1.2.9. IfQis aregionin RY and 1 < p < o then C*(Q)n W'P(Q) is
dense in W1-2(Q) for the norm
AN = {005+ NV SNEL ™.

If feW'P(Q) then g=|f|leW"P(Q) and |Igll < fll, with equality if f is
real.

Proof. For the first statement we refer to Adams (1975) p. 51.If feW/(Q)
and f,eC*(Q)n WP(Q) converge in norm to f then g, =| f,| is a Cauchy
sequence in W!P(Q) which converges in IF norm to g. Therefore g,
converges in the WP (Q)norm to g. The stated norm bounds follow easily.

The following procedure leads to a self-adjoint operator which can often
be identified as that associated with Neumann boundary conditions in the
classical sense.

Theorem 1.2.10. If
O<il<galx)sul <

for all xeQ then the form Q of (1.2.4) is closed on W'2(Q). If also ac W L2(Q)
then the corresponding operator H is given by (1.2.5) interpreted in the weak
sense on the domain of H.

Proof. If Q, is given on W!%(Q) by
Qo(f)=f |Vf1?dx
Q

then Q,, is closed because W1:2(Q)is complete, and Q is then closed because

100 < Q < uQ,.
If feC® and ge W'-*(Q) then

of %
i ox, 6x

g
f%a}(““@)“"
=<f,Lg>

of.9) = Za
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where L is given by (1.2.5) interpreted in the weak sense. If also geDom (H)
then

Q(f,9)=<f,Hg)
for all feC?® € Dom(Q) = Quad (H), so Hg= Lg.

1.3 The Beurling—Deny conditions

We shall need some theorems of Beurling and Deny. Although these are
well known they are so fundamental to our later work that we include
complete proofs. We start by presenting the theory at an abstract level. We
apply it to second order, elliptic operators satisfying Dirichlet or Neumann
boundary conditions on a region Q in R" in Theorems 1.3.5 and 1.3.9
respectively. Finally in Theorem 1.3.10 we give an illustration of how the
conditions may be applied to certain second order difference operators on
discrete sets, which correspond to Poisson jump processes.

We assume that Q is a locally compact, second countable, Hausdorff
space and that dx is a Borel measure on €, but comment that even more
general cases can be considered below.

Lemma 1.3.1. Let C be a cone in areal Hilbert space X™ and suppose that for
all feA there exists feA suchthat | f| <|f| and

(Fred 2K fre)l
for all ceC. Then f = f for all feC.

Proof. If feC then || f|| < | f|l and

ISP = KL INST
so f=1.
Before proving the following theorem we comment that (1.3.2) below may
also be written imprecisely as

u
H(Iul)smH(u), (1.3.1)

which in applications may sometimes be interpreted as an inequality
between distributions.

Theorem 1.3.2. Let H >0 be a real self-adjoint operator on # = L*(Q,dx).
Then the following are equivalent:
(i) ueQuad (H) implies |u|leQuad (H). Also ueDom (H), feQuad(H) and =0
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imply

CHYf, Hul> < <fﬁ(ﬂu)>. (132)
(i) ueQuad (H) implies |u|leQuad (H) and
CHE |ul, HY|u|> < (HYu, Hiu). (1.3.3)

(iii) (H + )~ ! is positivity-preserving for all o > 0.
(iv) e H is positivity-preserving for all t > 0.

Proof. (i)=>(ii) If ueDom (H) then (1.3.3) follows from (1.3.2) by putting
f =|ul. If ueQuad (H) then there exists a sequence u,e Dom (H) such that

lim u, =u, lim ( H*u,, H*u,)> = ( H*u, H*u)

n— o n—w

by the spectral theorem. Since lim |u,| =|u|, (1.3.3) follows by the lower

semicontinuity of the quadratic form.
(i) =(iii) We make ¢ = Quad (H) into a Hilbert space by defining

(figor =<HYf,H*g) + ol f,9)
where o > 0. The injection J: " — # is bounded and
J*f=H+a) 'f
for all fes. We define the cone C < X" by
C={J*f.0< feN}.
If fex and ceC then ¢ = J*g for some g >0 and
ASfLed=LUfLI*g>1 =<1 fl.g>
=fhg> 2K g21=IKfT* g0 =1{f, el
Moreover if feX then (1.3.3) implies | f|e and

AN =<HASLHAS D + el f112
SCHALHAS) + el f 11

=13
Using Lemma 1.3.1 with f =111 we conclude that if 0 < f €# then
|J*fl=J*f
80
J¥f=0.

Therefore (H + ) ! is positivity-preserving.
(iii)=(iv) Since e~ equals
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it is a limit of positivity-preserving operators and hence is itself positivity-
preserving.
(iv)=(i) If feQuad(H) then by positivity

e, fY <M fLIfID,

SO
AT ="M, 2 a7 A e MIfLIfD.

Letting t — 0 we obtain
limsup<t~'(1—e™ ™)\ fI,| fI) <<KH*f,HYf),

t—0
which by the spectral theorem implies | f'|e Quad (H) and
CHAIfLHAf1) S CHY S HAS ).
If ueDom (H), feQuad(H) and f >0 then

u

- Ht
—(€ u
Iul( )

=|e Hu| < e M u|,

SO

<f,%(e'"'u)> << fre™Mul).

This implies that
<f,%t‘1(e‘"' - 1)u> LT = D)ul)

for all ¢t > 0, from which (1.3.2) follows by letting ¢t — 0.

Theorem 1.3.3. Let H > 0 satisfy the conditions of Theorem 1.3.2. Then the
following are equivalent:
(i) e "' is a contraction on L® for all t > 0.
(i) e " is a contraction on LP for all 1 <p< oo and t 2 0.
(iii) Let feQuad(H) and let gel? satisfy
lg0x) <1/ (%),
lg(x) — g < | S() = S
Jor all x,yeQ. Then geQuad (H) and
Q) <N
(iv) If 0 < feQuad(H) then f A 1 lies in Quad (H) and
oUf A )< O).
Proof. When we say that e #' is a contraction on I? for p X 2 we mean

precisely that e ~#*, which is properly only defined on I?, maps L L* into
L* nI* and can be extended to a contraction on L. This extension is unique
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by density for 1 < p < oo and is unique for p = oo if we impose the extra
condition of weak* continuity.

()= (i) By duality we see that e~ #* is also a contraction on L! and by the
Riesz-Thorin interpolation theorem the same follows on L? for all
I<p<g oo

(il) = (iii) Because of the formula

Q(f)=t1ijlg T —eT ™ML f

which holds whether or not f eDom (Q), we see that it is sufficient to prove
that
(1 —e"Mg,9> <1 —e~™)f, f (L34

for all t > 0.
Because f,g— (e H'f,g) is a positive bilinear form on C.(Q) x C.(Q),
there exists a symmetric Borel measure g, >0 on Q x Q such that

e Mif,g)= ()90 dux, )

QxQ

for all f,geC, and then for all f,geL%). See Davies (1976) p. 51 for the
proof of this measure-theoretic result. Because e “#* is a contraction on L!
we have

OS#,(EXQ)SJ dx

E

for all Borel sets E. The Radon—-Nikodym theorem now implies that there
exists a function p,:Q— [0, 1] such that

f h(x)dux, y) = f px)h(x)dx
QxQ Q

for all h. We deduce that
(L—e Myf, = flf(x)lzdx —~ f Qf(x)f(y—) du(x,)
_ L{l — b} f W) dx

+%f |£() = fO)I? dudx, y).
QxQ

The inequality (1.3.4) follows directly from this representation.

(iii) = (iv) One merely has to check thatg = f A 1 satisfies the conditions
in (iii).

(iv)=(i) Let fel? satisfy 0< f <1 and put g=(1+sH)"'f and
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h=g A 1 where 0 <s < c0. Then g, heQuad (H) and
11+ sHY}g —m) 1> =<1 +sH) " £, £ > = 2{f,h) + || (1 + sH)*h|?

SCA+sH)UL 5= 112+ 11 f —hI? +5Q(h)
SKA+sH) L =112+ 1S =gl +5Q(9)
=0.

Therefore g = h, or equivalently

0<(I+sH) 'fgl.
Using the formula

e #f=1lim {1+(@/mH}""f

n—w

we deduce that
0ge <1

for all 0 <t < co. This implies that e~ #' is a contraction on L* and L'.

Many applications of the above theorems depend upon the following
lemma.

Lemma 1.3.4. Suppose H >0 has a form core 9 such that fe2 implies
| f1eQuad (H) and

(< Q) (1.3.5)

Then H satisfies the conditions of Theorem 1.3.2. If in addition f €2 implies
0 v (f A 1)eQuad(H) and

Q0 v (f A<, (1.3.6)

then H satisfies the conditions of Theorem 1.3.3.

Proof. Given feQuad(H), let f,e2 satisfy

so that @(f,)— Q(f). Then

Il =1 £ 110
and
lim sup Q(| f,|) < limsup Q(f,)
=Q(f).
By the lower semicontinuity of @ we deduce that | f|eQuad (H) and
(1< Q)

Secondly let 0 € feQuad(H) and let f,e2 satisfy
Ifa—fI-0 —and  Q(f,— f)—0,
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We see that g, =0 v (f, A 1) satisfy

lga—f A11-0
and

lim sup Q(g,) < limsup Q(f,)

=0(f),
so by the lower semicontinuity of Q we deduce that f A 1eQuad (H) and

o(f A1) <Q(S).

Theorem 1.3.5. If Q is a region in RN and H is an elliptic operator on L*(Q)
satisfying Dirichlet boundary conditions then H satisfies the conditions of
Theorems 1.3.2 and 1.3.3.

Proof. We apply Lemma 1.3.4 with 2 equal to CX(Q). Let ¢ be a C*
function from R to [0, c0) such that ¢(0)=0 and |¢'(x)| <1 for all x and
d(x)=|x|—1if |x| = 2. Given fe2 put
fe=epe™'f)
so that f,eC®. Since their support sets satisfy
supp (f,) < supp(f)

and f, converges uniformly to | f| we have
lim| f,—|f1l=0.
=0

Moreover a direct calculation shows that

a(fI < 2(f)

so the lower semicontinuity of Q implies (1.3.5). The proof of (1.3.6) is
entirely similar.
The following technical lemma is often useful.

Lemma 1.3.6. If H is an elliptic operator on Q = R" and 0 < f eQuad (H)
then there exist f,e W3 Q) suchthat 0< f, < f and || f,— f g — O for the
norm associated with (1.2.2).

Proof. By the definition of Quad(H) there exist g,eC*(Q) with
Ign—flig—0. Now |l|g,| —f,—0 and

Q(19.) < 29— 2(f)

SO
lim || gal log < I1f llg-

I1gal — £ llg =0

Therefore
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We now put f,=|g,| A fsothat 0< f, < f and || f,— f Il 0. Since
|gal A £ =3(1gul + £) = 31gal = £

and
QU1g.l = 1)< Q(lgal — /)—-0
we see that
Q(gal A )= Q(f)
)

I fo—=Slg—0

as required. The method of construction of f, shows that they lie in
WL2(Q) and have compact supports.

We say that an operator H which satisfies the conditions of Theorem
1.3.2 is local if 0 < f,geQuad(H) and f A g =0 imply

(HYf,H%g)=0. (1.3.7)

Lemma 1.3.7. Let H > 0 be areal self-adjoint operator on L*(Q, dx). Then H
is local if and only if |u|leQuad (H) for all real functions ueQuad (H), and

(H¥|u|, H*|u|> = ( H*u, H*u). (1.3.8)
Proof. This is simply a matter of applying (1.3.7) with f =u, andg=u_.

Theorem 1.3.8. IfQ is a region on R" and H is an elliptic operator on L*(Q)
then H is local in the above sense.

Proof. If 0< f,geQuad(H) and f Ag=0 then Lemma 1.3.6 implies
that there exist f,,g,eW>*Q) such that 0< f,<f, 0<g,<g, and
I fa— fllg—0 and |g,— gllg— 0. Therefore

(Hf,HYg) = lim (H*f, H'g,)

and f, A g, =0 for all n. It is therefore sufficient to prove (1.3.7) under the
extra assumption that f,geW!%(Q), which we make from now on.

If f Ag=0 and f,g both have support in the compact set K then
choosing a€R so that

0<a(x)<al
for all xeK, we obtain
0< (H*f,H%g)
Sal(— AP fi(—)g)

~« 3 <D.,Dg)
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where D, = 0/0x,. If we can show that

{x:D,f(x) %0} = {x: f(x) % 0} (1.3.9)
up to a null set, then it will follow from f A g =0 that
<D,f,D,g>=0

for all r, which will complete the proof.
To prove (1.3.9) let 0 < he L*(Q) be any function such that

{x: f(x) X0} n{h:h(x) %0} = (1.3.10)
and consider the function

¢(t)= {exp (D,t)f, h).
Since feW12(Q) = Dom (D,), ¢(t)is differentiable with ¢(t) > 0 for all t and
¢(0) = 0. Therefore

0=¢'0)=<D,f,h).
But £ >0 is arbitrary subject to (1.3.10) so (1.3.9) follows.
We now turn to some other applications of the Beurling—Deny
conditions.

Theorem 1.39. If H is a uniformly elliptic operator on L*(Q) satisfying
Neumann boundary conditions inthe sense of Theorem 1.2.10, then H satisfies
the conditions of Theorems 1.3.2 and 1.3.3, and is a local operator.

Proof. We note that
Quad(H)=W3Q)

of o
- oL Lo

forall feQuad (H).It follows from Lemma 1.2.9 and Theorem 1.2.10 that H
satisfies condition (ii) of Theorem 1.3.2 and Condition (iv) of Theorem 1.3.3,
To prove that H is local it is sufficient to observe that (1.3.8) holds trivially
for all f in the dense subspace C*(Q)nW!-3(Q) of W13Q).

An advantage of the abstract formulation of the theory of this section is
that it may also be applied to continuous time Markov chains and to the
second order difference operators associated with random walks. To
illustrate this let N be a countable set and let A4, , be a real symmetric matrix
on N x N such that m # n implies A4, , <0 and

0<Y App< 0 (13.11)

and that

forallmeN. Let D be the space of functions of finite support on N, regarded
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asa subspace of [%(N), where N is given the counting measure. Finally define
the quadratic form Q on D by

Q(f) = Z"Am,llfllf—m'

Theorem 1.3.10. The quadratic form Q is closable on D, and its closure is
associated with a self-adjoint extension H of the operator defined for all feD
by

Hf)w=Y, AmpnS (1.3.12)

The operator H on 1*(N) satisfies the conditions of Theorems 1.3.2 and 1.3.3.

Proof. The condition (1.3.11) implies that the operator H defined on D by
(1.3.12) satisfies

Hfel'(N)< IX(N).
Moreover

CHEf5=0(f)

for all feD, so H is symmetric and Q is closable by Theorem 1.2.8.

Since A4,,, <0 for all m # n, (1.3.11) implies that

Q(f) =% Z |Am,n||fm - f"|2 + Z l/ml.fml2
m#n m

where V,, 2 0 for all meN. It is immediate from this representation that Q
satisfies Condition (ii) of Theorem 1.3.2 and Condition (iii) of Theorem 1.3.3
on D, and hence also on Quad (H).

We remark that the operator H above is certainly not local in the sense of
(1.3.7). We next describe a variant of the above example, arising from graph
theory, where each point is given its own positive weight.

Example 1.3.11. Let V denote the set of vertices of a graph and write x ~ y
if (x, y) is an unoriented edge. Assume that the number n(x) of edges at each
veV is finite and define the Laplace operator by

AR =—— ¥ {f0)— £}

n(x) 7
for all f of finite support in V. If n(x) = q for all xeV then
A=q 4-1

where the adjacency matrix A is defined by

1 ifx~y
A(x’y)={

0 otherwise.
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If we take our Hilbert space to be
PV, n)= {fig:n(X)If(X)I2 < o}
then — A is non-negative and symmetric with associated form
AN=% Y 16— fOWI
It is evident as in Theorem 1.3.1(x) tilat the operator H associated with the
quadratic form Q satisfies the conditions of Theorems 1.3.2 and 1.3.3.

If we let E denote the set of oriented edges e = (x, y) of the graph, then we
can define the operator d:I%(V,n)— I*(E) by

df(e)=f(y)— f(x).
It is easy to see that
—A=d*d

and that

0<Q(N) < X (ISP +1f»?)

X~y

=2 n(x)| f()I?

=2| 11>
Therefore | d| < 2* and Sp(— A) = [0,2].

In the particular case V = Z" with x ~ y if and only if |[x — y| =1, it is
straightforward to prove that Sp(— A) = [0, 2], but this is by no means-
always true.

Many of the properties of second order elliptic operators have simple
discrete analogues for graphs. For example the Harnack inequality may be
expressed as follows. If f >0 and Af <0 on V then

n(y) ™1 f(x) < fY) < n(x) f(x)

whenever x ~ y. We omit the elementary proof.

1.4 Symmetric Markov semigroups

In this section we use the Beurling—Deny conditions to derive properties of
the semigroup e~ #* for a second order elliptic operator H, which have no
analogue for higher order elliptic operators. These properties are related to
the fact that there is an underlying probabilistic interpretation related to a
Markov process on 2, which we shall not investigate explicitly. Analytically
the section allows us to use the scale of L? spaces ina way similar to the way
that the Sobolev spaces are used for higher order elliptic operators. The
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advantage of this is that one is able to control operators which have
measurable coefficients rather easily.

Let Q be a set with a countably generated o-field and a o-finite measure
dx. If H > 0 is a self-adjoint operator on L*(Q) satisfying the conditions of
Theorems 1.3.2 and 1.3.3, then H is called a Dirichlet form and e~ #* is called
a symmetric Markov semigroup.

Theorem 1.4.1. If e~ is a symmetric Markov semigroup on L*(Q) then
L' L® is invariant under ¢~ ™, and ¢~ may be extended from L' nL*® to a
positive one-parameter contraction semigroup T,(t) on L? for all 1 < p < .
These semigroups are strongly continuous if | < p < o0, and are consistent in
the sense that

TOf=T0f
if feLlPn L’ They are self-adjoint in the sense that
T ()* =Ty

ifl<p<ocoandp™'+q '=1

Proof. If feL' nL™, which is a subset of L> ~L®, then

le™ Nl <l fllw
for all t > 0 by hypothesis. If also ge L' ~ L then
[<e ™ f,9>| =< fie” Mg}

<lfllille™ gl
<IfIlglle

By choosing g appropriately we deduce that

le™™ flly <l £l

The proof of the first statement of the theorem is completed by applying the
Riesz—Thorin interpolation theorem.

We next prove that e~ A" is strongly continuous on L'(Q). If f >0 is a
bounded function which vanishes outside a set E of finite measure then

lim | xee™ ™ f1l; =lim<e™™ £, xz>
t=0 t=0
={fxe>=11l

by the L? continuity of e #'f. But e # f |, < | fl, so

lim || XQ\EC_H'f [,=0.
=0
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This implies that
lim |e™*f ~ fll, < lim 5™ f ~ N)lls
t— t—
=1ing le™®f — flxe>
t—

<limje™™f — fI,|E*=0
t=0

for such f, which are dense in L%.

The strong continuity of e~ #* on L' and L? implies the same for L? with
1 < p <2 by interpolation. The same now follows for 2 < p < oo by using the
fact that L” is reflexive for 1 < p < oo, and Theorem 1.34 of Davies (1980).

Although the semigroups T ,(t) on L? constructed in Theorem 1.4.1 are
strongly continuous for 1 <p < oo and have distinct generators H , these
generators are consistent on the intersections of their domains. Although
we shall often use the symbol H to stand for all these generators collectively
we warn the reader that the spectrum of H, may be entirely different for two
different values of p.

Since the semigroup T (¢) on L is not generally strongly continuous we
define its generator by

(A+H) '={(A+H) '}*

for all 4 > 0, but comment that H_ does not normally have a domain dense
in L™.

Theorem 1.4.2. Ife™" is a symmetric Markov semigroup on LXQ), T,(t) isa
bounded holomorphic semigroup on LF(Q) for 1 < p < co with angle

6, > (m/2)(1 —12/p — 1]). (1.4.1)

Proof. Let r >0, — n/2{68{n/2, feL' nL? and ge? ~ L*®. Then consider
the operator A4, defined on the strip {z:0 <Rez <1} by

<Azf,g> = <e_Hh(Z)f,g>
where h(z) = re'®. By the L? spectral theorem the LHS is bounded on the
strip. Moreover
Iflillgll, ifRez=0

Ifl2lgll; ifRez=1.
By the Stein interpolation theorem we deduce that

A4 f oy < 1S Ny

|<Azf,g>ls{

for all 0 <t < 1, where
p)y"t=1—t+1t/2
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Equivalently if 1 < p < 2 we obtain
e ®fl,<IfI,
provided

|Arg{| <(m/2)(2 - 2/p).
This bound coincides with (1.4.1) for such p. If 2 < p < oo the corresponding
bound is obtained by duality.

The above theorem can sometimes be extended to include the case p =1
and sometimes cannot; see Section 4.3 for an example where it cannot be so
extended.

If e~ is a self-adjoint, positivity-preserving semigroup on L%(Q) we say
that a Borel set E is invariant if f = fy, implies e 7' f = (¢ " # f)y, for all
t > 0, modulo null sets. This notion is independent of p. We say that e #* is
irreducible if Q and (¥ are the only invariant sets, modulo null sets. The
following result is well known.

Proposition 1.4.3. If there is a positive integral kernel K(t, x, y) on (0, c0) x
Q x Q such that

e f'f(x)= L K(t,x,y)f(y)dy

forall 0 < feL? thene™ ™ is irreducible. If e~ #' is an irreducible self-adjoint
positivity-preserving semigroup and E is the bottom of the spectrum of H then

¥ ={feDom(H):Hf =Ef}

has dimension zero or one; in the latter case ¥ = Rf where f is strictly
positive almost everywhere.

It is a fundamental fact that irreducibility holds in great generality for a
second order elliptic operator on a region (open connected set) in R"; see
Theorem 3.3.5. The corresponding result for Schrédinger operators may be
proved using the Trotter product formula or the Feynman-Kac formula.
In our above definition of symmetric Markov semigroups we did not
assume that T,1 = 1. This conservation of probability condition is usually
inappropriate for elliptic operators satisfying Dirichlet boundary con-
ditions, but is sometimes valid. We have the following abstract result.

Theorem 1.44. Let T,=¢™ " be a symmetric Markov semigroup with
resolvent

R,=(H+1)!
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defined on L” for all 1 € p < o0 and all A > 0. Then the following conditions
are equivalent:

@) T,1 =1 for some t >0

(ii) T,1=1forall t>0
(iii) R,1 =271 for some 1>0
(iv) R,1=A"11 foral 1>0.

Proof. (i)=>(ii) The semigroup property implies T,,1 =1 for all integers
n= 1. If s >0 and we choose n so that 0 <s < nt then
1=T,1=T,_,T,1
<T;<1
so T,=1.
(ii)=(iv) This is an immediate consequence of the formula

R;1 =f e MT,1dt

0

interpreted in the weak* sense on L.
(ili)= (i) We have

0= f e (1 —T,1)dt
0
where the integrand is non-negative, so T,1 =1 for almost every ¢ > 0.
The proof is completed by observing that (iv)=>(iii) is trivial.

1.5 An inequality of Hardy

In this section we prove an extension to several dimensions of an inequality
due to Hardy which is closely related to the uncertainty principle. This
inequality will enable us to obtain lower bounds on the spectrum of elliptic
operators satisfying Dirichlet boundary conditions. It will also be a crucial
ingredient in our analysis of the boundary behaviour of heat kernels in
Chapter 4.

Lemma 15.1. If f:[a,b]— C is continuously differentiable with f(a)=
f(b)=0 then

PP

b
. de < J; If'(x)Ide

where

d(x)=min{|x —al,|x — b|}.



26 Introductory concepts

Proof. It is sufficient to prove that

¢ 2
4|(£( al 5 dx <f [ f'(x)|*dx

where 2¢ = a + b, and a similar inequality for the other half-interval. It is

sufficient to deal with the case where a =0, and where f is real. We then
have

f 0 (Y dx= L (XY + (120} dx
g f {7y + S ax?) d
=BT T+ f (£2/4x?) dx
= f(0)*)2c + J; (f2/4x?) dx

> [ rmera
as required. ’
If Q is a region in RY and ||u| = 1 we define
d(x)=min{|t|:x + tugQ}
so that 0 < d,(x) < + o0 and d(x) =0 if and only if x¢Q. We also put
di(x) = d,(x)

where {e(i)}}_, is some orthonormal basis of R".

Lemma 152, If f eCj"(Q) then

SN
1 J o ddi(x)?

sj VS [?dx. (1.5.1)
Q

Proof. We may assume that {e(i)} is the standard basis and use Lemma
af |?

1.5.1 to obtain
Lf(x)I?
<
S S| lax,

from which the lemma follows by summation.
We now define the function m on R by

L =J dS() (1.5.2)
llull =1

m(x)> - dx)?

where dS is the surface measure on the unit sphere of R, normalised to have
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unit total mass. Clearly m(x) = 0 if x§Q and m(x) > 0 if xeQ. Moreover we
always have

m(x) > d(x) =min{|x — y|:y§Q}. (1.5.3)

Theorem 1.5.3. If H is a strictly elliptic operator on L*(Q) with a(x) > A >0
for all xe€Q) then

H > AN/4m?
in the sense of quadratic forms, where m(x) is defined by (1.5.2).

Proof. Byaveraging(1.5.1) over all orthonormal bases using the group O(n)

we obtain
N|f(x)?
Jllu||=1fn 4d (x)? dx dS(u)<J [VfI*dx

for all feC?, or equivalently

f AN|f(x)?

4m(x)* dx< fﬂllVle d

<Q(f) (1.5.4)

where Q is the form of H. Since C® is a form core of H, for every
feQuad (H) there exist f,eC with || f,— f||—0 and Q(f,)— Q(f). The
result now follows by the lower semicontinuity of the form associated with
the LHS of (1.5.4), or Fatou’s lemma.

We now say that Q = RV is a regular domain if there exist constants ¢, ¢,
with ¢; >0 such that

Hy>c /d*—c, (1.5.5)
as a quadratic form inequality, where H, = — A with Dirichlet boundary
conditions in the usual sense and d(x) is given by (1.5.3).

We also say that Q satisfies a uniform external ball condition if there exist
B> 0and o > O such that for any yedQ and 0 < s < f there exists a ball B,
with centre b satisfying |b — y| <s, and radius r satisfying r > 2as, which
does not meet Q. This condition is implied by a uniform external cone
condition and also holds if /Q satisfies a uniform Lipschitz condition.

Theorem 1.5.4. IfQ < R" satisfies a uniform external ball condition then it is
a regular domain.

Proof. We show that d(x) < f§ implies

1 (o)

o 2 Mo (15.6)
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where
-1

sin Ca /2
o@)=3% f sin™ ~2(¢) dt / f sinV " %(r)dt.

0 0

This yields the bound

1>c_u£oc_)1_1
W I \E P

after which we can apply Theorem 1.5.3.

Given xeQ with d(x) < f let yedQ satisfy |x — y| = d(x) and consider the
ball B, , mentioned above where s = d(x). The ball has a radius of at least 2as
and the distance of its centre from x is at most 2s. Therefore it subtends a
(normalised) solid angle of at least w(a) at x. Every ray through x within this
solid angle meets 0Q at a distance of at most 2d(x) from x. The definition
(1.5.2) now leads to the bound (1.5.6).

We now define the inradius of a region Q in R¥ by

Inr (Q) = sup {d(x):xeQ}.

We also say that Q is a strongly regular domain if we may put ¢, =0 in
(1.5.5). This corresponds to putting = oo in the uniform external ball
condition.

Theorem 1.5.5. If Q = RY has finite inradius and satisfies a uniform external
ball condition then it is a strongly regular domain with constant c, determined
geometrically by

¢; =c¢;(N,a, 8,Inr (Q)).

Proof. We follow the same proof as before except that we must now put
s =min {d(x), f}.
It follows that for any xeQ the ball B, , subtends an angle of at least

. ) 20
min < a(e), w 5+ (@)
at x. The remainder of the proof is as before.

Theorem 1.5.6. If Q is a regular domain then

1,2(0) — 1.2 ISP

Proof. It only remains to show that if fe W2(Q) and the integral on the
RHS isfinite then fe W§2(Q). If ¢ is a non-negative C* function on R" such
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that ¢(x)=11if |[x| <1 and ¢(x) =0 if |x| = 2, then
Sx)= lim f()(x/n)

pointwise and in the W2 norm. Therefore it is sufficient to prove the
theorem when f has bounded support in RY, We now put

fr(x) = f(x)F(nd(x))
where F is a non-decreasing C* function such that F(s)=0 if s<4 and
F(s)=1if s>1, and where d is a C* function comparable to d in the
sense of Section 1.1.12. It is evident that f, has compact support in Q and
that || f,— f|l; = 0. We also have

I1V(fa = Nl = 1(F(nd) = YV f + nF'(nd)fVd|
<I(F(d) = )V I+ IndF'(nd )X f/d)VA .
The first norm converges to zero by the dominated convergence theorem.
The second is dominated by the square root of

cf (1 f1?/d? dx (1.5.7)
E(n)

where

c=sup{|sF'(s)[:0 <s < oo}
and

E(n)={x:1/2n< d(x) < 1/n}.
The finiteness of {o(| f|>/d* dx implies that (1.5.7) converges to zero as
h— o0,

In spite of the completeness of the above description of W{-2(Q) the

following sufficient condition for a function to lie in W}%(Q) is frequently
useful.

Theorem 1.5.7. IfQ is any domain in RN and f e W *(Q) and f vanishes on
the boundary in the sense that
limf(x)=0

for all acdQ, where we assume xeQ when taking the limit, then feW34(Q).

Proof. Using the decomposition f = f, — f_, we see that it is sufficient to
treat the case where f > 0.
Now

f(x) = lim f(x)¢(x/n)

where ¢ is any non-negative C* function with ¢(x)=1 if |x|< 1 and
é(x) = 0if |x| > 2. This limit is a limit in the W*-*(Q) norm, so it is sufficient
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to prove the theorem in the case where f > 0 has bounded support in RY. If
we now put

fn = (f - 1/n)+
we see that f, has compact support in Q and that f,— f in the norm of
W2(Q). Therefore feW3(Q).

We may also use the above theorems to prove spectral properties for
elliptic operators. Let Cy, denote the bottom of the spectrum of — A in the
unit ball of R" subject to Dirichlet boundary conditions; thus C, = n2/4
and C, =5.78316....

Theorem 1.58. Let H be a uniformly elliptic operator satisfying Dirichlet
boundary conditions on the strongly regular domain Q = R". Then the bottom
E(H) of the spectrum of H satisfies

Acy HEN
Inr(Q)? Inr(Q)?
where c, is given by (1.5.5)and c, = 0. In particular E((H) > O if and only if the
Sfunction d on Q is bounded.

< Eo(H) <

Proof. If K = — A on Q subject to Dirichlet boundary conditions then the
uniform ellipticity implies

K <H<puK
and hence
AEo(K) < Eo(H) < pEo(K).
If r < Inr(Q) then there exists a ball of radius r contained in Q. If L is its
Laplacian then
Eo(K) < Eo(L)= Cyr™2.

Combining these inequalities yields the upper bound of the theorem.
Secondly the strong regularity states that

€1 €1
Kz22——
d*” Inr(Q)?
and this yields the lower bound.
It is significant that the regularity condition in Theorem 1.5.8 cannot be

removed. In the following example we put H=—A and N >3 for
simplicity, but comment that a similar argument works for N =2.

Example 1.5.9. Let N >3 and 0 <& < $ and put
Q, = {xeR":dist(x, Z") > ¢}.
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Let E, be the bottom of the spectrum of H= — A in L%, subject to
Dirichlet boundary conditions. We shall show that E,—»0 as ¢—0 even
though

lim Inr(Q,) = (N/2)* > 0.
=0

Although each Q, is strongly regular the constant ¢; in Theorem 1.5.8
depends upon ¢ and converges to zero as ¢ —0. The limiting region Q,
has E, =0 although Inr(€,) > 0.

To prove the above statements let f be an increasing C® function on
[0, co) such that f(s) =0if s < 1and f(s) =1ifs > 2. Let ge C*(R"), let d, be
the distance function for Q,, and put

ge(x¥) = g(x) f(d(x)/2¢).

lim flgel2 = flgl2 >0
=0

assuming that g does not vanish identically. Also

JIVgeI2 =JIng +gVfI?

Then g,eCZ(Q,) and

<1+ 8*)f|ngI2 +1+ fs"*)fIgiI2

-4
= flglzf’(dﬁa‘)’-

Since only a finite number of points of Z" lie within the support of g, we see,
using the fact that N > 3, that

lim sup JI Vg.|*> < Jl Vgl

e~ 0

< +8*)JIV9I2+

Therefore

limsup E, < lim sup JIVgBIZ/flgelz

=0 e~ 0

<J|Vg|2/f|g|2

for all ge C®(R"). But the RHS can be arbitrarily small for suitable g, so
E,—»0as ¢-0.

The most powerful way of using Theorem 1.5.3 to obtain a lower bound
on the bottom of the spectrum is simply to observe that

Eo(H) > AN/4R?
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where
R = esssup {m(x):xeQ}.

This requires no regularity of Q. As a typical example we mention the dense,
infinitely connected region Q < R? defined by

Q={x:x;§Z fori=12}u{x:|x—y|<1/8 for some yeZ?}

for which the bottom of the spectrum is strictly positive.
A more interesting result for regions in R? which need not have regular
boundaries is given next. It is not valid as it stands in higher dimensions.

Theorem 1.5.10. Let H= — A with Dirichlet boundary conditions on a
simply connected region Q in R%. Then

H > 1/1642

Proof. By the Riemann mapping theorem there exists an analytic function
f mapping the half-plane U = {x + iy:x > 0} one—one onto Q. By Koebe’s
one-quarter theorem

d(f(2)) 2 (x/2)1 f'(2)|
for all zeU. If ¢eCP(Q) then by Lemma 1.5.1

f |Vé(2)|* dxdy =

r

. V(£ (2))I* dxdy

Y

2 U{|¢(f(z))|2/4x2}dxdy

Y
r

> | {I¢(2)*/16d*} dxdy

Y

The following theorem is less powerful than Theorem 1.5.3, but possibly
easier to interpret.

Theorem 1.5.11. Suppose that H is strictly elliptic on Q and that there exist
r>0and 0 <y <1 such that the ball B, , with centre x and radius r satisfies

| By, N Q| <7|B,|
for xeRN. Then the bottom E,(H) of the spectrum of H satisfies
Eo(H) = c(y, N)A/r?
where c(y, N)> 0 and 4> 0 is the constant of strict ellipticity.

Proof. Given xeR" let

Sy={u:llull=1 and d,(x)<up}
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2)} 1/N
O<pu= <r.
# r<1+y)

|B,,nQI=(1—[S,]oyu®

where vy, is the volume of the unit ball in R, and the area of the unit sphere
is normalised to unity. Applying the hypothesis of the theorem leads to

1= IS, <yr/pV =(1+9)/2

where

Then

and hence
1Sl 2 (1 —7)/2.
Theorem 1.5.3 states that
H > JN/4m?
where

m(x)”? = f dS(u)/d,(x)?
) =1

= u72|S,l
=(1-7y)/2u%
Combining these yields

1+7\2¥(1 — y)AN
>
H ( 2y ) 2

r

as required for the theorem.

Although it is possible to adapt the proof of Theorem 1.5.3 to elliptic
operators H which are not strictly elliptic, there is another approach which
we now describe. The value of this method depends upon a suitable choice
of ¢ >0.

Theorem 1.5.12. Suppose that H is elliptic on L*(Q) and that there is a
positive continuous function ¢ in WL2(Q) and a potential V in L, (Q) such
that

Ho=2V¢
in the weak sense that
Jnéaug—ig—;dx ZJVd)udx (1.5.8)
for all 0 < ue C2(Q). Then the quadratic form inequality
HzvV
is valid on CZ2(Q).
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Proof. If feC®(Q) then we may put f = ¢g where ge W!-*(Q) and obtain

af 0 ( 9 o
JZ ”af Lax =,z (ai’ +¢6x )<a¢g+¢axj>dx

[ 9604 5¢ 9 .09 0¢
2 hd
La (l | ox; 6x ax ax 9 axi 0x; dx

J o

[ 0
- | T o @laax

r

> V¢2|g|2dx=fV|f|2dx

JQ

since ¢|g|*> may be approximated in a suitable sense by a sequence
0 < u,eC2, by using a mollifier.
We call a function ¢ in WLA(Q) (H-V)-superharmonic when
(H-V)$ =20

in the sense of (1.5.8). We also say that ¢ is subharmonic if — ¢ is
superharmonic and harmonic if + ¢ are both superharmonic. We shall not
pursue the potential theory of such operators, but note the following result,

Proposition 1.5.13. The class of (H-V)-superharmonic functions on Q is a
cone invariant under min,

The following is a typical application of Theorem 1.5.12. See also
Theorem 1.6.6 for a related result.

Theorem 1.5.14. Let H be an elliptic operator on L*(R") whose coefficients
satisfy
a(x) = A(1 + x?) (1.5.9)

for some 1> 0. Then
Sp(H) <= [£AN?, ).

Proof. By monotonicity of the spectrum it is sufficient to treat the case
where one has equality in (1.5.9). Putting

$x)=(1 +x?) 7
we have
Hp =4LNV-{A(1 + x?)"*"2x}
=;1;1N{(1 + xZ)—%NzN —%N(l + xZ)—}N—14x2}
=1AN?¢{2 — x2/(1 + x*)}.
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Theorem 1.5.12 now implies that

2+ x2

H2%1N21+x2

>1ANZ

1.6 Compactness and spectrum

We start with a general result concerning compactness and interpolation.
We assume that Q is a set with a countably generated o-field and a o-finite
measure dx.

Theorem 1.6.1. Suppose that 1 <p,<p<p,< oo and that the linear
operator A:LP°n\LP* — LP° N\ IP* can be extended to a bounded linear operator
from L to LP* and to a compact linear operator from LP° to LP°. Then A can be
extended to a compact linear operator from L? to L”.

Proof. If {E,,...,E,} is a sequence of disjoint subsets of finite positive
measure, then there is a projection P defined on L* for all 1 € ¢ < oo by

Pf = z 'E"_IL f(x)dx.

This projection is of finite rank and is a contractionon L forall 1 € g < co.
The hypothesis on Q ensures that there is a sequence P,, of such projections
such that P, converges strongly to the identity operator on L? for all
1<g<oo.
Since A4 is compact on L we have
lim |A—P,Al,,p,=0
n—ao
in an obvious notation. But
" A- PnA "pl,pl < 2 " A "Pl,pl
so the Riesz—Thorin interpolation theorem implies that
lim |4-P,All,,=0
n—=ao

for all p, < p < p,. But P A is of finite rank so A4 is compact on L".

Corollary 1.6.2. Under the above circumstances the spectrum of A is the same
for all p such that p, < p < p,, and the spectral projections corresponding to
non-zero eigenvalues are independent of p.

Proof. Let A, denote the extension of 4 from L#° n L to L?, and define 4,
similarly. The set
§=Sp(4,)uSp(4,)=C
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is countable and closed with 0 as its only possible limit point. If feL?~L?
then

(A=) f =4, —2)7 ' f
for large | z| by the power series expansion, and then for all z5S by analytic
continuation. If 0 X seS and y is a small enough circle with centre s then the
spectral projection for s is given for such f by

P.f =(1/2ni)f (z—A) ' fdz

=(1/2ni)f (z—A,) 'fdz=P, .

Since LF°~ L? is norm dense in both L and L?, we see that P,and P, have
the same finite-dimensional range. Hence seSp (4 ,) ifand only if seSp (4,,,).
The number s =0 always lies in Sp(A,) and Sp(4,,) unless Q is finite, in
which case the theorem is trivial.

We now apply the above theorems.

Theorem 1.6.3. Let e ' be a symmetric Markov semigroup for which e ="
is compact on LQ) for all t > 0. Then e """ is compact on LF(Q) for all t >0
and 1 < p < co. The spectrum of H, is independent of p for 1 < p < o0, and
every L? eigenfunction of H, lies in L” for all 1 < p < o0,

Proof. This follows from the above theorems by putting p, =2 and p, =1
or o0.

We shall give an example in Section 4.3 of an elliptic operator for which
the above theorem applies, but for which e “#** is not compact for any ¢t > 0
and for which Sp(H,) is completely different from Sp(H,). However in
other cases the following theorem is applicable.

Theorem 1.6.4. Let e~ be a symmetric Markov semigroup such that e~ is
compact on LY(Q) for all t > 0. Thene ™ is compact on LF(Q) for all t > 0 and
1 < p < oo. Thespectrum of H ,is independent of p for 1 < p < oo and every L?
eigenfunction of H, lies in L? for all 1 < p < c0.

Proof. One puts py=1, p, = and A=e~#* in Theorem 1.6.1 and
Corollary 1.6.2. Note that H_ does not normally have a dense domain, but
we can still use the identity

(A+H) '={(A+H) '}*

to analyse its spectral properties.
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Criteria for the application of Theorem 1.6.4 to elliptic operators will be
given in Section 2.1, and we concentrate here on the application of Theorem
1.6.3. For the remainder of this section we suppose that Q is a region in R¥
and that H is an elliptic differential operator on L*(Q) satisfying Dirichlet
boundary conditions. For analogous results concerning Neumann bound-
ary conditions see Section 1.7.

The following technical lemma will be of great value.

Lemma 1.6.5. IfK is strictly elliptic on L*(Q), and the potential V in L} (Q) is

loc!

bounded below, and the potential W is bounded with bounded support in Q,
then
K+V+y) '—(K+V+W+y)!

is compact for large enough y > 0.

Proof. Wechoosey > 0largeenoughsothatV+yzlandV+W+y2>1.
Since K is strictly elliptic there exists A >0 such that K > AH, on L*(R"),
where H, = — A. This quadratic form inequality is interpreted by extending
the quadratic from Q of K form L*(Q) to L(R") by putting

Y e :
Q(f)={<K f,K¥f> if feQuadK

+ o otherwise
so that in particular Q(f)= + oo if f&L*<). We interpret the pseudo-
resolvent (K + V +y)~! on L*([R") as being zero on L*(RM\Q).
We have
K+V+y) ' —(K+V+W+y)!
=K+V+W+y) 'WK+V+7y)!
=(K+V+W+9y)"'ABK +V +7y)"*
where
A=W(@AHy + 1)
and
B=(AHy+ YK+ V +7y)
Our proof will be completed by proving that A is compact and B is a
contraction.

If we put
A, =We tHo(\H, + 1)7*

where ¢ >0, then A, has a kernel of the form
W(x)g.(x — y)
where g,eL*(R") by Section 1.1.9. Therefore A, is Hilbert-Schmidt. But
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|A,— Al >0 as e—0, so 4 is compact. Finally
OKB*B=(K+V+7y) }AH,+ )(K+V +y) "<l
by virtue of the quadratic form inequality
0<AH +1<K+V+y

on L*(RM). Hence B is a contraction as claimed.

Theorem 1.6.6. If the coefficients a(x) of the elliptic operator H on L*(R")
satisfy

lim [ a(x)]l/x*=0 (1.6.1)

|x| = a0

then O lies in the essential spectrum of H. Conversely if ¢ >0 and
a(x) > cx? (1.6.2)
for large | x| then
Ess Sp (H) < [cN?/4, ).

Proof. Let ¢ be a non-negative function in C®(R") with 0< ¢ <1 and
supp (¢) in the unit ball. If we put ¢,(x) = ¢(x/n) then || @,[|2 =cn" so

0B $1 =™~ JZa;j(w,,/ax,-)(a(b,,/axj) dx

<c 'nNa?n~2 Y lay(x)| dx

IxI<n b
<cn~?sup {[lax)|:x < n}
which converges to 0 as n — oo by (1.6.1). We deduce that 0eSp (H). If O were

an eigenvalue of H with corresponding eigenfunction yy e L*(R") then we see
by Theorem 1.2.6 that

0=0()= JZ a,{0/0x,)(@P/0x ) dx.

This implies Vi = 0 almost everywhere, and hence i = 0. Since this implies
0 is not an eigenvalue, it must lie in the essential spectrum.

For the second part we assume (1.6.2) holds and let A be a positive C*
function on R such that A(x)1 < a(x) for all xe RN and A(x) = cx? for large
| x|. We then define the operator K on L*(R") by the usual form procedure
starting from the formula

Kf = —div(Agrad f)

for all feC®. Now let ¢ be a positive C* function on R¥ such that
@(x) =r~ "7 for large r = | x|. For such x we have
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K¢ =div {cr (N/2)r =1~ N%(x/r)}
= (cN?*/4)¢
in the sense of differential equations. Note that ¢&L*(RY). Hence
(K+ V)¢(x)=0
for all xeR", where the C* potential ¥ on RN satisfies V(x) = — cN?/4 for
large |x|. Thus V = W — cN?/4 where W is C* with compact support.
By Theorem 1.5.12 we have
Sp(K + V) < [0, )
SO
Sp(K + W) < [cN?/4, ).
But Lemma 1.6.5 implies that
K+yp) ' —(K+W+y)!
is compact for suitable y > 0. It follows by Davies (1980) Theorem 3.15 that
the two resolvents have the same essential spectrum. Hence
EssSp(K)=EssSp(K + W)
< [cN?/4, ).
But H > K, so the bottom of the essential spectrum of H is not less than
cN?/4.

Corollary 1.6.7. If H is an elliptic operator on L*(R") and the lowest
eigenvalue A(x) of the N x N matrix a(x) satisfies

lim A(x)/x%? = + o0

then H has a compact resolvent.

Proof. The constant ¢ in Theorem 1.6.6 may be taken arbitrarily large, so
the essential spectrum of H is empty.

We now study a different type of condition for an elliptic operator to have
empty essential spectrum.

Theorem 1.6.8. Let H be uniformly elliptic on L*(Q) and satisfy Dirichlet
boundary conditions. If Q = R¥ is a regular domain, then H™! is compact on
LX) if and only if
lim d(x)=0 (1.6.3)
|x| =0
where
d(x)=min{|x — y|:y§Q}.

Also H™ ' is compact on L*(Q) for all bounded regions Q, regular or not.
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Proof. If (1.6.3) does not hold there exists a sequence x,eR" such that
[x]— oo and d(x,) =26 >0 for all n. Thus there exists a sequence of
disjoint balls B, = Q of equal radius é > 0. Let ¢, be the eigenfunctions
for — A in L*(B,) with Dirichlet boundary conditions, corresponding to
the lowest eigenvalue E, which is independent of n, and normalised by
| ¢all; =1. Then

<¢m’ ¢’l > = 5"1,"'
Moreover ¢,,e Wi%(B,) < W) = Quad (H) and
(H*$,, H*¢,>=0

for m % n, by the locality of H. If Hy= — A with Dirichlet boundary
conditions in L%(Q), then there exists u < oo such that

CHY¢ Hi ) < p{H3 G Hibm> < HE
by the uniform ellipticity of H. By the minimax method of calculating the
eigenvalues of H, we deduce that there is a point of the essential spectrum of
H within the interval [0, Ey], so the operator H™! cannot be compact.
Conversely suppose (1.6.3) does hold. There exists 4 >0 such that
H = AH,, by the uniform ellipticity of H. Using (1.5.5) we deduce that

H>3M(Ho + (c,/d*) —c,) (1.6.4)
where ¢, > 0.

The remainder of the proof is similar to that of Theorem 1.6.6. Because
d(x)— 0 as |x|— oo with xeQ, given ¢ > 0 we have

Hy+(cy/d)—c,;=Hy+V+W (1.6.5)

where V(x) 2 c for all xeQ and W is continuous with bounded support. By
Lemma 1.6.5 the essential spectrum of (1.6.5) equals that of (H, + V), and
hence is contained in [c, o). But ¢ > 0 is arbitrary so (H, + V + W) has no
essential spectrum. Applying the minimax argument to (1.6.4) we finally
conclude that H has no essential spectrum.

Example 1.6.9. We remark that Theorem 1.6.8 applies not only to bounded
regions but also to certain unbounded regions of infinite volume such as

{(x,y)eR%: |yl < (1 +x?)7%}

where 0<3. If we assume Neumann boundary conditions, then the
situation is different, and is treated in Theorem 1.7.12.

1.7 Some Sobolev inequalities

In this section we present a few Sobolev inequalities which are of
fundamental importance.
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If Q is a region in RY we have defined WP(Q) for 1 < p < oo to be
{ felP(Q):V fel”(Q)}

where Vf is calculated in the weak sense. This is a Banach space for the
norm

A= {1 fN5+ NV £ IEHP.
By Lemma 1.2.9 C*(Q) ~ W1-P(Q) is dense in W 1'P(Q) for this norm; see also

Lemma 1.7.11 below. We have shown in Lemma 1.2.4 that W'7(Q) is the
closure of C2(Q) in Wi-P(Q).

Theorem 1.7.1. If 1<p< N and 1/q=1/p— 1/N then

WiRQ) = LYQ)
and fe W P(Q) implies
IS lg<eclVAIl,

Proof. We may as well assume that Q= R" since Wi P(Q) <= WA (RY).
If p=1 and feC}(R") then

[¢9]

1)l SJ 101 /0x;|dx;

-0
=giX1s-eesXp. e XN)

where %; indicates independence of the variable x,. Therefore

N
[f)NN-D [11 gix) b
and -

N
[lrmsnas, <giov=n | fgimnas,

N 1/N-1)
1AN—1
$g1/( )_1_12 gidx,
(=

N
=[] w}r~-n
(3
i=1

h; = fgidxl

for i=2,...,n, so that h, is independent of x,. Thus

where h; =g, and

f|f|~/<"-“dx1dx2sh;/‘"-“ [TAH ™=V dx,
ix2

1AN-1)
<hYN-DT] ( fhidxz) .

ix2
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Repeating the process inductively we end up with the bound

N IAN-1)
f |f|N/(N_1)de 1—1 (J af dx)
rY =1\ Jr"¥

ox;
which implies that
1/N
dx)

dx

or
0x;

of

N
"f"N/(N—l) S( H f
14 RN

If y > 1 then putting f = g* where ge C! we obtain

N=1)N°
{flgly"‘"'“dx} <(1/N%)|ylgl’~*|Vgldx

Ur 1p
S(V/N%)<J|g|”_1"dx) (JIVgIde)

(1.7.1)
if 1/r + 1/p = 1. If we make the choice
?=(Np—p)/(N—p)
then
YNIN-1)=@—-Dr=¢q

so (1.7.1) becomes

gl <G/NHlgly~ Vgl
and

I91,< s
The theorem now follows from the fact that C} is dense in WJ'P.

We next consider the case where p > N. We define the functions h, on R¥
for 1 <s< oo by

Vgl

hy(x) = x| ™M
and note that h, nearly lies in L(R"). In fact
helF~c+ [*¢

for any ¢ > 0; this fact will motivate our calculations but will not actually be
used.



Some Sobolev inequalities 43

Lemma 1.7.2. If feW3'(Q) then

[ f ()] < clhyn - H*I V()
almost everywhere, where c = c¢(N).

Proof. As before it is sufficient to treat the case Q = RV, Since the above
inequality is preserved under norm limitsin W}'! we need only consider the
case feCl. We then have

f(x)=— f:%f(x+rw)dr

for any |w| =1 and hence

[ f(x) SSEIJ fw |Vf(x + rw)|dr dw
loj=14,J0

where S, is the area of the unit sphere in R". Therefore

o<yt |,

= S;l(hN/(N— 1)*|Vf|)(x)'

N~ldrdw

Lemma 1.7.3. Let Q< R" be a bounded convex set with volume |Q| and
diameter B. If feW'Y(Q) then

N

| f(x) = fal <m(hN/(N—1)*|Vf|)(x)

almost everywhere, where

1
fa= o] Lf(y) dy

Proof. By Lemma 1.2.9 or Lemma 1.7.11 below it is sufficient to treat the
case where feWh{( Q)N CYQ). If x, yeQ then

£
f9—=f(9)= - f = f(x+ro)dr
0
where w =(y — x)/|y — x| and p =|x — y|. Therefore

1
|f(x)_fn|=‘ﬁf

QJo

p

i,
5f(x+ ro)drdy

p
SLJ‘ [Vf(x + rw)|drdy
2] Jo

1 4
=—J J IVf(x+rw)p¥ 1drdpdw
1Q[ =1 Jr=0



44 Introductory concepts

where 0 < p(w) < g for all || = 1. Therefore
r{w)
X Vf(x+row)|drdw
/)= fal < N|n|f,w| f 191 (x + ro)]

po(N=1)
N|Q| [VSf(x+ u)|du

N

Nlnl(hN/(N p*IVFD(x)

if u=row.

Theorem 1.7.4. If p> N and feW}P(Q) then feCy(Q) and

Iflle <clVEI B NP (1.7.2)
where B is the diameter of Q and ¢ = ¢(N, p).

Proof. Lemma 1.7.2 states that
[ fl< ChN/(N—l)*|Vf|
which implies
Il < clbnn-1, IV S,
where 1/p + 1/q=1. Also p > N implies

Il anyn -1yl = f pm WD dr do
o
N-(N-1)q
SSN—B_—_
N—(N— g

—lp 27 /P pa-nipa
"1 —N/p

which yields the bound (1.7.2). If f,,e C}(Q) and f, converges to f in W3*?(Q)
then (1.7.2) implies that || f, — f ||, =0, so feCy(S).
A similar argument leads to the following result.

Theorem 1.7.5. Let Q be bounded and convex with volume | Q| and diameter .
If p> N and feW"P(Q) then f is continuous and bounded with

N
If = falle SCIIVfIIpl—Qlﬁl'"’”

where ¢ = ¢(N, p).

We now present some Sobolev inequalities for elliptic operators (of
second order). Our treatment is far from complete, and is conditioned by
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the desire not to impose any smoothness conditions on the coefficients of
the operators.

Theorem 1.7.6. If H is strictly elliptic on [*(Q) where Q< RY and N > 3,
then there exists ¢ > 0 such that

[Vi<cll V”N/ZH
for every potential VeI¥?*(Q).

Proof. By the strict ellipticity it is sufficient to prove that
VLY <clVIn IV 13
for all feCZ(Q). But
AVILS> < IV Iwall 13

where
l/q=1/2—1/N

so we may apply Theorem 1.7.1.
The cases N =1 and N =2 need special treatment.

Theorem 1.7.7. If H is strictly elliptic on I*(Q) where Q = R is an interval of
length B < oo, then there exist ¢; > 0 such that

Vi<e VI,pH (L7.3)
and

Vi<clVIeH +a™Y) (1.7.4)

for all a>0 and all VeL{Q).

Proof. The proof of (1.7.3) follows that of Theorem 1.7.6, but uses
Theorem 1.7.4 in place of Theorem 1.7.1. In order to prove (1.7.4) it is
sufficient to treat the case Q=R and H = — d?/dx2 The bound is then
equivalent to

HVI}eH +a™ ) 2 <l Vi,
which may be proved by computing the Hilbert-Schmidt norm of the
operator using Fourier transforms.

Theorem 1.7.8. Let H be strictly elliptic on 1*(Q) where Q = R?, and let
Vel?(Q) for some p> 1. Then

VI<e VI (aH + o™ ®~ D) (1.7.5)
for all o >0, where c, = c,(H, p). If Q has finite diameter § then
IVI< el V1,627 VPH (1.7.6)

where ¢, = c,(H, p).
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Proof. By thestrict ellipticity it is sufficient to treat the case where H = — A.
For the proof of (1.7.5) we may also put Q = R2.
If # denotes the Fourier transform and
g(x) = {ox? + o~ 1P~}
then
|V [H{aH + o~ 1P~ =3 f = |V 2F -~ UgF f}
for all feL?. We estimate the L? norm of this using Section 1.1. If
1t=1/2p+1
then 1 <t <2 and
19F fll. < Nglzpll £12
If
l=1/s+1/t
then 2 < s < o0 and
17~ HaF f11s <@~ "l gllgpll £ 12
But
i=1/s+1/2p
and |g|l,, is independent of a, so

HVEFHGF NN <NV 2,270 Mgzl £ 112
= VIS
The operator bound
NV HaH +a” P~ "4 <t V13

proved above is equivalent to (1.7.5).
Wededuce (1.7.6) from (1.7.5) by using a ball B of radius § which contains
Q. If H' is — A on L*(B) with Dirichlet boundary conditions then

H>2H >c3$72
by Theorem 1.5.8. Combining this with (1.7.5) leads to
VIl VI aH + c3 1 p2a™ 1P~ DH)

<2V, a+ a0 OH,

We obtain (1.7.6) by putting a = g2~ /P,

Although most of this book will concentrate on the study of elliptic
differential operators with Dirichlet boundary conditions, we shall some-
times give analogous results in the case of Neumann boundary conditions. It
turns out that Theorem 1.7.1 is not true in general if one replaces Wg(Q)
by W!-%(Q). We shall say that the region Q = RN has the extension property
if there exists a bounded linear map E from W -?(Q) into W**?(R") such that
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Ef is an extension of f from Q to R" for all feW!?(Q)and all 1 < p < oo.
We quote without proof the following fundamental resuit.

Proposition 1.7.9. AregionQ <= R" has the extension property if its boundary
0Q is minimally smooth in the following sense. There exists ¢ > 0, an integer k,
an M >0 and a possibly infinite sequence of open sets U, such that:
(i) if x€0Q then the ball with centre x and radius ¢ is contained in U, for some n,
(ii) no point in R" is contained in more than k of the U,,
(ili) for each n there exists an isometry T:R¥ —R¥ and a function

o, RV ISR

such that
1) — ¢(x)| < M]x— x|

for all x, x' R¥~ 1. Moreover
Uu,nQ=U,nTQ,
where

Qn= {(xn---ax~)5¢,.(x1,...,x,,,_1)<x,,,}.

Note 1.7.10. Every bounded convex region and every bounded region with
piecewise smooth boundary has the extension property by the above
proposition.

Lemma 1.7.11. If the region Q has the extension property, then the set C(Q)
of all restrictions to Q of functions in C>(RN) is norm dense in W1-7(Q) for all

l<p<oo.Ifalsol <p<Nandl/q=1/p— 1/N thenthereis a constant c,
such that

If g <ci(IVAIE+ 1 f1E)P
for all feW'P(Q).

Proof. If feWP(Q) and &> O then there exists geC®(R¥) such that
LN {IEf —glP +|V(Ef —g)I7}dx <&
by Lemma 1.2.4 (with Q = R"). This implies
fn{lf —gl°+|V(f —g)IP} dx

= L{IEf—gI”+ IV(ES —g)|?} dx < ¢?

as required to prove the first statement.
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By applying Theorem 1.7.1 (with Q = R¥) we find that

I lg<NESfI,
<clIVEEN I,
Sc{IVEENIE+IEf 157
SclEN{IVANE+ N S£I5HP
which proves the second statement.
We finally give a version of Theorem 1.6.8 for Neumann boundary

conditions. It is of interest that some condition on Q such as the extension
property is actually necessary for the next result.

Theorem 1.7.12. Let H be a uniformly elliptic operator on L*Q) with
Neumann boundary conditions. If Q is bounded and has the extension
property then H has compact resolvent.

Proof. We follow the notation of Theorem 1.2.10, and write H, for — A on
L*(Q) with Neumann boundary conditions. Since

OSHo+)SA+A " YH+1)=cXH+1)
we see that
ICH + D)7HH, + D** = [(H + )™} Ho + DH + 1) 7H < 2
Therefore
H+) '=H+)HH+ ) ¥Hy+ D Hy+1)"*
and the compactness of (H+ 1)~! follows from that of (H,+ 1)}, or
equivalently from that of (H, + 1)~ !. Also (H, + 1)~ ! is the adjoint of the
identity map T from W12(Q) to L*(Q) and we shall show that T = ADC
where C is a bounded extension map from W1%Q) into W{?(B) for some
ball B2Q, D is the identity map from W}3(B) to L*B) and A is the
restriction map from L?(B) to L*(Q). Since D* is compact by Theorem 1.6.8,
D is compact and T is compact.
The extension map C is defined as

(CHX) = dXNES) ()
where E is the extension map from W1-%(Q) into W12(R¥) assumed to exist
in the hypotheses, and ¢ is a positive C* function which equals 1 on ) and
has compact support in B. The proof that C is bounded for the appropriate
Sobolev norms is straightforward.

1.8. Definition of Schrédinger operators

We recall that an elliptic operator H, on L*(Q) with Dirichlet boundary
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conditions is defined by taking the quadratic form closure of

Qo(f) f Zau(x) af f

where feC&(Q) and
Mx)1 < a(x) < p(x)1

on Q for two positive continuous functions 4 and ¢ on Q. If V is a real-
valued functionin L{,.(Q)(called a potential), then we define Q on C*(Q) by

AN =Qu(fN)+ L V)| f(x)|* dx

so that Q is associated with the formal expression

)
e (A
which we call a (generalised) Schrodinger operator.

Theorem 1.8.1. If0 < VeLi,.(Q) then Q is closable on C2(Q) and its closure
is the sum of the quadratic forms of H, and V, with

Dom (@) = Quad (H,)nQuad (V). (1.8.1)

The associated operator H on LX(Q) is the generator of a symmetric Markov
semigroup.

Proof. Both H, and V are non-negative self-adjoint operators and their
form sum H satisfies (1.8.1). By the Trotter product formula

e Hf = lim (e~ Hotime=Viimnf (1.8.2)
for all t >0 and f eL*). It follows immediately from this formula that H
satisfies Condition (iv) of Theorem 1.3.2 and Condition (i) of
Theorem 1.3.3. We have therefore only to show that C?(Q) is a form core of
H. We shall in fact show that if 0< feQuad(H) then there exist
0< f,eC?(Q) with

I fo—= I3+ IHIS = fIG+ 1VHS = flI5-0 (1.8.3)
as h— oo.
By Lemma 1.3.6 for such an f thereexist f,e W!2(Q)suchthat0< f, < f
and
I fo—=f13+ IHES = flI3—0.

Since 0 < V| f|*eLY(Q) one can deduce from the dominated convergence
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theorem that
VS = f)lI3-0.
It is therefore sufficient to treat the case where
0< feWl?Q)nQuad(H,) N Quad (V).
For such an f we put f, = f A n and note that

IH3ful3 < IH3S 113
by Theorem 1.3.3, while
IVEHLIE<IVESIS
by pointwise domination. This implies that (1.8.3) holds, and hence that it is
sufficient to treat the case where
0< feWlh(Q)n L2 (Q) = Quad (H,)~Quad (V).

This final case is handled by a standard mollifier argument as in
Lemma 1.2.4.

The above results are easily modified to deal with VeLl, (Q) which are
bounded below, and there are many methods of controlling potentials
which are more singular.

Theorem 1.8.2. Let H be an elliptic operator satisfying Dirichlet boundary
conditions on [X(Q), where Q is a region in R". If VeLl (Q) satisfies

V_<6H,+7 (1.8.9)

in the sense of quadratic forms for some 0 < 6 < 1 and someyeR, then the form
sum H of Hy and V is self-adjoint and bounded below with

Quad (H) = Quad (Hy)nQuad (V).

~Ht is a positivity-preserving semigroup on L*(Q).

Moreover ¢

Proof. We first define H, to be the form sum of H, and V, as in
Theorem 1.8.1 and note that

V_<éH +7.

By a standard perturbation lemma one may now define H to be the form
sum of H, and — V_ to obtain

Quad (H)=Quad (H,).
Finally one sees that H,= H, + V, converges in the sense of quadratic

forms to H, where V, = V v (— n). But e “#"* " i5 positivity-preserving by
Theorem 1.8.1. If 0 < f e LX) we deduce that

e Hf=1lime ff>0.

n= oo
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One way of verifying (1.8.4) for locally bounded potentials which become
very negative as one approaches dQQ is by applying the ideas in Section 1.5.
Local singularities of ¥V _ can, however, often be dealt with by the following
result, which can be modified to treat the cases N = 1,2 by using results in
Section 1.7.

Theorem 1.8.3. Let Q be aregion in RN and let H , be strictly elliptic in [*(Q).
If N >3 and WeLN}(Q) then for all 0 < 6 < oo there exists y(6) < oo such
that

W< dH, +(9)

in the sense of quadratic forms.

Proof. We recall from Theorem 1.7.6 that there is a constant ¢ such that
Vi<clVinzHo
for any potential V. Also we may write W = V + X where || V ||y, < /c and
X is bounded. We then obtain
IWI<IVI+ 11X
<OHo+ | X | o
One defect of the above theorem is that one cannot specify the function y

in terms of || W ||y, alone. The next result overcomes this problem at the
cost of a slightly stronger hypothesis.

Theorem 1.8.4. Ifin the last theorem one assumes instead that W eLLP(Q) for
some p > N/2, then one has

|W|<6Hq + ko~ N2e—M

for all 0 < & < oo, where k < oo depends upon N,p, | W |, and the ellipticity
constant of H,,.

Proof. We note that |W|*e LN*(Q) if & = 2p/N > 1 and that
5 < £5% + (o) "M@~ D)
for all s >0 and ¢ > 0. Therefore
WI<elW [+ (@)D
<ec|[|W|* |y 2Ho + (€)™ Ha=b
=ec|WI2H, + (ag) "1,
The proof is completed by putting 6 = ec|| W |5.

There are many more sophisticated hypotheses on W which yield much
the same results as the above; for example we could assume that W is
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uniformly locally L? for some p> N/2 or that W lies in the class K.
However all such variations must accommodate the fact that the potential
W(x) = |x|~*is form bounded with respect to — A on L*(R3) if and only if
o < 2, and that the form sum

H= —A+c¢|x|?

is bounded below if and only if ¢ > — 1.

1.9 The asymptotic eigenvalue distribution

If Qis a region in RY and H is — A on L*(Q) subject to Dirichlet boundary
conditions then e “¥* has a positive C* integral kernel K which satisfies

0 < K(t,x, y) < (4mt) N2 g=tx=na (1.9.1)

for all ¢ > 0 and x, yeQ. This follows immediately from the Feynman-Kac
formula, but may also be deduced from Theorem 5.2.1 and Example 2.1.8
below. If Q has finite volume, then it follows from (1.9.1) that e~ #* is trace
class with

0<trle” ]

=f K(t,x,x)dx
Q
< (4nt)~M2|Q|.

One of the earliest results in spectral theory was Weyl’s theorem, which
determined the asymptotic distribution of the eigenvalues E, of 0. We shall
concentrate instead on the closely related question of the asymptotic
behaviour of

o0
tr[e’"‘] — Z e Ent
n=0

as t — 0. Weyl’s theorem then states that

limtr [e~ #]@nrt)V2 = |Q|

t—0
provided the RHS isfinite. This theorem has been subsequently generalised
to yield an asymptotic expansion

tr[e™#] = (4rr)~M2{|Q| — inte?|0Q| + O(t)}

as t — 0. This subject has been developed to a high degree of sophistication,
and we do not pursue it here.

The above theory is not applicable to a class of regions of infinite volume
for which tr[e”#*] is nevertheless finite for all t>0. The asymptotic
eigenvalue distribution of the relevant operators is quite different and can
be investigated using the ideas of Section 1.5. Throughout this section we
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shall assume that Q is a strongly regular region so that
H > c/d?

for some ¢ > 0, where d is the distance function, and we shall assume that
d(x)—0as|x|— oo so that E, > 0 by Theorem 1.5.8 and H " ! is compact by
Theorem 1.6.8. For a typical case of the regions which we shall study see
Example 1.6.9.

Theorem 1.9.1. If Q is strongly regular then there exists ¢ >0 such that

0<trle” ] < (2nt)~ N2 f g2
Q

whenever the RHS is finite.

Proof. The Golden—Thompson inequality states thatif 4 > 0and B > Oare
possibly unbounded self-adjoint operators then

Ogtr[e™“* P Ctrle 4% Be~4/7] (1.9.2)
whenever the RHS is finite. Now
H >iH + ¢/2d?
)
tr [e - Hl] <tr [e(-§H+c/Zdl)t]
<tr [e’“/‘“z e~ Ht/2 e—a/4dl]
= f e~ K(t/2,x, x)dx
Q
s (znt)—N/Z f e —-ct/2d?
Q
by (1.9.1).

Our lower bound on tr [e ~#] uses the standard technique of decompos-
ing Q into subregions by introducing Dirichlet boundary conditions along
various surfaces. We say that a set C = R" is a standard cube if

C={xeR":a27 " <x;<(a;+ 1)27"

for some aeZ" and some neZ. We let {C,}., denote the set of standard
cubes which are contained in Q and which are maximal (under the inclusion
ordering) among all such cubes and let J, be the edge length of C,,.

Lemma 1.9.2. If d is bounded on Q then C,,nC,= & for m#n and
UcC.ca=sC.
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Moreover if xeC, then
d(x) < 2N*6,

Proof. This is a matter of simple geometry.

Theorem 1.9.3. If 0 <t < o0 then

(87'Ct)_N/2 f e 8n2Nt/d? <tr [e—m]-
Q

Proof. Let H' denote — A on Q = ( J,C,, K, denote —A on C, and K
denote — A on the unit cube C = R", all subject to Dirichlet boundary
conditions. Then Q' = Q implies H' > H, and it follows from Section 1.1.11
that

trfe” ) >tr[e” "] = i tr[exp(— K,t)]

= Y tr[exp(— K9, %1)].
n=1
Moreover

{tr[e—Ks]}l/N= i e—nl(n+1)2s
=0
i 272(n? + 1)
> e~ 2nn s
>%e—2n2s i e—annls

=e” 21:%(87.55)—-} i e—n2/2s
n= -

>e"2"%(8ns)"*

by the Poisson summation formula. Therefore

trfe~ "] > 8nt) M2 3 ¥ exp (= 222NG; )
n=0

>@nt) M S | exp(— 8n2N2/d?)

n=0 JC,

= (8nt)~ N2 f exp (— 872 N2t/d?).

Q
Corollary 1.9.4. If U is strongly regular and d is bounded then

(87‘5[)—N/2 f e” 8n2N2t/d? <tr [C - Ht]
Q

<@2mt)” N/2 f e - ct/2d?

Q
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for all 0<t < oo. Hence tr[e” '] < oo for all 0 < t < oo if and only if

J e~ < o
o

Example 1.9.5. Define Q, = R? by

for all 0 < s < c0.

Q,={(xy:x>1 and [|y|<x77}

where 0 <y < 1. Then Q, has infinite area so Weyl’s theorem is inapplicable.
However

[+ 4]
f e 1~ J x"Texp(—tx?")dx
Qy 1
~ = (12y-1/2)
as t = 0. Therefore
tr[e”Hj ~ ¢~ W2+ 12

ast— 0 by Corollary 1.9.4. The above method does not however allow us to
prove the existence of

lim (/27 * 12 tr [e~H1].
t=0

Theorem 1.9.6. Supposethat Qis strongly regular ,d is bounded andy > N/2.
Then tr [H™"] is finite if and only if

[[arm<e
Q

Proof. We have

[¢9]

tr[H )=T(y)! f " ttr[e” H]de

0
so by Corollary 1.9.4 the result follows from the observation that

[ [[rmereevsar-rio-nm | @iy
QJo Q

for any a > 0.

Notes

Section 1.1 Most of this standard material may be found in Dunford and
Schwartz (1958) or Reed and Simon (1975). We refer to Stein and Weiss
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(1971) for Section 1.1.6, Reed and Simon (1978) for Sections 1.1.10 and
1.1.11, and Stein (1970) for Section 1.1.12.

Section 1.2 Anexposition of the abstract theory of quadratic forms may be
found in Davies (1980) and its application to second order elliptic operators
is treated in detail by Fukushima (1980). The conditions in Theorems 1.2.5
and 1.2.6 for the quadratic form @ to be closable on C*(Q) are far from the
best possible; see Rockner and Wielens (1985) for much sharper results. The
operator H defined by these theorems is not generally essentially self-
adjoint on C*(Q) except in one dimension. For a variety of criteria for self-
adjointness see Chernoff (1973), Cordes (1987) p. 108, Davies (1985D),
Frehse (1977), Kalf and Walter (1972), Kato (1981), Strichartz (1983). A
proof of Lemma 1.2.9 may be found in Adams (1975) p. 52.

Section 1.3 Most of this material may be found in Davies (1980), Fuku-
shima (1980) or Reed and Simon (1978). Quadratic forms satisfying the
conditions of Theorems 1.3.2 and 1.3.3 are called Dirichlet forms; a partial
classification of such forms, due to Beurling and Deny, may be found in
Fukushima (1980), p.48. For a deeper study of the construction of
continuous time Markov chains than that of Theorem 1.3.10 see Rogers
and Williams (1986). Our definition of the Laplacian on a graph in
Example 1.3.11 is taken from Dodziuk and Kendall (1986), who give many
further results. For applications of the ideas in Theorem 1.3.10 and
Example 1.3.11 to random walks on finitely generated groups and hence to
Riemannian manifolds see Brooks (1981B; 1985), Lyons and Sullivan (1984)
and Varopoulos (1984; 1985A; 1985B; 1986).

Section 1.4 Fukushima (1980) and Silverstein (1974) are general references
for this material, and in particular for the construction of the Hunt process
associated with a Dirichlet form. Theorem 1.4.2 is taken from Reed and
Simon (1975) p. 255. A proof of Proposition 1.4.3 may be found in Davies
(1980) p. 174. The origins of Theorem 1.4.4 on the conservation of
probability go back to Hasminskii; see Davies (1985D) for a recent survey.

Section 1.5 A version of Lemma 1.5.1 may be found in Hardy, Littlewood
and Polya (1952) p. 175; for its relationship with the uncertainty principle
see Faris (1978). Theorem 1.5.3 is due to Davies (1984); an analogous
theorem for the Laplace operator on a Riemannian manifold was obtained
by Croke and Derdzinski (1987) by integrating over the geodesic flow.
Theorem 1.5.4 appears with slight variations in Davies (1984) and Ancona
(1986), but for smooth bounded domains goes back to Kadlec and Kufner
(1966). Many analogues of these theorems for more general elliptic
operators on nice domains have been proved; see Kalf and Walter (1972),
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Lions and Magenes (1972) p. 69 and Davies (1985B). A version of
Theorem 1.5.6 for higher order Sobelev spaces on smooth bounded
domains was proved by Kadlec and Kufner (1966) and D. J. Harris; see
Edmunds and Evans (1987) Section V.3 for further details. Results along
the lines of Theorems 1.5.8 and 1.5.10 were first proved by Hayman (1977/8)
with improvements and simplifications described in Osserman (1977; 1980).
Our proof of Theorem 1.5.10 follows Ancona (1986); see Hille (1962) or
Duren (1983) for proofs of the Koebe i theorem. Theorem 1.5.11 was
proved along with many related results by Lieb (1983), who used a different
method from that presented here. Theorem 1.5.12 is a classical result going
back to Jacobi. It has a converse due to Allegretto (1974) and Moss and
Piepenbrink (1978); for applications see Agmon (1982) and Simon (1982).
For other material related to Theorem 1.5.14 see the survey of Davies
(1985D).

Section 1.6 For Theorem 1.6.1 see Persson (1964) or Bergh and Lofstrom
(1976) p. 85. One may enquire whether the spectrum of an elliptic operator
on [?is independent of p if one does not make the compactness assumption
of Theorem 1.6.3. This was proved for a very wide class of Schrédinger
operators on Euclidean space by Hempel and Voigt (1986; 1987); however
Davies, Simon and Taylor (1988) showed that one does have p-dependence
for the Laplacian on hyperbolic space and for many Kleinian groups.
Theorems 1.6.6 and 1.6.7 are taken from Davies (1985D), for substantial
extensions of these results see Pang (1987). Necessary and sufficient
conditions on Q = R¥ for A~! to have compact resolvent were found by
Molchanov (1953); for recent accounts see Adams (1975), Maz’ja (1979) and
Edmunds and Evans (1987). Molchanov’s conditions involve capacity
considerations, and are quite different from those of Theorem 1.6.8, due to
Davies (1985A).

Section 1.7 These bounds are classical and are to be found in Adams (1975)
or Gilbarg and Trudinger (1977). For Proposition 1.7.9 see Stein (1970)
p. 181.

Section 1.8 For a proof of the Trotter product formula (1.8.2) see Kato
(1978) or Davies (1980). Theorems 1.8.2, 1.8.3 and 1.8.4 are classical and
may be found in Reed and Simon (1975). Simon (1979) describes the
approach to Schrédinger operators using functional integration, and
Simon (1982) surveys the properties of potentials in the class K.

Section 1.9 The asymptotic formula of Weyl (1912) for tr [e ~ 7] is extended
to a wide class of elliptic operators in Courant and Hilbert (1953). It is the
leading term of an asymptotic expansion analysed by McKean and Singer
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(1967) and others in great detail. For the Laplacian on a region in Euclidean
space sharp estimates of the error terms in the asymptotic expansion have
been given by van den Berg (1984A; 1987A). However, the theory of this
section all comes from Davies (1985A). For references to various forms of
the Golden—-Thompson inequality see Reed and Simon (1975) p. 333. For
certain regions of infinite volume, such as that of Example 1.9.5, the leading
order coefficient has been calculated; see Rosenbljum (1972; 1973), Tamura
(1976), Fleckinger (1981), Simon (1983A; 1983B) and van den Berg (1984B).
However, an asymptotically exact formula for the leading order of the trace
as t— 0 is not known for general regions.
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Logarithmic Sobolev inequalities

2.1 Contractivity properties

Let e be a symmetric Markov semigroup on L*Q,dx) where dx is a
Borel measure on the locally compact, second countable Hausdorff space
Q. The main goal of this chapter is to use regularising properties of e~ to
obtain bounds on the integral kernel K(t, x, y) of ¢~ #*, which we shall call
the heat kernel.

As a first example of such properties we say that e ~#* is hypercontractive
if there exists ¢ > 0 such that e "#* is bounded from L? to L*. We quote the
following theorem.

Theorem 2.1.1. If e~ is hypercontractive and 1 < p < q < o0, then there
exists T(p, q) < oo such that e~ is a contraction from L? to L for t = T(p, q).

Although hypercontractivity has been of great importance in quantum field
theory, an even stronger property often holds for elliptic differential
operators, and it is this property on which we concentrate.

We say that e ~#* is ultracontractive if e “#' is bounded from L? to L*® for
all t > 0. If we define || 4[|, , to be the norm of an operator A from L” to L,
then it is clear that

c=lle” ™, (2.11)

is a monotonically decreasing function of t. Moreover ¢, > + o as t -0
unless L? = L*, which implies that dx is a purely atomic measure. See
Theorem 1.3.10 for an example of a random walk for which one has
O0<c<lforallt>0.

Lemma 2.1.2. If e ' is ultracontractive then it has an integral kernel
K(t, x, y) for all t >0, which satisfies

0<K(t,x,y) <€,
almost everywhere. Conversely if e ™" has a kernel satisfying

0<K(t,xy)<a <o (2.1.2
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almost everywhere then e ="' is ultracontractive with

¢, <at (2.1.3)

Proof. By taking adjoints we see that (2.1.1) implies
c,=lle ™z,
SO
e llw,s < le #7262 lle™ 725,
=c},.
We now use the theorem that every bounded operator from L! to L® has a
kernel whose L® norm equals the operatoi norm.

For the converse we observe that (2.1.2) implies easily that

—

||C oo,lsat

We obtain (2.1.3) by interpolating between this and the bound

le™™ o < 1.

Example 2.1.3. Let H= — A on L?*(R",dx). Then we stated in Section 1.8
that

K(t,x,y) = K(x — y)

where

K (x) = (4rt)~N2e x4t
It is immediate that we have ultracontractivity with

¢ =1K,ll; = (8mt)~M*
and

a, =1 K|l o = (4nt)~ "2,

Our ultimate goal will be to obtain upper and lower bounds on the heat

kernels of general elliptic operators which are as close as possible to those of

the above example. In this section we investigate some spectral conse-
quences of ultracontractivity.

Theorem 2.1.4. Let e~ be ultracontractive where Q has finite measure |Q)|.
Then

trle" "] <o

forallt > 0. Let {E,}". be the eigenvalues of H written in increasing order
and repeated according to multiplicity, and let ¢, be the corresponding
eigenfunctions normalised by | ¢, |, = 1. Then ¢,€L® for all n and we have

K(t:x,)= 3, exp(= E),)6,0) 214
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where the series converges uniformly on [a, 0) x Q x Q for all > 0.

Proof. If 5, denotes the Hilbert—-Schmidt norm of e~ #* then
tr[e™ "] =n7,
= f K(t/2,x,y)* dxdy
QxQ
<chalQPP <0
by Lemma 2.1.2. Since the identity (2.1.4) certainly holds if the convergence
is computed in L*(Q x Q), we have only to check that the RHS is uniformly

convergent.
From the bound

lexp(— Ent/3)¢, |l = llexp(— Ht/3), || < cy3
we see that

lexp(— Ent)u(x)pu(y)| <exp(— E,t/3)cijs
so the RHS of (2.1.4) is dominated by

Y exp(— E,a/3)c2 s =tr[exp(— Ho/3)]c23 < 0
n=0

and the Weierstrass M-test is applicable.

Theorem 2.1.5. Ife™ s ultracontractive and |Q| < oo then e ~H* is compact

on L? for all 1 <p < o0 and 0 <t < 0. The spectrum of H , is independent of p
for 1 <p< o,ande™ ¥ isnorm analyticon [P for L < p< o and 0 <t < c0.

Proof. The compactness of e #* on L! follows from the identity
e = ABC

where C = e~ f'2 is bounded from L! to L2, B=e~#'/2 is compact from L2
to I2,and A = 1 is bounded from 12 to L!. For the second statement of the
theorem we quote Theorem 1.6.4.

By duality it is sufficient to prove analyticity when1 < p<2andRet > a,
where a > 0 is arbitrary. This follows from the formula

e H'= ABC

where C=¢" " is bounded from L? to L? by ultracontractivity and
interpolation, B,=e~#¢"® jis analytic from L? to L? by the spectral
theorem, and A = 1 is bounded from L2 to L*.

The application of the above theorems to elliptic differential operators is
aided by the following theorems. Let H, be an elliptic differential operator
on L}(Q) with associated form Q, where Q in a region is RN and we assume
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that Dirichlet boundary conditions are imposed in the usual manner. Let
Z = Qand let Hy be the restriction of Hg to L?(Z)in the following sense. We
define Dom (Q5) to be the completion on CZ(Z) in Dom (Qy,) for the norm
associated with (1.2.2). We then put

_ ) Qalf) if feDom(Qy)
%)= { + o0 otherwise.
Theorem 2.1.6. If H, and Hy are defined as above and exp(— Hst) is
extended from L*(Z) to L*(Q) by putting exp (— Hgt)f = 0for all f e [HQ\Z),
then

O0<exp(—Hsgt)f <exp(—Hgt)f (2.1.5)

for all 0 < feL*(Q). If the two semigroups possess finite heat kernels then
)

0 < Kyt x, y) < Kft, x, y). (2.1.6)

Proof. Let X, be a sequence of open subsets of X such that X, has compact
closure and £, %,,, for all n and (UnZn=Z. Also let y, denote the
characteristic function of Q\X,. Then the operators (Hg + my,) increase
monotonically as m — oo, and the forms converge in the sense of Theorem
1.2.2 to a form Q, which is a restriction of Q5. The forms Q, decrease as
n— oo and converge to Qy in the sense of Theorem 1.2.3 because C(Z)is a
core of Q5 and every feCZ(Z)liesin Dom (Q,) for large enough n. Now it is
evident from perturbation theory or the Trotter product formula that

0<exp(—(Hg+my)t)f <exp(—Hotf

for all 0< fel*Q), so (2.1.5) follows by taking the two limits. The
equivalence of (2.1.5) and (2.1.6) is standard.

Theorem 2.1.7. If H,, and Hy are as in Theorem 2.1.6 and exp(— Hgt) is
ultracontractive, then exp (— Hgt) is ultracontractive.

Proof. If feL?*(Q) then we have
lexp(— Hyt)f | <exp(— Hgt)| f| <exp(— Hgt)| f|
)
llexp(— Hzt)f |l < llexp(— Hot)| f 11l < ca®)l f Il

Example 2.1.8. Let Q be a region in RY and let H = — A on L¥Q) with
Dirichlet boundary conditions. By Example 2.1.3 and Theorem 2.1.7 we see
that e #* is ultracontractive with a kernel which satisfies

0 < Kolt, x, ) < (4mt) ™ N2e~x=n7/4r
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One expects K, to vanish as x or y approach the boundary 9Q, but this
depends upon some boundary regularity conditions. If Q is bounded then H
has discrete spectrum by Theorem 2.1.4. If H$, = E, ¢, and | ¢, [, = 1 then
¢, is bounded and

| nlle < exp(Eqt)c,
< exp(E t)8nt)~ N4,
Putting 8nt = E; ! we obtain the bound
[ @ll < €8 ES".

Upper and lower bounds on E, may be obtained by minimax.

Example 2.1.9. Let Q be a region in R¥ and let H= — A+ V where
0 < VeL; () and the Schrodinger operator H is defined as explained in
Section 1.8. Then (1.8.2) implies

0< K(t, x,y) < Kolt, X, ¥)
< (4nt)—N/2e_(x"y)2/4t

where K is as in Example 2.1.8. Therefore e~ is a symmetric Markov
semigroup on L(Q) and is ultracontractive with

lle™ ll,1 < (4mt)="2

for all 0 <t < oo.
If V is not bounded below then the proof that e ~ #* is still ultracontractive
under suitable hypotheses is much harder. See Section 4.8 for details.

2.2 The fundamental inequalities

The key to all our subsequent theory will be Theorems 2.2.3 and 2.2.7.
Conceptually both theorems are extremely simple, relying solely upon the
solution of certain first order differential inequalities. Unfortunately a little
care is needed to prove that the formal steps carried out are justified, but the
technicalities involved are of a routine nature. We assume throughout that
e~ is a symmetric Markov semigroup on L, dx) where dx is a Borel
measure on a locally compact, second countable, Hausdorff space Q.

Lemma 2.2.1. Let0< feDom (H)n L' ~AL* and put fy=e~ " f. Let p(s) be
a continuously differentiable function from [0,t) into [2, 00). Then f,fP9~1
and P log f, are norm continuous functions of s€[0,t) with values in L.

Proof. For the first part we note that f is a norm continuous function of s
with values in L2, so we have only to prove the same for /79~ If0< i<t
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then f(x), fx), p(v) and p(v) are uniformly bounded for u,ve[0,1] and

xeQ, so

|fEO710) = fEOTH I ST FEO 7)) = fEO 71| + [ fE9 71 = fE0 7 (%)
< ful¥) = fu®)] + 2| p) — pO)I | fo(x) .

This implies that

[f50 — By < gl fu = follz + e2l p) — p@) | £, 114
<cill fu= folla+ calp@) — p@) I fo It
as required.
For the second part we let 4,u,v be as above and observe that
| £54Yx)log fu(x) — f5*(x)1og fo(x)]
< f5(x)log fu(x) — fE*(x)log fu()|
+ [ f5(x) log fu(x) — fEY(x)log f,(x)|
< ¢1p@) = p)l | ) + €] fulx) = foX)I.
Therefore
I f5“1og fu— f51og f, Il <cilp) — PO | full 1 + 21l fu = folly
<oy |p) —p) | folli + c2ll fu— folls

as required.

Lemma 2.2.2. Under the above conditions we have

@/ds) || £l156 = ps) [ F79715 + P(s) Lf ¥ log f,dx.

Proof. We have to show that 7 is a continuously differentiable function
of s with values in L!, and that

(d/ds) f£9 = p(s) fo f 27 + p(5)f2¥log f.
This is equivalent to

f10 - 50 = f (POSLS29 + PG fflog i} du  (22.)

both sides taking values in L!, the integrand being a norm continuous
function of u by Lemma 2.2.1. The validity of this formula is proved by
approximating f, by continuous piecewise linear functions of s, for which
(2.2.1) holds at each point xeQ by elementary calculus.

Theorem 2.2.3. Let e~ 7 be ultracontractive with
le™ 8|, <eM®

for all t > 0, where M(t) is a monotonically decreasing continuous function of
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t. Then0 < feQuad (H)N L' nL* implies f* log f L', and the logarithmic
Sobolev inequality

f f2log fAx<eQ(N)+ MO SIZ+ 11 f13logl fl, (222

is valid for all ¢ > 0.

Proof. We start by assumingthat || f ||, =1and0 < feDom(H)nL'nL*.
By the Stein interpolation theorem we have

lle™ ™1l pesy,2 < exp {M(1)s/t}
for all 0 < s <, where p(s) = 2t/(t — s). Therefore

I £:123 < exp {M(e)sp(s)/t}
and
(d/ds) || £ 1= 0 < 2M(1)/t.

p(s)
Putting s =0 in Lemma 2.2.2 we deduce that

—t(Hf, f) +J f*log fdx < M()
Q
and putting ¢ =t we obtain
J f?log fdx < eQ(f) + M(e). (2.2.3)
Q

If0 < geDom (H)~ L! n L® then putting f = g/||g |, in (2.2.3) yields (2.2.2),
with g in place of f.

Now let 0 < geQuad (H)nL' AL and put g;=e~#% where 6 >0, so
that g;eDom (H)n L' ~L® and

fg‘% log g;dx < £Q(gs) + M(©) 95113 + ll g5 13 1og Il g5 1l..

It is elementary that Q(g;) - Q(g) and | g;1.— llg]l, as 6 >0, so we need
only examine the limit of the LHS. Since

ga(%) + g3(x) log go(x) > 0
for all >0 and xeQ, Fatou’s lemma yields

f (g + g*log g)dx < lim inf f (gs + g3 logg,)dx.
[+ -0 [+

f gdx =lim fg‘, dx
0 00

fgz loggdx <lim inffgg logg,dx
-0

But

SO
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as required to complete the proof.

If we only assume that O < feQuad(H) then it is not obvious that
f?log feL!, so we have a slight variation of the above theorem. The
constant 4 in the formula for f(e) below is clearly not optimal.

Theorem 2.2.4. Let e~ be ultracontractive with
le ], <&M (2.24)
for allt > 0, where M(t) is a monotonically decreasing continuous function of t.
Then 0 £ feQuad (H) implies
f flog, fdx<eQ(N)+BENSIZ+ 1S 131logllfl, (225
Q

for all £ >0 where
Be) = M(e/4) + 2.

Proof. We first suppose that 0 < feQuad (H)n L. If we put

f(x) if flx)>1
gx) =4 2f(x)—1 if 3<flx)<l
0 if 0< f<i
and
E={x:f(x)>%}
then 0 < geQuad (H)n L' nL*® and

O<g=gre< f.
Moreover

OSJ g*log_gdx<ligl,<lglallxell <21 113
Q

and

Q(g) <49(f)
by Theorem 1.3.3 Condition (iii). Therefore

f f210g+fdx=f g*log,gdx
Q Q

<f g*loggdx+ 2| f 113
o

<eQ(g) + M)l gli3logligll, + 211 £ 13
<4eQ(f) + M@+ fIZ+ 1 f1310g I £

The validity of the theorem for such f now follows.
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Finally given 0 < feQuad (H), we put f,= f aAnsothat | f, .= /.
as n— oo and Q(f,) < Q(f) for all n by Theorem 1.3.3 Condition (iii). The
validity of the theorem now follows from the monotone convergence
theorem.

Note 2.2.5, If one only assumes that e~ "' is hypercontractive, then one
obtains a bound similar to (2.2.5) for some positive constants ¢, §. We leave
the reader to work out the details.

We now turn to the converse of the above theorems.

Lemma 2.2.6. Suppose that there exists a monotonically decreasing cont-
inuous function P(e) such that

J;fz log fdx <eQ(f)+ BEI SN+ I fI310g 1 f 1 (2.2.6)
forall e >0 and 0 < feQuad(H)NL N L®. Then
fg"loggdx <e(Hg,g"™ ')+ 2B@p ™ ligls+llgliloglgll,
forall2<p<oo and all ge D, = ), ¢~ (L' NL*),.
Proof. Putting f = g% in (2.2.6) we obtain
/2 Jgp loggdx < Qg”?) + Be)ll g5 + % lglizlogligll,

so subject to the inequality
2

p -
P2y g Hg,gP~! 2.2.7
. Q2g™*) 4(p—1)< 9.9°" "> 2.2.7)
we obtain
, ep R C I —
fg loggdxsz(p_1)<Hg,g >+ > lgls+llglizlogligll,

which yields the result.
The proof of (2.2.7) depends upon the formulae

QgP?)=limt~1{(1 —e~Hgr2, o2,
t—0
(Hg,gP ' >=limt~ (1 —e~ g, g7~ 1>
t—0

It is clearly sufficient to prove that

pZ

4p—1)
forall 0<t<oo,2<p<ooand 0K gel!nL™.

(1 —e™MgPi2,gPl2 5 < ((1—e"Mg,g°7">  (228)
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We recall from the proof of Theorem 1.3.3 that there exist a symmetric
Borel measure g, >0 on Q x Q and a function p,:Q— [0, 1] such that

<e’"'u,v>=f u(x)v(y) g (x, y)
QxQ

and

f u(x)dp(x, y) = f pdx)u(x)dx
QxQ Q

for all u,veC,(Q), and hence for all u,veL! nL*. It follows that

(1 —e~Hngri2 gpi2 — f {1 — pdx) }g(x)? dx
Q

+3 f [g(x)?'? — g(y)?? | dpx, y)
QxQ
and

((1—e fyg,g77 1> = L{l — p(x)}g(x)?dx

* %f g0 =g g g0} dux ).

Since p*/4(p—1)>1 for all 2 < p < o0, (2.2.8) follows provided we can
establish that

2
P2 _ g(y)P?? dp(x, y) < —F f -
anlg(x) gy 1> dpdx, y) < yTP— an{g(x) gy}

{9~ — gy 1) dpx, y).
This will follow from the inequality

pi2 _ pp L _ p~1 __ pp-1
o2 = B2 < g e = B = 7Y (2.29)

valid for all >0, § > 0 and 2 < p < c0. By symmetry we need only prove
(2.2.9) for the case 0 < B < a < c0. Using the Schwartz inequality we have

a 2
Pswz=1gs
52

pZ a
s——(oc—ﬁ)f sP~2ds
4 8

|ap/2 — Bp/2|2 —

pZ

Tap—1)

(R U )

Note. If H is an elliptic differential operator then the explicit expression for
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the quadratic form shows that (2.2.7) is an equality, so most of the above
computations become unnecessary.

Theorem 2.2.7. Let ¢(p) > 0 and I'(p) be two continuous functions defined for
2 < p < o such that

f fPlog fdx<ep){HS, f*7' >+ T@) S5+ flI5logl f1I,

forall2<p<ooand feD, =»0e "L AL®),. If

t=f p~lep)dp, M=J p~'T(p)dp
2 2

are both finite then e~ "' maps L? into L* and

le™ )|, . <eM.

Proof. We define the function p(s) for 0 <s<t by

dp/ds=p/e(p),  p(0)=2 (2.2.10)
so that p(s) is monotonically increasing and p(s) — co as s —t. We define the
function N(s) for 0 < s <t by

dN/ds=T(p)/e(p),  N@O)=0
so that N(s)>M as s—t. If feD, and f,=e Hf for 0 <s <t then
L log e~ ) 1,1 }=1{ ~ N+ log nm’}
ds sl s = g5 () s Il p(s)

r 1 1
= ————Blogllfs||5+Ellfsll;”{—P<Hfs,f§”1>

e p’e
+BJ fflogfsdx}=s’1||fsllgp{f fflog f,dx
€Ja o

—e{Hf, 71 =TI fsll; = 1 fslI5log IIstIp}

<0.
Therefore
e " fillpy <1 1l2
for all 0 < s <. It follows that
le™ fllpe < e f ll sy <eO I £,
for all 0 < s<t, whence
le ™ fllo <e™l f,.

Finally if 0< feL? there exists a sequence of f,e2, such that
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Il fa=~ f1l2—>0. Since [e~#f, —e™™ (], >0 and

le ™ fullo <™l full2
by the above calculations, we deduce that

le ™ fllo <™l fl,
For a general feL? we have

le ™ fl<e™™|f]
by the positivity of e 7, so
le ™ flle<le™™f o
<eM[If1ll;

=e¥| fl,
which concludes the proof.
We shall often apply the above theorem by choosing

&(p) = 2t/p, T(p)=2B(e(p))/p. (2.2.11)

Other choices of ¢(p) are sometimes necessary to deal with problems for
which f(e) diverges rapidly as ¢ -0, and one can even choose &(p) so as to
minimise M for fixed t > 0in Theorem 2.2.7. If we make the choice (2.2.11)
then the solution of (2.2.10) is

p(s) = 2t/(t — s). (2.2.12)

Note that this is the same function as in the proof of Theorem 2.2.3.

Corollary 2.2.8. Let f(c) be a monotonically decreasing continuous function
of & such that

szlogfdeSQ(f)‘*' BEISIZ+ 1 £ 13108l f 1l
for all ¢ >0 and 0 < feQuad (H)n L'~ L™. Suppose that
M(5)=(1/r) L Ble)de

is finite for all t >0. Then e~ " is ultracontractive and

lle™ ], <M
for all 0 <t < co.

Proof. Applying Lemma 2.2.6 and Theorem 2.2.7 with the choices (2.2.11)
and (2.2.12) we obtain the required result with

A4a)=‘Lw2ﬁ@u»m-2dp

#WLM“



Examples and applications 71

Note 2.2.9. A stronger form of the hypothesis of Corollary 2.2.8 is that

Lf210g+ fAx<eQ()+BEONSIZ+ 1 fI3logl fll,  (2.213)

for all ¢> 0 and 0 < feQuad (H). By Fatou’s lemma we need only assume
(2.2.13) for a subset of {f>0:feQuad(H)} which is dense for the
norm

WA= {112+ QN

2.3. Examples and applications

In this section we examine a series of special cases of the above theory to see
in what sense Theorems 2.2.3 and 2.2.7 are converses of each other. Some of
these examples will be of fundamental significance for later work. In all
cases we examine the relationship between the bounds

le™ ]l , < eM® (23.1)

for all 0 <t < o0, and

j fPlog fdx<eQ(N)+ BEIfIZ+ 1 fI3loglfll, (232

for all 0 < ¢ < o0 and 0 < feQuad (H)nL' N[>,

In all the examples below explicit expressions for the constants ¢; may be
obtained by examining the details of the proofs. One does not normally,
however, obtain the minimum values of these constants by this method. We
do not assume that N is the dimension of Q below, nor even that N or P are
integers.

Example 2.3.1. If there exist constants ¢; > 0 and N >0 such that
eMO e pm N
for all ¢ > O, then there exists a constant ¢, > 0 such that
Ble) <c, — (N/d)loge (2.3.3)

for all £ > 0. Conversely (2.3.3) implies that there exists a constant c; > 0
such that

MO ¢yt ~N/4

for all t > 0; the proof uses Corollary 2.2.8.

Example 2.3.2. If there exist constants ¢; >0, N >0 and p > 0 such that

-Nj4  :
MO « ct 1‘f0<t<1
et iflgt<
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then there exists a constant ¢, >0 such that

¢, —(N/d)loge if0<ex<1
< . 234
Ao {cz —(P/d)loge if 1 <e< o0. ( )
Conversely (2.3.4) implies that there exists a constant ¢; > 0 such that

oM eyt~ %f0<t<1
et P if 1<t < o0,
The proof relies upon Corollary 2.2.8.

Example 2.3.3. If there exist constants ¢; >0, N >0 and E >0 such that
&M < c t™N4 fo<tgl
c,e B jfl1gt< o0
then there exists a constant ¢, > 0 such that
c,—(N/4)loge if0<exl
Ble) < { 2— (N/4)log

c,—Ee—1) ifl<ge<oo. (23.5)

Conversely from (2.3.3) and the case P =0 of Example 2.3.2 we obtain
eMO Loyt ™t if0<eg L.

Also substituting (2.3.5) into (2.3.2) and letting £ » o0 we find that

EIfI?<Q(f) (2.3.6)

for all 0 < feQuad (H)n L' n L*. Since Q(| f|) < Q(f) for all f we deduce
that (2.3.6) also holds for all feQuad (H)~ L' L™, and hence for all f in

D=H+1)" (L AL®).

But 2 is evidently an operator core of H so H > E. If t > 1 we now can
conclude that
le™™ fllo <cslle™ D1,
Scye BTV £,
SO
eM(t) < C3 e—E(t—l)

forall 1 €t < 0.

Example 2.3.4. If there exist constants ¢; >0 and xeR such that
M@ <c (14179
for all ¢ > 0 then
pe)<c,(1+¢7% (2.3.7

for all ¢>0. The converse of this result can only be obtained from
Corollary 2.2.8 when O<a<1. For a>1 we have to go back to
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Theorem 2.2.7. If we put
&(p) =yt2’p~"
where 2ya = 1, then a direct computation verifies that

t= f p~'&(p)dp.

2
Putting

I'(p)=2p(s(p))p~*
S zclp— 1 + Czt—ap—l +ya
=2c,p T ctTp?
in Theorem 2.2.2, we obtain

M@) <cy(1 +t79.

Example 2.3.5. As a final example we record the fact that if

Ble) < cyexp(e™®)
for all 0<e< oo and some O0<a <1, then e # is ultracontractive.
However if a = 1, then this need not be true.
Typical of the applications of the above abstract results is the following.

Theorem 2.3.6. Let H be a strictly elliptic operator on [*(Q) where Q is a
region in RN. Then ¢~ has a kernel K(t,x, y) such that

0<K(t,x,y)<ct™ N2

almost everywhere on Q x Q for all t > 0.

Proof. Let Hy = — A on I*(Q) with the usual Dirichlet boundary con-
ditions. By Section 1.1.8 and Lemma 2.2.6 we see that the kernel Kq(t, x, y)
of e~ satisfies

0 < Ko(t, x,y) < (4nt) N2 g~ -4
< (4mt)~ N2
for all ¢t > 0. It follows that
le™ o f Il < cat ™ £,

for all fel?(Q) and t >0, and hence by Example 2.3.1 that

f S*log fdx<eQo(f) + Bo&I S I3+ 1 fI31ogll fll,  (238)

for all 0 <¢< o0 and 0< feQuad (Ho)NL' n L™, where

Bo(e) = c; — (N/4)loge.
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But H is strictly elliptic so

Qo(f) < €3Q(f)
for all f and (2.3.8) implies that

f f*log fdx<eQ(f) + PENSI3+ 11 fl131og ] f I,

for all 0 < ¢ < o0 and 0 < feQuad(H)N L' nL®, where

P(e) = cs — (N/4)loge.
The proof is completed by applying Example 2.3.1 in the reverse direction.
As afinal application of the ideas of Section 2.3 we consider a variation of
Example 2.3.3 in which we weaken the requirement that e ~#*is a symmetric
Markov semigroup.

Example 2.3.7. Let e~ be a self-adjoint positivity-preserving semigroup
on L*(Q,dx) such that Sp(H) < [E, o) and
le ™ fllo <e™l fll (2.39)
for all feL® and t > 0. If also (2.3.2) holds for 0 < &< 1 and for
Ble) = co —(N/4)log e
then
e ™ fllo <cl fll
for all feL! and t > 0, where
c(t):{clt_m %f0<t<1
c,e B if 1<t < 0.

Proof. Since e "#*F¥ j5 a symmetric Markov semigroup we may conclude
as in Example 2.3.3 that
le=®*Ptf |, et ™| f1I,
forall fel? and 0<t<1.
Therefore if 0 <t < 1 we have
le ™ f 1l <coe™P(/2)~ M4 e~ B2 £,
<et™ 11y

while if l <t < o0

le™™f

le™ 21l 2 e ® D, 5 le™ 21, 1 11 £y

<
<c e BV f .

Note. Accordingto the above method of calculation ¢, depends upon ¢y, N
and F. We do not know whether the hypothesis (2.3.9) is necessary for the
result.
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2.4 Ultracontractivity, Sobolev and Nash inequalities

Although the deepest insight into ultracontractivity uses logarithmic
Sobolev inequalities, a number of the commonest applications can be
resolved using ordinary Sobolev inequalities. We present this alternative
approach here. Our first result is easy, but not quite sharp. As before we take
e M to be a symmetric Markov semigroup on L*(Q).

Theorem 2.4.1. If u>0 and

Iflle <ecil(H+1#fl2 (24.1)
for all feDom (H + 1), then
lle™™ fllo < c;max(Lt™) £, (24.2)

for all fel*Q) and t > 0. Conversely (2.4.2) implies

1 flle <ecs I(H+1)fl2
for all v>p and feDom(H + 1)".

Proof. For the first part it is sufficient to prove (2.4.2) where 0 < t < 1. This
follows from the facts that (2.4.1) is equivalent to

IH+D fllo<cl fl,
for all fel*(Q) and that
I(H+ e fl,<cgt ™ f,

for all fel>(Q)and 0<t<1.
Conversely given (2.4.2) we deduce (2.4.1) by use of the formula

[¢9]

H+D)f=Tw! f prle H+1x £ gy

0

which converges in L* norm if v > pu.
We give two slightly different versions of our next result, which is much
deeper.

Theorem 2.4.2. If u > 2 then a bound of the form

le™™ fll <cit ™4l £, (24.3)
for all t >0 and all fel*Q), is equivalent to a bound of the form
If "gul(u-Z) <, 0(f) (24.4)

for all f eQuad (H).

Proof. We combine the fact that e~ is a contraction on L® with the bound

le™® flle <ct™21 £l
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deduced from (2.4.3). The Riesz—Thorin interpolation theorem yields

le™™ fllo <ct™29| £,

for all t > 0 and feL’, where we take ¢ to satisfy 1 < q < u. We now write

H *f=g+h
where
T
g=1"(%)'1f t"re M fdt
0
hzl“(%)‘lf t"re M fdr
T
We see that

[¢9]

Ihlle = F(%)'lf ct TR £, dt

T
=cll fl,T**
Given 1 >0 we define T by
M2=c| fll T H
so that
{x:IH™ A (o)l = A} <[ {x:1g(x)| = 2/2} < (4/2) "l 9]

S@A/)™H{TE 2T f 1,4
since e "' is a contraction on L. Putting

/r=1/qg—1/p
we deduce that

[{x:|H™f(x)| = A} <A™/ | £ 11 )7E#9 £ ||
=cA7" I f15

This shows that H ~* is of weak type (¢, r) for all 1 < g < u. By applying the

Marcinkiewicz interpolation theorem we deduce that H ~* is bounded from
L? to I where

1/p=3—1/p (24.5)
and this is equivalent to the bound (2.4.4).
For the converse we assume (2.4.4) and define p by (2.4.5). If f > O satisfies
[ /1l =1, then we define the measure y of total mass 1 by

du(x) = f(x)* dx.
Since log is concave we have

1
ff’ log fdx=-— f log (f”~%)du
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|

<
p—2

logff”‘zdu

1
S logll £l

p 2
S—
-2 log |l £z

S(w4(~loge+el f17)
< (u/4){ ~loge + c,eQ(f)}-
By redefining ¢ we obtain the hypothesis (2.3.3) of Example 2.3.1.

Corollary 2.4.3. If u > 2 then a bound of the form

le=™ fllo <cit™ 41 £,

for all 0 <t <1 and all fel*Q) is equivalent to a bound of the form

IS 13- 2 S €2{ QU+ I f 113}
Sor all feQuad (H).

Proof. The above hypotheses imply the hypotheses of Theorem 2.4.2 for
the operator (H + 1), which clearly still generates a symmetric Markov
semigroup.

Although the above theorems are restricted to the case u > 2, this can
often be circumvented in applications, among which the following are
typical.

Theorem 2.4.4. Let H be a uniformly elliptic operator with Neumann
boundary conditions acting on [}(Q), where Q is a region in R with the
extension property. Then e~ H' has a kernel K(t, x, y) which satisfies

0< K(t,x,y)<ct™N?

almost everywhere on Q x Q for all 0 <t < 1.

Proof. First assume that N > 3. Then we have

||f||2N/(N—2)<C1(”Vf”§+ 1£13)
<{QN+ 11113}

by Lemma 1.7.11, and can apply Corollary 2.4.3.
If N <2 then we consider instead the operator

H=H®1+1®(-A)
on I?(Q x R?) and use the above method to obtain the bound
0<K(t,x, )K'(t, X', y) < ct " (N+2)2



78 Logarithmic Sobolev inequalities

for 0 <t <1 where
K'(t,x,y)=(4nt)" Lexp{— (x' — y')*/4t}.
The result now follows upon putting x' =y’

The following variant of Theorem 2.4.2 is often useful. There is also a
similar version of Corollary 2.4.3.

Theorem 2.4.5. If u>2 then the Condition (2.4.4) of Theorem 2.4.2 is
equivalent to

g<clgl,H (24.6)
for all ge**(Q).

Proof. If (2.4.5) holds and feQuad H then
gfi £><Nglu 2l 20 = Mgl £113,

where
2u+1ljv=1.
Therefore
gfif>< ||g||,,/z ”f"zu/(u—Z)
<2 llgll,.29(f)

which implies (2.4.6). Conversely given (2.4.6) we have

Jg|f|2 <cllg ||u/2Q(f)
for all feQuad (H). Putting g =|f[|**~2 yields

f|f|2u/(u— 2) < Cz( ffzu/(u— 2))2/“Q(f)

which implies (2.4.4).

There is yet another approach to ultracontractive estimates which uses
inequalities associated with Nash, and which is even more direct. Unlike
Theorem 2.4.2 it does not require that g > 2.

Theorem 2.4.6. Let e~ "' be a symmetric Markov semigroup on L*(Q) and let
u>0. Then the following two bounds are equivalent:

(M le™ f o <cyt ™) [,
for some ¢, < o0, all t >0 and all fel?.
(ii) £33 4 < e, 0N 0 £ 1"

for some ¢, < o and all 0 < feDom(Q)n L.
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Proof. Given (i) we have by duality
WY f 25 e HAS, £y
=<ﬂf>—(?&€”“fms
> - 20()

for all 0 < feDom (@) L. Therefore

£ 13 <20Q(f) + et 2 f1IF
and (ii) follows by putting

t= Q) MO D F .

Conversely given (i) we choose 0 < feL! nL?and put u(t) = || f, |3 where
fi=e ff Then

—du/dt = Q(f) = | filI3**#/c, Il £l T = ut *2e, || f (1T
Therefore

d _, 2
_ u_ n ?___—
a I T
and
u(t)' 2/u > u(t)’ 2/ _ u(()) -2/u
= 2t/c,ull f I~
Therefore

le=™ fll2 < (cau/20*1 £ 4
=cit ™4 S
This bound extends to all 0 < feL! by an approximation argument and
then to all feL! by the positivity of e 7. Finally (i) follows by duality.

Corollary 2.4.7. Lete™ ™ be a symmetric Markov semigroup on L*(Q) and let
1> 0. Then the following two bounds are equivalent:

@) le™  fllo <cyt ™1 f 1,
for some ¢c; < ,all 0 <t< 1 and all fel?
(i) If135 4 <, {@UN+ I SIS

for some ¢, < oo and all 0< feDom(Q)NL".

Proof. If we apply Theorem 2.4.6 to (H + 1) we find that (ii) is equivalent to
(i) le ™ fllo <cit™ el fll,

for all 0<t< oo and all fel? It is trivial that (iii) implies (i) and the
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converse follows from the inequality

le ™ fllo<cille™ ™ Vfl,<erll £,
valid for all ¢ > 1.

In conclusion, we mention that it is also possible to use Nash inequalities
to investigate situations where [le ¥ f || /|| f ||, has different power decay
ast—0and t — oo asin Example 2.3.2. However, neither Nash nor Sobolev
inequalities can be applied to situations such as that of Example 2.3.4. For
concrete examples where this more singular behaviour actually occurs see
Section 4.5 and in particular Theorem 4.5.10.

Notes

Section 2.1 The importance of hypercontractivity in constructive quantum
field theory was first explained by Nelson (1966); his ideas were followed up
rapidly, and are surveyed in Simon (1974). Much of the recent work on
hypercontractivity as opposed to ultracontractivity centres upon determin-
ing the optimum constant T(p,q) in Theorem 2.1.1. For the harmonic
oscillator this was achieved by Nelson (1973), with Gross (1976) giving
another proof. For recent work concerning the optimum constant of other
operators see Mueller and Weissler (1982), Rothaus (1981; 1985; 1986) and
Bakry and Emery (1984; 1985). The relationship between hypercontractiv-
ity and logarithmic Sobolev inequalities was first demonstrated by Gross
(1976). The importance of his paper was widely appreciated even before
publication and led to work by Carmona (1974), Eckmann (1974) and
Rosen (1976). The notion of ultracontractivity was not studied until the
papers of Davies (1983) and Davies and Simon (1984), the delay being partly
caused by the fact that ultracontractive bounds have no role in quantum
field theory. Theorems 2.1.4 and 2.1.5 are taken from Davies and Simon
(1984) and the remainder of the section is of a standard character.

Section 2.2 The ideas in this section are mainly due to Gross (1976) as
adapted by Davies and Simon (1984). For elliptic operators H,
Lemma 2.2.6 is trivial but the fact that it holds in complete generality was
proved independently by Varopoulos (1985C) and Stroock (1984) p. 183.
Theorem 2.2.7 is essentially taken from Davies and Simon (1984).

Section 2.3 Many of the examples given here are to be found in a less
complete form in Davies and Simon (1984). For applications of
Example 2.3.4 see Theorem 4.5.4, Davies (1987A) and Varopoulos (1985C).
The significance of the fact, used in Theorem 2.3.6, that logarithmic Sobolev
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inequalities are monotone in the quadratic form, has only gradually
become obvious.

Section 2.4 Theorem 2.4.2 is due to Varopoulos (1985C), although Fuku-
shima (1977) has a weaker result of a similar character. The ideas behind
Theorem 2.4.6 go back to Nash (1958) but in the present form it is due to
Fabes and Stroock (1986). See also Carlen, Kusuoka and Stroock (1987) for
further details.
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Gaussian bounds on heat kernels

3.1 Introduction

IfQisaregionin R" and H is a strictly elliptic operator statisfying Dirichlet
boundary conditions on L*(Q), we have shown that the heat kernel K(t, x, y)
of e ~H satisfies

0<K(t,x,y)<ct™ N2, (3.1.1)
In the particular case H, = — A we actually have
Ko(t,x,y) = (4nt)" "2 exp{ - (x — y)*/t} (3.1.2)

so that for this case we see that (3.1.1) is a good estimate when x = y but
poor if one is well away from the diagonal. We shall actually establish upper
and lower bounds similar to (3.1.2) in the case where H is uniformly elliptic
on I?(RM), namely

cit™ M exp{ —by(x —y)*/t} <K(t,x,y) < cyt ™M exp { — by(x — y)*/t}
(3.1.3)

for all t > 0 and x,yeR™, where b; and ¢, are positive constants. Although
this type of bound has been known for some time, much simpler and more
powerful methods of proof have recently been discovered and we present
these here.

We comment that the upper bound we shall obtain does not depend
upon uniform ellipticity of the operator H. Indeed the method gives
Gaussian upper bounds for the heat kernels of certain uniformly hypoellip-
tic operators on RV,

Itis a consequence of Moser’s Harnack inequality that the heat kernel of
an elliptic operator is strictly positive and continuous in great generality. If
the coefficients are smooth then this may be shown along the lines of
Theorem 5.2.1.Itis not essential for our purposes to refer to Moser’s results,
since all our bounds on K(t,x,y) can be considered as holding almost
everywhere on Q x Q for every t > 0; by redefining K on a null setinQ x Q
for every ¢ > 0 they then become valid everywhere. We shall not refer to this
question explicitly again.
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Before proceeding we note that (3.1.3) implies certain bounds for the
Green functions, of which the following is typical.

Theorem 3.1.1. If N > 3 and the heat kernel of H satisfies (3.1.3), then there
exist positive constants a; such that the Green function G of H™ ! satisfies

a1|x_}’|_(N_2) <Glx,y) < a2|x—y|_‘N_2’.

3.2. The upper bound

In order to provide a measure of generality we suppose that Qis a region in
RY and that H is an elliptic operator satisfying Dirichlet boundary
conditions on L*(Q) for which the logarithmic Sobolev inequality

ffz log fdx <eQ(f)+ B f1IZ + 11 f131ogll f 1, (3.2.1)

holds for all 0 < feQuad (H)~ L'~ L*®, all ¢ >0, and some function f(e). If
H is strictly elliptic then (3.1.1) holds by Theorem 2.3.6, and (3.2.1) holds
with
ple)=c —(N/4)loge

but we do not wish to restrict attention to this particular case.

The core of our estimates is the following lemma, which will allow us to
prove weighted ultracontractive bounds. We put ¢ =e® where acR and
Y: Q- Ris a C® bounded function which satisfies

Ya o &y

W5 g <!

everywhere on €, where B
of 9 4
Q(f)_ f Zalj(x)a ax

for all feCZ(Q).

Lemma 3.2.1. If 0< feC®(Q)and 2<p<oo and 0 <pu<1 then

(L= <{Hf,HfP~ 'Y < CH¥@f),H¥ ™' P71
+ (1 +(p —2)*/4p — D) f 115

Proof. We have

CHY(@), HH$ ™ /771 = fza,,( ool )

0
o Lapvempi e

j
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0 oy
f Za”{ “f ox; 0x;

o—10f 10 Y
+ap—-1)f o, ox, f o, ox,
af a
+p-nsrigk a—fj}dx

> —oczf fPdx
Q

- of of
— — p-1
jol(p 2)ff ( %5 ax)
of aff % 1
JZ Ua 0x;
Also if 0 < 5 < o0 then

o1 of of _2 ) 5fp/25fp/2 +

Lf (Z %5, Ox ) _ELf /2<Z “ox, o, ) dx
p/2 p/2

ffnza"agx af Jf”d

o o, p
—nj I

CHif,Hif?~ 1>+—IIfII"

//\

4(p )
Therefore

<H*(¢f),H*(¢‘1f”‘1)>><H*f HEfP= 15 —a?| fIf
—lel(p - 2){ CHf,HAfP" 1>+—IIfII"}

4p-1
If we put

_Mp—Dp
lelp(p — 2)

then we obtain the bound of the lemma.

Corollary 3.2.2. If0< feC?(Q),0<u<1,0<e< 0 and 2< p< oo then

Lf”logfdx <eCH¥Qf), HY T 771> + (e P 115
+ 1115 logll £, (322
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where
e, p) = 2B{e(1 — w)}p~ ' + ea*{1 + (p — 2)2/4(p — Du}.

Proof. We replace f by f7/? in (3.2.1) as in Lemma 2.2.6 to obtain

ff”logfdx el =) CHELHA P70 + 281 — w)p~ 'L F 115

+ 11 fIzlog !l £,

and then apply Lemma 3.2.1.

Our next goal is to integrate (3.2.2) to obtain ultracontractive bounds on
exp(— ¢~ 'H¢t), but we first need to extend (3.2.2) to a larger class of f. We
put

2,= ) e ®(L'nL),
t>0
and

92=¢"19,.

Since ¢*' are bounded functions, they define bounded and invertible
multiplication operators on Lf for 1 < p < c0. We define K=¢ 'H¢ so
that

Dom(K)={f:¢feDom(H)}.

Then 2 is dense in L% for all 1 < p < oo, and 2 is invariant under the
semigroup ¢~ X', Since e ' is holomorphic on I for all 1 <p < oo by
Theorem 1.4.2, the same holds for e ~X*. In particular 2 lies in the domain of
K% for all n, where K , is the generator of e “¥ on L for 1 < p < c0. We now
have to prove that (3.2.2) holds for all 0 < f €9, or equivalently that

f (¢~ 'g)log(¢~*g)dx <e{H*g,H*@ Pg° ")) + v p)o ™ 'gllb

+1¢" gl log ¢ gll, (3.23)

for all 0 <geP,, starting from the fact that this holds for all 0 <geC®.
We note that 2, € 9, where

2, ={Quad(H)nL'nL"},.
We shall use the inner product

(fg) ={f,9>+{H*f H'g)

on Quad (H) and the associated complete norm

Nfl={<ff Y}
We say that f”" = f in Quad (H) if

(fmg)' =L fo9)
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for all geQuad (H). A sufficient condition for this is that || £,|[| is uniformly
bounded and || f, — f | = 0.

Lemma 3.2.3. The bound (3.2.2) is valid for all 0< fe2,, 0<e< o0 and
2<p<co.

Proof. By the above commentsit is sufficient to show that (3.2.3)is valid for
all 0 < geP,. We first confirm that (3.2.3) makes sense. Since geL' L™,
¢ "'geL! nL* and the LHS of (3.2.3) is finite. If ge 2, and p > 2 then

g°~ ' =Fl(g)

where F has bounded derivative and vanishes at 0. It follows from
Theorem 1.3.3 that

Q(g" "M < cQ(g) < 0. (3.24)
We deduce that ge 2, implies g? ~ 1€ 2,. The finiteness of the RHS of (3.2.3)
now follows if we show that 2, is invariant under multiplication by ¢ ~°.
Since ¢! is bounded it is sufficient to show that feQuad(H) implies
¢~ PeQuad (H). This results from the fact that || f|| and [[¢~7f]| are
equivalent norms on the dense subspace C(Q2) of Quad (H) by an easy
computation.

We are now ready to produce our approximation procedure. If0 < ge 2,
then there exists a sequence h,e C® such that ||| h, — g|| = 0. If | g ||, = k then
there exist F,,eC*® with 0<F, <2k, 0<F, <1 and F,0)=0 such that
gn=F,(h,) satisfy g,eC®, 0<g,<2k, llg,—gl*>—0 and Q(g,) < Q(9).
Since these bounds imply

limsup|lig,ll <llgll
we deduce that ’
llgs—glll - 0. (3.2.5)

Secondly we see as in the proof of (3.2.4) that

(g™ <cQ(g,) < cQ(9)

for all n. Using the fact that the multiplication by ¢ ~?isa bounded operator
on Quad (H) we deduce that

o~Pgh~tl <d< oo

for all n. This implies that
$rgrt s g rgrL, (3.2.6)
By combining (3.2.5) and (3.2.6) we discover that
(Hg, H¥ (¢ Pg5~ ")) — (HYg-H* (79" "))
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We finally have to control the convergence of the other terms in (3.2.3).
Since [|g,—gll;»0and 0<g, <2k for all nit follows that | g, — gl ,—O0.
Fatou’s lemma implies that

J((b‘ 'g)*log, (97 'g)dx < lim inf f((b‘ 'g,ylog, (¢~ 'g,)dx
and the proof that
(¢~ 'g)log_ (¢~ 'g)dx = lim f((b' 'g,)"log_(¢ " 'g)dx

depends upon the fact that s~ 2log _ (s)is a bounded function for any p > 2,
while ¢~ g, converges to ¢ g in L? norm.

Theorem 3.2.4. Let &(p) > 0 be a continuous function defined for 2 < p < c©
and put

I'(p) = (&(p), P)
=2B{e(p)1 — ) }p™ " + e(p)e?{1 + (p — 2)*/4(p — Du}.
If
t= pr‘ls(p)dp, M= pr‘ll"(p)dp
2

2
are both finite then exp(— ¢~ *H¢t) maps L? to L™ and

lexp(— ¢~ Hot)ll,,,, <eM.
Proof. If K = ¢~ 'H¢ then we have shown that

f fPlog fdx<e<Kf, fP7' > + &P fIE+ 11 flIFlogl f1I,

for all 0 € f €2 = Dom (K). For the remainder of the proof we may follow
Theorem 2.2.7; the failure of K to be self-adjoint does not matter in the
proof.

The application of the above theorem depends upon making suitable
choices for &(p) and y, depending upon the given function f(¢). The following
is the most straightforward case.

Theorem 3.2.5. If
p(e) =c—(N/4)loge (3.2.7)
then
¢~ '™ Pl 0 < agt™Neet + Do (3.2.8)

Jorall0<t<oo,and all0<éd < 1.
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Proof. We put 4 =4 and
e(p)=A2%p~*
where A > 1, so that

=J p~le(p)dp.

2
Theorem 3.2.4 then yields

M(t) = f p%{c - glog(ﬂ“ 1tp"l)}dp

2
+ leZ‘tp_‘az{l +(@—-27/2(p—1)}p~ ' dp.
2

Now p = 2 implies

1+(p-2*2Ap—-1)<p/2
)

N
M(t)s—zlogt+ a’t +c,.

i—1
We finally choose /4 so that

P
BNy
oo *e

Corollary 3.2.6. Given (3.2.7) we have
0 <K(t, %, y) < cst ™2 exp (— {Y(x) — Y(y) }*/4(1 + d)t)
forall 0<t<o0,0<d<1 and x,yeQ.

Proof. Replacing « by — o and taking adjoints of (3.2.8) we obtain
l¢~te” ™o (PRI ast~Nlee D

and multiplying the two bounds yields

" d)— le—Ht¢ ”00,1 S Cat_lee(l +6)alt.
This is equivalent to the bound

0 < ¢(x) 7 K(t, X, y)p(y) < ¢t ~N2ett + 2%
and hence to
0 < K(t,x,y) <cst M2 exp {(1 + )t + alY(x) — Y(y)) }.

We now make the choice

_ V)~ Y
2(1+0)
to complete the proof.
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Theorem 3.2.7. If (3.2.7) holds and we define the metric d on Q by

dx,y)= sup{ [Y(x) — YW is C* and bounded with
oy oy
o € 2.
Ya; 3%, 0%, 1 on Q} (3.2.9)
then the heat kernel K of e~ ' satisfies
0< K(t, %, y) S cst M2 exp { — d(x, y)*/4(1 + d)t}
forall 0 <t< o0,0<d <1, and x,yeQd.

Proof. This follows directly from Corollary 3.2.6.

The above theorem is applicable to all strictly elliptic operators H on
L?*(Q) with Dirichlet boundary conditions. The metric d on Q is determined
geometrically by (3.2.9) and need not be equivalent to the Euclidean metric.
The following special case is, however, worth recording.

Corollary 3.28. If Q is a region in RY and
2 of
Hf =- Za_m{““(x)aTc,}

with Dirichlet boundary conditions where

O<i<alx)<pu< o
for all xeQ then

0< K(t9 x,)’) < Cé,}.t_N/Z exp { - (x - y)2/4(1 + 6)#t}
forall 0 <t<o0,0<d<1 and x,yel.

Proof. We see from (3.2.9) that

d(x,y) > Sup{llﬁ(x) —Y(y)|:¢ is C* and bounded with

21y W <1lon Q}

dx; 9x;
= sup { [Y(x) — Y(y)|: VY| < ™%}
=|x—ylp~*

All of the above results can be modified to deal with the case of Neumann
boundary conditions. However, if Q is bounded and H is an elliptic
differential operator with Neumann boundary conditions, then H1 =0, so
0eSp(H) and the asymptotic behaviour as t —» oo will not be the same asin
the case of Dirichlet boundary conditions.
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Theorem 3.2.9. Let Q be a bounded region in RY with the extension property
and let

Hf=- Z%{au(x)g—i}
act on L*(Q) with Neumann boundary conditions, where
O<i<ax)spu<oo
for all xeQ. Then
0 < K(t, x,y) < 3,0t V2 v 1) exp {— (x — y)*/4(1 + d)ut}
forall 0 <t<o0,0<d<1 and x,yefd

Proof. Ift > 1 then the RHS is bounded below since Qis a bounded region.
Since [le " #'||,., is monotonically decreasing it is therefore sufficient to
treat the case 0 <t < 1.

For such t we proved in Theorem 2.4.4 that

0<K(t,x,y)<ct N2

and in Lemma 1.7.11 that C2(Q) is a form core for W'*(Q) = Dom (H?*). We
may now repeat the calculations in this section with only minor
modifications.

Note 3.2.10. Inboth Theorem 3.2.7 and Theorem 3.2.9 a spurious constant
& >0 appears. If one examines the arguments more carefully one can find
the precise dependence of c; upon §, and obtain a sharper upper bound on
the heat kernel by optimising over 6. We leave the reader to fill in the details.

Example 3.2.11. Let a(x) >0 be a smooth matrix-valued function on R"
and define the subelliptic operator H:C* — C* by

o a( of
Hf = —Za—x'<aUa—x1)

We extended H to a self-adjoint operator by Theorem 1.2.5. Thene " # isa
symmetric Markov semigroup on L*(R") by Theorem 1.3.5, whose proof
does not use the ellipticity assumption. We now make the extra assumption
that the heat kernel exists and satisfies

0<K(t,x,y) <at™*?

forsomea>0,u> Nandall0<t<1and x, yeR", This type of bound is
highly non-trivial but follows if H satisfies Hérmander’s hypoellipticity
condition uniformly with respect to x in a suitable sense.

Under this condition Theorem 2.2.3 implies that (3.2.1) holds for all
0 <& < oo with

B(e) =c —(u/d)loge +¢.
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If the metric d associated to the hypoelliptic operator H is defined by (3.2.9)
then the calculations of this section, with the modified choice of f(¢), lead to
0 < K(t, X, y) S cit 2 exp { — d(x, y)*/4(1 + )t}

forall0<t<1,0<d<1 and x,yeR",
For large t the behaviour of the heat kernel is rather different, and indeed
one finds that

K(t,x,y) ~ct N2

as t —» c0. We shall not, however, pursue this.

3.3 The lower bound

Throughout this section we assume that the elliptic operator H is defined in
the region Q = R" by
0 of
Hf=-) —<qa;{x)=— 3.3
subject to Dirichlet boundary conditions, and that
O<i<ax)gsu< o
for all xeQ. By Corollary 3.2.8 we therefore have a bound onthe heat kernel
of the form
0< K(t,x,y) <ct™M2exp{— b(x — y)*/t}
for all t >0 and x, yeQ, where b and c¢ are positive constants, Our task in
this section is to obtain a similar lower bound on the heat kernel.

Let B< Q be any ball, with centre b and radius g >0, and let ¢ be the
ground state of — A in L*(B) subject to Dirichlet boundary conditions. We
normalise ¢ by ||¢|[, =1 and observe that

0< peW§*(B)y S WHHQ).
Now ¢ may be computed explicitly by separation of variables in polar
coordinates, and this leads to the bounds
|x—bl<p=0< () <c;f7", |x = bl < f2=>P(x) > c,p~"2

where ¢, and c, are positive constants. The smallest two eigenvalues of — A
on L*(B)are Ef~2and Ff~2 where 0 < E < F and E, F are again explicitly
computable by separation of variables. Finally let ¢ be a constant and f a
function on B such that

0<s<[3‘",f>0,ffdx=1

and
supp (f) € {x:|x —b| < p/4}.
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It will be of the greatest importance that ¢, ¢;, ¢,, E, F and other
constants below are independent of B, b, 8, f, Q and ¢ provided these satisfy
the above conditions. We put

ux) =" f)x)= L K(t, x,y)f(y)dy

and will be concerned to obtain lower bounds on u,. The idea behind the
proof of our first lemma is that e H' is approximately probability-
conserving for short times.

Lemma 3.3.1. There exist constants ¢3;>0 and T3>0 such that
0 <t < T,p? implies

f¢2u, dx=cp7 N

Proof. Let B, be the ball with centre b and radius rfS/4, let y be the
characteristic function of B,\B,, and let H' be the operator in L*(B,)
associated with (3.3.1) and Neumann boundary conditions. If « >0 and
t >0 then

C'""f=exp{—(H'+dx)t}f+f e Tayexp{— (H' +axft —s)}f ds

s=0
=exp{—(H +apt}f + ft e Hsg ds (33.2)

s=0

where g, > 0 and supp(g,) < B,\B;. Since e "7 conserves probability we
see that

t
OSJ J gy(x)dsdx< L.
XxeBa Js=0

We next observe that the heat kernel K'(t, x,y) of e ~#" satisfies
0< K'(t,x,y) <c't™ "2 exp{—b'(x — y)*/t}

where ¢’ > 0and b’ > 0, by Theorem 3.2.9 provided ¢ lies in the stated range.
By using this bound we discover that

f € "' N)dx =1~ f € ""f)x)dx
B> B4\B,

i f f K'(t,%, ) f(3)dy dx
xeB4\B; JyeB;

P

N
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provided 0 <t < T, , 2. Also

93

t t
f f (e "g)x)dx ds =f f f K'(s,x,y)g4(y)dy dx ds
s=0 ) xeB; s=0 J xeBz J yeB,\B;

1
<3

provided 0 <t < T; , 2. Integrating both sides of (3.3.2) over B, now yields

L (exp{—(H' + ot} f)x)dx >3

(3.3.3)

provided 0 < t < T, 2. If H” denotes the operator on L*(B,) associated with
(3.3.1) and Dirichlet boundary conditions, then letting « — + oo in (3.3.3)

yields

f €™ f)x)dx = 3.
B2
But f >0 so

e—Htf ?C_H"tf

by Theorem 2.1.6. Therefore

f¢2u,dx>c%ﬂ'"f pdx
B2

23 f (™" f)x)dx
B2
Z5e3p7"

We next obtain a lower bound on the function

G(t) = fd)z log {t"'*(u, + €)/2c} dx

for small enough ¢t > 0. We note that
tN2¢/2c <tV (u, + €)/2¢
SN2t N2 + B7N)/2c
<3+ tV22epN < 1
provided 0 <t < T, 2. Therefore
log (¢/2¢) — (N/2)logt < G(t) <0

(3.3.4)

for all such t. The intuition behind the following calculations is that if

U, ~ cot "V exp { — bo(x — b)?/t}
then
G(t)~ —t™ 12
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S0
G'(t)~ G@e)*p~>.

We actually prove a differential inequality of this type for small ¢ > 0.

Lemma 3.3.2. There exist constants T, >0 and c, > 0 such that
G(T*F*) > —c,.

Proof. It follows from the definition (3.3.4) of G that

_N ¢
T x fz "ax ox; <u+£)dx

N
AN
T

where

B ou{ ¢* ou 2¢ 0¢
I_JZ““E{(H&)Z 0x; u+86x}
¢alog(u+s) 264) ¢alog(u+s) 64)
=2 "{2 6x} 2 0x; 6x

J‘Z ll¢zalog(u+s)alog(u+s) fz ¢ 64)

”5
> fd)z |Vlog(u + ¢)|*dx — 4uJ‘|Vd>|2 dx.
We deduce that
Gz %f{bZlVflzdx

provided
h=log {t"* log (u + €)/2¢}
and

N/4t > 4y f(w;)z dx = 4uEp™2. (33.5)

The inequality (3.3.5) is of the form

0<t< T, p%
Now
¢he W5 (B) = Quad (— Alp)
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and

flV(d;h)lde —Ep? f¢2h2 dx
— ”(¢Vh +hV) (¢Vh + V) dx — Eﬁﬂf&hz dx

= ”V¢-V(¢h2) dx + fd)z(Vh)Z dx — Eg~? f(bzhz dx

= ”¢2(Vh)2 dx

Y

so we see by an application of the spectral theorem for — A[y that
f(bz(Vh)Z dx > (F — E)B~ || ¢h — {ph, ¢ > |
=(F - E)B”JWUI —{¢h,¢>)*dx

=(F— E)B‘Zfd;z{h — G(t)}* dx.
Therefore 0 <t < T, ;5 implies
G(t) = %ﬂ J¢2{h —G(1)}*dx > 0. (3.3.6)

We next recall that h <0. If

2+ G(t) < h(x,)<0
at some xeB then
h h 2

o= et

1_'_/
G- h=2 2—h

So
{h—G()}* = G(t)*e".

We deduce from (3.3.6) that

G() = W—:E) Gty f P2 dx
4B h=2+ GO
> 3}“(51; E) G(t)z {¢2eh dx — ¢? +G(t)}

> 31(%[;9 G(t)? {%J‘dﬁu dx —e?* G"’}.

If T,=T; AT, then Lemma 3.3.1 implies

G®= 3ll(f:T;E)G(t)z {;—Zt’V/ZB—N —e? +G(r)}
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wherever 0 <t < T, 2. Since G(t) is monotonically increasing by (3.3.6) we
deduce that either

2 CT) > (¢, /Ac) (T /2NN (3.3.7)
or
: 3MF — E) 263 T,p*\"? -N
G0>=7m— 60 (5 ) 8 (3.3.8)
for all T,%/2 <t < T,p> The case (3.3.7) yields
G(T,p) = — C4,1 (3.3.9)

while the case (3.3.8) yields
G'(t) = B~ %kG(t)?
for some k > 0 and all ¢ in the stated interval. Hence

%{—G‘l(t)}w"k

— G (Tf?) 2 B kT.p%/2

and

SO
G(T Y= — 2/kTy = —c4 5. (3.3.10)
The lemma follows by combining (3.3.9) and (3.3.10).

Lemma 3.3.3. There exist constants Ts >0 and c5 >0 such that |x —b|
< B/4 and |y — b| < p/4 imply

K(TSBZ’ x’y) 2 CSB_N'

Proof. Let u; , and u, , be two functions constructed as above from f, and
f2, both with support in {x:|x —b| < B/4}. If t = T,$* then

I= JK(2T4B2, x,9)f1(x) f>(v)dx dy
=ce ftf,e7f )
2 CI_ZBN J‘d)zul,,uz,,dx

=cs BN Jd)z(t"”zul/2c)(tN/2u2/2c) dx.
Therefore

log (c516"1) > log fd»Z(t"/’ul/2c>(t"/2uz/2c> dx

> f¢2 log {t¥?u, /2c} dx + fd)z log {t"'?u,/2c} dx

? _2C4
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by applying Lemma 3.3.2 after taking the limit ¢ —» 0. We conclude that
1 205.1B_Ne_2“

which yields the required result if we put Ts = 2T, and use the fact that f;
are arbitrary subject to f;=0, [f;=1and

supp(f) < {x:|x — b| < B/4}.
We are now able to obtain our global lower bounds on the heat kernel.
The easiest case to deal with is when Q = R".

Theorem 3.3.4. Let H be a uniformly elliptic operator acting on L*(R"). Then
there exist constants ¢ > 0 and a > O such that the heat kernel K(t,x,y) of
e~ 1 satisfies

K(t,x,y) > ct M2 exp{ —a(x — y)/t}

for all x,yeR" and t > 0.

Proof. Since b and f > 0 are unconstrained in Lemma 3.3.3 when Q = RV,
we may put t = Tsf? and (x + y)/2 = b. We discover that there exist cg >0
and ¢, >0 such that [x — y| < cgt? implies

K(t,x,y) = cqt N2,
Now let £t >0 and x, ye R be arbitrary. If we put
X, =Xx+ry—x)/M
for 0 <r < M then
1%, — X4 1| S Fcolt/M)?
if and only if
Ay — x)*/cit < M.

We take M to be the smallest integer which achieves this inequality. Then

K(t, x,y) > JK(t/M, X, Y )K(E/M, y1,y2)- - K(t/M, yp - 1,9)dy1 - dyn -y

where we integrate y, over the set
{yr:lyr - xrl <%C6(t/M)%}'
This yields the bound
K(t,x,y) = {e7(t/M) N2} M {k(e/ MYV 2} M
> cgt TN2EY
which implies a lower bound of the stated type.
If we replace RY by Qin Theorem 3.3.4 the result cannot remain true even

if we replace |x — y| by the geodesic distance between x and y with Q,
because in this situation one knows that K(t, x, y)— 0 as x - dQ or y —» 0Q.
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However, such a lower bound is not even true if one restricts x and y to lie
away from 0Q unless one allows b > 0 to depend upon the geometry of Q.
The reason is that if x and y lie in different parts of a nearly disconnected
region Q, the magnitude of K(t, x, y) will be very small. One does have the
following result.

Theorem 3.3.5. Let Q be aregion in RN and let H be an elliptic operator on
L*(Q) with Dirichlet boundary conditions. If A is a compact subset of Q and
t > O then there exists a continuous positive function c(A,t) of t such that the
heat kernel of e F* satisfies

K(t,x,y) 2 c(4, 1)

for all x,yeA. In particular e~ is irreducible.

Proof. Let Q' be a region in RM with compact closure such that
AcQ cQ cQandlet H' be the elliptic operator on L*(Q') associated with
the same quadratic form as H. Then H’ is uniformly elliptic because of our
precise definition of ellipticity in (1.2.7) and

K(t,x,y) 2 K'(t,x,y) 2 0

for all x,yeQ’ and t > 0 by Theorem 2.1.6. It is therefore sufficient to treat
the case where H is uniformly elliptic.

By the compactness of A there exists 6 >0 and D < co such that every
x, y€ A can be connected by a path y:[0, 1] — Q such that y has length < D
and every point of y has distance > é from 6Q2. We now put x, = y(r/M) and
t,=tr/M and proceed as in the proof of Theorem 3.3.4, taking M large
enough so that the conditions of Lemma 3.3.3 are satisfied.

The above theorem leads immediately to two versions of the Harnack
inequality.

Corollary 3.3.6. Let H,Q, Abeasin Theorem3.3.5andlet0 <a<b< c0.If
ux, t) = (e~ u)(x)
where 0 SueL! + L™ is not identically zero, then there exists ¢ > 0 such that
u(x,t) =c

for all xeA and a<t <b.
Proof. By expanding A if necessary we may assume that

f u(y)ydy =2k>0
4
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Theorem 3.3.5 now implies

u(x, 1) > f K(t, x, yyu(y)dy
4

= (A, k.
The proof is completed by putting

¢ =kmin{c(A4,t):a <t <b}.

Corollary 3.3.7. If Q is a bounded region in R then the smallest eigenvalue
Eq of H has multiplicity one, and the corresponding eigenfunction ¢ satisfies
¢(x) = c(A)>0

for any compact set A <Q and all xeA.

Proof. The first statement of the corollary follows immediately from
Proposition 1.4.3. Secondly if ¢ >0, |[¢ |, =1 and H¢ = E,¢ then there
exists a compact set B < Q such that

J¢dx=c>0.
B

Then xeA implies

P(x)=e*° JK(I, x, Y)(y) dy

>efoc(AUB, 1)

by Theorem 3.3.5.

Although the above theorems provide information which will be vital in
subsequent calculations, they are not very precise quantitatively. It turns
out that more precise upper and lower bounds on the ground state ¢ for a
region Q depend both upon the local regularity properties of 6Q and upon
the global geometry of Q. These issues will be investigated in Chapter 4, but
a lot remains to be done even when H = — A and Q is a piecewise smooth
region.

3.4 Functions of an elliptic operator

In this section we assume that Q is a locally compact second countable
metric space with metric d,and that dx isa regular Borel measure on Q, such
that the measure of every point is zero (dx is continuous). We assume that
e~ H'is a symmetric Markov semigroup on L*(Q) whose heat kernel satisfies

0< Ki(t,x,y) < ct~Ni2g~bd’t (3.4.1)
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forall t > 0 and x, yeQ, where b, c, N are positive constants. An example of
the above situation is where H is a uniformly elliptic operator on L*(R"); see
Corollary 3.2.8.

If f is a bounded measurable function on [0, c0) then f(H)is well defined
as a bounded operator on L*(Q). We say that a function K (x,y) on Q x Q
which is locally bounded away from the diagonal is the integral kernel of

f(H) if
Sf(H)p ¥ = f K /(x, y)p(yW(x) dx dy (3.4.2)
QxQ

for all ¢, yeC(Q) with disjoint supports. It is clear from (3.4.2) that f
determines K, uniquely up to almost everywhere equivalence. By using a
partition of unity, the fact that dx is continuous, and the assumed
boundedness of f, it may conversely be seen that the kernel K ; determines
the operator f(H) uniquely. If also K ;e L{,.(Q x Q) then (3.4.2) holds for all
¢, Y eCQ), but we do not make this assumption.

We shall obtain pointwise bounds on K, for various f by two different
methods. Although the first method is of rather restricted applicability, it
does yield upper bounds on a variety of Green functions.

Lemma 3.4.1. If

f6)= fw e~*p(t)dt

0
where pe L'(0, o0) then

|Kf| <6 ”p"ld_N'

Proof. By combining the formula

[¢9]

Ky(x,y)= L K(t, x, y)p(t) dt

with (3.4.1) we obtain

|Kf|<f ct~Ni2e PN p(r)| de

0

<f 62t~ M2 (b )2 ()] i
0

—cd Vol

Lemma 3.4.2. If
fE)=(+A7"
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where 0. > N/2 and A >0 then
K | <cpe™?
for all 0 < B <2(bA)%.

Proof. By combining the formula

(s +l)'“=1"(oc)_1f 2" letet M gy

0
with (3.4.1) we obtain

©
K < Ct—N/Ze—bdz/tr'a —lta—le—t}.dt
! 0

= af (2 NZ-1e " exp {(6 — A)t — bd?/t} dt

0
for any 0 <4 <. But

0<exp{(d — At — bd?*/t} <exp{ — 2(4 — d)*bid}
for all 0 <t < o0, so putting f = 2(1 — 5)*b? yields

[¢9]

K, < ae_ﬂ"f ppN2-lg-a gy
0
as required.

Lemma 34.3. If
fE)=@6+4""
where o < N/2 and A > 0 then
|K | < cpd?®Nepd
for all 0 < B < 2bA)E. If A =0 the same holds with §=0.

Proof. We deduce from (3.4.3) that

K, sad”""f s* N2~ 1lexp(—b/s — Ad>s)ds

0

= ad“‘"f s* N2l dsexp { — (b — O)/s — Ad*s} ds

0
for any 0 <6 <b. But

0<exp{—(b—0)/s — Ad*s} <exp{—2(b — )*A*d}
for all 0 < s < o, so putting = 2(b — §)*1* yields
|Kf| s adZa—Ne—ﬂdwaa—N/z—le—a/sds

. 0
as required.

101
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Note 3.4.4. The sharpness of these bounds can be seen by comparing them
with the exact expressions for H= — A on R", computed by Fourier
transform techniques. For example if « =1 and N =3 then Lemma 3.4.3
yields
IKp|<cslx—yl texp{—(1 — HA*|x —y|} (3.4.9)
for all & > 0, whereas the exact expression is
K;=(4n|x—y))~"exp(— A¥|x — yl).

However if N = 5 then one finds that one cannot set f = 2(bA)? in Lemma
3.4.3.

Lemma 3.4.5. If
lfG)<a(l +5)7°

for all 0 <s < oo and some a >0, a > N/2, then K, is a bounded integral
kernel.

Proof. We put
S =1 +5)"%(s)

where g is a bounded function on (0, ), so g(H) is a bounded operator on
L*(Q). Lemma 3.4.2 implies that (1 + H)™*is a bounded operator from L! to
L*®, 30 complex interpolationimplies that (1 + H)~%? is bounded from L' to
L? and also from I? to L*®. Therefore

f(H)=(1+ H)™**g(H)(1 + H)~*?
is bounded from L! to L* and has a bounded integral kernel.
We now turn to our second method. We obtain bounds on the heat
kernel K(z, x, y) for complex times Re z > 0, and use them to bound K, for

suitable f by Fourier transform techniques. This method is much more
powerful than the previous one.

Lemma 3.4.6. The heat kernel satisfies
|K(z,x,y)| < c;(Rez)™N?
for all Rez >0 and x,yeQ.

Proof. Putting z =t + is we have
e~ Hz — o—H2giHsg—HY2
$0
le ™ # w1 S lle™H72 || 5 e H25,,
=[e” "2, ..
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One sees by interpolation that
le™ 212, 2 < le™ 72l
<c(t/™"?

so the lemma follows.

Note 3.4.7. If H= — A on L*({R") then

K(z,x,y) = (4nz) N2e™" — yldz
SO
|K(z,x,y)| < (4m|z])~ N2

for all Rez>0. However if H= —d?/dx*> on I[*0,n) with periodic
boundary conditions then

K(z,x,y) = K(z + 2ri, x, y)
for all Rez >0, so no bound of the form
|K(z,x,y)| c|z|~N?

is possible for this example.

Theorem 3.4.8. The complex time heat kernel satisfies
|K(z, 0;, 0,)| < c{Rez)"N2 exp { — Re (bd?/(1 + €)2)}

Jor all Rez >0 and »;€Q and ¢> 0.

Proof. Define the analytic function g in the sector
D={z:0<argz <y}
where 0 <y <7/2, by
g(z) = z7V2K(z7 1, w,, w,) exp {bd?e' ™2~ Vz/sin y}
If z=re® and 6 =0 then
|g(z)| <r~N2crNi2e b exp { (bd?r/siny) Ree'®/2 =1}
=c
If z=rel® and 8 =y then Lemma 3.4.6 implies
lg(2)| <r~ V¢ (Rez™1)~N2
=c,(secy)"'2.
If z=re'’ and 0 < 0 <y then
lg(z)| <r~M2c,(Rez™!)"M2exp{(bd*r/siny) Reel™2~ 7+
< cy(secy)¥'? exp {dbr/siny}.



104 Gaussian bounds on heat kernels

The Phragmeén-Lindelof theorem now implies that

9(2)| < c5(secy)*?
for all zeD. Now
K(z, 0, @,) = z7N2g(z~ 1) exp { — bd*e'™2~V/zsiny}.
Therefore —y < Argz <0 implies
|K(z, 0y, 0,)| S 77V 2c,(secy)V'? exp { — Re bd*e'™2~¥/zsiny}
= c(Re 2) " M?(cos O/cos y)¥'2 exp { — bd* sin(y + 0)/r siny}.
Replacing z by Z we deduce that
|K(z, 0, ,)| < ¢5(Re 2)~V%(cos B/cos y)¥'? exp { — bd* sin(y — |0])/r siny}
provided
0] =largz| <y <m/2.
This inequality is satisfied for all Rez >0 and if 0 <& < 1 we put
y=(n/2)(1 —¢) + ¢|0|.
Using the bound
sin(eg) > esing
valid for all 0 < ¢ < 7/2 and 0 <& <1 we deduce that
|K(z, 01, 05)| < cy(eRez)"¥2exp { — bd*(1 — &) cos O/r siny}
<cy(eRez)™M?exp {— bd*(1 —e)Re(z™1)}
from which the theorem is immediate.
There are very many applications of the above bounds. The following

two are representative, but the method used is more important than the
particular results obtained.

Theorem 3.4.9. If fe CHR) and f'(u) is piecewise continuously differentiable
then

K, <cp(l+d)?
forall 0 g < 1.

Proof. We observe that

Mhﬂfe%m@
where

lg(s)l < e(1+ 8571
Therefore

[¢9]

f@{ e *i9g(s)ds

—



Notes 105

and

K| sjw c.exp{—bd*/(1 + &)1 + sP)}e(l +s%)~1ds

< aﬂd‘ﬂf (1+s?)P2-1ds

provided 0 < f < 1. The theorem follows by combining this with the same
bound for f=0.

Theorem 3.4.10. If f lies in the Schwartz space & then
|Ksl<cgl+d)~*
for all =0.

Proof. Since H > 0 we may assume that f(4)=0for u < — 3}, and can then
write

[¢9]

f=0+ u)_"f e g (s)ds

where g, for all n > 0. Therefore
fw)y=T(n)" 1f e utriogm-le~tg (s)dsdt

D
where

D={(ts5):t>0 and seR}.
Applying Theorem 3.4.8 and assuming that § >0 we obtain

K| scf " 1N2 g (s) exp { — t — bd*t/(1 + e)(s* + t*)} dsdt
D

<c4d_ﬂf (T LTN2=B2 g (s)|e i (s? + t2)P12 ds dt
D

where the integral is finite provided n is large enough. The theorem follows
by combining this with the same bound for §=0.

Notes

Section 3.2 The validity of Gaussian upper and lower bounds of the form
(3.1.3) for uniformly elliptic operators on L*(R¥) with measurable coeffi-
cients was proved by Aronson (1968); see also Porper and Eidel'man (1984)
for references to the Soviet literature on this problem. Theorem 3.2.7, due to
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Davies (1987B), is sharper in that it replaces b,|x — y|? in the upper bound
by d(x,y)*/(4 + ¢). We mention that Varopoulos (1985D) and Carlen,
Kusuoka and Stroock (1987) have obtained Gaussian upper bounds for
large times even when the operator H is non-local.

Example 3.2.11 is a mere taste of the difficult and deep results on
hypoelliptic operators of second order, which have been studied by
Fefferman and Sanchez-Calle (1986), Jerison and Sanchez-Calle (1986),
Kusuoka and Stroock (1987; 1988), Léandre (1987A; 1987B), Nagel, Stein
and Waigner (1985), Sanchez-Calle (1984), Varopoulos (1985-6) and
others. Davies (1988B) showed that the method of Theorem 3.2.7 can be
extended to obtain sharper upper bounds of the heat kernel than previously
known.

For the case where H = — A on a region Q = R one would expect to be
able to obtain far more detailed results than we have given here. For such
bounds see van den Berg (1987A; 1987B) and references there.

Section 3.3 Gaussian lower bounds on heat kernels of uniformly elliptic
operators on R" have been known for a long time; see Aronson (1968) and
Porper and EideI'man (1984). However, our approach is a minor adapt-
ation of that of Fabes and Stroock (1986), who carried through to
completion ideas originating from Nash (1958). For Moser’s original proof
of the parabolic Harnack inequality of Corollary 3.3.6 see Moser (1964;
1967). For extensions of the elliptic Harnack inequality of Corollary 3.3.7
see Moser (1961) and Gilbarg and Trudinger (1977).

Section 3.4 This section is taken from Davies (1988A), except for the
improved version of Theorem 3.4.8, which was communicated to the author
by B. Simon. For the Laplace operator on a manifold an approach based
upon the wave equation may be found in Cheeger, Gromov and Taylor
(1982), and this can probably be extended to elliptic operators with smooth
coefficients.
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Boundary behaviour

4.1 Introduction

In this chapter we shall be concerned with obtaining sharper bounds on the
heat kernel K(t, x, ) of an elliptic operator H on [*(Q) near the boundary
0Q of Q, or near infinity if Q = R¥. The problem with earlier results such as
Example 2.1.8 is that they do not draw attention to the fact that if one has
Dirichlet boundary conditions one expects that K(t, x, y)— 0 as x — dQ or
y — 0. Quantitatively the problem is to obtain bounds on the rate of
convergence.

The following simple examples illuminate much of our subsequent
discussion.

Example 4.1.1. Let K be the heat kernel of H = — A on (0, o0) subject to
Dirichlet boundary conditions. The reflection principle states that the heat
kernel is

K(t,x,y) = (4n') "t e~V _ (4gp) e+ 4t
= (dnt) " te & VUM _ g™
for all positive x,y and t. Therefore there exist ¢; > 0 such that
clt—%e—(x—ywu(l A xy/t) < K(t, x, y)
et THeTE T A xyft).
In particular
K(t,x,x) ~ t ¥ A x%/t)

for all positive x and t, so one has different asymptotic behaviour as x2/t —» 0
and as x2/t » + co. Although there is a global bound of the form

0<K(t,x,y)<ct™*
a bound of the form
0<K(t,x,y)<ct ™ Bxy

holds for 0 <t < 1 if and only if > 3.
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Example 4.1.2. Let K, be the heat kernel of H = — A on I2((0, o0)") subject
to Dirichlet boundary conditions. Then

N
KN(ta X, y) = l—_ll K(ta X yl)

where K is the heat kernel of the previous example. In particular if N =3
then

’ ’ 3

L f 53 d ad x xded xbeded
K(t;xax)~t ‘min la_5_a_5 3 ) 2 3
t t t t t t t

The point is that even for this simple region the heat kernel has different
asymptotic forms on the diagonal x =y in each of eight subregions of
(0, ).

Example 4.1.3. Let H= — A on Q= {xeR":x; >0} subject to Dirichlet
boundary conditions, where N > 3. The reflection principle implies that the
Green function is of the form
Gx,y)=cylx—yP N —cylx—z27¥
where z=(_y1ay2ay3a"'ayN)' Now
lx—z|>=|x—y|> +4x,y,
=[x —yl((1+y)
where y > 0. Therefore
G(x,y)=cylx —yP 7M1 = (1 +9)' "2}
~lx=yP 7M1 Ay)
for all x, yeQ. That is there exists ay > 0 such that

1
a,Gl( A )SG(x,y)

[x—y¥=2 " |x—y|¥

<a< 1 N X1y1 )
MUx=yM2 " x—yN

for all x,yeQ provided N = 3.

We now return to the general theory. If H has compact resolvent, there
exists a complete orthonormal set {¢,};>, such that H¢, = E,¢$, where
E,— o0 as n— o0. One then has

00

K(t’ X, y) = Z €Xp ( - Ent)d’n(x)d’n(y)

n=0
and in particular
K(t,x,x)= Y exp(— E,t)|¢,(x)I*.
n=0

One therefore sees that K cannot vanish at the boundary faster than the
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eigenfunctions ¢, (which need not vanish at the same rate for different n).
We shall see in a surprisingly wide range of cases that the behaviour of K
near 0Q is controlled by that of the ground state ¢,. This then reduces the
problem to one about which a great deal can be said. Note, however, that if
0Q is piecewise smooth, the rate at which ¢,(x) vanishes as x — x,€0Q
depends strongly both upon the coefficients of H and upon the geometry of
0Q around the point x; see Section 4.6 for details.

4.2 Transference to weighted L? spaces

In this section we introduce a new method for studying elliptic operators or
Schrodinger operators which is based upon the calculation in
Theorem 1.5.12. Throughout this section we assume that H is defined as a
quadratic form on C!(Q) by

Q(f)=HZ .,Zf §—f+ VIfI’}dx

where a is a positive C' matrix-valued function and VeLi (Q). Several
technical variations upon the conditions above and those of the theorem
below are possible.

Theorem 4.2.1. Suppose that there exists a positive C* function ¢ on Q such
that

—Z ( ,,a"’>+V¢>0 4.2.1)

on Q. Then the form Q is non-negative and closable on C:(Q). The
corresponding self-adjoint operator H on I*(Q,dx) generates a positivity-
preserving semigroup e~ 1",

Proof. If we put

x-S (e

then X is continuousand V > X by (4.2.1).If feC!(Q)and weputg=¢ ' f

then
d d)g a d)g)
Q(f)_f{z a;j f—a ) f?x |¢2| |2}dx

o 5¢ _dg 09
=J{Z (Iglz ox; 0 97 ax ax

a¢ag Zag ag 21 12
V
3%, dx; +¢ 5%, +Volgl
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a¢ d(elgl?)
- J{Zaﬁ 0x; 0x;

0g 0§
+Y ¢% uag ag +V¢2Iglz}dx

=HZ a jg ;g +(V— X)|g|2}¢2dx

This immediately establishes that the form Q is non-negative. More
importantly if we define the unitary operator U, from [*(Q, ¢*dx) onto
XQ,dx) by U, f = ¢ f then U, maps C;(Q) onto C}(Q). The new form

Q4(9)=QA(U,9)
defined on the dense subspace C!(Q) of L*(Q, ¢ dx), is given by

0g 0§
Q¢(g)=HZ e e TV = X)|g|2}¢2dx

The next stage in the argument is to apply Theorem 1.8.1, which can be
done once one checks that the replacement of dx by ¢2dx in its proof and
the proof of all the other results upon which it depends does not matter.
This allows us to construct a self-adjoint operator H, >0 on I*(Q, ¢* dx)
such that exp (— H ) is a symmetric Markov semigroup. The theorem now
follows upon observing that U*' are both unitary and positivity-
preserving.

Although the operator U, takes I7(Q, ¢ dx) isometrically one—one onto
IX(Q, dx) when p = 2, there is no such relationship between the L? spaces for
other values of p in general. In particularly the ultracontractivity of e '
and of exp (— H,t) are quite independent properties.

Lemma 4.2.2. The semigroup exp(— H,t) is ultracontractive if and only if
there are constants ¢, > 0 for all0 <t < oo such that the heat kernel K(t, x, y)
of e satisfies

0 < K(t,x,y) < c,p(X)p(y). 4.2.2)
Proof. If fel?(Q,¢2dx) then

exp(— Hyt) f(x) = ¢p(x) "' e""(d f)(%)
= f¢(x)’ 'K(t, %, y)(y) f(y)dy

so the heat kernel of exp(— Ht) is

K, x,y) = ¢(x)” K(t,x, y)p(y) " "
The lemma follows immediately.
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Theorem 4.2.3. Suppose that the positive C* function ¢ satisfies (4.2.1) and
that

lexp(— Hyt)ll 5,2 <
forall0 <t < co. Thenif f eDom (H) < LX(Q,dx)satisfies H f = E f, one has

[ f(x)| < @)l f Il inf {eFc,:0 <t < c0}.

Proof. If we put g=¢ ™' f then H,g = Eg and

lglle=e*llexp(— Hy)gll
< eEtCt ”9"2
=efcl [,

The above theorems have not assumed any boundedness or Lf properties
of the function ¢ which satisfies (4.2.1). However, if ¢ € [*(Q, dx) then (4.2.2)
implies that e #* has a Hilbert—Schmidt kernel, and hence that H has
compact resolvent and discrete spectrum.

We next describe a technical variation of the above theorem. We suppose
that Qs a locally compact, second countable, Hausdorff space and that dx
is a Borel measure on Q. We suppose that H= H* is a semibounded
operator on [*(Q,dx) and that e 7' is an irreducible positivity-preserving
semigroup. We assume that the bottom of the spectrum E, is an eigenvalue.
By Proposition 1.4.3, E, has multiplicity one and the corresponding
eigenfunction ¢, normalised by || @, |, = 1, is positive almost everywhere.

We now define the unitary operator U from L*(Q, ¢2 dx) to L*(Q, dx) by
Uf = ¢,f and define H on L¥(Q, ¢Zdx) by

H=U"YH-Ey)U
so that
Dom (A% = U~! Dom (H%)
for any & >0. It is evident from the definitions that e s positivity-
preserving and that

e—ﬁrl = ¢ 1{e(Eo—H)r¢0} =1
for all ¢ > 0. Therefore — 1 < f < 1 implies
—1<ge g1

for all ¢ >0 and e~ 7 is an irreducible symmetric Markov semigroup on
Q, ¢ dx).

Theorem 4.2.4. If e~ ™ is ultracontractive with

-
le™ w2 <c

for all 0 <t < o0, then there exists a complete orthonormal set {¢,}:=, in
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L[*(Q,dx) such that Ho,, = E,¢,, and there exist constants c, such that

|¢(X)| < capo(x) (4.23)

Jor all n >0 and xeQ.

Proof. The kernel IZ(t, x,y) of et is given by
Rit.x,y) = %) K(t, . Vo ) !
and the ultracontractivity assumption implies that
0< Kt x, ) <3

Since (Q, ¢2 dx) is a probability space, it follows that K is a Hilbert—Schmidt
kernel. Therefore H has a complete orthonormal set of eigenfunctions
{,} 2, which satisfy

[¢ux)| ¢, = inf {c, e!Fn"£":0 <t < o0}
as in Theorem 4.2.3. The theorem follows by putting
$n=U(dn) = ¢
It is a remarkable fact that one can obtain lower bounds on the heat
kernel and Green function from the ultracontractivity assumptions. It will

be seen that the constants below depend upon the magnitude of the positive
gap (E, — E,) in the spectrum.

Theorem 4.2.5. If e~ "' is ultracontractive then for any € > O there exists T
such that t > T implies

(1 - g)e™ F'Po(x)po(¥) < Kit, x, y) < (1 + &)e ™ F'¢o(x)bo( )

for all x,yeQ. If G(4,x,y)is the kernel of (H + A)~! then there exists a, >0
such that

G(4,x,y) = a,00(xX)Po(¥)
for all A> — E, and x,y,eQ.

Proof. The first bound of the theorem may be recast in the form
|K(t,x,y)— 1| <e¢
if t > T and x,y,eQ. Theorem 2.1.4 yields
R(t.x.y)= 3, exp{—(E,— Et}$,(x)d.0)
with ¢, =1 and

” “5 ”oo < Cl/3 €xp {(En - Eo)t/3}
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for all xeQ. Therefore

|K(t,x,y) — 11 < c2y Zl exp{— (E,— Eo)t/3}.

which converges to zero as t — 0.
Secondly, putting & =1,

o0

G(Ax,y)= f e MK(t, x,y)dt

0

2 % J; e Eo”d’o(x)d’o( y)dt

e—(l+Eo)T

= md’o(x)d’o()’)

for all x,yeQ and A> — E,.

The above theorems describe some consequences of the ultracontractiv-
ity of exp(— H,t) or e~ but do not indicate when this property holds. In
the next section we show that for the harmonic oscillator Hamiltonian H,
e ™ is hypercontractive but not ultracontractive. Later sections give a
variety of more positive results,

4.3 The harmonic oscillator

In this section we treat the particular example
Hf =3(—d*f/dx* + x> f — f) @.3.1)
with domain & in L*(R). It is well known that this operator has spectrum
{0,1,2,3,...} and that the corresponding eigenvectors are
folx) =7~ te ™72
¢ulx) = H,(x)e ™"

where H,(x) is a polynomial of degree n, actually a multiple of the Hermite

polynomial. We quote Mehler’s formula for the heat kernel K(t, x, y) of
e,

Proposition 4.3.1. We have

K(t,%,y) = {m(1 - e"')}-anexp{“x”e Bt s (s e—z')}

2(1—e™ 2
for all t >0 and x,yeR.

Theorem 4.3.2. The semigroup e~ "" is ultracontractive on L*(R, dx) but the
semigroup e~ ™ is not ultracontractive on L*(R, ¢2 dx).
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Proof. Since
2e7'gl +e” 2
we find that
0< K(t,x,5) < {n(1 —e )} *exp { — (x — yy/e —e ™)}
<{n(l—e"2)}7%
Therefore e~ #* is ultracontractive. However
K(t,x,9) = ¢o(¥) " K(t, X, y)po(y) "

(2 4yl 2
=(1—e'2')_‘*exp{2xye 1_(xe_-;y ) } 4.3.2)

which is clearly not a bounded function of x, y for any ¢t > 0.
We could alternatively see that e~ #'is not ultracontractive by noting that
@u(x)/do(x) is the polynomial n*H,(x), which is not bounded, so (4.2.3)
cannot be valid.
We shall prove that e

lemma.

~ft is hypercontractive by means of the following

Lemma 4.3.3. If the heat kernel K(t, x, y) of a symmetric Markov semigroup
e L on 12(Q, dx) satisfies

0 <K(t,x,y) S XMW (y)
for some t >0 where y,€L? and ¢, LP?, then e~ is hypercontractive.

Proof. We have

le™  f() < led X)W £
<Yl £l

SO

™ fllpy < Clldell o 1¥ell2 1 £ 1l

as required.
For a sharp version of the following theorem see the notes.

Theorem 4.3.4. If H is defined by (4.3.1) and 2 < p < oo then e~ is bounded
from LA(R, $% dx) to L*(R, ¢p3 dx) provided

e'>(p— 1) 4.3.3)

Proof. By Proposition 4.3.1 we have
0 < K(t, x,y) Scexp {L(t,x,y)}
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where
267872+ By —(x2 +yD)(1 +e7 %)
Al—e %
S 1 =277 47 )2 1—2"B+e
21l—e~2Y 2Al—e™ 2

By choosing B appropriately we see that for any O0<i<
(1 —e~2Y/(1 +e~?") there exists 4 > 0 such that

0 < K(t,x,y) < ce” ¥ 2e~ %2,

L(t’ X, y)=

Hence
0 < K(t, x,y) S nhcelt ~Hx*2e(1 - o212

= e pOW(Y).
Now calculating with respect to the measure ¢3dx we have

[¢9]
i3 =J el " n 4™ dy < o0

-

and

-

[+ 2]
lels= J ePll ~Ax2g~de = dx,
This is finite provided

p(l1—1)2<1
or
1-2/p<A.

In the light of Lemma 4.3.3 we therefore see that the condition fore™ At to be
bounded from L? to L? is

1-2/p<(l—e )1 +e~ %

which is equivalent to (4.3.3).

We next examine the spectrum of the generator H ,of the semigroup e~ ",
regarded as acting on LA(R, 2 dx). Since H, is unitarily equivalent to H, we
see that H, has compact resolvent and that

Sp(H,)=1{0,1,2,3,...}.
It follows that H » has compact resolvent with
Sp(A,)=1{0,1,2,3,...}

for all 1 <p<oo, by Theorem 1.6.3. However Theorem 1.6.4 is not
applicable and we shall see that the spectrum of H, is quite different.

Theorem 4.3.5. We have
Sp(H,)={zeC:Rez>0} (4.3.9)
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Indeed every z with Rez >0 is an eigenvalue of H, with multiplicity two.

Proof. We define the isometry V from L'(R,dx) to L'(R, ¢3dx) by
Vi=do2f
and then put
H=V 'HYV
so that the operator ﬁ on LY(R, dx) has the same spectrum as H 1- The heat
kernel K(t,x, y) of e” ™ is given by
R(tx,5) = ¢o*K(t, x,)
= ¢0(x)K(ta X, }’)4’0()’)_ !
={n(l —e~ 29} *exp{— B(t,x,y)} 4.3.5
where
B(ta xay) = (x - e_ty)z/(l - e_ZI)'
If # denotes the Fourier transform map from L'(R,dx) to Co(R) then it
follows that X
(F e f)k) = R4 fle k)

where

c,=1—e"2

Let x* be the characteristic functions of + [0, o). Letting f* denote the L'

functions whose Fourier transforms are y (k)| k|%e ~**/4, we see that for any
Rez>0
(Fe M f) k)= x*(k)e™**"/*e ™| k|*exp(— e~ >'k?/4)
=e HF 1)K
Hence
e—Htfj: — C_z'f,i
and
Aff=zfr.

The validity of (4.3.4) now follows from the fact that Sp (H,) is a closed
subset of {zeC:Rez > 0}, because e "' is a strongly continuous contrac-
tion semigroup.

Theorem 4.3.6. If 1 <p < oo thenexp(— H o) is a norm analytic function of
t for 0 <t < o0. However, for p=1 we have

le v —e At =2 (4.3.6)

whenever 0 <s <t < 0.

Proof. The first statement is a simple application of Theorem 1.4.2. We
deduce (4.3.6) from the explicit form (4.3.5) of the heat kernel K of e 7. If f
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is any probability density in L(R,dx) and we put
fdx)= f(x —a)

then one sees that for any 0 <s <t < o0, e“q‘f,, and e_ﬁ'f,, have
asymptotically disjoint supports as a — o0 so
2=lim e f,—e"™ 1,1,

a—w

<lle o —e .

4.4 Rosen’s lemma

We now return to operators which satisfy all the assumptions of Theorem
4.2.1. Our goal will be to obtain conditions under which the semigroup
exp(— Hyt) on L*Q, $*dx) is ultracontractive.

Lemma 4.4.1. Suppose that there exist constants a and c such that
g<algll.(H+c) (4.4.1)

for some 2 < u < o and all ge **(Q). Suppose also that the quadratic form
inequality

—log¢ <eH + ¥(e) (4.4.2)
holds for some y(¢) and all 0 < ¢ < o0. Then
log f <eH + k— (w/4)loge + ec/2 + y(e/2)
for all 0 < fel*(Q, ¢ dx) of norm one, and all 0 < ¢ < .

Proof. If § >0 we define the characteristic function y by

X={1 if gré>1,

0 otherwise.

Then
log(Bf¢) < xlog(Bf¢)

<al xlog(Bf o) 2(H + ©).
Given u there exists a constant b > 0 such that

(log s)*'? < bs?

for all s > 1. This implies

lxlog(Bf )Lz <b J(J(Bffb)2 <bp.

Hence
log (Bf¢) = ab>***(H + c).
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Putting
£ = 2ab?rgiin

we deduce that
log f < —(u/4)loge + k, —log¢ + (¢/2)(H + ¢)
The lemma follows by combining this with (4.4.2).

Corollary 4.4.2. We have

J(f 2log )¢ dx < eQy(f) + BN FI3 + [ f1Zlogll fll,  (44.3)

for all 0 < feL'nL® nDom(Q,) and all 0 <& < 0, where
Ble) =k — (u/4)loge + ec/2 + y(g/2).

Proof. By use of the unitary operator U, defined in Section 4.1 we obtain
log f <eH, + f(e)

forall0 < f eI*(Q, ¢ dx) of norm one. The corollary follows immediately if

[ fll; =1, and for general f by homogeneity arguments.

The conclusion (4.4.3) of this corollary is of precisely the right form for
proving that exp (— H jt) is ultracontractive; see Section 2.2 and particular-
ly Corollary 2.2.8. Of course, it is crucial for applications that f(c) should
not diverge too rapidly as ¢—0.

The hypothesis (4.4.1) is of a standard type which we have already
analysed in Theorem 2.4.2 and Theorem 2.4.5. Note that this condition
refers to H and not to H,. The requirement that x> 2 is not essential and
can be circumvented either by reorganising the proof slightly or by using
the idea in the proof of Theorem 2.4.4.

The quadratic form inequality (4.4.2) may be investigated using the
techniques of Section 1.5. In the case of Schrédinger operators we can also
use subharmonic comparison inequalities, and we now describe this
approach in more detail.

We assume that H = — A + Von L*(Q) where V lies in L (Q) and that ¢
is a positive C? function on Q such that

—Ap+ V20

Lemma 4.4.3. Let W:Q— R be C? and satisfy:
(@ W <eH +y(e)
Jor some yl(e) and all 0 < ¢ < o0:
(i) W(x)—» +o00 as x—-0Quio}:
(iii) VWP —AW >V,
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outside some compact subset K of Q;

(iv) e <9
inside the set K.
Then
—log ¢ < eH + ()

for all 0 < ¢ < o0.

Proof. We put U =Q\K and  =e~" so that y <¢ on U uU{0}. Also
~AY+ XY =0
in U, where
X=|VW?*-AW2=V,.

The following subharmonic comparison theorem implies that ¥ < ¢
throughout U, and therefore in Q. Therefore

—log < W <eH +y(¢)
as required.

Proposition 4.4.4. Let U be a region in RN and let ¢,y be two positive C?
Sunctions on U such that

) Y < ondUn{oo};
(ii) —AG+V$20 inU;
(iii) —AY+WyY <0 inU;
(iv) V.<WwW inU.

Then y < ¢ throughout U.

Proof. If h=y — ¢ and x lies in D = {x:h(x) > O} then
Ah= Ay — A
>Wo—-Ve¢
>Wy—-Wo

Since h is subharmonic in D with h <0 on dD v {0}, we conclude that h <0
on D, which must therefore be empty.

4.5 Schridinger operators

In this section we apply the above methods to the Schrédinger operator
H= — A+ V on I*(R¥), where we assume that the potential V is continuous
and that V(x) > + o0 as|x|— oo; the analysis when ¥ has local singularities
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is much harder and is deferred to Section 4.8. Under the above conditions
the resolvent is compact, and H has a strictly positive C? ground state ¢
which we normalise by [ ¢ |, =1. We let E denote the corresponding
eigenvalue.

Lemma 4.5.1. Suppose that there exist constants a; > 2 and ¢; > 0 such that

X[ —c, K V(x)— E<cs]x]|+ ¢4 (4.5.1)
for all xeR" where a, <2a, — 2, and that W is defined by
W(x)=|x|*

where

a,<2a—2<2a,—2 45.2)
Then

W <egH— E)+cpe +cse™ 4@ ™9
for all ¢ > 0.

Proof. A straightforward computation shows that
< er® +cge” M
for all £ >0 and r > 0. Therefore
W <e(cy x| — ¢;3) + €26 + cgc,8) ¥~
eV —E)+ce+cse” @™
< &(H — E) + ¢y + cs~ 4@ ™9,

Lemma 4.5.2. We have
—logd <&(H— E)+(e)
for all 0 <& < 0, where

Y(E) = ¢ + cp8 + cgg 7O,

Proof. A straightforward computation shows that
VW2 — AW =a?|x|**"2—a(a+ N — 2)|x|*~?
for all xeR™. It follows that there exists R > 0 such that | x| > R implies
VW2 — AW >(V —E),.

Moreover if ¢ > 0 is large enough then the Harnack inequality implies that
e " < e‘¢p whenever |x| < R. Lemma 4.4.3 now implies that

—log(e‘d) < &(H — E) + cp6 + csg~ 4@~

which yields the lemma immediately.
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Proposition 4.5.3. If N > 2 then the operator
H=U;Y(H-EU,
on 3RV, ¢? dx) satisfies the logarithmic Sobolev inequality

f(fz log /)¢ dx < eQ(f) + BE) I f13 + 11 f 13 1og I £ 112

for all 0 <& < o0 and 0< feL' nL* ~Quad (H), where
Be) =k, — (N/4)loge + &(c, + E/2) + cge @1,

Proof. Since V is bounded below on RY by — ¢, the method of Example
2.1.9 leads to

lle™ @2l ; < (4mt)~™2

for all t > 0. Theorem 2.4.5 now implies that
g<allg "N/Z(H +¢;)
for all geL¥'*(R¥). The proof is completed by applying Corollary 4.4.2.

Theorem 4.54. If V satisfies the hypothesis (4.5.1) of Lemma 4.5.1 and a
satisfies (4.5.2) then

0 < K(t,x,y) < by exp(byt ")p(x)¢(y)
for all x,yeR" and 0 <t <1 where b;> 0 and
l<b=af(a, —a) < 0. 4.5.3)

Proof. We first consider the case N > 2. Proposition 4.5.3 implies that

J(f2 log f)¢*dx <e0(f) + B1@IFIZ+ IS IZ1 12

for all 0 <& <1, where

Bi(e) = bse™".
Note that (4.5.1) implies a, < a, and in combination with (4.5.2) this implies
(4.5.3). The application of Example 2.3.4 now yields

0< Kit,x,y) < bsexp(byt ™)
for 0 <t < 1. The proof is completed by using the formula
Rt x,y) = e®(x) ' K(t,x, 1)) "

which follows as in Lemma 4.2.2.
If N <2 then we consider instead the operator

H=HRI®I1+1®HR®1+1Q1Q®H
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on L*(R3M). Since the ground state and heat kernel of H, decompose as
direct products, the same conclusion holds.

Corollary 4.5.5. Let H= — A + |x|* on L*(R") where 2 <o < o0 and let
(¢ +2)/(a—2)<b < 0. 4.54)
Then the heat kernel of e "' satisfies
0 < K¢, x,y) < by exp byt~ ")p(x)d(y)
for all x,yeRN and 0 <t < 1, where ¢ is the ground state of H.

Proof. Thecondition (4.5.2) with a, = a, = aisequivalent to (4.5.4), and the
corollary is now a special case of Theorem 4.5.4.

The above corollary is sharp in the sense that if & = 2 then no such bound
on the heat kernel exists, because of Theorem 4.3.2. We can, however, also
show that the restriction (4.5.4) on the possible values of b is sharp. This
requires some preparation. We start by using the subharmonic comparison
inequality (Proposition 4.4.4) to obtain sharp bounds on the ground state ¢
of H, whose corresponding eigenvalue is denoted by E.

Lemma 4.5.6. Let 1eR and put
B=a/4+ (N —1)/2
Then the radial function
2 A
—p B _ e t+a2_ M 1-a)2
fin=r exp{ v 2" }

satisfies
pp+2—-N) »? Ao
- 2 Z;E - W

Af/fa=r"—2+

Proof. This is a direct computation. Putting

fry=r=re=o0
we have

Af= 0+ f)
0]
Af/f=BB+1r 2+2gr"  +(g) —g' —(N-Dpr 2 —(N—1)gr~".
Substituting

g'r) =1 —(3/2)r .

into this yields the result.



Schrodinger operators 123

Lemma 4.5.7. If a> 0 then there exist constants ¢; > 0 such that

c1follx]) < @(x) < ¢z f26(1x])

for all large enough |x|.

Proof. We have
—A¢+(V - B =0

and

—Afp+ Wf25=0
where

W=V -2E+o0o()

as x| — co. Therefore V — E > W >0 for large enough |x|, say [x| > R. If
[x| =R then ¢ <c,f,g for some ¢, < oo by compactness. The second
inequality of the lemma is now a direct consequence of Proposition 4.4.4.
The other inequality has a similar proof.

It is remarkable that the above bound becomes sharp if « > 2, and this is
related to the ultracontractivity of e~ ™,

Corollary 4.5.8. If o > 2 then there exist constants ¢; > 0 such that
c1follx]) < d(x) <z follxI)

for all large enough |x|.

Proof. We simply observe that f, and f,p are comparable as r — c0.
We next obtain a lower bound on the heat kernel K of the operator
H=—A+|x|~

Lemma 4.5.9. If o > 0 then there exist positive constants ¢ and T's such that
K(t,x,x) 2 ct "M exp {— (Ix| + 1)*t}

for all 0 <t < T5 and xeRN.

Proof. If Hy is the operator obtained from H by imposing Dirichlet
boundary conditions on the surface of the ball B with centre x and radius 1,
then

K(t, x,x) = Kg(t, x, x)
for all t > 0. Moreover
Iyl* < (x| +1)*
for all yeB so
Kg(t, x,x) = K(t, x, x)exp { — (Ix| + 1)%}
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for all ¢t >0, where K, is the heat kernel of — A on B with Dirichlet
boundary conditions. The proof is completed by applying Lemma 3.3.3
with Tsp2=tand 0<f<1.

Theorem 4.5.10. If o > 2 and the heat kernel of H= — A + | x|* satisfies
K(t, %, y) < c(O)p(x)p(y)
for all t >0 and x,yeR", then the exist T >0 and c; >0 such that
ct) = ¢, exp et~ @+ DD}

forall0<t<T.

Proof. By combining Corollary 4.5.8 and Lemma 4.5.9 we see that
0 <t < Ts implies

4
ct ™ NM2exp {—(r + 1)t} < c(t)r‘zﬂexp{— T ar““/z}

provided r is large enough, say r > R > 1. We now put T = T5 A T¢ where
T is defined by

R — (21— laT6)—2/(a—2)'

Then 0 <t < T and
r=(21—1at)—2/(a—2)

implies r > R. Hence

4
H> t—N/Z 28 _ lat+ 1+a/2
ct)y=c r exp{ (r+1) —2+ar

4
>ct™N? exp{— 2% +—2+ar““/2}

=ct N 2exp {cyt” @ V==Y (4.5.5)

where

C3 (za—la)—(a+ Hf(a—2) _ Za(za—la)—Za/(a—Z)

=2+oc

4 2
— _~ 2a—1 —(a+ 2)/(a—2)
<2+a oc)( ?
_ x—2 a—1.,—(@+2)/(@—2)
_20c+2(2 %

>0.
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The factor t™V2 in (4.5.5) may be absorbed into the exponential by
decreasing the constant c, slightly.

Theorem 4.5.10 proves that the lower bound on b given in (4.5.4) is sharp,
and once again illustrates the power of logarithmic Sobolev inequalities.
The rate at which c(t) diverges as t -0 shows that there is no hope of
proving ultracontractivity of e * by the use of ordinary Sobolev or Nash
inequalities as described in Section 2.4.

We finish the section by stating a theorem which shows that if
H= —A+|x|*for 0 <o <2 then e” " is not even hypercontractive.

Theorem 4.5.11. Let H= —A+V on L*RN) where VelL,, is bounded
below. Suppose that Hp = E¢ where 0 < ¢ e L*(R") and put

A= U; (H-E)U,
where U, LX(R", ¢* dx)— L*(RY, d) is given by U, f = ¢ f. Then if &=™ is
hypercontractive there exist constants y >0 and BeR such that
Hzyx?—p

as a quadratic form inequality on L*(R™).

Clearly the conclusion of this theorem is not valid for V(x)={x|* if 0 <
a <2. For a related result which gives a condition under which e~ is

not ultracontractive see Corollary 4.7.4.

4.6 Elliptic operators on bounded regions

In this section we suppose that Q is a bounded open region in RY and that H

is defined on C?(Q) by
o ( of
H = — _ —
f Zax1<“"ax,.)

where a is a positive C* matrix-valued function on Q, so that H is uniformly
elliptic. We extend H to a self-adjoint operator on L*(Q) satisfying Dirichlet
boundary conditions by Theorem 1.2.5. Then H ™! is compact by Theorem
1.6.8. The lowest eigenvalue E of H has multiplicity one by the Harnack
inequality (Corollary 3.3.7) and the corresponding eigenfunction ¢ is
strictly positive on €, and C? by local elliptic regularity theorems.
Moreover, ¢ vanishes weakly on dQ in the sense that e W§3(Q); see
Theorems 1.5.6 and 1.5.7 for further discussion of this.
We say that dQeC* if there exists a function peC¥R") such that

Q= {x:p(x) >0}
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and there exists v > 0 such that
v 1g|Vpl gy 4.6.1)

for all x in some neighbourhood of 6Q. If k > 1 and such a p exists then there
exists ¢ > 0 such that

¢ ld(x) < p(x) € cd(x) 4.6.2)

for all xeQ, by an easy local argument in a neighbourhood of dQ.
We start with a version of the Hopf boundary point lemma.

Lemma 4.6.1. If 0Q is C? then there exists a, > 0 such that the ground state
¢ of H satisfies ¢ = ayd.

Proof. We have p2eDom (H) with
p 9
H(p™)x) = = 20()(x) — 2% ayfx) 5L 2 46.3)
i J

where

<[ 0a; dp d?p
#x) = Z( 0x; 0x; i 0x,0x; )
Since « is bounded the first term on the RHS of (4.6.3) converges to zero as

x = 0Q. By combining (4.6.1) and the uniform ellipticity there exist ¢ >0
and 4 > 0 such that

Hip*)x)< =1
whenever d(x) < &. Hence there exists y > 0 such that
Hip + p?p?)x) < — 1
whenever d(x) < & The Harnack inequality now implies that
¢ =>a;H(p + p?p?)

on Q for some a, > 0. Since H™! is positivity-preserving we deduce using
(4.6.2) that

E"'¢=H '¢>a,lp+p’*p’)>a,c”ld

Theorem 4.6.2. If 0Q is C? then the heat kernel K of e~ ™' satisfies
0 < K(t, x,y) < ct 1 NDg(x)p(y) 4.6.4)
Jor all x,yeQ and all t > 0.

Proof. We verify the conditions of Corollary 4.4.2. The Condition (4.4.1)
holds with u = N and ¢ = 0 by Theorems 2.3.6 and 2.4.5. Lemma 4.6.1 and
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Theorem 1.5.5 together imply that

for all ¢ > 0. Corollary 4.4.2 now holds with
pe)=a, —(N/4 +3)loge
and the theorem follows by applying Example 2.3.1.

We comment without elaboration that the half-line example in Section
4.1 indicates that the power of ¢ in (4.6.4) is sharp.

Corollary 4.6.3. If 0Q is C* and H¢, = E,¢, where | ¢, ||, =1 then

|ux)] < cE;/2 * M4 g(x)
Jor all xeQ.

Proof. We can apply Theorem 4.2.4 with
c,=c(t"1*ND 1),
We obtain (4.2.3) with
c,=inf{c,exp(E, — E}t:0 <t < oo}

and putting t = E, ! yields the result.
If 8Q is not C? then Lemma 4.6.1 is typically false, and the behaviour of
the ground state ¢ near dQ can be quite complicated.

Example 4.6.4. If Q= (0, 1) x (0, 1) = R? then

o(x,y) = csin(nx)sin(ny)
and ¢(x, y) ~ d(x,y) as (x,y) converges to any point of dQ other than a
vertex. However, if y = x? where y > 1 then

¢(x’y)~ xt 7~ d(x’y)(l o

as x »0, and the best uniform bounds on ¢ in terms of d alone are of the
form

cd*<¢p<c,d

where ¢; > 0.
Our next example clarifies the nature of the boundary behaviour for a
piecewise smooth polygonal region in R2.

Example 4.6.5. If 0 < « < 2n we define Q, = R? by

Q,={re®:.0<r<1 and 0<#@<a}
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The ground state is of the form
@ (re'®) = cR(r) sin (nf/a)
where R(r) >0 for 0 <r <1, R(0)=R(1)=0 and

1 2
—R"——R,‘}‘%R:EaR
r acr

E, being the smallest eigenvalue of H= — A in Q,. Standard calculations
establish that

R(r)~rm®
as r —0. Hence

d(2) ~ |z|™"*

as z— 0 non-tangentially.

Example 4.6.6. Let Q = R? be defined by
Q={(x,y):0<x<1,|yl <x}

and for 0 <1 < oo let

subject to Dirichlet boundary conditions on dQ. Putting y = u/A we see that
H, is unitarily equivalent to the operator — A on the region

Q,={(ux):0<x<1 and |u]<xi}.
Now the ground state i, of this operator satisfies
Vi@~ |zI*
as z— 0 non-tangentially where
o=2 arctan A

by a comparison argument with Example 4.6.5. Therefore the ground state
¢, of H, on Q satisfies

P2~z
as z—0 non-tangentially. The point of this example is to show that
although the various operators H, are all uniformly elliptic with constant
coefficients their ground states vanish at different rates as one approaches a
vertex on the boundary. This is in strong contrast to the situation discussed
earlier where one has a C? boundary.
The next example will be important in our subsequent analysis.

Example 4.6.7. We define the conical region U = R" in polar coordinates
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by

U={(r,w):0<r<é and wed}
where A is an open subset of the unit sphere S¥ ~! with smooth boundary.
Given 4 > 0 we define the function f, on U by

fulr, ) = R(r)S ()
where S, > 0is the ground state of the Laplace—Beltrami operator A, on 4

with Dirichlet boundary conditions and --A,S,=E,S,; also R is the
solution of

—R' —(N—1yr 'R+Esr"2R=JR 4.6.5)
on (0, ) such that R(0)=0. A direct calculation shows that
—Afy=42fy

on U, and that f; =0 on 0U N {(r,w):r < 8}. If  is restricted to a compact
subset of A4, then an asymptotic analysis of (4.6.5) shows that

fU(ra Cl)) ~r®
as r— 0, where o is the positive solution of
e+ N—-2)=E, (4.6.6)

If Ais chosento be the smallest value for which one has R(d) = 0, then f is
the ground state of U, and the above calculations determine the asymptotic
behaviour of the ground state near the vertex of the cone U. If, however,
A 20 is given then for small enough é we will have R(4) >0, and hence
fu>0o0nU and on 0U N {(r,w):r = 8}; if 2 = 0 the smallness of 4 need not
be assumed.

We now turn to the study of the heat kernel and ground state of a
uniformly elliptic operator in a bounded region Q for which Q is not C2.
We have indicated that their behaviour depends in a very complicated way
upon both dQ and the coefficients a;(x). To simplify matters we shall
therefore only consider the case where

a;{x) = 9;;
so that H = — A on L*(Q) with Dirichlet boundary conditions.
If x,yeRY and 6 >0, § >0, we define a conical region by

=y =y

C(y,x,0,6)=<zeRN:|z—y| <é and
0,%6,9) { 2=y z—yl1x—yl

> COs 0}.

We define its base by
0,C={zedC:|z—y|=6}.

We say that a bounded region Q satisfies an internal cone condition if
there exist # >0 and 6 >0 such that for all xeQ there exists y,cdQ
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with
C(yex,0,8) = Q.

By reducing € and o slightly we may also assume that
0,C(y,,x,0,9)<B

where B is a fixed compact subset of Q. The external cone condition is
defined similarly.

Theorem 4.6.8. Let Q be bounded and satisfy an internal cone condition.
Then the ground state ¢ of H= — A on L*(Q) subject to Dirichlet boundary
conditions satisfies

¢ = ad®

for some a >0 and o> 0.

Proof. Let 6,9, B be asinthe definition above. Then the Harnack inequality
implies that there exists g >0 such that ¢ > on B. Let x§B, put U =
C(y, X,0,0) and let f, be defined as in Example 4.6.7, subject to the
normalizations || fy ||, =1and A=0. Then —A¢ =E¢pand —Af,=0on
U; also ¢ >ufy on d,U and hence on the whole of dU. From
Ao —pfy)<0in U and ¢ — puf, >0 on U we deduce that ¢ — uf, =0
in U. Applying the results of Example 4.6.7 with « given by (4.6.6) we obtain

$(x) = pufy(x) 2 pey|x — yx|* 2 cd(x)*
A similar bound for xeB follows straight from the Harnack inequality.

Theorem 4.6.9. Let Q be bounded and satisfy internal and external cone
conditions. Then the heat kernel K of €' subject to Dirichlet boundary
conditions satisfies

0 < K(t,%,y) < cst “2p(x)p(y) exp { — (x — y)*/4(1 + o)t}
Jor all x,yeQ and all t >0, where u > N, ¢ is the ground state of — A, and
0 <d <1 is arbitrary.

Proof. We verify the conditions of Corollary 4.4.2. The condition (4.4.1)
holds with 4 = N and ¢ = 0 by Theorems 2.3.6 and 2.4.5. Theorems 4.6.8 and
1.5.5 together imply that
—log¢ < —loga —logd®
< —loga+aed™2 —(2/2)loge
< —loga +ea,H —(¢/2)loge.
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Therefore Corollary 4.4.2 holds with

Ble)=a, —(N/4 +a/2)loge.
The ultracontractivity of exp(— H ) follows by applying Example 2.3.1
with N replaced by 4 = N + 2a. The proofis completed by an adaptation of

the argument leading to Corollary 3.2.8. The replacement of the Lebesgue
measure dx by ¢? dx throughout that section causes no new problems.

Note 4.6.10. Both Theorem 4.6.8 and Theorem 4.6.9 remain valid if — A is
replaced by a general uniformly elliptic operator in divergence form.
However, because the proof depends upon the Harnack inequality, it is
difficult to obtain useful bounds upon the constants « or pu.

Using the above theorems we are now able to prove a partial extension of
Example 4.1.3 to more general regions.

Theorem 4.6.11. Let N >3 and let Q be a bounded region in RN which
satisfies internal and external cone conditions. If ¢ is the ground state of H =
— Asubject to Dirichlet boundary conditions, then the Green function satisfies

P(x)P(y) )

x — N—-2 X — |u-2
y y

ay ' $(x)d(y) < G(x,y) < a~<

for some ay >0 and u>= N.

Proof. The lower bound on G follows from Theorem 4.2.5. The upper
bound

G(x,y)<ay|x—y>~"

follows from Corollary 3.2.8 and Lemma 3.4.3. Putting
G(x,y) = $(x)™'$()'G(x, )

the upper bound
Glx,y) <aylx —y*™

follows from Theorem 4.6.9 and Lemma 3.4.3, this time acting on
L*(Q, ¢* dx).

4.7 Singular elliptic operators

Let a and b be two positive functions on the region Q = R" such that a*'
and b*' are all locally bounded. Then we may define a quadratic form on
C2(€) by

Q

Q(f)=f alVfI2 (4.7.1)
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We regard C* as a subspace of L*(Q2, bdx), so that

1£12= Lb|f|2. 7.2)

By the argument of Theorem 1.2.6 the form @ is closable and we define
H >0 to be the self-adjoint operator associated with its closure. If
acWLHQ) then

Hf = —b"'V-(aVyf)
=—b"laAf —b"Va'Vf
for all feC® = Dom (H), but we do not make this hypothesis below.
The study of how the spectral properties of H depend upon aand bis a
fascinating and complicated topic. If b =1 then three simple results are
given in Theorems 1.5.14, 1.6.6 and Corollary 1.6.7. We start this section by

considering the case where
a=b=¢%

Although this is merely a reformulation of the results of Section 4.5, it
concentrates on the function ¢ instead of the potential V. As well as being
technically simpler to prove the results, this is more natural if one wishes to
think in probabilistic rather than quantum-mechanical terms.

We start with a positive C? function ¢ on R" and define the operator H,,
on C}(R") by the formal expression

H,f = — Af —2V(log $)-V .
If we regard C! as a dense subspace of the weighted Hilbert space
L*(R™, ¢* dx) then the associated quadratic form is given by

0,/)= f VS Pg? dx

which is non-negative. We extend H, to be a non-negative self-adjoint
operator by taking its Friedrichs extension (Theorem 1.2.8). It follows by
Lemma 1.3.4 that exp(— H,t) is a symmetric Markov semigroup on
L*(RY, ¢ dx).

Theorem 4.7.1. Suppose that ¢ =e ™V where yeC? is bounded below, and
that there exist ¢;> 0 and 6 > 0 such that
Y <e(|VY> = AY) + ¢, +cpe”? 4.7.3)

for all 0 <& < 0. Then there exist a; > 0 and y > O such that the heat kernel
K, satisfies

0< Kyt x,y) <a,exp(axt™)
forall 0 <t <1 and x,yeRN.
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Proof. We put

V=0A¢/p=|VY|* - Ay
so that

(—A+V)p=0.

Putting ¢ =1 in (4.7.3) we see that V is continuous and bounded below.
Moreover H, is unitarily equivalent to H= — A+ V and (4.7.3) can be
rewritten in the form

—logp<eV+c, +cye7?

<eH +c¢; +c670

The remainder of the proof follows that of Proposition 4.5.3 and Theorem
4.54 closely.

We refer to Theorems 2.1.4 and 2.1.5 for some consequences of the above
theorem, if one also has
I¢2 < 0.

Example 4.7.2. If we put ¢ =exp(— |x|*) where A >0 then the condition
(4.7.3) becomes
IxI* <e(A?[x[*172 = MA+ N = 2)|x|* ") —c; +cpe7°
which holds for some é >0 if and only if A> 2. While this is an easy
example, one should note that the corresponding potentials
V(x)=Ax**"2 — XA+ N =2)|x|*"2

are rather special in form.
Our next theorem imposes hypotheses which correspond roughly to the
potential V increasing no faster than quadratically at infinity.

Theorem 4.7.3. Suppose that 0 < ¢ CHR")nL*(R") and that V = Ap/¢ is
bounded below. If there exist positive constants a and ¢ such that
$lx) > ce ™

for all xeR", then Co(R") is invariant under exp(— H ) for all t > 0.

Proof. We see that ¢ is the ground state of e #* and that the heat kernels
are related by

K t,x,y) = ¢(x)" ' ¢() " 1 K(t, %, y).
Assuming that V(x) > E for all xeR¥, a use of the Feynman-Kac formula
shows that K(t, x, y) is positive and continuous with

0 < K(t, x,y) < (4nt)”" M2 exp {— Et — (x — y*)4t}.
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Therefore

0 <K,(t,x,y) < c exp {ax? + ay® — (x — y)*/4t}.
Now
(x—y)?=ix?—y?
so
0 < K(t,x,y) < cexp {(a — 1/8t)x* + (a + 1/41)y*}.

We deduce that if 0 <t <(8a)~! and feC/(R") then

C-H'”tf(x) = IK¢(ta X, )’)f(}’)d’z()’) dy

vanishes as | x| — co. Thus
exp(— HyNC) € Cq

for such ¢, and C, is invariant by the boundedness of exp (— H,t) in the
uniform norm. For ¢ >(8a)™' the same result holds by the semigroup
property.

Corollary 4.7.4. Under the above hypotheses exp(— Ht) cannot be
ultracontractive.

Proof. Ifexp(— H t)is ultracontractive then by Theorem 4.2.5 there exists
T such that ¢t > T implies

K¢(t’ Xs y) Z Jf
for all x,yeRN. If 0 < feC(R") it follows that

exp(— Hyt) f(x) = IK¢(t: x, V) f()d(y)* dy

>3 If (»e(y)*dy

for all xeR", which contradicts the conclusion of Theorem 4.7.3 that
exp(— H,t) f eCo(R").

We now return to the general situation described by (4.7.1) and (4.7.2).
For the remainder of this section we concentrate on the case where Q = RY
and there exist positive constants 4, u and real constants a, § such that

A1+ x?)* < a(x) <A1+ x?)* 4.7.9)
w1+ x2)P < b(x) < (1 + x?)P (4.7.5)
for all xeR". We shall define L* by the finiteness of the norm

If15= Luv’bdx
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for all 1 € p < 0, but also put

g = f 1P

An important special case occurs when H is the Laplace—Beltrami
operator for a (measurable) conformal Riemannian metric. This corre-
sponds to the choice

a=hl 2N
and hence to
a= (1 —2/N)
given (4.7.4) and (4.7.5). The Riemannian metric is then
ds = b(x)!N|dx|
~|x || dx|
as | x| — oo. One sees that RY has finite volume for this metric if and only if
B < — N/2, and that R" is complete if and only if 8 > — N/2. However, if b
is not smooth then the curvature of R¥ cannot be defined pointwise.
It turns out that a number of spectral properties of H depend solely upon
the values of « and f. We shall not attempt to give a complete analysis, but

shall prove ultracontractivity for one range of values of « and . Our main
result is the following.

Theorem 4.7.5. If N >3 and

a2 B(1 - 2/N) 4.7.6)
then the heat kernel of e ™ satisfies
0K K(t,x,y)Sct™N? 4.7.7)

for all 0 <t <1 and x, yeRM.

Lemma 4.7.6. It is sufficient to prove (4.7.7) if
o= B(l —2/N). (4.7.8)

Proof. If a > f(1 — 2/N) we put
ay(x) = a(x)(1 +x*" "

where
o, = (1 — 2/N).

Then a,(x) are the coefficients of a second order operator H, whose form Q,
satisfies @, < Q. If

0K, (t,x,y)<c t™N?
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for all 0 <t <1 then Example 2.3.2 with P =0 implies that

Ibfz log f <eQ,(f) + BEISNI3+ 1 f1310g ]l I, (4.7.9)

forall 0 <e<1and 0< feQuad(H,)nL'nL", where
Ble)=c—(N/4)loge.
The noted monotonicity now implies (4.7.9) with @, replaced by Q, and the

lemma follows by a second application of Example 2.3.2.
We henceforth assume (4.7.8).

Lemma 4.7.7. There exists a constant ¢, > 0 such that the potential
w(x) = (1 4 x2)~ L= 28N
satisfies
w<c(H+1).

Proof. If > — N/2 then the result is trivial since w is bounded. If
B < — N/2 then we put
$(x) = (1 +x*
where
pu=31-a—N/2)#0.
We have
H¢ = —pub™'V-{A7 (1 + x?)**#~12x}

=pb A7 H(1 — p—a)(1 + x?)*+#724x2 — (1 + x2)**#~ 12N}

=b"1A7 (1 + x?)**#~ 2(4u*x? — 2Np).
Theorem 1.5.12 now implies that there exists ¢, > 0 such that

H> b~ 11- 1(1 + xZ)a-2(4u2x2 _ 2Nﬂ)

4u?x? —2Np

>c,(l + x3)*F71
2 e ) 1+ x2

Therefore
4pPc (1 + X2 A L H + (2Np + 4p?)(1 + x2) 7672
from which the lemma follows.
We next define a partition of RY into cubes Q, as follows. For each integer
M =1 we divide [ — 3™, 3M]" into 3" cubes each of edge length 2 x 3V~1!
and include in the partition all except the central cube. We then finally

adjoin the cube [ — 1, 17" and order the collection in terms of the integers
n 2 1. We let s, be the edge length of Q,. It is not hard to see that there exist
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positive constants a,, b,, w, and y such that

y”'a, < a(x)<ya,

77 'b, < b(x) <7b,

P Wa S W(x) S yw,

for all xeQ,.
Proof of Theorem 4.7.5. Let K be the Laplacian with Neumann boundary
conditions on the unit cube Q, and K, the corresponding operator on Q,. By

applying Theorems 2.4.2 and 2.4.5, both with H replaced by (K + 1), and
also Lemma 1.7.11, we obtain

VI<ell VK + 1)

for all potentials ¥ e LV'}(Q, dx). By scaling the independent variable x this
implies

[Val < cllVallly2(Kp + 55°2)

on each Q,, where V, is the restriction to Q, of the potential ¥ on R". If
feC®(RY) then

<IV,.If,f>=I [V, fI1*bdx
Qn
<vb,.f [Val | f 17 dx
Q,
< ybulll Vn”lN/ZI (VS +s, 2 f1Pdx
Q,
<y*b,a, I V,.IIIN/zI IVfI*adx
Qn
+ 75, 2w, i V,.IIIN/zf | f1*wbdx.
Q,
Now
(baas V,.IIIN/z)"/2=b,."’Za,.'"’2I [V, IN? dx

Qn

ST f |V,1¥2b dx

Qy

< lIVLING
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where y, is independent of n. Also

(55 2wy HIlVallg2)™" =S,.'"W,.'"/2f |Val"? dx
Qn

SVS,.'"W,.'"/Zb,.'lf | Va"?b dx
Qn
<y:1ValIV3

where y, is independent of n. Therefore

Valf f> <yl VnIIN/zI |VfI?adx

+ Ya ” Vn ”N/z I |f|2Wb dx.
Q,

Summing over n yields

VLS <ysl VN I VS PPa+ | f1*bw)dx

for all feC?(R"). Hence
IVI<ysllVlnH+w)
<7l V”N/Z(H +1)

by Lemma 4.7.7. The proof is completed by applying Theorems 2.4.2 and
2.4.5, both with H replaced by (H + 1).

Note. For further discussion of the cases N = 1,2 of Theorem 4.7.5, and of
the cases where (4.7.6) fails, see the notes at the end of the chapter.

4.8 Potentials with local singularities

In this section we show how to apply all of our previous theory to operators
of the form (H, + V), where H is a second order elliptic operator and Visa
potential which may have local singularities. In our earlier theory,
particularly Example 2.1.9 and Section 4.5, we have assumed that V is
bounded below.

We start by assuming that e~ #°' is a symmetric Markov semigroup on
L*(Q), where Q is a locally compact, second countable Hausdorff space. We
assume that there exists a monotonically decreasing continuous function
B(e) for 0 < ¢ < 1, such that

If’ log f <eQo(f) + @I f I3+ 11 f131og £l (4.8.1)
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for all 0 < feQuad(Hy)nL'n L™, and define 2, as in Lemma 2.2.6 by
2, =] e BN AL™),.
t>0

We also suppose that V is a potential on Q which satisfies the quadratic
form inequality

[V < dHq + y(9) 4.8.2)
for all 4 >0 and some y(d). This implies that
(1=90Hy =y <Ho+V<(1+8Hy+ y(5) (4.8.3)

for all 0 < é < 1. Hence (Hy + V) may be defined as a self-adjoint operator
by taking the form sum, and its form domain equals that of H.

Lemma 4.8.1. Under the above assumptions we have the bound

pr103f<8<(Ho+ VLT +Tepl 15+ 1 fIElog ]l f 1,
forall fe2 . ,0<e<1and 2<p< oo, where
I'(e, p) = (2/p)Ble/2) + £x(1/p).

Proof. This is a variation upon the argument of Lemma 2.2.6. If
0<geQuad(Hy)nL'nL* then

fgz log g <(¢/2)Q0(9) + B/ NIgl3 + llgli5loglligll,

+(6/20){<Vg,9> + 6Qo(g) +7(9) g3}
=¢Q0o(9) + (¢/26)<Vg,9>
+ {Be/2) + (¢/20)y(9) } I g 113 + Il g I3 1og [l g -
Putting g = 72 and 6 = p~! we deduce from (2.2.7) that

2

p P &p p-1 g p-1
Eff log f < g CHofo f7 ) + 5 VA"

+ 20 I S+ 51 S 1Z1og 1 £ 1,

from which the Lemma follows immediately.

Theorem 4.8.2. If (4.8.1) holds with
Ble) =v — (u/4)loge (4.8.4)
for some v, u >0 and (4.8.2) holds with
YWO) =7y, +7,07" 48.5)
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for some y,a >0, then
e~ *Vxf |, <at™4| 1,
for all 0 <t <1 and fel?. Hence the heat kernel K of e~ e+ ¥ sqatisfies
0<K(t,x,y)<a?t™#?

for 0 <t <1 and x,yeQ.

Proof. We apply Theorem 2.2.7 with
dp)=2*"12+a)p~ 2"
which ensures that
t= I p~'e(p)dp.
2

We first assume that V is bounded to simplify the domain problems. We
then have

e~ Ho*Px|, , <eM
where

M= I p~ (e p)dp
2

=2 r p2pRM 2 + a)p~2 7% dp

2

+7, I 222+ a)p~27dp
2

+ 7, I 22t %2+ a)p~2dp

2
=73 + 74t —(u/4)logt.
If V is unbounded then we may approximate it by a sequence V, of
bounded potentials all of which satisfy the bound (4.8.2). One then has
le=tox Vo], , Sat™?
where a is independent of n, and the theorem follows by taking limits.
We now assume in addition to (4.8.1)—(4.8.5) that e “#* is irreducible, that

Q has measure one and that Hy1 =0, so that Theorem 4.2.5 is applicable,
with ¢o=1.

Theorem 4.8.3. Under the above hypothesis there exist a,,b, and T > 0 such
that

0<a <Kt x,y)<b < 4.8.6)
for allt 2 T and x, yeQ.



Potentials with local singularities 141

Proof. The Trotter product formula implies that the heat kernel K, of
exp{ — (H, + AV)t} is a logarithmically convex function of A for every ¢ > 0
and x, ye€). Hence

Kolt,x, y)* S Ky(t, x, )K _1(1, X, y)
for all £ > 0. Now Theorem 4.2.5 states that
3 < Kolt,x,y) <2
if t > T, and Theorem 4.8.2 implies that
0<K, (tx,y)<h,
for all ¢ > 0. Therefore

(4b)” 'g Ki(t,x,y)
as required.

Corollary 48.4. If ¢ isthe ground state of (Hy + V)normalised by (¢, = 1
then under the above conditions there exists a > 0 such that

O<a lgp(x)<a<ow 4.8.7)
Sor all xeQ.

Proof. If the eigenvalue of (H,+ V) corresponding to ¢ is E, then
integrating (4.8.6) against suitable factors yields

a1y <e B <h($1)
and
a{¢,1><e PP <b<o,1)
for all ¢t > T. Therefore
e—ZEtd)Z < bt2<¢’ 1 >2 < btzar_l e—Er
and
e—ZEtd)Z > a:2<¢’ 1 >2 > arzbr_l C_E'.
Combining these with the bound
|El < y(1)
deduced from (4.8.3), we obtain
arzbt_ 1 e—y(l)r S 4)2 S btzat_l e'y(l)t
for all ¢t > T. This implies (4.8.7).
We now come to the application of these abstract bounds to elliptic
operators. For the sake of simplicity we only consider the case Hy = — A

subject to Dirichlet boundary conditions on a bounded region Q in R¥,
where N > 3.
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Lemma 4.8.5. If Qisabounded regular regionin R, and V = V| + V, where
V,eLA(Q) for some p > N/2, and where
[Va(x)| < a; + a,d(x)~*

Jor some 0 < B <2 and all xeQ, then V satisfies (4.8.2) for a y(9) of the form
4.8.5).

Proof. We treat the two parts of V separately, the first part being handled
by Theorem 1.8.4. Secondly ¢ > 0 implies

Vol < ay + ay{ed ™2 + (2¢/p)~F12 =5}

which leads to the required bound upon applying the regularity condition
(L.5.5).

Theorem 4.8.6. If Q is a bounded regular region in RN for N > 3, and V is as
in Lemma 4.8.5, then the heat kernel K of (H, + V) satisfies

0<K(t,x, y) Sct™ N2

for all x,yeQ and 0 <t < 1.

Proof. Example 2.1.8 implies that
le™ |y, < eqt™ M4

forall0 <t < o0,and Example 2.3.1 implies that (4.8.1) and (4.8.4) hold with
#=N. We may now apply Theorem 4.8.2.

We comment that the behaviour of K for large ¢ depends upon the value
of the smallest eigenvalue E of (H, + V). The main purpose of this section is
to show that the behaviour of K near the boundary of Q is exactly the same
as that of the heat kernel K, of e~ #*, and in particular that the two ground
states ¢ and ¢, are of the same order of magnitude. This does not make the
boundary behaviour of ¢ trivial to analyse, but does at least mean that the
potential ¥ causes no extra complications to leading order.

Theorem 4.8.7. Let Q be a bounded region in RY satisfying interior and
exterior cone conditions, where N 2 3. Let V be a potential satisfying the
conditions of Lemma 4.8.5, and let Hy= — A on [*(Q) subject to Dirichlet
boundary conditions. If ¢ is the ground state of H,, then there exist ¢ >0
and p> 0 such that

0 < K(t, x,y) < ct ™2 po(x)o( y)
for all 0 <t <1 and x,yef.

Proof. Let U:L*(Q, ¢p3 dx)— L*(Q, dx) be the unitary operator Uf = ¢of
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and let
Hy=U"'(Hy— E)U

where E, is the eigenvalue of H, corresponding to ¢,. If K, and K are the
heat kernels of e ¢ and of e ~*o* " respectively then Theorem 4.6.9 implies
that

0< Kot x, y) eyt ™#?
for 0 <t <1 and x, yeQ. Theorem 4.8.2 now implies that
0<K(t,x,y) Scpt ™2
for 0 <t <1 and x, yeQ. Since
K(t,x,y) = e "¢ o(x)bo( y)K(1, X, )
the theorem follows.

Corollary 4.8.8. Under the above hypotheses there exist a,,b,and T > 0 such
that t > T implies

K(t, x, )
38, S ———=< 8.
0 <3a, Kyt x.9) 2b, < o0 (4.8.8)
Jor all x, yeQ. Moreover, there exists a constant a > Q such that
a” ' o(x) < ¢(x) < ay(x) (4.8.9)

for all xeQ.

Proof. Theorem 4.8.3 states that
0<a <Kt x,y)<b <0
for large enough ¢, while Theorem 4.2.5 implies that
F<Kolt,xy) <2
for large enough t. We deduce (4.8.8) upon using
Rt.x,y) _ K(t,x,)
Ko(t, x, y) - Kolt,x, )

Secondly the ground state of (I':I0 +V)is fﬁ = ¢/¢d,, and Corollary 4.8.4
states that

0<a !'g fﬁ £a<w
so (4.8.9) follows.
Itis interesting that the above theorems may sometimes be used to obtain

pointwise bounds on the ground state ¢, of — A. Our last theorem may be
regarded as a generalisation of the subharmonic comparison theorem,
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Proposition 4.4.4, which does not require the potential W of that theorem
to be non-negative.

Theorem 4.8.9. Suppose that Q = RY is a bounded region in R" where N > 3,
and Q satisfies interior and exterior cone conditions. Suppose that 0 <
PeCHQ)NWEAQ) and that ¢ satisfies

¢ ~*Adl=0(d™7)
asd —0 for some 0 <a < 2. Then the ground state ¢, of — A onQ, subject to
Dirichlet boundary conditions, satisfies

a '¢<Po<ag

on Q for some a> 0.

Proof. The hypothesis of the theorem states that
—Ap+Ve¢p=0

on Q, where V=0(d % as d—0. Thus V satisfies the conditions of
Lemma 4.8.5 and we can apply Corollary 4.8.8.

Notes

Section 4.2 The idea of studying heat kernels by passing to the I? space
weighted by the square of the ground state goes back to Nelson (1966) and
Gross (1976), but the possibility of obtaining pointwise bounds in this
context was first investigated by Davies and Simon (1984). Theorem 4.2.5is
taken from Davies (1986) and (1987C).

Section 4.3 Mehler’s formula, given in Proposition 4.3.1, is well known; we
refer to Davies (1980) p. 181 and Simon (1979) p. 38 for two among the
many proofs. Theorem 4.3.4 is not the sharpest result of its kind. Nelson
(1973) proved that e~ #* is bounded from L? to L? if and only if

e=2(@q-1}p-1)7*
in which case e ~ ' is a contraction; see Gross (1976) for a proof based upon

logarithmic Sobolev inequalities. Theorems 4.3.5 and 4.3.6 are taken from
Davies and Simon (1986).

Section 4.4 The ideas behind Lemma 4.4.1 and Corollary 4.4.2 are due to
Rosen (1976). Lemma 4.4.3 is taken from Davies (1985C). The subharmonic
comparison theorem, Proposition 4.4.4, is classical in origin; see Davies
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(1982) for a review of its applications to the spectral theory of Schrédinger
operators.

Section 4.5 Lemma 4.5.1 and Theorem 4.5.4 were proved by Davies and
Simon (1984) and other applications of the same ideas may be found in
Davies (1985C). Theorem 4.5.10 is previously unpublished. Theorem 4.5.11
is due to Carmona (1974) and in a slightly more general form may be found
in Davies and Simon (1984).

Section 4.6 For the Hopf boundary pointlemma, Lemma 4.6.1, see Gilbarg
and Trudinger (1977) and Davies and Simon (1984). Much more
information about the boundary behaviour of eigenfunctions than that in
Examples 4.6.5-4.6.7 may be found in Miller (1967; 1971), Oddson (1978)
and Grisvard (1981/2). Theorems 4.6.8 and 4.6.9 are taken from Davies and
Simon (1984) as refined by Davies (1987C). Theorem 4.6.11 was proved by
Davies (1987C); for regions with C? boundaries, however, much more
precise bounds on the Green function may be found in Hueber and
Sieveking (1982), Hueber (1985) and Zhao (1986).

Section 4.7 Theorem 4.7.3 is extracted from Davies and Simon (1986). The
method of proof of Theorem 4.7.5 is taken from Davies (1987A). A much
more complete treatment for other values of a, § and N is given by Pang
(1987); for other related spectral properties of these singular elliptic
operators see Davies (1985B) and Pang (1987). See also Baouendi and
Goulaouic (1969), Vulis and Solomjak (1972), Triebel (1978), Birman and
Solomjak (1980), Davies and Mandouvalos (1987), Cordes (1987) and
references there for results concerning other classes of singular elliptic
operators.

Section 4.8 The theory of this section is taken from Davies (1986), but the
class of potentials treated in Lemma 4.8.5 is influenced by Ancona (1986).
We refer to Simon (1982) and Davies (1987B) for the proof of Gaussian
upper bounds on the heat kernels of Schrodinger operators.
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Riemannian manifolds

5.1 Fundamental properties of manifolds

The goal of this chapter is to obtain information about the heat kernel of a
complete Riemannian manifold. There is a tremendous literature on this
subject, much of which concerns the asymptotic form of the heat kernel
K(t, x, y)as t = 0; we, however, shall be mainly interested in finding uniform
upper and lower bounds over the whole range of ¢, x, y. For manifolds of
non-negative Ricci curvature this problem is now largely solved as a result
of the efforts of Li and Yau, whose work we shall describe below; see
Corollary 5.3.6 and Theorems 5.5.6 and 5.6.3.

If one merely assumes that the Ricci curvature of the manifold is bounded
below by a negative constant, the above methods can still be applied but
give a much less complete picture. Indeed even for hyperbolic space and its
quotients by Kleinian groups the variety of phenomena which can occur is
vast and only partly understood. In Section 5.7 we give a brief summary of
some recent results, without proofs.

We start with a brief introduction to manifold theory in order to fix
notation. Let M be an n-dimensional (connected) manifold with tangent
space TM and cotangent space T*M. Smooth sections of TM are called
vector fields and smooth sections of T*M are called forms. Vector fields
may alternatively be defined as maps &: C*(M)— C*(M) such that

fg)=fg) +9(Sf)

for all f,geC®(M), and are given in a local coordinate system by
Ll 0
E= ¥ g

If feC®(M) then the form df is defined by
df.&>=¢f

using the natural pairing T, x T* - R.
A Riemannian metric on M is defined as a smooth choice of a positive
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definite inner product ¢ , ), on T, for each xeM, so that

D=2 gufx)Ex)m;(x)
in local coordinates, The metric induces an isomorphism j :7T,— T* and
the corresponding inner product on T¥* is given by

o)=Y gH)A)mx)
in local coordinates, where g¥ is the matrix inverse to g;;. The induced
distance function on M x M will be denoted by d(x,y) and the natural
integral for feCZ®(M) by

If = If(x)dx = ff(xl,...,x,,)g*(x)dxl...dxn

in local coordinates, where

g(x) =det {g;(x)}.

If feC*(M) its gradient is defined by

Vf=j:{df(x)}

or in local coordinates by
V)= gijajf

using the summation convention. If £ is a vector field on M then its
divergence V- ¢ is defined by the validity of

IfV'f =- IVf'f

- IVf = Ig.-kék(g“a,-f )gtdx,---dx,

for all feCP(M). Since

=- Igj(ajf)g%dx1 cedx,

= J‘aj(g%éj)fdxl "'dxn

whenever f has support in a coordinate neighbourhood, we see that
Vi= g_%aj(g%éj)'
The Laplacian is the operator on CZ(M) defined by

Af=V-(Vf)
=g~ *0(g*q"0,f)
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in local coordinates. Since feCZ implies

(=Aff)>=- IV'(Vf)f

=jIVfI2

=0

we see that — A is a non-negative symmetric operator on C°(M) and that
its form

Q(f)=IIVfI2

is a Dirichlet form in the sense of the earlier chapters. Although we have
concentrated up to now on elliptic operators defined on open regions in R",
much of what we have done generalises painlessly to manifolds and we shall
not repeat the theory.

If we define H to be the form closure of — A then e ~* can be extended to
a positivity-preserving one-parameter contraction semigroup on (M) for
all 1 <p< oo by Theorems 1.3.2, 1.3.3 and 1.3.5. Our task is to relate
geometric assumptions about the manifold to properties of the semigroup
and its heat kernel. We follow the convention of Section 1.4 in using the
symbol H , to denote the generator of e ~# in L when we want to emphasise
its dependence upon p, so that H=H,.

We conclude this section with some examples.

Example 5.1.1. Spherical polars in R®. We have
ds? =dr? +r?dé* + r?sin? 6d¢?,

9= r , g'= ro? ,
r?sin? 0 r~%sin"24

g=r*sin?6,
f= ff (r, 0, p)r>sin 0drdo dé,

10(,0f 1 a(. ,of 1 & f
f‘ﬁﬁ(’ 57)+r2sinea_9<s'neae T sin?009%

Example 5.1.2. A conformal metric in two dimensions.
ds? = a(x, y)(dx? + dy?)
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where a> 0 on Q € R2, Then

g9i; = 551 s gij= 6ija_1:
ff = ff (x, y)a(x, y)dx dy,

Af =a” (0% f /ox* + 0 f/oy?).
We see that the set of harmonic functions on Q, that is the solutions of
Af =0, is independent of the conformal factor a. This property does not
extend to higher dimensions when one defines conformal metrics in a
similar manner.

5.2 Regularity properties of the heat equation
We start with a classical result which is nevertheless highly non-trivial.

Theorem 5.2.1. The semigroup e~ on LX(M) has a strictly positive C®
kernel on (0, 0) x M x M.

Proof. If f e[*(M)thene ™ f liesin Dom(H") for alln > 1 and all ¢t > 0 by
the spectral theorem. Local Sobolev embedding theorems now imply that
e M fisa C* function of x for each t > 0. Since t »e~#'f is an analytic
function of ¢t with values in the Hilbert space Dom(H") we can even
conclude thatt, x - e~ #' f(x)isa C* function on (0, «0) x M. Foreacht >0
and xeM the map f —e ™ f(x) is bounded on L? so there exists a(t, x)e L
with
e M f(x)= < fialt, x)).

The map t, x — a(t, x)e L? is weakly C*, and hence also norm C* by Davies
(1980) Section 1.5. If ge C> then

e ffg>= f(f, a(t, x) yg(x) dx
so we have the 2 identity
e g = Ia(t, x)g(x)dx.

If g, he CP then
<C_Htg,h> = (e’"'“g,e’"'“h}

= fK(t, x, Y)goh( y) dx dy
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where
K(t, x, y) =<al(t/2,x), a(t/2, y) >
is a C* integral kernel.

Since e ~#*is positivity-preserving we have a(t, x) > 0 for all ¢, x and hence
also

K(t,x,y) = 0.

We have now only to prove that K is strictly positive.
If N isa regular coordinate neighbourhood in M and K (¢, x, y)is the heat
kernel of — A in L*(N) with Dirichlet boundary conditions on dN then

0< Ky, x,y) < K(t,x, )

for t >0 and x, yeN by Theorems 2.1.6 and 3.3.5. If x, ye M are arbitrary
then by the connectedness of M there exists a chain x = x¢, X(,..., X, =¥
such that each pair x, _ , x, lie in a common coordinate neighbourhood N,.
Thus

K(t,x,y) = j K(t/n,x,x,)

Nyx.-xN

x K(t/n,x,x,)-- K(t/n, x,, y)dx, ---dx, > 0.

If A>0 we shall write R, for the positivity-preserving operator on
(L* + L®) which coincides with (H + 1) ! on LP forall 1 < p < o0. If feL?
then

R1f=f e T fdt
0

where this is interpreted in the strong sense for 1 < p < oo and in the weak*
sense for p = c0. The integral kernel G(/,x,y) of R,, also known as the
Green function, is correspondingly given by

G4, x,y)= I e MK(t, x, y)dt

0

provided the integral converges, a matter which we shall investigate later.

Proposition 5.2.2. If feL* and A > 0 then R, f is continuous and bounded. If
f=0and f is not identically zero then R, f is strictly positive.

Proof. If g= R, f then g is bounded and
Ag=1g— fel”

in the weak sense. Sobolev embedding theorems now imply that g is
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continuous. If f >0 then

g(x)= Lw f e  “K(t, x,y)f(y)dydt

$0 g(x) > 0 by Theorem 5.2.1.

Theorem 5.2.3. If M is a complete Riemannian manifold then H= — A is
essentially self-adjoint on CZ(M).

Proof. Let y:R—[0,1] be a C* function with y(s)=1if 0 <s< 1 and
Y(s) =0 if 2 < s < c0. Then define ¢, on M by

én(x) =Y {d(x, y)/n}
where yeM is any fixed point. We see that 0 < ¢, <1 and that ¢, are

continuous functions of compact support which converge locally uniformly
to 1 as n— co. Moreover

V¢, =y'(d/n)Vd/n
$0

Vo) < 1Y ll o/
for all xeM, and ¢,eW3(M).
Now suppose that H is not essentially self-adjoint on C°(M)andletu % 0

be a function in L%(M) orthogonal to (H + 1)C®. Then u is a weak solution
of

Au=u
and hence is a C* function by Sobolev embedding theorems. Also
0> —<ru,u)

- f V(62u) Vu

= I{ GHVu)? + 2¢,uVe, Vu}.

Putting
by(x) =V,
Cu(x) = ¢l Vul,
we deduce that

I05<2I¢nlullV¢nlqul

<2I|u|bncn.
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Hence

lleall3 <20 ballullullzllcall,
and

leallz <207 M1 o el

-0 as n—oo.

Fatou’s lemma now implies that

Iqu|2=0

so Vu = 0. We finally obtain the contradiction
u=V:(Vu)y=0

whether or not M has infinite volume.
The following technical lemma will be of critical importance below.

Lemma 5.24. If h > 0 is continuous on M and feL*(M) and
Jh—Ahz=f>0
for some A>0,then 0<R,f <h.

Proof. Let U, be an increasing sequence of relatively compact open subsets
of M with smooth boundaries and union equal to M. Then the self-adjoint
operators K, on L*U,) given by K,= — A with Dirichlet boundary
conditions satisfy K, | H in the sense of quadratic forms so

K+ A" MMH+ !

in the strong operator topology by Theorem 1.2.3. If x, denotes the
characteristic function of U, then

g =Ky + A" (taf)
satisfy

Ag,—Ag, = f
on U,. Therefore

in U, and (h—g,) =0 on dU,. The maximum principle now implies that
(h—g,) =20 on U,. If m< n we deduce that

h2 @A+ Kp) " taf) 2 (A + Kp) 7 't f) = (A + H) " (tm )
as n— oo. Finally letting m — co we obtain
h=z@A+H)'f

as required.
For the remainder of this section we assume that M is a complete
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Riemannian manifold whose Ricci curvature satisfies
Ric(x) = — (n — 1)a®

for some a>0 and all xeM. The following theorem of Calabi is of
fundamental importance.

Proposition 5.2.5. If y:[0, 0) =R is C? and yeM then
fx)=y(d(x,y))
satisfies
Af < Y'(d)+ (n— acoth(ady(d) ifa>0
S W) + (= 1)d ™ H(d) ifa=0

in the weak sense for all x % y.

Note. Because of problems with the cut locus one cannot assert that
x—d(x,y) is a C* function for x X% y unless x is close to y.

Theorem 5.2.6. If M is complete with Ricci curvature bounded below then the
Sollowing conservation of probability conditions hold:

@) e H1=1 forallt>0,
(i) R,1= 1711 for some (all) 1> 0,
(iif) C®(M) is a core of H, in L\(M).

Proof. The equivalence of (i) and (ii) was proved in Theorem 1.4.4. We next
prove (ii). Let y(s) =1 + s? and

f(x) =yd(x,y))
for some fixed yeM. Then Proposition 5.2.5 implies
Af <24+ (n—1acoth(ad)f
< {2+ (n— lacotha}f
provided d(x, y) = 1. It follows that there exists A > 0 such that
Af<if
for all xeM. If ¢ >0 and
g.=AR;1 —1+¢f
then
A—Ayg.,=MA—-DR,1—A+eAf — Af)
=eAf —Af)

=0
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on M. If
U,={x:ef(x) <1}
then U, is a bounded set and
g.=AR;1>20
on dU,. The maximum principle now implies that g, >0 on U,, or
1 <ef(x)+ AR, 1(x)
for all xeU,. Letting ¢ —»0 we obtain
1 <AR,1
which implies (ii).
We finally prove (iii). If this is not true then there exists a non-zero keL®
such that

A+ H)f,ky=0
for all feC®, or equivalently
1-A%=0

in the weak sense. We see that k is C* by local elliptic regularity theorems,
Putting

h=1%k/lklx
we obtain
inf {h(x):xeM} =0 (5.2.1)
and
h—Ah=1.
Lemma 5.2.4 now implies that
hzR;l=1

which contradicts (5.2.1).

Corollary 5.2.7. If f e L°(M) then T,f(x) is a bounded continuous function of
(t,x) for all t > 0.

Proof. If f >0 then

Tf(x)= IK(L x, y)f(y)dy

so Theorem 5.2.1 and Fatou’s lemma imply that T, f(x) is lower semicont-
inuous. If feL*® then

Tf=T( +1fll-D)=1flls1

is again lower semicontinuous. Replacing f by — f the result follows.
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The above corollary is one version of the Feller property for Markov
semigroups. We next turn to a more restrictive version. We define Co(M) to
be the space of continuous functions on M which vanish at oo, and B to be
the closed subspace of L* on which T, is strongly continuous. By Davies
(1980) Section 1.4, B may be identified as the norm closure of the domain 2
of the generator H_. More precisely fe2 if and only if

H,f=lm—t"Y(T.f - f)
t—0

exists as a weak* limit in L™,

Lemma 5.2.8. We have Co(M)< B and C¥(M) < Dom (H ) with
H,f=-Af
for all feCI(M).
Proof. If f,geC¥(M) then
(g T.f >=Ke Mg, f)

=<9, >+ I0<e'"z"'s’Hzgaf>dS

=<4, f>- L(g, T,_Af>ds.
Thus

K¢, TL.f = o< L(g,Tt—sADdS

<tlgl 1Af Il
Since such g are dense in L!(M) we deduce that

ITf = fle<tlAflle
so feB. Hence Co(M) < B.
If feCP(M)then AfeC?(M)< Bsos—T,_Af isnormcontinuous. We
deduce that

T,f=f—LT,-s(Af)dS

as a Banach space identity in L. It follows that feDom (H ) with H f =
—Af.

Theorem 5.2.9. If M is complete with Ricci curvature bounded below then:
@) T,Co(M)= Co(M) all t>0,
(ii) R,Co(M)S Co(M) all 1> 0.



156 Riemannian manifolds

Proof. In order to prove (ii) we put
f(x) =yd(x,y))
where ye M is fixed and
W(s)=(1+s?)"
Proposition 5.2.5 implies
Af <0(d™*) + (n — Dacoth (adp(d)

as d —» oo, whence there exists 1> 0 such that

Af=4if
for all xeM. If u> A+ 1 we deduce that
uf—Af=f

where 0 < f eCy(M). It follows from Lemma 5.2.4 that

O<R,f</.

If geC*(M) then there exists ¢ < co such that
—cf <g<cf

and this implies

—cR,f <R g<cR,f
or

IR gl <cf.

Hence ge C*(M) implies R ,ge Co(M) for all 4 > A + 1. We conclude that (ii)
holds for all such u. Using the formula

Tih = lim {(n/)R,,}"h
valid for all he B, we now see that (i) holds for all ¢ > 0. This implies (ii) for all
A >0 by virtue of the formula

[+ 2]

R;h= I e M T,hdt.
0

Although the converse of our next theorem is false, in many common

situations a reverse implication does hold. For manifolds with exponential

volume growth it is easy to obtain an upper bound to the bottom of the
spectrum by the method below.

Theorem 5.2.10. Let E be the bottom of the spectrum of — A acting on L*(M),
where M is a complete Riemannian manifold. If the volume of M grows
subexponentially then E = 0.
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Proof. We first observe that for any aeM

. J|Bla,r+1)|—|Bar) _
1nf{ Bla.) .1 <r<oo}—0. (5.2.2)

For if the LHS is denoted A, then
|B(a,r + 1)| = (1 + 4)| B(a,7)|

)
|Ba,n)| 2 (1 + 4)"

for some ¢ > 0 and all integers n > 1. But we are assuming that the volume
grows subexponentially so A=0.
Next let ¢, e W!'3(M) be defined by

1 if dx,a)<r
o (x)=qr+1—dx,a) if r<dx,a<r+l,
0 if r+1<d(x,a).
Then
E< flvdhlz/fldklz
<|Bar+1)|—|Ba,r)|
h | B(a,r)l

and the theorem follows upon applying (5.2.2).
We conclude this section by stating without proof some properties of an
important class of manifolds of bounded geometry.

Theorem 5.2.11. Let T' be a countable free group of isometries of a
Riemannian manifold M and suppose that T\ M is compact. Then 0 lies in the
spectrum of the Laplacian on M if and only if T is amenable. Also M is
transient, that is, has afinite Green function, unless I has a normal subgroup of
finite index isomorphic to Z¢ for d=0, 1 or 2.

5.3 The parabolic Harnack inequality

In this section we shall describe the approach of Li and Yau to proving a
parabolic Harnack inequality which is much sharper than that in Corollary
3.3.6. Throughout the section we assume that M is a complete Riemannian
manifold whose Ricci curvature is bounded below by — K. Our calcul-
ations are local in character and we assume that the functions we are
examining are smooth.

Lemma 53.1. If f:M—>R is smooth and the Ricci curvature tensor is



158 Riemannian manifolds

bounded below by — K then
A{(Vf)?} 2 2/n(Af)* +2V(Af)Vf = 2K(Vf)?

where n is the dimension of M.

Proof. We verify the differential inequality at any one point a, which we
choose to be the origin of a normal local coordinate system, so that

gij = 5ija g = 5;,',

A =0y (Vf)z = (0:/X0:f)
at a, where we have used the summation convention. In the coordinate
neighbourhood we have

09" = —g'Th —g'Ti,
At the point a we have
A{(VSf)*} = az‘i(gjkajfakf)
=(0ug™0;f 01 f + 0:40;10;f)
=—- ai(gﬂrfi + gklr{i)ajfakf +20;f0,f +20,f0,f
> — (@ + airjfi)ajfakf +20;:f0,f + (2/n)0uf)?
by the Schwarz inequality. Also
VSV =0/g"0uf — g"T50:)0;f
= ajiifajf - (ajrﬁ)akfajf-
Therefore at a we have
A{(V)?*}=2VAS) VS = Q2/n)NAf)? + 2870, f0;f
where
Sk = ajr?i - %airii - %airﬂfi-
This inequality is unaltered if we replace $™* by the Ricci tensor
1(8%* + Sk = Rk
and we complete the proof by using the lower bound
R*0,f0,f = — K(Vf)~.

Lemma 5.3.2. Let u> 0 be a smooth solution of the heat equation
Au=u,
on M x [0, T] and put
F(x,ty=t{(Vf)* —af,} (5.3.1)
where f =logu and acR. Then

AF —F, 4+ 2Vf-VF +t7'F 2 t[(2/m){(V)? - £,}*> = 2K(Vf)*]. (532)
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Proof. We first observe that f satisfies

Af +(Vf) =/,
and that G =t f, satisfies
AG—-G,+2Vf-VG+t7'G
=tAf,— fi—UAf A2V V )+ 22V VS + f,
=0.
The LHS of (5.3.2) therefore equals
tA{(VIY} —(AfP? =22V VS, + 2V -V{(VS)?} +(Vf)
> t(LQ2/n)AS) +2V(ASf) VS = 2K(Vf)? =2Vf-Vf,+ 2Vf-V{(Vf)*}]
= t[(2/n)Af)* - 2K (Vf)*]
which leads at once to the RHS of (5.3.2).

Lemma 5.3.3. If M is compact and Ric > — K on M for some K > 0 then the
Sunction F defined by (5.3.1) satisfies

no? Kt

on M x [0, T] for any a > 1.

Proof. Let (x,s) be the point in M x [0,t] at which F takes its maximum
value. If F(x, s) <0 then we have nothing to prove, while if F(x, s) > 0 then
5s>0so

VF =0, AF €0, F,20
at (x, s). Lemma 5.3.2 now yields
sT2F 2 (2/m{(VS)? - f}* - 2K(Vf)?
at (x, s). If we put

p=F 1 (Vf)
then g >0 and

F=S(F1u_afs)
SO

F
=—(us—1).
fs=—Slus—1)
Therefore « > 1 implies

2F? s—1)2
S'2F+2KuF>—</,t—'u )
n as
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and
2 2
FSK 1 +2Kus i
2 {1 + (@ — L)us}
: no? 1+ Cv
T2 (1+0)?
where
v=(—Dus=>0
and

C=2Ks/(a—1)>0.
Finally v > 0 implies
1+ Co< (14 20+ 0?1+ C/d)

no? C\ no? Kt
F(x,t) < F(x,s) < — — )< — —
(x,t) < F(x,5) > <1+4)< 3 {1+2(a—1)}

SO

as stated in the lemma.

Lemma 5.3.4. The same bound (5.3.3) holds if we assume that M is complete
rather than compact.

Proof. The problem is that we can no longer assume that F has any
maximum M x [0,t]. Let aeM, R>0 and let ¢ be a continuously
differentiable function of compact support on M such that
0<¢(x)< pla)=1
for all xeM and
(Vo) < e, Ap > 6.
We shall construct such a function later.
Let (x, s) be the pointin M x [0,t] at which ¢F takes its maximum value,
and assume that this value is positive. Then
V(¢F)=0, A(pF)<0, F,>0
at (x, s). Therefore
¢AF +2Vp-VF¢~ 1 + FAP 0.
Therefore
GAF —2F(V$)*> + FAP <0
and
¢AF <(2¢ + O)F.
Lemma 5.3.2 implies that
OAF — ¢F, + 2V f-V(¢pF)—2FVf -V + 1t~ '¢F
2 tpL2/m{(Vf) = f}? = 2K(V£)*]
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everywhere, so at (x,s) we have
F2e+08)—2FVf -V + s 1¢F 2 s¢p[2/m){(VS) — f}*> — 2K(Vf)*].
Defining u > 0 as before, we obtain

F(2c +0) + 2Fhudetp? + s~ 1¢F > sd)[ 2F

no?s?

2

{14+ (ax—us}? — 2KuF].

This implies
s 2o 20F 2
5(Q2¢ + 8) + 2sFrutetp? + 1 4+ 2Kus? > " {1 + (¢ — Dus}>.
n
This may be written in the form
AA*—-2Bi-Cx0
where
A=(¢F)*,

2
A =na—2{1 + (oc - I)US}Z,

B = su*s?,
C =1+ 2Kus? + s(2¢ + 9).
We deduce that
A< B/A+{(B/A)* + C/A}?*
and hence that
F(a,t) = ¢p(a)F(a,t)
< P(X)F(x, 5)
< {B/A+ ((B/4)* + C/A)*}.
Now
B notutets
<=5
A 21 + (¢ — us}?
< na2etriytst
T 2{1 + (o — lus}?

0

no2edtt
S —
2a—1)?}
which converges to zero as ¢ —0. Also
C na? { 1 + 2Kus? s(2¢ + 8) }

A 2
no? Kt
<—A1
> { +2(oc— 1)+t(2£+6)}
which converges to the RHS of (5.3.3) as e = 0 and 4 — 0. The proof of (5.3.3)

0<%~ (14— 1)us)2+(1 + (@ — 1yus)?
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now reduces to constructing a sequence ¢, with the stated properties for
which ¢,—-0 and 6,—0.
For this purpose we put

én(x) = Y(d(x, a)*/n)

where
!P(u)—{o’ us 1
Then
[ d*\2dvd
Vd)n_lp(?) n
)
44> d*\)?
2__ " =
(V)? = {w (n )}
4 ., 16
(W) < —
Sn('//) <
Therefore
g, =16/n—-0 as n—o0o.
Also

@\ 4AVaE (8 A
A¢"=¢"(—) AL +¢'(—)A( )

n n n n

dz
>- ’*”’(7)

=>-2cn"t+n7Y

cd+1)

h

by Proposition 5.2.5. Therefore
0,=2c(n"*+n")>0 as n-om.

We can now state the main Harnack inequality of Li and Yau.

Theorem 5.3.5. Let u > 0 be a solution of the heat equation on M x [0, T],
where M is a complete Riemannian manifold with Ric 2 — K for some K 2 0.
Then 0<t<t+s<T and a>1 imply

0<u(x t)<u( t+5s) t+_S M/Zex E.}.LI(S
SHESRDSHEY t PVas Tau—1)

where d = d(x, y).

Proof. By replacing u by (# + ¢) and then letting ¢ - 0 we see that we may
assume in the proof that ¥ > 0. Putting f = log u we see from Lemma 5.3.4
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that
o2 na*K
(V)P —af <— 4(oc— 0y
Let
_oad®>  nKa
b= a2t da—1)
and

B(A) = u(x ,, A"/ eb4

fort<A<t+s, where x,=x,x,,,=y and

|dx,/dA|=d/s
so that x; moves along a geodesic between x and y. Then
d of
aleee=vr: H*ﬁ*zz*ﬁ
1 , ha naK
VG dz 2/1””“ v 2/1 Ha—1)

2
IVfI +—+ VS

=0.
Therefore ¢ is increasing and
u(x, t)tna/Z eht < u(y,t + S)(t + S)na/z bt +9)

as stated in the theorem.

Corollary 5.3.6. If u>0 is a solution of the heat equation on M x [0, T]
where M is a complete manifold with Ric>0, then 0<t<t+s<T
implies

t s n/2
0< u(X, t) < u(y,t + S)(%) 642/45.

Proof. We put K =0 and then let & — 1.

Example 5.3.7. If in Euclidean space we put
u(x, t) = (4mt) "2 e =¥ 14

uix,t)  [t+s\"? y? x?
u(y,t+s)_< t ) exP{4(t+s)_Z}'

then
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Since
2

2 2

y X
Xy —x=dt=S
s“p{4(t+s) et } 2

we see that Corollary 5.3.6 is sharp for this example.

Corollary 5.3.8. If u >0 is a solution of the heat equation on M x R, where
M is a complete manifold with Ric > — K for some K >0 thenteR and s >0
imply

0 < u(x,t) <uly,t + s)exp {(d + s(nK)*)*/4s}.

Proof. By letting the time origin move towards — oo we obtain
0 <ulx,t) u(y,t +s)exp {ﬂ + ﬂ}
4s  Ha-—1)
The exponential factor is minimised for
a =1+ (s/dynK)}

and this proves the result.
Example 5.3.9. If we put
U (x,t) =xpexp { — a(n — 1 — a)t)

where x eH", the hyperbolic space of dimension n, then u, is a solution of the
heat equation, and

ux,t) Xp \* o
m-( )exp{a(n 1 —a)s}

Yn
Therefore
up {r‘(‘;f-%zd(x, y) = d} = exp {ad + an — 1 — a)s}
and

sup {rl(l;f—%:d(x, y)=d and aeR} = exp {(d + (n — 1)s)*/4s}.

This is very close, but not quite equal, to the bound of Corollary 5.3.8, since
one has Ric= — (n — 1) on H".

5.4 Potential theory

Before continuing with our study of the heat equation we investigate some
immediate consequences of (5.3.3) rewritten in the form

(Vu* u,<na2{1 K }

o
u? )

; + Z(_GZT) (54.1
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where #> 0 is a solution of the heat equation on M x[0,T], M is a
complete Riemannian manifold such that Ric > — K for some K >0, and
o> 1.

Theorem 5.4.1. Let v: M —(0, o) be a solution of
—Av=Av.
Then 4 <nK/4 and
(Vo)’/v* <nK/2 — A+ (nK/4 — J)}(nK)*.

Proof. If we put
u(x,t)=v(x)e”

then u is a positive solution of the heat equation, so (5.4.1) yields

L PPPLLS LN S
v? T2t 2a-1)

for all t >0 and « > 1. Putting f =a — 1 and letting t - + co we get

Vv)? K
(vl;) S—/l(/i+1)+n7(ﬁ+2+ﬁ‘1)

for all § > 0. The inequality 1 < nK/4 is obtained by letting § — + oo, while
the main inequality of the theorem is proved by choosing the § which
minimises the RHS.

Corollary 5.4.2. If v is a positive harmonic function on M then
(Vv)? < nKov?.

In particular if Ric = 0 on M then any positive or bounded harmonic function
is constant.

Corollary 5.4.3. If E is the bottom of the spectrum of H then
0 < E <nK/a.
In particular if Ric>0 on M then E=0.

Proof. If A < E then there exists a function ¥ >0 on M such that

Au=—Ju

Therefore

u(x,t) = u(x)e

satisfies the heat equation on M x R and Corollary 5.3.8 with x = y implies

e}.s s enKs/4
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for all s >0. Hence 4 < nK/4 for all 1 <E, and the corollary follows. An
alternative proof of the second statement may be obtained using Theorem
5.2.10 and Proposition 5.5.1.

We are now able to identify the Martin boundary (minimal positive
solutions) of the heat equation on M x R. A minimal solution is a solution
u > 0 such that if 0 < v < u and v is another solution then v = Au for some
constant 4 > 0.

Theorem 5.4.4. If u is a minimal solution of the heat equation on M x R
where M is complete with Ricci curvature bounded below, then

u(x, t) = v(x) e
where EcR and v:M — (0, 0) satisfies
Av = Ev.

Proof. If we put
w(x,t) = u(x,t —s)
where s> 0, then w is a solution of the heat equation and
0 < wix, £) < ulx, t)enksi+
by Corollary 5.3.8. Therefore
w(x, t) = Au(x, 1)

by the minimality of u. Assuming that u is not identically zero we see that
As> 0 and that

u(x,t — s) = Au(x, 1)
for all seR, where A_,= A !. Therefore
u(x, ) = v(x)4, !

where v(x) = u(x, 0). The stated properties of v(x) and 4, follow by using the
fact that u satisfies the heat equation.

Note 5.4.5. If there was no curvature restriction on M and the Brownian
motion had a finite first passage time to infinity, then one could not expect
Theorem 5.4.4 to be valid. The same happens if M is not complete.

We end this section with a simple but famous theorem of Lichnerowicz.

Theorem 5.4.6. If M is a compact Riemannian manifold of dimension n with
Riczp>0
then the smallest non-zero eigenvalue E of — A satisfies
Ex=np/in—1).
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Proof. We integrate the inequality of Lemma 5.3.1 over M, where f is the
eigenfunction of — A corresponding to the eigenvalue E. This yields

0= (2/n) I(Af )?—2E I(Vf )*+2p I(Vf )?

2
=<2%—2E2+2pE)J‘f2.

Since E> 0 and {f? % 0 we deduce that
E/n—E+p<0

which yields the stated lower bound on n.
If p = 0 then by considering spheres one sees that any lower bound on E
must involve some further datum about M, such as its diameter or volume.

5.5 Upper bound on the heat kernel

Throughout this section we assume that M is a complete connected
Riemannian manifold of dimension n with Ric > 0. We do not, however,
make any assumptions of bounded geometry. If xe M and r > 0 then B(x,r)
denotes the ball with centre x and radius r. For any set E = M, | M| denotes
its volume. If H = — A then the heat kernel K(t, x, y) of e~ #* is a positive C*
function by Theorem 5.2.1 and our goal is to obtain an upper bound for it in
terms of geometrically computable quantities. We shall make fundamental
use of the following geometric results.

Proposition 5.5.1. Let M be complete with non-negative Ricci curvature. Let

V(r)=1B(x,r)|
where xeM and r > 0, and let
Vo(r) = c,r"
be the volume of the Euclidean ball of radius r. Then
V(r)/Volr)
is a monotonically decreasing function of r. In particular:
(@ V() < Volr)
Jorallr>0.
(i) Vi< Viern <a"V(r)

forallr>0and a> 1.
V()= V(s) _ Volt) = Vols)
V() Volr)

(iii)

Jorall 0<r<s<t
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Analogous results exist for manifolds with Ricci curvature bounded
below, but we shall not use them.

Theorem 5.5.2. There exists a constant ¢ depending only upon n such that
0 <K(t,x,x) < c|B(x, t})| !
for all t> 0 and xeM.

Proof. Corollary 5.3.6 implies that
t nf2 )
Ktxx)<K(t+s5y, x)(%) edi4s

for all s> 0 and ¢ > 0 where d = d(x, y). Integrating over yeB(x,r) yields

t+ n/2 )
|B|K(t,x,x)<<_t_s) ¢ /“f K(t+s,3,)dy
B

2
< (t + )"/ el
t

since e "' is a contraction semigroup on L'(M). The lemma follows upon
putting s=t=r2

We next construct a suitably well-behaved function ¢(x, f) which is of the
same order of magnitude as | B(x, t*)| ~*. We start by defining the function
V(x,r) for xeM and r> 0 by

Vier) = f (s dy

where f is a C® decreasing function on [0, o0) such that f(s)=1if0<s< 1
and f(s)=0if s> 2.

Lemma 5.5.3. There exists a constant ¢, > 0 such that
|B(x,r)| < V(x,r) < ;| B(x,1)|
for all xeM and r > 0.

Proof. It is immediate from the definition that
|B(x, )| < V(x,r) <|B(x,2r)|.
But Proposition 5.5.1 (i) states that
| B(x, 2r)| < 2"| B(x,1)|

and the lemma follows.



Upper bound on the heat kernel 169

Lemma 5.5.4. There exist constants c; such that
0goV/ior<c,Vr!
IVV|<c3Vrt
—AV <, Vr?

for all xeM and r > 0, where the derivatives are computed in the weak sense.

Proof, We have

ov/or = r'lf {— f'(d/nd/r}dy
M
where f’ < 0. Therefore
0< 0V/or < cyr U B(x, 2r)|
< ¢ 6y~ B(x, 1)

< r WV (x, 7).

Secondly
vy = f FUd/r\Vd/rdy
$0 "
i< Lraniay
<cyr~ | B(x, 2r)|
<c,cyr"W(x, ).
Finally

AV = f f'@dr~YHAdr-1dy + f f"(dr~1)|Vd|*r?dy.
M M
Applying Proposition 5.2.5 with a = 0, we obtain
-1
AV > —I | fdr 1~ dy —I | f"(dr=1)Ir=2dy.
M dr M
Hence
n—1 r 1 -
—AVS—ZI If’(dr'l)l—dy+—zf | f"(dr~")|dy
r M d r* Ju

<c,r72|B(x, 2r)|

< cyr VX, ).

Lemma 5.5.5. If
¢(x, 1) = V(x,tH) ™4
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then there exist positive constants ¢, A, F such that
¢ B(x, t})| " < ¢(x,0) < c| B(x, t¥)|"*
0= 0¢/ot = — (A/dt)p (5.5.1)
Ap < (F/t)g (5.5.2)
for all xeM and t > 0.

Proof. This is a direct computation using the bounds of the last two
lemmas.

Theorem 5.5.6. If M is complete with non-negative Ricci curvature then for
all 6 > 0 there exists c;> 0 such that

0 <K(t,x,y) < ¢5| Bix, t*)|"*|B(y, t})|7*
x exp { — d(x, y)*/4(1 + d)t}
for all t >0 and x,yeM.

We shall, in fact, prove the equivalent bound
0 < K(t, x, y) < csd(x, )p(y, ) exp { — d*/4(1 + d)t} (5.5.3)

by extending the arguments developed in Section 3.2. Note that
Theorem 5.5.2 may be rewritten in the form

0 < K(t, x, x) < cd(x, ). (5.5.4)
Our argument is of an abstract character, depending only upon the bounds
(5.5.1)-(5.5.4).
Given any 0<T < oo we define the unitary operator Uy from
LM, ¢(x, T)? dx) to [}(M,dx) by
Urf(x)=(x, T)f(x)
and transfer the problem to this weighted space. Putting
drx = ¢(x, T)*dx
we define H; on [*(M,dx) by
Hy=UXTH+ F)Uy
so that Hy is associated with the form closure of

Qr(f)=TQ¢+N)+FISf I3

We define # = W!'™ to be the space of continuous functions of compact
support on M such that Vf calculated in the weak sense lies in L*. Since
# 2 C2(M)itis aform core for H. Since ¢ is a positive continuous function
with locally bounded first derivatives U'% = %, and 4 is also a form core
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of Hy. It will be of some significance that f e #implies | f |*e4# . foralla > 1,
and that fge# whenever fe# and geC*.
Now (5.5.2) implies that

Qf)=T | IV(¢zfN)|*dx + F Iltbrflzdx

=T |{IVf?+(F - To7'Ap7)|f 1} drx

-
=T |IVfPdrx+ Ilflzdur (5.3.5)

LY

where yuy is a non-negative measure. It follows as in Theorem 1.3.5 that
exp (— Hyt) is a symmetric Markov semigroup on L*(M, d ;x); the measure
dur may be singular because of cut locus phenomena, but the second term
on the RHS of (5.5.5) causes no problems.

Lemma 5.5.7. The heat kernel K of exp(— Hyt) satisfies
0 <Kt x,y) < cot ™42
forall0 <t <1 and x, yeM.

Proof. A direct calculation shows that
Kalt,x,3) = e 7¢(x, T)"'¢( 3, T) 'K (T, x, ). (5.5.6)
Now K is the integral kernel of a positive operator so (5.5.4) implies
0 < K(s, %, y) < K(s, x, x)*K(s, y, y)?
< (X, 3)¢( v, 9).

Therefore
@ tT)P( y,tT)
o(x,T) ¢(».T)

O0<Kit,x,y)<ce

(5.5.7)
Also (5.5.1) implies that

a Al4

E{t d’(x’ t)} 20
SO

(1) P(x,tT) < T4p(x, T)
and

O(x, tT) <t~ 44 P(x, T).

The lemma follows by combining this with (5.5.7).

Lemma 558, If 0<e<1and 2 <p< oo then

prlngde SeCHELHESP7H 4+ 2B(@p™ 1L f 15+ IS N logll £ 1,
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for all0< fedB ., where
pe)=c, —2Aloge.

Proof. This is a matter of combining Theorem 2.2.3 and Lemma 2.2.6.

We now repeat the arguments of Section 3.2. We put & =e™ where aeR
and y: M — R is a bounded C* function such that |Vi{| < 1 everywhere on
M.

Theorem 5.5.9. If 6 > 0 and
MHA-1)=1+6
then
0<Kt,x,y)<cst™"2exp{ — d*/4(1 + 6)tT} (5.5.8)
forall 0 <t< A7t and x,yeM.

Proof. We follow the same route asin Section 3.2. If fe#, and2<p <
then

CHYS HA(SP™1)) S2CHRE ), HEET /PNy + ?pll f 115
The proofis as in Lemma 3.2.1, the extra term associated with the measure

ur =0 only making matters easier. The proof now follows that of
Theorem 3.2.5 except that when we put

&(p) = A2'tp™*

we need to assume that 0 <t < 17! in order to ensure that 0 < ¢(p) < 1 for
allp>2.

Proof of Theorem 5.5.6. We putt=A"! and s=¢T in (5.5.6) and (5.5.8) to
obtain
K(s:%, ) =™ ¢(x, A9$( y, AK 1A%, x, )
<P A2 g(x, ) y, S)cHAA? exp { — d*/4(1 + d)s}.

The theorem follows by combining this with the bound on ¢ in
Lemma 5.5.5.

We say that M has bounded geometry if there exists a function v(r) and a
constant ¢ > 0 such that

¢ (r) < | B(x,r)| < cv(r)

for all xeM and r > 0; other notions of bounded geometry usually only
imply this property for 0<r<1.

Corollary 5.5.10. If M is complete with non-negative Ricci curvature and
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bounded geometry then for all 6 > O there exists c; such that
0 < K(t, x,y) < cs(t¥) ™ Lexp { — d*/4(1 + o)t}
for all t >0 and x, yeM.

The following variation of Theorem 5.5.6 is sometimes useful.

Theorem 5.5.11. If M is complete with non-negative Ricci curvature then for
all 6> 0 there exists a;> 0 such that

0 <K(t,x,y) < as| B(x, t*)| ™! exp { — d(x, y)*/4(1 + d)t}
for all t> 0 and x, yeM.

Proof. If d = d(x, y) then Proposition 5.5.1 (ii) implies that
|B(x, t})| < |B(y,d + t¥)|

d+tr\"
SIB(y,t*)I< I )

< bZ| B(y, th)| e2*4°"

for any &> 0. Therefore
0 < K(t,x, y) < ¢5| B(x, t})| " *b,exp {ed?/t — d*/4(1 + S)t}
by Theorem 5.5.6, for all £> 0 and § > 0. The theorem follows.

5.6 Lower bounds on the heat kernel
We continue with the assumption that M is a complete Riemannian

manifold of dimension n with Ric > 0.

Theorem 5.6.1. We have
K(t, x,y) = (4nt) "™ exp { — d(x, y)*/4t}
Sor all x,yeM and t > 0.

Proof. We apply Corollary 5.3.6 to the function

u(x,t) = K(t,x, y)
and obtain

t+s\"? .
K(s,x, x) < K(t + s, x, y)(T) ed?/4t

for all s> 0 and ¢ > 0. Now local calculations establish that

= lim (4ns)"/2K((s, x, x)

s—0
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$0
1 <liminf K(t + 5, x, y) {4n(t + 5)}"/2 414

s=0
= K(t, x, y)(4nt)"/2 e?*I*,
While this bound is extremely valuable because of the sharp constants, it
is not of the same form as the upper bound in Theorem 5.5.6.

Lemma 5.6.2. There exists a constant a > 1 such that

f K(t,x,y)dy>3
d(x,y)snté
for all xeM and t > 0.

Proof. Using the upper bound
K(t,x,y) < c|B(x,t})|" L exp { — d(x, y)*/5t}
of Theorem 5.5.11, we see that

I K(t,x,y)dySCIB(x,t*)rlf e~ 5 dy
d?até

dzat

=cV(H)! I e "3Y(dr)
rzat

where
V(r) =|B(x,r)|.
By Proposition 5.5.1 (iii) this is bounded above by
c Vo(tH)™? I e~V (dr)

rzat

[+ 4]
= czt'"/zf e 1 dy
at*

[+ 4]
= CZI e ¥Pns""ds
a

<

N

for large enough a>1. The proof is completed by noting that
Theorem 5.2.6 implies that

I K, x,y)dy=1
M
for all t> 0 and xeM.

Theorem 5.6.3. Let M be a complete Riemannian manifold of dimension n
with Ric> 0. Then for all 0 <8 <1 there exists b; > 0 such that the heat
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kernel of M satisfies
K(t,x,y) = bs| B(x, t*)| " exp { — d(x, y)*/4(1 — &)t}
for all t >0 and x,yeM.

Proof. If a is the constant of Lemma 5.6.2 then d(x, y) < at* implies
K(t/2, x,y) < K(t, x, x)2"? ¥/
< 2"2 ¥ 2K(t, x, X)

by Corollary 5.3.6. If B is the ball with centre x and radius a(t/2)* then
Lemma 5.6.2 implies that

1< f K(t/2,x,y)dy < ¢;| BIK(t, x, X).
B

An application of Proposition 5.5.1 (ii) now yields
CZIB(xa té)l— ! < K(t’ X, x)

for some ¢, >0 and all t >0 and xeM.
If 6 > 0 then a second application of Corollary 5.3.6 yields

K(8t,x,x) S K(t, x, y)d "2 e#1401 - 01
Therefore
K(t,x, y) = 6" e~ 4241 =9c, | B(x, (6t)})| !
> balB(x, té)l -1 e—dz/4(1 - )t

where b; > 0.

Note 5.6.4. By using the fact that
K(t,x,y) = K(t, y, x)
we can easily deduce the alternative lower bound
K(t, %, y) 2 bs| B(x, t¥)| "*| B(y, 1¥)| "* e~ 41417,

Corollary 5.6.5. If M is a complete Riemannian manifold with non-negative
Ricci curvature then

lim tlog K(t, x, y) = — d(x, y)*/4

t=0

for all x,yeM.

Proof. This follows immediately from Theorems 5.5.11 and 5.6.3 once one
uses the fact that

B(x,r)~r"

asr—0.
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For extensions of this Corollary see the notes.

Theorem 5.6.6. If M is complete with non-negative Ricci curvature then M is
transient if and only if

F | B(x,t%)| "' dr < o0 (5.6.1)

1

for any (or all) xeM.

Proof. It follows from the triangle inequality that if (5.6.1) is finite for some
xeM then it is finite for all xeM. The proof is now a simple matter of
combining the definition of transience with Theorems 5.5.11 and 5.6.3.

5.7 Hyperbolic space
We describe some of the properties of hyperbolic space of dimension (n + 1)
in the half-space model. We put
H**! ={z=(x,y):xeR” and 0<y<oo0}.
This is a complete Riemannian manifold for the conformal metric
ds? = y~2(dx? + dy?).
The volume element is
dvol=y " tdxdy
where dx denotes the Euclidean volume element in R". The Laplace-
Beltrami operator is given by
A= y*A, + 6%/0y*) — (n — )y(9/y)
where A, denotes the Euclidean Laplacian on R".
The Riemannian distance d = d(z,, z,) between two points z;eH"*! may
be computed from
6 =%+ 4coshd = cosh? (d/2)

where the function ¢ = o(z,, z,) is defined by

=|x1 — %12+ (y; + y2)?
4y,y,

It follows from these last two formulae that the hyperbolic balls in H"* ! are
also Euclidean balls; however, the hyperbolic and Euclidean centres do not
coincide. We shall use B(x, ) to denote the hyperbolic ball with hyperbolic
centre x and hyperbolic radius r.

If we fix acH"*! and put p(z) = d(a, z) then it follows from the above
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formulae that
Ap =ncoshp.
If f is a smooth function on R we deduce that

Af(p)= f"(p)+ ncoth pf'(p)

= (shp)‘"% {(sh p)"%}. (5.7.1)

The proof of a number of the above properties is most easily accom-
plished by using the symmetry properties of H”* L. If G denotes the group of
all orientation-preserving isometries of H"*1, then G acts transitively on
H"*1; up to central elements G can be identified with SL(2, R) on H? and
with SL(2, C) on H3. The group G contains the Euclidean isometry group of
R” in an obvious way, but is actually a simple Lie group of rank one. By
using this symmetry group a number of problems can be reduced to a
standard configuration, in which properties of H? can be applied. Such
methods enable one to show that the geodesics in H"* ! are semicircles with
centres on the boundary R"= {(x,0):xeR"}, and with ends which have
tangents perpendicular to the boundary.

The function ¢ defined above satisfies

0(gz1,9z5) = 0(21,2,)
for all geG. It is called the fundamental point pair invariant because any
function F on H"*! x H"*! which satisfies

F(gz,,92,) = F(2,,2)
for all geG must be of the form

F=f(o)

for some f. This applies in particular to the integral kernel of any operator
which commutes with the action of G on H"* 1,

The group symmetry implies that the Ricci curvature is constant on
H"*!, and, in fact, a direct computation shows that

Ric= —n.

It follows that all of the results in Section 5.2 and many of those in
Section 5.3 are applicable to H"*1,
A direct computation shows that

— Ay =sii- )y
for all seC. Upon putting s = n/2, it is immediate from Theorem 1.5.12 that
Sp(— A) < [n?/4, ).

It turns out that the spectrum of — A, acting on L(H"* ') depends upon p.
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Theorem 5.7.1. If 1 < p < oo then the spectrum of — A acting on L* is the
part of the complex plane on or inside the parabola

teR-n?p~ (1 —p~ Y+ 2 +itn(1 — 2/p). (5.7.2)

In particular the [? spectrum is the whole of the interval [n*/4, ).

We turn now to the heat kernel. Since the Laplacian commutes with the
action of G on H"*1, it follows that

K(t,21,2,) = K(1,921,92,)
for all geG, z,;eH"*! and r > 0. Therefore
K([szlszz) = k(ts d(zpzz))-

From the fact that K is a solution of the heat equation and (5.7.1) we deduce
that

ot op?
for all t >0 and p > 0. Moreover local analysis shows that
k(t, p) ~ (4m)~ "+ DI2 g P74

ok
+ ncoth p%

for small p and ¢.
The heat kernel on H? is of the form

se” s2/4t

ky(t, p) = 2¥(dnr) "3 e~ f ds
2 , (coshs —cosh p)*

while that on H? is given by

ks(t, p) = (4mt) Sin”h SeTee (5.7.3)

Other heat kernels may be calculated using Hadamard’s method of descent,
which yields the formula

_ © sinh A k,, ((t,4)

— 9ta2n-1)y4 nt107 4. 574
kalt, p) = 2%€ , (cosh A —cosh p)? (>74)
Iterating this once and then differentiating both sides leads to the formula

e™™ 0

koot p) = " 2xsinhp 3p

ki, p)

from which we can deduce, for example, that

ks(t, p) = (dnt) 3 e =04 4(1, p)
where

2 cosh p —sinh
A([,p)=< d ) pcoshp —simhp

sinh p (sinh p)3
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The formulae in higher dimensions become increasingly complicated, so
that it is not even obvious from them that the heat kernels are positive. Qur
next theorem establishes quantitative bounds on the heat kernel, and shows
at the same time that one cannot expect a simple general theory for
manifolds of negative curvature, such as we have developed earlier for
manifolds of non-negative curvature.

Theorem 5.7.2. For all n > 1 there exists a positive constant c, such that
T R () By A (A7) R WY ()
for all t >0 and p > 0, where
by (8, p) = (4mt) =" V2 exp (— n’t/4 — np/2 — p*/4t)
X (14 p+ "2~ Y1 + p).
For n = 2 thisis consistent with (5.7.3) because of the uniform equivalence
p/sinh p ~ (1 + p)e~~.
If we fix p > 0 then the theorem implies that

(D2
kn+ l(tap) ~ t—3/2e_,,2,/4

We next look at the large time behaviour of the diffusion associated with
the heat kernel. The volume of the ball of radius r is independent of the
centre of the ball, and is given by

as t—0
as [ — oo.

|B(a,r)| =c, f'(sinh s)"ds (5.7.5)
0

where ¢, is the area of the unit sphere in the Euclidean space R"*!. One sees
from this that

|B(a,r)| ~e"™ as r—o0

a property which is closely associated with the negative curvature of H"* ;
see Proposition 5.5.1 (ii).

Corollary 5.7.3. If u, = e*4, then p, is a probability measure on H"* ' such
that

lim p,{z:(1 — gnt < d(z,a) <(1 + e)nt} =1

t— o0

for all ¢ > 0.

Note. Intuitively this states that the diffusion behaves like a motion with
asymptotic velocity n directed away from the starting point. This behaviour
is totally different from that of the Brownian motion in Euclidean space.
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Proof. The fact that u, is a probability measure follows from
Theorem 5.2.6. The group symmetry of H** ! proves that the distribution of
4, depends only upon the distance p from a. Theorem 5.7.2 and (5.7.5)
together imply that

#(dp) = c,(sinh p)'k, , 1 (¢, p)
~(1 +p—1)—nt—(n+ 1)/2(1 +p+ t)n/z—l(l + ,0)
x exp(— n’t/4 + np/2 — p?/ar).
The dominant term in this is

exp(— (p — nt)*/41)
which clearly concentrates around p = nt for large t.

We now define a Kleinian group I' to be a (countable) discrete group of
isometries of H"* 1. If I" acts freely on H"*! then M = I"'\H"*! is a manifold
with T" as fundamental group. A theorem of Selberg states that if I is
countably generated then I" contains a torsion-free normal subgroup I, of
finite index, which therefore acts freely on H"* 1. For this reason we confine
attention below to Kleinian groups which act freely. Kleinian groups acting
on H? are called Fuchsian.

b
Example 5.7.4. The group SL(2,Z) of all matrices ( ) with integer

a
¢ d
entries and determinant one acts on H? by

a b , +b

c d)° cz+d
An application of the Euclidean algorithm shows that SL(2, Z) is generated
by y, and y, where y,(z) = z + 1 and y,(z) = — 2z~ . The group does not act
freely since the point i has fixed point group of order 2 generated by

01
(_ 1 0), and 1+ %> i has fixed point group of order 3 generated by

1
( (1) 0). If Z, denotes the ring of integers mod 2, then SL(2, Z,) has six
elements and there is an obvious identification map

m:SL(2,Z)—- SL(2,Z,).

The subgroup I'y = ker m has index 6 in SL(2, Z) and may be shown to act
freely on H2.

If I is a Kleinian group which acts freely on H**! then M =T\H"*!
inherits the metric of H** ! and becomes a complete Riemannian manifold
with constant negative curvature. M may be compact, but in Example 5.7.4,
M is non-compact with finite volume.
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A partial impression of the quotient manifold M can be obtained by
considering a fundamental domain for the action of I’ on H** 1. If geH"*!
then we put

D,={zeH"*':d(z,a) < d(z,ya)all e X yeT'}.

It may be seen that D, is a convex polyhedron whose faces are parts of the
geodesic surfaces
S, ={z:d(z,a) = d(z, ya)}.

Under the quotient map n:H"*! - T\H"*!, D, maps one—one onto a dense
subset of M, but M differs from D, in that there are various identifications
on the boundary. Note that the quotient space M is canonical, while the
group I' has many fundamental domains other than those described above.

Since M is a complete Riemannian manifold of constant negative
curvature, all of the theory of Section 5.2 is applicable and one can
investigate the spectral properties of — A acting on L*(M). It turns out that
this is an extraordinarily deep and rich problem involving ideas stretching
all the way from number theory to ergodic theory and scattering theory. We
can hardly begin to describe the ramifications, and shall just select a few
topics which fit in with the main ideas of this book.

Example 5.7.5. We continue with Example 5.7.4. A fundamental domain
for the action of SL(2, Z) is the set

{(x,y):x] <% and x*+y?>1}

We see from this that the quotient space M has one cusp of infinite length
but finite volume. However since SL(2, Z) does not act freely, M is not a
manifold, but is what is called an orbifold. If I, is the subgroup of index six
described in Example 5.7.4 then a fundamental domain for its action is

{(x,y):1x] <1 and (x—%)*+y*>% and (x+3>+)y*>1}.
The quotient space M|, is in this case a manifold of finite volume with three

cusps. Moreover, M, is a six-fold covering of M, and has fundamental
group Iy,

Example 5.7.6. The Hecke group I', is defined for a>1 by the two

generators
01 1 2a
-1 0/°\0 1

and has fundamental domain

{(x,y):|x|<a and x*+y>>1}.
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I', does not act freely and the quotient space has infinite volume. The
bottom of the spectrum of — A acting on L*(I",\H?)is a positive eigenvalue
E,, and it is known that E, is an analytic concave increasing function of a
with E,»0 asa—1 and E,—» as a > 0.

Example 5.7.7. We define a Schottky domain to be the region in H"*!
exterior to a set Si,...,S,, of mutually exterior spheres in R"*! whose
(Euclidean) centres lie on the boundary R" of H"* 1. We say that a Kleinian
group is a Schottky group if it has a fundamental domain which is a
Schottky domain. As an example if S,,..., S, are as described above and
¥1.-++» 7 are the inversions in the spheres, then the group I' generated by
Y1s-++5 Vm 18 @ Schottky group.

If n > 1 then the quotient manifold M always has infinite volume if 'y is a
Schottky group. The bottom E, of the spectrum of — A acting on L*(M)
varies continuously as the spheres §; move without touching. If n > 1 then it
is known that there is a constant ¢, > 0 such that E, > c, for all Schottky
groups acting on H"*1.

A central role in the spectral theory of Kleinian groups is played by the
exponent of convergence d(I'). This is defined by

) =inf{s>0: ) exp{— sd(z,yw)} < oo}.
vel

It follows easily from the triangle inequality that the convergence of the
above series does not depend upon the choice of z and w in H"*1. We let
Ey(T) denote the bottom of the spectrum of — A acting on I*(M).

Theorem 5.7.8. One always has
0<éI)<n

If M has finite volume then &(I)=n. If 8(I)< n/2 then EyI)=n?/4.
If n/2 < (') then Ey(I') = 6(n — o).

Note that if the volume of M grows subexponentially then 0eSp (— A) by
Theorem 5.2.10, so one must have é = n. In order to obtain more detailed
results, we restrict the class of Kleinian groups under study. We say that I is
geometrically finite if it has a fundamental domain which is a polyhedron
with a finite number of faces. All of the examples above are of this kind.

Theorem 5.7.9. Let T' be a geometrically finite Kleinian group with
n/2 < &) < n. Then the spectrum of — A acting on L*(M) is of the form
{Eo,..., E} uln?/4,00)
where
0<dn—908)=Ey<E,<--<E,<n%/4
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are I? eigenvalues of finite multiplicity, and E , has multiplicity one. Moreover,
the part [n*/4,0) of the spectrum is purely absolutely continuous. If
1 < p < o0 then the LF spectrum of — A consists of all points on or inside the
parabola (5.7.2), together with all E, such that

E;<n’p”'(1—p7Y).
If T is geometrically finite with 0 < 6 < n/2 then the L? spectrum is [n?/4, )

and is purely absolutely continuous, while the LP spectrum consists of all points
on or inside the parabola (5.7.2).

One of the ways of proving such results is by studying the heat kernel K of
M. This is given by the formula
K(t, 7z, aw) = Y. K(t,z,yw)
vell

forallt > 0and z, weH"*!, = being the canonical map of H" *! onto M. It s
clear from this formula that pointwise bounds on K will require very precise
control of K, such as is given in Theorem 5.7.2. It is also possible to obtain
many results by analysing the Green function using potential theoretic
results.

If I' is a Kleinian group then its action on H"*! induces an action on
OH"*! = R"U{o0}. The ordinary set (I') of this action is defined to be the
largest open set on which I' acts discontinuously, and the limit set L(T') is its
complement; I" clearly also acts on L(I).

Theorem 5.7.10. Let T" be geometrically finite with 0 <d(I') <n. Then the
limit set L(T") has Hausdor{f dimension 8(I'). There exists a unique probability
measure p on L(I') such that

(- w)(dx) = j(y, %)~ u(dx)
where

j(,x) =Im(y-x)/Im (x).

The Patterson measure u defined above is of great importance in the
further theory of Kleinian groups, and brings in many notions from ergodic
theory.

Notes

Section 5.1 We have not attempted to give a self-contained treatment of
Riemannian manifolds, but simply specify the notation we are using. For
other accounts from a similar point of view see Chavel (1984) and Cycon
et al. (1987).
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Section 5.2. Theorem 5.2.1 is a classical result. There are many existing
proofs of Theorem 5.2.3; see Chernoff (1973), Davies (198 5D) and Strichartz
(1983) for further references. A proof of Theorem 5.2.3, due to Calabi (1965),
may also be found in Chavel (1984) p. 185. Criteria for the conservation of
probability go back to Hasminskii (1960), and a version of Theorem 5.2.6
applicable to elliptic operators may be found in Davies (1985D) or Stroock
and Varadhan (1979) p. 254. Varopoulos (1983) has given sharp conditions
on the rate at which the curvature can decrease at infinity, if one is to avoid
explosions. A more general version of Theorem 5.2.9 is given by Azencott
(1974) and may also be found in Davies (1985D). Theorem 5.2.10 is due to
Brooks (1981A), who also has a number of further results. The amenability
statement in Theorem 5.2.11 is due to Brooks (1981B), (1985). Lyons and
Sullivan (1984) and Varopoulos (1984) showed that M is transient if and
only if the random walk on I is transient. The classification of transient
discrete groups was achieved by Varopoulos (1986) following earlier work
in Varopoulos (1985A; 1985B).

Section 5.3 Most of the material is taken from Li and Yau (1986), which
contains far more than our selection of results indicates. Lemma 5.3.1 is
essentially the Bochner—Lichnerowicz—Weitzenbock formula.

Section 5.4 Corollary 5.4.2 should be compared with the bound
(Vo)?> <(n — DKv?

proved by Yau (1975). The existence of positive or bounded harmonic
functions when the Ricci curvature of M is allowed to be negative on a
compact subset is studied by Donnelly (1986) and Li and Tam (1987); more
general results may be found in Lyons (1987) and Lyons and Sullivan
(1984). The Martin boundary of negatively curved manifolds was deter-
mined by Anderson and Schoen (1985); see also Ancona (1987) and Kifer
(1986). More detailed bounds on the bottom of the spectrum than those of
Corollary 5.4.3 may be found in Brooks (1981A). Theorem 5.4.4 is taken
from Koranyi and Taylor (1985); for other work in the same spirit see
Kaufman and Wu (1982), Koranyi and Taylor (1983), Mair and Taylor
(1984) Pinchover (1986; 1987). Theorem 5.4.6 is due to Lichnerowicz (1958).
For a selection from the enormous literature concerning estimates of the
smallest few eigenvalues of a compact Riemannian manifold see Li and Yau
(1980), Donnelly and Li (1982), Chavel (1984) and Berard (1986).

Section 5.5 Proposition 5.5.1 is taken from Cheeger, Gromov and Taylor
(1982), where a number of references to earlier work on such bounds may be
found. Theorems 5.5.2 and 5.5.6 are due to Li and Yau (1986) and improve
upon earlier work, surveyed in Chavel (1984), in not making any
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assumption of bounded geometry. Our proof of Theorem 5.5.6, however, is
taken from Davies (1988B). Li and Yau also obtained heat kernel bounds
for manifolds whose Ricci curvature is bounded below by a negative
constant. These bounds are not so sharp, and have been improved for large
times by Davies (1988B).

Section 5.6 The lower bound given in Theorem 5.6.1 was proved by
Cheeger and Yau (1981), following earlier work of Debiard, Gaveau and
Mazet (1976); they, in fact, gave a more general version applicable to
manifolds with Ricci curvature bounded below. Our proof, however,
follows Li and Yau (1986). Our proof of Theorem 5.6.3 is a variation upon
that of Li and Yau (1986). Corollary 5.6.5 was proved by Varadhan (1967)
for complete manifolds whose Ricci curvature is bounded below by a
negative constant; our method may also be adapted to this case by using Li
and Yau (1986). For more information about the large time behaviour of
the heat kernel when Ric >0 see Li (1986). Theorem 5.6.6 is due to
Varopoulos (1981;1982; 1983); see also Li and Yau (1986) and Li and Tam
(1987, 1988). Varopoulos (1983) describes an example of R. Greene which
shows that Theorem 5.6.6 fails for general complete manifolds of bounded
geometry.

Section 5.7 A comprehensive account of the geometry of hyperbolic space
is given by Beardon (1983). The structure of the spectrum of — A acting on
I?(H"*') is classical, but the I? spectrum was determined by Lohoué and
Rychener (1978; 1982); see also Anker and Lohoué (1986) for an analogous
result on a general class of symmetric spaces of rank greater than one.
Hadamard’s method of descent is described in Courant and Hilbert (1966)
for Euclidean space. Its use in hyperbolic space appears to be due to
Millson, and formulae such as (5.7.4) may be found in Debiard, Gaveau and
Mazet (1976), Lohoué and Rychener (1978;1982), Cheeger and Taylor
(1982), Lax and Phillips (1982), Bougerol (1983), Davies and Mandouvalos
(1988). Theorem 5.7.2 is due to Davies and Mandouvalos (1988) but its
Corollary 5.7.3 has been folk knowledge for some years; for another
approach to these problems see Lyons (1988). Selberg’s theorem on torsion-
free subgroups may be found in Cassels (1986) p. 87. Example 5.7.4 is the
classical example of a Fuchsian group, but its spectral theory is nevertheless
extremely deep; see Terras (1985) for a fascinating review. The spectral
properties of the Hecke group given in Example 5.7.6 were proved by
Phillips and Sarnak (1985A;1985B). The existence of a positive lower
bound to Ey(I") for Schottky groups was proved by Phillips and Sarnak
(1985B) in dimension greater than three, and by Doyle (1988) in dimension
three, following earlier work of Bridges. Theorems 5.7.8 and 5.7.10 were
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proved for geometrically finite Fuchsian groups by Elstrodt (1974) and
Patterson (1976) and then in greater generality by Sullivan
(1979;1984; 1987). The L? part of Theorem 5.7.9 is due to Lax and Phillips
(1982; 1985) and the L? part to Davies, Simon and Taylor (1988). A detailed
analysis of the continuous spectrum has been given by Mandouvalos (1983;
1986, 1987, 1988) by developing a theory of Eisenstein series. The
relationship between Eisenstein series and scattering theory has been
investigated by Mandouvalos (1987) and Perry (1987A;1987B).
Theorem 5.7.10 fails for general Kleinian groups; indeed Patterson (1983)
has shown that the exponent of convergence may be arbitrarily small even
though the limit set is the whole of R" U {c0}. For more detailed accounts of
these topics see Patterson (1987) and Sullivan (1987).
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