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X be a closed cone with nonempty inter,
T ?’;HN? ?:ini:‘:r‘ oL;ctrafc‘J::. T is said to be positive with respect to C if I ang
X— !
H,: T(C\{0}) =int C.

. ’ P and A are rep|
of Perron’s Theorem wl'lcrc_ re replaced p
An abstract version satisfying the condition in Deﬁniig?,i

im X < o and any operator T
cone C c X, dim e observation that the only fact used in the Proof

d 1.3 follows from th ' . ’ e
tifsiggs the compactness of the unit sphere in lR’_" is the positivity of 4 with
respect to P. In 1948 T. Krein and R. Rutman pubhsh‘cd a remarkable €Xtensiop
of P?:r-ron‘s Theorem (2] that covers the case where T IS compact an.d dimX = o
The celebrated Krein—Rutman Theorem can be stated in the following form,

Tueorem 1.4. Let C < X, X a Banach space, be a closed cone with nonemppy

interior and let T: X = X be a compact linear operator. Assume T and C sarisfy

Hs; then: - N
(i) the spectral radius p(T) of T is positive;

(i) p(T) is a simple eigenvalue of T,

(iii) if u # p(T) is an eigenvalue of T, then || <p(T)E _

(iv) the eigenvector v associated to p(T) can be taken in int C;

(v) v is the unique eigenvector of T in C up 1o a mudtiplicative constant.

There exist several proofs of this theorem. The original proof makes substantial
use of the spectral theory of compact operators. Other proofs like the one
presented in [4] use powerful topological theorems. The aim of this work is to
present a new proof of the Krein—-Rutman Theorem which is completely
elementary and establishes the existence of an eigenvector in C without using any
information from the spectral theory of compact operators. The central object in
our proof is the discrete dynamical system §: ¥ — X* induced by the operator T
on X*, the intersection of the unit sphere == {x € C, ||x|| = 1} with C,

Su=Tu/||Tu|, ueX”. (1.1)

We refer to [1] for the basic theory of Dynamical Systems needed in this paper.

The two main points in the proof are:
I to show that the compactness of T and the convexity of C imply that the
w-limit set w(u) of any u € =* is non-empty;
(For the reader’s convenience we recall the definition
wu)=MN (U S‘u).)
k>1 >k
(I1) to show that the linearity of T implies v € w(u) is a fixed point of S and
therefore an eigenvector of T,
hWhtfn X is finite Flimensional, (I) is a trivial consequence of the compactness of
the unit sphere. This and the fact that convexity of C is not used in (II) enable US
tl:?]show that the conclusion of Perron’s Theorem holds true (see Theorem 3.1
(Ic) ow) under weaker conditions on the cone C which do not require convexity. In
rcs: cuusc the convexity of C in an essential way and therefore we cannot
presently extend Theorem 3.1 to the case where X is infinite dimensional. It 15 -
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n guestion whether one can prove that s
?vieakcr hypothesis in Theorem 3.1. 4€Z" implies w(u)# S under the

2. Proof of Theorem 1.4

Lemma 2.1. Le_: ueZ" and w(u) be the w-limit set ; e
system §:-T*— I defined by (1.1). Then w(u) is nonemptg,u Jor the dynamical 32X

proof. Let ey =u, €.y =Se;, iZ1. If ), e, ... are linearly ind

. ] ) eoee e d

have obviously @(u) # . Therefore we assume ey, e,, . .. areylinear{;e?ng: ) ,::i

o From (1.1) we have Te; = pe,.y with ;= || Te,||. P
(a) The sequence u; does not approach 0 as i — . Let

£, =6,
E2= €3 — Céy,
gna=1¢, =2,3,....
H, implies e is in int C: therefore, for ¢ small, &, € C and H; implies ¢; € C,
i=1,2,.... It follows that if a;, i =1, 2, ... is a sequence of positive numbers

and the series &; ay€; 1s convergent, the sum v = ¥, a¢; is in C because C is closed
and satisfies Ho. Consider in particular the series corresponding to

et =), e =@ -D@), i=L2...

with ¢ > 0 sufficiently small.
From the definition of &;, if we also assume fo= 1, it follows that

i i—1
Ey=T"(ue2—cL) = T'e,—cT' e, = (I;I ,u,-)e,-ﬂ = c(l;[ ,u,)e,, i T ACH

i @€ = ﬂ}::l (i — Ca’:‘-u-l)(ilj F‘;‘)e:' + an(nlj! #j)en

and therefore

-1 i—=1 n=1,,
< - o M o M
21 G?Es=% z} (k)j_;ei +(2c),.-1fm

-a=1 1P "—1) ':_'!4-

5 w, - He,

a;'ei—_- .—% glc)"'l e‘+ (ZC),._I el
1

_ : + . are convergent
Fro . i p, = 0, the series L ar'&,
andm these expressions we sce that it i

i a?s{:—E a,"t:,a#ﬂ
1
i 1
S e 1ive number M such that
(b) From (a) lhcr:: is a subsequence Hu and a postive ¥ e can assume
ul.:%ll. Since T is compact, by taking a sub.ﬁf:(:uc ssary
€. 1s convergent 1o some vector 2. In particular

lim || Te, |l = B e

k—= k—"
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and therefore
: l' _._._--.-'—T‘ef - .3-—
lim §hu = im et = T2 Te, |z
Lemma 2.2, Let u € S*tandveE wlu),
an eigenvecior of T.
Proof. By definition, v € w(4) implies the
k=1,2,...such that

then v is a fixed point of § and therefore
existence of a subsequence j,,

llm Shu=v. (2’1)
t u, Su and v, Sv are pairs each of which

If v # Sv, then u # Su and H, implies tha ! i
Taking into account this fact, (2.1) and

consists of linearly independent vectors.
the computation

Thu ) Tv _ || Tu|

Su ;
o (S < g 7t ) = = S
i T (||T“u|]) NTul™ T ) ~ W7l 17wl
we obtain
lim S“u,=v,, Y€eIR, (2.2)
where
Tl .
_ cos yv + ——sin ySv
= cosyu+sinySu - _ | T
Y~ + . S ’ r - .
llcos yu + sin ySul| w+ll':'"vll o
|| Tul|

Let T be the set of y such that v, € C. T is nonempty because vo=v e Cand itis
closed because C is closed. Take o € T'; then Hsy implies Sv, € imt C and therefore
from (2.2) it follows that S»*'y_ e int C for k = K for some integer K. But then
H, implies 5'**'u, € int C and therefore there exists £ >0 such that Sy, et C
for all ye(o—¢ o+¢). From this, (2.2) and H; it follows that v, e C for
y€(o— &, o+ ¢). This shows I is open and in turn that I' = IR. This implies v,
and v,. .= —v, are both in C in contradiction with H,. O

From Lemma 2.1 and Lemma 2.2 it follows that there exists v € £* such that
Sv=v or .cquivalcntly Tu=||Tv| v. Therefore v is an eigenvector of T
corresponding to a positive eigenvalue A= ||Tu|l. Also v €int C by Hy. Assume
e eigenvector of T corresponding to a real eigenvalue p.
Then, if a, B are real numbers such that |a} + |8] #0, it results that:

sn(f&%&% w+5(§)"w
" e
A

If u=2, : ,

suifa o : c}:: c: g{wnxs an Fl::}:'gcpvieclor of T and H, implies av + pw € 9C for 2

KREER i : ﬂ.a is is in contradiction with Hy which implies T cannot
on oC. Therefore w# A If |u|>A then, provided p#0,

2.3)




Dynamical systems Proof of the Krein

squation (2.3) implies ~Rutman Theorem -
- '
lim s%(._““_:“_ﬁ_'_v_) .
nee= llov + Bw|| w, 2.4)

depending on whether 8>0 or B<0. By H,, e
- x o : * ] [ 1h = . .

changmg w T'llct):;d ;; if necessary, we can assulme lw :rcws?’ g'ls not in C. By
a neighbour of w such that WNC=@. On th nce Cis closed there is
implies _wf, can f:hoose a, B >0 such that (av + Biiye imecotgcr hand, ve i‘nt C
contradiction with H; and t!'lcrefow lu| cannot be larger 'th ut ;hen (2.4) is in
follows from (2.3) that, provided & <0, an A If |u| <4, it

i, S5 (=200 5
n—e (llav+ﬁw||)"”' (2.5)

Assume w € C; then we can also assume w € in i

. t C because w is an ei ct
of T Therefore there are a, B, a <0, such that (av + Bw) € int C. 'I‘his:g:r:]c;??. g;
again lead to a oontra.dnctlon with H;. We conclude w ¢ C. Similar Mgume;m
show that the algebraic multiplicity of A is one and that |u| <A also for any

complex eigenvalue of T. O

3. An extension of Perron’s Theorem

ein-Rutman Theorem, the only place where
he proof of Lemma 2.1 to show that w(u) is
as we have already observed in the
just a consequence of the
state the following theorem

In the above proof of the Kr
convexity of C was used was in t
nonempty. If X is finite dimensional,
Introduction, the fact that w(u) is nmonempty is
compactness of the unit sphere. Therefore we can
which is a generalisation of Perron's Theorem:

Tueorem 3.1. Let X be a finite dimensiona
K c X be a closed set with nonemply interior such that
xekK, -xeK=>x=0,

a € [0, ®), xeK=>m¢€K-

! real normed linear space. Let

Let T: X — X be a linear operaior such that
T(K\{0}) =int K.

Then the conclusions of Theorem 1.4 hold. . - ondil e
classical Perron Theorem, it is na 1 about a set K which:
of the set K. More preciscly, we can Theorem 3.1. We
LOECIher with a linear operator
ave the following proposition:
S eorstregERia: 28 PLe’ X be a finite dimensianal :ea! norme
K be a closed set with non-emply inierior such tha
(@) xeK, —xe K=2>x=0;
(b) a €0, oo),xeK:?MEK: X with rhePFOP"O’T
(c) there exist a linear operator T:X*
Then the convex hull K of K5 8 cone.

T, sati
d linear space and let

(K\{o}):im K.



