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Preface

Overview

Game theory is a field that studies interactive decisions. On the one hand, it builds
models that represent situations where several entities or players make choices, and
where this collection of individual behaviors induces an outcome that affects all
of them. On the other hand, since the agents may evaluate these outcomes differ-
ently, game theory is also the study of rational behavior within this framework. The
most common paradigm is defined by the range between conflict and cooperation.

The first mathematical analysis in this direction goes back to the eighteenth
century and concerns the probability of winning a card game as the play unfolds
(Montmort [147]). However, the foundations of game theory appeared at the
beginning of the twentieth century with the works of Zermelo [231], who analyzed
finite games with perfect information; Borel [31], who investigated strategies and
information; and von Neumann [224], who established the minmax theorem.
A major advance was achieved with the publication of the book “Theory of Games
and Economic Behavior” (1944), co-authored by the mathematician von Neumann
and the economist Morgenstern, which gives the first formal descriptions of several
classes of games and provides the main principles of the theory. A further step was
reached with the work of Nash around 1950 concerning the definition and existence
of “strategic equilibrium”, which among other things generalizes Cournot’s work
[38].

Since then, the theory of games has developed in several directions, including
games with infinite action spaces, a continuum of players, dynamic games, dif-
ferential games, games with incomplete information and stochastic games,….
Numerous conceptual advances have been made: refinement/selection of equilibria,
new notions of solutions such as correlated equilibrium, uniform properties in
repeated interactions, learning procedures,…. A wide range of mathematical tools
has been employed, such as convex and functional analysis, optimization,
stochastic processes, real algebraic geometry, algebraic topology, fixed-point the-
ory, dynamical systems,…. Game theory has been successfully applied to numerous
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other disciplines, principally economics, biology, and computer science, but also
operations research, political science, as well as other areas in mathematics (logic,
descriptive set theory, combinatorial games,…).

Game theory has greatly influenced economics and several game theorists have
received the “Nobel prize in economics”: Harsanyi, Nash and Selten in 1994;
Aumann and Schelling in 2005; Hurwicz, Maskin and Myerson in 2007; and Roth
and Shapley in 2012. One could also mention Tirole in 2014 and Hart and
Holmstrom in 2016, who all used and developed game-theoretical tools. Actually,
most topics in industrial organization or in auction theory contain a
game-theoretical aspect: the aim being to analyze the strategic behavior of rational
agents acting in an environment of similar participants, taking into account
idiosyncratic aspects of information.

The link with biology, initiated by Maynard Smith [130], has produced a lot of
new advances, in terms of concepts, like “ESS” (evolutionary stable strategies), and
of mathematical tools, in particular the use of dynamical systems. A fascinating
challenge for research is to understand the similarity between outcomes induced by
myopic mechanisms (like those that are fitness-based, which do not make any
assumptions about the environment) and those obtained through rational deduction
from clever and sophisticated participants.

A recent and very active field of investigation is the interaction of game theory
with computer science. This domain has even produced the new terminology
“algorithmic game theory” and was recently recognized by the Nevanlinna Prize
(ICM 2018), awarded to Daskalakis. Interesting questions arise in relation to the
complexity of producing efficient frameworks for strategic interactions (algorithmic
mechanism design), the complexity of finding an equilibrium, or the complexity
of the equilibrium itself (as implemented by an automaton).

Since the work of von Neumann and Morgenstern, games have been classified
into two categories: strategic (or non-cooperative) versus coalitional (or coopera-
tive). In this book, we will mainly consider the former, which offers a unified
presentation involving a large variety of mathematical tools. The simplest way of
representing the model is to explicitly describe the “rules of the game”, as in poker
or chess: which player plays and when, which information he receives during the
play, what set of choices he has at his disposal and what the consequences of a play
are until a terminal outcome. This corresponds to the so-called “extensive form”
of the game, which allows us to introduce the notion of a strategy for each player, as
a specification of her behavior at each instance where she may have to make a
choice. A strategy is thus a computer program or an algorithm, i.e., a set of
instructions which allows one to play the game in all possible scenarios. Clearly, by
construction, if each player chooses such a strategy, a play of the game is generated,
and as a consequence, an outcome is produced.

An abstract way of looking at the previous situation consists in introducing the
set of strategies of each player and a mapping that associates to every profile of
strategies (one for every player) the outcome corresponding to the induced play.
This outcome finally determines for each player a payoff corresponding to her
evaluation. This corresponds to the “normal form” of the game. Both the extensive
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and normal form model the strategic behavior of the agents. The extensive form is
simpler to work with and usually leads to computations with lower complexity. The
advantage of the normal form is that it presents a simple and universal mathematical
formulation: a game with n players is essentially described by a map from a product
of n spaces to R

n.
Once an interactive decision situation has been expressed as a game (identifi-

cation of the players, specification of the strategies, determination of the outcomes,
and evaluation of the payoffs), one has to study what constitutes “rational” behavior
in such a framework. This analysis has two components:

– the first one is conceptual and defines mathematical objects or solution concepts
that take into account the fact that the players make choices, have preferences,
and have some knowledge or observation about the game and other players
preferences or choices. This aims to extend to interactive situations the behavior
of a single agent maximizing her utility. Basic examples are the notion of value
for two-person zero-sum games and of equilibrium for n-person games, but also
analyses of belief formation and learning procedures.

– the second is to study properties of these objects in terms of existence and
dependence of the parameters, algorithms to compute them or learning proce-
dures that converge to them, alternative representations, extensions to more
general frameworks, etc. This will be the main focus of this volume. The
principal results concerning value and equilibria will be obtained by analyzing
the normal form of the game. For multi-stage games and refinement of equi-
libria, the extensive form will be useful.

To conclude, the purpose of this book is to present a short but comprehensive
exposition of the main mathematical aspects of strategic games. This includes a
presentation of the general framework and of the basic concepts as well as complete
proofs of the principal results.

This will give the newcomer a global overview of the fundamental achievements
of the field. It will also provide the reader with the knowledge and tools needed to
develop her research: either toward application to economics, biology, computer
science,… or to more advanced or specialized topics in game theory such as
dynamic games, mean field games, strategic learning, and its connection to online
algorithms.

Summary of the Book

Chapter 1 is devoted to a general introduction to strategic interactions. A collection
of examples (matching, bargaining, congestion, auctions, vote, evolution, repeti-
tion, etc.) shows the variety of situations involved and the kind of problems that
occur. The formal definition of a game, notations, and basic concepts are
introduced.
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We then consider zero-sum games in normal form (Chaps. 2 and 3). They model
pure competition between two players having opposing interests as follows: given a
real-valued payoff function g defined on a product of strategy sets S� T , player 1
controls the first variable and wants to maximize g whereas simultaneously player 2
controls the second variable and wants to minimize g. The corresponding solution
concepts are the notions of value (v ¼ sups2S inf t2T gðs; tÞ ¼ inf t2T sups2S gðs; tÞ)
and of optimal strategies.

In Chap. 2, we study finite zero-sum games, where the sets of strategies are
finite. We prove the minmax theorem of von Neumann, which states that if a game
is played with mixed strategies (probability distribution on strategies), then the
value exists, as well as an optimal mixed strategy for each player. We then consider
extensions such as Loomis’ theorem and Ville’s theorem. Finally, we introduce and
study the convergence of the process “Fictitious Play”, where the initial game is
repeated and each player plays at every period a best response to the average of the
strategies played by his opponent in the past.

Chapter 3 considers general zero-sum games and proves various minmax the-
orems. We start with Sion’s theorem with geometrical and topological assumptions
on the game: convex compact strategy sets and payoff functions quasi-concave
upper semi-continuous in the first variable and quasi-convex lower semi-continuous
in the second variable. Then we prove the standard minmax theorem in mixed
strategies for measurable bounded payoff functions, extending von Neumann’s
theorem, under topological assumptions: compact Hausdorff strategy sets and
payoff functions u.s.c. in the first variable and l.s.c. in the second variable. We
conclude the chapter with the introduction of the value operator and the notion of a
derived game, which play an important role in the operator approach to repeated
games.

Chapter 4 deals with N-player games (general-sum games). Each player i ¼
1; . . .;N has his own payoff function gi defined on a product of strategy sets
S ¼ S1 � � � � � Sn, and controls the i-th variable in Si. The standard notions of best
response, weak and strict dominations are introduced. We then define the concept of
rationalizable strategies and prove an existence theorem (Bernheim and Pearce).
Next we present the central notion of Nash ("-)equilibria. The existence of a mixed
strategy Nash equilibrium in finite games is then proved, using Brouwer’s
fixed-point theorem. Section 4.7 deals with generalizations to continuous games.
The existence of an equilibrium is proved under topological and geometrical
assumptions, for compact, continuous, and quasi-concave games, and the existence
of a mixed equilibrium is shown under the topological conditions. Then, the
characterization and uniqueness of a Nash equilibrium are presented for smooth
games where the strategy sets are convex subsets of Hilbert spaces. Section 4.8
deals with Nash and approximate equilibria in discontinuous games and notably
studies Reny’s better-reply security. In Sect. 4.9, we explain that the set of mixed
Nash equilibria of a finite game is semi-algebraic and define the Nash components
of a game. Lastly, Sect. 4.10 discusses several notions (feasible payoffs, punishment
level, threat point, focal point, Nash versus prudent behavior, common knowledge
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of the game) and Sect. 4.11 proves the standard fixed-point theorems of Brouwer
(via Sperner’s Lemma) and Kakutani (for a multi-valued mapping from a convex
compact subset of a normed vector space to itself).

Chapter 5 describes concave games, potential games, population games, and
Nash/Wardrop equilibria, and introduces the characterization of equilibria via
variational inequalities. We then study the equilibrium manifold, where the finite
strategy sets are fixed and the payoff functions vary. We prove the structure theorem
of Kohlberg and Mertens, then show that every game has an essential component of
Nash equilibria, and that for generic payoffs, the set of mixed equilibria is finite and
its cardinality is odd. We also introduce Nash vector fields and game dynamics,
such as the replicator dynamics, the Smith dynamics, the best response dynamics,
and the Brown–von Neumann–Nash dynamics. We conclude Chap. 5 with an
analysis of evolutionary stable strategies and their connection with replicator
dynamics.

Chapter 6 deals with games in extensive form. Here an explicit evolution of the
interaction is given, describing precisely when each player plays, what are the
feasible actions, and what information is available to each player when he makes a
decision. We start with games with perfect information (such as chess) and prove
Zermelo’s theorem for finite games. We then consider infinite games à la Gale–
Stewart: we show that open games are determined and that under the axiom of
choice, there exists an undetermined game. Next we introduce games with imperfect
information and prove Kuhn’s theorem, which states that mixed and behavioral
strategies are equivalent in games with perfect recall. We present the standard
characterization of Nash equilibria in behavioral strategies and introduce the basic
refinements of Nash equilibria in extensive-form games: subgame-perfection,
Bayesian perfect and sequential equilibria, which impose rational behaviors not only
on the equilibrium path but also off-path. We prove the existence of sequential
equilibrium (Kreps and Wilson). For normal form games as in Chap. 4, we introduce
the standard refinements of Nash equilibrium: perfect equilibrium (Selten) and
proper equilibrium (Myerson). We prove that a proper equilibrium of a normal form
game G induces a sequential equilibrium in every extensive-form game with perfect
recall having G as normal form. Finally, we discuss forward induction and stability
(Kohlberg and Mertens).

Chapter 7 starts with the concept of correlated equilibrium due to Aumann, an
extension of Nash equilibrium with interesting properties from a strategic, geo-
metric, and dynamics viewpoint. In a learning framework, we then introduce
no-regret procedures and calibrated strategies, and prove existence results. Next we
show that in a repeated game: (1) if a player i follows a strategy with no external
regret, the empirical distribution of moves converges a.s. to the corresponding
Hannan set for i, and (2) if each player follows a procedure with no internal regret,
convergence to the set of correlated equilibrium distributions occurs. We conclude
Chap. 7 with games with incomplete information (Bayesian games), where the
players have different information on the game they have to play, and we introduce
the corresponding extension of equilibria.
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Finally, Chap. 8 deals with repeated games. It first considers the simplest model
(with observed moves) and introduces: finitely repeated games where the payoff is
the average of the stage payoffs over finitely many stages, discounted games where
the payoff is the (infinite) discounted sum of the stage payoffs, and uniform games
where players consider the payoff in any long enough game (or in any discounted
game with low enough discount factor). We present the Folk theorem, which states
that the equilibrium payoffs of a uniform game are precisely the payoffs which are
feasible (achievable) and individually rational (above the punishment level for each
player). The message is simple: if players are patient enough, any reasonable payoff
can be achieved at equilibrium. Folk theorems for discounted games and finitely
repeated games are also exposed and proved. The last section presents extensions
of the model in three directions: repeated games with signals (imperfect observation
of moves), stochastic games where the “Big Match” is studied, and repeated games
with incomplete information where we prove the cavu theorem of Aumann and
Maschler.

At the end of each chapter, we present exercises which often contain comple-
mentary results. Hints to the solutions may be found in the last chapter. The topics
include stable matchings, Vickrey auctions, Blackwell approachability, Farkas’
lemma, duality in linear programming, duels, Cournot competition, supermodular
games and Tarski’s fixed-point theorem, convex games, potential games, dissipa-
tive games, fictitious play and the Shapley triangle, the game of Chomp, a poker
game, bargaining, a double auction, the possibly negative value of information,
strategic transmission of information, correlated equilibrium distribution via min-
max, comparison between correlated and Nash equilibria, the prisoner’s dilemma
with a blind player, the battle of the sexes in the dark, jointly rational payoffs,
subgame-perfect equilibrium payoffs for discounted games and quitting games.

Prerequisites

This book has been written mainly for graduate students and academics. Growing
from lecture notes for masters courses given in the mathematics departments of
several universities (including UPMC-Paris 6 and Ecole Polytechnique), it gives a
formal presentation of the mathematical foundations of Game Theory and is largely
self-contained, as many proofs use tools and concepts defined in the text.
Knowledge of mathematics at the undergraduate level such as basic notions of
analysis (continuity, compactness), of linear algebra and geometry (matrices, scalar
product, convexity), and discrete probabilities (expectation, independence) is
required. Combined with an interest in strategic thinking and a taste for formalism,
this will be enough to read, understand, and (we hope) enjoy most of this book.

Some proofs contain relatively more advanced material. For instance, differential
inclusions are used to illustrate the convergence of the “fictitious play” process in
Chap. 2. We apply the Hahn–Banach separation theorem for convex sets in Chap. 3.
Borel probabilities on a compact Hausdorff space, and the weak* topology over the
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set of such probabilities, are used in Sect. 3.3 while presenting the general minmax
theorems in mixed strategies. Ordinary differential equations appear in Sects. 5.4
(Nash vector fields and dynamics) and 5.5 (Equilibria and evolution). Kolmogorov’s
extension theorem is applied in Chap. 8, and martingales appear in the last section of
this last chapter (Repeated games with incomplete information).

Complementary Reading

We present here several publications that will complement our concise introduction
to the mathematical foundations of the theory of strategic games.

An unavoidable encyclopedia in which each chapter covers a specific domain is:

• Aumann R.J. and S. Hart, eds., Handbook of Game Theory I, II, III, North
Holland, 1992, 1994, 2002.

• Young P. and S. Zamir, eds., Handbook of Game Theory IV, North Holland,
2015.

An easy to read classic:

• Owen G., Game Theory (3rd Edition), Academic Press, 1995.

A quite general presentation of the field is given in:

• Maschler M., Solan E. and S. Zamir, Game Theory, Cambridge University
Press, 2013.

Three basic books more related to economics are:

• Myerson R., Game Theory, Analysis of Conflict, Harvard University Press,
1991.

• Fudenberg D. and J. Tirole, Game Theory, M.I.T. Press, 1992.
• Osborne M. and A. Rubinstein, A Course in Game Theory, M.I.T. Press, 1994.

Equilibrium and selection are analyzed in:

• van Damme E., Stability and Perfection of Nash Equilibria, Springer, 1991

and more recently in:

• Ritzberger K., Foundations of Non-Cooperative Game Theory, Oxford
University Press, 2002.

The next two references are more mathematically oriented:

• Barron E.N., Game Theory, An Introduction, Wiley, 2008.
• Gonzalez-Diaz J., Garcia-Jurado I. and M. Gloria Fiestras-Janeiro, An

Introductory Course on Mathematical Game Theory, GSM 115, AMS, 2010.
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A reference for evolution games is:

• Hofbauer J. and K. Sigmund, Evolutionary Games and Population Dynamics,
Cambridge U.P., 1998.

A nice presentation of the links with economics/evolution can be found in:

• Weibull J., Evolutionary Game Theory, MIT Press, 1995.

A more recent contribution is:

• Sandholm W., Population Games and Evolutionary Dynamics, M.I.T. Press,
2010.

The recent field of algorithmic game theory is presented in:

• Nizan N., Roughgarden T., Tardos E. and V. Vazirani, (eds.) Algorithmic Game
Theory, Cambridge University Press, 2007.

• Karlin A. and Y. Peres, Game Theory, Alive, AMS, 2017.

A short and quick introduction to strategic and repeated games (in French) is:

• Laraki R., Renault J. and T. Tomala, Théorie des Jeux, X-UPS 2006, Editions de
l'Ecole Polytechnique.

An introduction to zero-sum repeated games is given in:

• Sorin S., A First Course on Zero-Sum Repeated Games, Springer, 2002

and a general mathematical analysis of the field is presented in:

• Mertens J.F., Sorin S. and S. Zamir, Repeated Games, Cambridge University
Press, 2015.
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Chapter 1
Introduction

1.1 Strategic Interaction

Game theory aims to analyze situations involving strategic interaction where sev-
eral entities (agents, populations, firms, automata, cells,...) have specific characters
(actions, prices, codes, genes...) that impact each other. The mathematical analogy
goes beyond optimization since an agent does not control all the variables that affect
him. In addition, an agent’s choice of his own controlled variable has some conse-
quences on the other agents.

Several levels of modelization have been suggested. Let us review them briefly.

1.1.1 Strategic Games

This framework corresponds to the main topic analyzed in this course. One identifies
the autonomous structures that interact, called players. By autonomous, wemean that
their characters, parameters or choices, called strategies, are determined (selected,
chosen by the players) independently from each other.

A profile of strategies (one for each player) induces an outcome and each
player uses a real-valued utility function defined on this space of outcomes. The
main issue is then to define and analyze rational behavior in this framework. (See
Sect. 1.3.)

1.1.2 Coalitional Games

In this approach, the initial data is still given by a set I of players but one takes
into account all feasible subsets C ⊂ I , called coalitions, and an effectivity function
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associates to eachC the subset of outcomes it can achieve. The issue is now to deduce
a specific outcome for the set of all players.

This corresponds to a normative or axiomatic point of view which, starting from
requirements on equity, power or efficiency, suggests a solution. Among the several
important concepts let us mention: von Neumann–Morgestern solutions, the Shapley
value, core, bargaining set, nucleolus, etc. Coalitional and strategic models are linked
in both directions:

– From strategic to coalitional games: the analysis at the strategic level of the
choice of strategies by a coalition allows one to define a characteristic (or effectivity)
function and then apply the program of coalitional games.

– Fromcoalitional to strategic games: also called “Nash’s program” [152]. Starting
from the effectivity function and a solution, one defines strategies and utility functions
such that a rational behavior of the players in the corresponding strategic game
induces the chosen solution.

1.1.3 Social Choice and Mechanism Design

This field studies, in the framework of a strategic game played by a set of players, the
impact of the rules on the final outcome. The main focus moves from the study of the
strategic behavior of the players to the analysis of the consequences of the procedure
on the play of the game. Related areas are incitations and contract theories.

1.2 Examples

The following examples illustrate the kinds of questions, tools and applications that
occur in game theory.

1.2.1 Stable Matchings

Consider two finite families I and J (men/women, workers/firms,...) with the same
cardinality such that each element i ∈ I (resp. j ∈ J ) has a complete strict order
on J (resp. I ). The issue is the existence and characterization of stable matchings
(or marriages), namely bijections π from I to J such that there are no couples
(i,π(i) = j), (i ′,π(i ′) = j ′) with both j ′ preferred by i to j and i preferred to i ′ by
j ′. For example, if the problem is to match men with women, a matching is stable
if no unmatched couple prefers to be matched together rather than stay with their
actual partners. (See Exercise1.)
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1.2.2 A Bargaining Problem

Represent by [0, 1] a set which is to be shared between two players, each of whom
have preferences regarding their share of the set. The game evolves in continuous
time between times 0 and 1 and the player who stops first (at time t) wins the share
[0, t] of the set, his opponent getting the complement. Assume that a1(t) (resp. a2(t)),
describing the evaluation by player 1, resp. player 2, of the share [0, t], is a continuous
function increasing from 0 to 1 (1 − ai (t) is the evaluation of the complement (t, 1]).
Each player i can obtain 1/2 by aiming to stop at time ti with ai (ti ) = 1/2 (if the
opponent stops before, even better). However, if ti < t j and player i knows it, he
can anticipate that player j will not stop before t j and try to wait until some t j − ε.
Questions appear related to information on the characteristics of the opponent, to the
anticipation of his behavior (rationality) and to the impact of the procedure on the
outcome (if ti < t j then player j would like the splitting to move from 1 to 0). (See
Exercise2.)

1.2.3 Transport Equilibrium

Represent by the interval [0, 1] a very large set of small players, each of which is
using either a car or the tube. Assume that they all have the same evaluation of the
traffic, which is represented by an increasing function v (resp.m) from [0, 1] to itself,
v(t) (resp.m(t)) being their utility if they use a car (resp. the tube) while a proportion
t ∈ [0, 1] of the population takes the tube. If v > m the only equilibrium is t = 0,
even if the outcome v(0) can be inferior to another feasible outcome m(1). If the
curves m and v intersect, the corresponding points are equilibria, which may or may
not be stable. (See Exercise3.)

1.2.4 Auctions

An indivisible object is proposed for auction and n players have valuations vi ,
i = 1, . . . , n, upon it. One can consider decreasing auctions where the proposed
price decreases until acceptance or increasing auctions where the players make suc-
cessive increasing offers. Another model corresponds to the case where the players
simultaneously provide sealed bids bi and the item is given to the one with the high-
est bid. If the price to pay is this highest bid, the players are interested in knowing
the valuation of their opponents. If the price to pay corresponds to the second best
bid, the strategy bi = vi (bidding his true valuation) is dominant for all players. (See
Sect. 1.3.2 and Exercise4.)
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1.2.5 Condorcet’s Paradox

Three players a, b, c have strict preferences on three candidates A, B,C . If a ranks
the candidates A > B > C , b ranks B > C > A and c ranks C > A > B, then A is
preferred to B by amajority, B is preferred toC by amajority, and alsoC is preferred
to A by a majority. Hence, majority rule is not always transitive, and there may be
no candidate who can win against all other candidates by majority rule.

We now provide several models of dynamical interactions.

1.2.6 An Evolution Game

Consider a competition between three types of cells: a produces a virus and an anti-
virus, b produces an anti-virus and c produces nothing. Production has a cost, hence
b wins against a (in terms of fitness or reproduction rate) and c wins against b but a
kills c. One faces a cycle. The corresponding dynamics on the simplex of proportions
of the types in the population has an interior rest point (where the three types are
simultaneously present) but it may be attractive or repulsive. (See Chap.5.)

1.2.7 A Stochastic Game

Consider a situation where two fishermen fish a species that can be in large quantity
(a), or small quantity (b), or in extinction (c). Players have an intensive (I ) or
reduced (R) activity and the outcome of their activity, which depends on the state of
the species (a, b or c), is an amount of fish and a probability distribution on the state
for the next period. This defines a stochastic game.

In state a the description of the strategic interaction is given by:

I R

I 100, 100 120, 60

R 60, 120 80, 80

and the evolution of the state is defined by:

I R

I (0.3, 0.5, 0.2) (0.5, 0.4, 0.1)

R (0.5, 0.4, 0.1) (0.6, 0.4, 0)

For example, if in this state a player 1 (whose strategies are represented by the rows
of the matrix) fishes a lot (I ) and player 2 (represented by the columns) has a reduced
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activity (R), the evaluation (payoff, utility) of the outcome for player 1 drop is 120,
the evaluation is 60 for player 2, and the state the next day will be a with probability
0.5, resp. (b ; 0.4) and (c ; 0.1).

In state (b) the data for the utilities is:

I R

I 50, 50 60, 30

R 30, 60 40, 40

and for the transitions probabilities:

I R

I (0, 0.5, 0.5) (0.1, 0.6, 0.3)

R (0.1, 0.6, 0.3) (0.8, 0.2, 0)

and in state c the fishing is 0 and the state is absorbing, i.e. stays in state c at all future
stages, whatever the players’ choices.

When choosing an activity, there is clearly a conflict between the immediate
outcome (today’s payoff) and the consequence on the future states (and hence future
payoffs). Thus the evaluation of some behavior today depends upon the duration of
the interaction. (See Sect. 8.5.)

1.2.8 A Repeated Game

Consider a repeated game between two players where the stage interaction is
described by the payoff matrix:

α β

a 10, 0 1, 1

b 5, 5 0, 0

(Player 1 chooses a row a or b, player 2 a columnα or β, and the corresponding entry
indicates both players’ utilities of the induced outcome.) At each stage, the players
make choices (independently) and they are informed of both choices before the next
stage. If one does not care about the future, one gets a repetition of the profile (a,β)

(since a is always better than b and then β is better than α facing a) but one can
introduce threats of the type “play β forever in the future” in case of deviation from
b to a, to stabilize the repetition of the outcome (b,α). The use of plan and threat is
fundamental in the study of repeated games. (See Chap.8.)
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1.3 Notations and Basic Concepts

We introduce here the main notions needed to analyze games.

1.3.1 Strategic Games

A strategic game in normal form G is defined by:

– a finite set I of players (with cardinality |I | = n � 1);
– a non-empty set of strategies Si for each player i ∈ I ;
– a mapping g = (g1, . . . , gn) from S = Πn

i=1S
i to Rn .

Thismodelizes choicesmade independently by the players (each i ∈ I can choose
a strategy si ∈ Si ) and the global impact on player j when the profile s = (s1, . . . , sn)
is chosen is measured by g j (s) = g j (s1, . . . , sn), called the payoff of player j , and
g j is the payoff function of j .

We will also use the alternative notation s = (si , s−i ), where s−i stands for the
vector of strategies (s j ) j∈I\{i} of players other than i , and S−i = Π j �=i S j .

More generally, a game form is a mapping F from S to an outcome space R. Each
player i ∈ I has a preference (e.g. a total preorder �i ) on R. If this is represented by
a utility function ui from R to R, then the composition ui ◦ F gives gi , the payoff
evaluation of the outcome by player i . (This amounts to taking as the space of
outcomes the set S of strategy profiles.)

Note that gi (s) is not a physical amount (of money for example) but the utility
for player i of the outcome induced by the profile s. By definition player i strictly
prefers s to t iff gi (s) > gi (t) and in the case of a lottery on profiles, we assume that
the evaluation of the lottery is the expectation of gi . Thus, we assume in this book
that the players’ preferences over lotteries satisfy the von Neumann–Morgenstern
axioms.

1.3.2 Domination

Given a set L and x , y in RL we write:

x � y if xl � yl for each l ∈ L ,
x > y if xl � yl for each l ∈ L , and x �= y,
x � y if xl > yl for each l ∈ L .

In a strategic game, si in Si is a strictly dominant (resp. dominant) strategy of player i
if

gi (si , ·) � gi (t i , ·) ∀t i ∈ Si ,
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resp.
gi (si , ·) � gi (t i , ·) ∀t i ∈ Si .

si is strictly dominated (resp. weakly dominated) if there exists a t i in Si with

gi (si , ·) 
 gi (t i , ·),

resp.
gi (si , ·) < gi (t i , ·).

1.3.3 Iterated Elimination

A strictly dominated strategy is considered a bad choice for a player. Supposewe start
from a strategic game and remove all strictly dominated strategies. This elimination
defines new sets of strategies, hence new possible strictly dominated strategies, and
we can iterate the process by eliminating the new strictly dominated strategies, etc.
The game is solvable if the iterated elimination of strictly dominated strategies
converges to a singleton (in particular, if each player has a strictly dominant strategy,
see Chap.4 and the example in Sect. 1.4.1).

1.3.4 Best Response

The ε-best response correspondence (or ε-best reply correspondence) (ε � 0), BRi
ε

from S−i to Si , is defined by:

BRi
ε(s

−i ) = {si ∈ Si : gi (si , s−i ) � gi (t i , s−i ) − ε,∀t i ∈ Si }.

A Nash equilibrium is a profile s of strategies such that no unilateral deviation is
profitable: for each player i an alternative choice t i would not give him a higher
payoff: gi (t i , s−i ) � gi (s). This means: si ∈ BRi

0(s
−i ),∀i ∈ I . (See Chap.4.)

1.3.5 Mixed Extensions

In the case of measurable strategy spaces Si (with σ-algebra S i ), a mixed extension
of a game G is defined by a space of mixed strategies Mi , for each i ∈ I , which is a
subset of the set of probabilities on (Si ,S i ), convex and containing Si (elements of
Si are identified with the Dirac masses and are called pure strategies).

We assume that Fubini’s theorem applies to the integral of g on M = Πn
i=1M

i .
This allows us to define the extended payoff as the expectation with respect to the
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product probability distribution generated by the mixed strategies of the players:

gi (m) =
∫
S
gi (s) m1(ds1) ⊗ . . . ⊗ mn(dsn), m ∈ M.

Explicitly, in the finite case if Δ(Si ) is the simplex (convex hull) of Si , Δ =∏N
i=1 Δ(Si ) denotes the set of mixed strategy profiles. Given the profile σ =

(σ1, . . . ,σN ) ∈ Δ, the payoff for player i in the mixed extension of the game is
given by

gi (σ) =
∑

s=(s1,...,sn)∈S

(∏
j

σ j (s j )

)
gi (s)

and corresponds to the multilinear extension of gi .

1.4 Information and Rationality

We present here several examples that underline the difference between one-
player games (or optimization problems) and strategic interaction.

1.4.1 Dominant Strategy and Dominated Outcome

α β

a 10, 0 1, 1

b 5, 5 0, 0

As usual in the matrix representation, the convention is that player 1 chooses the row,
player 2 the column, and the first (resp. second) component of the matrix entry is the
payoff of player 1 (resp. player 2). Here I = {1, 2}, S1 = {a, b} and S2 = {α,β}.

In this game a strictly dominates b andβ is a best response to a, hence the outcome
is (1, 1) by iterated elimination of strictly dominated strategies. Note that if a is not
available to player 1, the outcome is (5, 5), which is better for both players.

1.4.2 Domination and Pareto Optimality

Given a set of feasible payoffs S ⊂ R
n , an element x in S is called a Pareto optimum

(or Pareto-efficient) if there exists no other element y �= x in S such that yi � xi for
each i = 1, . . . , n.
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Consider the following two-player game with three strategies for each player:

1, 0 0, 1 1, 0

0, 1 1, 0 1, 0

0, 1 0, 1 1, 1

In the set {(1, 0), (0, 1), (1, 1)} of feasible payoffs, (1, 1) is the only Pareto optimum
and is eliminated via weak domination, leading to:

1, 0 0, 1

0, 1 1, 0

where the only rational outcome is (1/2, 1/2).

1.4.3 Order of Elimination

α β

a 2, 2 1, 2

b 2, 0 0, 1

The outcome (2, 2) is eliminated by weak domination if one starts with player 2, but
not if one starts with player 1. However it is easy to check that there is no ambiguity
in the process of iterated elimination via strict domination.

1.4.4 Knowledge Hypotheses

It is crucial when analyzing the deductive process of the players to distinguish
between:

– knowledge of the state, or factual knowledge, which corresponds to information
on the game parameters: strategies, payoffs (in this framework the autonomous
procedures for a player are those that depend only on his own set of strategies and
payoff function); and

– knowledge of the world, or epistemic knowledge, which means in addition knowl-
edge of the information and the (amount of) rationality of the opponents.

One then faces a circular paradox: to define the rationality of a player, one has to
specify his information, which includes, among other things, his information on the
rationality of his opponents (see e.g. Sorin [200]).
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1.4.5 Domination and Mixed Extension

The notion of domination depends on the framework:

α β

a 3 0

b 1 1

c 0 3

Strategy b is not dominated by the pure strategy a or by c but is strictly dominated
by the mixed strategy 1

2a + 1
2c.

1.4.6 Dynamic Games and Anticipation

The main difference in dynamic interactive situations between the modelization in
terms of repeated or evolution games is whether each player takes into account the
consequences of his own present action on the future behavior of the other partici-
pants. The first model analyzes strategic interactions involving rational anticipations.
The second describes the consequences at the global level of individual adaptive
myopic procedures.

1.5 Exercises

Exercise 1. Stable matchings
Consider a setM of nmen (denoted by a, b, c, . . . ) and a setW of n women (denoted
by A, B,C, . . . ). Men have strict preferences over women, and women have strict
preferences over men. For instance, with n = 3, man bmay rank womanC first, then
A then B, whereas woman C may rank man a first, then c then b. A matching is a
subset of M × W such that every man is paired to exactly one woman, and every
woman is paired to exactly one man (it can be viewed as a bijection from M to W ).

A matching μ is stable if there is no couple (x,Y ) not paired by μ and such
that both x and Y respectively prefer Y and x to their partner under μ (so that x
and Y would prefer to “divorce” from their partner given by μ in order to be paired
together).

This model was introduced by Gale and Shapley [74], who showed the existence
of a stable matching thanks to the following algorithm:

Women stay home and men visit women (another algorithm is obtained by
exchanging the roles between M and W ).
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Day 1: every man proposes to the woman he prefers; if a woman has several offers,
she keeps at home theman she likes best and rejects all other propositions. If
every woman got exactly one offer, each offer is accepted and the algorithm
stops. Otherwise:

Day 2: every man who has been rejected on day 1 proposes to his next (hence
second) preferred woman. Then each woman compares her new offers (if
any) to the man she kept on day 1 (if any), and keeps at home the man she
likes best. If every woman keeps a man, the algorithm stops. Otherwise,
inductively:

Day k: every man who was rejected on day k − 1 proposes to the next woman on
his list. Then each woman compares her new offers (if any) to the man she
kept at day k − 1 (if any), and keeps at home the man she likes best. If every
woman keeps a man, the algorithm stops. Otherwise, at least one woman
and one man are alone at the end of day k, and the algorithm continues.

(1) Show that the algorithm is well defined and stops in at most n2 days.
(2) Compute the stable matchings for each of the following two preferences:

A B C

a (1, 3) (2, 2) (3, 1)

b (3, 1) (1, 3) (2, 2)

c (2, 2) (3, 1) (1, 3)

and

A B C D

a (1, 3) (2, 3) (3, 2) (4, 3)

b (1, 4) (4, 1) (3, 3) (2, 2)

c (2, 2) (1, 4) (3, 4) (4, 1)

d (4, 1) (2, 2) (3, 1) (1, 4)

For example, the entry (1, 3) in position (a, A) means that man a ranks woman
A first, and that woman A ranks man a third.

(3) Show that the final outcome of the algorithm is necessarily a stable matching.
(4) Show that a stable matching may not exist in the following variant, where there

is a single community of people: there are 2n students and n rooms for two, and
each student has a strict preference over his 2n − 1 potential room-mates.

(5) Define stable matchings and study their existence in a society with polygamy:
consider n students and m schools, each student has preferences over schools,
and each school has a ranking over students and a maximal capacity (numerus
clausus).

Exercise 2. A sharing procedure
A referee cuts a cake, identified with the segment [0, 1], between two players as
follows: he moves his knife continuously from 0 to 1. The first player to stop the
knife at some x ∈ [0, 1] receives the piece of cake to the left of the knife, i.e. [0, x],
whereas the other player receives the remaining part to the right of the knife. If the
two players stop the knife simultaneously, by convention player 1 receives the left
part and player 2 the right part. The entire cake is valued 1 by each player. Player 1
(resp. player 2) values the left part of x as f (x) (resp. g(x)), and the right part as
1 − f (x) (resp. 1 − g(x)), where f and g are continuous, onto and strictly increasing
from [0, 1] to itself.
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(1) Show that each player can guarantee to have at least 1/2.
(2) What should you do if you are player 1 and you know f and g?
(3) Discuss the case where you are player 1 (resp. player 2) and do not know g (resp.

f ).
(4) The referee changes the game and now moves his knife continuously from right

to left (from x = 1 to x = 0). Are the players indifferent to this modification?

Exercise 3. Bus or car?
Consider a very large city,with a populationmodeled as the interval [0, 1]. Individuals
have the choice between taking the bus or their private car, and all have the same
preferences: u(B, x) (resp. u(V, x)) is the utility of someone taking the bus (resp.
his car) whenever x is the proportion of the population taking the bus. We make the
following natural assumptions: u(V, x) strictly increases with x (high x implies less
traffic) and u(B, ·) and u(V, ·) are continuous. An initial proportion x0 ∈ (0, 1) is
given, and the proportion xt of bus users at time t ∈ [0,+∞[ is assumed to follow
the replicator dynamics

ẋt = (u(B, xt ) − v(xt )) xt ,

with v(xt ) = xtu(B, xt ) + (1 − xt )u(V, xt ).
Let us study the dependence of the stationary points of the dynamics on the utility

functions.

(1) What happens if u(V, x) > u(B, x) for all x?
(2) Give an example where the “social welfare” v(xt ) strictly decreases with time.
(3) What if u(V, x) = 2 + 3x and u(B, x) = 3 for all x?
(4) Assume that u(B, 0) > u(V, 0) and u(B, 1) < u(V, 1). Show that generically,

the numberm of stationary points of the dynamics (which are limits of trajectories
starting in (0, 1)) is odd, and that (m + 1)/2 of them are local attractors of the
dynamics.

(5) Proceed as in (4) in the other cases (always considering generic cases).

Exercise 4. A Vickrey auction
To sell a painting, the following auction is organized:

(a) each player i submits a bid pi in a sealed envelope;
(b) the player (say k) submitting the highest bid (pk = maxi pi ) wins the auction

and receives the painting;
(c) if several players submit the same highest bid, the winner is chosen according

to a given linear order (this order, or tie-breaking rule, will play no rôle for the
result; one can also assume that the winner is selected uniformly among the
players with the highest bid);

(d) the winner k pays for the painting the second best price p, defined as p =
maxi �=k pi .

Assume that each player i has a given valuation vi for the painting (vi is the
maximal amount he is willing to pay to obtain the painting), and that his utility is
given by 0 if he is not the winner, and vi − p if he wins the auction and pays p.

Show that for each player i , submitting the bid pi = vi is a dominant strategy.



Chapter 2
Zero-Sum Games: The Finite Case

2.1 Introduction

Zero-sum games are two-person games where the players have opposite evaluations
of outcomes, hence the sum of the payoff functions is 0. In this kind of strategic
interaction the players are antagonists, hence this induces pure conflict and there is
no room for cooperation. It is thus enough to consider the payoff of player 1 (which
player 2 wants to minimize).

Afinite zero sumgame is representedby a real-valuedmatrix A. Thefirst important
result in game theory is called the minmax theorem and was proved by von Neumann
[224] in 1928. It states that one can associate a number v(A) to this matrix and a way
of playing for each player such that each can guarantee this amount. This corresponds
to the notions of “value” and “optimal strategies”.

This chapter introduces some general notations and concepts that apply to any
zero-sum game, and provides various proofs and extensions of the minmax theorem.
Some consequences of this result are then given. Finally, a famous learning proce-
dure (fictitious play) is defined and we show that the empirical average of the stage
strategies of each player converges to the set of optimal strategies.

2.2 Value and Optimal Strategies

Definition 2.2.1 A zero-sum game G in strategic form is defined by a triple (I, J, g),
where I (resp. J ) is the non-empty set of strategies of player 1 (resp. player 2) and
g : I × J −→ R is the payoff function of player 1.

The interpretation is as follows: player 1 chooses i in I and player 2 chooses j
in J , in an independent way (for instance simultaneously). The payoff of player 1 is
then g(i, j) and that of player 2 is −g(i, j): this means that the evaluations of the
outcome induced by the joint choice (i, j) are opposite for the two players. Player 1
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wants to maximize g and is called the maximizing player. Player 2 is the minimizing
player. With the notations of Chap.1, the strategy sets are S1 = I and S2 = J and
the payoff functions are g1 = g = −g2, hence the terminology “zero-sum”. Each of
the two players knows the triple (I, J, g).

G = (I, J, g) is a finite zero-sum game when I and J are finite. The game is then
represented by an I × J matrix A, where player 1 chooses the row i ∈ I , player 2
chooses the column j ∈ J and the entry Ai j of the matrix corresponds to the payoff
g(i, j). A basic example is the game called “Matching Pennies”:

1 −1
−1 1

Conversely, any real matrix can be considered as a finite zero-sum game, also called
a matrix game.

Consider from now on a given zero-sum game G = (I, J, g). Player 1 aims to
maximize the payoff function g, but this one depends upon the two variables i and j
while player 1 controls only i and not j . On the other hand player 2 seeks tominimize
g and controls j but not i .

Definition 2.2.2 Player 1 guarantees w ∈ R ∪ {−∞} in G if there exists a strategy
i ∈ I that induces a payoff of at least w, that is,

∃i ∈ I, ∀ j ∈ J, g(i, j) � w.

Symmetrically, player 2 guarantees w ∈ R ∪ {+∞} in G if there exists a strategy
j ∈ J that induces a payoff of at most w, that is,

∃ j ∈ J, ∀i ∈ I, g(i, j) � w.

It is clear that for each i in I , player 1 (or strategy i) guarantees inf j∈J g(i, j) and
similarly for any j in J , player 2 guarantees supi∈I g(i, j).

Definition 2.2.3 The maxmin of G, denoted by v, is given by

v = sup
i∈I

inf
j∈J

g(i, j) ∈ R ∪ {−∞,+∞}.

Similarly, the minmax of G, denoted by v, is

v = inf
j∈J

sup
i∈I

g(i, j) ∈ R ∪ {−∞,+∞}.

Hence the maxmin is the supremum of the quantities that player 1 guarantees and
theminmax is the infimumof the quantities that player 2 guarantees. Themaxmin can
also be considered as the evaluation of the interaction scheme where player 1 would
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first choose i ∈ I , then player 2 would choose j ∈ J knowing i . This corresponds
to the worst situation for player 1 and thus leads to a lower bound on his payoff
in the play of the game. Similarly the minmax is associated to the situation where
player 2 plays first, then player 1 plays knowing the strategy of his opponent. (Note
that if player 1 plays first but his choice is not known by player 2, the choices are
independent.) The fact that the first situation is less favorable to player 1 translates
to the next lemma:

Lemma 2.2.4
v � v.

Proof For all (i, j) ∈ I × J we have g(i, j) � inf j ′∈J g(i, j ′). Taking the supremum
w.r.t. i on each side, we get supi∈I g(i, j) � v, for all j in J . Taking now the infimum
w.r.t. j , we obtain v � v. �

The jump v − v is called the duality gap.

Definition 2.2.5 The game G has a value if v = v. In this case the value v of G is
denoted by val(G) = v = v = v.

In the Matching Pennies example one obtains v = −1 < 1 = v and the game has
no value (we will see later on that the mixed extension of the game has a value).

When the game has a value, it corresponds to the rational issue of the interaction
in the sense of a fair evaluation, justified by the two (rational) players of the game.
The value can then be interpreted as the worth, or the price, of the game G.

Definition 2.2.6 Given ε > 0, a strategy of player 1 is maxmin ε-optimal if it guar-
antees v − ε. If the game has a value, we call it more simply ε-optimal. 0-optimal
strategies are called optimal. Dual definitions hold for player 2.

Example 2.2.7 G = (N, N, g),where g(i, j) = 1/(i + j + 1). The gamehas a value
and v = 0. All strategies of player 1 are optimal, and player 2 has no optimal strategy.

Lemma 2.2.8 If there exists a w that both players 1 and 2 can guarantee (using i
and j respectively), then w is unique and the game has a value, equal to w. Both i
and j are optimal strategies.

Proof We have w � v � v � w. �

When both spaces I and J have a measurable structure, we can introduce the
mixed extensions of G (cf. Sect. 1.3.5). If a strategy i ∈ I guarantees w in G then
it guarantees the same amount in any mixed extension (X,Y, g) of G. In fact, the
integral being linear w.r.t. y, we have g(i, y) = ∫

J g(i, j)dy( j) � w for all y ∈ Y ,
as soon as g(i, j) � w for all j ∈ J .

Hence we deduce:

Lemma 2.2.9 The duality gap of a mixed extension of G is smaller than the initial
duality gap of G.
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In particular, if a zero-sum game has a value, any mixed extension of the game
has the same value. In the reminder of this chapter we will mainly consider the case
of a finite zero-sum game.

2.3 The Minmax Theorem

In a game, it is natural to let the players choose their strategy in a random way. For
example, if we are playing Matching Pennies, or describing an algorithm that will
play it “online”, it is clearly interesting to select each strategy with probability 1/2, in
order to hide our choice from the opponent. An alternative interpretation of “mixed
strategies” is to consider the probability assigned to a strategy as his opponent’s
degree of belief that this strategy will be adopted ([92]: see Chap.7).

Mathematically, considering mixed strategies allows to deal with convex sets. If
S is a finite set of cardinality n, we denote by Δ(S) the set of probabilities on S or
equivalently the simplex on S:

Δ(S) = {x ∈ R
n : xs � 0, s ∈ S;∑

s∈S xs = 1}.

The mixed extension of a finite game G = (I, J, g) is thus the game Γ = (Δ(I ),
Δ(J ), g), where the payoff function g is extended in a multilinear way:

g(x, y) = Ex⊗y g =
∑

i, j

x i y jg(i, j).

An element x ofΔ(I ), resp. y ofΔ(J ), is amixed strategy of player 1, resp. player 2,
in the gameΓ . An element i ∈ I is also considered as aDiracmeasure or a unit vector
ei in Δ(I ) and is a pure strategy of player 1 in Γ , and similarly for player 2.

The support of a mixed strategy x of player 1, denoted supp (x), is the subset of
actions i ∈ I such that xi > 0.

When the game G is represented by a matrix A, an element x ∈ Δ(I ) will cor-
respond to a row matrix and an element y ∈ Δ(J ) to a column matrix, so that the
payoff can be written as the bilinear form g(x, y) = x Ay.

Theorem 2.3.1 (Minmax [224]) Let A be an I × J real matrix. Then there exist
(x∗, y∗, v) in Δ(I ) × Δ(J ) × R such that

x∗Ay � v, ∀y ∈ Δ(J ) and x Ay∗ � v, ∀x ∈ Δ(I ). (2.1)

In other words, the mixed extension of a matrix game has a value (one also says
that any finite zero-sum game has a value in mixed strategies) and both players have
optimal strategies.

The real number v in the theorem is uniquely determined and corresponds to the
value of the matrix A:
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v = max
x∈Δ(I )

min
y∈Δ(J )

x Ay = min
y∈Δ(J )

max
x∈Δ(I )

x Ay,

also denoted val(A).
As a mapping defined on matrices, from R

I×J to R, the operator val is continu-
ous, monotonic (increasing) and non-expensive: |val(A) − val(B)| � ‖A − B‖∞
(see Sect. 3.4).

Several proofs of the minmax theorem are available. A classical proof relies on
the duality theorem in linear programming in finite dimensions (maximization of a
linear form under linear constraints).

Theorem 2.3.2 Let A be an m×n matrix, b an m×1 vector and c a 1 × n vector
with real coefficients. The two dual linear programs

min〈c, x〉
(P1) Ax � b

x � 0

max〈y, b〉
(P2) yA � c

y � 0

have the same value as soon as they are feasible, i.e. when the sets {Ax � b; x � 0}
and {yA � c; y � 0} are non-empty.
Proof This result itself is a consequence of the “alternative theorem” for linear
systems, see Exercises7–9. �

Proof (of the minmax theorem) By considering A + t E with t � 0 and E being the
matrix with Ei j = 1,∀(i, j) ∈ I × J , one can assume A � 0, of dimension m × n.

Let us consider the dual programs

min〈X, c〉
(P1) X A � b

X � 0

max〈b,Y 〉
(P2) AY � c

Y � 0

where the variables satisfy X ∈ R
m,Y ∈ R

n and the parameters are given by c ∈
R

m, ci = 1,∀i and b ∈ R
n, b j = 1,∀ j .

(P2) is feasible with Y = 0, as is (P1) by taking X large enough, using the
hypothesis on A. Thus by the duality theorem there exists a triple (X∗,Y ∗, w) with:

X∗ � 0, Y ∗ � 0, X∗A � b, AY ∗ � c,
∑

i

X∗
i =

∑

j

Y ∗
j = w.

X∗ �= 0 implies w > 0, hence dividing X∗ and Y ∗ by w, one obtains the existence
of (x∗, y∗) ∈ Δ(I ) × Δ(J ) with

x∗Ae j � 1/w,∀ j, ei Ay∗ � 1/w,∀i.

Hence there is a value, namely 1/w, and x∗ and y∗ are optimal strategies. �
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A more constructive proof of von Neumann’s minmax theorem can be obtained
through an approachability algorithm (see Exercise4). Alternatively, one can use
Loomis’ theorem (Theorem2.5.1), the proof of which uses a recursive argument on
the dimension of the strategy sets.

Let us mention that von Neumann’s minmax theorem can be generalized to the
case where the payoffs are not real numbers but belong to an ordered field (and
then the value belongs to the field, [228]): it is enough to check that the set defined
through Eq. (2.1) is specified by a finite number of weak linear inequalities, and this
is the advantage of the previous “elementary proof” based on Fourier elimination,
see Exercise7.

2.4 Properties of the Set of Optimal Strategies

Consider a matrix game defined by A ∈ R
I×J . Denote by X (A) (resp. Y (A)) the

subset of Δ(I ) (resp. Δ(J )) composed of optimal strategies of player 1 (resp. 2).
Recall that a polytope is the convex hull of finitely many points (which is equivalent,
in finite dimensions, to a bounded set formed by the intersection of a finite number
of closed half spaces).

Proposition 2.4.1 (a) X (A) and Y (A) are non-empty polytopes.
(b) If x ∈ X (A), y ∈ Y (A), i ∈ supp (x)and j ∈ supp (y), then i Ay = v and x A j =

v (complementarity).
(c) There exists a pair of optimal strategies (x∗, y∗) in X (A) × Y (A) satisfying the

property of strong complementarity:

∀i ∈ I,
(
x∗i > 0 ⇐⇒ ei Ay∗ = v

)
and

∀ j ∈ J,
(
y∗ j

> 0 ⇐⇒ x∗Ae j = v
)

.

(d) X (A) × Y (A) is the set of saddle points of A, namely elements (x∗, y∗) ∈
Δ(I ) × Δ(J ) such that

x A y∗ � x∗ A y∗ � x∗ A y ∀(x, y) ∈ Δ(I ) × Δ(J ).

Proof The proofs of (a), (b), and (d) are elementary consequences of the definitions
and of the minmax theorem.

In fact, property (d)holds for any zero-sumgame: it expresses the identity between
optimal strategies and Nash equilibria (see Chap.4) for a zero-sum game.

Assertion (c) corresponds to strong complementarity in linear programming (see
Exercise11). A pure strategy is in the support of an optimal mixed strategy of a
player iff it is a best response to any optimal strategy of the opponent. �
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2.5 Loomis and Ville’s Theorems

The next extension of von Neumann’s minmax theorem is due to Loomis.

Theorem 2.5.1 ([122]) Let A and B be two I × J real matrices, with B � 0. Then
there exist (x, y, v) in Δ(I ) × Δ(J ) × R such that

x A � v x B and Ay � v By.

With Bi j = 1 for all (i, j) ∈ I × J , one recovers von Neumann’s theorem.
Conversely, one can give an elementary proof of Loomis’ theorem assuming von

Neumann’s theorem: the mapping t ∈ R �→ val(A − t B) is continuous, strictly
decreasing and has limit +∞ at −∞, and −∞ at +∞. Thus there exists a real v

such that val(A − vB) = 0, which gives the result.
See Exercise1 for a direct proof of Loomis’ theorem.
An example of use of von Neumann’s theorem is the following:

Corollary 2.5.2 Any stochastic matrix has an invariant distribution.

Proof Let A be a stochastic matrix in R
I×J , that is, satisfying: I = J , Ai j � 0 and∑

j∈I Ai j = 1,∀i ∈ I . Let B = A − Id, where Id is the identity matrix, and consider
the game defined by the matrix B.

The uniform strategy y∗ of player 2 guarantees 0, thus the value of B is non-
positive. Moreover, against any mixed strategy y of player 2, by choosing a row
i with yi = min j∈J y j player 1 gets a non-negative payoff

∑
j Ai j y j − yi , hence

v(B) � 0. As a consequence, the value of B is zero.
An optimal strategy x∗ of player 1 in B satisfies x∗A − x∗ � 0, hence, considering

the (right) product by y∗, one obtains equality on each component so that x∗A = x∗
(or use complementarity). �

Von Neumann’s theorem allows us to prove the existence of a value in the fol-
lowing case of a game with a continuum of strategies and continuous payoff, where
Δ([0, 1]) is the set of Borel probabilities on [0, 1].
Theorem 2.5.3 ([222]) Let I = J = [0, 1] and f be a real-valued continuous func-
tion on I × J . The mixed extension (Δ(I ),Δ(J ), f ) has a value and each player has
an optimal strategy. Moreover, for every ε > 0, each player has an ε-optimal strategy
with finite support.

(In particular any mixed extension of the game (I, J, f ) has the same value.)
See Exercise3 for the proof: one considers finer and finer discretizations of the

square [0, 1] × [0, 1] inducing a sequence of finite games, and one extracts a weakly
convergent subsequence of optimal strategies. Exercise7 of Chap. 3 shows that a
continuity hypothesis on f is needed in Ville’s theorem. However, although joint
continuity is not required (see the next Chap. 3), it allows for strong approximation.
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2.6 Examples

Example 2.6.1
1 −2

−1 3

Here v = 1/7. Player 1 has a unique optimal strategy: play Top with probability
4/7 andBottomwith probability 3/7. Similarly player 2 has a unique optimal strategy:
(5/7, 2/7) on (Left, Right).

Example 2.6.2
1 2
0 t

For all t ∈ R, the game has value v = 1, and each player has a unique optimal
strategy, which is pure: Top for player 1, Left for player 2.

Example 2.6.3
a b
c d

In the case where each player has two actions, either there exists a pair of pure
optimal strategies (and then the value is one of the numbers a, b, c, d) or the optimal
strategies are completely mixed and the value is given by

v = ad − bc

a + d − b − c
.

Example 2.6.4
1 0
0 t

For t ∈ R
−, the game has the value v = 0.

For t ∈ R
+, v = t

1+t and the only optimal strategy of player 1 puts a (decreasing)
weight 1

1+t on the Bottom line: this plays the rôle of a threat, forcing player 2 to play
Left with a high probability.

2.7 Fictitious Play

Let A be an I × J real matrix. The following process, called fictitious play, was
introduced by Brown [33]. Consider two players repeatedly playing the matrix game
A. At each stage n, n = 1, 2, . . . , each player is aware of the previous strategy of his
opponent and computes the empirical distribution of the strategies used in the past.
He then plays a strategy which is a best response to this average.

Explicitly, starting with any (i1, j1) in I × J , consider at each stage n, xn =
1
n

∑n
t=1 it , viewed as an element of Δ(I ), and similarly yn = 1

n

∑n
t=1 jt in Δ(J ).

Definition 2.7.1 A sequence (in, jn)n�1 with values in I × J is the realization of a
fictitious play process for the matrix A if, for each n � 1, in+1 is a best response of
player 1 to yn for A:
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in+1 ∈ BR1(yn) = {i ∈ I : ei Ayn � ek Ayn,∀k ∈ I }

and jn+1 is a best response of player 2 to xn for A ( jn+1 ∈ BR2(xn), defined in a dual
way).

The main properties of this procedure are given in the next result.

Theorem 2.7.2 ([177]) Let (in, jn)n�1 be the realization of a fictitious play process
for the matrix A. Then:

(1) The distance from (xn, yn) to the set of optimal strategies X (A) × Y (A) goes to
0 as n → ∞. Explicitly: ∀ε > 0, ∃N ,∀n � N ,∀x ∈ Δ(I ),∀y ∈ Δ(J )

xn Ay � val(A) − ε and x Ayn � val(A) + ε.

(2) The average payoff on the trajectory, namely 1
n

∑n
t=1 Ait , jt , converges toval(A).

Wewill not prove the above theorem here (see Exercise12) but instead provide an
illustration in the continuous time setting. Take as variables the empirical frequencies
xn and yn , so that the discrete dynamics for player 1 reads as

xn+1 = 1

n + 1
[in+1 + nxn] with in+1 ∈ BR1(yn)

and hence satisfies

xn+1 − xn ∈ 1

n + 1
[BR1(yn) − xn].

The corresponding system in continuous time is now

ẋ(t) ∈ 1

t

[
BR1(y(t)) − x(t)

]
.

This is a differential inclusion which defines, with a similar condition for player 2,
the process CFP: continuous fictitious play. We assume the existence of such a CFP
process.

Proposition 2.7.3 ([90, 101]) For the CFP process, the duality gap converges to 0
at a speed O(1/t).

Proof Make the time change z(t) = x(exp(t)), which leads to the autonomous dif-
ferential inclusion

ẋ(t) ∈ [
BR1(y(t)) − x(t)

]
, ẏ(t) ∈ [

BR2(x(t)) − y(t)
]

known as the best response dynamics [78].
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Write the payoff as g(x, y) = x Ay and for (x, y) ∈ Δ(I ) × Δ(J ), let

L(y) = max
x ′∈Δ(I )

g(x ′, y) M(x) = min
y′∈Δ(J )

g(x, y′).

Thus the duality gap at (x, y) is defined as W (x, y) = L(y) − M(x) � 0 and the
pair (x, y) defines optimal strategies in A if and only if W (x, y) = 0.

Let now (x(t), y(t))t�0 be a solution of CFP. Denote by

w(t) = W (x(t), y(t))

the evaluation of the duality gap on the trajectory, and write

α(t) = x(t) + ẋ(t) ∈ BR1(y(t)) and β(t) = y(t) + ẏ(t) ∈ BR2(x(t)).

We have L(y(t)) = g(α(t), y(t)), thus

d

dt
L(y(t)) = α̇(t)D1g(α(t), y(t)) + ẏ(t)D2g(α(y), y(t)).

The envelope theorem (see e.g., Mas-Colell, Whinston and Green [129, p. 964])
shows that the first term collapses and the second term is g(α(t), ẏ(t)) (since g is
linear w.r.t. the second variable). Then we obtain

ẇ(t) = d

dt
L(y(t)) − d

dt
M(x(t))

= g(α(t), ẏ(t)) − g(ẋ(t),β(t))

= g(x(t), ẏ(t)) − g(ẋ(t), y(t))

= g(x(t),β(t)) − g(α(t), y(t))

= M(x(t)) − L(y(t))

= −w(t).

Thus w(t) = w(0) e−t . There is convergence of w(t) to 0 at exponential speed,
hence convergence to 0 at a speed O(1/t) in the original problem before the time
change. The convergence to 0 of the duality gap implies by uniform continuity the
convergence of (x(t), y(t)) to the set of optimal strategies X (A) × Y (A). �

Let us remark that by compactness of the sets of mixed strategies, we obtain
the existence of optimal strategies in the matrix game (accumulation points of the
trajectories). This provides an alternative proof of theminmax theorem, starting from
the existence of a solution to CFP.

The result is actually stronger: the set X (A) × Y (A) is a global attractor for the
best response dynamics, which implies the convergence of the discrete time version,
hence of the fictitious play process ([101]), i.e. part (1) of Theorem2.7.2.

We finally prove part (2) of Theorem2.7.2.
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Proof Let us consider the sum of the realized payoffs: Rn = ∑n
p=1 g(i p, jp).

Writing Ui
m = ∑m

k=1 g(i, jk), we obtain

Rn =
n∑

p=1

(U
ip
p −U

ip
p−1)

=
n∑

p=1

U
ip
p −

n−1∑

p=1

U
ip+1
p

= Uin
n +

n−1∑

p=1

(U
ip
p −U

ip+1
p ),

but the fictitious play property implies that

U
ip
p −U

ip+1
p � 0.

Hence lim supn→∞
Rn
n � lim supn→∞ maxi

U i
n
n � val(A), since Ui

n
n = g(i, yn)

� val(A) + ε for n large enough by part 1) of Theorem2.7.2. The dual inequality
thus implies the result. �

Note that part (1) and part (2) of Theorem2.7.2 are independent. In general, con-
vergence of the average marginal trajectories on moves does not imply the property
of average payoff on the trajectory (for example, in Matching Pennies convergence
of the average strategies to (1/2, 1/2) is compatible with a sequence of payoffs 1 or
−1).

2.8 Exercises

Exercise 1. Loomis’ theorem [122]
Let A and B be two I × J matrices, with B � 0. We will prove) the existence of a
unique v ∈ R, and elements s ∈ Δ(I ), t ∈ Δ(J ), such that

s A � v sB, At � vBt.

The proof does not use von Neumann’s theorem and is obtained by induction on the
dimension |I | + |J | = m + n. The result is clear for m = n = 1.

(1) Assume the result is true for m + n − 1. Define λ0 = sup{λ ∈ R, ∃s ∈ Δ(I ),
s A � λ sB} and μ0 = inf{μ ∈ R, ∃t ∈ Δ(J ), At � μBt}.
(a) Show that both sup and inf are reached and that λ0 � μ0.

If λ0 = μ0, the result is achieved, hence we assume from now on that λ0 < μ0.
Let s0 and t0 be such that s0A � λ0 s0B and At0 � μ0Bt0.
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(b) Show that s0A − λ0 s0B = 0 and At0 − μ0Bt0 = 0 cannot both hold.
(c) Assume then that j ∈ J is such that s0A j > λ0 s0Bj (A j stands for column

j of A, and likewise for Bj ) and let J ′ = J \ { j}.
Using the induction hypothesis, introduce v′ ∈ R and s ′ ∈ Δ(I ) associated to
the I × J ′ submatrices A′ of A and B ′ of B, with s ′A′ � v′ s ′B ′. Show that
v′ � μ0 > λ0, thenobtain a contradiction in the definitionofλ0 byusing s0 and s ′.

(2) Application: Let B be a squarematrixwith positive entries. Show that there exists
an eigenvector associated to a positive eigenvalue with positive components
(Perron–Frobenius).

Exercise 2. minmax with three players
Consider the three-player game where player 1 chooses a probability
x ∈ Δ({T, B}), player 2 chooses y ∈ Δ({L , R}) andplayer 3 chooses z ∈ Δ({W, E}).
The probabilities are independent and the payoff is the expectation of the following
function g:

L R

T 1 0

B 0 0

W

L R

T 0 0

B 0 1

E

Compare
max
(x,y)

min
z

g(x, y, z) and min
z

max
(x,y)

g(x, y, z).

Exercise 3. Ville’s theorem [222]
Let X = Y = [0, 1] endowed with its Borel σ-fieldB and f be a continuous function
from X × Y to R. Consider the zero-sum game G where player 1 chooses σ inΔ(X)

(probability on (X,B)), player 2 chooses τ in Δ(Y ), and the payoff is given by

f (σ, τ ) =
∫

X×Y
f (x, y) dσ(x) dτ (y).

For each n � 1, define the matrix game Gn where player 1 chooses an action i in
Xn = {0, . . . , 2n}, player 2 chooses an action j in Yn = Xn and the payoff is given
by Gn(i, j) = f ( i

2n ,
j
2n ). Denote by vn the value (in mixed strategies) of Gn .

(1) Show that in G player 1 can guarantee the amount lim supn vn (up to ε, for any
ε > 0). Deduce that G has a value.

(2) Show that each player has an optimal strategy inG. (Represent optimal strategies
of {Gn} as elements in Δ([0, 1]) and extract a weakly convergent subsequence.)

Exercise 4. Deterministic approachability and minmax
Let C be a non-empty closed convex subset of R

k (endowed with the Euclidean
norm) and {xn} a bounded sequence in R

k .
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For x ∈ R
k , ΠC(x) stands for the closest point to x in C (which is also the

projection of x on C) and x̄n is the Cesàro mean up to stage n of the sequence {xi }:

x̄n = 1

n

n∑

i=1

xi .

(1) Deterministic approachability (Blackwell [27]). {xn} is a Blackwell C-sequence
if it satisfies

〈xn+1 − ΠC(x̄n), x̄n − ΠC(x̄n)〉 � 0, ∀n.

Show that it implies that dn = d(x̄n,C) converges to 0.
(2) Consequence: the minmax theorem. Let A be an I × J matrix and assume that

the minmax is 0:
v̄ = min

t∈Δ(I )
max
i∈I ei At = 0.

Wewill show that player 1 can guarantee 0, i.e. v � 0. Let us define by induction
a sequence xn ∈ R

k , where k = |J |. The first term x1 is any row of the matrix
A. Given x1, x2, . . . , xn , define xn+1 as follows:
Let x̄+

n be the vector with j th coordinate equal to max(x̄ j
n , 0). If x̄n = x̄+

n then
choose xn+1 as any row of A. Otherwise let a > 0 such that

tn+1 = x̄+
n − x̄n
a

∈ Δ(J ).

Since v̄ = 0, there exists an in+1 ∈ I such that ein+1 Atn+1 � 0. xn+1 is then the
in+1th row of the matrix A.

(a) Show that {xn} is a Blackwell C-sequence with C = {x ∈ R
k; x � 0}.

(b) Conclude the existence of s ∈ Δ(I ) with s At � 0, for all t ∈ Δ(J ).

Exercise 5. Computation of values
Compute the value and the optimal strategies in the following game:

b1 b2
a1 3 −1
a2 0 0
a3 −2 1

Exercise 6. A diagonal game
Compute the value and optimal strategies for the diagonal n × n game with ai > 0
for all i = 1, . . . , n, given by

⎛

⎜
⎜
⎝

a1 0 . . . 0
0 a2 . . . 0
. . . . . . . . . . . .

0 0 . . . an

⎞

⎟
⎟
⎠
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Exercise 7. The theorem of the alternative
Let A be an m×n matrix and b an m×1 vector with real components.
Define

S = {x ∈ R
n; Ax � b}, T = {u ∈ R

m; u � 0, uA = 0, 〈u, b〉 > 0}.

Then one and only one of the two sets S and T is non-empty.

(1) Prove that “S and T non-empty” is impossible.

The proof that {S = ∅ ⇒ T �= ∅} is by induction on the number of effective
variables (i.e. with a non-zero coefficient) in S, say n.

(2) Prove the assertion for n = 0.
(3) Define I = L ∪ K ∪ I0 with L ∪ K �= ∅, where A�,n+1 > 0,∀� ∈ L , Ak,n+1 <

0,∀k ∈ K and Ai,n+1 = 0,∀i ∈ I0.

(a) If K = ∅, S can be written as

n∑

j=1

Ai, j x j � bi , i ∈ I0,

xn+1 � b�

A�,n+1
−

n∑

j=1

A�, j

A�,n+1
x j , � ∈ L .

Show that S = ∅ implies that S0 (defined by the first family with i ∈ I0
above) is also empty. Deduce that

T0 = {u ∈ R
r ; uA = 0, 〈u, b〉 > 0}

(where A is the restriction of A to I0 and similarly for b) is non-empty, and
finally T �= ∅.

(b) If both L and K are non-empty, S reads as

n∑

j=1

Ai, j x j � bi , i ∈ I0,

xn+1 � b�

A�,n+1
−

n∑

j=1

A�, j

A�,n+1
x j , � ∈ L ,

xn+1 � bk
Ak,n+1

−
n∑

j=1

Ak, j

Ak,n+1
x j , k ∈ K .

Show that S = ∅ implies that the following set, involving n variables, is
empty:
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n∑

j=1

Ai, j x j � bi , i ∈ I0,

n∑

j=1

(
A�, j

A�,n+1
− Ak, j

Ak,n+1

)

x j � b�

A�,n+1
− bk

Ak,n+1
, (�, k) ∈ L × K .

Deduce, using the induction hypothesis, that the following set is non-empty:

vi � 0, i ∈ I0; v�,k � 0, (�, k) ∈ L × K ,

∑

i∈I0
Ai jvi +

∑

(�,k)∈L×K

(
A�, j

A�,n+1
− Ak, j

Ak,n+1

)

v�,k = 0,

j = 1, . . . , n
∑

i∈I0
bivi +

∑

(�,k)∈L×K

(
b�

A�,n+1
− bk

Ak,n+1

)

v�,k > 0.

Then define u by

ui = vi , i ∈ I0, u� =
∑

k

v�,k

A�,n+1
, � ∈ L and

uk =
∑

�

− v�,k

Ak,n+1
, k ∈ K ,

and prove that u ∈ T .

Comments The proof (Fourier’s elimination method) provides an explicit algorithm
to compute a point in S if this set is non-empty, and otherwise a point in T . It shows
explicitly that if the coefficients are in an ordered field (for example Q), then there
exists a solution with coefficients in the field.

Exercise 8. Farkas’ lemma
Keep the notations of the previous exercise. In addition: Let c be a 1 × n vector,
d ∈ R and assume S = {x ∈ R

n, Ax � b} is non-empty. Then

(i) ∀x ∈ R
n, (Ax � b ⇒ 〈c, x〉 � d)

is equivalent to:

(ii) ∃u ∈ R
m, u � 0, uA = c and 〈u, b〉 � d.

(1) (ii) implies (i) is clear.
(2) Assume U = {u ∈ R

m, u � 0, uA = c and 〈u, b〉 � d} is empty. Write it as

u[I, A,−A, b] � [0, c,−c, d],
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and use the alternative theorem (Exercise7) to obtain the existence of (p, q, r, t)
∈ R

m+ × R
n+ × R

n+ × R+ with

p + A(q − r) + tb = 0, 〈c, q − r〉 + td > 0.

Finally, construct x contradicting i) (if t = 0 use S �= ∅).

Exercise 9. Duality in linear programming
A linear program P is given by:

min 〈c, x〉
(P) Ax � b

x � 0

and v(P) is its value.
P is feasible if R = {Ax � b, x � 0} �= ∅ and bounded if ∃k ∈ R, 〈c, x〉 �

k,∀x ∈ R.
x∗ is an optimal solution if x∗ ∈ R and x ∈ R implies 〈c, x〉 � 〈c, x∗〉.

(1) P is feasible and bounded if and only if it has an optimal solution.
The “if” part is clear. For the reverse implication, let k = inf x∈R〈c, x〉 and assume
W = {x ∈ R

n; Ax � b, x � 0,−〈c, x〉 � −k} is empty. Using the alternative
theorem (Exercise7) some associated set Z is non-empty. Show that for ε > 0
small enough, Zε corresponding to k + ε is still non-empty, hence (again by the
alternative theorem) Wε is empty, contradicting the definition of k.

The dual P∗ of P is defined by:

max 〈u, b〉
(P∗) uA � c

u � 0

(Note that the dual of P∗ is P .)

(2) P has an optimal solution if and only if P∗ has one. Moreover, in this case both
programs have the same value.
Let x be an optimal solution so that

Ax � b, x � 0 =⇒ 〈c, x〉 � 〈c, x〉.

Use Farkas’ lemma (Exercise8) to deduce the existence of (u, v) with

u � 0, v � 0, uA + v = c, 〈u, b〉 � 〈c, x〉.
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Prove that u is feasible in the dual and optimal. In particular, both programs have
the same value.

Exercise 10. Values of antisymmetric games (Brown and von Neumann [34])

(1) The aim is to prove that any real I × I matrix B which is antisymmetric (B =
−t B) has a value. Let X = Δ(I ) be the simplex of mixed strategies.

(a) Show that it is equivalent to find x ∈ X (B) = {x ∈ X with Bx � 0}.
(b) Let K i (x) = [ei Bx]+, K̄ (x) = ∑

i K
i (x) and consider the dynamical sys-

tem on X defined by:

ẋ i (t) = K i (x(t)) − xi (t)K̄ (x(t)) (∗)

Show that the set of rest points of (∗) is X (B). Let V (x) = ∑
i K

i (x)2.
Check that V−1(0) = X (B) and show that V (x(t)) is strictly decreasing on
the complement of X (B). Conclude.

(2) We now deduce from 1(a) that any matrix A has a value. Show that one can
assume Ai j > 0 for all (i, j).

(a) Following (Gale et al. [73]), let us introduce the antisymmetric matrix B of
size (I + J + 1) × (I + J + 1) defined by

B =
⎛

⎝
0 A −1

−t A 0 1
1 −1 0

⎞

⎠ .

Construct from an optimal strategy z for player 1 in game B optimal strate-
gies for both players in game A.

(b) An alternative proof is to consider the (I × J ) × (I × J ) matrix C defined
by

Ci j;i ′ j ′ = Ai j ′ − Ai ′ j .

Hence each player plays in gameC both as player 1 and 2 in the initial game
A. Show that an optimal strategy in game C allows us to construct optimal
strategies for both players in game A.

Exercise 11. Strong complementarity

(1) Use Farkas’ lemma to prove, with the notations of Exercise9:
If P∗ and P are feasible, then there exist optimal solutions (x, u) satisfying

Ai x − bi > 0 ⇐⇒ ui = 0 ; c j − uA j > 0 ⇐⇒ x j = 0.

(2) Deduce (c) of Proposition3.1.
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Exercise 12. Fictitious play (Robinson [177])
Let A be a real I × J matrix of size m × n. We describe an algorithm that will
produce optimal strategies and in particular will imply the existence of a value.

Let v = maxx∈Δ(I ) miny∈Δ(J ) x Ay and v = miny∈Δ(J ) maxx∈Δ(I ) x Ay.
Given α ∈ R

n (resp. β ∈ R
m) define

J (α) = { j;α j = min
k∈J

αk}, I (β) = {i;βi = max
k∈I βk}.

An admissible sequence of vectors {(α(t),β(t)) ∈ R
n × R

m, t ∈ N} satisfies:
(i) mink∈J αk(0) = maxk∈I βk(0)

and there exists an i ∈ I (β(t)) and j ∈ J (α(t) such that

(ii) α(t + 1) = α(t) + ei A, β(t + 1) = β(t) + Ae j .

(In particular, α(t) − α(0) = t x(t)A for some x(t) ∈ Δ(I ).)

(1) Show that for any ε > 0 and t large enough

min
j∈J

α j (t)/t � v + ε, max
i∈I βi (t)/t � v − ε,

and, considering the dual game t A and using (i), that for any s ∈ N

(iii) mini∈I βi (s) − max j∈J α j (s) � 0.

(2) One says that i (resp. j) is useful in the interval [t1, t2] ⊂ N if there exists a t
with t1 � t � t2 and i ∈ I (β(t)) (resp. j ∈ J (α(t))). Show that if all j ∈ J are
useful in [s, s + t], then
(iv) max j∈J α j (s + t) − min j∈J α j (s + t) � 2t‖A‖.
Define μ(t) = maxi∈I βi (t) − min j∈J α j (t). Deduce from (iii) and (iv) that if
all i ∈ I, j ∈ J are useful in [s, s + t], then
(v) μ(s + t) � 4t‖A‖.

(3) We want to prove:

(§) For any matrix A and any ε > 0, there exists an s such that μ(t) � ε, for
all t � s and all admissible sequences.

The proof is by induction on the size of A (clear for m = n = 1). Assume that
(§) holds for all (strict) sub-matrices A′ of A.

(a) Show that there exists a t∗ ∈ N such that μ′(t) � ε
2 t for all t � t∗, all A′,

and all associated admissible sequences α′,β′, where μ′ is defined for A′ as
μ is for A.

(b) Show that if i ∈ I is not useful in [s, s + t∗], then we have

(vi) μ(s + t∗) � μ(s) + ε
2 t

∗.
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(c) Let t = qt∗ + r be the Euclidean division of t by t∗ and let p � q be the
largest integer such that all i, j are useful in [(p − 1)t∗ + r, pt∗ + r ] (and
p = 0 if this is never the case). Prove using (vi) that

μ(t) � μ(pt∗ + r) + ε

2
(q − p)t∗,

then using (v) that

μ(t) � 4‖A‖t∗ + ε

2
t.

(d) Deduce property (§).

(4) Show that the matrix A has a value and that any accumulation point of {x(t)}
(resp. {y(t)}) is an optimal strategy of player 1 (resp. 2).

2.9 Comments

The notion of a game goes back to the 18th century but the introduction of mixed
strategies is a 20th century development, due to Borel [31]. The initial proof of
the minmax theorem by von Neumann [224] uses a fixed point argument. The first
“modern” proof relying on a separation theorem is due to Ville [222] and is employed
in Theory of Games and Economic Behavior [225, p. 154]. The same tool was used
to establish the duality theorem for linear programming in the same period.

The proofs of the minmax theorem can be classified as follows:

– The finite case and recurrence argument: Fourier’s elimination algorithm, Loomis’
proof (Chap. 2, Exercise1), Fictitious play and Robinson’s proof (Chap. 2, Exer-
cise12).

– Elementary separation (in R
n), see Proposition3.3.3.

– The algorithmic approach (unilateral): Blackwell approachability (Chap. 2, Exer-
cise4), no-regret procedures (Chap.7).

– The dynamic approach (global): Fictitious play or Best response dynamics,
Brown–von Neumann (Chap.2, Exercise10), replicator dynamics (Chap.5).

Many interesting properties of the value operator and of the set of optimal strate-
gies can be found in theContributions to the Theory of Games, see [47, 48, 113, 114].
They play a crucial rôle in the “operator approach” to zero-sum repeated games.

The zero-sum paradigm is also very important when evaluating the strength of
player i facing an unknown environment defined by −i , see elimination of strategies
(Chap. 4) and the individually rational level (Chap.8).



Chapter 3
Zero-Sum Games: The General Case

3.1 Introduction

This chapter dealswith the general case of a zero-sumgame,where the strategy sets of
the players may be infinite. A zero-sum game will always be a triple (S, T, g) where
S and T are non-empty sets and g is a mapping from S × T to R. By definition,
the game has a value if sups∈S inf t∈T g(s, t) = inf t∈T sups∈S g(s, t), and minmax
theorems, such as von Neumann minmax theorem in the previous Chap.2, refer to
results providing sufficient conditions on the triple (S, T, g) for the existence of a
value. Recall that if the value exists, a strategy s in S achieving the supremum in
sups∈S inf t∈T g(s, t) is called an optimal strategy of player 1 in the game. Similarly,
t ∈ T achieving the infimum in inf t∈T sups∈S g(s, t) is called optimal for player 2.

We prove here various minmax theorems. We start with Sion’s theorem for con-
vex compact action sets and payoff functions which are quasi-concave upper semi-
continuous in the first variable and quasi-convex lower semi-continuous in the second
variable. Then we prove the standardminmax theorem inmixed strategies, extending
von Neumann’s theorem to compact Hausdorff action sets and measurable bounded
payoff functions which are u.s.c. in the first variable and l.s.c. in the second variable.
Finally, we consider the value operator (strategy sets are fixed and the payoff function
varies) and its directional derivatives, and introduce the derived game.

3.2 Minmax Theorems in Pure Strategies

The following result is known as the intersection lemma (see [22, p. 172]), and will
be useful later.

Lemma 3.2.1 Let C1, . . . ,Cn be non-empty convex compact subsets of a Euclidean
space. Assume that the union

⋃n
i=1 Ci is convex and that for each j = 1, . . . , n,

the intersection
⋂

i �= j Ci is non-empty. Then the full intersection
⋂n

i=1 Ci is also
non-empty.
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Proof By induction on n. For n = 2, consider C1 and C2 satisfying the assumptions
of the lemma, and assume that C1 ∩ C2 = ∅. By the Hahn–Banach theorem these
two sets can be strictly separated by some hyperplane H . C1 ∪ C2 is convex and
contains a point in each of the two half-spaces with boundary H , so C1 ∪ C2 must
intersect H , which is a contradiction.

Consider now n � 3 and assume by contradiction that the lemma holds for n − 1
but not for n. Let C1, . . . ,Cn satisfy the hypotheses of the lemma and have empty
intersection. Then Cn and

⋂n−1
i=1 Ci (denoted by Dn in the sequel) are non-empty,

disjoint, convex and compact. Again these two sets can be strictly separated by some
hyperplane H .

Define the convex compact sets C̃i = Ci ∩ H for i = 1, . . . , n − 1, and C̃ =
(
⋃n

i=1 Ci ) ∩ H . SinceCn ∩ H = ∅ = Dn ∩ H , we have
⋃n−1

i=1 C̃i = C̃ and
⋂n−1

i=1 C̃i

= ∅. By the induction hypothesis applied to C̃1, . . . , C̃n−1, there exists a j in {1, . . . ,
n − 1} such that ⋂i �= j,n C̃i = ∅. Introduce K = ⋂

i �= j,n Ci , then Dn ⊂ K and Cn ∩
K �= ∅. As K is convex and intersects sets separated by the hyperplane H , we have
K ∩ H �= ∅. But K ∩ H = ⋂

i �= j,n C̃i = ∅, which is a contradiction. �

Remark 3.2.2 Since the proof only uses the Hahn–Banach strict separation theorem,
the result holds in every space where this theorem applies, in particular in every
locally convex Hausdorff topological vector space.

Before stating Sion’s theorem, we recall a few definitions.

Definition 3.2.3 If E is a convex subset of a vector space, a map f : E → R is
quasi-concave if for each λ in R, the upper section {x ∈ E, f (x) � λ} is convex. f
is quasi-convex if − f is quasi-concave.

If E is a topological space, a map f : E → R is upper semi-continuous (u.s.c.)
if for each λ in R, the upper section {x ∈ E, f (x) � λ} is closed. f is lower semi-
continuous (l.s.c.) if − f is u.c.s.

Clearly, if E is compact and f is u.s.c., then f has a maximum.
In the following, the strategy sets S and T are subsets of Hausdorff topological

real vector spaces.

Theorem 3.2.4 ([191]) Let G = (S, T, g) be a zero-sum game satisfying:

(i) S and T are convex;
(ii) S or T is compact;
(iii) for each t in T , g(·, t) is quasi-concave u.s.c. in s, and for each s in S, g(s, ·)

is quasi-convex l.s.c. in t .

Then G has a value:

sup
s∈S

inf
t∈T g(s, t) = inf

t∈T sups∈S
g(s, t).

Moreover, if S (resp. T ) is compact, the above suprema (resp. infima) are achieved,
and the corresponding player has an optimal strategy.
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Proof Assume S compact. By upper semi-continuity, sups∈S inf t∈T g(s, t) = maxs∈S
inf t∈T g(s, t). So the existence of an optimal strategy for player 1 will follow from
the existence of the value.

Suppose by contradiction that G has no value. Then there exists a real number v

such that
sup
s∈S

inf
t∈T g(s, t) < v < inf

t∈T sups∈S
g(s, t).

(1)We first reduce the problem to the casewhere S and T are polytopes. Define for
each t in T the set St = {s ∈ S, g(s, t) < v}. The family (St )t∈T is an open covering
of the compact set S, so there exists a finite subset T0 of T such that S = ⋃

t∈T0 St .
Define T ′ = co(T0) to be the convex hull of the finite set T0. T ′ is compact (each
finite-dimensional Hausdorff topological vector space has a unique topology), and
maxs∈S inf t∈T ′ g(s, t) < v < inf t∈T ′ sups∈S g(s, t).

Proceed similarly with the strategy space of player 1: the family (T ′
s = {t ∈

T ′, g(s, t) > v})s∈S being an open covering of T ′, there exists a finite subset S0
of S such that

∀s ∈ co(S0), ∃t ∈ T0, g(s, t) < v,

∀t ∈ co(T0), ∃s ∈ S0, g(s, t) > v.

(2) Moreover, we can assume without loss of generality that (S0, T0) is a min-
imal pair for inclusion satisfying this property: If necessary drop elements from
S0 and/or T0.

(3) For each s in S0, define now As = {t ∈ co(T0), g(s, t) � v}. As is a non-empty
convex compact subset of co(T0). Note that

⋂
s∈S0 As = ∅ and by minimality of S0,⋂

s∈S0\{s0} As �= ∅ for each s0 in S0. By the intersection lemma, the union
⋃

s∈S0 As

is not convex. Consequently there exists a t0 in co(T0)\⋃
s∈S0 As . For each s in S0,

g(s, t0) > v. By quasi-concavity of g(·, t0), the inequality g(s, t0) > v also holds for
each s in co(S0).

Similarly, we show the existence of some s0 in co(S0) such that g(s0, t) < v for
each t in co(T0). By considering g(s0, t0), we find a contradiction with G having no
value. �

We canweaken the topological conditions by strengthening the convexity hypoth-
esis on g(s, ·). In the next result no topology on T is needed.

Proposition 3.2.5 Let G = (S, T, g) be a zero-sum game such that:

(i) S is convex and compact;
(ii) T is convex;
(iii) for each t in T , g(·, t) is quasi-concave u.s.c., and for each s in S, g(s, ·) is

convex.

Then G has a value: sups∈S inf t∈T g(s, t) = inf t∈T sups∈S g(s, t), and player 1 has
an optimal strategy.

Proof Suppose there exists a real number v satisfying

sup
s∈S

inf
t∈T g(s, t) < v < inf

t∈T sups∈S
g(s, t).
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As in the proof of Sion’s theorem, there exists a finite set T0 = {t1, . . . , tJ } ⊂ T such
that ∀s ∈ S, ∃t ∈ T0, g(s, t) < v.

Let us endow the affine space generated by T0 with any norm, and denote by
int(co(T0)) the relative interior of co(T0). For each s in S, g(s, ·) is convex, hence
continuous on int(co(T0)) (a convex function definedon anopen subset of aEuclidean
space is continuous on it, see e.g. Berge [22, Theorem 7, p. 203]). Fix t0 in int(co(T0))
and define for each n � 1 and j ∈ {1, . . . , J }: tnj = 1

n t0 + (1 − 1
n )t j and Snt j = {s ∈

S, g(s, tnj ) < v}. For all j and n, the convexity of g(s, ·) gives g(s, tnj ) � 1
n g(s, t0) +

(1 − 1
n )g(s, t j ). So the sets Snt j form an open covering of S, and there exists a finite

subset T1 of int(co(T0)) such that

∀s ∈ S, ∃t ∈ T1, g(s, t) < v,

∀t ∈ co(T1), ∃s ∈ S, g(s, t) > v.

g(·, t) is u.s.c. for each t , and g(s, ·) is continuous on co(T1) for each s in S. Hence

max
s∈S min

t∈co(T1)
g(s, t) < min

t∈co(T1)
max
s∈S g(s, t).

This contradicts Sion’s theorem, so G has a value.
Since the map (s �→ inf t∈T g(s, t)) is u.s.c., player 1 has an optimal strategy (but

not necessarily player 2). �

3.3 Minmax Theorems in Mixed Strategies

Recall (Sect. 1.3) that given a game (S, T, g), whenever possible the payoff function
g is linearly extended to probability distributions, i.e. g(σ, τ ) = Eσ⊗τ (g) for σ and
τ probabilities on S and T , respectively. The probability σ, resp. τ , is called a mixed
strategy of player 1, resp. player 2. We will also sometimes call elements of S and
T pure strategies of player 1 and 2, and saying that the game (S, T, g) has a value in
pure strategies simply means sups∈S inf t∈T g(s, t) = inf t∈T sups∈S g(s, t).

We consider here games without any convexity assumption on the strategy spaces.
We will convexify a set X either by considering the set Δ f (X) of probabilities with
finite support over X (Δ f (X) being regarded as the convex hull of X ) or, if X
has a topological structure, by considering the set Δ(X) of regular probabilities
over X (i.e. Borel probability measures μ such that for each Borel subset A of
X , μ(A) = sup{μ(F), F ⊂ A, F compact} = inf{μ(G),G ⊃ A,G open}; if X is
metric compact, any Borel probability on X is regular).

Recall that in this case Δ(X) is endowed with the weak* topology (the weakest
topology such that φ̂ : μ �→ ∫

X φ dμ is continuous for each real continuous function
φ on X ). Then if X is Hausdorff compact, Δ(X) is also compact and if φ is u.s.c.
on X , φ̂ : μ �→ ∫

X φ dμ is u.s.c. on Δ(X) (see e.g. Kelley and Namioka [107]). In
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the case when X metric, μn converges weakly* to μ if
∫
X φ dμn → ∫

X φ dμ for
each real continuous function φ on X and Δ(X) is metric (see e.g. Billingsley [25];
Parthasarathy [159]).

Let us start with a minmax theorem based on Proposition3.2.5.

Proposition 3.3.1 Consider a zero-sum game (S, T, g) satisfying:

(i) S is a compact Hausdorff topological space;
(ii) for each t in T , g(·, t) is u.s.c.
Then the game (Δ(S),Δ f (T ), g) has a value and player 1 has an optimal strategy.

Proof Recall that if S is compact and g(·, t) u.s.c., then Δ(S) (endowed with the
weak* topology) is compact and (σ �→ g(σ, t) = ∫

S g(s, t)σ(ds)) is u.s.c.Moreover,
g(σ, τ ) is well defined on Δ(S) × Δ f (T ) and is bilinear. Then the assumptions of
Proposition3.2.5 are satisfied. �

The following result is the standard minmax theorem in mixed strategies. We
assume the payoff function of the game measurable and bounded, so that we can
apply Fubini’s theorem and define the mixed extension of the game.

Theorem 3.3.2 Let G = (S, T, g) be a zero-sum game such that:

(i) S and T are compact Hausdorff topological spaces;
(ii) for each t in T , g(·, t) is u.s.c., and for each s in S, g(s, ·) is l.s.c.;
(iii) g is bounded and measurable with respect to the product Borel σ-algebra BS ⊗

BT .

Then the mixed extension (Δ(S),Δ(T ), g) of G has a value. Each player has a mixed
optimal strategy, and for each ε > 0 each player has an ε-optimal strategy with finite
support.

Proof One can apply Proposition3.3.1 to the games G+ = (Δ(S),Δ f (T ), g) and
G− = (Δ f (S),Δ(T ), g) and obtain the values v+ and v−, respectively. Clearly v− �
v+.

Let σ (resp. τ ) be an optimal strategy of player 1 in the game G+ (resp. player 2
in G−). We have ∫

S
g(s, t)σ(ds) � v+, ∀t ∈ T,

∫

T
g(s, t)τ (dt) � v−, ∀s ∈ S.

So by Fubini’s theorem

v+ �
∫ ∫

S×T
g(s, t)σ(ds)τ (dt) � v−

and the result follows. �
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Minmax theorems can also be obtained using separation theorems in Euclidean
spaces.

Proposition 3.3.3 Assume:

(i) S is a measurable space and X is a non-empty convex set of probabilities over
S;

(ii) T is a finite non-empty set;
(iii) g : S × T −→ R is measurable and bounded.

Then the game (X,Δ(T ), g) has a value, and player 2 has an optimal strategy.

Proof Define v = supX infT g(x, t) and D = {a ∈ R
T : ∃x ∈ X, g(x, t) =∫

X g(s, t)x(ds) = at ,∀t ∈ T }. The set D is convex and disjoint from the convex
set C = {a ∈ R

T ; at � v + ε,∀t ∈ T }, where ε > 0 is arbitrary.
Using a standard separation theorem in the Euclidean space R

T , we obtain the
existence of a b �= 0 in R

T such that

〈b, d〉 � 〈b, c〉 ∀c ∈ C,∀d ∈ D.

C is positively comprehensive, so b � 0, and dividing b by
∑

t∈T bt gives the exis-
tence of y ∈ Δ(T ) satisfying

g(x, y) � v + ε ∀x ∈ X.

So v := infΔ(T ) supX g(x, y) � v + ε. Hence v = v and the value of (X,Δ(T ), g)

exists. The existence of an optimal strategy for player 2 follows by the compactness
of Δ(T ). �

3.4 The Value Operator and the Derived Game

Here we fix the strategy sets S and T and let the payoff functions vary. Consider a
set F of functions from S × T to R such that:

(a) F is a convex cone (i.e., F is stable under addition and multiplication by a
positive scalar, and 0 ∈ F) containing the constant functions; and

(b) for each f inF the game (S, T, f )has avalue,whichwedenote byvalS×T ( f ) =
sups∈S inf t∈T f (s, t) = inf t∈T sups∈S f (s, t), or simply by val( f ).

Clearly, the val operator:

(1) is monotonic: f � g ⇒ val( f ) � val(g); and
(2) translates constants: ∀t ∈ R,val( f + t) = val( f ) + t .

An easy corollary follows, where one uses the sup norm ‖ f ‖ = supS×T | f (s, t)|.
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Proposition 3.4.1 The val operator is non-expansive:

|val( f ) − val(g)| � ‖ f − g‖.

Proof f � g + ‖ f − g‖ implies, by (1), val( f ) � val(g + ‖ f − g‖) and the last
term is val(g) + ‖ f − g‖, by 2). �

The following proposition is due to Mills [142] in the case where S and T are
simplices and F is the set of bilinear functions over S × T . It was extended later by
Rosenberg and Sorin [180].

Proposition 3.4.2 Consider two compact sets S and T , and two real-valued func-
tions f and g defined on S × T . Assume that for each α � 0, the functions g and
f + αg are u.s.c. in s and l.s.c. in t , and that the zero-sum game (S, T, f + αg) has
a value valS×T ( f + αg). Then

lim
α→0+

1

α

[
valS×T ( f + αg) − valS×T ( f )

]
exists

and is equal to
valS( f )×T ( f )(g),

where S( f ) and T ( f ) are the respective sets of optimal strategies of player 1 and 2
in the game (S, T, f ).

Proof The compactness and semi-continuity hypotheses imply the existence of sα ∈
S( f + αg) and t ∈ T ( f ). We have

αg(sα, t) = [ f + αg](sα, t) − f (sα, t) � valS×T ( f + αg) − valS×T ( f ).

So

inf
t∈T ( f )

g(sα, t) � 1

α

[
valS×T ( f + αg) − valS×T ( f )

]

and

lim sup
α→0+

inf
T ( f )

g(sα, t) � lim sup
α→0+

1

α

[
valS×T ( f + αg) − valS×T ( f )

]
.

Let (αk)k be a vanishing sequence achieving lim supα→0+ infT ( f ) g(sα, t) and s∗
be a limit point of (sαk )k . Since g is u.c.s. in s, we have

inf
T ( f )

g(s, t) � lim sup
α→0+

inf
T ( f )

g(sα, t).
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Moreover, s∗ ∈ S( f ) (S is compact, f + αg is u.s.c. in s and g is l.s.c. in t), so

sup
S( f )

inf
T ( f )

g(s, t) � lim sup
α→0+

1

α

[
valS×T ( f + αg) − valS×T ( f )

]

and the result follows from the dual inequality. �

The game (S( f ), T ( f ), g) is called the derived game of f along the game g.

3.5 Exercises

Exercise 1. Duels
We follow Dresher [46]. Two players start a duel at a distance d(0) > 0 from each
other. They move towards each other, and the distance between the two players at
time t ∈ [0, 1], if both are still alive, is given by d(t). Assume that d is a strictly
decreasing function from d(0) to d(1) = 0 (at time t = 1, if both are still alive, the
players are at the same point).

Each player has a gun with one or several bullets, and chooses when he will shoot
at his opponent. For each player i , denote by pi (t) the probability that this player will
kill his opponent if he shoots at time t , and assume that with probability 1 − pi (t) his
opponent is not even touched by the bullet. Assume also that p1 and p2 are strictly
increasing continuous functions with p1(0) = p2(0) = 0 and p1(1) = p2(1) = 1:
shooting immediately always fails, and shooting someone at distance zero always
succeeds.

p1 and p2 are known by both players. The payoff of a player is: +1 if he is alone
to survive the duel, −1 if he dies and his opponent survives, and 0 otherwise.

(1) We assume that each player has a single bullet and that the duel is noisy. So if
a player is the first one to shoot and misses his opponent, the other player will
know it and eventually win the duel with probability one by shooting point blank.
A pure strategy of a player can thus be represented here by a number x in [0, 1],
giving the time when this player will shoot* at his opponent (meaning: if no
bullet has been used before).
Show that the game has a value in pure strategies and that the optimal pure
strategy of each player is to shoot at time t0 such that p1(t0) + p2(t0) = 1.

(2) The duel is still noisy but now player 1 has m bullets and player 2 has n bullets
(and this is known to both players). For simplicity, we assume that p1(t) =
p2(t) = t for each t .
Show by induction on n + m that the game has a value (possibly in random
strategies) equal to m−n

m+n and that it is optimal for the player with max{m, n}
bullets to shoot the first bullet at time t0 = 1

m+n .
(3) Each player has a single bullet, but the guns are now silent: a player does not

knowwhether his opponent has already shot at him. A pure strategy of a player is
still represented by a number x in [0, 1], giving the time when this player will
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shoot at his opponent if he is still alive at that time. Again, we assume that
p1(t) = p2(t) = t for each t .

(a) Show that the game has no value in pure strategies.
(b) Suppose player 1 shoots according to a mixed strategy with support [α, 1]

and density f . Show that there exist a differentiable f and α > 0 such that
whatever the strategy of player 2, the payoff of player 1 is non-negative.
Conclude.

(4) Both players have a single bullet, but here the gun of player 1 is silent whereas
player 2 has a noisy gun. Assume that p1(t) = p2(t) = t for each t . Let us
prove that the game has a value v in mixed strategies, where v = 1 − 2a with
a = √

6 − 2.

(a) Show that the mixed strategy:

f (x) =

⎧
⎪⎨

⎪⎩

0 if 0 � x < a√
2a

(
x2 + 2x − 1

)3/2 if a � x � 1

guarantees 1 − 2a to player 1.
(b) Show that player 2 guarantees the sameamount byplaying themixed strategy

with the following cumulative distribution function:

G(y) = 2

2 + a

∫ y

0
f (x)dx + a

2 + a
I1(y),

where I1(y) is the c.d.f. associated to the Dirac measure at 1. Here player 2
uses, with probability 2

2+a , the same strategy as player 1, and shoots at time
1 with the remaining probability.

(5) Is it possible to compute the value by induction for silent duels with several
bullets?

Exercise 2. A counter-example (Sion [191])
Define S = T = [0, 1] and f : S × T → {0,−1} by:

f (s, t) =
⎧
⎨

⎩

−1 if t = 0 and s < 1
2−1 if t = 1 and s � 1
2

0 otherwise.

(1) Show that the game has no value in pure strategies, and that the hypotheses of
Sion’s theorem are satisfied everywhere except at t = 1.

(2) Does this game have a value in mixed strategies?

Exercise 3. A monotone family
We consider a family of zero-sum games Gn = (S, T, fn) such that:
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– ( fn) is a weakly decreasing sequence of uniformly bounded functions from S × T
to R, u.s.c. in the first variable;

– for each n, Gn has a value vn;
– S is compact.

(1) Define f = infn fn . Show that the game G = (S, T, f ) has a value v = infn vn ,
and that player 1 has an optimal strategy in this game.

(2) Compare the value v of G and lim vn in the following two examples of one-
player games:

(i) S = [0,+∞[, fn(s) = 1{s�n};
(ii) S = [0, 1], fn is continuous and piecewise linear (affine on [0, 1/n], on

[1/n, 2/n] and on [2/n, 1]): fn(0) = fn(
2
n ) = fn(1) = 0 and fn(

1
n ) = 1.

Exercise 4. Blackwell approachability
Let A = (ai, j ) be an I × J -matrix with entries in R

K : ai, j ∈ R
k is the vector payoff,

or outcome, if player 1 plays i and player 2 plays j .
Given s ∈ Δ(I ), we denote by s A the subset of R

K of feasible expected vector
payoffs when player 1 plays the mixed action s:

s A = {z ∈ R
k : ∃t ∈ Δ(J ) s.t. z = s At}

=
{∑

i∈I, j∈J si Ai, j t j , t ∈ Δ(J )
}

= co
{∑

i∈I si Ai, j , j ∈ J
}
.

LetC be a closed convex subset ofRK . For each x inR
K , endowedwith the Euclidean

norm, denote by �C(x) the closest point to x in C , i.e. the projection of x on C .
Assume that C is a B-set for player 1, i.e. satisfies:

∀x /∈ C, ∃s ∈ Δ(I ) s.t. ∀z ∈ s A : 〈z − �C(x), x − �C(x)〉 � 0.

Geometrically, the affine hyperplane containing�C(x) and orthogonal to [x,�C (x)]
separates x from s A.

The game is played in discrete time for infinitely many stages: at each stage n =
1, 2, . . . , after having observed the past history hn−1 of actions chosen from stage 1
to stage n − 1, i.e. hn−1 = (i1, j1, . . . , in−1, jn−1) ∈ Hn−1, (with Hn = (I × J )n

for each n and H0 = {∅}), player 1 chooses sn (hn−1) ∈ Δ(I ) and simultaneously
player 2 chooses tn(hn−1) ∈ Δ(J ). Then a pair (in, jn) ∈ I × J is selected according
to the product probability sn(hn−1) ⊗ tn(hn−1). The play then goes to stage n + 1
with the history hn = (i1, j1, . . . , in, jn) ∈ Hn .

Consequently, a strategy σ of player 1 in the repeated game takes the form of a
sequence σ = (s1, . . . , sn, . . . ) with sn : Hn−1 → Δ(I ) for each n, and a strategy τ
of player 2 is an element τ = (t1, . . . , tn, . . . )with tn : Hn−1 → Δ(J ). A pair (σ, τ )

naturally defines a probability distributionPσ,τ over the set of playsH∞= (I × J )∞,
endowed with the product σ-algebra, and we denote by Eσ,τ the associated expecta-
tion.
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Every play h = (i1, j1, . . . , in, jn, . . . ) of the game induces a sequence of vector
payoffs x(h) = (

x1 = ai1, j1 , . . . , xn = ain , jn , . . .
)
with values in R

K . We denote by
x̄n the Cesàro average up to stage n:

x̄n(h) = 1

n

n∑

k=1

aik , jk = 1

n

n∑

k=1

xk .

Blackwell [27] constructed a strategy σ of player 1 which generates a play h =
(i1, j1, . . . , in, jn, . . . ) such that x̄n(h) converges to C , whatever the strategy τ of
player 2:

dn = ‖x̄n − �C(x̄n)‖ −−−→
n→∞ 0,Pσ,τ -a.s.

Blackwell’s strategy σ is defined inductively as follows: At stage n + 1, play sn+1 ∈
Δ(I ) such that, for each t ∈ Δ(J ),

〈sn+1At − �C(x̄n), x̄n − �C(x̄n)〉 � 0.

This definition uses the fact that C is a B-set. Notice that if x̄n ∈ C , any sn+1 will do
and player 1 can play arbitrarily.

(1) Show that

Eσ,τ

[
d2
n+1 |hn

]
� 1

(n + 1)2
Eσ,τ

[‖xn+1 − �C(x̄n)‖2 |hn
] +

(
n

n + 1

)2

d2
n .

(2) Prove that Eσ,τ

[‖xn+1 − �C(x̄n)‖2 |hn
]

� 4 ‖A‖2∞, where ‖A‖∞ = maxi, j,k∥
∥
∥Ak

i, j

∥
∥
∥.

(3) Deduce that:

Eσ,τ [dn] � 2 ‖A‖∞√
n

.

In particular, the convergence is uniform in τ .

(4) Define en = d2
n + ∑∞

k=n+1
4‖A‖2∞

k2 for each n. Show that {en} is a positive super-
martingale whose expectation converges to 0. Conclude that

Pσ,τ [dn → 0] = 1.

Exercise 5. sup inf and inf sup
Let f be a function from S × T to R, where S and T are arbitrary non-empty sets.
Denote by B the set of mappings from S into T . Show that

sup
s∈S

inf
t∈T f (s, t) = inf

β∈B
sup
s∈S

f (s,β(s)).
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Exercise 6. On mixed extension
Consider the game G = (S, T, f ), where S = T = (0, 1] and

f (s, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if s = t

− 1

s2
if s > t

1

t2
if s < t.

(1) Show that for each t ∈ T ,
∫
S f (s, t) ds = 1.

(2) Show that: supσ∈Δ(S) inf t∈T f (σ, t) > infτ∈Δ(T ) sups∈S f (s, τ ),where f (σ, t) =∫
S f (s, t) dσ(s) and f (s, τ ) = ∫

T f (s, t) dτ (t).
(3) Recall that supσ infτ f � infτ supσ f .What should one think of themixed exten-

sion of G?

Exercise 7. Sion and Wolfe [192]
Consider S = T = [0, 1] endowedwith the Borel σ-algebra, and f defined on S × T
by:

f (s, t) =
⎧
⎨

⎩

−1 if s < t < s + 1/2,
0 if t = s or t = s + 1/2,
1 otherwise.

Consider the mixed extension G where player 1 chooses σ inΔ(S), player 2 chooses
τ in Δ(T ), and the payoff of player 1 is f (σ, τ ) = ∫

S×T f (s, t) dσ(s) dτ (t).

(1) Show that supσ∈Δ(S) inf t∈T f (σ, t) = 1/3.
(2) Prove that G has no value.

3.6 Comments

Note that the main result of this chapter, Sion’s theorem, relies in fact on a separation
theorem in finite dimensions.

There is a huge literature on minmax theorems in topological spaces (Kneser,
Wald, etc), see for instance [137, Chap.1]. In particular we see there how to approx-
imate or to regularize a triple (S, T, g) not satisfying Sion’s requirements.

When there is no linear structure one can use the Concave-like and the Convex-
like properties on g to purify mixed strategies [54] (which corresponds to the inverse
procedure: deducing the existence of pure optimal strategies from the results in
Sect. 3.3).

The properties of the value operator and the derived game play an important rôle
in the operator approach to zero-sum repeated games.

Exercise1, question 2, is a first example of the “recursive structure” that occurs
in repeated games.



Chapter 4
N-Player Games: Rationality
and Equilibria

4.1 Introduction

The previous chapters dealt with two-player zero-sumgames. Nowwe study strategic
interactionswith two ormore playerswhere, in addition to conflict, there is now room
for cooperation, but also problems of coordination and free riding.

Nash equilibrium is probably the central solution concept of game theory, with
applications in economics, biology, computer science, political science, and else-
where. It is a strategy profile such that no player has an incentive to unilaterally
deviate. Nash’s famous theorem says that any finite n-person game admits a (mixed)
equilibrium. As in Nash’s original proofs, wewill deduce equilibrium existence from
the Brouwer and Kakutani fixed point theorems, whose proofs will also be given.

This chapter then goes beyond the classical finite framework, and studies games
with arbitrarily compact strategy spaces and possibly discontinuous payoff func-
tions. We provide tight geometric and topological conditions for the existence of
rationalizable strategy profiles, Nash equilibria and approximate equilibria. These
concepts have deep connections with each other. Actually, any Nash equilibrium is
rationalizable and is an approximate equilibrium.

We also investigate some properties of Nash equilibria such as geometry in finite
games, characterization via variational inequalities, conditions for uniqueness, and
invariance with respect to some payoff transformations.

Tomake a link with the previous chapters, when a game is zero-sum, the existence
of a Nash equilibrium is equivalent to the existence of a value and of optimal strate-
gies, and the existence of an approximate equilibrium is analogous to the existence
of a value.

4.2 Notation and Terminology

In this chapter, G = (I, (Si )i∈I , (gi )i∈I ) will denote a game in strategic (or normal)
form, where I is the non-empty finite set of players, Si is the non-empty set of pure
strategies of player i ∈ I and gi : S = ∏

j∈I S j → R represents its payoff function.
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The game is finite if each strategy set Si is finite. Using Reny’s [174] terminology,
the game is called compact if each strategy set Si is a compact subset of a topological
space and eachpayoff function gi is bounded. Finally, the gameG is called continuous
if each Si is a topological space and each payoff function gi is continuouswith respect
to the product topology on S.

For a coalition J ⊂ I , introduce SJ = ∏
j∈J S

j . The coalition I \ {i} will be
denoted, as usual, by −i , so that SI\{i} = S−i = ∏

j �=i S
j and SI = S.

A correlated strategy of players in J is an element θ[J ] ∈ Δ(SJ ) and a mixed
strategy profile of players in J is an element σ J ∈ ∏

j∈J Δ(S j ), where Δ(SJ ) is the
set of regular probability measures on the Borel subsets of the topological space SJ .

4.3 Best Response Domination in Finite Games

We assume in this section that the game G = (I, (Si )i∈I , (gi )i∈I ) is finite.
In Chap.1, the best response correspondence was defined from/to the set of pure

strategy profiles. It can be extended to a correspondence defined on the set of cor-
related strategies with values in the set of mixed strategy profiles. First, observe
that the payoff function gi can be linearly extended to Δ(S) as usual: for θ ∈ Δ(S),
gi (θ) := ∑

s∈S θ(s)gi (s). In particular, if mi ∈ Δ(Si ) and θ[−i] ∈ Δ(S−i ) then

gi (mi , θ[−i]) =
∑

s=(si ,s−i )∈S
mi (si ) × θ[−i](s−i ) × gi (si , s−i )

=
∑

si∈Si
mi (si )gi (si , θ[−i]).

Definition 4.3.1 BRi is the general best response correspondence of player i . It
associates to every θ[−i] ∈ Δ(S−i ) the set {mi ∈ Δ(Si ) : gi (mi , θ[−i]) � gi (σi , θ[−i])
for all σi ∈ Δ(Si )}.

By linearity of the map mi → gi (mi , θ[−i]), mi ∈ BRi (θ[−i]) is equivalent to
gi (mi , θ[−i]) � gi (si , θ[−i]) for all si ∈ Si . Consequently, BRi (θ[−i]) is a simplex (a
face of Δ(Si )) whose extreme points are the pure best responses of player i against
θ[−i].

Definition 4.3.2 A mixed strategy mi ∈ Δ(Si ) is strictly dominated if there is a
σi ∈ Δ(Si ) such that for all t−i ∈ S−i , gi (σi , t−i ) > gi (mi , t−i ).

A mixed strategy mi ∈ Δ(Si ) is never a best response against a mixed strategy
profile of −i if there is no τ−i ∈ Π j �=iΔ(S j ) such that mi ∈ BRi (τ−i ).

Amixed strategymi ∈ Δ(Si ) is never a best response against a correlated strategy
of −i if there is no θ[−i] ∈ Δ(S−i ) such that mi ∈ BRi (θ[−i]).
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Remark 4.3.3 In two-player games, the last two definitions are the same.
As soon as there are at least three players, a strategy may be a best response to a

correlated strategy but not to a mixed strategy, as the following example shows.

L R

T 8 0

B 0 0

M1

L R

T 4 0

B 0 4

M2

L R

T 0 0

B 0 8

M3

L R

T 3 3

B 3 3

M4

Here player 1 chooses between T and B, player 2 between L and R, and player 3 in
the set {Mi , i = 1, . . . , 4}. Thepayoffs above are thoseof player 3.One can check that
M2 is a best response against the correlated strategy 1

2 (T, L) + 1
2 (B, R) (meaning

that players 1 and 2 play (T, L) with probability 1
2 and (B, R) with probability 1

2 ).
But M2 is never a best response against a mixed profile of players 1 and 2 (there
is no x and y in [0, 1] such that M2 is a best response against player 1 playing
xT + (1 − x)B and, independently, player 2 playing yL + (1 − y)R).

Proposition 4.3.4 A mixed strategy mi ∈ Δ(Si ) of player i is strictly dominated if
and only if it is never a best response against a correlated strategy of −i .

Proof Let mi be strictly dominated by σi ∈ Δ(Si ). By linearity of gi in θ[−i], one
has gi (σi , θ[−i]) > gi (mi , θ[−i]) for all θ[−i] ∈ Δ(S−i ): mi cannot be a best response
against a correlated strategy of −i .

Conversely, suppose that mi is never a best response against a correlated strat-
egy. Consider the mixed extension of the finite two-player zero-sum matrix game H
where player i , the maximizer, has the strategy set Si and the minimizer (the team
−i) has the strategy set S−i . The payoff function of player i in H is hi (t i , t−i ) =
gi (t i , t−i ) − gi (mi , t−i ). The hypothesis onmi implies that the value of H is strictly
positive. Consequently, any optimal mixed strategy σi of player i in H strictly
dominates mi . �

Definition 4.3.5 A mixed strategy mi ∈ Δ(Si ) is weakly dominated if there is a
σi ∈ Δ(Si ) such that for all t−i ∈ S−i , gi (σi , t−i ) � gi (mi , t−i ) and there is at least
one t−i for which the inequality is strict.

A mixed strategymi ∈ Δ(Si ) is never a best response against a completely corre-
lated strategy of−i if there is no θ[−i] ∈ int(Δ(S−i )) (i.e. θ[−i](s−i ) > 0,∀s−i ∈ S−i )
s.t. mi ∈ BRi (θ[−i]).

Proposition 4.3.6 A mixed strategy mi ∈ Δ(Si ) of player i is weakly dominated if
and only if it is never a best response against a completely correlated strategy of
players −i .

Proof Let mi be weakly dominated by σi ∈ Δ(Si ). Linearity of gi in θ[−i] implies
gi (σi , θ[−i]) > gi (mi , θ[−i]) for all θ[−i] ∈ int(Δ(S−i )). Thus, mi cannot be a best
response against a completely correlated strategy of −i .
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Suppose mi is not a best response against a completely correlated strategy. Con-
sider the mixed extension of the finite zero-sum matrix game H as defined in the
previous proof. Since player i can guarantee 0 in H by playing mi , the value of H is
at least 0. If the value is strictly positive, then any optimal strategy of player i in H
strictly dominates mi in G.

Suppose the value of H equals zero. This implies in particular thatmi is an optimal
strategy. Because mi is never a best response to a completely correlated strategy, no
optimal strategy of −i has full support, and there is a t−i ∈ S−i which does not
belong to the support of an optimal strategy of −i . Since in finite zero-sum games
a pure strategy belongs to the support of some optimal strategy if and only if it is
a best response against all optimal strategies of the opponent (see Proposition2.4.1
d), there is a σi optimal for player i in H against which t−i is not a best response.
Thus, for all s−i , hi (σi , s−i ) � 0 = hi (mi , s−i ) and hi (σi , t−i ) > 0 = hi (mi , t−i ).
We conclude that σi weakly dominates mi in G. �

4.4 Rationalizability in Compact Continuous Games

In this section, the game G = (I, (Si )i∈I , (gi )i∈I ) is assumed compact and contin-
uous (for example, the mixed extension of a finite game, as studied in the previous
section).

A strategy which is never a best response against a strategy profile will not be
played by a player who maximizes against some strategy of the opponents: one says
that it cannot be justified. In particular, a strictly dominated strategy is not justified
(for example, if the compact continuous game G is the mixed extension of a finite
game G0, an unjustified strategy in G corresponds to a mixed strategy in G0 which
is never a best response to a mixed strategy profile in G0). Once all players eliminate
non-best response strategies, new strategies become unjustified, and so on.

This defines inductively a process of eliminations of unjustified strategies. At step
1 of this process, define

Si (1) = BRi (S−i ) = {si ; ∃s−i ∈ S−i , si is a best response to s−i },∀i ∈ I.

Then, inductively, at step k + 1, let Si (k + 1) = BRi (S−i (k)). Thus, at step k + 1,
strategies that are unjustified with respect to S(k) are eliminated. This leads to a
decreasing sequence whose limit is Si∞ := ⋂

k S
i (k). Let S∞ = ∏

i∈I Si∞. Elements
t ∈ S∞ are called rationalizable.

Proposition 4.4.1 ([23, 161]) Let G be a compact continuous game. Then S∞ is
a non-empty compact fixed point of BR. It is the largest set L ⊂ S satisfying the
property

L ⊂ BR(L).
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Proof The continuity and compactness of G implies the upper-semicontinuity of the
BR correspondence and by induction, the non-emptiness and compactness of S(k)
for every k. Since moreover S(k) is decreasing, the intersection S∞ = ⋂

k S(k) is
non-empty and compact. Since S∞ ⊂ S(k + 1) = BR(S(k)),

S∞ ⊂ lim
k→∞BR(S(k)) ⊂ BR(S∞)

(by upper-semicontinuity of BR). Finally, since S∞ ⊂ S(k) implies that BR(T∞) ⊂
BR(S(k)) = S(k + 1) for all k, we obtain BR(S∞) ⊂ S∞.

Now, let L ⊂ S be such that L ⊂ BR(L). Because L ⊂ S = S(1) and L ⊂ BR(L)

we deduce that L ⊂ BR(S(1)) = S(2). Inductively, L ⊂ S(k) and L ⊂ BR(L)

implies that L ⊂ BR(S(k)) = S(k + 1). Since this holds for every k, we obtain that
L ⊂ S∞. This implies that S∞ is the largest fixed set of BR. �

Remarks 4.4.2

– If G is the mixed extension of a finite game, Proposition4.3.4 provides a link
between elimination of strategies that are never a best response against a correlated
strategy and iterated elimination of strictly dominated strategies.

– If G is the mixed extension of a finite game, the process stops in finite time.
– If all players know their payoff function and play some best response, then the
play must be in S(1). Moreover, if all players know the game (i.e. all parameters
Si and gi ) and that players use a best response, the play must be in S(2), and if
all players know that all players know the game and play a best response, then the
play must be in S(3). Pursuing this reasoning inductively leads to a play in S∞
and the process is related to common knowledge of rationality.

– Some learning and evolutionary game processes (such as the replicator dynamics,
see Chap.5), which assume a low level of knowledge, lead remarkably to a play
in S∞. In rationalizability, there is no time variable and players, by a recursive
reasoning, conclude simultaneously that the play should be in S∞. In learning and
evolutionary game theory, the repetition of the interaction induces the players to
recursively stop playing the strategies that perform badly in the past, hence as
times goes on, only strategies in S∞ survive.

Definition 4.4.3 A game is solvable if the set S∞ of rationalizable outcomes is
reduced to a singleton.

Guess 2
3 of the average is a gamewhere each player i in I sends a guess ai in [0, 100],

and the winner is the one with the guess closest to 2
3 of the average v =

∑
i∈I ai
N of all

guesses. Clearly, guessing any number that lies above 2
3100 is never a best response.

These can be eliminated. Once these strategies are eliminated for every player, bids
above 4

9100 are never best responses and canbe eliminated. This processwill continue
until reaching a unique rationalizable outcome S∞ = {0}.
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4.5 Nash and ε-Equilibria: Definition

A Nash equilibrium of a strategic game is a strategy profile such that no player has
a unilateral profitable deviation. This is the minimal stability criterion one may
ask a profile to satisfy. There are many fields where Nash equilibrium is applied:
economics, political science, biology, philosophy, language, and computer science,
among others. Here, this notion is considered as satisfying a mathematical condition,
and our objective is to study its existence and some of its properties.

Definition 4.5.1 A Nash equilibrium of a game G = (I, (Si )i∈I , (gi )i∈I ) is a strat-
egy profile s = (si )i∈I ∈ S such that gi (t i , s−i ) � gi (si , s−i ) for all i in I and t i in
Si .

There are different formulations of the Nash equilibrium condition. One way of
describing it is that si ∈ BRi (s−i ) for every i ∈ I , which says that every player is best
replying to the other players’ strategy profile. This is the most common formulation.
Proving existencewith this formulation is equivalent to showing that the best response
correspondence has a fixed point. Under some regularity assumptions this correspon-
dencewill satisfyKakutani orBrouwer’s conditions and sowill admit a fixed point (as
will be seen in the next two sections). Amore subtle formulation defines a dominance
binary relation between strategy profiles, namely, say that strategy profile t dominates
s and write t 	 s if there is an i ∈ I such that gi (t i , s−i ) > gi (si , s−i ). Equivalently,
s is not dominated by t and write s 
 t if gi (si , s−i ) � gi (t i , s−i ), ∀i ∈ I . Hence,
a Nash equilibrium is a strategy profile which is un-dominated (or maximal). Such
a formulation is interesting when strategy sets are infinite-dimensional or payoff
functions are discontinuous (see Sects. 4.7 and 4.8).

In some games, Nash equilibria may not exist (or may be hard to compute). In
that case, one may be interested in ε-equilibria (see Chap.1).

Definition 4.5.2 For any ε � 0, an ε-equilibrium is a strategy profile s ∈ S such that
for every player i , si ∈ BRi

ε(s
−i ), that is,

gi (t i , s−i ) � gi (s) + ε, ∀t i ∈ Si , ∀i ∈ I.

A Nash equilibrium corresponds to ε = 0. Hence, the pure best response cor-
respondence, as defined in Chap.1, BR from S ⇒ S, associates to each s ∈ S the
subset

∏
i∈I BR

i
0(s

−i ) of S.

Definition 4.5.3 A strategy profile s ∈ S is a strict equilibrium if {s} = BR(s).

When BR(s) is reduced to a singleton { f (s)} for every s ∈ S, a Nash equilibrium
is always strict and is a fixed point of f .

Corollary 4.5.4 If s is a Nash equilibrium, then it is rationalizable.

Proof We have {s} ⊂ BR({s}) and S∞ is the largest subset L of S satisfying L ⊂
BR(L). �
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Corollary 4.5.5 If the game is solvable, it has a unique Nash equilibrium.

In Sect. 4.7.3 we will give other conditions for the uniqueness of a Nash equilib-
rium.

Remark 4.5.6 In contrast with zero-sumgames, a non-zero-sumgamemay have sev-
eral equilibrium payoffs, and moreover, equilibrium strategies are not interchange-
able. For example, in a common interest game where a player gets l if all players
choose the same location l ∈ {1, . . . , L} and gets zero otherwise, any location choice
l by all players is a Nash equilibrium, equilibria have different payoffs, but all players
have the same preference among the equilibria. On the other hand, in a bargaining
game, two players should agree on dividing 1 unit among them, otherwise they get
0. Any division (x, 1 − x) with x ∈ [0, 1] is a Nash equilibrium, but players have
opposite preferences among the equilibria.

4.6 Nash Equilibrium in Finite Games

Recall (see Chap.1) that G̃ = (I, (Δ(Si ))i∈I , (g̃i )i∈I ), the mixed extension of a finite
game G = (I, (Si )i∈I , (gi )i∈I ), is the compact multilinear continuous game where
the strategy set of player i is Δ

(
Si

)
(the set of probability distributions over Si ) and

the payoff function of G̃ is the multilinear extension of the payoff function in G:

g̃i (σ) =
∑

s=(s1,...,sN )∈S

(∏

j∈I
σ j (s j )

)

gi (s).

When there is no confusion, g̃i will also be denoted by gi .

Definition 4.6.1 A mixed equilibrium of G is a Nash equilibrium of G̃.

Theorem 4.6.2 ([152]) Every finite game G has a mixed equilibrium.

The proof uses the finiteness of the game and the linearity of the payoff functions
with respect to each player’s strategy variable to reduce the problem to the existence
of a fixed point of a continuous mapping from

∏
i∈I Δ(Si ) to itself. By Brouwer’s

Theorem4.11.4 (see the last section of this chapter) a mixed equilibrium exists.

Proof Let f be the Nash map, defined from Δ := ∏
i∈I Δ(Si ) to Δ as follows:

f (σ)i (si ) = σi (si ) + (gi (si ,σ−i ) − gi (σ))+

1 + Σt i∈Si (gi (t i ,σ−i ) − gi (σ))+

with a+ = max(a, 0). The function f is well defined and takes its values in Δ:
f (σ)i (si ) � 0 and

∑
si∈Si f (σ)i (si ) = 1, for all i ∈ I . Since f is continuous and Δ
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is convex and compact, Brouwer’s Theorem4.11.4 implies the existence of σ ∈ Δ

such that f (σ) = σ. Such σ is a Nash equilibrium, as proved next.
Fix a player i . If Σt i∈Si (gi (t i ,σ−i ) − gi (σ))+ = 0 then gi (σi ,σ−i ) �

maxt i∈Si gi (t i ,σ−i ): player i plays a best response to the other players’ strate-
gies. Otherwise, Σt i∈Si (gi (t i ,σ−i ) − gi (σ))+ > 0. But since there exists an si with
σi (si ) > 0 and gi (si ,σ−i ) � gi (σ), we obtain

σi (si ) = σi (si )

1 + Σt i∈Si (gi (t i ,σ−i ) − gi (σ))+

and consequently σi (si ) = 0, a contradiction. Thus, σ is a mixed equilibrium.
Conversely, any mixed equilibrium is a fixed point of f , since all quantities

(gi (t i ,σ−i ) − gi (σ))+, i ∈ I , t i ∈ Si , are equal to zero. �

A game G has symmetry φ if:

(1) φ is a permutation over the set N of players, and, if j = φ(i),φ induces a bijection
from Si to S j , also denoted φ; and

(2) for all i ∈ I and s ∈ S, gφ(i)(φ(s)) = gi (s).

Such a permutation φ naturally induces a mapping on Δ such that if j = φ(i) and
σ ∈ Δ then φ(σ) j (φ(si )) = σi (si ).

Theorem 4.6.3 ([152]) Afinite gameG with symmetryφadmits amixed equilibrium
σ with the same symmetry (i.e. σ = φ(σ)).

Proof Let X ⊂ Δ be the subset of mixed strategy profiles with symmetry φ:

X = {σ ∈ Δ such that σ = φ(σ)}.

Then, X is non-empty because the strategy profile where all players play uni-
formly is in X . Moreover, X is closed and convex. The Nash mapping f con-
structed in the previous proof obviously respects symmetry ( f (X) ⊆ X ). Brouwer’s
Theorem4.11.4 ensures the existence of a fixed point in X . �

4.7 Nash Equilibrium in Continuous Games

In this section, G = (I, (Si )i∈I , (gi )i∈I ) is a compact continuous game. We will pro-
vide topological and geometrical conditions for the existence of pure Nash equilibria,
from which we deduce the existence of mixed equilibria in all compact continuous
games. Finally, under more assumptions, we characterize Nash equilibria via varia-
tional inequalities and provide a monotonicity condition that implies uniqueness.
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4.7.1 Existence of Equilibria in Pure Strategies

To prove the existence of Nash equilibria, we need to assume some topological and
geometrical conditions, in particular we will assume—in this section—that each
strategy set Si is a convex subset of a topological vector space (TVS).

Recall that a real-valued function f on a convex set X is quasi-concave if the level
sets {x : f (x) � α} are convex for all reals α.

Definition 4.7.1 A game is quasi-concave if for all i ∈ I the map si �→ gi (si , s−i )

is quasi-concave for all s−i in S−i and all i ∈ I .

Theorem 4.7.2 If a game G is compact, continuous and quasi-concave, then its set
of Nash equilibria is a non-empty and compact subset of

∏
i∈I Si .

Hence, the topological conditions are the compactness of the strategy sets and the
continuity of the payoff functions. The geometrical assumptions are the convexity of
the strategy sets and the quasi-concavity of the payoff functions w.r.t. each player’s
decision variable.

Proof First, we use the maximal element formulation of the Nash equilibrium prob-
lem in addition to the geometric and topological conditions to reduce the problem to
finite-dimensional convex strategy sets. Second, we prove that the best-response cor-
respondence of the restricted game satisfies the assumptions of the Kakutani fixed
point Theorem4.11.5 (proved in the last section of this chapter) to conclude the
existence of a fixed point, hence of a Nash equilibrium.

Define A(t) = {s ∈ S such that gi (si , s−i ) � gi (t i , s−i ),∀i ∈ I }. Hence A(t) is
the set of strategy profiles not dominated by t (no component of t is a profitable
deviation). Consequently, s is a Nash equilibrium if and only if s ∈ ⋂

t∈S A(t). The
continuity and compactness of the game imply that A(t) is a compact subset of S.
Thus, the set of Nash equilibria is compact and existence holds if

⋂
t∈S A(t) is non-

empty. Now using the finite intersection property it is sufficient to prove that for every
finite set (of potential deviations) t0, t1, . . . , tk in S,

⋂
t∈{t0,t1,...,tk } A(t) is non-empty.

Let Δk = {α = (α0, . . . ,αk) ∈ R
k+1 : αl � 0 and

∑k
l=0 αl = 1} be the

k-dimensional simplex of the Euclidean space R
k+1 and let φi be the map from Δk

to Si defined as follows. For α = (α0, . . . ,αk) ∈ Δk , φi (α) = ∑k
l=0 αl t il . Because

Si is a convex subset of a topological vector space, φi is continuous and has values
in co{t i0, . . . , t ik} ⊂ Si , where co stands for the convex hull.

Nowwe can define the game Ĝ where the strategy set of each player i ∈ I isΔi
k =

Δk and its payoff is f i (α1, . . . ,αI ) = gi (φ1(α1), . . . ,φI (αI )). Also, because si �→
gi (si , s−i ) is quasi-concave, αi �→ gi (αi ,α−i ) is quasi-concave. Thus, the game Ĝ
is compact, continuous, quasi-concave and the strategy set of each player i ∈ I is
the k-simplex (a convex compact subset of a normed space).

Let BRĜ (from
∏

i∈I Δi
k to itself) be the best-response correspondence of the

game Ĝ. The quasi-concavity of Ĝ implies that for all α, BRĜ(α) is convex. The
continuity and compactness of Ĝ imply that for all α ∈ ∏

i∈I Δi
k , BRĜ(α) is non-

empty and that the graph of BRĜ is closed. Applying Kakutani’s Theorem4.11.5,
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we deduce that the set of fixed points of BRĜ is compact and non-empty. That is,
there exists an α ∈ BRĜ(α). Consequently, if we define si = φi (αi ) for every i ∈ I ,
then s ∈ ⋂

t∈{t0,t1,...,tk } A(t). �
Theorem4.7.2 was first proved by Glicksberg [79] and Fan [53] when the strategy

sets are subsets of a locally convex and Hausdorff topological vector space. It has
been extended by Reny [174] to any topological vector space and to a large class of
discontinuous functions (see Corollary4.8.6 below).

4.7.2 Existence of Equilibria in Mixed Strategies

When a strategic game G satisfies the right topological conditions (compactness
of strategy sets and continuity of payoff functions), one can show that its mixed
extension G̃ = (I, (Δ(Si ))i∈I , (g̃i )i∈I ) satisfies the right topological and geometrical
conditions, leading to the existence of a mixed equilibrium, thanks to Theorem4.7.2.

Theorem 4.7.3 If a game G is compact and continuous, then its set of mixed equi-
libria is a non-empty compact subset of

∏
i∈I Δ(Si ).

Proof Recall (Sect. 3.2) that whenever Si is compact, Δ(Si ) is also compact with
respect to the weak* topology (see [107, 132]). Also, a Stone–Weierstrass type argu-
ment (see [132, 137]) implies that each payoff function gi (s) can be ε-approximated
by a linear combination of separable functions giε(s) = ∑

k αk
∏

i∈I gi,kε (si ) where
each gi,kε (si ) is a continuous function on the compact topological space Si .

This implies that payoff functions in G̃ are continuous. Finally, since a payoff
function in G̃ is multilinear, G̃ is a quasi-concave game. Thus, in the weak* topology,
the game G̃ is compact, continuous andquasi-concave and the strategy sets are convex
subsets of a topological vector space. Theorem4.7.2 applied to G̃ implies that the
set of mixed equilibria of G is non-empty and compact. �
Remark 4.7.4 When Si is a metric compact space the theorem can be proved by an
approximation argument. Let Sin be an increasing sequence of finite subsets of Si

such that
⋃

n S
i
n is dense in Si . By Nash’s Theorem4.6.2, for every n, the finite game

Gn = (I, (Sin)i∈I , (gi )i∈I ) admits a Nash equilibrium σn . Since Δ(Si ) is compact
and metric in the weak* topology [50], there is a subsequence φ(n) of the integers
such that σi

φ(n) converges to σi ∈ Δ(Si ) for every i ∈ I . Since gi (σn) � gi (sin,σ
−i
n )

for every n, i ∈ I and sin ∈ Sin , by continuity, g
i (σ) � gi (si ,σ−i ) for every i ∈ I and

si ∈ Si .

4.7.3 Characterization and Uniqueness of Nash Equilibria

In this subsection, we assume that the strategy sets are convex subsets of a Hilbert
space and we call such a game a Hilbert game.
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When the payoff functions are smooth, one can derive some necessary first-order
conditions for a strategy profile to be a Nash equilibrium. Under additional geomet-
rical assumptions, those conditions are also sufficient.

Definition 4.7.5 The game is smooth if si �→ gi (si , s−i ) is C1 for all s−i in S−i and
all i ∈ I . It is concave if si �→ gi (si , s−i ) is concave for all s−i in S−i and all i ∈ I .

In a smooth game, let ∇ig
i (s) denote the gradient of gi (si , s−i ) with respect to si .

Theorem 4.7.6 Let G = (I, {Si }i∈I , {gi }i∈I ) be a smooth game. Then:

(1) If s is a Nash equilibrium then

〈−→∇ g(s), s − t〉 � 0, ∀t ∈ S,

where 〈−→∇ g(s), s − t〉 := ∑
i∈I 〈∇ig

i (s), si − t i 〉.
(2) If the game is concave, the condition in (1) is sufficient for s to be a Nash

equilibrium.

This is a direct consequence of the following classical lemma.

Lemma 4.7.7 Let f : X → R be a C1 function over a convex subset X of a Hilbert
space.

(1) If x locally maximizes f over X then, ∀y ∈ X, 〈∇ f (x), x − y〉 � 0.
(2) If f is concave, the above condition is sufficient for x to be a global maximum

over X.

Above, ∇ f (x) is the gradient of f with respect to x .

Proof If x is a local maximum of f on the convex set X , then for every y in X
and every t ∈]0, 1], one has f (x+t (y−x))− f (x)

t � 0. Letting t goes to zero implies
〈∇ f (x), x − y〉 � 0 for every y ∈ X .

When f is concave, for every x and y in X , f (y) � f (x) + 〈∇ f (x), y − x〉.
Thus, if for some x ∈ X , 〈∇ f (x), x − y〉 � 0 for every y ∈ X , then f (y) � f (x)
for every y ∈ X . Consequently, x is a global maximum. �

Example 4.7.8 In the 19th century Cournot [38] introduced the strategic equilibrium
concept to study his duopoly competition model. Each firm i ∈ {1, 2} chooses to
produce a quantity qi ∈ [0, a]. The cost function of firm i is linear in quantity:
Ci (qi ) = cqi . Themarket price p is also assumed to be linear on the total production:
p = max{a − (q1 + q2); 0}, where a > c > 0. When firm i chooses its “strategy”
qi its payoff is

gi (q1, q2) = p × qi − Ci (q
i ) = max{a − (q1 + q2); 0}qi − cqi .

This is a compact continuous gamewhere the payoff function of each player i is quasi-
concave in qi . Thus, by Theorem4.7.2, there is at least one Cournot–Nash equilib-
rium. It is easy to see that this equilibrium cannot be at the boundary (qi = 0 ⇒ q j =
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a−c
2 ⇒ qi = a−c

4 ). Because any best response is in [0, a−c
2 ] and in this domain the

payoff function is concave and smooth, the first-order condition is necessary and suf-
ficient (by Theorem4.7.6). Consequently BRi (q j ) = a−c−q j

2 , implying q1 = a−c−q2

2

and q2 = a−c−q1

2 . Thus the unique Cournot–Nash equilibrium is q1 = q2 = a−c
3 .

One can show that this game is dominance solvable. As calculated above, any best
response should be in S1 = [a1, b1] = [0, a−c

2 ], a second iteration implies that any
best response to S1 must be in S2 = [a2, b2] = [ a−c−b1

2 , a−c−a1
2 ] = [ a−c

4 , a−c
2 ], etc.

Repeated elimination of non-best response strategies leads to S∞ = { a−c
3 }.

The fact that the Cournot duopoly game above has a unique equilibrium may also
be deduced from its monotonicity.

Definition 4.7.9 A Hilbert smooth game is monotone if, for all (s, t) ∈ S × S,

〈−→∇ g(s) − −→∇ g(t), s − t〉 � 0,

and the game is strictly monotone if the inequality is strict whenever s �= t .

This monotonicity condition was introduced by Rosen [178].

Theorem 4.7.10 For a Hilbert smooth monotone game:

(1) A profile s ∈ S is a Nash equilibrium if and only if ∀t ∈ S, 〈−→∇ g(t), s − t〉 � 0.
(2) If the game is strictly monotone, a Nash equilibrium is unique.

Proof (1) By monotonicity and the characterization in Theorem4.7.6, if s is a Nash
equilibrium then for all t ∈ S:

0 � 〈−→∇ g(s), s − t〉 � 〈−→∇ g(t), s − t〉.

Conversely, suppose 〈−→∇ g(t), s − t〉 � 0 for all t ∈ S, or equivalently, for all i ∈ I
and zi in Si , 〈∇g(zi , s−i ), si − zi 〉 � 0 (by taking t = (zi , s−i )). Now fix a player i
and a deviation t i . By the mean value theorem, there is a zi = λt i + (1 − λ)si such
that gi (si , s−i ) − gi (t i , s−i ) = 〈∇g(zi , s−i ), si − t i 〉 and si − zi = λ(si − t i ). Con-
sequently, gi (si , s−i ) � gi (t i , s−i ): s is a Nash equilibrium.

(2) Let s and t be two Nash equilibria. By the characterization in Theorem4.7.6,
〈−→∇ g(s), s − t〉 � 0 and 〈−→∇ g(t), t − s〉 � 0. This implies that 〈−→∇ g(s) − −→∇ g(t),
s − t〉 � 0. By strict monotonicity, we have the opposite inequality, hence equality,
thus s = t . �
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4.8 Discontinuous Games

4.8.1 Reny’s Solution in Discontinuous Games

In this and the next two subsections, payoff functions may be discontinuous but
strategy sets are assumed to be convex subsets of a topological vector space and
the game is assumed to be compact and quasi-concave. For example, consider a
Nash bargaining game where players seek to divide an amount M among them.
Simultaneously, each player i ∈ I proposes a number xi ∈ [0, 1]. If the proposal
is feasible (i.e.

∑
i∈I x i � 1), each player i ∈ I gets the payoff xi M . Otherwise,

all players get a payoff of 0. Here there is a discontinuity of i’s payoff function
yi �→ gi (yi , x−i ) at xi = 1 − ∑

j �=i x
j .

In a timing game, each player i ∈ I chooses a time t i ∈ [0, 1]. The game stops
at the first time θ = mini∈I t i when a player acts and the payoff function gi of
player i depends on his identity, the stopping time θ, and the stopping coalition
S = argmini∈I t i . Here there is a discontinuity of si �→ gi (si , t−i ) at t i = θ.

Reny [174] provided a general discontinuity condition (called better reply secu-
rity) that proves to be satisfied in many discontinuous games. This and the next two
subsections explore Reny’s approach (presented slightly differently, see [24]).

Definition 4.8.1 The graph ofG is the setΓ ={
(s, v)∈ S × R

N : v=g(s)
}
. Denote

by Γ its closure.

Since the game is compact, we deduce that Γ is a compact subset of S × R
N .

For all i and s ∈ S, we introduce the lower semi-continuous regularization of gi

with respect to its variable s−i as follows:

gi (si , s−i ) = sup
U�s−i

inf
s̃−i∈U

gi (̃si , s−i ) = lim inf
s−i
n →s−i

gi (si , s−i
n ),

where the supremum is taken over all open neighbourhoods of s−i . By construction,
gi (si , s−i ) � gi (si , s−i ), and s−i → gi

(
si , s−i

)
is lower semi-continuous.

Definition 4.8.2 Apair (s, v) ∈ Γ (strategy profile, payoff profile) is aReny solution
if for every i ∈ I , supsi∈Si gi (si , s

−i ) � vi .

Theorem 4.8.3 ([174]) Any compact quasi-concave gameG admits a Reny solution
and the set of Reny solutions is compact.

It is instructive to compare this proof with that of Theorem4.7.2.

Proof Given any (s, t) ∈ S × S, define

g(s, t) =
(
g1(s1, t−1), . . . , gi (si , t−i ), . . . , gN (sN , t−N )

)
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and E(s) =
{
(t, h) ∈ Γ : g(s, t) � h

}
. Thus, a Reny solution exists if and only if

⋂
s∈S E(s) is non-empty. Since gi (si , t−i ) is lower semi-continuous in t−i for every

i , E(s) is compact for all s ∈ S. Consequently, to prove that
⋂

s∈S E(s) is non-
empty, it is sufficient to show that

⋂
s∈S0 E(s) is non-empty for every finite subset

S0 = {s1, . . . , sm} of S, or equivalently that ∃ (t, h) ∈ Γ such that g(s, t) � h for
all s ∈ S0.

Define Si0 = {si1, . . . , sim} and let coSi0 denote the convex hull of Si0. Since each Si0
is finite, we may endow its convex hull with the Euclidean metric. Because each Si

is a subset of a topological vector space, the topology Si0 induced by the Euclidean
metric is at least finer than the original one (they coincide when Si is Hausdorff).
Hence, convergence with respect to the Euclidean metric implies convergence with
respect to the original topology.

Restricted to the vector space spanned by coSi0, i ∈ I , we obtain strategy sets that
are subsets of a finite-dimensional topological vector space where there is only one
possible topology, and such a space may be equipped with a norm compatible with
this topology (all norms are equivalent). Since gi

(
si , ·) is lower-semi-continuous on

∏
j �=i coS

j
0 , we can apply the following lemma to approximate it from below by a

sequence of continuous functions.

Lemma 4.8.4 ([37, 174])Let Y bea compactmetric space and f : Y → Rbe lower-
semi-continuous. Then there exists a sequence of continuous functions fn : Y → R

such that, for all y ∈ Y :

(i) fn(y) � f (y).
(ii) ∀yn → y : lim infn fn(yn) � f (y).

Proof Let F = {g ∈ C(Y ) : g(y) � f (y), ∀y ∈ Y }, where C(Y ) is the metric space
of bounded continuous functions endowed with the maximum metric. Because F is
closed and C(Y ) is separable, F is separable and so there is a countable dense subset
{g1, g2, . . . } of F . Define fn(y) = max{g1(y), . . . , gn(y)} for all y ∈ Y . Then the
sequence fn is in C(Y ) and satisfies (i). It remains to show that it satisfies (ii).
Suppose the contrary, and let yn �→ y0, fn(yn) �→ α < f (y0). Thus, f (y0) > α + ε
for some ε > 0. Because f is lower semi-continuous, one can prove that there is
an h ∈ F and a neighborhood U of y0 such that h(y) > α + ε for all y ∈ U . Since
{g1, g2, . . . } is dense in F , there is a k such that gk is within ε/2 of h. Thus, for
all n � k such that yn ∈ U one has fn(yn) � gk(yn) � h(yn) − ε/2 � α + ε/2, a
contradiction. �

Consequently, for all si ∈ Si0, there is a sequence of continuous functions gin
(
si , ·)

defined on
∏

j �=i coS
j
0 such that for all s−i ∈ ∏

j �=i coS
j
0 :

(i) gin(s
i , s−i ) � gi (si , s−i ).

(ii) ∀s−i
n → s−i : lim infn gin(s

i , s−i
n ) � gi (si , s−i ).

Now construct a sequence of games Gn as follows. The set of pure strategies

of each player i in Gn is Δ(Si0). For all μ ∈ ∏
j∈I Δ

(
S j
0

)
, the payoff function of
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player i in Gn is
f in (μ) =

∑

si∈Si0
gin(s

i , s−i )μi (si ),

where s j = s j (μ j ) = ∑
s j∈S j

0
μ j (s j )s j ∈ coS j

0 . Each game Gn satisfies the assump-
tions of Theorem4.7.2, it admits a Nash equilibrium μn (and an associated sn , where
s j
n = ∑

s j∈S j
0
μ

j
n(s j )s j ∈ coS j

0 ). By linearity of f in in μi , for all i and all si ∈ Si0 such

that μi
n(s

i ) > 0 and all s̃i ∈ Si0,

gin (̃s
i , s−i ) � f in (μn) = gin(s

i , s−i
n ) � gi (si , s−i

n ) � gi (si , s−i
n ).

The first inequality and equality are consequences of the facts that μn is a Nash
equilibrium of Gn and that the payoff function f in

(
μi ,μ−i

)
is linear in μi (hence

all si ∈ supp (μi
n) are best responses to μ−i

n in Gn). The second inequality above is
a consequence of (i) in Lemma4.8.4. Integrating with respect to μi

n and using the
quasi-concavity of gi in si , we obtain that, for all i ∈ I and s̃i ∈ Si0,

gin (̃s
i , s−i

n ) � f in (μn) � gi (sn).

By compactness, without loss of generality one can assume that sn → s and that
gi (sn) → vi . Thus, for all s̃ ∈ S0,

g
i
(̃si , s−i ) � lim inf

n
gin (̃s

i , s−i
n ) � vi ,

the first inequality follows from (i i) in Lemma4.8.4. Hence (s, v) ∈ E(s)∀s ∈
S0. �

4.8.2 Nash Equilibria in Discontinuous Games

Recall that in this section, strategy sets are assumed to be convex subsets of a topo-
logical vector space and the game is assumed to be compact and quasi-concave.

Definition 4.8.5 AgameG is better reply secure if for all Reny solutions (s, v) ∈ Γ ,
s is a Nash equilibrium.

Since whenever s is a Nash equilibrium, (s, g(s)) is obviously a Reny solution, a
game is better reply secure if Nash profiles and Reny solution profiles coincide.

Corollary 4.8.6 ([174]) If a game is compact quasi-concave and better reply secure,
its set of Nash equilibria is non-empty and compact.

Existence is obvious because the set of Reny solutions is non-empty and com-
pact. Since any continuous game is better reply secure, Corollary4.8.6 extends The-
orem4.7.2.
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Let us provide now conditions on the data of the game that imply better reply
security.

Definition 4.8.7 (i) G is payoff secure if for all i ∈ I and all s−i ∈ S−i :

sup
t i∈Si

gi (t i , s−i ) = sup
t i∈Si

gi (t i , s−i ).

(ii) G is reciprocal upper semi-continuous if for all (s, v) ∈ Γ :

if gi (s) � vi for every i ∈ I then g(s) = v.

Alternatively, let us say that player i can secure a payoff αi at s ∈ S if there exists
an si ∈ Si s.t. gi (si , s̃−i ) � αi for all s̃−i in an open neighbourhood U containing
s−i . Thus, G is payoff secure if for all s ∈ S and all ε > 0, each player i ∈ I can
secure a payoff above gi (s) − ε.

Observe that if
∑

i∈I gi is continuous, the game is reciprocal upper semi-
continuous. Thus, when gi is lower semi-continuous in s−i for every i and the sum of
payoffs is constant, the game is payoff secure and reciprocal upper semi-continuous.

Corollary 4.8.8 Every payoff secure and reciprocal upper semi-continuous game is
better reply secure.

This extends Sion’s theorem when strategy sets are compact.

Proof Let (s, v) ∈ Γ be a Reny solution. Thus, for every i ∈ I , supt i∈Si gi (t i , s
−i ) �

vi . Since the game is payoff secure, supt i∈Si gi (t i , s
−i ) = supt i∈Si gi (t i , s

−i ). The
two inequalities together imply that gi (s) � vi for every i ∈ I . By reciprocal upper
semicontinuity, g(s) = v. Consequently, s is a Nash equilibrium. �

4.8.3 Approximate Equilibria in Discontinuous Games

Recall that in this subsection, strategy sets are assumed to be convex subsets of a
topological vector space and the game is assumed to be compact and quasi-concave.

Definition 4.8.9 A pair (s, v) ∈ Γ (strategy profile, payoff profile) is an approxi-
mate solution (and s is an approximate equilibrium) if there exists a sequence (sn)n
in S and a sequence (εn)n of positive real numbers, converging to 0, such that:

(i) for every n, sn is an εn-equilibrium;
(ii) the sequence (sn, g(sn)) converges to (s, v).

In zero-sum games, the existence of an approximate solution implies the existence
of a value.
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Proposition 4.8.10 Any approximate solution is a Reny solution.

Proof Let (sn)n∈N be a sequence of εn-equilibria such that (sn, g(sn)) converges to
(s, v). By definition, gi (t i , s−i

n ) � gi (sn) + εn for every n, every player i ∈ I and
every deviation t i ∈ Si . Taking the infimum limit as n tends to infinity leads to
gi (t i , s−i ) � vi . Thus, (s, v) is a Reny solution. �

Definition 4.8.11 A game G is approximately better reply secure if for all Reny
solutions (s, v) ∈ Γ , s is an approximate equilibrium.

Corollary 4.8.12 ([24])Every approximately better reply secure quasi-concave and
compact game admits an approximate equilibrium.

Proof The set of Reny solutions is non-empty. �

Definition 4.8.13 A game G has themarginal continuity property if for every s ∈ S
and i ∈ I , s−i �→ supt i∈Si gi (t i , s−i ) is continuous.

Corollary 4.8.14 ([163]) Every payoff secure compact game with the marginal con-
tinuity property is approximately better reply secure.

Proof If (s, v) is a Reny solution, then

sup
t i∈Si

gi (t i , s−i ) = sup
t i∈Si

gi (t i , s−i ) � vi ,

the equality being a consequence of payoff security. Since v = limsn→s g(sn) for
some sequence sn , the continuity of supt i∈Si g

i (t i , s−i ) at s−i guarantees that (s, v)

is an approximate solution. �

Example 4.8.15 First-price auction Two players i = 1, 2 compete for a good. They
make a bid xi ∈ [0, 1], and receive a payoff:

gi (xi , x j ) =
⎧
⎨

⎩

wi − xi if xi > x j ,
wi−xi

2 if xi = x j ,

0 if xi < x j ,

where w1 ∈ (0, 1) is the valuation of the good for player 1 and w2 ∈ [0, w1) is the
valuation for player 2. This game has no Nash equilibrium. However, it is payoff
secure, compact, and has the marginal continuity property. Every (x1, x2, v1, v2) =
(y, y, w1 − y, 0), where y ∈ [w2, w1] is an approximate (= Reny) solution. They
are limit points of ε-equilibria, ε > 0, in which player 1 bids y + ε and player 2 bids
y ∈ [w2, w1].
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4.9 Semi-algebricity of the Set of Nash Equilibria

This section is devoted to the study of finite games. Each player i’s pure strategy set
Si has cardinalitymi . Letm = Πimi . Then every gamemay be identifiedwith a point
in R

Nm . For example, any two-player game where each player has two strategies can
be mapped to R

8:
L R

T (a1, a2) (a3, a4)
B (a5, a6) (a7, a8)

Proposition 4.9.1 The set of mixed Nash equilibria of a finite game is defined by
finitely many polynomial weak inequalities.

Proof We use the linearity of payoff functions with respect to each player’s mixed
strategy to reduce the equilibrium test against finitely many pure deviations. Thus
σ = {σi (si )} ∈ R

∑
i∈I mi

is a mixed Nash equilibrium if and only if it is the solution
of the following set of polynomial weak inequalities:

∑

si∈Si
σi (si ) − 1 = 0, σi (si ) � 0, ∀si ∈ Si ,∀i ∈ I,

and

∑

s=(s1,...,sN )∈S

∏

j∈I
σ j (s j )gi (s)

�
∑

s−i∈S−i

∏

j∈I, j �=i

σ j (s j )gi (t i , s−i ),∀t i ∈ Si ,∀i ∈ I.

�

A closed set in R
k is semi-algebraic if it is the finite union of sets of the form

{x : Pk(x) � 0,∀k = 1, . . . , r}, where each Pk is a polynomial.

Theorem 4.9.2 Any semi-algebraic closed set of R
k has finitely many connected

components.

See Benedetti and Risler [18].

Corollary 4.9.3 The set of Nash equilibria of a finite game has finitely many con-
nected components, which are semi-algebraic closed sets. These are called the Nash
components of the game.

To illustrate this semi-algebraic structure, consider the following example:

L M R
T (2, 1) (1, 0) (1, 1)
B (2, 0) (1, 1) (0, 0)
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It has a unique Nash component, which is homeomorphic to a segment.

L

M

R

T 1
2 B

In the following example (from Kohlberg and Mertens [108]) there is a unique
Nash component, homeomorphic to a circle.

L M R
T (1, 1) (0,−1) (−1, 1)
m (−1, 0) (0, 0) (−1, 0)
B (1,−1) (0,−1) (−2,−2)

B,L

R,TL,T

m,Rm,M

B,M

Interestingly, any equilibrium point in this Nash component may be obtained as the
limit of the unique equilibrium of a nearby game. For example, let ε > 0 be small
and consider the following payoff-perturbation of the game:

L M R
T (1, 1 − ε) (ε,−1) (−1 − ε, 1)
m (−1,−ε) (−ε, ε) (−1 + ε,−ε)
B (1 − ε,−1) (0,−1) (−2,−2)

This game has a unique mixed Nash equilibrium where player 1 plays (ε/(1 +
ε), 1/(1 + ε), 0) and player 2 plays (0, 1/2, 1/2). As ε goes to zero, it converges
to the equilibrium of the original game: (0, 1, 0) for player 1 and (0, 1/2, 1/2) for
player 2.
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4.10 Complements

4.10.1 Feasible Payoffs and Threat Point

LetG be a finite game. The punishment level, also called the threat point, for player i
is the quantity

V i = min
σ−i∈∏

j �=i Δ(S j )
max
si∈Si

gi (si ,σ−i ).

This is the maximal punishment players −i can enforce against player i using
mixed strategies (without correlation). V i plays an important rôle in repeated games
(the Folk theorem), as will be seen in the last Chap.8. The punishment vector payoff
is V = (V i )i∈I . The set of feasible payoffs in the one-shot game is

P1 = {x ∈ R
n; ∃σ ∈

∏

i∈I
Δ(Si ),G(σ) = x}.

Consequently, R1, the set of feasible and individually rational payoffs in the one-shot
game, is

R1 = {x ∈ P1; xi � V i }.

Thus, any Nash equilibrium belongs to R1.
Here are three examples:

L R

T (1, 1) (1, 0)

B (0, 1) (0, 0)

10

P1

1
V

L R

T (1, 1) (0, 1)

B (1, 0) (0, 0)
10

P1

V

1

L R

T (3, 1) (0, 0)

B (0, 0) (1, 3)
V = 3

4 ,
3
4

)

30

P1

3
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One can show that R1 is closed and arc-connected. It is contractible in two-
player games, but not for three players or more (see Exercise3). When the game
is infinitely repeated, the set of feasible payoffs increase to R∞ = coR1 = {x ∈
R

n; ∃σ ∈ Δ(S),G(σ) = x} (see Chap.8).

4.10.2 Invariance, Symmetry, Focal Points and Equilibrium
Selection

Howdowe select betweenmanyNash equilibria?A selection procedure has to satisfy
some natural properties. One desirable axiom [108] is BR-invariance. It states that
two games with the same best-response correspondence must have the same set
of solutions. The set of Nash equilibria and the set of rationalizable strategies are
BR-invariant. What could the other possible axioms be?

A focal point (also called a Schelling point) is a Nash equilibrium that people
will play in the absence of communication, because it is natural, special, or relevant
to them. A symmetric or a Pareto dominating equilibrium could be considered as
a natural focal point (an equilibrium payoff v Pareto dominates w if vi � wi for
all i ∈ I and there is at least one strict inequality).

To understand the incompatibility between the different principles, consider the
following symmetric game:

L R
T (3, 3) (0, 0)
B (0, 0) (2, 2)

Let a, b, c, d be any real numbers. Transform the above matrix as follows:

L R
T (3 + a, 3 + c) (0 + b, 0 + c)
B (0 + a, 0 + d) (2 + b, 2 + d)

Since the best response correspondence is the same in both games, BR-invariance
implies that the two games should have the same solution. If a = c = −1 and b =
d = 1, we obtain the game:

L R
T (2, 2) (1,−1)
B (−1, 1) (3, 3)

and if a = c = −1 and b = d = 0, the game is:

L R
T (2, 2) (0,−1)
B (−1, 0) (2, 2)
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All these games have two pure Nash equilibria (T, L) and (B, R) and one mixed:[
( 25T + 3

5 B), ( 25 L + 3
5 R)

]
. If a selection theory predicts (T, L) in the first game (a

natural focal point because players have a clear common interest to do so), then
this theory will violate BR-invariance (it predicts (B, R) when a = c = −1 and
b = d = 1). On the other hand, if a selection theory should respect all symmetries
of a game, then it predicts the mixed equilibrium in the last example (a = c = −1
and b = d = 0).

4.10.3 Nash Versus Prudent Behavior

A strategy σi ∈ Δ(Si ) of player i in a finite game G is prudent if for all s−i ∈ S−i :

gi (σi , s−i ) � max
τ i∈Δ(Si )

min
t−i∈S−i

gi (τ i , t−i ) := V i .

Playing a prudent strategy guarantees to player i at least V i . A prudent behavior
makes sense if a player knows nothing about the other players’ payoff functions,
the other players’ information or rationality. In computer science, this notion is very
popular. But what happens if the game and rationality are common knowledge among
the players? Should they necessarily play according to the unique Nash equilibrium
recommendation? Consider the following example [12]:

L R
T (2, 0) (0, 1)
B (0, 1) (1, 0)

The unique Nash equilibrium is τ = ( 12T + 1
2 B; 1

3 L + 2
3 R) with a payoff 2

3 to
player 1 and 1

2 to player 2. The crucial property of this game is that the Nash payoff
coincides with the prudent payoff V .

Thus, if player 1 is rational (in the sense of Savage: he maximizes his payoff
given his belief) and if he expects player 2 to play τ 2 = 1

3 L + 2
3 R then any strategy

xT + (1 − x)B is rational and they all yield him the same expected payoff 2
3 . Why

choose τ 1 and not another strategy? Player 1 can equally optimally decide to play
his prudent strategy σ1 = 1

3T + 2
3 B, which guarantees the payoff

2
3 . However, if the

social convention is to play prudently, and if the players know it, then player 1 would
deviate to T .

4.10.4 The Impact of Common Knowledge of the Game

For a profile of strategies to be “stable” against individual deviations, hence a Nash
equilibrium, players do not need to know the payoff functions of the opponents,
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only their behavior (what they intend to play). However, when payoff functions are
commonknowledge, someNash equilibria could be ruled out. Consider the following
example:

L R
T (1, 1) (0, 1)
B (0, 0) (2, 0)

Here, player 2’s payoff functions do not depend on his own actions, but do depend
on player 1’s actions. Thus, any choice of player 2 is rational: no deviation is prof-
itable. The set of Nash equilibria is given by the best response correspondence of
player 1.

L R
B

T

1
3

Imagine now that payoff functions and rationality are common knowledge among
the players. In that case, when player 2 plays L , the unique best response of player 1
is to play T , yielding to player 2 his best possible payoff in the game. Hence, player 2,
knowingplayer 1’s best response correspondence, can anticipate the rational behavior
of player 1 and can credibly force him to choose T by choosing L because if player 1
deviates to B, he strictly loses, while the action L is always rational for player 2
whatever player 1 plays, and player 1 knows it (this reasoning uses, among other
things, that player 1 knows that player 2 knows player 1’s payoff function). Thus,
if the game and rationality are common knowledge, we should expect (T, L) to be
played. In fact, one can observe that the above reasoning needs only two levels of
knowledge.

However, sometimes common knowledge of rationality and of the game cannot
help removing equilibria even if players can communicate before the play.

L R
T (7, 7) (0, 6)
B (6, 0) (5, 5)

In the above example [5], even if players try to convince each other that they have
a common interest to play (T, L), this does not help. Whatever player 1 intends to
play, he prefers that player 2 plays L and symmetrically, whatever player 2 intends to
play, he prefers player 1 to play T . Thus, if the norm in this society is to play (B, R),
no player can credibly convince the other to change, because every player has an
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interest that the other player changes even if he does not change, and players know
it (because the game is common knowledge).

To predict (T, L) as the outcome in this example, other principles should be
assumed in addition to common knowledge of rationality and of the game, such as:
if in a game some Nash profile Pareto dominates all other profiles, it must be played.

We will see in Chap.6 that in extensive form games, common knowledge of the
game and of rationality help to refine the set of Nash equilibria, via the concepts of
backward and forward inductions.

4.11 Fixed Point Theorems

To prove Brouwer’s theorem, we first establish a very useful lemma due to Sperner.
Let Δ be a unit simplex of dimension k, and denote its k + 1 extreme points by
{x0, . . . , xk}, hence Δ = co {x0, . . . , xk}. A simplicial subdivision of Δ is a finite
collection of sub-simplices {Δi } of Δ satisfying (1)

⋃
i Δi = Δ and (2) for all (i, j),

Δi ∩ Δ j is empty or is some sub-simplex of the collection. Themesh of a subdivision
is the largest diameter of a sub-simplex.

Let V be the set of vertices of all sub-simplices in {Δi }. Each vertex v ∈ V decom-
poses as a unique convex combination of the extreme points: v = ∑k

i=0 αi (v)xi . Let

I (v) = {i : αi (v) > 0} ⊂ {0, . . . , k}

be the set of indices with a strictly positive weight in the decomposition (support of
v). Thus, co {xi : i ∈ I (v)} is the minimal face of Δ that contains v in its relative
interior.

A labeling of V is a function that associates to each v ∈ V an integer in I (v).
There are k + 1 possible labels, an extreme point x j has the label j , and a point v in
the interior of the face co {xi1 , . . . , xim } has one of the labels {i1, . . . , im}.

A sub-simplexΔi is called completely labeled if its vertices (extreme points) have
all the k + 1 labels.

Lemma 4.11.1 ([206]) Every labeling of any simplicial subdivision of a simplex Δ

has an odd number of completely labeled sub-simplices.

Proof The proof is by induction on the dimension k of the simplex Δ. For k = 0,
this is trivial. Suppose the result holds for dimension k − 1 and let us prove that any
labeling in dimension k has an odd number of sub-simplices.

Imagine that Δ is a house, and that any sub-simplex Δi with full dimension is
a room. A door is a sub-simplex of dimension k − 1 having exactly the labels 0
to k − 1. Thus, a room Δi has no doors, 1 door or 2 doors. Actually, suppose that k
vertices of Δi have the labels 0, . . . , k − 1. If the last vertex has the missing label
k, then the room has all labels (and only one door). Otherwise, the room has two
doors (and label k is missing). The induction hypothesis implies that there is an odd
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number of doors in the face F = co {x0, . . . , xk−1} of Δ = co {x0, . . . , xk}. Let us
show that there is an odd number of rooms having all the labels.

The proof is algorithmic. Imagine that you enter the house Δ from outside using
some door in the face F . If the room has another door, take it and keep going, until
(1) you reach a room without other doors (and this would be a completely labeled
room) or (2) you leave the house by the face F (because, by definition of a labeling,
it is the unique face having doors). Note that no cycle can occur since there is no first
room visited twice. Thus, linked doors on the face F go by pairs. Since there is an
odd number of doors in F (by the induction hypothesis), there is an odd number of
completely labeled rooms that may be reached from outside.

Finally, let Δi be a completely labeled room that cannot be reached from outside.
This room has a door, which leads to another room, and so on until (1) one reaches
a completely labeled room or (2) one leaves the house by the face F . But (2) is
impossible because it implies that Δi can be reached from outside. Consequently,
completely labeled rooms that cannot be reached from outside go by pairs. Thus, Δ
has an odd number of completely labeled rooms. �

There is a stronger version of Sperner’s lemma: the number of completely labeled
sub-simplices with a positive orientation (the same asΔ) is exactly onemore than the
number of completely labeled sub-simplices with a negative orientation. The proof
is quite similar: one shows that two completely labeled linked rooms have opposite
orientation, and proceed by induction for rooms that are connected to the outside.

Corollary 4.11.2 Every continuous function f : Δ → Δ from a simplex to itself
has a fixed point.

Proof Let Δ = {(r0, . . . , rk) ∈ R
k+1; r i � 0,

∑k
i=0 r

i = 1} be the unit simplex of
dimension k and fix ε > 0. Consider any simplicial subdivision of Δ with a mesh
smaller than ε and let λ be a labeling of V satisfying

λ(v) ∈ I (v) ∩ {i : f i (v) � vi }.

λ is well defined. Indeed, if the above intersection is empty, then 1 = ∑k
i=0 vi =

∑
i∈I (v) vi <

∑
i∈I (v) f (v)i �

∑k
i=0 f (v)i = 1, a contradiction.

By Sperner’s lemma, there is a completely labeled sub-simplex Δε (with diam-
eter smaller than ε), whose k + 1 extreme points {v(i, ε), i = 0, . . . , k} satisfy
f (v(i, ε))i � v(i, ε)i for all i = 0, . . . , k, and ‖v(i, ε) − v( j, ε)‖ � ε, for all i and
j . Using compactness and letting ε go to zero leads to the existence of a v ∈ Δ

satisfying, for all i = 0, . . . , k, f (v)i � vi . But since
∑k

i=0 vi = ∑k
i=0 f (v)i = 1,

we obtain f (v) = v. �

Lemma 4.11.3 Assume that K is a retract of the simplex Δ. Then, any continuous
function f : K → K has a fixed point.

Proof Let h be a retraction from Δ to K . h is a continuous map from Δ to K ⊂ Δ

and h|K = Id|K . Then f ◦ h : Δ → Δ is continuous and has a fixed point z. But
z ∈ K , thus f ◦ h(z) = f (z) = z is a fixed point of f in K . �
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Theorem 4.11.4 ([32]) Let C be a non-empty convex and compact subset of a finite-
dimensional Euclidean space. Then any continuous function f : C → C has a fixed
point.

Proof Let Δ be a simplex that contains C . Since C is convex and closed, ΠC , the
projection on C , is a retraction from Δ to C . The previous lemma applies. �

This theorem can be extended to correspondences as follows.

Theorem 4.11.5 ([104]) Let C be a non-empty convex and compact subset of a
normed vector space and let F be a correspondence from C to C such that:

(i) For all c ∈ C, F(c) is convex compact and non-empty;
(ii) The graph Γ = {(c, d) ∈ C × C : d ∈ F(c)} of F is closed.

Then, {c ∈ C : c ∈ F(c)} is non-empty and compact.

Proof Suppose F has no fixed point and let δ(x) be the distance from x to the
non-empty compact convex set F(x). Then δ(x) > 0 for all x ∈ C . Let Ωx = {y ∈
C; d(y, F(x)) < δ(x)/2}, which is open and convex. Also, Ux = {z ∈ C; F(z) ⊂
Ωx } is an open set that contains x (because the graph of F is closed), consequently it
contains an open ball B(x, s(x)) with 0 < s(x) < δ(x)/3. Thus B(x, s(x)) ∩ Ωx =
∅. The open balls B(x, s(x)/2) form an open cover of the compact C , thus there
exists a finite sub-cover {B(xi , s(xi )/2)}i . Let r = mini s(xi )/2. Then for all z ∈ C
the open ball B(z, r) is included in B(xi , s(xi )) for some i . One can thus extract
from the covering of C by {B(z, r)}z a new finite subcovering {B(zk, r)}k∈K . Define
for all k and x ∈ C the continuous function

fk(x) = d(x, B(zk, r)c)
∑

j d(x, B(z j , r)c)
,

where B(zk, r)c denotes the complement of B(zk, r) in C . This forms a partition
of unity: fk is continuous from C to [0, 1], ∑k fk = 1 and for all k, fk(x) = 0 for
x /∈ B(zk, r). Let yk ∈ F(zk) for every k and define f (x) = ∑

k fk(x)yk . Then f is
a continuous function from co {yk, k ∈ K } to itself. By Brouwer’s theorem, f has a
fixed point x . If fk(x) > 0 then x ∈ B(zk, r) and so zk ∈ B(x, r) ⊂ B(xi , s(xi )) ⊂
Uxi for some i (which depends on x but not on k). Thus, yk ∈ F(zk) ⊂ Ωxi for every
k and by convexity of Ωxi we deduce that f (x) ∈ Ωxi . But x ∈ B(xi , s(xi )) and
Ωxi ∩ B(xi , s(xi )) = ∅ contradicts f (x) = x . �

This theorem was extended by Glicksberg [79] and Fan [53] to any Hausdorff
locally convex topological vector space. It is remarkable that the existence of Nash
equilibria in compact continuous games can be established in any topological vector
space (not necessarily normed, metric, Hausdorff and/or locally convex), as shown
by Theorem4.7.2, a result due to Reny [174]. This is due to the fact that compactness
allows us, by contradiction, to reduce the analysis to finite dimensions, where there
is a unique Hausdorff topology (that may be derived from the Euclidean norm).
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4.12 Exercises

Exercise 1. Nash equilibria computations in finite games
Compute all pure and mixed Nash equilibria of the following finite games:

(1) Two players:
L R

T (6, 6) (2, 7)
B (7, 2) (0, 0)

L R
T (2,−2) (−1, 1)
B (−3, 3) (4,−4)

L R
T (1, 0) (2, 1)
B (1, 1) (0, 0)

L M R
T (1, 1) (0, 0) (8, 0)
M (0, 0) (4, 4) (0, 0)
B (0, 8) (0, 0) (6, 6)

(2) Three players (player 1 chooses a row, player 2 a column, and player 3 a matrix):

W E

L R
T (1, 1, 1) (0, 0, 0)
B (0, 0, 0) (0, 0, 0)

L R
T (0, 0, 0) (0, 0, 0)
B (0, 0, 0) (1, 1, 1)

Exercise 2. A Cournot competition
A group of n fishermen exploit a lake. If each fisher i takes a quantity xi � 0, the
unit price is obtained from the inverse demand as p = max{1 − ∑n

i=1 x
i , 0}. Each

fisher i sells his quantity xi at price p and maximizes his revenue. Assume the cost
of production to be zero (unrealistic but mathematically interesting).

(1) Write the normal form of the game.
(2) Compute all Nash equilibria in pure strategies.
(3) Compare with the monopoly (n = 1) and the perfect competition (n → ∞)

cases.

Exercise 3. Feasible Payoffs
Denote by j the complex number e

2iπ
3 , and by f the mapping from C

3 to C

defined by f (a, b, c) = abc (the product as complex numbers). Let G be a three-
player finite game where S1 = {1, j}, S2 = { j, j2}, and S3 = { j2, 1}. For a strategy
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profile (a, b, c) in S = S1 × S2 × S3, the payoff of player 1, g1(a, b, c), is the real
part of f (a, b, c), and the payoff of player 2 is the imaginary part of f (a, b, c).
Player 3’s payoff is identically zero.

(1) Compute the payoff function g(x, y, z) of the mixed extension of G.
(2) Deduce that the set of feasible payoffs in G is not contractible.

Exercise 4. Supermodular Games

(1) Tarski’s Theorem (Tarski [208])
Consider the Euclidean space R

n endowed with the partial order x � y if and
only if xk � yk for all coordinates k = 1, . . . , n. A subset L of R

n is a lattice if
for all x and y in S, x ∨ y = max{x, y} ∈ L and x ∧ y = min{x, y} ∈ L , where
(max{x, y})k = max(xk, yk) and similarly for the min. Let L be a compact non-
empty lattice of R

n .

(a) Show that for any non-empty subset A of L , sup A ∈ L and inf A ∈ L .
(b) Deduce that L has a greatest and a smallest element.
(c) Let f be a function from L to itself, monotonic with respect to the partial

order. Show that f has a fixed point.

(2) Supermodular games (Topkis [212])
Consider a strategic game G = (N , (Si )i∈I , (gi )i∈I )where for each player i ∈ I
the set of strategies Si is a compact and non-empty lattice of R

mi and gi is
upper semi-continuous in si for every s−i ∈ S−i and i ∈ I . The game G is
supermodular if:

(i) gi has increasing differences: for all si � s ′i and s−i � s ′−i ,

gi (si , s−i ) − gi (s ′i , s−i ) � gi (si , s ′−i ) − gi (s ′i , s ′−i ).

(ii) gi is supermodular in si : for all s−i ∈ S−i ,

gi (si , s−i ) + gi (s ′i , s−i ) � gi (si ∨ s ′i , s−i ) + gi (si ∧ s ′i , s−i ).

(a) Show that for all i and s−i , BRi (s−i ) is a compact non-empty lattice of R
mi .

(b) Suppose s−i � s ′−i . Show that ∀t ′i ∈ BRi (s ′−i ), ∃t i ∈ BRi (s−i ) such that
t i � t ′i .

(c) Deduce that G has a Nash equilibrium.

(3) Application: Cournot Duopoly
Consider two firms 1 and 2 in competition to produce and sell a homogenous
good. If firm i = 1, 2 produces the quantity qi ∈ [0, Qi ], it gets the payoff
gi (qi , q j ) = qi Pi (qi + q j ) − Ci (qi ) where the price function for firm i (the
inverse demand) is Pi and its production cost is Ci . Suppose Pi and Ci are
of class C1 and that the marginal revenue Pi + qi∂Pi/∂qi is decreasing in q j .
Show the existence of a Cournot–Nash equilibrium.
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Exercise 5. A Minority Game
Consider a symmetric three-player finite game where each player chooses one of two
rooms and wins 1 if he is alone and zero otherwise. Compute all Nash equilibria in
pure and mixed strategies.

Exercise 6. The Kakutani theorem via the existence of Nash equilibria for
two-player games (McLennan and Tourki [131])

(1) Consider a class G of two-player games G defined by a finite action set I = J
and two families of points (xi )i∈I , (yi )i∈I in R

K . The payoff of player 1 is given
by

f (i, j) = −‖xi − y j‖2

and the payoff of 2 by

g(i, j) = δi j (1 if i = j , 0 otherwise).

G is thus a bimatrix game and has an equilibrium (σ, τ ).
Prove that the support supp (τ ) of τ is included in supp (σ), then that supp (σ) is
included in {i ∈ I ; xi minimizes ‖xi − z‖2}, where z is the convex combination
of the y j induced by τ :

z =
∑

j∈I
τ j y j .

(2) Let C be a non-empty convex compact subset of R
K and F a u.s.c. correspon-

dence with compact convex non-empty values from C to itself.
We inductively define the games Gn = G(x1, . . . , xn; y1, . . . , yn) in G as fol-
lows: x1 is arbitrary, y1 ∈ F(x1); given an equilibrium (σn, τn) of Gn , introduce
xn+1 = ∑n

i=1 τn(i) yi as above and then yn+1 ∈ F(xn+1).

(a) Let x∗ be an accumulation point of the sequence {xn}. Let ε > 0 and N be
such that xN+1 and xm ∈ B(x∗, ε) for some m � N . Consider the equilib-
rium (σN , τN ) of GN = G(x1, . . . , xN ; y1, . . . , yN ) and show that {xi , i ∈
S(σN )} ⊂ B(x∗, 3ε) and {xi , i ∈ S(τN )} ⊂ B(x∗, 3ε). Conclude that xN+1

∈ co{⋃z F(z); z ∈ B(x∗, 3ε)}.
(b) Deduce the existence of a fixed point for F .

Exercise 7. Convex games [155]
A convex game is given by strategy sets Si and payoff functionsGi from S = ∏

j∈I S j

to R, i ∈ I , satisfying:

(i) Si is a compact convex subset of a Euclidean space, for each i ∈ I .
(ii) Gi (·, s−i ) is concave on Si , for all s−i , for each i ∈ I .
(iii)

∑n
i=1 Gi is continuous on S.

(iv) Gi (si , ·) is continuous on S−i , for all si , for each i ∈ I .

We introduce the function Φ defined on S × S by
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Φ(s, t) =
n∑

i=1

Gi (si , t−i ).

(1) Prove that t is a Nash equilibrium iff

Φ(s, t) � Φ(t, t), ∀s ∈ S.

(2) Let us show the existence of an equilibrium of the convex game.
By contradiction we assume that for each t ∈ S there exists an s ∈ S with

Φ(s, t) > Φ(t, t).

(a) Show that the family

(Os = {t ∈ S;Φ(s, t) > Φ(t, t)})s∈S
defines an open cover of S.

(b) Deduce the existence of a finite family (sk)k∈K with

∀t ∈ S, max
k∈K Φ(sk, t) > Φ(t, t).

(c) Observe then that Θ defined by

Θ(t) =
∑

k∈K φk(t)sk
∑

k φk(t)
,

with φk(t) = (Φ(sk, t) − Φ(t, t))+, is a continuous map from S to itself,
hence the existence of a fixed point t∗ for Θ .

(d) Finally obtain a contradiction since φk(t∗) > 0 implies Φ(sk, t∗) >

Φ(t∗, t∗).

4.13 Comments

The concept of Nash equilibrium (and the existence proof) first appeared in Nash’s
thesis. Then Nash provided several proofs for different frameworks, but all related
to a fixed point argument.

Several attempts to define a similar concept had been made earlier (starting with
Cournot) but it is interesting to see that the formal definition appeared during the
same period as several results corresponding to the tools used (Fan, Kakutani)—as
well as the related proof of existence in the economic theory of general equilibrium
(Arrow, Debreu), while the related concept was introduced by Walras much earlier.
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The connection between equilibria and value/optimal strategies in zero-sum
games is tricky: existence of value implies existence of ε-equilibria for all ε > 0.
However given optimal strategies (s, t) the optimality condition for player 1:
g(s, t ′) � g(s, t)(= v),∀t ′ corresponds to the best response (or equilibrium con-
dition) of player 2. In terms of value one checks the payoff letting the other player’s
strategy vary while at equilibrium the player compares with his own set of strategies.

Note also that the interpretation of equilibria can differ in some contexts. In
Nash’s initial formulation the equilibrium profile s is a norm or a reference and
the equilibrium condition is a property that each player satisfies given his payoff
function. In particular, the fact that s is an equilibrium is not known to the players
since i does not know g−i , hence cannot check the equilibrium condition.

For some other authors, s is a collection of beliefs, s−i being player i ′s belief in
the opponent’s behavior. Then the information after the play is relevant, for example,
to check if the actual moves are consistent with the beliefs. More generally, in the
presence of signals this leads to the notion of conjectural or self-confirming equilibria
(see somecomments in [200]). Theplayers can also hold private beliefs that are jointly
inconsistent but compatible, for each player, with his own observation (Selten).

An important line of research is concerned with the efficiency of Nash equilibria
(equilibrium payoffs are generically inefficient, see e.g. [49]) and a measure of inef-
ficiency has been proposed by Koutsoupias and Papadimitriou [109] under the name
“price of anarchy”. It is extremely popular in computer science and has generated
a large amount of literature. A connected area corresponds to mechanism design
where these tools are used to generate efficient equilibrium outcomes, in particular
for auctions.

McLennan and Tourky [131] proved that the existence of a mixed Nash equilib-
rium in every finite two-player game implies Kakutani’s theorem (in finite dimen-
sions) and so Brouwer’s theorem (see Exercise6). It has also been proved that finding
amixed equilibrium in a two-player finite game belongs to the same complexity class
as finding a fixed point of a continuous function [36]. This shows that all the difficulty
of fixed point theorems is captured by equilibria in two-player finite games.



Chapter 5
Equilibrium Manifolds and Dynamics

5.1 Introduction

The previous chapter was devoted to the properties of equilibria in a given game.
We consider now the corresponding set as the underlying game varies in a family.
We analyze structural and dynamical features that could be used to select among
equilibria.

A first approach studies how the set of Nash equilibria changes as a function of
the game. This allows us to check robustness with respect to payoff perturbations
and to define “essential” equilibria. A second approach checks for dynamic stability.
It was initiated by models of evolution in biology which introduce dynamics com-
patible with myopic rational behavior. We show that under some conditions, Nash
equilibrium is an attractor of some “natural” dynamics.

The chapter starts by showing that equilibria of several classes of finite and infinite
games may be expressed as solutions of some variational inequalities.

Then in the framework of finite games, we prove the structure result of Kohlberg
and Mertens, which establishes that the projection mapping from the manifold of
equilibria to the space of underlying games is homotopic to the identity map. This
has several consequences. For example, it implies that, generically, the set of Nash
equilibria is finite and odd, and that every game admits an essential component.

The last sections define a large class of “natural” dynamics and prove their conver-
gence to Nash equilibria in potential games. Finally, the famous biological concept
of evolutionary stable strategies [130] is defined and its link with asymptotic stability
with respect to the well-known replicator dynamics is established.
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5.2 Complements on Equilibria

We study here classes of games where the equilibrium characterization has a specific
formulation that allows for a more precise analysis: structure of the set, associated
sub-classes of games and related dynamics.

5.2.1 Equilibria and Variational Inequalities

For several classes of games, Nash equilibria can be represented as solutions of
variational inequalities.

5.2.1.1 Finite Games

I is the finite set of players and for each i ∈ I , Si is the finite set of strategies of
player i and gi : S = ∏

j S
j −→ R his payoff function, with the usual multilinear

extension toΣ = ∏
j Σ

j , whereΣ j = Δ(S j ), the set of mixed strategies of player i ,
is the simplex over S j .

Definition 5.2.1 The vector payoff function V gi : Σ−i −→ R
Si is defined by

V gi (σ−i ) = {gi (si , σ−i ); si ∈ Si }.

Then gi (τ i , σ−i ) = ∑
si g

i (si , σ−i )τ i (si ) = 〈V gi (σ−i ), τ i 〉 and σ ∈ Σ is a Nash
equilibrium iff

〈V gi (σ−i ), σ i − τ i 〉 � 0, ∀τ i ∈ Σ i ,∀i ∈ I.

5.2.1.2 Concave Games

I is the finite set of players and for each i ∈ I , Xi ⊂ Hi , (Hi Hilbert space), is the
convex set of strategies of player i and Gi : X = ∏

j X
j −→ R his payoff function.

Assume Gi is concave w.r.t. xi and of class C1 w.r.t. x , ∀i ∈ I .
Then x ∈ X is a Nash equilibrium iff

〈∇iG
i (x), xi − yi 〉 � 0, ∀yi ∈ Xi ,∀i ∈ I,

where ∇i stands for the gradient of Gi w.r.t. xi , see Sect. 4.7.3. This is an extension
of the above characterization for finite games because ∇iGi (σ ) = V gi (σ−i ).
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5.2.1.3 Population Games

I is the finite set of populations of non-atomic agents and for each i ∈ I , Si is the
finite set of strategies of population i and Xi = Δ(Si ) is the simplex over Si .

xi (si ) is the proportion of agents in population i that play si .
Consider K i : Si × X −→ R, where K i (si , x) is the payoff of an agent of popu-

lation i using the strategy si , given the configuration x = (x j ) j∈I .
In this framework the natural notion of equilibrium is expressed as follows.

Definition 5.2.2 x ∈ X is a Nash/Wardrop equilibrium [226] if

xi (si ) > 0 =⇒ K i (si , x) � K i (t i , x), ∀t i ∈ Si ,∀i ∈ I.

In fact, by changing his strategy an agent does not affect the configuration x ,
hence at equilibrium, any strategy chosen in population i maximizes K i (·, x) over
Si .

An alternative characterization is given by the following:

Proposition 5.2.3 x ∈ X is a Nash/Wardrop equilibrium iff

〈K (x), x − y〉 � 0, ∀y ∈ X,

where
〈K (x), x − y〉 =

∑

i∈I
〈K i (x), xi − yi 〉,

and
〈K i (x), xi − yi 〉 =

∑

si∈Si
K i (si , x)[xi (si ) − yi (si )].

Proof The variables being independent,

〈K (x), x − y〉 � 0, ∀y ∈ X,

is equivalent to
〈K i (x), xi − yi 〉 � 0, ∀yi ∈ Xi ,∀i ∈ I,

and this means that all si in supp (xi ) maximize K i (·, x). �

5.2.1.4 General Evaluation

Consider a finite collection of non-empty convex compact subsets Xi of Hilbert
spaces Hi , and evaluation mappings Φ i : X → Hi , i ∈ I , with X = ∏

j X
j .
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Definition 5.2.4 NE(Φ) is the set of x ∈ X satisfying

〈Φ(x), x − y〉 � 0, ∀y ∈ X, (5.1)

where 〈Φ(x), x − y〉 = ∑
i 〈Φ i (x), xi − yi 〉Hi .

Note that all the previous sets of equilibria can be written this way.
Denote by ΠX the projection from H = ∏

i H
i to the closed convex set X and by

T the map from X to itself defined by

T(x) = ΠX [x + Φ(x)]. (5.2)

Proposition 5.2.5 NE(Φ) is the set of fixed points of T.

Proof The characterization of the projection gives

〈x + Φ(x) − ΠX [x + Φ(x)], y − ΠX [x + Φ(x)]〉 � 0, ∀y ∈ X,

hence ΠX [x + Φ(x)] = x is the solution iff x ∈ NE(Φ). �

Corollary 5.2.6 Assume the evaluation Φ is continuous on X. Then NE(Φ) 
= ∅.

Proof The map x �→ ΠC [x + Φ(x)] is continuous from the convex compact set X
to itself, hence a fixed point exists (Theorem 4.11.4). �

5.2.2 Potential Games

This class of games exhibits nice properties in terms of equilibria and dynamics.

5.2.2.1 Finite Games

(Monderer and Shapley [146])

Definition 5.2.7 A real function P defined on Σ is a potential for the game (g,Σ)

if ∀si , t i ∈ Si , u−i ∈ S−i , ∀i ∈ I

gi (si , u−i ) − gi (t i , u−i ) = P(si , u−i ) − P(t i , u−i ). (5.3)

This means that the impact due to a change of strategy of player i is the same on
gi and on P , for all i ∈ I , whatever the choice of −i .
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5.2.2.2 Evaluation Games

We extend Sandholm’s definition [184] for population games to general evaluations
as defined in Sect. 5.2.1.4.

Definition 5.2.8 A real function W , of class C1 on a neighborhood Ω of X , is a
potential for Φ if for each i ∈ I , there is a strictly positive function μi (x) defined
on X such that

〈∇iW (x) − μi (x)Φ i (x), yi
〉 = 0, ∀x ∈ X,∀yi ∈ T Xi , ∀i ∈ I, (5.4)

where T Xi = {y ∈ R
|Si |,

∑
p∈Si yp = 0} is the tangent space to Xi .

A particular case is obtained when Φ(x) is the gradient of W at x . In the finite
case this gives back ∇iW = V gi .

5.3 Manifolds of Equilibria

Here we deal with finite games. Each action set Si is finite, with cardinality mi ,
i ∈ I and m = Πimi . A game g is thus identified with a point in R

Nm . Consider
the manifold of equilibria obtained by taking payoffs as parameters. The equilib-
rium equations correspond to a finite family of polynomial inequalities involving the
variables (g, σ )

Fk(g, σ ) � 0, k ∈ K ,

where g ∈ RNm is the game and σ the strategy profile.
Let G be the family of games (recall that the players and their pure strategy sets

are fixed) and E be the graph of the equilibrium correspondence

E = {(g, σ ); g ∈ G, σ equilibria of g}

that one extends by continuity to the compactification G of G, denoted by E .
Theorem 5.3.1 (Kohlberg and Mertens (1986)) The projection π from E to G is
homotopic to a homeomorphism.

Proof One writes the payoff g as a function of g̃ and h, where for each i , hi is a
vector in R

mi
with

V gi (s−i ) = V g̃i (s−i ) + hi

and g̃ satisfies the normalization condition

∑

s−i∈S−i

V g̃i (s−i ) = 0.
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Let us define, for t ∈ [0, 1], a map Πt from E to G, where g = (g̃; h), by

Πt (g, σ ) = (g̃; t (σ + V g(σ )) + (1 − t)h),

which is the announced homotopy.
Clearly Π0 = π . Let us check that Πt (∞) = ∞,∀t ∈ [0, 1].

Write ‖ · ‖ for the infinity norm, so that a neighborhood of ∞ takes the form {‖x‖ �
M}. Assume then that ‖(g, σ )‖ � 2R + 1, hence ‖g‖ � 2R + 1 so that either
‖g̃‖ � R, thus ‖Πt (g, σ )‖ � R, or ‖h‖ � 2R + 1 and ‖g̃‖ � R. In this last case
one obtains ‖t (σ + V g(σ )) + (1 − t)h − h‖ � ‖(σ + V g(σ )) − h‖ � 1 + ‖g̃‖ �
R + 1, which implies ‖t (σ + V g(σ )) + (1 − t)h‖ � R. �

It remains to prove the next result:

Lemma 5.3.2 ϕ = Π1 is a homeomorphism from E to G.
Proof Define, starting from g = (g̃, z), with z = {zi } and zi ∈ R

mi
: σ = ΠΣ(z) and

�is = zis − σ i
s − g̃i (s, σ−i ).

Then ψ(g) = ψ(g̃; z) = ((g̃, �), σ )

(i) is mapping from G in E , and satisfies
(ii) ϕ ◦ ψ = IdG ;
(iii) ψ ◦ ϕ = IdE .

For the first point, let us check that σ is an equilibrium in the game γ = (g̃, �).
Using Proposition 5.2.5, we compute ΠΣ(σ + Ṽ g(σ ) + �) = ΠΣ(z) = σ , hence
the result.

For (ii), starting from g = (g̃, z) one obtains, via ψ , the pair (γ = (g̃, �); σ) then
through ϕ, the game (g̃, σ + V γ (σ )). But V γ (σ ) = Ṽ g(σ ) + � = Ṽ g(σ ) + z −
σ − Ṽ g(σ ), thus σ + V γ (σ ) = z and the final game is g.

Finally for (iii), starting from a pair (g, σ ) in E with g = (g̃, h), one obtains
(g̃, σ + V g(σ )) in G. Thus z = σ + V g(σ ), but since σ is an equilibrium in g,
σ = ΠΣ(σ + V g(σ )) = ΠΣ(z). Hence the image of z on Σ is σ and then � =
z − σ − Ṽ g(σ ) = σ + V g(σ ) − σ − Ṽ g(σ ) = h. �

Let g be a game and NE(g) its set of equilibria, which consists of a finite family
of connected components Ck, k ∈ K (Theorem 4.9.2).

Definition 5.3.3 Ck is essential if for any neighborhood V of Ck in Σ , there exists
a neighborhoodW of g in G such that for any g′ ∈ W there exists a σ ∈ NE(g′) ∩ V .

Proposition 5.3.4 (i) Generically, the set of equilibria is finite and odd.
(ii) Every game has an essential component.

Proof (i) Generically an equilibrium is isolated (by semi-algebraicity) and trans-
verse to the projection from E to G. The degree is 1 if the projection preserves the
orientation and −1 if it reverses it. The global degree of the projection, which is the
sum over all components, is invariant under homotopy, thus equal to 1 (due to the
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homeomorphism): thus there are p + 1 equilibria with degree +1 and p with degree
−1, see [93].

(ii) By induction it is enough to show that if NE(g) is contained inU ∪ V , where
U and V are two open sets with disjoint closures, then there exists a neighborhood
W of g such for any g′ ∈ W , NE(g′) ∩U 
= ∅ or for any g′ ∈ W , NE(g′) ∩ V 
= ∅.

LetΨ (g) be the graph of the best response correspondence at g (inΣ × Σ). There
exists a neighborhood C of Ψ (g) (with convex sections) such that the intersection
with the diagonal belongs to U ∪ V ×U ∪ V .

By contradiction assume the existence of g1 near g with NE(g1) ∩U = ∅ and
similarly for g2 and V . On the other hand one can assume that Ψ (gi ) ⊂ C . Let α

be a continuous function from Σ to [0, 1], with value 1 on U and 0 on V . The
correspondence defined by T (σ ) = α(σ)Ψ (g1)(σ ) + (1 − α(σ))Ψ (g2)(σ ) is u.s.c.
with convex values. Its graph is included in C , hence its non-empty set of fixed
points is included in U ∪ V . Consider such a point, σ = T (σ ). If σ ∈ U , α(σ) = 1
and σ is a fixed point of Ψ (g1), hence in V . We obtain a similar contradiction
if σ ∈ V . �

As an example, consider the next family of games, with parameter α ∈ R:

L R
T (α, 0) (α, 0)
M (1,−1) (−1, 1)
B (−1, 1) (1,−1)

the equilibrium correspondence is given by (Fig. 5.1):

T

M

L

R

R
0 1α

1
2 +

α
2

R

Fig. 5.1 The equilibrium correspondence

See Exercise 4.
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5.4 Nash Vector Fields and Dynamics

The approach here is to consider the equilibria as the zero of a map and to define the
associated dynamics.

Definition 5.4.1 A Nash field is a continuous map (or a u.s.c. correspondence) Ψ

from G × Σ to Σ such that

NE(g) = {σ ∈ Σ;Ψ (g, σ ) = σ },∀g ∈ G.

If no continuity w.r.t. g is asked for, one can for example select σ g ∈ NE(g) for
each g and let Ψ (g, σ ) = d(σ )σ g + [1 − d(σ )]σ , where d(σ ) is the minimum of 1
and the distance from σ to NE(g).

Proposition 5.4.2 The following maps are Nash fields:

1. (Nash [151])

Ψ (g, σ )i (si ) = σ i (si ) + (gi (si , σ−i ) − gi (σ ))+

1 + Σt i (gi (t i , σ−i ) − gi (σ ))+
;

2. (Gul, Pearce and Stacchetti [87]) (recall that ΠΣ is the projection on the convex
compact set Σ)

Ψ (g, σ ) = ΠΣ({σ i + V gi (σ−i )}).

Proof The continuity is clear in both cases.
(1) Proof of Theorem 4.6.2.
(2) For a fixed g, Ψ (g, σ ) = T(σ ) and use Proposition 5.2.5. �

Each Nash field Ψ induces, for each game g, a dynamical system on Σ ,

σ̇ = Ψ (g, σ ) − σ,

whose rest points are NE(g).

Remark 5.4.3 An alternative definition of a Nash field would be a continuous map
from G × Σ to TΣ (the tangent vector space at Σ), vanishing on E and inward
pointing at the boundary of Σ .

Remark 5.4.4 Every component of the set of fixed points has an index and the sum
of indices is 1, which is the Euler characteristic of the simplex Σ (the Poincaré–
Hopf Theorem, see Milnor [143, p. 35]). Moreover, the index of a component C is
independent of the Nash field and is equal to the local degree at C of the projection
π from E to G [43, 83].
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For the next game, with parameter t ∈ R:

L R
T (t, t) (0, 0)
B (0, 0) (1 − t, 1 − t)

one obtains for the manifold and the dynamics the following situation (Fig. 5.2):

+1

R
0 1

B

T 0

0

+1

−1

Fig. 5.2 A Nash dynamics

For t /∈ [0, 1] there is only one equilibrium, hence there is only one configuration
for the Nash field (inwards at the boundary and vanishing only on the manifold of
equilibria).

By continuity we obtain the configuration for t ∈ (0, 1), thus the mixed equilibria
has index −1: the projection reverses the orientation of the manifold—or the vector
field has index −1 there.

For further results, see [45, 84, 175, 217].

5.5 Equilibria and Evolution

Here we introduce several dynamical approaches to equilibria.

5.5.1 Replicator Dynamics

Consider a symmetric two-player game defined by a matrix A in R
K×K . Akj is the

“fitness” (reproduction rate) of k ∈ K within an interaction (k, j). (The payoff of
player 2 is thus B = t A.)

The first approach corresponds to the study of a single polymorphic non-atomic
population, playing in pure strategies. Its composition is p if a proportion pk of its
members is of “type k”. An alternative approach is described in Sect. 5.5.6.

An interaction corresponds to the matching of two agents chosen at random in the
population. An agent will be of type k with probability pk and he will face a type j
with probability p j , hence his expected fitness will be ek Ap.
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Definition 5.5.1 A population p ∈ Δ(K ) is stationary if

pk > 0 =⇒ ek Ap = pAp.

Thus all types actually present in the population have the same reproduction rate,
hence the composition of the population remains the same after an interaction.

If p is stationary with full support, it is a symmetric equilibrium; on the other
hand each pure strategy is stationary.

Definition 5.5.2 The replicator dynamics (RD) (for one population) is defined on
Δ(K ) by

ṗt = F(pt ),

where F is given by
Fk(p) = pk(ek Ap − pAp).

Note that d
dt Log(p

k
t ) = ek Ap − pAp which is the difference between the

(expected) fitness of k and the average in the population. This dynamics preserves
the simplex since

∑
k F

k(p) = pAp − ∑
k p

k pAp = 0. One could also define a
stationary population as a rest point of the replicator dynamics.

5.5.2 The RSP Game

Consider the following game (“rock, scissors, paper”):

(0, 0) (a,−b) (−b, a)

(−b, a) (0, 0) (a,−b)
(a,−b) (−b, a) (0, 0)

where a and b are two parameters > 0.

Proposition 5.5.3 The onlyNash equilibrium is E = (1/3, 1/3, 1/3). It is an attrac-
tor for the replicator dynamics if a > b and a repulsor if a < b.

Proof Let us compute the average fitness for p ∈ Δ(K ):

pAp = (a − b)(p1 p2 + p2 p3 + p1 p3)

= (a − b)

2
(1 − ‖p‖2).

Let V (p) = Π3
k=1 p

k , which is maximal at E . Since: ṗ1t = p1t (ap
2
t − bp3t − pt Apt ),

we obtain
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Fig. 5.3 Case a > b and
a < b

A

C B

A

C B

d

dt
log V (pt ) =

3∑

k=1

ṗkt
pkt

= (a − b) − 3pt Apt = (a − b)

2
(3‖pt‖2 − 1).

Thus for a > b, V increases as long as ‖pt‖2 � 1/3, which implies convergence to
E . Similarly E is a repulsor for a < b (Fig. 5.3). �

5.5.3 Potential Games

In the general case of a finite game (g,Σ), the replicator dynamics takes the following
form, for each player i ∈ I and each of his actions s ∈ Si :

σ̇ is
t = σ is

t [gi (s, σ−i
t ) − gi (σt )].

In particular, for a potential game (the partnership game (A = t A = B) is an example
of a potential game for twoplayers), the replicator dynamics can be expressed in terms
of the potential P:

σ̇ is
t = σ is

t [P(s, σ−i
t ) − P(σt )].

Proposition 5.5.4 In a potential game, the potential is a strict Lyapounov function
for the replicator dynamics and the set of stationary populations.

Proof Let ft = P(σt ). Thus ḟt = ∑
i P(σ̇ i

t , σ
−i
t ) by linearity, but one has

P(σ̇ i
t , σ

−i
t ) =

∑

s

σ̇ is
t P(s, σ−i

t ) =
∑

s

σ is
t [P(s, σ−i

t ) − P(σt )]P(s, σ−i
t ).

Let us add
0 =

∑

s

σ is
t [P(s, σ−i

t ) − P(σt )]P(σt )
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to get
P(σ̇ i

t , σ
−i
t ) =

∑

s

σ is
t [P(s, σ−i

t ) − P(σt )]2.

Thus ḟt is a sum of non-negative terms and the minimum, which is 0, is obtained on
the rest points of (RD). �

An important example corresponds to congestion games, see e.g. Chapter 18 in
Nisan et al. [156] and Exercise 3.

5.5.4 Other Dynamics

The general form of a dynamics describing the evolution of the strategic interaction
in a game with evaluation Γ (Φ) as defined in Sect. 5.2.1.4, with Xi = Σ i = Δ(Si ),
Si finite, is

σ̇ = BΦ(σ), σ ∈ Σ,

where Σ is invariant, so that for each i ∈ I , Bi
Φ(Σ) ∈ TΣ i , which is the tangent

space: TΣ i = {t s;∑
s∈Si t s = 0}.

Here are few example of dynamics expressed in terms of the evaluation Φ.

5.5.4.1 Replicator Dynamics

(Taylor and Jonker [209])

σ̇ i p = σ i p[Φ i p(σ ) − Φ
i
(σ )], p ∈ Si , i ∈ I,

where
Φ

i
(σ ) = 〈σ i , Φ i (σ )〉 =

∑

p∈Si
σ i
pΦ

i
p(σ )

is the average evaluation for participant i .

5.5.4.2 Brown–von Neumann–Nash Dynamics

(Brown and von Neumann [34], Hofbauer [99])

σ̇ i p = Φ̂ i p − σ i p
∑

q∈Si
Φ̂ iq , p ∈ Si , i ∈ I,
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where Φ̂ iq = [Φ iq(σ ) − Φ
i
(σ )]+ is called the “excess evaluation” of p. (Recall that

t+ = max{t, 0}.)

5.5.4.3 Smith Dynamics

(Smith [193])

σ̇ i p =
∑

q∈Si
σ i p[Φi p(σ ) − Φiq (σ )]+ − σ i p

∑

q∈Si
[Φiq (σ ) − Φi p(σ )]+, p ∈ Si , i ∈ I,

where [Φ i
p(σ ) − Φ i

q(σ )]+ corresponds to “pairwise comparison”, Sandholm [185].

5.5.4.4 Best Response Dynamics

(Gilboa and Matsui [78])

σ̇ i ∈ BRi (σ ) − σ i , i ∈ I,

where:
BRi (σ ) = {yi ∈ Σ i , 〈yi − zi , Φ i (σ )〉 � 0,∀zi ∈ Σ i }.

5.5.5 A General Property

It is natural to require some consistency between the objective and the dynamics.

Definition 5.5.5 The dynamics BΦ satisfies positive correlation (PC) if

〈Bi
Φ(σ),Φ i (σ )〉 > 0, ∀i ∈ I,∀ σ ∈ Σ s.t. Bi

Φ(σ) 
= 0.

This corresponds to MAD (myopic adjustment dynamics, [207]): assuming the
configuration given, a unilateral change along the dynamics should increase the
evaluation Φ. In a discrete time framework this reads as

〈σ i
n+1 − σ i

n, Φ
i (σn)〉 � 0.

Proposition 5.5.6 Consider a potential game Γ (Φ) with potential function W. If
the dynamics σ̇ = BΦ(σ) satisfies (PC), then W is a strict Lyapunov function for
BΦ .
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Proof Let {σt }t�0 be the trajectory of BΦ and Vt = W (σt ) for t � 0. Then

V̇t = 〈∇W (σt ), σ̇t 〉 =
∑

i∈I
〈∇ iW (σt ), σ̇

i
t 〉 =

∑

i∈I
μi (σ )〈Φ i (σt ), σ̇

i
t 〉 � 0.

(Recall that σ̇t ∈ TΣ .) Moreover, 〈Φ i (σt ), σ̇
i
t 〉 = 0 holds for all i if and only if

σ̇t = BΦ(σt ) = 0. �

5.5.6 ESS

Returning to the framework of Sect. 5.5.1, the concept of an “Evolutionary Stable
Strategy” (ESS), due toMaynard Smith [130], corresponds to the study of an asexual
homogeneous population which holds a “mixed type” p ∈ Δ(K ) and one considers
its local stability.

Definition 5.5.7 p ∈ Δ(I ) is an ESS if it is robust under perturbations in the sense
that for each alternative q ∈ Δ(I ), q 
= p, there exists an ε(q) > 0 such that 0 <

ε � ε(q) implies

pA((1 − ε)p + εq) > q A((1 − ε)p + εq).

ε(q) is the threshold associated to q.

This inequality can be decomposed into

pAp � q Ap,

thus p is a symmetric equilibrium, and if equality holds:

pAq > q Aq.

A classical example of an ESS is a strict equilibrium.

Proposition 5.5.8 p is an ESS iff one of the following conditions is fulfilled:

(1) There exists an ε0 (independent of q) such that

pA((1 − ε)p + εq) > q A((1 − ε)p + εq)

for all ε ∈ (0, ε0) and all q ∈ Δ(K ), q 
= p.
(2) There exists a neighborhood V (p) of p such that

pAq > q Aq, ∀q ∈ V (p), q 
=p.
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Proof Consider the subset of the boundary ∂X of the simplex X = Δ(K ) facing p,
namely ∂X p = {q; q ∈ ∂X with qk = 0 and pk > 0 for at least one component k}.
This defines a compact subset disjoint from p where the threshold ε(q) is bounded
below by some ε0 > 0.

Now each r 
= p in X can be written as r = tq + (1 − t)p with t > 0 and q ∈
∂X p, hence (1 − ε)p + εr = (1 − ε′)p + ε′q with ε′ � ε, so that as soon as ε � ε0,

pA((1 − ε′)p + ε′q) > q A((1 − ε′)p + ε′q).

By multiplying by ε′ and adding (1 − ε′)pA((1 − ε′)p + ε′q) one also obtains

pA((1 − ε′)p + ε′q) > ((1 − ε′)p + ε′q)A((1 − ε′)p + ε′q),

which implies
pA((1 − ε)p + εr) > r A((1 − ε)p + εr).

To prove (1) we just need to show that on ∂X p, for ε � ε0,

pA((1 − ε)p + εq) > q A((1 − ε)p + εq),

thus one obtains for ε ∈ (0, ε0):

pA((1 − ε)p + εq) > ((1 − ε)p + εq)A((1 − ε)p + εq).

It remains to observe that as q varies in ∂X p and ε ∈ (0, ε0) the set ((1 − ε)p + εq)

describes a pointed neighborhood V (p) \ {p}.
Conversely, starting from q 
= p, p′ = (1 − ε)p + εq is in V (p) \ {p} for ε >

0 small enough, and then pAp′ > p′Ap′ = [(1 − ε)p + εq]Ap′, from which we
deduce that

pAp′ > q Ap′. �

In the game RSP the only equilibrium is ESS iff a > b and there is no ESS for
a < b: in fact each pure strategy is as good as (1/3, 1/3, 1/3) facing (1/3, 1/3, 1/3)
and gives 0 against itself while (1/3, 1/3, 1/3) induces (a − b)/3 < 0.

Proposition 5.5.9 p is an ESS iff V (x) = ∏
i (x

i )p
i
is locally a strict Lyapounov

function for the replicator dynamics.

Proof V has a unique maximum in Δ(I ) taken at p: in fact Jensen’s inequality
applied to log V gives

∑

i

pi log(xi/pi ) � log
∑

i

x i = 0.
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Let vt = log V (xt ). Then, in a neighborhood of p, one obtains

v̇t =
∑

i

pi
ẋ it
x it

=
∑

i

pi [ei Axt − xt Axt ]

= pAxt − xt Axt > 0,

by the previous Proposition 5.5.8. �

For a full study of evolution games, see Hammerstein and Selten [88], Hofbauer
and Sigmund [102], van Damme [214], Weibull [227] and Sandholm [185].

5.6 Exercises

Exercise 1. Potential games

(1) Let G = (g,Σ) be a finite game with potential P (Definition 5.2.7). Show that
the equilibria are the same in the game where each player’s payoff is P . Deduce
that G has an equilibrium in pure strategies.

(2) Example 1. Show that the following game is a potential game and compute its
set of equilibria:

b1 b2
a1 (2, 2) (0, 0)
a2 (0, 0) (1, 1)

(3) Example 2. Show that the prisoners dilemma is a potential game:

b1 b2
a1 (0, 4) (3, 3)
a2 (1, 1) (4, 0)

with potential:
b1 b2

a1 1 0
a2 2 1

(4) Example 3. Consider a congestion game: two towns are connected via a set K
of roads. uk(t) denotes the payoff of each of the users of road k, if their number
is t .
The game is thus defined by Si = K for each i = 1, . . . , n (each user i can
choose a road si in K ) and if s = (s1, . . . , sn) stands for the profile of choices,
the payoff of player i choosing si = k is gi (s) = gi (k, s−i ) = uk(t k(s)), where
t k(s) is the number of players j for which s j = k.
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Show that G is a potential game with potential P given by

P(s) =
∑

k∈K

tk (s)∑

r=1

uk(r).

(5) Example 4. Consider a non-atomic congestion game: there are I non-atomic
populations of size one and xik is the proportion of agents in population i using
road k. Let zk = ∑

i∈I x ik be the congestion on road k. Define the real function
W on X by

W (x) =
∑

k∈K

∫ zk

0
uk(r)dr.

Show that W is a potential for the game.
(6) Consider a finite game with potential P . Prove that P is a Lyapounov function

for the best response dynamics. Deduce that all accumulation points are Nash
equilibria.

(7) Show that the dynamics defined in Sect. 5.5.4 satisfy (PC). Deduce that the set
of accumulation points for the dynamics 5.5.4.2–5.5.4.4 is included in the set of
equilibria.

Exercise 2. Dissipative games
Consider the evaluation framework of Sect. 5.2.1.4 (compare with the monotone
games defined in Sect. 4.7.3).

Definition 5.6.1 An evaluative game Γ (Φ) is called dissipative if Φ satisfies

〈Φ(x) − Φ(y), x − y〉 � 0, ∀ (x, y) ∈ X × X.

Notice that if Φ is dissipative and derives from a potential W , W is concave.
Introduce SNE(Φ) as the set of x ∈ X satisfying:

〈Φ(y), x − y〉 � 0, ∀y ∈ X. (5.5)

(1) Prove that if Φ is continuous, then

SNE(Φ) ⊂ NE(Φ).

(2) Show that if Γ (Φ) is dissipative, then

NE(Φ) ⊂ SNE(Φ).

(3) Deduce that if Γ (Φ) is dissipative and Φ is continuous, then NE(Φ) is convex.
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Exercise 3. Equilibrium correspondence
Consider a family of two-player finite games with parameter α ∈ R:

G D
H α, 0 α, 0
M 1,−1 −1, 1
B −1, 1 1,−1

Compute the set of Nash equilibria as a function of α.

Exercise 4. Fictitious play in non-zero-sum games
Consider a two-person finite game F : S1 × S2 → R

2 and the fictitious play process
defined in Sect. 2.7.

(1) Consider the anticipated payoff at stage n: Ei
n = Fi (sin, s̄

−i
n−1)) and the average

payoff up to stage n (excluded) (Ai
n = 1

n−1

∑n−1
p=1 F

i (sp)). Show that

Ei
n � Ai

n.

(Monderer, Samet and Sela [144].)
Remark: This is a unilateral property: no hypothesis is made on the behavior of
player −i .

(2) Prove that
Fi (sin, s

−i
n−1) � Fi (sn−1).

(The improvement principle, Monderer and Sela [145].)
(3) Consider the following two-player game, due to Shapley [189]:

(0, 0) (a, b) (b, a)

(b, a) (0, 0) (a, b)
(a, b) (b, a) (0, 0)

with a > b > 0. Note that the only equilibrium is (1/3, 1/3, 1/3).
Prove that starting from a Pareto entry, fictitious play does not converge.

5.7 Comments

The representation of Nash equilibria as variational inequalities played an important
rôle in Operations Research [39, 51], and was used in the transportation literature to
obtain approximation results.

The dynamic approach has been extremely productive in evolution and biology
but also shows a difference between strategic and dynamic stability requirements
(see also Chap. 6).
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Some concepts may lack a general existence property but have very strong
dynamic properties (ESS).

On the other hand attractors may be a quite natural issue for dynamics, without
necessarily consisting of a collection of fixed points.

In summary, the dynamic approach is quite satisfactory for specific classes of
games (potential, dissipative, super-modular) but in general the results differ from the
0-sum case (see Fictitious Play), which exhibits some kind of “periodic regularity”.

Among the open problems, we would like to prove convergence of the trajectories
and not only identify the accumulation points as equilibria. A first step would be to
consider smooth data in the spirit of [29].

Finally, a lot of recent results explicitly describe the set of equilibria of finite
games and indicates that essentially any semi-algebraic set can be achieved at Nash
equilibrium (in the space of payoffs or strategies).



Chapter 6
Games in Extensive Form

6.1 Introduction

The previous chapters dealt with games in strategic or “normal” form. This one
studies games in “extensive” form. The model describes precisely the rules of the
game: which player starts, what actions he can take, who plays next, what is the
information before choosing an action, and what payoff is obtained at the end.

We start with the simplest and oldest model of perfect information (PI) games.
Here, players successively choose actions according to some rules and at every deci-
sion node, all previous actions are observed by all the players (like in Chess). We
prove Zermelo’s famous theorem stating that every finite zero-sum PI game has a
value in pure strategies (e.g. is determined) and show that optimal strategies can be
computed using backward induction. This algorithm easily extends to n-player PI
games, leading to the first and famous refinement of Nash equilibrium: Selten’s sub-
game perfection. We also explore infinite PI games and provide conditions under
which they are determined.

Next,wedefinegeneral extensive form (EF) games. In thismodel, players can have
imperfect and asymmetric knowledge about past actions (like in poker). In this class,
for the value or an equilibrium to exist, players may need to randomize. We define
several randomized strategies (mixed, behavioral, general) and show their outcome-
equivalence in EF games with perfect recall, i.e. in which each player remembers
what he did or learned in the past at every node where he has to play. This is the
celebrated Kuhn’s theorem.

Finally, after describing several nested equilibrium refinement concepts in exten-
sive form games (the finest being the sequential equilibrium of Kreps and Wilson),
links with normal form equilibrium refinements are established (in particular with
Myerson’s proper equilibrium). More precisely, it is shown that a proper equilibrium
of a normal form game induces a sequential equilibrium in any extensive form having
that normal form (note that several extensive form games may have the same normal
form). The theory that studies the invariance of a Nash equilibrium under the exten-
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sive form representation and other properties is called strategic stability (initiated
by Kohlberg and Mertens). Some of its principles, such as the forward induction
reasoning, are discussed in the last section.

6.2 Extensive Form Games with Perfect Information

A finite game with perfect information is the first and simplest model in game the-
ory. Examples are games like Chess or Go. Players play alternately and at their
turn, each player knows all past actions. The payoff, obtained when the game ends,
depends on the whole sequence of actions. The model has applications in a number
of fields ranging from set theory to logic, computer science, artificial intelligence,
and economics.

6.2.1 Description

Afinite game in extensive form and perfect information G is described using a tree (a
finite connected directed graph without cycles). More formally, the game is defined
by:

1. A finite non-empty set of players I ;
2. A finite set of nodes Z ;
3. An origin θ ∈ Z ;
4. A predecessor mapping φ : Z \ {θ} → Z satisfying: for every z ∈ Z , there is an

integer l such that φl(z) = θ ;
5. A set of terminal nodes (outcomes) R := Z \ Im(φ);
6. A set of positions P := Z \ R = Im(φ);
7. A set of successors for each position p ∈ P , S(p) := φ−1(p);
8. A partition {Pi , i ∈ I } of P;
9. A payoff gi (r) for each player i ∈ I and each outcome r ∈ R.

The game is played as follows:

(a) Let i be the player in I such that θ ∈ Pi .
(b) At stage t = 1, player i chooses a successor p1 ∈ S(θ).
(c) Inductively at stage t , player j with pt ∈ P j chooses a successor pt+1 of pt .
(d) The game terminates when a terminal node r in R is reached.
(e) Each player i ∈ I obtains the payoff gi (r).

To each position p is associated a history (the sequence of predecessors of p) and
a subgame G[p] consisting of the sub-tree generated by all successors of p. Thus,
G[p] is itself an extensive form game with perfect information having p as origin.

In Game 1 of Fig. 6.1 player 1 starts. He has two actions. If he chooses the right
action, node p is reached, in which player 2 has 3 actions a, b and c. If he chooses a,
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we reach the terminal node x ∈ R. As in this example, it is usual to attribute names
to actions (i.e. to edges that connect two successive nodes).

6.2.2 Strategy and Normal Form

A strategy σ i of player i is a function on Pi which associates to each position
p ∈ Pi a successor in S(p). A profile of strategies σ = (σ 1, . . . , σ N ) induces a
unique outcome r in R.

For example, inGame 2 (Fig. 6.2) player 1 has two strategies S1 = {α, β}. Player 2
has 3 × 2 = 6 strategies: S2 = {aA, aB, bA, bB, cA, cB}. The strategy bA means
that player 2 will play the move b at node p and the move A at node q.

Definition 6.2.1 The application F that associates to each strategy profile σ the
induced outcome in R is called the normal or strategic form reduction.

The normal form of game 2 is:

aA aB bA bB cA cB
α x x y y z z
β u v u v u v

p

1

3yx

2

12

a b c

Fig. 6.1 Game 1 in extensive form and with perfect information

B

1

22 p

α β

x y z u v

A

q

a b c

Fig. 6.2 Game 2 in extensive form and with perfect information
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To complete the definition of the game, we need to specify for each element r in R
a payoff gi (r) for each player i ∈ I . For example, if g1(x) = +1 and g2(x) = −5,
this means that if terminal node x is reached, player 1 gets +1 and player 2 gets −5.

6.2.3 The Semi-reduced Normal Form

In the following game, player 1 controls two decision nodes where, in each, he has
two actions. Thus, he has 4 strategies: S1 = {Aα, Aβ, Bα, Bβ}. Player 2 has only
one decision node and two actions, thus S2 = {a, b} (Fig. 6.3).

The normal form of Γ represented in the outcome space is:

a b
Aα x x
Aβ x x
Bα y z
Bβ y w

Note that strategies Aα and Aβ of player 1 are equivalent in a very robust sense:
for every strategy of player 2, the outcome is the same. In fact, in the extensive form
description, those strategies differ only on positions that they both exclude. The
semi-reduced normal form is obtained by identifying those equivalent strategies:

a b
A x x
Bα y z
Bβ y w

More generally, two strategies si and t i of player i are i -payoff-equivalent if for
all s−i ∈ S−i , gi (si , s−i ) = gi (t i , s−i ) and are payoff-equivalent if for all s−i ∈ S−i ,
and all j ∈ I g j (si , s−i ) = g j (t i , s−i ). Above, Aα and Aβ are payoff-equivalent,
and so, are identified.

B

1

x

β

z w

2

1

α
y

b a

A

Fig. 6.3 A perfect information game Γ
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6.2.4 Determinacy of Perfect Information Finite Games

A two-player game with perfect information is called simple if there is a partition
(R1, R2) of R such that if the outcome is in Ri , player i wins and player −i loses.
Say that player i has a winning strategy σ i if he can force the outcome to be in Ri :

∃ σ i , ∀ σ−i F[σ ] ∈ Ri .

That is, there is a strategy of player i such that for every strategy of the opponent, an
outcome in Ri is reached. Since R1 and R2 are disjoint, both players cannot have a
winning strategy.

Definition 6.2.2 A game is determined if one of the players has a winning strategy.

Theorem 6.2.3 ([231]) Every simple finite game with perfect information is deter-
mined.

Proof The proof is by induction on the length n of the tree. Use the convention
that a determined game has value +1 if player 1 has a winning strategy and −1 if
player 2 has a winning strategy. A game of length 1 is a one player game in which
once the player plays, the game is over. If that player has a winning action, he plays
it. Otherwise the other player, without playing, wins.

Suppose now that any perfect information game of length less than or equal to
n has a value (i.e. is determined) and let us prove that any game of length n + 1 is
determined.

Proof 1 (by forward induction) Any successor of the origin induces a subgame of
duration less than or equal to n. By hypothesis, these are determined. If player 1
starts the game, it suffices for him to choose a subgame with the highest value. If this
value is +1, he wins, otherwise, whatever he plays, player 2 has a winning strategy.
If player 2 starts, the situation is similar.

Proof 2 (by backward induction) Positions that are predecessors of terminal nodes
are one player games with duration length 1. Replace each of them by its value.
The new game has a strictly smaller length and so by induction, it is determined. If
a player is winning in the new game, he is also winning in the original game. Just
follow the winning strategy of the new game and finish by an optimal move at nodes
where all successors are terminal. �

Suppose now that the set of outcomes R contains more that two outcomes
R = {r1 �1 r2 · · · �1 rn} ordered with respect to the preferences of player 1 (we
identify outcomes where player 1 is indifferent). A two-player game is called strictly
competitive if player 2 has the reverse preference order over R: r1 ≺2 r2 · · · ≺2 rn .
The game is determined if there is a k such that player 1 has a strategy that guarantees
an outcome in {r1, r2, . . . , rk} and player 2 has a strategy that guarantees an outcome
in {rk, rk+1, . . . , rn}.
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If the outcomes are interpreted as the payoff of player 1, and if strictly competitive
means that the game is zero-sum, being determined is equivalent to the game having
a value and players having optimal pure strategies.

Corollary 6.2.4 Every finite strictly competitive game with perfect information is
determined.

Proof Define Rm = {r1, . . . , rm} for eachm and suppose R0 = ∅. Let Rk = {r1, . . . ,
rk} be the smallest set Rm , m = 1, . . . , n, that player 1 can guarantee. Because
player 1 cannot guarantee Rk−1 = {r1, . . . , rk−1}, by Zermelo’s theorem, player 2
can guarantee its complement {rk, rk+1, . . . , rm}. �

Chess is a finite game with perfect information where only three outcomes are
possible, consequently, either one of the players has a winning strategy or both can
guarantee a draw. Because of the complexity of the game, its value is not known.
In practice, there are very performant computer programs which can often beat any
human player. They give a score to every position and solve the game using backward
induction by looking several steps ahead. For the game of Go, computer programs
have recently started to beat humans. The algorithms combine deep learning and
Monte Carlo search.

6.2.5 Nature as a Player

In some perfect information games, such as backgammon, some transitions are ran-
dom. It is easy to extend the precedentmodel to that case: just add a newplayer (called
the hazard player, orNature), specify nodeswhere he plays and provide in the descrip-
tion of the game the probability distributions according to which Nature selects the
successors for each of its decision nodes. For example, in the game of Fig. 6.4, if
player 1 chooses move b, Nature can choose at random either c or d. With probability
1
3 the game reaches node p2 where player 1 can play again, and with probability 2

3
the game reaches node p3 where player 2 has to play. The strategy profile (bA, β)

induces the random outcome 1
3 y + 2

3v.

Fig. 6.4 A perfect information game with Nature
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Proposition 6.2.5 Every finite zero-sum perfect information game (with or without
Nature) has a value and players have pure optimal strategies.

Proof Let us prove the result by forward induction. If Nature starts, then for each
(randomly) chosen move k ∈ K with probability pk , a subgame Gk is reached. By
induction, each Gk has a value vk and players have pure optimal strategies

(
s1k , s

2
k

)
.

Consequently, the original game has value v = ∑
k∈K pkvk , and pure optimal strate-

gies (s1 = (
s1k

)
k∈K for player 1 and s2 = (

s2k
)
k∈K for player 2).

If player 1 starts the game, by induction, each subgame Gk has a value vk and
optimal pure strategies

(
s1k , s

2
k

)
. Consequently, the value of the original game is

maxk vk . To guarantee this value, player 1 plays a move that leads to the subgame
Gl where vl = maxk∈K vk and continues with the pure strategy s1l in Gl . Similarly,
if player 2 starts the game, the value is mink∈K vk , and the construction is dual to the
previous case. �

6.2.6 Subgame-Perfect Equilibrium

The previous results and proofs extend to multiplayer games. If σ is a strategy in a
perfect information game, then for each position p, σ naturally induces a strategy in
the subgame G[p] that starts at p (because at every node that follows p, σ prescribes
a move).

Definition 6.2.6 A strategy profile σ is subgame-perfect if for each position p, the
continuation strategy σ [p] induced by σ is a Nash equilibrium of G[p].
Theorem 6.2.7 ([187]) Every finite perfect information game (with or without
Nature) has a subgame-perfect equilibrium in pure strategies.

Proof By backward induction, as in the previous proof. �

Let us solve by backward induction the following perfect information game
(Fig. 6.5):

(
B

1

2
ba

A
x1

.

y2

( )

x2
( ))

x3

y3

Fig. 6.5 Backward induction in a perfect information game Γ2
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The reduced normal form of Γ2 is:

A B
a x1, · x1, ·
b x3, y3 x2, y2

At the decision node of player 2, he chooses A if y3 > y2. Suppose this is the case.
Player 1 chooses b if x3 > x1 and (b, A) is the unique subgame-perfect equilibrium.
Note, however, that as soon as x1 > x2 the pair (a, B) is a Nash equilibrium (but is
not subgame-perfect). This equilibrium is not self-enforcing: if player 2 has to play,
his rational choice is A. Strategy B is called a non-credible threat.

Proposition 6.2.8 A finite game with perfect information (with or without Nature)
with K terminal nodes and I players has generically (with respect to the Lebesgue
measure on R

NK ) a unique subgame-perfect equilibrium.

Proof If the game does not contain Nature and all payoffs are pairwise distinct, a
player is never indifferent during the backward induction process. When Nature is
active, by eventually perturbing payoffs at terminal nodes, no player will be indif-
ferent in the process. �

Remark 6.2.9 The last proposition does not hold for Nash equilibria: in general,
there may not be finitely many. However, generically there are finitely many Nash
equilibriumpayoffs, but not necessarily an odd number [111]. The following example
has infinitely many Nash equilibria, two Nash connected components, two equilib-
rium payoffs, and all equilibria are stable when perturbing payoffs of the extensive
form (Fig. 6.6).

Here (b, α) is the unique subgame-perfect equilibrium and {(a, xα + (1 − x)β) :
x ∈ [ 12 , 1]} is a connected component of equilibria where player 2 is playing with a
high probability the non-credible threat β.

Remark 6.2.10 The next example (Fig. 6.7) shows that there is no link between
backward induction and Pareto-optimality. The unique subgame-perfect equilibrium
is [(L , �); T ] inducing a payoff of (1, 1)while [(R, r); B] is a Nash equilibriumwith
payoff (2, 2).

(
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1
1

2
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α
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) )(

Fig. 6.6 Generic equilibria in extensive form games
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Fig. 6.7 Subgame-perfection and Pareto optimality
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Fig. 6.8 The centipede game

The game of Fig. 6.8 is the famous centipede [181]. Playing horizontal means
continue the game, playing vertical means stop. The unique backward induction
equilibrium is to stop at every decision node. Thus, at this equilibrium, the game
stops immediately, inducing low payoffs (2 for player 1 and 1 for player 2). This
leads to a paradox and is in contradiction with laboratory experiments because the
payoffs after some amount of cooperation are much larger than immediate defection:
if the interaction continues for at least t periods, then both players earn at least t . But
payoffs are such that if player i aims to stop at stage t , player −i prefers to stop at
stage t − 1. This has prompted debate over the concepts involved in the backward
induction solutions, see Aumann [6, 7].

6.2.7 Infinite Perfect Information Games

The finiteness in Zermelo’s theorem is an essential assumption. For example, the
following game in Fig. 6.9 with one player and infinitely many actions does not have
an equilibrium (more precisely, does not admit an optimal strategy). However a value
exists (= 1) and the player has an ε-optimal strategy for every ε > 0 (any action “n”
such that 1

n ≤ ε).
Gale and Stewart [75] introduced the following problem. Two players alternately

choose a digit in {0, 1}. This generates an infinite sequence x1, x2, . . . of zeros and
ones that may be interpreted as the binary expansion of a real x = ∑∞

k=1
xk
2k ∈ [0, 1].

Given a fixed subset A ⊂ [0, 1], in game GA player 1 wins if x ∈ A, otherwise
player 2 wins.
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Fig. 6.9 A 1-player perfect information game without 0-equilibrium

Theorem 6.2.11 ([75]) If A is open or closed, GA is determined.

Proof Suppose that A is open and that player 1 does not have a winning strategy.
Then, for each choice x1 of player 1, there is a choice x2 of player 2 such that player 1
does not have a winning strategy in the subgame GA(x1, x2). Inductively, for every
choice x2n+1 of player 1, there is a choice x2n+2 of player 2 such that player 1 does
not have a winning strategy in the subgame GA(x1, x2, . . . , x2n+2). This process
defines a strategy τ for player 2 (observe that τ is not defined at nodes excluded by
player 2’s actions, but this is not a problem because any completion of the strategy
will be payoff-equivalent to it). We claim that τ is winning for player 2. Otherwise,
there is a winning strategy σ for player 1 against τ . The strategy profile (σ, τ )

generates a sequence x = (x1, x2, . . . ) ∈ A. Since A is open, there is an n such that
(x1, x2, . . . , x2n, y) ∈ A for every infinite sequence y. Thus, player 1 is winning in
the subgame GA(x1, x2, . . . , x2n), a contradiction with the construction of τ .

Suppose A is closed, and that player 2 does not have a winning strategy. Then,
there is a choice x1 of player 1 such that player 2 does not have a winning strategy in
the subgame GA(x1). But this subgame is open for him. This subgame is determined
by the first part of the proof. �
Theorem 6.2.12 ([75]) There exists a set A such that GA is not determined.

Proof Fix a strategy of player 1. Then the set of x ∈ [0, 1] that can be generated by
strategies of player 2 constitutes a perfect set (i.e. non-empty, closed and dense in
itself). A theorem of Bernstein (implied by the axiom of choice) proves that there
is a partition of [0, 1] into two sets such that none of them includes a perfect set. It
suffices to pick for A any of the elements of a Bernstein partition of [0, 1]. If player 1
(resp. player 2) has a winning strategy, then A (resp. the complement of A) includes
a perfect set, a contradiction. �

Martin [126] proved that the perfect information gameGA is determined for every
Borel set A. This has deep consequences in descriptive set theory, for example that
Borel sets in Polish spaces have the perfect set property. It is also important in logic.
The existence of a winning strategy for player 1 reads:

(Q1) ∃x1,∀x2, ∃x3,∀x4, . . . , (x1, x2, . . . ) ∈ A

If the game is determined then, Not(Q1) = Q2 where:

(Q2) ∀x1, ∃x2,∀x3, ∃x4 . . . , (x1, x2, . . . ) /∈ A.
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6.3 Extensive Form Games with Imperfect Information

In poker, a player does not know the hands of their adversaries, and in independent
move games, as studied in the previous chapters, when a player chooses his strategy
he does not know what the other players will do. To include such games in the
extensive form model, one needs to add a new object to the description of the game.

6.3.1 Information Sets

The information of player i is represented by a partition {Pi
k }k∈K i of his set of decision

nodes Pi = ⋃
k∈K i Pi

k . Each element Pi
k of the partition is called an information set.

Nodes in the same information set cannot be distinguished by the player, and so,
have the same number of successors, which should correspond to the same sets of
physical actions. Each equivalence class of successors is called an action and we
denote by Ai (Pi

k ) the set of actions available to player i at information set Pi
k .

The first thing to note is that there are different extensive forms to represent
a given normal form. For example, the Matching Pennies game has, at least, two
representations (depending on which player starts) (Fig. 6.10).

The fact that player 1 starts the game is a pure convention. Player 2 does not know
the choice of player 1 when he plays. In some extensive form games, it is even not
possible to order information sets using a public clock. In the game of Fig. 6.11,
the history is: player 1 has the choice between calling player 2 or player 3 for an
invitation. If i ∈ {2, 3} is called and he/she refuses, then player 1 next calls j = 5 − i
without revealing to him/her that i was already called. Thus, when player 2 (resp.

R

1

L R
2

bb aa

2

a b
1

R LL

Fig. 6.10 Two extensive form representations of Matching Pennies

Fig. 6.11 No public clock to order information sets
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player 3) receives a call, he/she does not know if he/she was the first or the second
choice.

In Fig. 6.11 position x ′ is in the timing after x and, at the same time y′ is after y.
But because y and x ′ belong to the same information set, they should be reached at
the same public time and similarly for (x, y′).

6.3.2 The Normal Form Reduction

A pure strategy for player i ∈ I is a mapping that associates to each information
set Pi

k of player i an action (which is formally an equivalence class of successors)
ai ∈ Ai (Pi

k ).
A profile of pure strategies induces a unique outcome in R. Hence, to every

extensive form game is associated a normal form (also called a strategic form). Note
that extensive form games with the same normal form may look different, as the
following example shows.

All the extensive form games in Fig. 6.12 have the following normal form:

��′ �r ′ r�′ rr ′
L a a b b
R c d c d

rr′

RL

r l′ r′

1

22

a b c d

l

RLL R

1
l

2

2

r

l′

da c d b b ca
l′r′l′r′ l′ r′ r′

rl′

1

2

lr′ lr′

b c c d

RL

d

rl′

a ba

rr′ll′ ll′

Fig. 6.12 Different extensive forms with the same normal form
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More generally, it may be shown [52, 210] that two extensive forms having the
same normal form can be linked by a chain of three elementary transformations and
their inverses:

(1) interchange of simultaneous moves (as in Matching Pennies above);
(2) coalescing of moves (if a player has two consecutive decision nodes, they can

be collapsed to one decision node);
(3) addition of a superfluous move (we add to some decision nodes a redundant

action).

This has led some game theorists (starting with Kohlberg and Mertens [108]) to
argue that the solution of a gamemust depend only on the normal form, meaning that
two extensive form games with the same normal form must have the same solutions.

6.3.3 Randomized Strategies

Since any simultaneous move gamemay be represented in extensive form, there is no
hope for the existence of a pure Nash equilibrium in all finite extensive form games:
randomizations are necessary. However, due to the extensive game structure, there
are three different ways for a player to randomize:

(1) A mixed strategy is a probability distribution over the set of pure strategies Si .
The interpretation is that, before the game starts, a player selects at random a
pure strategy si then follows it.

(2) A behavioral strategy β i = {β i
k}k∈K i of player i associates to each information

set Pi
k a probability distribution β i

k ∈ Δ(Ai (Pi
k )) on the set of available actions

at Pi
k . The interpretation is: a player randomizes step by step, at each time he

has to play, among the available actions.
(3) A general strategy is a probability distribution over the set of behavioral strate-

gies. The interpretation is, before the game starts, a player selects at random one
behavioral strategy β i and then follows it.

The set ofmixed strategies of player i is denoted byΣ i = Δ(Si ), that of behavioral
strategies by Bi and that of general strategies by Gi = Δ(Bi ).

In the following one player problem (Fig. 6.13, the absent-minded driver), the
game starts at θ . The decision-maker is amnesic: after choosing b he forgot that he
had already played. There are two pure strategies: a or b. They induce the outcomes
x and z, respectively. Thus, y is never reached under a pure strategy, hence also under
a mixed strategy.

A behavioral strategy in the game Fig. 6.13 is any probability ta + (1 − t)b,
t ∈ [0, 1]. This induces the probability distribution t x + t (1 − t)y + (1 − t)2z on the
set of outcomes R = {x, y, z}. In particular, when t = 1

2 , y is reached with positive
probability 1

4 .
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Fig. 6.13 Some behavioral strategies cannot be replicated by any mixed strategy
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Fig. 6.15 Isbell’s game

In the example of Fig. 6.14, again, there is only one player. He controls two infor-
mation sets, in each of which he has two actions. He thus has four pure strategies:
S = {Ll, Lr, Rl, Rr}. The use of mixed strategies generate all probability distri-
butions over the set of outcomes R = {x, y, z, w}. On the other hand, a behavioral
strategy is defined by the probability s ∈ [0, 1] to play L and the probability t ∈ [0, 1]
to play l. This induces a probability distribution P over the set of outcomes that satis-
fies P(x)P(w) = P(y)P(z) = t (1 − t)s(1 − s). Thus, behavioral strategies cannot
generate all probability distributions over R.

In the game of Fig. 6.15 [103], pure strategies guarantee 0 to player 1, with
behavioral strategies player 1 can guarantee 25/64, with mixed strategies he can
guarantee 1/2, and with general strategies he can guarantee 9/16.
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6.3.4 Perfect Recall

The above examples show that, in general, the set of mixed and behavioral strategies
are not comparable, and both are smaller than the set of general strategies. One
introduces here conditions on a game under which they are equivalent.

Definition 6.3.1 An extensive form game is linear for player i if there is no play
that intersects any of his information sets more than once.

Games in Figs. 6.13 and 6.15 are not linear. The following theorem shows that
when a game is linear, any behavioral strategy is outcome equivalent to a general
strategy.

Theorem 6.3.2 ([103]) If an extensive form game is linear for player i then, given
any behavioral strategy β i of player i , there exists a mixed strategy σ i such that for
every general strategy θ−i of players−i , the probability distributions P(β i , θ−i ) and
P(σ i , θ−i ) on the set of terminal nodes R coincide.

Proof Every behavioral strategy β i generates a mixed strategy σ i as follows. For
every pure strategy si of player i we let

σ i (si ) =
∏

k∈K i

β i [Pi
k , s

i (Pi
k )],

where the product is over the family of information sets of player i and β i [Pi
k , a

i ]
is the probability that, at Pi

k , the action ai is selected according to the behavioral
strategy β i .

Fixing a pure strategy s−i of players −i , the strategy si induces an outcome
denoted by r(si , s−i ) and the associated play intersects information sets (Pi

k )k∈K̃ i for
some K̃ i ⊂ K i . The probability of r(si , s−i ) under β i is

∏

k∈K̃ i

β i [Pi
k , s

i (Pi
k )]

and the probability of r(si , s−i ) under σ i is

∑

{s̃i∈Si :r(s̃i ,s−i )=r(si ,s−i )}
σ i (s̃i ) =

∑

{s̃i∈Si :s̃i (Pi
k )=si (Pi

k ),∀k∈K̃ i }
σ i (s̃i )

=
∑

{s̃i∈Si :s̃i (Pi
k )=si (Pi

k ),∀k∈K̃ i }

∏

k∈K i

β i [Pi
k , s̃

i (Pi
k )],

and since each information set appears at most once in K̃ i (the game is linear):

=
∏

k∈K̃ i

β i [Pi
k , s

i (Pi
k )]

⎧
⎨

⎩

∑

{s̃i∈Si :s̃i (Pi
k )=si (Pi

k ),∀k∈K̃i }

∏

k /∈K̃ i

β i [Pi
k , s̃

i (Pi
k )]

⎫
⎬

⎭
.
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On the other hand,

∑

{s̃i∈Si :s̃i (Pi
k )=si (Pi

k ),∀k∈K̃ i }

∏

k /∈K̃ i

β i [Pi
k , s̃

i (Pi
k )]

=
∑

k /∈K̃ i

∑

ai∈Ai (Pi
k )

∏

k /∈K̃ i

β i [Pi
k , a

i ].

The latter sum is equal to 1 by induction on the cardinality of K̃ i and because, ∀Pi
k ,∑

ai∈Ai (Pi
k )

β i [Pi
k , a

i ] = 1. Consequently, the probability of r(si , s−i ) under σ i and

β i is the same. This equality of probabilities that holds for every pure strategy s−i

of the opponents extends, by payoff-linearity, to every general strategy of −i . �
Anextensive formgame is of perfect recall for a player if, at eachof his information

sets, he remembers what he did or knew in the past. Formally:

Definition 6.3.3 An extensive form game is of perfect recall for player i if for every
pair of nodes x and y in the same information set Pi

k , if x
′—an (iterated) predecessor

of x—belongs to the information set Pi
k ′ then:

– there is a y′—an (iterated) predecessor of y—such that y′ ∈ Pi
k ′ ;

– the action(s) that leads from x ′ to x belongs to the same equivalence class as the
one(s) that leads from y′ to y.

If a game is of perfect recall, it is linear. The converse does not hold, as Fig. 6.12
shows.

Theorem 6.3.4 ([112]) If the extensive form game is of perfect recall for player i ,
then for every mixed strategy σ i of i , there is a behavioral strategy β i such that
for every general strategy θ−i of the other players, the probability distributions
P(β i , θ−i ) and P(σ i , θ−i ) on the set of play (terminal nodes) coincide.

Proof Let σ i be a mixed strategy. An information set Pi
k is called reachable under

σ i if there is at least one pure strategy s−i of players −i such that the probability of
reaching Pi

k under (σ i , s−i ) is positive. Denote this set by Rchi (σ i ). The behavioral
strategy β i generated by a mixed strategy σ i is defined as follows:

β i (Pi
k ; ai ) = mi (Pi

k ; ai )
mi (Pi

k )
,

where

mi (Pi
k ) =

∑

si :Pi
k∈Rchi (si )

σ i (si ) and

mi (Pi
k ; ai ) =

∑

si :Pi
k∈Rchi (si ),si (Pi

k )=ai

σ i (si ).

As in the previous proof, it is sufficient to prove equality of probabilities on R against
all pure strategies of the opponents. So, fix some pure strategy s−i of players −i .
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Let −→a = a j1
1 , . . . , a jT

T be any sequence of actions where player jt chooses action
a jt
t at time t = 1, . . . , T . Let {Qi

tl }l=1,...,L be the sequence of information sets of
player i that crosses −→a . Perfect recall implies that going from Qi

tl to Qi
tl+1

is com-
pletely determined by the action aitl and so β i (Qi

tl , a
i
tl ) = mi (Qi

tl+1
). Consequently,

∏L
l=1 β i (Qi

tl , a
i
tl ) is a telescopic product that is equal to m

i (Qi
tL , a

i
tT ): the probability

of −→a under (β i , s−i ) and (σ i , s−i ) is the same. �

6.3.5 Nash Equilibrium in Behavioral Strategies

In general, the dimension of the set of behavioral strategies Bi is much lower than
the dimension of the set of mixed strategies Σ i . If (Pi

k )k∈K i is the collection of
information sets of player i then the dimension of Σ i is (

∏
k∈K i |Ai (Pi

k )|) − 1 and
the dimension of Bi is

∑
k∈K i (|Ai (Pi

k )| − 1) (where |X | is the cardinality of X ).
Thus, if player i has n information sets, each with two actions, the dimension of Bi is
n and that of Σ i is 2n − 1. Consequently, it is much more efficient to compute Nash
equilibria in behavioral strategies. But then one would like to know if they exist and
to have a test certifying that a behavioral strategy profile is an equilibrium.

Let Γ be a finite extensive form game of perfect recall,G be its associated normal
form game, G̃ be the mixed extension of G and let Γ̃ be the normal form compact-
continuous game where the strategy set of player i ∈ I is his set of behavioral strate-
gies Bi in Γ , and i’s payoff function in Γ̃ associated to the profile β = (β i )i∈I is his
expected payoff in Γ .

Definition 6.3.5 We call a Nash equilibrium of G̃ a mixed equilibrium of Γ and a
Nash equilibrium of Γ̃ a behavioral equilibrium of Γ .

Theorem 6.3.6 For every finite extensive form game with perfect recall, any mixed
equilibrium is outcome equivalent to a behavioral equilibrium and vice-versa, in
particular behavioral equilibria always exist.

Proof Let m = (mi )i∈I be a mixed equilibrium, which exists by Nash’s Theorem
since the game is finite. ByKuhn’s Theorem6.3.4, eachmi has an outcome equivalent
behavioral strategy β i . Then we claim that β = (β i )i∈I is a Nash equilibrium of Γ̃

(the game in behavioral strategies). Otherwise, there is a player and a behavioral
strategy β̃ i of player i such that gi (β̃ i , β−i ) > gi (β i , β−i ). But the game is of perfect
recall, hence linear, and so by Isbell’s Theorem 6.3.2, there is a mixed strategy m̃i

of player i outcome equivalent to β̃ i . Consequently, gi (m̃i ,m−i ) > gi (mi ,m−i ), a
contradiction. This shows that any Nash equilibrium of G̃ is outcome equivalent to
a Nash equilibrium of Γ̃ . A similar argument shows the converse. �
Definition 6.3.7 An information set Q is reached by a behavioral strategy β (or is
in the path of β), denoted Q ∈ Rch(β), if Q has positive probability under β.

Observe that when Q ∈ Rch(β), using Bayes’ rule, one can uniquely define a
conditional probability over nodes of Q, denoted νβ(Q).
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Theorem 6.3.8 ([213]) A profile β is a behavioral equilibrium of an extensive form
game Γ of perfect recall if and only if for any player i and any information set
Qi ∈ Rch(β) of player i , β i (Qi ) is a best response of player i in the “local game”
starting at Qi , where Nature chooses a node p in Qi according to νβ(Q) and players
play in the continuation following what the behavioral profile β prescribes.

The idea of the proof is simple: if a behavioral profile β is not an equilibrium, then
at some reached information set, a player has a profitable deviation (since changing a
strategy off-path does not affect payoffs). Conversely, if at some reached information
set there is a profitable deviation, then the behavioral profile clearly cannot be a Nash
equilibrium.

6.4 Equilibrium Refinement in an Extensive Form Game

Theorem 6.3.8 says that a behavioral strategy profile is a Nash equilibrium if and only
if it prescribes best replies along paths consistent with it (but no condition is imposed
off path). This is the cause of existence of unreasonable equilibria because one may
ask for some properties of the behavior of the players off path. For example, in the
game of Fig. 6.6, player 1 playing a and player 2 playing β is a Nash equilibrium
while β would not be rational if that part of the game could be reached. Refinement
in extensive form games impose rationality on and off path and thus asks for more
than playing a best response.

6.4.1 Subgame-Perfect Equilibrium

In some extensive-form games, one can identify parts of the game that have all the
properties of an extensive-form game. They are called subgames. More formally, let
Γ be an extensive form game with perfect recall. Call a node y a follower of x if
there is a sequence of actions from x to y.

Definition 6.4.1 A node x is called a subroot if (1) it is the unique element of the
information set containing it, and (2) for all information sets Q, all nodes y ∈ Q are
followers of x or no such y is a follower. If x is a subroot, its followers together with
the associated information sets and payoffs define a subgame.

Thus, once a subroot is reached, all players know the history that leads to it and,
once the game is of perfect recall, at any moment of the game, all players remember
this common history. A subgame of an extensive form game Γ is proper if it is
different from Γ . For example, in the game described in Fig. 6.16, there are two
proper subgames.

Definition 6.4.2 A subgame-perfect equilibrium (SPE) is a behavioral strategy pro-
file that prescribes a Nash equilibrium in every subgame.
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Fig. 6.16 The extensive form of the burning money game

Theorem 6.4.3 ([187]) Every extensive form finite game with perfect recall admits
a subgame-perfect equilibrium.

Proof The proof is by induction on the number of subgames. If the game has no
proper subgame then Nash equilibria in behavioral strategies exist by Theorem 6.3.6.
Otherwise, all proper subgames {Γx1 , . . . , Γxk } are of perfect recall and have a
smaller number of subgames and so, by assumption, admit subgame-perfect equilib-
ria {β1, . . . , βk}, with associated payoffs {g1, . . . , gk}. Create a new game played as
in Γ , and terminate at nodes {x1, . . . , xk} with terminal payoffs {g1, . . . , gk}. This
game has no proper subgame and so, by Theorem 6.3.6, has a behavioral equilibrium
β0. Concatenating β0, β1, . . . , βk yields a subgame-perfect equilibrium for Γ . �

The game of Fig. 6.16 is an equivalent representation of the “Burning Money”
game introduced by Ben-Porath and Dekel [21]. Player 1 can play a “battle of the
sexes” by choosing A or can first sacrifice one unit of payoff and then play the same
“battle of the sexes” (playing Ā).

A translation of player 1’s payoff by one does not change the set of Nash equilibria
and so, both subgames have the same set of Nash equilibria: two pure (T, L), (D, R)

and onemixed ( 31T + 1
4D; 1

4 L + 3
4 R). In subgame A, equilibrium payoffs are (3, 1),

(1, 3) and ( 34 ,
3
4 ) respectively and in subgame Ā payoffs are decreased by 1 for

player 1 and so are (2, 1), (0, 3) and (− 1
4 ,

3
4 ). Any concatenation of an equilibrium

in subgame A and an equilibrium in game Ā generates exactly one, or infinitely
many, subgame-perfect equilibria in the entire game (depending on whether player 1
is indifferent or not). Since player 1’s equilibrium payoffs in different subgames are
pairwise distinct, “backward induction” generates only finitely many equilibria in
this example. For example, if in subgame A players follow (D, R) and in subgame Ā
they follow (T, L), then player 1’s unique optimal choice is Ā (he obtains 2 instead
of 1). Computing subgame equilibrium payoffs is quicker.
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6.4.2 Sequential and Bayesian Perfect Equilibria

The next two refinements refine subgame-perfection by imposing a rational behav-
ior on all information sets and not only on subroot nodes. To do so, one needs to
associate to each information set Qi a probability distribution μ(Qi ) over the nodes
{p1, . . . , pL} of Qi . The collection of all such probabilities is called a belief system.
Given μ(Qi ) and the continuation strategy induced by β, player i can evaluate his
payoff for any action ai ∈ Ai (Qi ), and sequential rationality imposes that his payoff
is maximized by β i (Qi ). Of course, the belief system Q → μ(Q)must be consistent
with the strategy profile β, as the following explains.

Recall that an information set Q is reached by a behavioral strategy β, denoted
Q ∈ Rch(β), if Q has positive probability under β and when Q ∈ Rch(β), using
Bayes’ rule, one can uniquely define a conditional probability over nodes of Q,
denoted νβ(Q) (See Definition 6.3.7).

Definition 6.4.4 ([71]) A pair (β, μ) consisting of a behavioral strategy profile β

and a belief system μ is weak Bayesian perfect if:

– for any information set Qi ,β i (Qi ) is a best response of player i in the game starting
at Qi where Nature chooses a node p in Qi according to μ(Qi ) and players play
in the continuation game following the strategy profile β.

– μ is Bayes-compatible with β in the sense that for every Q ∈ Rch(β), μ(Q) =
νβ(Q).

This concept does not impose any belief restriction on information sets that are
not reached by β. The next refinement adds restrictions. Let Bi be the set of behav-
ioral strategies of player i and B = ∏

i Bi . A behavioral strategy profile is interior
(or completely mixed) if all actions are played with positive probability at every
information set. Denote the corresponding sets by intBi and intB = ∏

i intBi .
LetΦ be the correspondence that associates to every behavioral profile β ∈ B the

family of belief systems that are Bayes-compatible with β. Thus, when β ∈ intB, Φ
is single-valued:Φ(β) = {νβ} (because all information sets are reachedwith positive
probability). The example of Fig. 6.17 shows that

Φ(intB) �= Φ(B).

3

a

b

c
2
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1

l

r

r

l

T

Fig. 6.17 Beliefs resulting from interior strategies form a strict subset of all beliefs
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Actually, if player 1 plays (1 − ε)T + εB and player 2 plays (1 − ε)l + εr , the
total probability over the set of nodes {a, b, c} that constitutes the unique information
set of player 3 is (1 − ε)εa + ε(1 − ε)b + ε2c, so that the conditional probability of
node c being reached, ε2

2(1−ε)ε+ε2
, goes to zero as ε goes to zero. Hence (1/2, 1/2, 0)

belongs to the closure Φ(intB). However, if a and b have positive probabilities,
then T and B have positive probabilities, as do � and r , and hence also c, thus
(1/2, 1/2, 0) /∈ Φ(B).

Definition 6.4.5 ([111]) A pair (β, μ), β ∈ B andμ ∈ Φ(β) is a sequential equilib-
rium if it is weak Bayesian perfect and there exists a sequence βn ∈ intB converging
to β such that νβn → μ.

The justification is that players can tremble and all mistakes have positive proba-
bility (βn is interior) but the probability of a mistake is very small (βn is close to β).

Actually, backward induction computations, if justified by common knowledge of
rationality, rapidly yields to contradictions: if some decision nodes are not supposed
to be reached, then why should a player continue to believe in the rationality of
the opponents [173]? In the centipede game described above (Fig. 6.8), common
knowledge of rationality implies that at any stage, every player anticipates that his
opponent will stop at the next stage, yielding him to stop. But what should player 2
believe at stage 2 if he observes that player 1 continues at stage 1? Why should he
believe that player 1 will behave rationally later? One way to fix the problem is by
assuming that players can make mistakes (Selten’s trembling hand). Hence, if the
play reaches a node which is not supposed to be reached, this is only by mistake.

The extensive form game in Fig. 6.17 shows that sequential equilibrium is a strict
refinement of weak Bayesian perfect equilibrium.

Theorem 6.4.6 ([111]) The set of sequential equilibria of a finite extensive form
game with perfect recall is non-empty.

Proof See Sect. 6.5 below. �

6.5 Equilibrium Refinement in Normal Form Games

Let G = (I, {Si }i∈I , {gi }i∈N ) be a finite normal form game, denote by Σ i = Δ(Si )
the set of mixed strategies of player i , let Σ = ∏

i Σ
i be the set of mixed strategy

profiles, and let intΣ be the set of completely mixed strategies σ (i.e. supp (σ i ) = Si ,
∀i ∈ I ).

Definition 6.5.1 For any ε > 0, a completely mixed strategy profile σε ∈ intΣ is
ε-perfect if for every player i ∈ I and every pure strategy si ∈ Si , if si is not a best
response against σ−i

ε , then σ i
ε (s

i ) ≤ ε.
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The interpretation is: all strategies can potentially be played, but strategies that
are sub-optimal are played with a very small probability.

Definition 6.5.2 A strategy profile σ ∈ Σ is a perfect equilibrium if there is a
sequence σn ∈ intΣ of εn-perfect equilibria that converges to σ as εn goes to 0.

Theorem 6.5.3 ([187]) Every finite normal form game has a perfect equilibrium,
and every perfect equilibrium is a Nash equilibrium.

Proof For every τ ∈ intΣ and every ε ∈]0, 1[, define the perturbed game G(τ ; ε)

played as in G but with the modified payoff σ 
→ g((1 − ε)σ + ετ). By Nash’s
theorem, this game has a Nash equilibrium νε, and σε = (1 − ε)νε + ετ is ε-perfect.
By compactness of the strategy space, every sequence of εn-perfect equilibria has
a converging subsequence. Finally, by continuity of the payoffs, non-best response
strategies have a zero probability under perfect equilibrium, and a perfect equilibrium
is a Nash equilibrium. �

This notion eliminates dominated equilibria (i.e. equilibria that contains in their
support aweakly dominated strategy). Actually, such a strategy is sub-optimal for any
ε-perfect equilibrium and so is playedwith probability at most ε. Thus, its probability
vanishes as ε goes to zero.

Proposition 6.5.4 ([215]) In a finite two-player normal form game, an equilibrium
is perfect if and only if it is undominated. The inclusion is strict for more-than-two-
player games.

In the game of Fig. 6.6, the unique perfect equilibrium of the normal form is the
subgame-perfect equilibrium of the extensive form. Thus, in this example, normal
form perfection allows us to detect the backward induction equilibrium. This is not
true in every extensive form game. The following refinement can do.

Definition 6.5.5 For any ε > 0, a completely mixed strategy profile σε ∈ intΣ is
ε-proper if for every player i ∈ I and every two pure strategies si and t i in Si , if
gi (si , σ−i

ε ) < gi (t i , σ−i
ε ), then σ i

ε (s
i ) ≤ ε σ i

ε (t
i ).

In this notion, players take rationally into account the fact that they can make
mistakes and somore costlymistakes are playedwith an infinitely smaller probability.
Observe that when a strategy is sub-optimal then it is played with a probability of at
most ε. Consequently, an ε-proper equilibrium is also ε-perfect.

Definition 6.5.6 A strategy profile σ ∈ Σ is a proper equilibrium if it is the limit
of a sequence σn ∈ intΣ of εn-proper equilibria as εn goes to 0.

Theorem 6.5.7 ([148]) Every finite normal form game has a proper equilibrium
and every proper equilibrium is a perfect equilibrium and so is a Nash equilibrium.
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Proof See Exercise 3. �

Remark 6.5.8 Any strict equilibrium s ∈ S is proper. This is because, for every
small perturbation of the opponents, si remains the unique best response of player i .
Now, using Myerson’s result we know that the restricted game, where each player i
cannot use the pure strategy si , has a ε-proper equilibrium τε. Consequently, σε =
(1 − ε)s + ετε is ε-proper and converges to s.

Proper equilibrium is a strict refinement of perfect equilibrium, as the following
example shows.

l m r
T (1, 1) (0, 0) (−1,−2)
M (0, 0) (0, 0) (0,−2)
B (−2,−1) (−2, 0) (−2,−2)

M is the unique best response to B and so is not weakly dominated, and similarly for
m. Thus (M,m) is undominated and so is perfect (by Proposition 6.5.4). But (M,m)

is not proper. Actually, B and r are strictly dominated by T and l respectively, and
so, every ε-proper equilibrium that converges to (M,m), T (resp. l) will be infinitely
more probable than B (resp. r ). Player 1, facing any perturbed strategy of the form
ε1l + (1 − ε1 − ε1ε2)m + ε1ε2r , where εi ≤ ε, has as unique best response T and
not M . Thus, (M,m) cannot be the limit of ε-proper equilibria.

This example shows that the set of perfect equilibria depends on the addition
or deletion of a strictly dominated strategy: if B and d (strictly dominated) are
eliminated, (M,m) is no longer a perfect equilibrium. Proper equilibrium has the
same problem, as the next example shows (see Fig. 6.20 and the corresponding
section for an in depth discussion about this famous “Battle of the Sexes” game with
outside option).

l r
T (2, 4) (2, 4)
M (3, 1) (0, 0)
B (0, 0) (1, 3)

The strategy profile (T, r) is a proper equilibrium. Actually, T is the unique best
response to r and so remains a best response for any small perturbation of r . If
T is perturbed as follows: (1 − ε − ε2)T + ε2M + εB, the unique best response of
player 2 is r . Thus, (T, r) is proper.However, the elimination of the strictly dominated
strategy B implies that r becomes weakly dominated, and so (T, r) is not perfect,
and so not proper.
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6.6 Linking Extensive and Normal Form Refinements

Definition 6.6.1 The agent normal form Γ a of an extensive form game with perfect
recall Γ is an extensive form game played as in Γ where each information set Q in
Γ corresponds to a player i(Q) in Γ a whose payoff is identical to the payoff of the
player who plays at Q in Γ .

Thus, the agent normal form operation consists in duplicating each player, by a
team of agents, as many times as he has information sets: all agents of a player have
a common interest with him. In this game, each agent plays at most once, and so,
formally, this game may be identified with its normal form: mixed and behavioral
strategy sets coincide.

Theorem 6.6.2 ([111]) The set of sequential equilibria of a finite extensive form
game with perfect recall Γ is non-empty.

Proof Consider a Selten perturbed game Γ a
ε associated to the agent normal form

game Γ a where each agent is restricted to play any of his actions (=strategies) with
probability at most ε. This game satisfies the hypothesis of Glicksberg’s theorem and
so admits a Nash equilibrium σε. This induces an O(ε)-equilibrium inΓ a where each
information set Q is reached with positive probability and where each player i(Q) is
optimizing his payoff up to O(ε) given his beliefμε(Q) induced by σε. Taking a con-
verging subsequence, one obtains for each information set Q a strategy profile σ(Q)

together with a beliefμ(Q)where at each information set, agent i(Q) is maximizing
his payoff given his belief. This constitutes a sequential equilibrium in Γ . �

Definition 6.6.3 ([187]) An extensive form perfect equilibrium of Γ is a perfect
equilibrium of the agent normal form Γ a .

The previous proof constructs a sequential equilibrium of Γ by taking the limit
of extensive form ε-perfect equilibria. One may ask if there is a connection between
extensive and normal form perfect equilibria. The following two examples show that
they may differ. In the game of Fig. 6.18, (R�; a) is extensive form perfect but is not
perfect in the associated normal form.

In the game of Fig. 6.19, Bt is perfect in the normal form but is not perfect in the
extensive form.

a

1

L R

l

21

1 0 1 0

r b

Fig. 6.18 Perfect in the extensive form and not in the normal form
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Fig. 6.19 Perfect in the normal form but not in the extensive form

In fact, there are games where the intersection of the two sets is empty. The
following result proves, however, that there is a deep link between normal form and
extensive form refinements.

Theorem 6.6.4 ([108, 213]) A proper equilibrium σ of a finite normal form game
G induces a sequential equilibrium (β, μ) in every extensive form game with perfect
recall Γ having G as normal form.

Proof By definition, σ is the limit of a sequence of εn-proper equilibria σn ∈ intΣ .
From Kuhn’s theorem’s proof above, the completely mixed strategy profile σn gen-
erates an equivalent behavioral strategy profile βn ∈ intB which is interior. Thus,
every information set Q is reached with positive probability under βn , inducing a
well defined Bayes-compatible belief system {μn(Q)}. Take a subsequence such that
(βn, μn) converges to some (β, μ) (using compactness). Consider some player i and
let Qi be one of his information sets. Let us prove that at Qi , i is playing a best
response given his belief μ(Qi ) and β. By contradiction, if not, there is some action
bi in Ai (Qi ) not played in β i (Qi ) that performs better than some actions ai in the
support of β i (Qi ). By continuity, the payoff of bi is strictly better than the payoff
of ai facing βn when n is large enough. Since σn is εn-proper, the probability of any
pure strategy si that plays ai at Qi is at most εn , the probability of any pure strategy
t i that differs from si only at Qi and plays bi . Consequently, by construction of βn ,
βn[Qi ; ai ] ≤ εnβ

i
n[Qi , ai ], which implies that β i [Qi , ai ] = 0, a contradiction. �

This result is remarkable. It shows that backward induction, a property specific
to an extensive form description of the game, is detectable in the normal form where
the notions of information and timing do not exist.

6.7 Forward Induction and Strategic Stability

In the definition of backward induction and sequential rationality, a player is always
looking at the future and his behavior is, at every decision node, independent of
the past. An action is rational at some information set if it is a best response given
the belief at this position and the anticipated future play. There is no restriction on
past play, except that the belief at an information set Q must be strategy-consistent
(justified by some sequence of small mistakes). Forward induction, introduced by
Kohlberg and Mertens [108], uses past play to restrict the set of possible beliefs
off the equilibrium path: whenever possible, a player justifies deviations as a pure
rationality act instead of just a mistake. The following famous example in Fig. 6.20
illustrates the idea.
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2

3, 1

1, 3

(2, 4)

0, 0

0, 0
1

1

Fig. 6.20 “Battle of the sexes” with an outside option

At the first stage, player 1 has the option to stop the game (by playing down),
receiving a payoff of 2, or to continue. If he continues, he plays a battle of the sexes
with player 2. The normal form (discussed above in Sect. 6.3.2) is:

L R
S (2, 4) (2, 4)
T (3, 1) (0, 0)
B (0, 0) (1, 3)

As shown above, the strategy profile σ = (S, R) is a proper equilibrium and so
induces a sequential equilibrium in the extensive form described in Fig. 6.19. In
the corresponding sequential equilibrium, player 1 does not enter the game and if
he enters, player 2 plays R because he believes that player 1 will play B with a
high probability. But should player 2 have such a belief? Since player 1 could have
obtained 2 by stopping (playing S at the first stage), if he is rational and continues,
this means that he anticipates more than 2. But, playing B yields him at most 1 (B is
strictly dominated by S). So, the unique belief consistent with player 1’s rationality
at stage 2 is probability one on T . But then, player 2 should play L , and this induces
player 1 to play T . The unique Nash equilibrium compatible with forward induction
reasoning is thus (T, L) with payoff (3, 1).

Observe, however, that one may have incompatibility between forward and back-
ward induction principles, as the example in Fig. 6.21 shows. Just add a stage before
the previous game.

In the subgame after the first move, the preceding argument shows that the unique
forward induction equilibrium is (T, L) with payoff (3, 1). By backward induc-
tionplayer 2 should stop at the first stage, and obtains 2. However, if player 2 contin-

2

3, 1

1, 3

(2, 4)

0, 0

0, 0

1

2 1

(0, 2)

Fig. 6.21 Incompatibility between backward and forward inductions
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ues, by the forward induction logic, this means that he expects more than 2, hence
in the second subgame he will play R, and so player 1 should play stop in the first
subgame, a contradiction. This is why in “the definitions” of forward induction, it is
required that this reasoning should be applied only “whenever possible”.

To fix the problem and unify backward and forward induction ideas, Kohlberg
and Mertens [108] defined a set of axioms that a solution concept should satisfy. The
most important are: (1) it must only depend on the reduced normal form, (2) it must
be a connected set of non-weakly dominated equilibria, (3) it must contain at least a
proper equilibrium, and (4) if a weakly dominated strategy is eliminated, the solution
does not vanish (meaning that if S is stable for G and G ′ is obtained from G after
a weakly dominated strategy is eliminated, then G ′ has a stable solution S′ ⊂ S).
There are also other properties that we will not list.

The last “axiom” implies that if an outcome survives the sequence of elimination
of weakly dominated strategies, it must be stable and if it is the unique surviving
outcome, it is the unique stable outcome. For example, in the battle of the sexes with
outside option, B is strictly dominated (by S), then R is weakly dominated, then
S, which leads to (T, L) (the forward induction outcome). In the burning money
game (Fig. 6.16), the unique equilibrium which survives to iterative elimination of
weakly dominated strategies is: player 1 plays A and they follow with (T, L) in the
battle of the sexes with payoff (3, 1). Why this outcome is the unique compatible
with forward induction is easy to understand. Observe that the unique equilibrium
in which player 1 does a sacrifice (plays Ā) gives him a payoff of 2. If he does not
play Ā but instead plays A, this means that he expects more than the payoff 2. The
unique equilibrium of the subgame compatible with this is (T, L). That’s exactly
the situation we had in the battle of the sexes with outside option. This example is
interesting because it shows that having the possibility to destroy units of payoffs
could help a player to obtain a better equilibrium.

The search for a solution leads to the following definition of strategic stability.
A subset C of Nash equilibria of an extensive/normal form game Γ is strategically
stable if it is connected and if for any normal form gameG that has the same reduced
normal form as Γ and for any game Gε in a neighborhood of G, Gε has a Nash
equilibrium σε, close to C . In G, some mixtures of strategies in Γ may be added as
pure strategies or some pure strategies that are payoff-equivalent to some mixtures
are dropped: in that sense G and Γ will have the same reduced normal form. But
how to define a neighborhood?

If the perturbation is on the set of payoffs, one obtains essential components (i.e.
connected components of Nash equilibria with non-zero index), see Govindan and
Wilson [85]. However, this solution concept has the disadvantage of violating the
axiom of admissibility (i.e. some weakly dominated equilibria are not eliminated):

L R
T (2, 2) (2, 2)
B (1, 1) (0, 0)
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In this example, (T, R) isweakly dominated but is strict (and so stable) in the close-by
game:

L R
T (2, 2) (2, 2 + ε)

B (1, 1) (0, 0)

A different way to define the neighborhood of a game is with respect to strategy
perturbations instead of payoff perturbations. One possibility is by restricting every
player i to any polytope Σ i (ε) of the mixed strategy set such that its complement is
within ε from the boundary of Σ i . Having a polytope guarantees that the perturbed
game is equivalent to a finite game (where pure strategies are the extreme points of
the polytope). Here also we lose admissibility, as the following example shows:

L R Z
T (2, 2) (2, 2) (0, 0)
B (1, 1) (0, 0) (0, 0)

R becomes admissible if it is less perturbed throughout Z than L .
An alternative approach is to generate the neighborhood of a game by defining for

all (ε > 0, σ ∈ intΣ) the perturbed game G(σ ; ε) in the sense of Selten. Mertens
[133, 134] proved that essential components with respect to this topology are con-
nected, BR-invariant, admissible, satisfy backward induction, forward induction and
many other properties. Proving that Mertens stable sets are the only ones that satisfy
the good properties is still an open problem, and has been solved only for some par-
ticular classes of games (generic two-player extensive form games, [86]). To learn
more about strategic stability, see the surveys of Hillas and Kohlberg [98] and of van
Damme [217] in the Handbook of Game Theory.

6.8 Exercises

Exercise 1. Chomp

Let n and m be two positive integers and define a perfect information game as
follows. Two players take alternate turns on an n × m checkerboard defined by posi-
tions (x, y)where x = 1, . . . , n and y = 1, . . . ,m. Each player checks an uncovered
square (x, y), which implies covering all squares (x ′, y′) with x ′ ≥ x and y′ ≥ y.
The player forced to cover the square (1, 1) loses the game.

(1) Show that the player who makes the first move has a winning strategy.
(2) Give explicitly the winning strategy when n = m.
(3) Is the game determined when n or m (or both) are infinite? Which player has a

winning strategy?
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Exercise 2. A poker game
Two players play a zero-sum poker game. They bet 1 euro each before the game
starts. Then, Nature uniformly selects a card in {H, L}, and only player 1 observes
it. Player 1 then decides between S and C (Stop or Continue). If he stops he loses his
euro. Otherwise, he bets an additional 1 euro (so, in total he contributes 2 euros). If
player 1 chooses C , player 2 has to decide between A and F (Abandon or Follow).
If he abandons, he loses his euro, otherwise he adds 1 euro to see the card selected
by Nature. If the card is H , player 1 wins the 2 euros of player 2, otherwise, player 2
wins the 2 euros of player 1.

(1) Write the game in extensive and normal forms.
(2) Compute the value and the optimal mixed strategies.
(3) Deduce the optimal behavioral strategies.
(4) Conclude.

Exercise 3. Existence of proper equilibria
Let G = (I, (Si )i∈I , (gi )i∈I ) be a finite game in strategic form. Let us prove the
existence of proper and perfect equilibria (see Definitions 6.5.1 and 6.5.5).

Let ε ∈]0, 1[ be fixed. For each player i ∈ I , define ηi = ε|Si |/|Si |, Σ i (ηi ) =
{σ i ∈ Δ(Si ), σ i (si ) ≥ ηi ∀si ∈ Si }, and let Σ(η) = ∏

i∈I Σ i (ηi ).
Define a correspondence:

F : Σ(η) −→ Σ(η)

σ 
−→
∏

i∈I
Fi (σ )

where for i ∈ I and σ ∈ Σ ,

Fi (σ ) = {τ i ∈ Σ i (ηi ),∀si , t i , (gi (si , σ−i ) < gi (t i , σ−i )) =⇒ τ i (si ) ≤ ετ i (t i )}.

(1) Show that F has non-empty values.
(2) Applying Kakutani’s theorem, conclude that the game has an ε-proper equilib-

rium.
(3) Compute all Nash, perfect and proper equilibria (in pure and mixed strategies)

of the following games:

L R
T (1, 1) (0, 0)
B (0, 0) (0, 0)

L M R
T (1, 1) (0, 0) (−9,−10)
M (0, 0) (0, 0) (−7,−10)
B (−10,−9) (−10,−7) (−10,−10)
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Exercise 4. Bargaining
Two players bargain to divide an amount of money M > 0. If they fail to reach an
agreement, both receive zero (the disagreement payoff). Let us compute subgame-
perfect equilibria of several extensive form bargaining games, Rubinstein [182].

(1) The Ultimatum Game

Player 1 makes a take it or leave it offer to player 2, namely: at stage 1, player 1
proposes a sharing x ∈ [0, M] (which means player 2 receives x and player 1
M − x). At stage 2, player 2 can Accept or Reject the offer. If he accepts,
(M − x, x) is implemented, otherwise, both players receive zero.

Write the game in extensive form and show it has a unique subgame-perfect
equilibrium.

(2) The finitely repeated alternative offer game

Now the bargaining process can take 2 ≤ T < +∞ periods and the amount M
shrinks from one period to the next by a factor δ ∈]0, 1[. Alternately, players
make offers and the game goes to the next round if the offer of the actual round
is rejected, until stage T when the game terminates. More precisely, inductively,
at odd (resp. even) stages player 1 (resp. player 2) makes an offer xt ∈ [0, Mt ],
where Mt = δt−1M . When player i = 1, 2 makes his offer, this means he pro-
poses xt to player j = −i (and the remaining for him). Player j has the option
to accept i’s offer or to reject it. If j accepts, the offer is implemented. If t < T ,
the game moves to round t + 1. Otherwise, the game is over and both players
receive zero.
Find, by induction on T , the subgame-perfect equilibrium payoff and its limit
as T → ∞.

(3) The infinitely discounted repeated alternative offer game
Consider the previous game with T = ∞. Show that the following strategy is
the unique subgame-perfect equilibrium. At every stage t , if the game hasn’t
stopped, the player who plays offers a fraction δ

1+δ
of the amount Mt at time t

to the other player (i.e. xt = δ
1+δ

Mt ) and the other player accepts the offer.

Exercise 5. An extensive form game
Let G be a finite game in extensive form with perfect recall and G ′ be obtained from
G by refining some information sets (dividing them into two or more sets). Let σ be
a Nash equilibrium of G.

(1) Show that if σ is pure and there are no chance moves, σ is a Nash equilibrium
of G ′.

(2) Show that the above result does not extend to σ mixed or with chance moves.
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Exercise 6. Stack of tokens a Nim game
There are two players and a stack of n tokens. Players play alternately. At each round,
a player can remove 1, 2 or 3 tokens. The player who takes the last token loses. When
does the first mover have a winning strategy?

Exercise 7. An entrant with incomplete information
Consider two firms in competition in a market where only one of the two can make
a profit. A chance move determines if firm 1 makes a technological innovation I or
not N . If it did, firm 1 is able to beat any competitor. This game may be described
as follows:

At stage 0: Nature selects I or P with equal probabilities, only firm 1 is informed.
At stage 1: Firm 1 decides if it stays in the market (S) or quits it (Q). If it quits,

its payoff is 0 and firm 2 enters and makes a benefit of 4.
At stage 2: Observing that firm 1 stays, firm 2 decides to enter the market (E) and

compete with firm 1 or to leave the market (L). If it leaves, firm 1 gets 4 and firm
2 gets 0. Otherwise, the payoff depends on Nature’s choice. If firm 1 makes an
innovation, it obtains a payoff of 8, and firm 2 a payoff of −4. Otherwise, firm 2
gets 8 and firm 1 makes −4. Observe that this game is constant sum, and so has
a value.

(1) Write the game in extensive and normal forms.
(2) Compute the value and the optimal mixed strategies.
(3) Deduce the optimal behavioral strategies.
(4) Conclude.

Exercise 8. Double Auction
A seller (player 1) and a buyer (player 2) trade an indivisible good. The cost for
the seller is c and the value for the buyer is v. We suppose that c and v are drawn
independently from the uniform distribution on the interval [0, 1]. The rule of the
auction is as follows. The buyer and the seller simultaneously submit their offers
(b1 ∈ [0, 1] for player 1 and b2 ∈ [0, 1] for player 2). b1 is interpreted as the minimal
price that player 1 will accept in order to sell and b2 is the maximal price that player 2
will accept in order to buy. If b1 > b2 there is no trade. Otherwise, they trade at the
price p = b1+b2

2 .
Suppose first that information is complete (i.e. v and c are common knowledge).

(1) Write the normal form and compute all pure Nash equilibria.

Suppose from now on that the information is incomplete: each player knows only
his own type (player 1 observes c before playing, and player 2 observes v). Let
βi (·) : [0, 1] → [0, 1], Borel measurable, be a strategy of player i .

(2) Prove that β i , i = 1, 2 are strictly increasing
(3) Assuming that β i , i = 1, 2 are of class C1, provide the pair of ODEs that they

must satisfy if they constitute a Nash equilibrium.
(4) Show that there exists a linear solution to the ODEs of the previous question.

Under which condition is there a trade?
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6.9 Comments

The literature on extensive form games is extremely large and its impact on appli-
cations, in particular in economics, is huge. Research in this field is still in full
development.

The link with computer science introduces a lot of questions related to complexity
issues:
– What kind of results can be obtained by restricting the players to use subclasses of
strategies like having finite memory or being implementable by finite automata?

– What is the complexity of finding a specific solution concept?
– What is the complexity of the solution itself, in terms of information required or
of computational cost to implement it?

An important direction of analysis is related to the formalization of the beliefs
(hierarchy of knowledge or conditional systems), a field called epistemic game
theory [40].

Finally, the research on stability is still very active, see for example [85].



Chapter 7
Correlated Equilibria, Learning,
Bayesian Equilibria

7.1 Introduction

Correlated equilibrium is an extension of Nash equilibrium introduced by Aumann
[3] in 1974. In this solution, each player may observe, before playing the game, a
private signal, generated from some commonly known distribution. This correlation
device leads to an increase of the set of equilibria, which becomes a nice efficiently
computable polytope, the opposite of the set of Nash equilibria, a semi-algebraic set
with several components and whose computational complexity belongs to the PPAD
class.

The next section defines correlated equilibrium in its general form and shows the
equivalence with its more popular canonical representation.

Section7.3 introduces the so-called internal and external no-regret criteria and
provides two discrete time learning uncoupled procedures that satisfy the no-regret
criteria. The proofs are based on Blackwell approachability. Finally, it is shown
that any externally no-regret learning procedure converges to the Hannan set (e.g.
coarse equilibria) and that internally no-regret learning procedures lead to correlated
equilibria. No-regret procedures, widely used in statistical learning, have a very large
class of applications that go beyond the scope of this book.We provide the connection
with calibration and refer the interested reader to [35].

The last section deals with incomplete information games (also called Bayesian
games) and the natural extension of equilibria to this set-up.

7.2 Correlated Equilibria

This section is devoted to the notion of correlated equilibria, which is an extension
of Nash equilibria, due to Aumann [3], and has good strategical, geometrical and
dynamical properties.
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7.2.1 Examples

Let us first consider the classical “Battle of the Sexes”:

l r
T 3, 1 0, 0
B 0, 0 1, 3

There are two pure, efficient and disymmetrical equilibria and one mixed symmet-
rical and Pareto dominated equilibrium. The use of a public coin allows us to get
a symmetrical and efficient outcome as an equilibrium: if the coin shows “heads”,
player 1 plays Top, player 2 plays left, the outcome is (3, 1) and if the coin shows
“tails”, player 1 plays Bottom, player 2 plays right, inducing (1, 3). Obviously facing
such a plan, no deviation is profitable. This contract induces the following distribution
on the action profiles:

l r
T 1/2 0
B 0 1/2

It is clear that a similar procedure allows us to obtain any point in the convex hull of
the set of equilibrium payoffs: if a = ∑

r∈R λr ar ,λ ∈ Δ(R), R finite, use a random
variable with distribution λ on R and play, if r is publicly observed, an equilibrium
profile leading to the outcome ar .

Let us consider now the following game (“Chicken”):

l r
T 2, 7 6, 6
B 0, 0 7, 2

Introduce a signal set (X,Y, Z) endowed with the uniform probability (1/3, 1/3,
1/3). Assume that the players receive private messages on the chosen signal before
playing:

1 learns a = {X,Y } or b = {Z};
2 learns α = {X} or β = {Y, Z}.
Consider the strategies:
for player 1: T if a, B if b;
for player 2: l if α, r if β.
They induce on the action space S the correlation matrix:

l r
T 1/3 1/3
B 0 1/3

and no deviation is profitable.
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The corresponding outcome (5, 5) Pareto dominates the set of symmetrical Nash
outcomes.

7.2.2 Information Structures and Extended Games

We generalize now the previous construction.

Definition 7.2.1 An information structure I is defined by:

– a random event represented by a probability space (Ω, C, P);
– a family of measurable maps θi from (Ω, C) to (Ai ,Ai ) (measurable set of signals
of player i) (or a sub σ-algebra Ci ; in the finite case a partition of Ω).

Let G, defined by g : S = Πi∈I Si → R
n , be a strategic game. Each Si , i ∈ I , is

endowed with a σ-algebra S i (in the finite case, the discrete σ-algebra).

Definition 7.2.2 The game G extended by I, denoted [G, I], is the game, played
in 2 stages:

stage 0: the random variable ω is selected according to the law P and the signal
θi (ω) is sent to player i ;

stage 1: the players play in the game G.

A strategy σi of player i in the game [G, I] is a measurable map from (Ai ,Ai )

to (Si ,S i ) (or a measurable map from (Ω, Ci ) to (Si ,S i )).
The payoff corresponding to a profile σ is

γ[G, I](σ) =
∫

Ω

g(σ(ω))P(dω).

Once strategies and payoffs are defined, the notion of Nash equilibria in [G, I] is as
usual but due to the specific structure of the game, one sees, in the case of a finite
set of signals Ai , that σi is a best response to σ−i if and only if, for each signal ai

having positive probability under P , the (mixed) action σi (ai ) is a best response, for
the payoff g, to the correlated action θ−i [ai ] of the set of players −i , defined by

θ−i [ai ] =
∫

Ω

σ−i (ω)P(dω|ai ).

This corresponds to “ex-post” rationality, given the signal, hence with an updated
prior P(dω|ai ) on the basic space Ω .

A similar property holds for general signal sets under regularity assumptions.
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7.2.3 Correlated Equilibrium

The notion of correlated equilibrium extends the idea of equilibria to frameworks
with informational interdependence.

Definition 7.2.3 A correlated equilibrium of G is a Nash equilibrium of some
extended game [G, I].

Obviously, if the information structure is trivial one recovers Nash equilibrium.
Since Nash equilibria of the extended game correspond to profiles defined on

different spaces (depending on I), it is natural to consider the image measure on the
set of action profiles S. A profile σ of strategies in [G, I] maps the probability P on
Ω to an image probability Q(σ) on S, which is the correlated distribution induced
by σ: random variable → signal → action, thus: P → Q.

θi(ω)

Ω

ω

P

Ai

Aj

Si

Sj

σj

Q(σ)

σi

θj(ω)

Explicitly, in the finite set-up, for each ω, let q(ω,σ) be the product probability on
S defined by

∏
i σ

i (θi (ω)) and Q(σ) be the expectationwith respect to the underlying
probability P .

The image of the equilibria profiles under this map is captured by the next defi-
nition.

Definition 7.2.4 CED(G) is the set of correlated equilibrium distributions in G:

CED(G) =
⋃

I,σ

{Q(σ); σ equilibrium in [G, I]}.

Note that CED(G) is a convex set: just consider the product of independent infor-
mation structures.

7.2.4 Canonical Correlation

We introduce here a special class of information structures and equilibria that are
natural and will be sufficient (in a statistical sense).



7.2 Correlated Equilibria 133

Definition 7.2.5 A canonical information structure I for G corresponds to the
framework where:

• the underlying space is Ω = S;
• the signal space of player i is Ai = Si ;
• the signaling function, θi : S → Si , is defined by θi (s) = si for all i ∈ I .

Thus P is a probability on the product of action sets and once a profile of actions is
chosen, each player is informed upon its own component.

A canonical correlated equilibrium is a Nash equilibrium of the gameG extended
by a canonical information structure I and where the equilibrium strategies are
given by

σi (ω) = σi (s) = σi (si ) = si .

Thus at equilibrium, “each player plays the received signal”.
Note that the associated canonical correlated equilibrium distribution (CCED) is

obviously P .
The next fundamental result shows that in terms of distributions, canonical cor-

related equilibria form an exhaustive set.

Theorem 7.2.6 ([3])
CCED(G) = CED(G)

Proof Let σ be an equilibrium profile in some extension [G, I] and Q = Q(σ) be
the induced distribution. Let us prove that Q is also a CCED(G). Let I(Q) be the
canonical information structure associated to Q. Note that each player i receives less
information underI(Q) than underI: only his recommended action si rather than the
signal ai leading to σi (ai ) = si . But si is a best response to the correlated strategy of
−i conditionally to ai . It is then enough to use the “convexity” of BRi onΔ(S−i ): by
linearity of player i’s payoff w.r.t. Δ(S−i ), si is still a best response to the correlated
strategy of players −i conditionally to the union of the events {ai ;σi (ai ) = si },
which is the event {si }. �

7.2.5 Characterization

The previous representation theorem allows for a nice geometrical characterization
of correlated equilibrium distributions. We consider the case of a finite game, but a
similar property holds in general.

Theorem 7.2.7 Q ∈ CED(G) can be written as

∑

s−i∈S−i

[gi (si , s−i ) − gi (t i , s−i )]Q(si , s−i ) � 0, ∀si , t i ∈ Si ,∀i ∈ I.
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Proof We can assume that Q ∈ CCED(G). If si is announced (i.e. its marginal
probabilityQi (si ) = ∑

s−i Q(si , s−i ) > 0),we introduce the conditional distribution
on S−i , Q(·|si ), and the equilibrium condition reads as

si ∈ BRi (Q(·|si )).

si is a best response of player i to the distribution, conditional to the signal si , of the
actions of the other players. �

Recall that the approach in terms of Nash equilibria of the extended game is
an “ex-ante” analysis. The previous characterization corresponds to the “ex-post”
criteria.

Corollary 7.2.8 The set of correlated equilibrium distributions is a polytope: the
convex hull of finitely many points.

Proof CED(G) is defined in Δ(S) by a finite family of weak linear inequalities. �

7.2.6 Comments

An elementary existence proof of correlated equilibrium can be obtained via the
minmax theorem, see Hart and Schmeidler [97] and Exercise4.

There exist correlated equilibrium distributions outside the convex hull of Nash
equilibrium distributions, or even dominating strictly in terms of payoffs. In fact,
consider the game:

0, 0 5, 4 4, 5
4, 5 0, 0 5, 4
5, 4 4, 5 0, 0

The only equilibrium is symmetrical and corresponds to the strategy (1/3, 1/3, 1/3)
with payoff (3,3).

However, the following is a correlated equilibrium distribution:

0 1/6 1/6
1/6 0 1/6
1/6 1/6 0

inducing the payoff (9/2,9/2).
Let us examine correlated equilibria in an extensive form game:
Player 1 chooses between the action “stop”, inducing the payoff (2, 2), or “con-

tinue”, and the game is then the following:

5, 1 0, 0
0, 0 1, 5
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(3, 3) is an equilibrium outcome if the public signal with distribution (1/2, 1/2) on
(a, b) (with the convention (5, 1) after a and (1, 5) after b) is announced after the
initial choice of player 1, but not if it is known before, since then player 1 would
deviate if the signal is b.

For the study of equilibria with more general mechanisms (even incorporating a
mediator) see Forges [56, 58] and Myerson [150].

7.3 No-regret Procedures

Let {Un} be a sequence of vectors in U = [ − 1, 1]K . At each stage n, a player hav-
ing observed the previous realizations {U1, . . . ,Un−1}, and knowing his previous
choices, selects a component kn in K . The corresponding outcome is ωn = Ukn

n .
A strategy in this prediction problem (guessing the largest component) spec-

ifies at each stage n the law of kn as a function of the past history hn−1 =
{k1,U1, . . . , kn−1,Un−1}, denoted σ(hn−1) ∈ Δ(K ).

7.3.1 External Regret

The external regret given the choice � ∈ K and the realization U ∈ U is the vector
R(�,U ) ∈ R

K defined by

R(�;U )k = Uk −U �, k ∈ K .

The evaluation at stage n is Rn = R(kn,Un)with components Rk
n = Uk

n − ωn , hence
the average external regret vector at stage n is Rn with

R
k
n = U

k
n − ωn.

(Recall that given a sequence {um}, ūn denotes the average 1
n

∑n
m=1 um .) It compares

the actual (average) payoff to the payoff corresponding to the choice of a constant
component, see Foster and Vohra [64], Fudenberg and Levine [65].

Definition 7.3.1 A strategy σ has no external regret (or satisfies external consis-
tency) if, for every process {Um},

max
k∈K

(
[Rk

n]+
)

−→ 0 a.s., as n → +∞

or, equivalently,
n∑

m=1

(Uk
m − ωm) � o(n), ∀k ∈ K .
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To prove the existence of a strategy satisfying this property we will use approach-
ability theory (Chap.3, Exercise4) and show that the negative orthant D = R

K− is
approachable by the sequence of regret {Rn}.

We recall Blackwell’s theorem [27]:

Theorem 7.3.2 Let (xn)n be a bounded sequence of random variables in R
K such

that
(∗) 〈x̄n − ΠD(x̄n), yn+1 − ΠD(x̄n)〉 � 0,

where yn+1 = E(xn+1|x1, . . . , xn) is the conditional expectation of xn+1 given the
past and ΠD stands for the projection on D. Then the distance from x̄n to D goes to
0 almost surely.

A crucial property is the following:

Lemma 7.3.3 ∀x ∈ Δ(K ),∀U ∈ U:

〈x,Ex [R(·,U )]〉 = 0.

Proof We have

Ex [R(·,U )] =
∑

k∈K
xk R(k,U ) =

∑

k∈K
xk(U −Uk1) = U − 〈x,U 〉1

(1 is the K -vector of ones), thus 〈x,Ex [R(·,U )]〉 = 0. �
If R

+
n 	= 0, define σ(hn) ÷ R

+
n i.e. proportional to this vector.

Proposition 7.3.4 σ has no external regret.

Proof Note that D being the negative orthant, Rn − ΠD(Rn) = R
+
n and

〈ΠD(Rn), Rn − ΠD(Rn)〉 = 0.

Hence,

〈E(Rn+1|hn), Rn − ΠD(Rn)〉 = 〈E(Rn+1|hn), R+
n 〉

÷ 〈E(Rn+1|hn),σ(hn)〉
= 〈Ex [R(·,Un+1)], x〉
= 0

by using Lemma7.3.3 with x = σ(hn).
This implies

〈E(Rn+1|hn) − ΠD(Rn), Rn − ΠD(Rn)〉 = 0.

Thus condition (∗) is satisfied, so D is approachable: d(Rn,R
K−) −→ 0 and

maxk∈K [Rk
n]+ −→ 0. �
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7.3.2 Internal Regret

We consider now a more precise evaluation.
The internal regret given k ∈ K and U ∈ U is the K × K matrix S(k,U ) with

S(k,U ) j� =
{
U � −Uk if j = k,

0 otherwise.

The internal regret at stage n is given by Sn = S(kn,Un) and the average regret at
stage n is thus expressed by the matrix

S
k�
n = 1

n

n∑

m=1,km=k

(U �
m −Uk

m).

The component k� compares the average payoff of the player for the stages where
he played k to the payoff he would have obtained by playing � at all these stages, see
Foster and Vohra [64] and Fudenberg and Levine [67].

Definition 7.3.5 Astrategyσ hasno internal regret (or satisfies internal consistency)
if for each process {Um} and each pair k, �:

[Sk�n ]+ −→ 0 as n → +∞ σ-p.s.

Given a K × K matrix A with non-negative coefficients � 0, let χ[A] be the
non-empty set of invariant probability measures for A, namely vectors μ ∈ Δ(K )

satisfying ∑

k∈K
μk Ak� = μ�

∑

k∈K
A�k ∀� ∈ K .

(This is an easy consequence of the existence of an invariant measure for a stochastic
matrix, Corollary2.5.2.)

Lemma 7.3.6 For each K × K positive matrix A and each measure μ ∈ χ[A]:

〈A, Eμ(S(·,U ))〉 =
∑

k,�

Ak�Eμ(S(·,U )k�) = 0, ∀U ∈ U .

Proof
〈A, Eμ(S(·,U ))〉 =

∑

k,�

Ak�μk(U � −Uk)

and the coefficient of each U � is

∑

k∈K
μk Ak� − μ�

∑

k∈K
A�k = 0.
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�
Define the strategy by σ(hn) = μ(S̄+

n ).

Proposition 7.3.7 σ has no internal regret.

Proof The sufficient condition for approachability of the negative orthant D ofRK×K

reads as
〈Sn − ΠD(Sn), E(Sn+1|S1, . . . , Sn) − ΠD(Sn)〉 � 0.

Here one has ΠD(x) = −x− orthogonal to x+ = x − ΠD(x), hence the condition
becomes

〈S+
n , EP(S(·,Un+1))〉 � 0,

which is satisfied for P = σ(hn) = μ(S
+
n ), using the previous lemma with A = S

+
n .

Then Δ is approachable, hence maxk,�[Sk,�n ]+ −→ 0. �
Remarks 7.3.8 External consistency can be considered as a robustness property of
σ facing a given finite family L of “external experts” using strategies φ�, � ∈ L:

lim
1

n

[
n∑

m=0

〈φ�
m − xm,Um〉

]+
= 0, ∀φ�.

The typical case corresponds to a constant choice: L = K and φk = k.
In general, the rôle of k will be the (random)move of expert �, which the player fol-

lows with probability x�
m at stage m. U �

m is then the payoff to expert � at stage m
and external consistency means that a player can asymptotically achieve at least the
maximum of the expert payoffs.

Internal consistency corresponds to the case of experts adjusting their behavior to
that of the predictor.

7.3.3 Calibrating

Consider a sequence of random variables Xm with values in a finite set Ω (which
will be written as a basis of RΩ ).

A player observes the previous realizations Xn , n < m, and uses at stage m a
prediction φm with values in a finite discretization V of D = Δ(Ω). The interpreta-
tion is as follows: “φm = v” means that the anticipated probability that Xm = ω (or
Xω
m = 1) is vω . As usual, the player will use randomized forecasts.

Definition 7.3.9 Given ε > 0, a strategy φ is ε-calibrated if

lim
n→+∞

1

n

∑

v∈V

∥
∥
∥
∥

∑

{m�n,φm=v}
(Xm − v)

∥
∥
∥
∥ � ε, φ a.s.
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This inequality says that if the average number of times v is predicted does not
vanish, the average value of Xm over these times is close to v. More precisely, let
Bv
n be the set of stages before n where v is announced, let N v

n be its cardinality and
Xn(v) be the empirical average of Xm over these stages. Then the condition reads as

lim
n→+∞

∑

v∈V

N v
n

n
‖Xn(v) − v‖ � ε.

We will use internal consistency to prove calibration, Foster and Vohra [63].

Proposition 7.3.10 For any ε > 0, there exists an ε-calibrated strategy.

Proof Consider the on-line procedure where the choice set of the forecaster is V and
the outcome given v and X is

U v = ‖X − v‖2,

where we use the Euclidean norm.
Given an internal consistent procedure σ one obtains (the outcome here is a loss)

1

n

∑

m∈Bv
n

(U v
m −Uw

m ) � o(1), ∀w ∈ V,

which is

1

n

∑

m∈Bv
n

(‖Xm − v‖2 − ‖Xm − w‖2) � o(1), ∀w ∈ V,

hence implies, using the property of the Euclidean norm,

N v
n

n
(‖Xn(v) − v‖2 − ‖Xn(v) − w‖2) � o(1), ∀w ∈ V .

In particular, by choosing a point w closest to Xn(v),

N v
n

n
(‖Xn(v) − v‖2 − δ2) � + o(1),

where δ is the L2 mesh of V , from which calibration follows. �
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Remark 7.3.11 One can also use calibration to prove approachability of convex sets
(Chap. 3, Exercise4), Foster and Vohra [62]:

Assume that C satisfies [Ay] ∩ C 	= ∅:

∀ y ∈ Y, ∃ x ∈ X such that x A y ∈ C.

Consider a δ-grid of Y defined by {yv, v ∈ V }. A stage is of type v if player 1 predicts
yv and then plays a mixed move xv such that xv A yv ∈ C . By using a calibrated
procedure, the average of the moves of player 2 on the stages of type v will be δ
close to yv . By a martingale argument the average outcome will then be ε close to
xv A yv for δ small enough and n large enough. Finally, the total average outcome is
a convex combination of such amounts, hence is close to C by convexity.

7.3.4 Application to Games

Consider a finite game in strategic form: g : S = ∏
i S

i −→ R
I . Since the analysis

will be done from the view point of player 1 it is convenient to set S1 = K , X =
Δ(K ) (mixed moves of player 1), L = ∏

i 	=1 S
i , and Y = Δ(L) (correlated mixed

moves of player 1’s opponents), hence if Z = Δ(S) (correlated moves), one has
Z = Δ(K × L).

F = g1 andwe still denote by F its linear extension to Z , and its bilinear extension
to X × Y . The repeated game where the moves are announced corresponds to the
on-line process with {Uk

n = F(k, �n)} being the vector payoff for player 1 induced
by the actions at stage n of his opponents.

7.3.4.1 External Consistency and Hannan’s Set

Given z ∈ Z , let
r(z) = {F(k, z−1) − F(z)}k∈K ,

where z−1 stands for the marginal of z on L . (Player 1 compares his payoff using a
given move k to his payoff under z, assuming the other players’ behavior is given.)
Let D = R

K− be the closed negative orthant associated to the set of moves of player 1.

Definition 7.3.12 ([89]) H (for Hannan’s set) is the set of correlated moves satisfy-
ing the no r -regret condition for player 1:

H = {z ∈ Z : F(k, z−1) � F(z),∀k ∈ K } = {z∈Z : r(z) ∈ D}.

Define the empirical average distribution:

zn = 1

n

n∑

m=1

(km, �m) ∈ Z .
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Proposition 7.3.13 If player 1 follows a strategy with no external regret, the empir-
ical distribution of moves converges a.s. to the Hannan set.

Proof The proof is straightforward due to the linearity of the payoff. The no-regret
property reads as

1

n

n∑

m=1

F(k, �m) − 1

n

n∑

m=1

F(km, �m) � o(1) ∀k ∈ K ,

which gives

F(k, 1
n

∑n
m=1 �m)) − F( 1n

∑n
m=1(km, �m)) � o(1) ∀k ∈ K ,

and this expression is

F(k, z−1
n ) − F(zn) � o(1) ∀k ∈ K .

�

In the framework of two players one can define Hannan sets (Hi ) for each and
consider their intersection H . In particular, in the case of a zero-sum game one has,
for z ∈ H ,

F(z) � F(z1, z2)

and the opposite inequality for the other player, hence the marginals are optimal
strategies and F(z) is equal to the value.

Example 7.3.14 For the game:
0 1 −1

−1 0 1
1 −1 0

consider the distribution:
1/3 0 0
0 1/3 0
0 0 1/3

7.3.4.2 Internal Consistency and Correlated Equilibria

We still consider only player 1 and denote by F his payoff. Given z = (zs)s∈S ∈ Z ,
introduce the family of m comparison vectors of dimension m (testing k against j
with ( j, k) ∈ K 2) defined by

C( j, k)(z) =
∑

�∈L
[F(k, �) − F( j, �)]z( j,�).
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(This corresponds to the change in the expected gain of player 1 at z when replacing
move j by k.) Observe that if one denotes by (z | j) the conditional probability on
L induced by z given j ∈ K and by z1 the marginal on K , then

{C( j, k)(z)}k∈K = z1j r((z | j)),

where we recall that r((z | j)) is the vector of regrets for player 1 at (z | j).

Definition 7.3.15 The set of no C-regret (for player 1) is

C1 = {z;C( j, k)(z) � 0,∀ j, k ∈ K }.

It is obviously a subset of H since

∑

j

{C( j, k)(z)}k∈I = r(z).

As above, when considering the payoff vector generated by the actions of the
opponents in the repeated game, we obtain:

Proposition 7.3.16 If player 1 follows someno internal regret strategy, the empirical
distribution of moves converges a.s. to the set C1.

Proof The no internal regret property is

1

n

n∑

m=1, jm= j

(F(k, �m) − F( j, �m) � o(1).

Hence, ∑

�

zn( j, �)(F(k, �) − F( j, �)) � o(1).

�

Recall that the set of correlated equilibrium distributions of the game with payoff
g is defined by (Theorem7.2.7)

C = {z ∈ Z;
∑

�∈L
[gi (k, �) − gi ( j, �)]z( j,�) � 0, ∀ j, k ∈ Si ,∀i ∈ I }.

This implies:

Proposition 7.3.17 The intersection over all players i of the sets Ci is the set of
correlated equilibrium distributions of the game.

Hence, in particular:
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Proposition 7.3.18 If each player follows some no internal regret procedure, the
distance from the empirical distribution of moves to CED(G) converges a.s. to 0.

This important result implies the existence of CCED and gives an algorithm (gen-
erated by unilateral procedures) converging to this set. There are no such properties
for Nash equilibria. For a survey on this topic, see Hart [95].

7.4 Games with Incomplete Information (or Bayesian
Games)

7.4.1 Strategies, Payoffs and Equilibria

As Sect. 7.2 above, an information structure I = (Ω,A, P) is given, but the game
itself Γ = G(·) has a payoff which is a function of the random variable ω, called the
state.

It is usual to call the (finite) set of signals Ai the type set (each player knows
his type). A strategy σi of player i is a map from Ai to Δ(Si ). The (vector) payoff
corresponding to a profile σ is given by

γ(σ) =
∫

ω

g({σi (θi (ω))}i∈I ;ω)P(dω).

Denote by Π the induced probability on the product type set A = Πi Ai and
g({σ j (a j )}, a) the corresponding conditional expectationofg({σ j (a j )},ω)onθ−1(a),
which is the set of random states inducing the profile of signals a. Then the payoff
can also be written as

γ(σ) =
∑

a

g({σ j (a j )}; a)Π(a),

hence for player i ,
γi (σ) =

∑

ai

Π i (ai )Bi (ai ),

where Π i is the marginal of Π on Ai and

Bi (ai ) =
∑

a−i

gi (σi (ai ), {σ j (a j )} j 	=i ; (ai , a−i ))Π(a−i |ai ).

Hence if σ is an equilibrium profile, for each player i and each signal ai , σi (ai )
maximizes the “Bayesian” payoff facing σ−i , which is Bi (ai ).

The first maximization (in γ) is “ex-ante”, and the second one “ex-post”.
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7.4.2 Complements

A pure (resp. behavioral) strategy of player i maps Ai to Si (resp. Δ(Si )).
Amixed strategy is a probability on the set of pure strategies or a measurable map

from Ai × [0, 1] to Si , where [0, 1] is endowed with the uniform measure.
A distributional strategy μi is an element ofΔ(Ai × Si )which is compatible with

the data: the marginal distribution on Ai is Π i [141].
The conditional probability μi (·|ai ) corresponds to a behavioral strategy.

Example 7.4.1 (War of attrition [26])
Consider a symmetric two-player game: each player i = 1, 2 has a type ai ∈ Ai =

R
+ and chooses an action si ∈ Si = R

+. The payoff of each player is a function of
his own type and of both actions:

f i (ai ; s1, s2) =
{
ai − s j if s j < si

−si otherwise.

The distribution of the types are independent and given by a cumulative distribution
function G, known to the players. In addition, each player knows his type.

One interpretation is a game of timing where the last remaining player wins a
function of his type and of the duration of the conflict while the other loses his time.

1. If G corresponds to the Dirac mass at some point v, the only symmetric equilib-
rium is to play s according to the law Qv , where

P (s � t) = 1 − exp

(

− t

v

)

.

2. If G has a density g, the only symmetric equilibrium is to play, given the type ai ,
the (pure) action

s(ai ) =
∫ ai

0

t g(t)

1 − G(t)
dt.

3. Let Gn with density gn on [v − 1
n , v + 1

n ] weak* converge to the Dirac mass at
v. At equilibrium the distribution of actions of i is given by the following:

Φn(t) = P(s � t) = PGn (a
i ; s(ai ) � t).

Then Φn converges to Qv .

There is a natural link with the following model of non-atomic games [128, 186],
where the natural variable will be defined on a product space.
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The framework is defined by:

– a set of agents A, endowed with a non-atomic measure μ;

and for each agent:

– an action space S;
– a payoff F , as a function of his own type a, his own action s, and the distribution

ν of the actions of the other players.

An equilibrium is thus a measure λ on A × S, with marginal μ on A and ν on S
satisfying:

λ{(a, s) ∈ A × S; s ∈ argmax F(a, ·, ν)} = 1.

The strategic use of information is a fundamental field with several active direc-
tions of research such as:

– private information and purification of strategies [92];
– reputation phenomena: interactive repeated situations where one player uses in a
strategic way the uncertainty of his opponents on his type to build a controlled
process of beliefs, see e.g. Aumann and Sorin [15], Sorin [202] and the relation
with repeated games (Chap.8), see Mailath and Samuelson [124].

7.5 Exercises

Exercise 1. Value of information (Kamien, Taumann and Zamir [105])
Consider the following two-player game in extensive form:

Stage 0: A color (white or black, W or B) is chosen by Nature uniformly.
Stage 1: Player 1 announces a color in {W, B} and this is communicated to player 2.
Stage 2: Player 2 announces a color in {W, B}.
The payoff is 2 for both players if they announce the same color, otherwise, it is 5 for
the player who predicted the right color and 0 to the other player.We consider several
informational variants of this game, and in all of them the description is common
knowledge among the players (for example, if player 1 has private information,
player 2 knows this fact, and player 1 knows that player 2 knows, etc).

(1) Suppose that no player observes Nature’s move. Write the game in extensive
and normal forms and compute the unique equilibrium.

(2) Suppose that player 1 only observes Nature’s move.Write the game in extensive
and normal forms and compute the unique equilibrium.

(3) Finally, solve in a similarmanner the caseswhere only player 2 observesNature’s
move and where both players observe Nature’s move. Conclude.

Exercise 2. Strategic transmission of information
Consider a two-player strategic interaction in which a state of Nature k ∈ {1, 2} is
chosen according to the uniform distribution. The state is then observed by player 1
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(but not player 2). Player 1 then sends a message m ∈ {A, B} to player 2. Then
player 2 chooses an action a ∈ {L , M, R}. The payoff depends only on the pair
state/action (k, a) but not on the message m:

State k = 1: Payoffs for each action are: L → (0,6); M → (2,5); R → (0,0).
State k = 2: Payoffs for each action are: L → (0,0); M → (2,5); R → (2,12).

(1) Write the game in extensive and normal form.
(2) Compute all Nash equilibria in pure strategies and their corresponding payoffs,

classified by the number of different messages (one or two) sent by player 1 on
the equilibrium path. (When only one message is sent, the equilibrium is called
non-revealing or pooling, and when both messages are sent the equilibrium is
fully revealing.)

(3) Show that the following profile in behavioral strategies is a Nash equilibrium
and compute its associated payoff:

Player 1: plays A if k = 1 and 1
2 A + 1

2 B if k = 2;
Player 2: plays M if he observes A, and plays R if he observes B.

This equilibrium is partially revealing.
(4) Conclude.

Exercise 3. Correlated equilibria versus Nash: existence (Peleg [162])

(1) Show that the following game:

b1 b2 b3
a1 (−∞,−∞) (3, 1) (0, 2)
a2 (1, 3) (0, 0) (1,−∞)

a3 (2, 0) (−∞, 1) (0, 0)

has no Nash equilibrium but any distribution of the form

b1 b2 b3
a1 0 α 0
a2 β γ 0
a3 0 0 0

with αβγ > 0 is a correlated equilibrium distribution.
(2) Consider the game with an infinite countable set of players N∗ = {1, 2, 3, . . . }.

Assume that each player has two strategies 0 or 1 (thus Si = {0, 1}). The payoff
function of player i is

gi (s) =
{
si , if

∑
j s

j < ∞
−si , otherwise.
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(a) Show that there exists no Nash equilibrium in pure strategies.
(b) Use the Borel–Cantelli Lemma to prove that there are no mixed equilibria

either.
(c) Prove that the distribution μ = μ1

2 + μ2

2 on S = ∏
i S

i = {0, 1}N∗
induces a

correlated equilibrium where:
μ1 is the product distribution μ1 = ⊗

i μ
i
1 with: μ

i
1(s

i = 1) = 1
i ;

μ2 is the joint distribution where the profile (s1 = 1, . . . , si = 1, si+1 =
0, . . . , sn = 0, . . . )has probability 1

i − 1
i+1 = 1

i(i+1) . (Note thatPμ1(
∑

si =
∞) = 1, Pμ2(

∑
si = ∞) = 0 and Pμ2(si = 1) = 1

i .)

Exercise 4. Correlated equilibrium distribution via minmax (Hart and
Schmeidler [97])
Let G be a strategic two-player game with strategy sets S1 and S2 and payoff g : S =
S1 × S2 −→ R

2. Consider now the game Γ which is two-player and zero-sum with
strategy sets S and L = (S1)2 ∪ (S2)2 and payoff γ defined by

γ(s; t i , ui ) = (gi (t i , s−i ) − gi (ui , s−i ))1{t i=si }.

(1) Verify that Γ has a value v and optimal strategies.
(2) Show that if v � 0 and Q ∈ Δ(S) is an optimal strategy of player 1, then Q is

a correlated equilibrium distribution in G.
(3) Let π ∈ Δ(L). Define ρ1, a transition probability on S1, by

ρ1(t1; u1) = π(t1, u1), if t1 	= u1,

ρ1(t1; t1) = 1 −
∑

u1 	=t1

π(t1, u1).

Let now μ1 be a probability on S1 invariant under ρ1:

μ1(t1) =
∑

u1

μ1(u1)ρ(u1; t1).

Define ρ2 and μ2 similarly and let μ = μ1 × μ2.
Show that the payoff γ(μ;π) can be decomposed into terms of the form

∑

t1

μ1(t1)
∑

u1

ρ(t1; u1)(g1(t1, ·) − g1(u1, ·))

and then deduce that

∀π ∈ Δ(L), ∃φ ∈ Δ(S) satisfying γ(φ,π) � 0.

(4) Prove the existence of a correlated equilibrium distribution in G.
(5) Extend the proof to the case of I players.
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Exercise 5. Correlated equilibrium: zero-sum case

(1) Consider a finite two-person zero-sum game defined by g : S = S1 × S2 → R.
Given π ∈ Δ(S), let g(π) = ∑

s∈S π(s1, s2)g(s1, s2).

(a) Show that the only correlated equilibrium payoff g(π) is v = valg.
(b) Letπ ∈ CED(g) and s1 ∈ S1 havepositive probability underπ. Show that the

conditional probability π(·|s1) ∈ Δ(S2) is an optimal strategy of player 2.

(2) Consider the following zero-sum game [57]:

b1 b2 b3
a1 0 0 1
a2 0 0 −1
a3 −1 1 0

(a) Show that
b1 b2 b3

a1 1/3 1/3 0
a2 1/3 0 0
a3 0 0 0

is a correlated equilibriumdistribution.Note that it is not a product of optimal
strategies of the players.

(b) Describe the set CED(g).

Exercise 6. Correlated and Nash equilibria: comparison

(1) Describe all Nash and correlated equilibria of the following game:

L R
T (2, 2) (0, 0)
B (0, 0) (2, 2)

(2) Consider the following three-player game:
Player 1 has two actions: T or B. Similarly player 2 has two actions: L or R.
Player 3 has infinitely many actions: he chooses an integer z ∈ Z. The payoff is
as follows:

L R
T (2, 2, 3 + 1/z) (0, 0, 8)
B (0, 0, 0) (2, 2, 0)

z < 0

L R
T (2, 2, 2) (0, 0, 0)
B (0, 0, 0) (2, 2, 2)

z = 0

L R
T (2, 2, 0) (0, 0, 0)
B (0, 0, 8) (2, 2, 3 − 1/z)

z > 0



7.5 Exercises 149

Asusual player 1 chooses the line, player 2 the columnandplayer 3 thematrix. (If
player 1 chooses T , player 2 chooses L and player 3 chooses z = −4, players 1
and 2 get 2 and player 3 obtains 11/4.)

(a) Show that this game has no equilibrium.
(b) Show that there exists a correlated equilibrium where player 3 plays z = 0.

7.6 Comments

The notion of correlated equilibrium is an expression of Bayesian rationality when
the players have access to some random information (Aumann).

It proved very successful for its robust properties: geometrical (polytope), simple
proof of existence, stability by public lotteries...

The no-regret procedure provides an elegant decentralized and simple algorithm,
which also gives an alternative proof of existence. No similar result can be established
for Nash equilibrium [96].

An important literature on learning deals with the case where the player is not
aware of the vector of outcomes that could occur, corresponding to all his possible
actions. He could know only the actual realized outcome (the bandit framework) or
more generally a signalling structure depending on all actions could be given.

All these approaches in terms of regret are very much in the spirit of robust
statistical procedures and go back to the initial point of view of Blackwell and
Girshick.

Note, however, that the framework is more “best response” than “sure strategy”
since the idea is to adjust to (and eventually take advantage of) the behavior of the
opponent (or to “learn” the environment). Obviously, in the zero-sum case, optimality
is achieved.



Chapter 8
Introduction to Repeated Games

8.1 Introduction

Repeated games represent dynamic interactions in discrete time. In the most general
setup, these interactions are modeled by a Markovian state variable which is jointly
controlled by the players. The game is played in stages, and each player first receives
a private signal at the initial state. Then at every stage, the players simultaneously
choose an action in their own action set. The selected actions together with the state
determine: (a) the current payoffs, and (b) a probability distribution over the next
state and the signals received by the players. This is a very general model, and when
a player selects an action at some stage, several strategic aspects are present: (1) he
may influence his current payoff, (2) he may influence the state process (this aspect is
crucial in the class of stochastic games), (3) he may reveal or learn something about
the current state (this aspect is crucial in the class of repeated games with incomplete
information), and (4) he may influence the knowledge of all players on the current
action profile played at that stage (this aspect is crucial in the class of repeated games
with imperfect observation).

Except in the last section, we only consider here the simplest case of repeated
games: non-stochastic repeated games with complete information and perfect obser-
vation, whichwe call standard repeated games. The same stage game is repeated over
and over, all players know the stage game and after every stage the actions played
are publicly observed. We introduce the finitely repeated game where players play
finitelymany stages andwant tomaximize their average payoffs, the discounted game
where players play infinitelymany stages andwant tomaximize their discounted sum
of payoffs, and the uniform game where players play infinitely many stages and want
to play well in any long enough game (or in any discounted game with low enough
discount factor). Repetition here opens the door to new phenomena, and players can
sustain a cooperative path by threats of punishment if one player deviates from the
path. This leads to a huge increase of the set of equilibrium payoffs incarnated by the
famous Folk theorems: in particular, the equilibrium payoffs of the uniform game are
precisely the payoffs which are feasible (achievable) and individually rational (where
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each player gets at least his punishment level). The message is simple: if players are
patient enough, any reasonable payoff can be achieved at equilibrium. Folk theorems
for discounted games and for finitely repeated games, for Nash equilibria and for
subgame-perfect equilibria, are also presented.

The last section presents extensions of the model in three directions:

(1) Repeated games with signals (or imperfect monitoring), where players imper-
fectly observe the actions played at the end of each stage. The Folk theoremmay
fail, and computing the equilibrium payoffs is challenging.

(2) Stochastic games, where the state variable which determines the current payoff
function evolves from stage to stage according to the action profiles played. A
particular example, the celebrated “Big Match”, is studied in detail.

(3) Repeated games with incomplete information, where the stage game is fixed but
imperfectly known to the players. We consider the case of two-player zero-sum
games with lack of information on one side (player 1 perfectly knows the stage
game whereas player 2 only has an a priori on this game) and prove the famous
cav u theorem of Aumann and Maschler, characterizing the limit value of the
repeated game.

8.2 Examples

Given a finite strategic game G called the “stage game”, we define GT as the game
G repeated T times, the payoff of the players being defined by the arithmetic mean
of their stage payoffs. GT is a finite extensive-form game, and we denote by ET its
set of mixed Nash equilibrium payoffs.

Example 8.2.1 The stage game is

L R
T (1, 0) (0, 0)
B (0, 0) (0, 1)

(1, 0) and (0, 1) areNash equilibriumpayoffs of the stage game. It is easy to construct
a Nash equilibrium of the 2-stage game with payoff (1/2, 1/2): the two players play
(T, L) at stage 1, and (B, R) at stage 2.

Consequently (1/2, 1/2) ∈ E2.
Repetition allows for the convexification of the equilibrium payoffs.

Example 8.2.2 The stage game is

C2 D2 E2

C1 (3, 3) (0, 4) (−10,−10)
D1 (4, 0) (1, 1) (−10,−10)
E1 (−10,−10) (−10,−10) (−10,−10)
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The set of Nash equilibrium payoffs of the stage game is

E1 = {(1, 1), (−10,−10)}.

One can construct a Nash equilibrium of the 2-stage game with payoff (2, 2) as
follows.

In the first stage, player 1 plays C1 and player 2 plays C2. At the second stage,
player 1 plays D1 if player 2 has played C2 at stage 1, and he plays E1 (this can be
interpreted as a punishment) otherwise. Similarly, player 2 plays D2 if player 1 has
played C1 at stage 1, and he plays E2 (punishment) otherwise. We have defined a
Nash equilibrium of the 2-stage game with payoff (2, 2).

Similarly, one can show that for each T � 1, we have T−1
T (3, 3) + 1

T (1, 1) ∈ ET .
Using punishments, repetition may allow for cooperation.

Example 8.2.3 The stage game is the following prisoner’s dilemma:

C2 D2

C1 (3, 3) 0, 4)
D1 (4, 0) (1, 1)

We show by induction that ET = {(1, 1)} for each T .

Proof The result is clear for T = 1. Assume it is true for a fixed T � 1, and consider
a Nash equilibrium σ = (σ1,σ2) of the (T + 1)-stage repeated game. Denote by x ,
respectively y, the probability that at the first stage player 1 plays C1, respectively
that player 2 plays C2. After every action profile played with positive probability
at stage 1, the continuation strategies induced by σ form a Nash equilibrium of
the remaining game. Hence by assumption the average payoff associated to these
continuation strategies is (1, 1). Hence the equilibrium payoff for player 1 in the
(T + 1)-stage game is 1

T+1 ((3xy + 4(1 − x)y + (1 − x)(1 − y)) + T ). By play-
ing D1 at all stages, player 1 can make sure his expected payoff will be at least:
1

T+1 ((4y + (1 − y)) + T ). By the equilibrium property, we have: 3xy + 4(1 −
x)y + (1 − x)(1 − y) � 4y + (1 − y), and we obtain x = 0. Similarly y = 0, and
the equilibrium payoff in the T + 1-stage game is (1, 1). �

Hence there is no possible cooperation in the standard version of the prisoner’s
dilemma repeated a finite number of times.

8.3 A Model of Standard Repeated Games

We fix a finite strategic game G = (N , (Ai )i∈N , (gi )i∈N ), called the stage game. We
will study the repetition of G a large number of times, and the infinite repetition of
G. At every stage the players simultaneously choose an action in their own set of
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actions, then the action profile is publicly observed and the next stage is played. As
usual we put A = ∏

i∈N Ai and g = (gi )i∈N .

8.3.1 Histories and Plays

A history of length t is defined as a vector (a1, . . . , at ) of elements of A, with a1
representing the action profile played at stage 1, a2 representing the action profile
played at stage 2, etc. The set of histories of length t is the cartesian product At =
A × · · · × A (t times), denoted by Ht . (For t = 0 there is a unique history of length
0, and by convention H0 is the singleton {∅}.)

HT = {(a1, . . . , aT ), for all t at ∈ A}.

The set of all histories is H = ⋃
t�0 Ht . A play of the repeated game is defined as

an infinite sequence (a1, . . . , at , . . . ) of elements of A, the set of plays is denoted
by H∞ (identical to the cartesian product A∞).

8.3.2 Strategies

Wedefine a single notion of strategies. This notion corresponds to behavior strategies,
and is adapted to any number of repetitions of G.

Definition 8.3.1 A strategy of player i is a mapping σi from H toΔ(Ai ). We denote
byΣ i the set of strategies of player i and byΣ = ∏

i∈N Σ i the set of strategy profiles.

The interpretation of the strategy σi is the following: for each h in Ht , σi (h) is the
probability used by player i to select his action of stage t + 1 if history h has been
played at the first t stages.

At every stage, given the past history, the lotteries used by the players are indepen-
dent, and a strategy profile σ naturally induces by induction a probability distribution
on the set H (which is countable): first use ((σi

1)i ) to define the probability induced
by σ on the actions of stage 1, then use the transitions given by ((σi

2)i ) to define the
probability induced by σ on the actions of stages 1 and 2, etc. Using the Kolmogorov
(or Carathéodory) extension theorem, this probability can be extended in a unique
way to the set of plays H∞, endowed with the product σ-algebra on A∞ (just as
tossing a coin at every stage induces a probability distribution over sequences of
Heads and Tails). Notice also that the players have perfect recall, and an extension
of Kuhn’s theorem applies [2].
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8.3.3 Payoffs

In a repeated game the players receive a payoff at every stage, how should they
evaluate their stream of payoffs? There are several possibilities, andwewill consider:
finitely repeated games with average payoffs, infinitely repeated discounted games,
and uniform games (which are infinitely repeated and undiscounted games). In the
sequel at denotes the random variable of the action profile played at stage t .

Definition 8.3.2 (The finitely repeated game GT ) The average payoff of player i up
to stage T , if the strategy σ is played, is

γi
T (σ) = Eσ

(
1

T

T∑

t=1

gi (at )

)

.

For T � 1, the T -stage repeated game is the strategic game GT = (N , (Σ i )i∈N ,

(γi
T )i∈N ).

In the game GT it is harmless to restrict the players to use strategies for the first T
stages only, hence GT can be seen as a finite game and by Nash’s theorem its set
of Nash equilibrium payoffs ET is non-empty and compact. Notice that considering
the sum of the payoffs instead of the average would not change the Nash equilibria
of GT .

Definition 8.3.3 (The discounted game Gλ) Given λ in (0, 1], the repeated game
with discount rate λ is Gλ = (N , (Σ i )i∈N , (γi

λ)i∈N ), where for each strategy pro-
file σ:

γi
λ(σ) = Eσ

(

λ

∞∑

t=1

(1 − λ)t−1gi (at )

)

.

With this definition, receiving a payoff of 1 − λ today is equivalent to receiving a
payoff of 1 tomorrow. It is also standard to introduce the discount factor δ ∈ [0, 1),
and the interest rate r > 0 such that δ = 1 − λ = 1

1+r . Consider now the discounted
game where the players are restricted to play pure strategies. Using the product
topology on strategy spaces (σi

t −−−→
t→∞ σi iff for each h in H , σi

t (h) −−−→
t→∞ σi (h)),

Theorem 4.7.3 shows that the set of mixed Nash equilibrium payoffs of this game
is non-empty and compact. Since mixed and behavior strategies are equivalent, we
obtain that the set Eλ of Nash equilibrium payoffs of Gλ is non-empty and compact.

Notice that both choosing T = 1 in Definition 8.3.2 or λ = 1 in Definition 8.3.3
leads to the consideration of the stage game G = G1.

The uniform approach directly considers long-term strategic aspects.

Definition 8.3.4 (The uniform game G∞) A strategy profile σ is a uniform equilib-
rium of G∞ if:

(1) ∀ε > 0, σ is a ε-Nash equilibrium of any long enough finitely repeated game,
i.e.: ∃T0, ∀T � T0, ∀i ∈ N , ∀τ i ∈ Σ i , γi

T (τ i ,σ−i ) � γi
T (σ) + ε; and
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(2)
(
(γi

T (σ))i∈N
)
T has a limit γ(σ) in R

N as T goes to infinity.

γ(σ) is then called a uniform equilibrium payoff of the repeated game, and the set
of uniform equilibrium payoffs is denoted by E∞.

A uniform equilibrium is robust to the number of stages (which may be unknown
to the players) as soon as it is large enough. Moreover, it is also robust to discount
factors (which may not be the same for each player), as soon as they are low enough:
the analogs of conditions (1) and (2) for discounted games also hold.

Lemma 8.3.5 Let σ be a uniform equilibrium of G∞. Then:

(1′) ∀ε > 0, σ is a ε-Nash equilibrium of any discounted repeated game with
low enough discount factor, i.e.: ∃λ0 ∈ (0, 1], ∀i ∈ N, ∀λ � λ0, ∀τ i ∈ Σ i ,
γi

λ(τ
i ,σ−i ) � γi

λ(σ) + ε; and
(2′)

(
(γi

λ(σ))i∈N
)
λ
also converges to γ(σ) = limT→∞(γi

T (σ))i∈N as λ goes to 0.

The proof uses the following property. Consider a bounded sequence (xt )t�1 of real
numbers, and let x̄t be 1

t

∑t
s=1 xs for each t � 1. Forλ ∈ (0, 1], a simple computation

shows that the λ-discounted sum (Abel sum) of the sequence (xt )t�1 can be written
as a weighted average of the Cesàro means (x̄t )t :

λ

∞∑

t=1

(1 − λ)t−1xt = λ2
∞∑

t=1

t(1 − λ)t−1 x̄t . (8.1)

For a proof of Lemma 8.3.5 based on (8.1), see Exercise 3 at the end of the chapter.

Proposition 8.3.6 For each T � 1 and λ ∈ (0, 1], we have E1 ⊂ ET ⊂ E∞ and
E1 ⊂ Eλ ⊂ E∞.

The proof that E1 ⊂ ET ⊂ E∞ is simple and can be made by concatenation of
equilibrium strategies. The proof that Eλ ⊂ E∞ is more subtle and can be deduced
from the Folk Theorem 8.5.1.

8.4 Feasible and Individually Rational Payoffs

The set of vector payoffs achievable with correlated strategies in the stage game is
g(Δ(A)) = {g(P), P ∈ Δ(A)}. Notice that it is the convex hull of the vector payoffs
achievable with pure strategies.

Definition 8.4.1 The set of feasible payoffs is co g(A) = g(Δ(A)).

The set of feasible payoffs is a bounded polytope, which represents the set of payoffs
that can be obtained in any version of the repeated game. It contains ET , Eλ and E∞.
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Definition 8.4.2 For each player i in N , the punishment level of player i or threat
point is

vi = min
x−i∈∏

j 	=i Δ(A j )
max

xi∈Δ(Ai )
gi (xi , x−i ).

vi is called the independent minmax of player i . Be careful that in general one cannot
exchange minx−i∈∏

j 	=i Δ(A j ) and maxxi∈Δ(Ai ) in the above expression, see Exercise 2
at the end of Chap. 2.

Definition 8.4.3 The set of individually rational payoffs is

IR = {u = (ui )i∈N , ui � vi ∀i ∈ N }

and the set of feasible and individually rational payoffs is

E = (co g(A)) ∩ IR.

Using the fact that actions are publicly observed after each stage, given a strategy
profile σ−i of the players different from i in Σ−i , it is easy to construct a strategy σi

of player i such that ∀T , γi
T (σi ,σ−i ) � vi . As a consequence E∞, ET and Eλ are

always included in E .
We now illustrate the previous definitions on the prisoner’s dilemma:

C2 D2

C1 (3, 3) (0, 4)
D1 (4, 0) (1, 1)

We have v1 = v2 = 1, and the set of feasible and individually rational payoffs is
represented in the following picture:

E

1 4

1

4

0 P1

P2
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8.5 The Folk Theorems

These theorems deal with very patient players, and more precisely with: finitely
repeated games with a large number of stages, discounted repeated games with a
low discount factor λ, or uniform games. The message is essentially the following:
the set of equilibrium payoffs of the repeated game is the set of feasible payoffs (i.e.
that one can obtain while playing) which are individually rational (i.e. such that
each player gets at least his punishment level). It can be viewed as an “everything
is possible” result, because it implies that any reasonable payoff can be achieved at
equilibrium.

It is difficult to establish who proved the first Folk theorem. It “has been generally
known in the profession for at least 15 or 20 years, but has not been published; its
authorship is obscure.” [4].

8.5.1 The Uniform Folk Theorem

Theorem 8.5.1 (“The” Folk theorem) The set of uniform equilibrium payoffs is the
set of feasible and individually rational payoffs: E∞ = E.

Proof Weonly have to show that E ⊂ E∞. Fix u ∈ E . u is feasible, hence there exists
a play h = (a1, . . . , at , . . . ) such that for each player i , 1

T

∑T
t=1 gi (at ) →T→∞ ui .

The play h will be called the main path of the strategy, and playing according to
h for some player i at stage t means to play the i-component of at . For each pair of
distinct players (i, j), we fix xi, j inΔ(A j ) such that (xi, j ) j 	=i achieves the minimum
in the definition of vi . Fix now a player i in N . We define his strategy σi .

σi plays at stage 1 according to the main path, and continues to play according to
h as long as all the other players do. If at some stage t � 1, for the first time some
player j does not follow the main path, then σi plays at all the following stages the
mixed action x j,i (if for the first time several players leave the main path at the same
stage, by convention the smallest player, according to any fixed linear order on N
defined in advance, is punished). Since u is in IR, it is easy to see that σ = (σi )i∈N
is a uniform equilibrium of G∞ with payoff u. �

8.5.2 The Discounted Folk Theorem

Let us now consider discounted evaluations of payoffs, and come back to the
prisoner’s dilemma of Example 8.2.3 with discount rate λ ∈ (0, 1]. We wonder if
(3, 3) ∈ Eλ. Playing Di for the first time will increase once the stage payoff of
player i by 1 unit, but then at each stage the payoff of this player will be reduced
by 2. Hence with the standard Folk theorem strategies of Theorem 8.5.1, (3, 3) will
be in Gλ if 1 � 2

∑∞
t=1(1 − λ)t = 2(1 − λ)/λ, hence if the players are sufficiently

patient in the sense that λ � 2/3.
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In general we have Eλ ⊂ E∞ = E for each λ, and the convergence of Eλ to E
when patience becomes extreme (λ goes to 0 or δ goes to 1) is worth studying. This
convergence (and the convergences in the forthcoming Theorems 8.5.3, 8.5.6, 8.5.8)
should be understood with respect to the Hausdorff distance between non-empty
compact subsets of R

N , defined by

d(A, B) = max{sup
a∈A

inf
b∈B ‖a − b‖, sup

b∈B
inf
a∈A

‖a − b‖}.

Theorem 8.5.2 (Discounted Folk theorem [198]) Assume there are two players, or
that there exists u = (ui )i∈N in E such that for each player i , we have ui > vi . Then
Eλ −−→

λ→0
E.

Proof Since Eλ ⊂ E for each λ, all we have to show is: for all ε > 0, there exists a
λ0 > 0 such that for all λ ∈ (0,λ0), each point in E is ε-close to a point in Eλ.

(1) Fix ε > 0. There exists a λ̄ > 0 such that for each λ � λ̄ and each û in E , one
can find a periodic sequence h = (a1, . . . , at , . . . ) of points in A satisfying

∀i ∈ N ,∀T � 1,

∣
∣
∣
∣û

i −
∞∑

t=T

λ(1 − λ)t−T gi (at )

∣
∣
∣
∣ � ε.

If the players follow h by playing a1, . . . , at , . . . , not only is the discounted payoff
u† := ∑∞

t=1 λ(1 − λ)t−1g(at ) ε-close to û, but all continuation discounted payoffs
are.

Consider now û in E such that ûi � vi + 2ε for each i . Given a periodic sequence
h as above, consider the strategy profile where all players follow h, and deviations
of a player i at some stage are punished by all other players at his minmax level vi

at all subsequent stages. We have for each stage T :

∞∑

t=T

λ(1 − λ)t−T gi (at ) � ûi − ε � vi + ε � λ‖g‖∞ + (1 − λ)vi ,

assuming that λ is also small enough such that λ(‖g‖∞ − vi ) � ε for each i . Hence
at every stage T , the continuation payoff without deviating is at least as large as
the continuation payoff in case of deviation (at most ‖g‖∞ at stage T , and vi at all
following stages). No deviation if profitable, and u† belongs to Eλ.

We have obtained that for each ε > 0, there exists a λ0 > 0 such that for all λ ∈
(0,λ0), each point û in E such that ûi � vi + 2ε for each i is ε-close to a point in
Eλ.

(2) Assume that there exists a u∗ = (ui∗)i∈N in E and β > 0 such that for each
player i , we have ui∗ � vi + β.

Since E is convex and bounded, there exists a K > 0 such that for ε in (0,β] we
have
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∀u ∈ E, ∃û ∈ E s.t. : ‖u − û‖∞ � Kε and ∀i ∈ N , ûi � vi + 2ε.

(Proof: let K be such that 2‖u′ − u′′‖∞ � βK for all u′, u′′ in E , and define û =
(1 − 2ε

β
)u + 2ε

β
u∗.)

Fix ε in (0,β], and consider anyu in E . There exists a û ∈ E such that‖u − û‖∞ �
Kε and ûi � vi + 2ε for each i . By part (1), there exists a λ0, only depending on ε,
such that for allλ ∈ (0,λ0), û is ε-close to a point in Eλ.Henced(u, Eλ) � (K + 1)ε,
and d(E, Eλ) � (K + 1)ε. This is true for all ε > 0, hence Eλ −−→

λ→0
E .

(3) Assume finally that there are two players, and that we are not in case (2). By
convexity of E , we can assume without loss of generality that ∀u ∈ E , u1 = v1. The
case E = {v} is easy, so let us assume that E 	= {v}. By convexity of E again, the set
of feasible payoffs cog(A) is a subset of H := {u ∈ R

2, u1 � v1}, and each point in
E is a convex combination of points u in g(A) such that u1 = v1. One can proceed
as in part (1), with periodic sequences h = (a1, . . . , at , . . . ) of points in A such that
g1(at ) = v1 for each t , and no need to punish deviations by player 1, and obtain: for
each ε > 0, there exists a λ0 such that for all λ ∈ (0,λ0), each point u = (v1, u2) in
E such that u2 � v2 + 2ε is ε-close to a point in Eλ. The result follows. �

The following example (due to Forges, Mertens and Neyman [60]) is a counter-
example to the convergence of Eλ to E :

(1, 0, 0) (0, 1, 0)
(0, 1, 0) (1, 0, 1)

Player 1 chooses a row, player 2 chooses a column and player 3 chooses nothing here.
Essentially, this game is a zero-sum game between players 1 and 2, and in each Nash
equilibrium of Gλ each of these players independently randomizes at every stage
between his two actions with equal probabilities. Therefore Eλ = {(1/2, 1/2, 1/4)}
for each λ, whereas (1/2, 1/2, 1/2) ∈ E .

8.5.3 The Finitely Repeated Folk Theorem

We now consider finitely repeated games. In the prisoner’s dilemma, we have seen
that for each T , ET = {(1, 1)}. Hence the Pareto-optimal equilibrium payoff (3, 3)
cannot be approximated by equilibrium payoffs of finitely repeated games, and there
is no convergence of ET to E .

Theorem 8.5.3 (The finitely repeated Folk theorem [19]) Assume that for each
player i there exists a u in E1 such that ui > vi .

Then ET −−−→
T→∞ E.

Proof Since ET ⊂ E for each T , all we have to show is: for all ε > 0, there exists
a T0 > 0 such that for all T � T0, each point in E is ε-close to a point in ET . By
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assumption there exists a β > 0 and for each player i in N , a Nash equilibrium payoff
u(i) in E1 such that ui (i) � vi + β.

The idea is to play a longmain path of pure actions, where deviations are punished
by perpetual minmaxing, followed by several rounds of “good” Nash equilibria u(i)
for each player i , in order to reward the players in case no deviation occurs in the
main path.

Fix ε > 0. There exists an L � 1 such that each point u in E is ε-close to a point
û in E of the form û = 1

L

∑L
t=1 g(at ), with a1, . . . , aL in A. Fix such L , then fix

R such that Rβ � ‖g‖∞(L + 2) + L maxi vi and finally fix K large enough such
that 1

K � ε and nR
K L � ε (where n is the number of players). Consider a T -stage

repeated game, with T � K L + nR. By Euclidean division, T can be written as
T = K ′L + nR + L ′, with L ′ ∈ {0, . . . , L − 1} and K ′ � K .

Consider now u in E , and let û = 1
L

∑L
t=1 g(at ) be as above. Define the strategy

profile σ in the game with T = K ′L + nR + L ′ stages as follows:
In the main path, the players: first play K ′ blocks of length L , in each of these

blocks the sequence a1, . . . , aL is played, then play in a fixed given order, for each
player i , R times the Nash equilibrium of the one-shot game with payoff u(i), and
finally play for the remaining L ′ stages an arbitrary fixed Nash equilibrium x of the
one-shot game.

If a player deviates from the main path at some stage T , he is punished by the
other players at all subsequent stages at his minmax level vi .

We claim that σ is a Nash equilibrium of the T -stage repeated games. Indeed, sup-
pose player i deviates from the main path at stage t = kL + l, with k ∈ {0, K ′ − 1}
and l ∈ {1, . . . , L}. The sum of his payoffs, from stage t to stage T , is then at
most ‖g‖∞ + (T − t)vi . If he follows the main path, this sum would be at least
−‖g‖∞(L − l + 1) + (T − (k + 1)L)vi + Rβ. Since Rβ � ‖g‖∞(L + 2) + Lvi ,
we have −‖g‖∞(L − l + 1) + (T − (k + 1)L)vi + Rβ � ‖g‖∞ + (T − t)vi and
the deviation is not profitable. Later deviations from the main path are also not
profitable since one-shot Nash equilibria are played at the last nR + L ′ stages. We
obtain that σ is a Nash equilibrium, and its payoff u† belongs to ET . We have

u† = K ′L
T

û + R

T

∑

i∈N
u(i) + L ′

T
g(x),

and since T = K ′L + nR + L ′,

‖û − u†‖∞ � (nR + L ′)
T

(‖û‖∞ + ‖g‖∞) � 2
(nR + L)

T
‖g‖∞.

Since T � K L , the assumptions on K imply ‖û − u†‖∞ � 4ε‖g‖∞. Since u is ε-
close to û, ‖u − u†‖∞ � ε(1 + 4‖g‖∞), and the result follows. �
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8.5.4 Subgame-Perfect Folk Theorems

In the equilibria constructed in the previous proofs, after someplayer hasfirst deviated
from the main path, it might not be profitable for the other players to punish him.
One can then define, as in extensive-form games, the notion of a subgame-perfect
equilibrium. Given a history h in H and a strategy profile σ, the continuation strategy
σ[h] is defined as the strategy profile τ = (τ i )i∈N , where ∀i ∈ N , ∀h′ ∈ H : τ i (h′) =
σi (hh′),with the notation thathh′ is the concatenationof historyh followedbyhistory
h′.

8.5.4.1 Subgame-Perfect Uniform Equilibria

Definition 8.5.4 A subgame-perfect uniform equilibrium is a strategy profile σ in
Σ such that for each history h in H , σ[h] is a uniform equilibrium ofG∞. We denote
by E ′∞ the set of payoff profiles of these equilibria.

Considering h = ∅ implies that a subgame-perfect uniform equilibrium is a uni-
form equilibrium, hence E ′∞ ⊂ E∞ = E . In 1976, Aumann and Shapley, as well as
Rubinstein (see the re-editions from [14, 183]), proved slight variants of the follow-
ing result: introducing subgame-perfection changes nothing to the Folk theorem for
uniform equilibria.

Theorem 8.5.5 (Perfect Folk Theorem)

E ′
∞ = E∞ = E .

Proof Given a feasible and individually rational payoff, we have to construct a
subgame-perfect uniform equilibrium. In comparison with the proof of Theorem
8.5.1, it is sufficient to modify the punishment phase. If at some stage t , for the
first time player j leaves the main path, the other players − j will punish player j
(again, if for the first time several players leave the main path at the same stage,
by convention the smallest player, according to any fixed linear order on N defined
in advance, is punished), but now the punishment will not last forever. It will last
until some stage t̄ , and then, whatever has happened during the punishment phase,
all players forget everything and come back, as in stage 1, onto the main path. One
possibility is to define t̄ so that the expected average payoff of player j up to stage t̄
will be lower than v j + 1/t . Another possibility is to simply put t̄ = 2t . �

8.5.4.2 Subgame-Perfect Discounted Equilibria

Similarly, one can define the subgame-perfect equilibria of Gλ as Nash equilibria of
every subgame of Gλ, and we denote by E ′

λ the set of subgame-perfect equilibrium
payoffs. E ′

λ is non-empty since it contains the mixed Nash equilibrium payoffs of
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the stage game G, and compact since the set of subgame-perfect equilibria of Gλ is
an intersection of compact sets (one for each subgame).

Theorem 8.5.6 (Perfect discounted Folk theorem [69]) If E has non-empty interior,
then E ′

λ −−→
λ→0

E.

An example where E has empty interior and the convergence of E ′
λ to E fails is

the following two-player game:

(1, 0) (1, 1)
(0, 0) (0, 0)

In each subgame-perfect equilibrium of the discounted game, player 1 chooses the
Top row at every stage after any history, so E ′

λ = {(1, 1)} for each λ. However,
(1, 0) ∈ E .

The proof of Theorem 8.5.6 uses punishments and also “rewards” to give incita-
tions for the players to punish someone who deviated. The details are a bit technical,
and we mostly develop here a sketch of Mertens, Sorin and Zamir [137, Exercise 8,
Sect. IV.4] (see also [124, Sect. 3.8], or [68]).We start with a lemma, where B∞(d, r)
denotes the open ball of center d and radius r for ‖ · ‖∞. We give a complete proof
of the lemma in Exercise 11 at the end of this chapter.

Lemma 8.5.7 Given ε > 0 there exists a λ0 > 0 such that for every λ � λ0, for
every player i in N and feasible payoff d = (d j ) j∈N such that B∞(d, ε) ⊂ cog(A),
there exists a path (at )t�1 of elements in A such that

d =
∞∑

t=1

λ(1 − λ)t−1g(at )

(d is the λ-discounted payoff of the path), and for each T � 1,

∥
∥
∥
∥

∞∑

t=T

λ(1 − λ)t−T g(at ) − d

∥
∥
∥
∥∞

� ε, and
∞∑

t=T

λ(1 − λ)t−T gi (at ) � di

(all continuation payoffs are close to d, and for player i they are at least di ).

Proof of Theorem 8.5.6 We will actually prove that for each ε > 0, there exists a
λ0 such that if 0 < λ � λ0, every payoff d such that B∞(d, ε) ⊂ E is a subgame-
perfect equilibrium payoff of Gλ. This will be enough to prove the theorem since E
is convex with non-empty interior.

Fix ε, and a positive integer L such that Lε � 3‖g‖∞. Consider d = (di )i∈N such
that B∞(d, 5ε) ⊂ E . By Lemma 8.5.7, there exists a path (at )t�1 of elements in A
such that d = ∑∞

t=1 λ(1 − λ)t−1g(at ), and all continuation payoffs are ε-close to d.
For any history l = (lt )t=1,...,L in AL and player i in N , we define d(l, i) in R

N by:
di (l, i) = di − 4ε (� vi + ε), and for each player j 	= i , d j (l, i) is defined by the
equation
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d j =
L∑

t=1

λ(1 − λ)t−1g j (lt ) + (1 − λ)Ld j (l, i). (8.2)

For λ small enough (depending only on ε and L), |d j − d j (l, i)| � ε for j 	= i ,
and ‖d − d(l, i)‖∞ � 4ε, so we can apply Lemma 8.5.7 again and obtain a path
h(l, i) = (at (l, i))t�1 satisfying the conclusions of the lemma for d(l, i).

We will construct an equilibrium starting with the path (at )t�1. If a player i
deviates from the current path, he will be punished for L stages, then the path h(l, i)
will be played. When player i is punished, randomizations by the other players may
be required, so it is difficult to check for deviations of these players.HoweverEq. (8.2)
will ensure that they have the same continuation payoffs, so are indifferent between
all histories during the punishment phase. Formally, we define the strategy profile σ
by:

Initialization: h = (at )t�1. Start with Phase 1.
Phase 1: All players follow the path of pure actions h. As soon as a single player i

deviates from h, go to phase 2i . If several players deviate from h at the same stage,
ignore the deviations.

Phase 2i : During L independent stages, all players j 	= i punish player i to his
independent minmax, and player i plays a best response to the punishment. This
punishment phase defines a history l in AL of action profiles played. Go back to
phase 1, with h = h(l, i).

We show that σ is a subgame-perfect equilibrium, provided that λ is small enough
(independently of d). By the one-shot deviation principle (see question 1) of Exer-
cise 10 at the end of this chapter), it is enough to consider deviations at a single
stage.

(1) During the first phase 1, when (at )t�1 is played:
If a player i conforms to the strategy, his continuation payoff is at least di − ε. If

player i deviates, his continuation payoff is at most

λ‖g‖∞ + (1 − λ)((1 − (1 − λ)L)vi + (1 − λ)L(di − 4ε)).

Since vi � di − 5ε, the deviation is not profitable when λ is small enough (such that
λ(2‖g‖∞ + 4ε) � 3ε).

(2) During phase 1, with h = h(l, i) for some i :
If a player j 	= i conforms to the strategy, his continuation payoff is at least

d j (l, i) − ε � d j − 2ε. If j deviates, his continuation payoff is at most

λ‖g‖∞ + (1 − λ)((1 − (1 − λ)L)v j + (1 − λ)L(d j − 4ε)).

Again, v j � d j − 5ε ensures that the deviation is not profitable when λ is small
enough.

If player i conforms to the strategy, his continuation payoff is at least di (l, i) by
the property of h(l, i) coming from the last inequality of Lemma 8.5.7. If player i
deviates, his payoff is at most
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λ‖g‖∞ + (1 − λ)((1 − (1 − λ)L)vi + (1 − λ)L(di (l, i)).

Since vi � di (l, i) − ε, the deviation is not profitable if

2λ‖g‖∞ � ε(1 − λ)(1 − (1 − λ)L).

The right-hand side is equivalent to ελL when λ goes to 0, hence the definition of L
ensures that this deviation is not profitable for λ small.

(3) During phase 2i :
Each player j 	= i has, at every stage, a continuation payoff which is independent

of the remaining history to be played during this phase, so no deviation can be
profitable. Player i is punished at every stage, then has a continuation payoff of
di (l, i) = di − 4ε which is independent of the history l eventually played in this
phase, so he cannot do better than best replying at every stage to the punishment.

No deviation is thus profitable, and σ is a subgame perfect equilibrium of the
λ-discounted game. �

8.5.4.3 Subgame-Perfect Finitely Repeated Equilibria

Finally, one defines the subgame-perfect equilibria of GT as usual, i.e. as strategy
profiles σ such that ∀t ∈ {0, . . . , T − 1},∀h ∈ Ht , σ[h] is a Nash equilibrium of the
game starting at h, i.e. of the game GT−t . We denote by E ′

T the (non-empty and
compact) set of subgame-perfect equilibria of GT .

Theorem 8.5.8 (Perfect finitely repeated Folk theorem [81]) Assume that for each
player i , there exists x and y in E1 such that xi > yi , and that E has a non-empty
interior. Then E ′

T −−−→
T→∞ E.

Gossner’s proof includes main paths, punishments and rewards. It starts with a Folk
theorem for finitely repeated games with terminal payoffs, using statistical test func-
tions to induce effective punishment during the punishment phases. It is omitted
here.

We conclude this sectionwith a standard example of a subgame-perfect discounted
equilibrium from economics.

Example 8.5.9 (Repeated Bertrand competition) Consider an oligopoly with n iden-
tical firms, producing the same good with constant marginal cost c > 0. Each of the
firms has to fix a selling price, and the consumers will buy the good from the firm
with the lowest price (in case of several lowest prices, the firms with that price will
equally share the market). We denote by D(p) the number of consumers willing to
buy a unit of good at price p and assume that the demand is always fulfilled. Each
firm wants to maximize its profit, which is π(p) = D(p)(p − c) if the firm is alone
with the lowest price p, and π(p) = 0 if the firm sells nothing. Assume that π has a
maximum at some price p̂ > c.
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If the game is playedonce, there is a unique equilibriumpricewhich is themarginal
cost c, and the profits are zero. Let us introduce dynamics (firms can adapt their
price depending on the competition) and consider the repeated game with discount
factor λ. Define a strategy profile where everyone plays p̂ as long as everybody
does so, and if there is a deviation everyone plays c forever. The payoff of a firm
if all firms follow this strategy is π( p̂)/n, and the payoff of a firm deviating from
this strategy by playing a price p at some stage will be, from that stage on, at most
λπ(p) + (1 − λ)0 = λπ(p). Hence if the players are sufficiently patient in the sense
that λ � 1/n, we have a subgame-perfect equilibrium where the realized price is the
collusion (or monopoly) price p̂.

8.6 Extensions: Stochastic Games, Incomplete Information,
Signals

In the following sections, we present a few examples of general repeated games
(or Markovian Dynamic Games). In each of them, we assume that players always
remember their ownpast actions and signals received, so that they are assumed to have
perfect recall. In every case, a strategy σi for player i is a sequence (σi

t )t�1, where
σi
t gives the mixed action played by player i at stage t + 1 as a function of the past

history observed by this player at previous stages. A strategy profile (σi )i naturally
induces a probability distribution over plays (infinite joint histories), and one can
define as in Sect. 8.3.3 the T -stage game, the λ-discounted game and the uniform
game. Since we will always consider games with finite sets of players, actions, states
and signals, the existence of Nash equilibria (value and optimal strategies in the
zero-sum case) is ensured in the T -stage game and in the λ-discounted game.

8.6.1 A Repeated Game with Signals

In a repeated game with signals (also called with imperfect observation or with
imperfect monitoring), players do not perfectly observe after each stage the action
profile that has been played, but receive private signals depending on this action
profile. In the following example there are two players, and the sets of signals are
given by U 1 = {u, v, w} and U 2 = {∗}. This means that after each stage player 1
will receive a signal in {u, v, w} whereas player 2 will always receive the signal ∗,
which is equivalent to receiving no signal at all: the observation of player 2 is said
to be trivial. Payoffs in the stage game and signals for player 1 are given by:

L R
T (0, 0), u (4, 5), v
B (1, 0), w (5, 0), w
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For example, if at some stage player 1 plays T and player 2 plays R then the stage
payoff is (4, 5), and before playing the next stage player 1 receives the signal v (hence
he can deduce that player 2 has played R and compute the payoffs) whereas player 2
observes nothing (and in particular is not able to deduce his payoff). Here (4, 5) is
feasible and individually rational. However, since player 2 has trivial observation, it
is dominant for player 1 in the repeated game to play B at every stage. At equilibrium
it is not possible to play (T, R) a significant number of times, otherwise player 1
could profitably deviate by playing B without being punished afterwards. Formally,
one can easily show here that E∞ = co{(1, 0), (5, 0)}, and thus is a strict subset of
the set of feasible and individually rational payoffs E .

Computing E∞ or limλ→0 Eλ for repeated games with signals is not known in
general, even for two players. There is a wide literature on this topic. In particular,
Lehrer [119, 120], introduces the notions of indistinguishable and more informative
mixed actions, Renault and Tomala [170] give a general characterization of uniform
communication equilibrium payoffs in repeated games with signals (generalizing the
notion of individually rational payoffs to jointly rational payoffs, see Exercise 9), and
Gossner and Tomala [82] use entropymethods to compute theminmax levels in some
repeated games with signals. In repeated games with imperfect public observation,
Abreu, Pearce and Stacchetti [1] provide, for a given discount factor, a characteriza-
tion of the perfect public equilibrium payoff set as the largest bounded fixed point
of an operator (see Exercise 10), and Fudenberg, Levine and Maskin [68] provide
conditions of full rank and pairwise-identifiability implying the Folk theorem, in the
sense of convergence of Eλ to the set of feasible and individually rational payoffs.

8.6.2 A Stochastic Game: The Big Match

Stochastic games were introduced by Shapley in [188]. In these dynamic interactions
there are several possible states, and to each state is associated a strategic game. The
state may evolve from stage to stage, and at every stage the game corresponding
to the current state is played. The action profile and the current state determine the
current payoffs and also the transition to the next state.

The following example is a two-player zero-sum game called the “Big Match”,
introduced by Gillette [77].

L R
T 1∗ 0∗
B 0 0

The players start at stage 1 by playing the above matrix. They continue as long as
player 1 plays B (and both players observe after each stage the action played by their
opponent). However, if at some stage player 1 plays T , then the game stops and either
at that stage player 2 has played L and player 1 has a payoff of 1 at all future stages,
or player 2 has played R at that stage and player 1 has a payoff of 0 at all future
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stages. Formally, there are three states here: the initial state, the state where player 1
has payoff 0 whatever happens and the state where player 1 has payoff 1 whatever
happens. The last two states are said to be absorbing, and once an absorbing state is
reached the play stays there forever (absorbing states are represented by a ∗ in the
matrix).

Denote by vT the value of the stochastic game with T stages (and average payoff
Eσ( 1

T

∑T
t=1 gt )) and by vλ the value of the discounted stochastic game. Shapley

[188] shows that dynamic programming naturally extends and leads to the Shapley
formulas: ∀T � 1, ∀λ ∈ (0, 1],

(T + 1)vT+1 = val

(
T + 1 0
T vT 1 + T vT

)

,

vλ = val

(
1 0

(1 − λ)vλ 1 + λ + (1 − λ)vλ

)

,

and one easily gets vT = vλ = 1/2 for each T and λ.
Suppose now that the players do not precisely know the large number of stages

to be played. Player 2 can play at every stage the mixed action 1/2 L + 1/2 R,
and by doing so he guarantees an expected payoff of 1/2 at every stage. Hence
∃σ2, ∀T, ∀σ1, γ1

T (σ1,σ2) � 1/2. Here, it is more difficult and fascinating to figure
out good long-term strategies for player 1.

Theorem 8.6.1 ([28]) The Big Match has a uniform value which is 1/2, i.e.:
Player 1 uniformly guarantees 1/2, i.e. ∀ε > 0, ∃σ1, ∃T0, ∀T � T0, ∀σ2, γ1

T (σ1,

σ2) � 1/2 − ε; and
Player 2 uniformly guarantees 1/2, i.e. ∀ε > 0, ∃σ2, ∃T0, ∀T � T0, ∀σ1, γ1

T (σ1,

σ2) � 1/2 + ε.

If the number of repetitions is large enough, known or possibly unknown to the
players, the fair “price per period” for this game is 1/2.

Proof (the redaction here follows [168]) We need to show that player 1 uniformly
guarantees 1/2. First define the following random variables, for all t � 1: gt is the
payoff of player 1 at stage t , it ∈ {T, B} is the action played by player 1 at stage t , jt ∈
{L , R} is the action played by player 2 at stage t , Lt = ∑t−1

s=1 1 js=L is the number of
stages in 1, . . . , t − 1 where player 2 has played L , Rt = ∑t−1

s=1 1 js=R = t − 1 − Lt

is the number of stages in 1, . . . , t − 1 where player 2 has played R, and mt =
Rt − Lt ∈ {−(t − 1), . . . , 0, . . . , t − 1}. R1 = L1 = m1 = 0.

Given a positive integer parameter M , let us define the following strategy σ1
M

of player 1: at any stage t , σ1
M plays T with probability 1

(mt+M+1)2 , and B with the

remaining probability. Some intuition for σ1
M can be given. Assume we are still in the

non-absorbing state at stage t . If player 2 has played R often at past stages, player 1
is doing well and has received good payoffs,mt is large and σ1

M plays the risky action
T with small probability. On the other hand if player 2 is playing L often, player 1
has received low payoffs but player 2 is taking high risks; mt is small and σ1

M plays
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the risky action T with high probability.
Notice that σ1

M is well defined. If mt = −M then σ1
M plays T with probability 1

at stage t and then the game is over. So the event mt � −M − 1 has probability 0
as long as the play is in the non-absorbing state. At any stage t in the non-absorbing
state, we have −M � mt � t − 1, and σ1

M plays T with a probability in the interval
[ 1
(M+t)2 , 1].
We will show that σ1

M uniformly guarantees M
2(M+1) , which is close to 1/2 for M

large. More precisely we will prove that

∀T � 1,∀M � 0,∀σ2, Eσ1
M ,σ2

(
1

T

T∑

t=1

gt

)

� M

2(M + 1)
− M

2T
. (8.3)

We now prove (8.3). Notice that we can restrict attention to strategies of player 2
which are pure, and (because there is a unique relevant history of moves of player 1)
independent of the history. That is, we can assume w.l.o.g. that player 2 plays a fixed
deterministic sequence y = ( j1, . . . , jt , . . . ) ∈ {L , R}∞.

T being fixed until the end of the proof, we define the random variable t∗ as the
time of absorption:

t∗ = inf{s ∈ {1, . . . , T }, is = T }, with the convention

t∗ = T + 1 if ∀s ∈ {1, . . . , T }, is = B.

Recall that Rt = mt + Lt = t − 1 − Lt , so that Rt = 1
2 (mt + t − 1). For t � t∗, we

have mt � −M , so

Rt∗ � 1

2
(t∗ − M − 1).

Also define Xt as the following fictitious payoff of player 1: Xt = 1/2 if t �
t∗ − 1, Xt = 1 if t � t∗ and jt∗ = L , and Xt = 0 if t � t∗ and jt∗ = R. Xt is the
random variable of the limit value of the current state. A simple computation shows

Eσ1
M ,y

(
1

T

T∑

t=1

gt

)

= Eσ1
M ,y

1

T
(Rt∗ + (T − t∗ + 1)1 jt∗ =L)

� Eσ1
M ,y

1

T

(
1

2
(t∗ − M − 1) + (T − t∗ + 1)1 jt∗ =L

)

� − M

2T
+ Eσ1

M ,y
1

T

(
1

2
(t∗ − 1) + (T − t∗ + 1)1 jt∗ =L

)

� − M

2T
+ Eσ1

M ,y

(
1

T

T∑

t=1

Xt

)

.

To prove (8.3), it is thus enough to show the following lemma.
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Lemma 8.6.2 For all t in {1, . . . , T }, y in {L , R}∞ and M � 1,

Eσ1
M ,y (Xt ) � M

2(M + 1)
.

Proof of the lemma. The proof is by induction on t . For t = 1,

Eσ1
M ,y (X1) = 1

2

(
1 − 1

(M + 1)2

)
+ 1

(M + 1)2
1 j1=L

� 1

2

(
1 − 1

(M + 1)2

)
� M

2(M + 1)
.

Assume the lemma is true for t ∈ {1, . . . , T − 1}. Consider y = ( j1, . . . ) in {L , R}∞,
and write y = ( j1, y+) with y+ = ( j2, j3, . . . ) ∈ {L , R}∞. If j1 = L ,

Eσ1
M ,y (Xt+1) = 1

(M + 1)2
1 + (1 − 1

(M + 1)2
)EσM−1,y+(Xt ).

By the induction hypothesis, EσM−1,y+(Xt ) � M−1
2M , so

Eσ1
M ,y (Xt+1) � M

2(M + 1)
.

Otherwise j1 = R, and

Eσ1
M ,y (Xt+1) =

(
1 − 1

(M + 1)2

)
EσM+1,y+(Xt )

�
(
1 − 1

(M + 1)2

) M + 1

2(M + 2)
= M

2(M + 1)
.

Lemma 8.6.2 is proved. �
This concludes the proof of Theorem 8.6.1. �
The existence of a uniform value for zero-sum stochastic games (with finite states

and actions) has been proved inMertens andNeyman [136]. The generalization to the
existence of equilibrium payoffs in non-zero-sum stochastic games was completed
by Vieille [218, 219] for two players, and the problem is still open for more than two
players (see Exercise 12, and Solan-Vieille [196], on quitting games). There is a wide
literature on stochastic games, see the surveys byMertens [135], Vieille [220], Solan
[195] and Laraki–Sorin [118] and the books by Mertens et al. [137], Sorin [203],
and Neyman and Sorin [154]. In particular (and among others), Sorin analyses a
non-zero sum version of the Big Match [199], Renault and Ziliotto [172] provide
an example where the equilibrium payoffs set does not converge when the discount
rate goes to zero, Flesch et al. [55] exhibit a three-player quitting game without
stationary ε-equilibria and Solan [194] shows the existence of uniform equilibrium
payoffs in three-player stochastic games which are absorbing (there is a single state
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which is non-absorbing, i.e. which can possibly be left by the players). In the zero-
sum case, one can ask whether the results can be extended to compact action sets
and continuous payoffs and transitions: the answer is positive with some algebraic
definability conditions [29], but in the general compact-continuous case limT vT and
limλ vλ may even fail to exist [221].

We can mention the existence of several links and common tools between the
asymptotic behavior in repeated games (as the discount factor λ goes to zero or
the horizon T goes to infinity) and the convergence of time discretizations of some
continuous time games (as the mesh goes to zero), see for instance Laraki and Sorin
[118]. Finally, observe that there are other ways of evaluating the stream of payoffs
in repeated games, see Maitra and Sudderth [125], Martin [126, 127] and Neyman
and Sorin [154].

8.6.3 Repeated Games with Incomplete Information: The
Cav u Theorem

In a repeated game with incomplete information, there are several states as well, and
to each state is associated a possible stage game. One of the states is selected once
and for all at the beginning of the game, and at each stage the players will play the
game corresponding to this state. The state is fixed and does not evolve from stage to
stage. The difficulty comes from the fact that the players imperfectly know it: each
player initially receives a signal depending on the selected state, and consequently
may have incomplete information on the state and on the knowledge of the other
players on the state.

In the following examples we have two players, zero-sum, and we assume that
there is lack of information on one side: initially the state k ∈ {a, b} is selected
according to the distribution p = (1/2, 1/2), both players 1 and 2 know p and the
payoff matricesGa andGb, but only player 1 learns k. Then the gameGk is repeated,
and after each stage the actions played are publicly observed. We denote by vT the
value of the T -stage game with average payoffs and will discuss, without proofs,
the value of limT→∞ vT . By Theorem 8.6.6 below, this limit will always exist and
coincide with the limit limλ→0 vλ of the values of the discounted games.

Example 8.6.3 Ga =
(
0 0
0 −1

)

and Gb =
(−1 0

0 0

)

.

Easy. Player 1 can play T (Top) if the state is a and B (Bottom) if the state is b.
Hence vT = 0 for each T , and limT→∞ vT = 0.

Example 8.6.4 Ga =
(
1 0
0 0

)

and Gb =
(
0 0
0 1

)

.

A “naive” strategy of player 1 would be to play at stage 1 the action T if the state
is a, and the action B if the state is b. This strategy is called completely revealing,
because when player 1 uses it, player 2 can deduce the selected state from the action
of player 1. It is optimal here in the 1-stage game, but very bad when the number
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of repetitions is large. On the contrary, player 1 can play without using his private
information on the state, i.e. use a non-revealing strategy: he can consider the average

matrix 1
2G

a + 1
2G

b =
(
1/2 0
0 1/2

)

, and play at each stage the corresponding optimal

strategy 1/2 T +1/2 B. The value of thismatrix being 1/4,we have: vT � 1
4 for each T .

One can also show here that playing non-revealing, i.e. not using his private
information, is the best that player 1 can do in the long run: vT −−−→

T→∞ 1/4.

Example 8.6.5 Ga =
(
4 0 2
4 0 −2

)

and Gb =
(
0 4 −2
0 4 2

)

.

Playing a completely revealing strategy guarantees nothing positive for player 1,
because player 2 can finally play M(iddle) if the state is a, and L(eft) if the state is b.
Playing a non-revealing strategy leads to considering the average game 1

2G
a + 1

2G
b

=
(
2 2 0
2 2 0

)

, and guarantees nothing positive either.

Here, it is interesting for player 1 to play the following strategy σ1: initially he
selects once and for all an element s in {T, B} as follows: if k = a, choose s = T
with probability 3/4, and s = B with probability 1/4; and if k = b, choose s = T
with probability 1/4, and s = B with probability 3/4. Then player 1 plays s at each
stage, independently of the moves of player 2.

The conditional probabilities satisfy: P(k = a|s = T ) = 3/4, and P(k = a|s =
B) = 1/4. Hence at the end of the first stage, player 2 having observed the first move
of player 1 will learn something about the state of Nature: his belief will move from
1
2a + 1

2b to 3
4a + 1

4b or to 1
4a + 3

4b. But still he does not entirely know the state:
there is partial revelation of information. The games 3

4G
a + 1

4G
b and 1

4G
a + 3

4G
b

both have value 1, and respective optimal strategies for player 1 are given by T and
by B, they correspond to the actions played by player 1. Hence playing σ1 guarantees
1 to player 1: ∀T, ∀σ2, γ1

T (σ1,σ2) � 1, and one can prove that player 1 cannot do
better here in the long run: vT −−−→

T→∞ 1.

8.6.3.1 General Case of Incomplete Information on One Side

The next result is due to Aumann andMaschler in the sixties (1966, with a re-edition
in [13]). It is valid for any finite set of states K and any collection of payoff matrices
(Gk)k∈K of the same size.

Theorem 8.6.6 In a zero-sum repeated game with lack of information on one side
where the initial probability is p and the payoff matrices are given by (Gk)k∈K , one
has

lim
T→∞ vT (p) = lim

λ→0
vλ(p) = cav u(p),

where u : Δ(K ) → R is such that, for each probability q = (qk)k∈K , u(q) is the
value of the matrix

∑
k∈K qkGk, and cav u is the smallest concave function above u.
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u(p)

cav u(p)

1
4

1
2

3
4 1

1

0 p

This picture corresponds to Example 8.6.5: cav u(1/2) = 1
2 u(1/4) + 1

2 u(3/4) =
1. In Example 8.6.4, u(p) = p(1 − p) for each p in [0, 1], so u is concave and
cav u = u.

Proof The presentation here essentially follows [165]. Denote by M the constant
maxk,i, j |Gk(i, j)|.

(1)Consider the T + T ′-stage gamewith average payoffs. Player 2 canfirst play an
optimal strategy in the T -stage game, then forget everything and play an optimal strat-
egy in the T ′-stage game. This implies that: (T + T ′)vT+T ′(p) � vT (p) + vT ′(p).
Since (vT (p))T is bounded, it follows that:

vT (p) −−−→
T→∞ inf

T
vT (p). (8.4)

(2) Splitting. The initial probability p = (pk)k∈K represents the initial belief, or
the a priori, of player 2 on the selected state of Nature. Assume that player 1 chooses
his first action, or more generally an abstract message or signal s from a finite set
S, according to a probability distribution depending on the state, i.e. according to a
transition probability x = (xk)k∈K ∈ Δ(S)K . For each signal s, the probability that
s is chosen is denoted λ(x, s) = ∑

k p
kxk(s), and given s such that λ(x, s) > 0 the

conditional probability on K , or a posteriori of player 2, is p̂(x, s) =
(

pk xk (s)
λ(x,s)

)

k∈K
.

We clearly have
p =

∑

s∈S
λ(x, s) p̂(x, s), (8.5)

so the a priori p lies in the convex hull of the a posteriori. The following lemma
expresses a converse: player 1 is able to induce any family of a posteriori containing

p in its convex hull. The proof is simple: just put xk(s) = λs pks
pk if pk > 0.

Splitting lemma. Assume that p is a convex combination p = ∑
s∈S λs ps with pos-

itive coefficients. Then there exists a transition probability x ∈ Δ(S)K such that
∀s ∈ S, λs = λ(x, s) and ps = p̂(x, s).

As a consequence, observe that in the T -stage game with a priori p, player 1 can
first choose s according to xk , then play an optimal strategy in the T -stage game with
initial probability ps . This implies that vT is a concave function of p.

Imagine now that in the T -stage game with a priori p, player 1 decides to reveal
no information on the selected state, and plays independently of it. Since payoffs
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are defined via expectations, it is as if the players were repeating the average matrix
game G(p) = ∑

k∈K pkGk , with value denoted u(p). So vT (p) � u(p) for each T ,
and since vT is concave,

∀p ∈ Δ(K ),∀T � 1, vT (p) � cav u(p). (8.6)

Remark u is Lipschitz with constant M and cav u(p) is equal to

max
{∑

s∈S λsu(ps), S finite,∀s λs � 0, ps ∈ Δ(K ),
∑

s∈S λs = 1,
∑

s∈S λs ps = p
}
.

(3) Martingale of a posteriori. Equation (8.5) not only tells that the a posteriori
contains p in their convex hull, but also that the expectation of the a posteriori is the
a priori. Here we are in a dynamic context, and for every strategy profile σ one can
define the process (pt (σ))t�0 of the a posteriori of player 2. We have p0 = p, and
pt (σ) is the random variable of player 2’s belief on the state after the first t stages.
More precisely, a strategy profile σ, together with the initial probability p, naturally
induces a probability Pp,σ over the set of plays K × (I × J )∞, and we define for
any t � 0, ht = (i1, j1, . . . , it , jt ) ∈ (I × J )t and k in K :

pkt (σ, ht ) = Pp,σ(k|ht) = pkPk,σ(ht )

Pp,σ(ht )
.

pt (σ, ht ) = (pkt (σ, ht ))k∈K ∈ Δ(K ) (arbitrarily defined if Pp,σ(ht ) = 0) is the con-
ditional probability on the state of Nature given that σ is played and ht has occurred
in the first t stages. It is easy to see that as soon as Pp,σ(ht ) > 0, pt (σ, ht ) does not
depend on player 2’s strategy σ2, nor on player 2’s last action jt . It is fundamental
to observe that:

Martingale of a posteriori: (pt (σ))t�0 is a Pp,σ-martingale with values in Δ(K ).

This is indeed a general property of Bayesian learning of a fixed unknown param-
eter: the expectation of what I will know tomorrow is what I know today. This
martingale is controlled by the informed player, and the splitting lemma shows that
this player can induce any martingale issued from the a priori p. Notice that, to be
able to compute the realizations of themartingale, player 2 needs to know the strategy
σ1 used by player 1.

We now conclude the proof, with the following idea. The martingale (pt (σ))t�0 is
bounded, hence will converge almost surely, and there is a bound on its L1 variation
(see Lemma 8.6.7 below). This means that after a certain stage the martingale will
essentially remain constant, so approximately player 1 will play in a non-revealing
way, and so will not be able to have a stage payoff greater than u(q), where q is a
“limit a posteriori”. Since the expectation of the a posteriori is the a priori p, player 1
cannot guarantee more than

max
{∑

s∈S λsu(ps), S finite,∀s ∈ S λs �0, ps ∈ Δ(K ),
∑

s∈S λs = 1,
∑

s∈S λs ps = p
}
,
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that is, more than cav u(p). Let us now proceed to the formal proof.
Fix a strategy σ1 of player 1, and define the strategy σ2 of player 2 as follows:

play at each stage an optimal strategy in the matrix game G(pt ), where pt is the
current a posteriori in Δ(K ). Assume that σ = (σ1,σ2) is played in the repeated
game with initial probability p. To simplify the notation, we write P for Pp,σ , pt (ht )
for pt (σ, ht ), etc. We use everywhere ‖ · ‖ = ‖ · ‖1. To avoid confusion between
variables and random variables in the following computations, we will use tildes to
denote random variables, e.g. k̃ will denote the random variable of the selected state.

Lemma 8.6.7

∀T � 1,
1

T

T−1∑

t=0

E(‖pt+1 − pt‖) �
∑

k∈K
√
pk(1 − pk)√
T

.

Proof This is a property of martingales with values in Δ(K ) and expectation p. We
have for each state k and t � 0:

E
(
(pkt+1 − pkt )

2
) = E(E((pkt+1 − pkt )

2|Ht )),

where Ht is the σ-algebra on plays generated by the first t action profiles. So

E
(
(pkt+1 − pkt )

2) = E(E((pkt+1)
2 + (pkt )

2 − 2pkt+1 p
k
t |Ht ))

= E((pkt+1)
2) − E((pkt )

2).

So
E

(∑T−1
t=0 (pkt+1 − pkt )

2
)

= E
(
(pkT )2

) − (pk)2 � pk(1 − pk).

By the Cauchy–Schwarz inequality, we also have

E

(
1

T

∑T−1
t=0

∣
∣pkt+1 − pkt

∣
∣
)

�
√

1

T
E

(∑T−1
t=0 (pkt+1 − pkt )

2
)

for each k, and the result follows. �
As soon as player 1 uses a strategy which depends on the selected state, the

martingale of a posteriori will move and player 2 will have learnt something about
the state. This is the dilemma of the informed player: he cannot use the information
on the state without revealing information. For ht in (I × J )t , σ1

t+1(k, ht ) is the
mixed action in Δ(I ) played by player 1 at stage t + 1 if the state is k and ht has
previously occurred, and we write σ̄1

t+1(ht ) for the law of the action of player 1
of stage t + 1 after ht : σ̄1

t+1(ht ) = ∑
k∈K pkt (ht )σ

1
t+1(k, ht ) ∈ Δ(I ). σ̄t+1(ht ) can

be seen as the average action played by player 1 after ht , and will be used as a
non-revealing approximation for (σ1

t+1(k, ht ))k . The next lemma precisely links the
variation of the martingale (pt (σ))t�0, i.e. the information revealed by player 1, and
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the dependence of player 1’s action on the selected state, i.e. the information used
by player 1.

Lemma 8.6.8

∀t � 0,∀ht ∈ (I × J )t , E (‖pt+1 − pt‖ |ht ) = E

(∥
∥
∥σk̃

t+1(ht ) − σ̄t+1(ht )
∥
∥
∥ |ht

)
.

Proof Fix t � 0 and ht in (I × J )t s.t. Pp,σ(ht ) > 0. For (it+1, jt+1) in I × J , we
have

pkt+1(ht , it+1, jt+1) = P(k̃ = k|ht , it+1)

= P(k̃ = k|ht)P(it+1|k, ht )
P(it+1|ht )

= pkt (ht )σ
1
t+1(k, ht )(it+1)

σ̄1
t+1(ht )(it+1)

.

Consequently,

E(‖pt+1 − pt‖|ht) =
∑

it+1∈I
σ̄1
t+1(ht )(it+1)

∑

k∈K
|pkt+1(ht , it+1) − pkt (ht )|.

=
∑

it+1∈I

∑

k∈K
|pkt (ht )σ1

t+1(k, ht )(it+1) − σ̄1
t+1(ht )(it+1)p

k
t (ht )|

=
∑

k∈K
pkt (ht )‖σ1

t+1(k, ht ) − σ̄1
t+1(ht )‖

= E

(
‖σ1

t+1(k̃, ht ) − σ̄1
t+1(ht )‖|ht

)
. �

We can now control payoffs. For t � 0 and ht in (I × J )t :

E

(
Gk̃(ı̃t+1, j̃t+1)|ht

)
=

∑

k∈K
pkt (ht )G

k(σ1
t+1(k, ht ),σ

2
t+1(ht ))

�
∑

k∈K
pkt (ht )G

k(σ̄1
t+1(ht ),σ

2
t+1(ht ))

+M
∑

k∈K
pkt (ht )‖σ1

t+1(k, ht ) − σ̄1
t+1(ht )‖

� u(pt (ht )) + M
∑

k∈K
pkt (ht )‖σ1

t+1(k, ht ) − σ̄1
t+1(ht )‖,

where u(pt (ht )) comes from the definition of σ2. By Lemma 8.6.8, we get

E

(
Gk̃(ı̃t+1, j̃t+1)|ht

)
� u(pt (ht )) + ME (‖pt+1 − pt‖|ht ) .
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Applying Jensen’s inequality yields

E

(
Gk̃(ı̃t+1, j̃t+1)

)
� cav u(p) + ME (‖pt+1 − pt‖) .

We now apply Lemma 8.6.7 and obtain:

γ
1,p
T (σ1,σ2) = E

(
1

T

∑T−1
t=0 Gk̃(ı̃t+1, j̃t+1)

)

� cav u(p) + M√
T

∑

k∈K

√
pk(1 − pk).

Since this is true for any strategy σ1 of player 1, we obtain

∀p ∈ Δ(K ),∀T � 1, vT (p) � cav u(p) + M
∑

k∈K
√
pk(1 − pk)√
T

. (8.7)

Finally, Theorem 8.6.6 follows from (8.4), (8.6) and (8.7). �
Aumann and Maschler also showed that for this class of games, limλ→0 vλ(p) =

cav u(p), that the uniform value exists and both players have optimal strategies, i.e.:

∃σ1,∀ε > 0, ∃T0,∀T � T0, ∀σ2, γ1
T (σ1,σ2) � cav u(p) − ε,

∃σ2,∀ε > 0, ∃T0, ∀T � T0, ∀σ1, γ1
T (σ1,σ2) � cav u(p) + ε.

Theorem 8.6.6 and the above results have been generalized in many ways since the
1960s (see in particular the books [137, 203]). For zero-sum repeated games with
incomplete information, the case of incomplete information on both sides has been
extensively investigated, e.g.: convergence of (vT )T and (vλ)λ to the unique solution
of a system of functional equations [138, 140], speed of convergence [41, 42, 139],
lack of information on one and a half sides [205], the splitting game [115, 116],
extension of the convergence to games where the private states of the players evolve
according to exogenous and independent Markov chains [76]. General results also
exist in the one-player case of dynamic programming or Markov decision problems
with imperfect signals on the state [166, 171, 179], with extensions to zero-sum
repeated games where one player is informed of the state and controls the transitions
[167]. For two-player general-sum repeated games with lack of information on one
side, the existence of uniform equilibrium was proved in Sorin [197] for two states
and generalized by Simon et al. [190] for any number of states (extended to state
independent signals in [164]); and a characterization of equilibrium payoffs has been
given by Hart [94] (see also [8]).

Let us finally mention the existence, in the class of two-player hidden stochastic
games (stochastic games with public signals on the unobserved state), of robust
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counter-examples for the convergence of the T -stage or λ-discounted equilibrium
payoffs [232] for the values in the zero-sum case, Renault–Ziliotto [172] for the
equilibrium payoff sets in the non-zero-sum case.

8.7 Exercises

Exercise 1. Feasible and IR Payoffs
Compute the set of feasible and individually rational payoffs in the following games:

(1)
L R

T (1, 1) (3, 0)
B (0, 3) (0, 0)

(2)
L R

T (1, 0) (0, 1)
B (0, 0) (1, 1)

(3)
L R

T (1,−1) (−1, 1)
B (−1, 1) (1,−1)

(4)

W E

L R
T (0, 0, 0) (0, 1, 0)
B (1, 0, 0) (0, 0, 1)

L R
T (0, 0, 1) (1, 0, 0)
B (0, 1, 0) (0, 0, 0)

Exercise 2. Zero-sum repeated games
Let G be a finite two-player zero-sum game. What are the equilibrium payoffs of
the finitely repeated game GT , of the discounted game Gλ, and of the uniform game
G∞?

Exercise 3. Cesaro and Abel evaluations
Prove Lemma 8.3.5.

Exercise 4. (Sorin [198])
Let G be a finite two-player game such that E1 = {(v1, v2)}, i.e. there is a unique
Nash equilibrium payoff ofG where both players receive their independent minmax.
Show that ET = {(v1, v2)} for each T .

Exercise 5. Minmax not feasible
Find a 2-player finite game G where the vector of independent minmax v = (vi )i∈N
is not feasible.

Exercise 6. Repetition and cooperation

Let G be the following strategic game:
L R

T (0, 0) (0, 2)
B (2, 0) (0, 0)
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(1) Compute the mixed Nash equilibrium payoffs, and the correlated equilibrium
payoffs of G.

(2) We assume that G is played twice, and after the first stage the actions actually
played are publicly announced. We also assume that the payoffs of the players
are just given by the actions of stage 2. This defines a new game �. Show that
(1, 1) is an equilibrium payoff of �.

Exercise 7. Prisoner’s dilemma with a blind player
Consider a repeated prisoner’s dilemma where at the end of every stage, player 2
observes the action of player 1 but player 1 observes nothing of the past actions of
player 2.

C2 D2

C1 (3, 3) (0, 4)
D1 (4, 0) (1, 1)

Given λ ∈ [0, 1), compute the set of equilibrium payoffs Eλ of the λ-discounted
repeated game.

Exercise 8. Battle of the sexes in the dark
Consider the battle of sexes played offline (in the dark): the players do not observe
the actions of the other player between the stages.

C2 D2

C1 (2, 1) (0, 0)
D1 (0, 0) (1, 2)

Compute
⋃

T�1
ET , where ET is the set of Nash equilibrium payoffs of the T -stage

repeated game with average payoffs.

Exercise 9. Jointly rational payoffs
Consider the following three-player repeated game with signals.

W M

L R
T (0, 0, 0) (0, 1, 0)
B (1, 0, 0) (1, 1, 0)

L R
T (0, 1, 0) (0, 1, 0)
B (0, 1, 0) (0, 1, 0)

E

L R
T (1, 0, 0) (1, 0, 0)
B (1, 0, 0) (1, 0, 0)

Player 1 chooses the row, player 2 chooses the column and player 3 chooses the
matrix. At the end of every stage, players 1 and 2 perfectly observe all actions
played, whereas player 3 observes the signal s if the action profile played by player 1
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and player 2 is (T, L), and player 3 observes s ′ otherwise. Notice that the payoff of
player 3 is identically 0.

(1) Compute the set of feasible and individually rational payoffs.
(2) Show that for every T � 1, ET ⊂ {(u1, u2, 0) ∈ R

3, u1 + u2 � 1}.
(3) Show that ET −−−→

T→∞ co{(1, 0, 0), (0, 1, 0), (1, 1, 0)}.

Exercise 10. Subgame-perfect equilibrium payoffs in discounted games
Fix a standard repeated game G = (N , (Ai )i∈N , (gi )i∈N ) with discount λ in (0, 1].
A strategy of player i is a mapping σi from H to Δ(Ai ), where H = ⋃

t�0 Ht is the
set of possible histories (or information sets) of the game. A one-shot deviation of
σi is a strategy τ i of the same player which differs from σi at a single history in H ,
and we denote by OS(σi ) the set of one-shot deviations of σi . Recall that a strategy
profile σ = (σi )i∈N is a subgame-perfect equilibrium of Gλ if for each history h in
H , the continuation strategy profile σ[h] is a Nash equilibrium of Gλ.

(1) One-shot deviation principle. Let σ = (σi )i∈N be amixed strategy profile. Show
that σ is a subgame-perfect equilibrium ofGλ if and only if there is no profitable
one-shot deviation, i.e.

∀i ∈ N ,∀h ∈ H,∀τ i ∈ OS(σi ), γi
λ(σ

−i [h], τ i [h]) � γi
λ(σ[h]).

(2) Write R = R
N for the space of payoff profiles. The vector payoff function is

a map g : A → R. Given any u : A → R, we denote by NE(u), resp. NEP(u),
the set of mixed Nash equilibria, resp. mixed Nash equilibrium payoffs, of the
strategic game with set of players N , actions sets Ai for each player i , and
vector payoff function u. We define the map Φ which associates to any non-
empty compact F of R the non-empty compact subset of R:

Φ(F) =
⋃

u:A→F

NEP(λg + (1 − λ)u).

(a) Show that the set E ′
λ of subgame-perfect equilibrium payoffs ofGλ is a fixed

point of Φ.
(b) Show that E ′

λ is the largest fixed point of Φ (Abreu et al. [1]).

Exercise 11. On ontinuation payoffs
Prove Lemma 8.5.7.

Exercise 12. Quitting Games
Fix a finite set of players N = {1, . . . , n} and for each non-empty subset S of N , a
vector r(S) in R

n . The following stochastic game is called a quitting game: At each
stage 1, . . . , t, . . . , the players independently choose either to quit or continue. If
everyone continues, the play goes to stage t + 1. If a subset S of players quits at
stage t , each player i receives the payoff ri (S) and the game is over. If nobody ever
quits, each player receives the payoff 0.
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Amixed strategy of player i is a probability distribution xi on T = {1, . . . , t, . . . .}
∪ {+∞} (quitting at time+∞meaning never quitting), and as usual a mixed strategy
profile x = (x j ) j∈N induces an expected payoff gi (x) for each player i .

Prove that a quitting gamewith twoplayers has an equilibriumpayoff: given ε > 0,
show that there exists a ε-Nash equilibrium, i.e. a mixed strategy profile x = (x j ) j∈N
such that

∀i ∈ N ,∀yi ∈ Δ(T ), gi (yi , x−i ) � gi (x) + ε.

Remark The existence of equilibrium payoffs in quitting games is open for n � 4
(for n = 3, see Solan and Vieille [196]).



Chapter 9
Solutions to the Exercises

9.1 Hints for Chapter 1

Exercise 1
(1) The algorithm is well defined since if a given man has already proposed to

every woman, every woman already had a man at home and thus has exactly one
man at home, terminating the algorithm.

To show that it stops in at most n2 days, consider the state variable giving for
every man the number of women he has visited. If a man has visited all n women,
the algorithm stops. So as long as the algorithm continues on day k, at the beginning
of this day the state variable takes values in {0, . . . , n − 1}n , and at least one man
will visit a new woman on this day.

(2) First example: three stable matchings

((a, A), (b, B), (c,C)), ((b, A), (c, B), (a,C)) and ((c, A), (a, B), (b,C)).

Second example: a unique stable matching ((c, A), (d, B), (a,C), (b, D)).
(3) If a man prefers a woman to the one he is matched with, he made a proposal

to her before; hence she cannot be matched with a man she ranks worse.
(4) Consider, for instance, four students A, B,C , D with D being the least popular

for everyone, and A ranks B first, B ranks C first, and C ranks A first.
(5) Similar to the monogamy case with the following algorithm: each student first

applies to his preferred school, then to his second best choice in case of refusal, etc.
and a school with capacity q handles a waiting list composed of its preferred students
(at most q) among those who have applied to it. The algorithm stops if each student
is either in some waiting list, or has been rejected everywhere. The waiting lists of
each school are then finally accepted.

Exercise 2
(1) Define x∗ = f −1(1/2) and y∗ = g−1(1/2). By stopping at x∗ (if player 2 has

not stopped before), player 1 canmake sure to have at least 1/2. Similarly by stopping
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at y∗, player 2 guarantees 1/2. Notice that player 1 (resp. player 2) should never stop
before x∗ (resp y∗).

(2) If x∗ � y∗, it is reasonable to expect that both players will stop at y∗, with a
payoff f (y∗) for player 1 and 1/2 for player 2. If x∗ > y∗, one can expect player 1
to stop at x∗, and player 2 slightly before x∗ (see the notion of ε-equilibrium later in
Chap.4).

(3) No clear answer. One possibility for player 1 (resp. player 2) is to stop at x∗
(resp. y∗). This is a prudent strategy guaranteeing 1/2 in all cases (but it might be too
soon).

(4) No. Think for instance of a cake with a strawberry at the left and a chocolate
piece at the right, with player 1 loving strawberries and player 2 loving chocolate.

Exercise 3
(1) (xt )t is decreasing positive, and xt −−−→

t→∞ 0.

(2) u(V, x) = x and u(B, x) = x − 1/2 for all x .
(3) One can show that (xt − 1/3)2 −−−→

t→∞ 0.

(4) and (5) Draw pictures.

Exercise 4
Fix a player i , denote by pi his bid, by p−i = (p j ) j �=i the vector of bids of

the other players, and define p∗ = max j �=i p j . Player i’s utility is 0 if pi < p∗, it
is vi − p∗ if pi > p∗, and it is either 0 or vi − p∗ if pi = p∗. Let us show that
ui (vi , p−i ) � ui (pi , p−i ) for all pi and p−i .

If vi > p∗, then ui (vi , p−i ) = vi − p∗ > 0 and vi − p∗ � ui (pi , p−i ).
If vi = p∗, then ui (vi , p−i ) = 0 = ui (pi , p−i ).
If vi < p∗, then ui (vi , p−i ) = 0 � ui (pi , p−i ).

9.2 Hints for Chapter 2

Exercise 1
(1.b) This implies λ0 = μ0.
(1.c) The configuration A′, B ′ is more favorable to player 1 (fewer constraints)

hence, since its value exists by induction, we have v′ � μ0 > λ0.
Then for α ∈ (0, 1) small enough (αs ′ + (1 − α)s0)(A − λ0B) � 0.
This contradicts the definition of λ0.
(2) Consider A = Id. There exists s and t such that s � v sB and t � v Bt .
t � v Bt implies v > 0.
s � v sB implies that s has full support. Thus by complementarity t = v Bt hence

t also has full support.
So again by duality s = v sB.
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Exercise 2
Let α = max(x,y) minz g(x, y, z).
Thus α = max(x,y)∈[0,1]2 min{xy, (1 − x)(1 − y)}. Let a = xy and b = (1 − x)

(1 − y). Since ab = x(1 − x)y(1 − y) � 1/16, we have min{a, b} � 1/4, and α �
1/4. Finally, x = y = 1/2 gives α = 1/4.

Write β = minz max(x,y) g(x, y, z). Hence β = minz∈[0,1] max{z, 1 − z} = 1/2.
We obtain α < β.

Remark: The duality gap is due to the lack of convexity of the strategy set of players 1
and 2 together. Using correlation, i.e. allowing players 1 and 2 to play a probability
in Δ({T, B} × {L , R}) instead of Δ({T, B}) ⊗ Δ({L , R}) would increase α to 1/2.

Exercise 3
(1) Let v = lim sup vn and ε > 0. Choose n such that vn � v − ε and |x − y| �

1
2n+1 implies | f (x) − f (y)| � ε ( f is uniformly continuous on the square).

Let σn be optimal for player 1 in Gn and t ∈ [0, 1]. There exists a jn = 2ntn in Yn
such that |t − tn| � 1

2n+1 . Then

f (σn, t) = f (σn, tn) +
∫
s
f (s, t) − f (s, tn)dσn(s) � v − ε − ε.

Thus σn guarantees v − 2ε in G.
A dual result then implies that the sequence vn converges to v, which is the value

of G.
(2) For each n, consider the optimal strategy σn of player 1 in Gn , and the asso-

ciated repartition function Fn : R −→ [0, 1]. The corresponding set of functions is
sequentially weakly compact. (Construct by a diagonal procedure a subsequence
converging on rational points, then choose the induced right continuous extension.)

Exercise 4
(1) Let yn = ΠC(xn). Then

d2
n+1 � ‖xn+1 − yn‖2 = ‖xn − yn‖2 + ‖xn+1 − xn‖2 + 2〈xn+1 − xn, xn − yn〉.

Decompose

〈xn+1 − xn, xn − yn〉 =
(

1

n + 1

)
〈xn+1 − xn, xn − yn〉

=
(

1

n + 1

)
(〈xn+1 − yn, xn − yn〉 − ‖xn − yn‖2).

Using the hypothesis we obtain

d2
n+1 �

(
1 − 2

n + 1

)
d2
n +

(
1

n + 1

)2

‖xn+1 − xn‖2.
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From
‖xn+1 − xn‖2 � 2‖xn+1‖2 + 2‖xn‖2 � 4M2,

we deduce

d2
n+1 �

(
n − 1

n + 1

)
d2
n +

(
1

n + 1

)2

4M2.

Thus by induction

dn � 2M√
n

.

(2.a) By construction: 〈sn+1A, tn+1〉 � 0, thus

〈
xn+1, x

+
n − xn

〉
� 0.

Since
〈
x+
n , xn − x+

n

〉 = 0 we get

〈xn+1 − x+
n , xn − x+

n 〉 � 0

and recall that x+
n = ΠC(xn).

(2.b) Consider the empirical frequencies arising in xn as a mixed strategy of
player 1 and use compactness of Δ(I ).

Exercise 5
Strategy a2 is strictly dominated by 0.51 a3+ 0.49 a1. Hence the reduced game is

b1 b2
a1 3 −1
a3 −2 1

with unique optimal strategies (3/7, 4/7); (2/7, 5/7) and value 1/7.

Exercise 6

The strategy that plays i with probability
1
ai∑n
j=1

1
a j

is equalizing with payoff

v = 1∑n
j=1

1
a j

whatever the action of player 2. By symmetry v is thus the value of

the game.

Exercise 7
(1)

0 = 〈uA, x〉 = uAx = 〈u, Ax〉 � 〈u, b〉 > 0,

a contradiction.
(2) For n = 0, the matrix A is 0. S empty means that b has a positive component,

say bi > 0. Then the unit vector ei belongs to T .
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(3.a) Simply complete u with zero components.
(3.b) The product with the last line j = n + 1 from A gives

∑
�

u�A�,n+1 +
∑
k

uk Ak,n+1 =
∑
�,k

v�,k −
∑
k,�

v�,k = 0

and the other constraints follow from the definition of v.

Exercise 8
If t > 0, let x = r−q

t .
If t = 0, let x ′ with Ax ′ � b. Then for a > 0 large enough, x = x ′ + a(r − q)

satisfies

Ax = Ax ′ + aA(r − q) � b, 〈c, x〉 = 〈c, x ′〉 + a〈c, r − q〉 < d.

Exercise 9
(2) Note that for any pair of feasible points (x, u) we have

cx � uAx � ub.

Exercise 10
(2.a) One can write z as (x, y, t) ∈ R

I+ × R
J+ × R+, check that x > 0, y > 0,

t > 0 and use complementarity.

Exercise 11
(1) Fix j and assume that there is no optimal solution x with x j > 0. Then denoting

by k the common value of both programs we obtain

Ax � b, x � 0, −〈c, x〉 � k ⇒ −〈e j , x〉 � 0,

thus using Farkas’ Lemma, there exist (u, v, w) with

(u, v, w) � 0, uA + v − wc = e j , 〈u, b〉 − wk � 0.

If w > 0, take u′ = u/w, which satisfies c j − u′A j > 0.
If w = 0, take some optimal u∗, then u′ = u + u∗, and the same property holds.
(2) Thus for each i ∈ I , there exists a pair of optimal solutions (x(i), u(i)) sat-

isfying the strong complementarity condition for this index, and similarly for any
j ∈ J . It is then clear that the barycenter

(x, u) = 1

(|I | + |J |)
[∑

i

(x(i), u(i)) +
∑
j

(x( j), u( j))

]

will satisfy the requested requirement.
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9.3 Hints for Chapter 3

Exercise 1
(1) The payoff of player 1 is given by

g(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1(x) + (1 − p1(x)) (−1) = 2p1(x) − 1 if x < y

p1(x) (1 − p2(x)) + p2(x) (1 − p1(x)) (−1)

= p1(x) − p2(x) if x = y

(−1)p2(y) + (1 − p2(y)) = 1 − 2p2(y) if x > y.

Let t0 ∈ (0, 1) be such that p1 (t0) + p2(t0) = 1. Then g(t0, t0) = 2p1(t0) − 1,
g(t0, y) � 2p1(t0) − 1 for each y, and g(x, t0) � 2p1(t0) − 1 for each x . So (t0, t0)
is a saddle-point. The optimal strategy of a player is to shoot at the specific time
where the probability of killing the adversary equals the probability of surviving
while being shot at. At the optimum, players shoot simultaneously.

(2) Let us prove by induction that for each K , the following property (HK ) holds:
(HK ):When there are (m, n) bullets withm + n � K , the value exists and is m−n

m+n ,
and an optimal strategy of the player having max(m, n) bullets is to shoot* for the
first time at t = 1

m+n .
(H1) is true. Assume (HK ) holds for some K � 1 and suppose that there are

(m ′, n) = (m + 1, n) bullets. Without loss of generality we assume n > 0 and m ′ >

0. We distinguish three cases, depending on which player has more bullets.

Case 1: m ′ > n > 0. Define the following strategy σ of player 1: in case of silence
shoot for the first time at 1

m+n+1 , then if the shooting has failed, play optimally in the
game (m, n); if player 2 shoots and fails before time 1

m+n+1 , player 1 plays optimally
in the game (m + 1, n − 1) (if both players shoot for the first time and fail at 1

m+n+1 ,
play optimally in the game (m, n − 1)).

If player 2 only shoots after 1
m+n+1 , the payoff of player 1 using σ is at least

1

m + n + 1
+ m + n

m + n + 1

m − n

m + n
= m + 1 − n

m + n + 1
.

If player 2 shoots for the first time at 1−ε
m+n+1 < 1

m+n+1 , the payoff of player 1 using
σ is at least

1 − ε

m + n + 1
(−1) + m + n + ε

m + n + 1

m + 1 − (n − 1)

m + n
>

m + 1 − n + ε

m + n + 1
.

If player 2 shoots for the first time exactly at 1
m+n+1 , the payoff of player 1 using σ

is at least

0 +
(

m + n

m + n + 1

)2 m − n + 1

m + n − 1
>

m + 1 − n

m + n + 1
.
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Consequently, σ guarantees m+1−n
m+n+1 to player 1.

Define now, for small ε > 0, the random strategy τ of player 2 who, in case
of silence, shoots for the first time according to the uniform law on the interval
[ 1
m+n+1 ,

1+ε
m+n+1 ], and plays optimally as soon as one bullet has been used. If player 1

shoots for the first time before player 2, his payoff is at most 1+ε
m+n+1 + m+n−ε

m+n+1
m−n
m+n �

m+1−n+ε
m+n+1 . If player 1 shoots for the first time before player 2, his payoff is at most
1

m+n+1 (−1) + m+n
m+n+1

m+2−n
m+n = m+1−n

m+n+1 . So player 1 also guarantees m+1−n
m+n+1 (up to ε

for each ε), and this is the value of the game: the conclusion of (HK+1) holds (notice
that player 2 has no ε-optimal pure strategy here).

Case 2: m ′ = n. Define σ (resp. τ ) the strategy of player 1 (resp. player 2) who, in
case of silence, shoots for the first time at time 1

m+n+1 , and plays optimally as soon
as a bullet has been used.

If player 1 shoots for the first time before 1
m+n+1 , let’s say at t = 1−ε

m+n+1 with

ε > 0, his payoff against τ is at most g(t, τ ) = 1−ε
m+n+1 + m+n+ε

m+n+1
(−1)
m+n < 0.

If player 1 shoots for the first time at t > 1
m+n+1 , his payoff against τ is at most

g(t, τ ) = −1
m+n+1 + m+n

m+n+1
1

m+n = 0.
So g(t, τ ) � 0 for each t , and by symmetry (σ, τ ) is a saddle-point of the game.

Here again, the conclusions of (HK+1) hold.

Case 3: m ′ < n. This is similar to case 1.
(3.a) The payoff of player 1 is now

g(x, y) =

⎧⎪⎨
⎪⎩
x + (1 − x)y(−1) = −(1 − x)y + x if x < y

x(1 − x) + x(1 − x)(−1) = 0 if x = y

(−1)y + (1 − y)x = −(1 + x)y + x if x > y

If y > 0, playing x just before y gives supx g(x, y) � y2, and if y < 1, we have
g(1, y) = 1 − 2y, so inf y supx g(x, y) > 0. Yet the game is symmetric, hence if it
exists the value can only be 0. There is no value in pure strategies.

(3.b) Assume now that player 1 has a mixed strategy σ with density f on [α, 1],
with α > 0 and f differentiable, which guarantees a non-negative payoff. Then, by
symmetry, σ also guarantees 0 for player 2, and we expect that g(σ, y) = 0 for each
y � α, and so

−y + (1 + y)
∫ y

a
x f (x)dx + (1 − y)

∫ 1

y
x f (x)dx = 0.

Differentiating twice, we find y f ′(y) + 3 f (y) = 0. We deduce that f (y) = Cy−3

1y�a , for some constant C . The above equation gives C = 1/4, and a = 1/3. It is
finally enough to check the above computations with the strategy σ nowwell defined.

(4) The payoff function is the following
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g(x, y) =
⎧⎨
⎩
x − y + xy if x < y
0 if x = y
1 − 2y if x > y,

and one verifies that the given strategies do form a saddle-point.
(5) It is not possible to proceed by induction in a silent duel, since once a bullet

has been used only the player who shot is aware of it.

Exercise 2
(1) sups inf t f (s, t) = −1, inf t sups f (s, t) = 0.
One can check that f is quasi-concave in s and quasi-convex and l.s.c. in t . It is

also u.s.c. in s for each t , except for t = 1.
The value in mixed strategies exists and is − 1

2 . It is enough for player 1 to play
uniformly on [0, 1] (or to play 0 with probability 1

2 and 1 with probability 1
2 ).

Exercise 3
(1)Write v = infn vn = limn vn . For n such that vn � v + 1/n, consider a strategy

tn which is 1/n-optimal for player 2 in Gn . For each s in S, f (s, tn) � fn(s, tn) �
vn + 1/n � v + 2/n. We now define for each n:

An = {s ∈ S, fn(s, t) � v − 1
n ∀t ∈ T }.

An is a decreasing sequence of non-empty compact sets, hence
⋂

n An �= ∅. Con-
sidering an element in

⋂
n An gives an optimal strategy of player 1 in G.

(2) In both cases, for each n we have vn = 1 and v = 0. In the first case S is not
compact, and in the second ( fn)n is not monotonic.

Exercise 4
Simply write E for Eσ,τ .
(1) Fix n � 1 and hn inHn . At stage n + 1, player 1 plays sn+1 ∈ Δ(I ) such that

for each t , 〈sn+1At − ΠC(xn), xn − ΠC(xn)〉 � 0.
We have

d2
n+1 � ‖xn+1 − πC(xn)‖2,

�
∥∥∥∥ 1

n + 1

n+1∑
t=1

xt − πC(xn)

∥∥∥∥
2

,

�
∥∥∥ 1

n + 1
(xn+1 − πC(xn)) + n

n + 1
(xn − πC(xn))

∥∥∥
2

,

�
( 1

n + 1

)2

‖xn+1 − πC(xn)‖2 +
( n

n + 1

)2
dn

2

+ 2n

(n + 1)2
〈xn+1 − πC(xn), xn − πC(xn)〉.

By assumption, the expectation of the above scalar product is non-positive, so
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E
(
d2
n+1|hn

)
� 1

(n + 1)2
E

(‖xn+1 − πC(xn)‖2|hn
) +

( n

n + 1

)2
dn

2.

(2) E ( 〈xn+1 − ΠC(xn), xn − ΠC(xn)〉 |hn) � 0, so

E
(‖xn+1 − πC(xn)‖2|hn

)
� E

(‖xn+1 − xn‖2|hn
)

� (2‖A‖∞)2.

(3) We obtain

E
(
d2
n+1|hn

)
�

( n

n + 1

)2
dn

2 +
( 1

n + 1

)2

4‖A‖2∞. (9.1)

Taking expectation leads to: ∀n � 1, E
(
d2
n+1

)
� ( n

n+1 )
2
E(dn2) + ( 1

n+1 )
2
4‖A‖2∞.

Then by induction, for each n � 1 we have E(d2
n ) � 4‖A‖2∞

n , finally E(dn) � 2‖A‖∞√
n

.
(4) Inequality (9.1) yields: E(en+1|hn) � en , so (en) is a non-negative super-

martingale with expectation converging to 0. So en −→n→∞ 0 Pσ,τ -a.s., and finally
dn −→n→∞ 0 Pσ,τ -a.s.

Exercise 5
Write x = sups∈S inf t∈T f (s, t) and y = infβ∈B sups∈S f (s,β(s)). x � y is clear.

We show x � y (using the axiom of choice). Fix ε > 0 and define, for each s in S,
β(s) ∈ T such that f (s,β(s)) � inf t f (s, t) + ε. Then sups∈S f (s,β(s)) � x + ε.

Exercise 6
(3) Fubini’s theorem does not apply, so f (σ, τ ) and the mixed extension of the

game is not well defined.

Exercise 7
(1) Let μ be the uniform distribution on [0, 1/2], and δ1 the Dirac measure on 1.

The strategy 1/3 μ + 2/3 δ1 guarantees 1/3 to player 1.
Suppose σ in Δ(S) guarantees a payoff not lower than 1/3 to player 1: f (σ, t) �

1/3, ∀t .
Considering t = 1 implies σ([0, 1/2[) − σ(]1/2, 1[) � 1/3.
t = 1

2
−
gives −σ([0, 1/2[) + σ([1/2, 1]) � 1/3.

Adding the inequalities: σ({1/2}) + σ({1}) � 2/3. Since σ([0, 1/2[) � 1/3, we
get σ([0, 1/2[) = 1/3 and σ({1/2}) + σ({1}) = 2/3. So f (σ, t = 1) = 1/3, and σ
does not guarantee more than 1/3.

Conclusion: supσ infτ f (σ, τ ) = 1/3.
(2) Let now τ in Δ(T ) be such that infs f (s, τ ) � 1/3 + ε.
s = 1 implies τ ({1}) � 2/3 − ε.
s = 0 implies τ (]1/2, 1]) − τ (]0, 1/2[) � 1/3 + ε, so τ (]0, 1/2[) � 2/3 − ε −

(1/3 + ε) = 1/3 − 2ε.
s = 1

2
−
gives τ ({1}) − τ ([1/2, 1[) + τ ([0, 1/2[) � 1/3 + ε.

Hence −1 + 2τ ({1}) + 2τ ([0, 1/2[) � 1/3 + ε, and τ ({1}) + τ ([0, 1/2[)
� 2/3 + ε/2.
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This gives 1 − 3ε � 2/3 + ε/2, soε � 2/21, and1/3 + ε � 3/7.Hence infτ supσ

f (σ, τ ) � 3/7, and G has no value.
Remark: one can show that infτ supσ f (σ, τ ) = 3/7, by considering τ = 4/7δ1 +

2/7δ1/2 + 1/7δ1/4.

9.4 Hints for Chapter 4

Exercise 1
(1) The first game has three Nash equilibria: (T, R), (B, L) and ( 23T + 1

3 B, 2
3 L +

1
3 R). To find them, we can explore all possible supports. Suppose (xT + (1 −
x)R, yB + (1 − y)L) is a Nash equilibrium, where x and y are in [0, 1]:

Case 1: x = 1 (player 1 plays T ) ⇒ y = 0 (the best response of player 2 is R)
⇒ x = 1 (the best response of player 1 is T ), as it should be. We have found the
equilibrium (T, R).

Case 2: x = 0⇒ y = 1⇒ x = 0 (as it should be).We have found the equilibrium
(B, L).

Case 3: x ∈]0, 1[ ⇒ player 1 must be indifferent between T and B ⇒ y × 6 +
(1 − y) × 2 = y × 7⇒ y = 2

3 ⇒ y ∈]0, 1[ ⇒ player 2 is indifferent between L and
R ⇒ x × 6 + (1 − x) × 2 = x × 7 ⇒ x = 2

3 ⇒ x ∈]0, 1[ as it should be. We have
found the Nash equilibrium ( 23T + 1

3 B, 2
3 L + 1

3 R).
The second zero-sum game has a unique Nash equilibrium given by ( 7

10T +
3
10 B, 1

2 L + 1
2 R). It may be found as above, by exploring all possible supports:

Case 1: x = 1 ⇒ y = 0 ⇒ x = 0, a contradiction.
Case 2: x = 0 ⇒ y = 1 ⇒ x = 1, a contradiction.
Case 3: x ∈]0, 1[ ⇒ player 1 must be indifferent between T and B ⇒ y × 2 +

(1 − y) × (−1) = y × (−3) + (1 − y) × 4 ⇒ y = 1
2 ⇒ y ∈]0, 1[ ⇒ player 2 is

indifferent between L and R ⇒ x = 7
10 ⇒ x ∈]0, 1[ as it should be. The unique

Nash equilibrium is ( 7
10T + 3

10 B, 1
2 L + 1

2 R).
The third has two Nash components: (T, R) is a strict and isolated Nash equi-

librium, and {(xT + (1 − x)B, L), with x ∈ [0, 1/2]} is a connected component of
Nash equilibria.

In the fourth game, after eliminating B and R (strictly dominated), we are left with
a 2 × 2 gamewith threeNash equilibria (T, L), (M, M) and ( 45T + 1

5M, 4
5 L + 1

5M).
(2) The last gamehas three equilibria: (B, R,W ), (T, L , E) and ( 12T + 1

2 B, 1
2 L +

1
2 R, 1

2W + 1
2 E).

Exercise 2
(1) N = {1, . . . , n}, Si = R+ for all i ∈ I , and gi (x1, . . . , xn) = xi max(1 −∑
j x

j , 0).
(2) Let x = (x1, . . . , xn) be a Nash equilibrium and, for any i ∈ I , define si :=∑
j �=i x

j and s := ∑
j x

j . Suppose there is an i ∈ I such that si < 1. Then one
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shows that xi = (1 − si )/2 is a best response for player i against x−i . Consequently,
s < 1, and so for all j ∈ I , s j < 1 holds, hence x j = (1 − s j )/2. Consequently,
x j + s = 1 for all j ∈ I , implying that x1 = · · · = xn = 1

n+1 . This is a Cournot–
Nash equilibrium inducing a price p = n

n+1 , a total production of n
n+1 , and a total

revenue of n
(n+1)2 .

Otherwise, any profile x such that si � 1 for all i ∈ I is a Nash equilibrium
inducing a price of zero. (This equilibrium component is unstable: it vanishes as
soon as the production cost is positive.)

(3) At the stable equilibrium, the total profit n
(n+1)2 is decreasing with n, the

maximum profit 1
4 is achieved for the monopoly (n = 1) and the limiting profit as n

increases tends to zero. The equilibrium price n
n+1 is decreasing with n and converges

to zero (the marginal cost) as n increases.

Exercise 3
(1) In the mixed extension of G, player 1 chooses a probability (p, 1 − p) on

S1 = {1, j} that can be one-to-onemapped to the complex number a = p × 1 + (1 −
p) × j . Thus, the set of mixed strategies of player 1 may be viewed as the complex
intervalM1 = [1, j] = {p1 + (1 − p) j, p ∈ [0, 1]} and similarly,M2 = [ j, j2] for
players 2 and M3 = [ j2, 1] for player 3. Let g1(a, b, c) be the expected payoff of
player 1 in the game G if the mixed strategy profile is (a, b, c) ∈ M1 × M2 × M3.
g1(a, b, c) and Re(abc) are both multilinear and coincide for pure strategies. Thus,
they coincide. Similarly for g2(a, b, c) and Im(abc) so

g1(a, b, c) = Re(abc), g2(a, b, c) = Im(abc), g3(a, b, c) = 0.

(2) Let F ⊂ R
2 be the projection on player 1 and 2’s coordinates of the set of

feasible payoffs. F contains the segments [1, j], [ j, j2] and [ j2, 1] but since |abc| =
|a||b||c| � 1/8 > 0 for all (a, b, c) ∈ M1 × M2 × M3, 0 /∈ F .

Exercise 4
(1.a) Let D = {d1, . . . , dn, . . . } be a denumerable dense set of A. Define induc-

tively α1 = d1 and αn = sup{αn−1, dn} for all n. One can extract a subsequence
(αφ(n))n that converges to α ∈ S. Since α is a majorant of D, it is also a majorant of
D = A and so is a majorant of A. Since any majorant β of A is a majorant of D, by
induction β � αn for all n, and thus β � α. Consequently, α = sup A.

When A = S one obtains that sup S ∈ S, thus, S admits a greatest element max S
and similarly, a smallest element min S.

(1.b) Let A = {s ∈ S, f (s) � s}. A �= ∅ since S has a greatest element. Define
a = inf(A) ∈ S (by 1.a). Then, for all s ∈ A, a � s and since f ismonotonic, f (a) �
f (s) � s. Consequently, f (a) is a minorant of A and so f (a) � a.
By monotonicity of f , f ( f (a)) � f (a), and so f (a) ∈ A. Since a is a minorant

of A, a � f (a), and so a = f (a).
(2.a) Fix a player i and a strategy s−i of the opponents. Then BRi (s−i ) is non-

empty and compact, since Si is compact and gi upper semi-continuous in si . This
set is a lattice by supermodularity of gi .
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(2.b) Suppose s−i � s ′−i and consider t ′i ∈ BRi (s ′−i ). There exists an xi in
BRi (s−i ). We have: 0 � gi (xi ∨ t ′i , s−i ) − gi (xi , s−i ) � gi (t ′i , s−i ) − gi (xi ∧ t ′i ,
s−i ) � gi (t ′i , s ′−i ) − gi (xi ∧ t ′i , s ′−i ) � 0. Define t i = xi ∨ t ′i .

(2.c) For all s−i ∈ S−i define f i (s−i ) in Si as the greatest element of BRi (s−i )

(see 1.a). Consider the application f from S = ∏
i S

i to S by f (s) = ( f i (s−i ))i . f
is monotone by 2.b, and so has a fixed point by 2.a. Any fixed point of f is a Nash
equilibrium of G.

(3) Put s1 = q1 and s2 = −q2. Define a new payoff function as u1(s1, s2) =
s1P1(s1,−s2) − C1(s1), and u2(s1, s2) = −s2P2(s1,−s2) − C2(−s2). Since ∂u1/
∂s1 is monotone in s2, if s1 � s ′

1 and s2 � s ′
2 then

∫ s1

s ′1
∂1u

1(t1, s2)dt1 �
∫ s1

s ′1
∂1u

1(t1, s ′2)dt1.

Consequently, u1(s1, s2) − u1(s ′1, s2) � u1(s1, s ′2) − u1(s ′1, s ′2) and so u1 has
increasing differences in (s1, s2). Similarly for u2 (∂u2/∂s2 is increasing in s1).
Apply 3.b to conclude.

Exercise 5
The game may be presented as follows:

A3 :
A2 B2

A1 (0, 0, 0) (0, 1, 0)
B1 (1, 0, 0) (0, 0, 1)

B3 :
A2 B2

A1 (0, 0, 1) (1, 0, 0)
B1 (0, 1, 0) (0, 0, 0)

Pure Nash equilibria are obtained when two of the players choose the same room
and the other a different one. This yields six equilibria.

Let x , y and z, respectively, be the probabilities that players 1, 2 and 3 choose the
red room and suppose that x + y + z > 0.

Let us compute the best response of player 3. By playing A3 his payoff is (1 −
x)(1 − y), and playing B3 his payoff xy. Since (1 − x)(1 − y) > xy iff x + y < 1,
if x + y < 1, player 3 chooses z = 1 and if x + y > 1, z = 0, and for x + y = 1,
any z is a best response for player 3. The situation is symmetric for all players.

Suppose that at least two players play completely mixed, for example x ∈]0, 1[
and y ∈]0, 1[. Then y + z = 1 and x + z = 1.Thus, x = y = 1 − z, and so z ∈]0, 1[,
so player 3 is indifferent and thus x + y = 1, implying that x = y = z = 1/2.

The last case is when only one of the players is completely mixing, but then
the players who play pure do not choose the same room. We obtain infinitely many
equilibria where two players are choosing different rooms and the other is indifferent
and is mixing.

Exercise 6
(1) supp (τ ) ⊂ supp (σ) is clear.
Any i ∈ supp (σ) minimizes

∑
j τ j‖xi − y j‖2. But



9.4 Hints for Chapter4 195

∑
j

τ j‖x − y j‖2 =
∑
j

τ j (‖x − z‖2 + ‖z − y j‖2 + 2〈x − z, z − y j 〉)

= ‖x − z‖2 +
∑
j

τ j‖z − y j‖2.

Thus supp (σ) ⊂ {i, xi minimizes ‖xi − z‖2}.
(2.a) (1) implies supp (σN ) ⊂ {i, xi minimizes ‖xi − xN+1‖2}.
Since d(xm, xN+1) � 2ε, i ∈ supp (σN ) implies d(xi , xN+1) � 2ε so that

d(xi , x∗) � 3ε. Similarly for i ∈ supp (τN ) ⊂ supp (σN ).
Since xN+1 = ∑N

i=1 τN (i)yi and yi ∈ F(xi ) for each i , we obtain xN+1 ∈ co{⋃z
F(z); z ∈ B(x∗, 3ε)}.

(2.b) F has a compact graph, hence F(B(x∗, 3ε)) is compact and Kε =de f

co{⋃z F(z); z ∈ B(x∗, 3ε)}. Hence x∗ ∈ Kε, for each ε > 0.
Let x in

⋂
ε>0 Kε. For each n, there exist (Carathéodory) zn1, . . . , z

n
K+1 in

B(x∗, 1/n) such that x = ∑K+1
i=1 λn

i y
n
i , with yni ∈ F(zni ) for each i . Extracting con-

vergent subsequences, and since F has a closed graph and F(x∗) is convex, we obtain
that x ∈ F(x∗). So that x∗ ∈ F(x∗).

Exercise 7
(1) Let t be a Nash equilibrium: Gi (si , t−i ) � Gi (ti , t−i ), for all s and all i . Take

the sum in i and deduce that Φ(s, t) � Φ(t, t).
Conversely, assume Φ(s, t) � Φ(t, t), ∀s ∈ S. Take s of the form (si , t−i ) to

deduce that t is an equilibrium.
(2.a) Consider the family (Os = {t ∈ S;Φ(s, t) > Φ(t, t)})s∈S . Since∑n

i=1 Gi is
continuous, t �→ Φ(t, t) is continuous. Since Gi (si , ·) is continuous on S−i for each
si , for each i , t �→ Φ(s, t) is continuous. Thus t �→ Φ(s, t) − Φ(t, t) is continuous
and Os is open.

(2.b) S being compact, we extract a finite subcover {Osk }k∈K satisfying

∀t ∈ S, max
k∈K Φ(sk, t) > Φ(t, t).

(2.c) Θ is well defined since for each t , there exists a k with Φ(sk, t) > Φ(t, t)
hence

∑
l(Φ(sl, t) − Φ(t, t))+ > 0. Now the image of t is a convex combination of

sk , hence belongs to S. The continuity of the map t �→ Φ(s, t) − Φ(t, t) shows that
Θ is continuous. Brouwer’s theorem implies the existence of a fixed point t∗ of Θ .

(2.d) t∗ = ∑
k∈K λksk with λk = (Φ(sk ,t∗)−Φ(t∗,t∗))+∑

l (Φ(sl ,t∗)−Φ(t∗,t∗))+ . Thus λk > 0 impliesΦ(sk,
t∗) > Φ(t∗, t∗). SinceGi (·, s−i ) is concave on Si for all s−i and each i , s �→ Φ(s, t∗)
is concave in s and thus Φ(t∗, t∗) �

∑
k λkΦ(sk, t∗). Hence Φ(t∗, t∗) > Φ(t∗, t∗),

which gives a contradiction.
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9.5 Hints for Chapter 5

Exercise 1
(1) Since G has potential P , the multilinear extension satisfies

gi (σi ,σ−i ) − gi (τ i ,σ−i ) = P(σi ,σ−i ) − P(τ i ,σ−i ),

∀i,∀σi , τ i ∈ Σ i ,∀σ−i ∈ Σ−i ,

hence the assertion.
(2) Clear. Note that there is a mixed equilibrium.
(4) Consider player i changing from m to n. Then

gi (m, s−i ) − gi (n, s−i ) = um(tm(m, s−i )) − un(tn(n, s−i ))

and

P(m, s−i ) − P(n, s−i ) =
∑
k

tk (m,s−i )∑
r=1

uk(r) −
∑
k

tk (n,s−i )∑
r=1

uk(r).

Since tm(m, s−i ) = 1 + tm(n, s−i ) and for k �= m, n we have t k(m, s−i ) = t k

(n, s−i ), both quantities are equal.
(5) We check that d

dxik W (x) = uk(zk).
(6) Define φ(t) = P(x(t)). Then

φ̇(t) =
∑
i

P(ẋ i (t), x−i (t))

=
∑
i

P(ẋ i (t) + xi (t) − xi (t), x−i (t))

by linearity and since ẋ i (t) + xi (t) ∈ BRi [x−i (t)], we obtain

φ̇(t) =
∑
i

gi (ẋ i (t) + xi (t), x−i (t)) − gi (xi (t), x−i (t))

� 0.

Hence φ is increasing. Since it is bounded, all accumulation points satisfy x∗ ∈
BR(x∗).

(7) (BNN)

〈Bi
Φ(x),Φ i (x)〉 =

∑
p∈Si

[
Φ̂ i

p(x) − xip
∑
q∈Si

Φ̂ i
q(x)

]
Φ i

p(x)

=
∑
p∈Si

Φ̂ i
p(x)Φ

i
p(x) −

∑
p∈Si

x ipΦ
i
p(x)

∑
q∈Si

Φ̂ i
q(x)
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=
∑
p∈Si

Φ̂ i
p(x)Φ

i
p(x) −

∑
q∈Si

Φ̂ i
q(x)Φ

i
(x)

=
∑
p∈Si

Φ̂ i
p(x)

[
Φ i

p(x) − Φ
i
(x)

]

=
∑
p∈Si

(Φ̂ i
p(x))

2 � 0.

The equality holds if and only if for all p ∈ Si , Φ̂ i
p(x) = 0, in which caseBi

Φ(x) = 0.
(Smith)

〈Bi
Φ(x),Φ i (x)〉 =

∑
p∈Si

( ∑
q∈Si

x iq [Φ i
p(x) − Φ i

q(x)]+
)
Φ i

p(x)

−
∑
p∈Si

x ipΦ
i
p(x)

∑
q∈Si

[Φ i
q(x) − Φ i

p(x)]+

=
∑
p,q

xiqΦ
i
p(x)[Φ i

p(x) − Φ i
q(x)]+ −

∑
q,p

xiqΦ
i
q(x)[Φ i

p(x) − Φ i
q(x)]+

=
∑
p,q

xiq([Φ i
p(x) − Φ i

q(x)]+)2 � 0.

The equality holds if and only if for all q ∈ Si , either xiq = 0 or Φ i
q(x) � Φ i

p(x) for
all p ∈ Si , in which case Bi

Φ(x) = 0.
(BR)

〈Bi
Φ(x),Φ i (x)〉 = 〈yi − xi , Φ i (x)〉 � 0

since yi ∈ BRi (x). The equality holds if and only if xi ∈ BRi (x), hence Bi
Φ(x) = 0.

UseProposition5.5.6 and the fact that the rest points of the dynamics are equilibria.

Exercise 2
(1) Given x∗ ∈ SNE(Φ), for all x ∈ X and ε ∈ ]0, 1[, define y = εx + (1 − ε)x∗.

Then (5.5) yields
〈Φ(y), x∗ − x〉 � 0, ∀x ∈ X,

which implies, by continuity,

〈Φ(x∗), x∗ − x〉 � 0, ∀x ∈ X.

(2) On the other hand, if x∗ ∈ NE(Φ) and Φ is dissipative, by adding 〈Φ(y) −
Φ(x∗), x∗ − y〉 � 0 and 〈Φ(x∗), x∗ − y〉 � 0, we have x∗ ∈ SNE(Φ).

(3) Clear from the definition of SNE(Φ) (= NE(Φ) in this case).
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Comments
The same approach can be extended to the case where different types of partici-

pants (atomic/non atomic, splittable/non splittable) are present, see Sorin and Wan
[204].

This result is proved in Sandholm [184] for population games.
In the framework of population games, Hofbauer and Sandholm [100] introduce

this class of games and call them “stable games”.

Exercise 3
Denote by x1, x2, x3, y1, y2, respectively, the probabilities of T , M , B, L and R.
– If α < 0 the strategy T is strictly dominated by 1

2M + 1
2 B. The equilibria are

those of the zero-sum game:
L R

M 1,−1 −1, 1
B −1, 1 1,−1

This leads to the equilibrium (x = (0, 1
2 ,

1
2 ), y = ( 12 ,

1
2 )).

– If α = 0, we obtain a zero-sum game where both players can guarantee 0.
This game has 0 as value and the optimal strategies are y = ( 12 ,

1
2 ) for player 2

and x = (1 − 2α,α,α), for α ∈ [0, 1/2], for player 1. Any combination of optimal
strategies is a Nash equilibrium.

– Suppose now thatα > 0. If x2 > x3, because player 2 is playing a best response,
y2 = 1 and since player 1 is best replying, x2 = 0, a contradiction. Similarly, x3 > x2
is impossible at equilibrium, and so, necessarily x3 = x2. In that case, all strategies
against x yield the same payoff to player 2. Since player 1’s payoff should be at least
α > 0, we have x2 = x3 = 0. Thus x = (1, 0, 0). Since x is a best response against y,
α � y1 − (1 − y1) = 2y1 − 1, andα � 1 − 2y1, which holds if

(1−α)

2 � y1 � (1+α)

2 .
Thus, if 0 < α < 1, the Nash equilibria are the profiles (x = (1, 0, 0), y = (y1, y2))
where (1−α)

2 � y1 � (1+α)

2 and if α � 1, all (x = (1, 0, 0), y = (y1, y2)) are Nash
equilibria.

Exercise 4
(1) By definition of fictitious play and linearity:

∑
m�n−1

Fi (sin, s
−i
m ) �

∑
m�n−1

Fi (t, s−i
m ), ∀t ∈ Si .

Write (n − 1)Ei
n = bn = ∑

m�n−1 a(n,m) for the left-hand side. By choosing t =
sin−1 we obtain

bn � a(n − 1, n − 1) + bn−1,

hence by induction
Ei
n � Ai

n =
∑

m�n−1

a(m,m)/(n − 1).
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(2) If Fi (sin, s
−i
n−1) < Fi (sn−1), by adding to the inequality expressing the fictitious

property for stage n − 1: Fi (sin−1, s
−i
n−2) � Fi (sin, s

−i
n−2), this would contradict the

fictitious property for stage n.
(3)Note that the improvement principle implies that the processwill stay onPareto

entries. Hence the sum of the stage payoffs will always be (a + b). If fictitious play
converges then it converges to (1/3, 1/3, 1/3) so that the anticipatedpayoff converges
to the Nash payoff a+b

3 , which contradicts the inequality obtained in (1).

9.6 Hints for Chapter 6

Exercise 1
(1) This game is a simple finite perfect information game. By Zermolo’s theorem

player 1 (the first mover) has a winning strategy or player 2 has a winning strategy.
Suppose by contraction that player 2 is winning. If player 1 starts by playing the
square (n,m), player 2 has a winning best response [(k, l); τ ]. But then, player 1
can imitate player 2’s strategy and starts the game by choosing (k, l) followed by τ .
Doing so, player 1 is guaranteed to win, a contradiction.

(2) Player 1 starts by playing (2, 2), then each time player 2 chooses a square
(1, k) (resp. (k, 1)), k = 2, . . . , n, player 1 chooses the symmetric square (k, 1)
(resp. (1, k)).

(3.a)Whenm = ∞ andn = 2, player 2 has awinning strategy.Actually, if player 1
starts by playing (1, k), he loses because the game becomes a 2 × k game where
player 2 is the first mover. Otherwise, player 1 starts by playing (2, k), but then
player 2 best responds by playing (1, k + 1), and then player 2 makes sure that this
configuration repeats itself.

(3.b) When m = ∞ and n � 3, player 1 can win by coming back to the 2 × ∞
game (by choosing at the first stage the square (3, 1)).

Exercise 2
The extensive form is

−1 −1

LH
1/21/2

Nature

P1 P1

P2
C S C S

CH SH SL CL

2 1 −2 1



200 9 Solutions to the Exercises

and so, the normal form is
C S

(CH ,CL) 0 1
(CH , SL) 1/2 0
(SH ,CL) −3/2 0
(SH , SL) −1 −1

The two last rows are strictly dominated (it is never optimal to stop when player 1 has
anH card). The remaining two-by-two zero-sum game has a value of 1/3. Player 1 has
a unique optimal strategy: 1

3 (CH ,CL) + 2
3 (CH , SL), and the corresponding behav-

ioral strategy is: always continue when the card is high, and continue with probability
1
3 when it is low (bluff 1

3 of the time). Player 2’s optimal strategy is 2
3C + 1

3 S (check
the adversary card 2

3 of the time).

Exercise 3
(1.1) Let σ be fixed and define Σ(η). Then for all i ∈ I , define γ(σ, t i ) as the

number of pure strategies of player i strictly better that t i against σ−i . Define τ such
that for all i and all si ,

τ i (si ) = εγ(σ,si )∑
t i∈Si εγ(σ,t i )

.

Then τ is in F(σ).
(1.2) By applying Kakutani’s fixed point theorem, there is a fixed point σε of

F . Then σε is ε-proper and any of its accumulation points as ε → 0 is a proper
equilibrium.

(2) In game 1: (T, L) is proper (and so is perfect and thus is a Nash equilibrium);
(B, R) is Nash but not perfect. In game 2, (T, L) is proper and (M, M) is a Nash
equilibrium, is perfect, but not proper.

Exercise 4
(1) Player 1 (the proposer) keeps all the money for himself and offers x = 0 to

player 2. Actually, since player 2 should accept any offer x > 0, the unique best
response of player 1 that maximizes M − x is x = 0.

(2) Let an(s) be the subgame-perfect equilibrium payoff of the first proposer
when the initial amount to be divided is s > 0 in the n rounds alternative offer
game. By induction, we show that an(s) is well defined and that it is positively
homogenous as a function of s and so, an(s) = an × s for some positive constant an .
Part (1) proves that a1(s) = s and so a1 = 1. Also, at equilibrium a2(s) = s − a1(δs)
because the proposer is maximizing his payoff under the constraint that he must
offer to the other player at least what he can obtain if he refuses the proposal. Thus,
by homogeneity a2 = 1 − δa1. Similarly, a3 = 1 − δa2 and an = 1 − δan−1. Thus,
an = ∑n−1

k=0(−δ)k = 1+(−δ)n

1+δ
. Hence, if one starts with an amount of money equal to

M and the game has T rounds, the proposer gets 1+(−δ)n

1+δ
M , which converges to M

1+δ
as T goes to infinity.

(3) It is easy to check that the proposed profile is a subgame-perfect equilibrium.
Let us prove that it is unique.Let A(s) ⊂ R

2 be the set of subgame-perfect equilibrium
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payoffs when player 1 is the first proposer and that the amount ofmoney to be decided
is s and let a(s) (resp. a(s)) be the supremum (resp. the infimum) on the first (resp.
second) coordinate of A(s). We have 0 � a(s) � a(s) � s, and a(s) � s/(1 + δ).
In a subgame-perfect equilibrium, if at the first stage player 1 proposes the sharing
(ts, (1 − t)s) for some t ∈ [0, 1], player 2 accepts if (1 − t)s > a(sδ) or equivalently
if t < 1 − a(sδ)/s, and player 2 refuses if (1 − t)s < a(sδ) or equivalently if t >

1 − a(sδ)/s. Thus player 1 wins at least s(1 − a(sδ)/s), and so

a(s) � s − a(sδ).

Similarly, in any subgame-perfect equilibrium, player 1 wins at most s(1 − a(sδ)/s)
if player 2 accepts the proposition at step 1, and if player 1 refuses, it is even worse
for player 1 (who cannot hope for more than sδ − a(sδ) if he accepts player 2’s
proposal at step 2). Thus we obtain:

a(s) � s − a(sδ).

Combining the two inequalities leads to a(s) � s − (sδ − a(sδ2)) � s(1 − δ) +
sδ2(1 − δ) + a(sδ4) � · · · � s/(1 + δ). Thus a(s) = s/(1 + δ). Consequently
a(s) � s − (sδ)/(1 + δ), leading to a(s) = a(s) = s/(1 + δ).

Exercise 5
(1) Let σ be a pure strategy equilibrium of G. Let us show that σ is also a

pure equilibrium of G ′. Since it is pure, it recommends a unique choice in every
information set, and because there is no Nature, there is a unique play. To check that
σ is a Nash equilibrium of G ′, it suffices to check that in every information set in G ′
reached by σ, no player has an interest to deviate. So, let I ′ be an information set in
G ′ reached by σ. If a player has a profitable deviation in G ′, it is also profitable in
G, a contradiction.

(2) The result is false if σ is mixed. Consider the Matching Pennies game in
extensive form. Player 1 starts and chooses between Heads or Tails, and without
observing player 1’s move player 2 should do the same. If player 2 guesses player 1’s
choice correctly, player 2 gets+1 (and player 1 gets−1). Otherwise player 1 gets+1
and player 2 gets −1. The unique equilibrium for both players is mixed: 1

2H + 1
2T .

If player 2 gets to know player 1’s choice, a random choice is not optimal for him.
Furthermore, the result does not extend with moves of Nature. Just replace in the

above game player 1 by Nature, which plays according to the probability distribution
3
4H + 1

4T .Without knowingNature’s choice, player 2 plays H , but knowingNature’s
choice, he must play T if he observes T .

Exercise 6
Solve the game using backward induction. If there are 1, 2 or 3 tokens, the

player whose turn it is to play wins by taking all the tokens. If 4 tokens remain,
the player who starts loses whatever he plays (because after his move, 1, 2 or 3
tokens are left). If there are 5, 6 or 7 tokens, the player who starts can take what is
needed so that 4 tokens remain.
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Thus, by induction, if the number of tokens is amultiple of 4, the second player has
a winning strategy, otherwise the first player will win.

Exercise 7
The game is very similar to the poker game. The extensive form is:

(0, 4) (0, 4)

NI
1/21/2

Nature

F1 F1

F2

S Q S Q

E L L E

(8,−4) (4, 0) (4, 8) (4, 0)

The normal form is:
E L

SS 2, 2 4, 0
SQ 4, 0 2, 2
QS −2, 6 2, 2
QQ 0, 4 0, 4

QS and QQ are strictly dominated. The remaining games admit a unique equilibrium
where each player randomizes equally between the remaining strategies.

Exercise 8
(1) The utility of the buyer is [v − (b1 + b2)/2] 1b1�b2 and of the seller is

[(b1 + b2)/2 − c] 1b1�b2 . The buyer minimizes in b2 and the seller maximizes in
b1 under the constraint that b1 � b2. At equilibrium b1 = b2, and for all b ∈ [c, v],
b = b1 = b2 is a Nash equilibrium.

(2) Let us show that bi (·) is increasing.
Put πb2(v) = E

[
[v − (b1(c) + b2)/2] 1b1(c)�b2

]
.

πb2(v + ε) = πb2(v) + εP(b2 � b1(c)).
Define b2(v) = argmax

b2

πb2(v).

Then πb2(v)(v + ε) = πb2(v)(v) + εP(b2(v) � b1(c)). When b2 < b2(v), the first
term is smaller because we deviate from the optimum, and the second term is smaller
because the bound decreases. The optimum of b2 → πb2(v + ε) is necessarily at the
right of b2(v), that is, b2(v + ε) > b2(v).

(3) Suppose the bidding functions β1, β2 are strictly increasing and C1. Since for
each c, β1(c) maximizes the expected payoff

∫ 1

β−1
2 (β1(c))

(
β1(c) + β2(v)

2
− c

)
dv,
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the first-order condition gives:

1

2
(1 − β−1

2 (β1(c))) − dβ−1
2 (β1(c))(β1(c) − c) = 0.

For the second player, β2(v) maximizes the expected payoff:

∫ β−1
1 (β2(v))

0

(
v − β1(c) + β2(v)

2

)
dc.

The first-order condition gives:

−1

2
β−1
1 (β2(v)) + dβ−1

1 (β2(v))(v − β2(v)) = 0.

This gives a pair of ODEs.
(4) If we look for affine solutions we find:

β1(c) = 2

3
c + 1

4

and

β2(v) = 2

3
v + 1

12
.

There is a trade if and only if v − c � 1/4.

9.7 Hints for Chapter 7

Exercise 1
(1) The normal form is:

(BB, BW ) (BB,WW ) (WB, BW ) (WB,WW )

B (2, 2) (2, 2) (5/2, 5/2) (5/2, 5/2)
W (5/2, 5/2) (2, 2) (5/2, 5/2) (2, 2)

There are infinitely many Nash equilibria forming one single component, and they
all give to both players a payoff of 5

2 . In the extensive form, all equilibria are such
that if player 1 chooses one of the colors, player 2 (who observes player 1’s choice)
plays the opposite color.
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(2) The normal form is:

(BB, BW ) (BB,WW ) (WB, BW ) (WB,WW )

(BB, BW ) (2, 2) (2, 2) (5/2, 5/2) (5/2, 5/2)
(BB,WW ) (7/2, 1) (2, 2) (5, 0) (7/2, 1)
(WB, BW ) (1, 7/2) (2, 2) (0, 5) (1, 7/2)
(WB,WW ) (5/2, 5/2) (2, 2) (5/2, 5/2) (2, 2)

In any pure or mixed equilibrium, player 2 plays (BB,WW ). The unique equilibrium
payoff is (2, 2).

(3) When both players are informed, the unique equilibrium payoff is also (2, 2).
When only player 2 is informed the unique equilibrium payoff is (1, 7/2). The best
for player 1 is game 1where no player is informed, in which case he gets 1. The value
of information is negative because if we only inform player 1, his payoff decreases.

Exercise 2
(2) The normal form is:

LA
LB

L A
MB

LA
RB

MA
LB

MA
MB

MA
RB

RA
LB

RA
MB

RA
RB

A1
A2

(0, 3) (0, 3) (0, 3) (2, 5) (2, 5) (2, 5) (1, 6)∗ (1, 6) (1, 6)∗
A1
B2

(0, 3) (1, 11/2) (1, 9)∗ (1, 5/2) (2, 5) (2, 17/2) (0, 0) (1, 5/2) (1, 6)

B1
A2

(0, 3) (1, 5/2) (0, 0) (2, 5) (2, 5) (2, 17/2) (1, 9)∗ (2, 17/2) (1, 6)

B1
B2

(0, 3) (2, 5) (1, 6)∗ (0, 3) (2, 5) (1, 6) (0, 3) (2, 5) (1, 6)∗

Pure Nash equilibria are indicated with a ∗. They all give to player 1 a payoff
of 1. The pure equilibria (A1, A2) and (B1, B2) are called pooling or non-revealing
because whatever information he has, player 1 plays the same action, and so after
observing player 1’s action, player 2’s probabilistic belief about the state of Nature
remains the same. The pure equilibria (A1, B2) and (B1, A2) are called completely
revealing because player 1 plays a different action after every state, and so after
observing player 1’s action, player 2 knows the state with certainty.

(3) The suggested behavioral strategy profile corresponds to themixed equilibrium
( 12 (A1, A2) + 1

2 (A1, B2), (MA, RB)). The corresponding vector payoff is (2, 27/4)
and so player 1’s payoff improves. In this equilibrium, player 2 learns the state if he
observes action B and after observing action A his belief changes from the probability
( 12 ,

1
2 ) on the state to ( 23 ,

1
3 ).

Remark: In a general “sender-receiver” game in which player 1, the sender, learns the
state of Nature, then sends a non-costlymessage to player 2, who then takes an action,
there is always a non-revealing equilibrium. A completely revealing equilibrium, if
it exists, gives the best possible payoff to player 2. The best equilibrium for player 1
may be partially revealing, as in this example.
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Exercise 3
(1) By contradiction let ((x1, x2, x3), (y1, y2, y3)) be an equilibrium. If y1 > 0,

then x1 = 0 so that y3 = 0. If moreover y2 > 0, then x2 = 1 and then y1, a contra-
diction. Thus y1 = 0, which implies x3 = 0. If x2 > 0, y2 = 1 and then x1 = 1. If
x2 = 0, then x1 = 1, also leading to a contradiction.

(2.a) There is no pure equilibria (what would
∑

i s
i be?).

(2.b) By contradiction, consider an equilibrium inducing the independent ran-
dom variables s1, s2, . . . , sn, . . . By the Borel–Cantelli lemma, the probability that∑

i s
i = ∞ is 0 or 1. Both cases are impossible.

(2.c) Consider player i and let si be his signal. We have P(μ1|si = 1) =
P(μ2|si = 1) = P(μ1|si = 0) = P(μ2|si = 0) = 1/2, hence player i is indifferent
and always plays a best response.

Exercise 4
(1) Clear since Γ is a finite zero-sum game.
(2) If Q ∈ Δ(S) is a strategy of player 1 that guarantees 0 in Γ , then Q is a

correlated equilibrium distribution in G.
(3) We have γ(μ,π) is equal to

∑
(s1,s2)∈S1×S2

μ1(s1)μ2(s2)
∑
i=1,2

∑
(t i ,ui )∈Li

π(t i , ui )γ((s1, s2); t i , ui ).

Let A1 be the term corresponding to i = 1. Then

A1 =
∑
s1,s2

μ1(s1)μ2(s2)
∑

(t1,u1)

π(t1, u1)γ((s1, s2); t1, u1)

=
∑
s1

μ1(s1)
∑
u1

π(s1, u1)
∑
s2

μ2(s2)γ((s1, s2); s1, u1)

=
∑
s1

μ1(s1)
∑
u1 �=s1

ρ1(s1, u1)
∑
s2

μ2(s2)(g1(s1, s2) − g1(u1, s2))

=
∑
s1

μ1(s1)
∑
u1

ρ1(s1, u1)(g1(s1,μ2) − g1(u1,μ2))

=
∑
s1,u1

μ1(s1)ρ1(s1, u1)g1(s1,μ2) −
∑
s1,u1

μ1(s1)ρ1(s1, u1)g1(u1,μ2)

=
∑
s1

μ1(s1)g1(s1,μ2) −
∑
u1

μ1(u1)g1(u1,μ2)

= g1(μ1,μ2) − g1(μ1,μ2) = 0.

Similarly A2 = 0, hence γ(μ,π) = 0.
(4) ∀π ∈ Δ(L), ∃μ ∈ Δ(S) such that γ(μ,π) � 0, hence the value of Γ is non-

negative, thus (a) and (b) apply.
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(5) In the auxiliary two-person zero-sum game Γ , the strategy space of player 1 is
S = S1 × S2 × · · · × Sn , that of player 2 is

⋃n
i=1(S

i × Si ) and the payoff is defined
in a similar way.

Exercise 5
(1.a) Let π ∈ CED. We have, for player 1:

g(π) =
∑
s1∈S1

∑
s2∈S2

g(s1, s2)π(s1, s2)

=
∑
s1∈S1

max
t1∈S1

∑
s2∈S2

g(t1, s2)π(s1, s2)

=
∑
s1∈S1

π(s1)max
t1∈S1

G1(t1,π(·|s1)).

But maxt1∈S1 g(t1,π(·|s1)) � v for all s1, thus g(π) � v. By symmetry g(π) = v.
(1.b) Let π ∈ CED and s1 be an action of player 1 having a positive prob-

ability under π. We have v = g(π) = ∑
s1∈S1 π(s1)maxt1∈S1 g(t1,π(·|s1)), with

maxt1∈S1 g(t1,π(·|s1)) � v for all s1. Hence π(s1) > 0 implies

max
t1∈S1

G1(t1,π(·|s1)) = v,

which means that π(·|s1) is an optimal strategy of player 2 in g.
(2.a) If player 1 receives the signal a1, his conditional probability on S2 is

(1/2, 1/2, 0) and a1 is a best response. If the signal is a2, his conditional proba-
bility on S2 is (1, 0, 0) and a2 is a best response. The distribution belongs to CED.

(2.b) The value is 0 and the optimal strategies are:αa1 + (1 − α)a2, withα � 1/2
for player 1 and symmetrically for player 2.

Let π ∈ CED. For each action a of player 1, with π(a) > 0, (1.b) implies
π(b3|a) = 0 and π(b1|a) � π(b2|a).

Thus π(b3) = 0, hence also π(a3) = 0. π is thus of the form

b1 b2 b3
a1 x y 0
a2 z t 0
a3 0 0 0

with x � y, z � t , x � z and y � t .
Conversely, we easily check that any distribution as above is in CED.

Exercise 6
(1) The equilibria are α = (T, L), β = (B, R) and γ = ( 12T + 1

2 B, 1
2 L + 1

2 R).
(2.a) The payoffs of player 1 and 2 are independent of the action of player 3,

hence they play an equilibrium of the previous two-person game. If they play α or β,
player 3 has no best response. If they play γ, z = 0 is not a best response either.
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(2.b) The distribution defined by z = 0 and the correlated equilibria for players 1
and 2: 1

2 on (T, L) and 1
2 on (B, R), gives a payoff 2 to player 3. By playing z �= 0

player 3 obtains at most 3
2 .

The distribution is thus in CED.

9.8 Hints for Chapter 8

Exercise 1
(1) v1 = v2 = 0, hence E = co(g(A)) = co{(0, 0), (1, 0), (0, 1)}.
(2) v1 = 1/2, v2 = 1, hence E = {(x, 1), 1/2 � x � 1}.
(3) E = {(0, 0)}.
(4) v1 = v2 = v3 = 0, hence E = co(g(A)) = {(x, y, z) ∈ R

3+, x + y + z � 1}.
Exercise 2

Let v = v1 = −v2 denote the value of G in mixed strategies. Any feasible and IR
payoff (x, y) satisfies x + y = 0, x � v and y � −v, so there is a unique feasible
and IR payoff, which is (v,−v), and ET = Eλ = E∞ = {(v,−v)} for each T and λ.

Exercise 3
(a) Consider any bounded sequence (xt )t�1 of real numbers, and let xt be

1
t

∑t
s=1 xs for each t � 1. Recall that by (8.1), we have for each λ ∈ (0, 1]:

∞∑
t=1

λ2t(1 − λ)t−1xt = λ

∞∑
t=1

(1 − λ)t−1xt .

Moreover, for each T0 � 1,

T0−1∑
t=1

λ2t(1 − λ)t−1 = −λ2 ∂

∂λ

(T0−1∑
t=1

(1 − λ)t
)

,

T0−1∑
t=1

λ2t(1 − λ)t−1 = 1 − (1 − λ)T0 − T0λ(1 − λ)T0−1 −→λ→0 0. (9.2)

(b) Let now σ be a uniform equilibrium of G∞, and fix i in N . For each t � 1,
define xit = Eσ(gi (at )), so that γi

t (σ) = xt .
Consider τ i in Σ i and write yt = Eτ i ,σ−i (gi (at )). Fix ε > 0. There exists a T0

(independent of i and τ i ) such that yit � xt + ε for each t � T0. We have for each λ:
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γi
λ(τ

i ,σ−i ) = λ

∞∑
t=1

(1 − λ)t−1yt =
∞∑
t=1

λ2t(1 − λ)t−1yt

�
T0−1∑
t=1

λ2t(1 − λ)t−1yt +
∞∑

t=T0

λ2t(1 − λ)t−1(xt + ε)

� γi
λ(σ) + ε +

T0−1∑
t=1

λ2t(1 − λ)t−1(yt − xt )

� γi
λ(σ) + ε + 2‖gi‖∞(1 − (1 − λ)T0 − T0λ(1 − λ)T0−1)

� γi
λ(σ) + 2ε,

where the second equality uses (8.1), and the last inequalities use (9.2) and hold for
λ � λ0, for some λ0 depending on ε and T0 but independent of i and τ i . This proves
(1′) of Lemma 8.3.5.

Finally, (8.1) and (9.2) also imply that γi
λ(σ) = λ

∑∞
t=1 (1 − λ)t−1xt converges,

as λ goes to 0, to limt→∞ xt . This proves (2′) of the lemma.

Exercise 4
Since we have two players,

v1 = max
x1∈Δ(A1)

min
x2∈Δ(A2)

g1(x1, x2)

and similarly v2 = maxx2∈Δ(A2) minx1∈Δ(A1) g2(x1, x2). The proof is close to the
proof in Example 8.2.3, by induction on T . Assume ET = {(v1, v2)} and con-
sider a Nash equilibrium σ = (σ1,σ2) of GT+1. Let x1 and x2 be the mixed
actions used at stage 1, respectively under σ1 and σ2. The payoff induced by σ
in the T + 1-stage game is 1

T+1 (g
1(x1, x2) + T v1). If player 1 deviates and plays

a mixed action y1 at stage 1 and then independently at each subsequent stage an
action achieving the maximum in the expression of v1, he obtains a payoff not
lower than 1

T+1 (g
1(y1, x2) + T v1). Consequently, g1(y1, x2) � g1(x1, x2) and x1

is a best response to x2 in G. Similarly x2 is a best response to x1 in G, and
g(x1, x2) = (v1, v2).

Exercise 5
L

T (0, 0)
B (1, 1)

Exercise 6
(1) The set of mixed Nash equilibrium payoffs is the union of the segments

[(0, 0), (0, 2)] and [(0, 0), (2, 0)], and the set of correlated equilibrium payoffs is
the convex hull of the latter.
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(2) We need (B, L) and (T, R) to be played with probability 1/2 each at stage 2.
Stage 1 can be used by the players to determine whether (B, L) or (T, R) will be
played at stage 2, the difficulty being that player 1 strictly prefers (B, L) whereas
player 2 strictly prefers (T, R). This difficulty can be solved using a jointly controlled
lottery (introduced by Aumann and Maschler in the 1960s [13]): at stage 1, both
players randomize with probability 1/2 for each action. At stage 2, if the outcome of
stage 1 was on the first diagonal, i.e. either (T, L) or (B, R), player 1 plays B and
player 2 plays L , and if the outcome of stage 1 was either (B, L) or (T, R), player 1
plays T and player 2 plays R. No player can unilaterally influence the fact that each
diagonal will be reached with probability 1/2 at stage 1, and we have defined a Nash
equilibrium of Γ with payoff (1, 1).

Exercise 7
Fix any strategy of player 1, and consider a best response of player 2 in Gλ.

After any history reached with positive probability, player 2 should play D2 with
probability one, because it maximizes the current stage payoff and does not harm
the best response continuation payoff of player 2. Consequently any equilibrium
payoff is in the convex hull of {(0, 4), (1, 1)}. But any equilibrium payoff should be
individually rational for player 1, so Eλ = {(1, 1)}.
Exercise 8

The mixed Nash equilibrium payoffs of the stage game are (2, 1), (1, 2) and
(2/3, 2/3). In the repeated game, one can use the different stages to convexify these
payoffs, and we obtain that co{(2, 1), (1, 2), (2/3, 2/3)} is a subset of

⋃
T�1 ET .

Conversely, fix T and consider a Nash equilibrium σ = (σ1,σ2) of GT . After any
history of length t of player 1 having positive probability, σ1 has to play at stage t + 1
a best response in the stage game against the expected mixed action of stage t + 1 of
player 2. Similarly, after any history of length t of player 2 having positive probability,
σ2 plays at stage t + 1 a best response in the stage game against the expected mixed
action of stage t + 1 of player 1. The sets of best replies being convex, it follows that
the expected mixed action profile of stage t + 1 is a mixed Nash equilibrium of the
stage game, and the payoff of σ is a convex combination of mixed Nash equilibrium
payoffs of G. We obtain

⋃
T�1 ET = co{(2, 1), (1, 2), (2/3, 2/3)}.

Remark: The above arguments are not specific to the battle of the sexes, and for any
repeated game played in the dark,

⋃
T�1 ET is the convex hull of the mixed Nash

equilibrium payoffs of the stage game.

Exercise 9
(1) All minmax are 0, so the set of feasible and IR payoffs is the square given by

the convex hull of (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 0).
(2) Fix T and a Nash equilibrium σ = (σ1,σ2,σ3) of the T -stage repeated game

with payoff (x1, x2, 0). Define τ 1 as the deviation of player 1, who plays B at every
stage, and similarly let τ 2 be the deviation of player 2, who plays R at every stage.
The point is that both (τ 1,σ2,σ3) and (σ1, τ 2,σ3) induce a certain signal s ′ for
player 3 at every stage. Let A3 = {W, M, E} be the set of pure actions of player 3,
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and define z ∈ Δ(A3) as the expected frequency played by player 3 under (τ 1,σ2,σ3)

and (σ1, τ 2,σ3):

∀a ∈ A3, z(a) = E(τ 1,σ2,σ3)

(
1

T

T∑
t=1

1a3t =a

)
= E(τ 1,σ2,σ3)

(
1

T

T∑
t=1

1a3t =a

)
.

We have

E(τ 1,σ2,σ3)

(
1

T

T∑
t=1

g1(at )

)
= z(W ) + z(E),

E(σ1,τ 2,σ3)

(
1

T

T∑
t=1

g2(at )

)
= z(W ) + z(M).

By the best response conditions, x1 � z(W ) + z(E) and x2 � z(W ) + z(M), so
x1 + x2 � 1.

(3) All vectors (1, 0, 0), (0, 1, 0) and (1, 1, 0) are Nash equilibrium payoffs
of the stage game. One can use the stages to convexify the equilibrium pay-
off set, so given ε > 0 there exists a T such that each point of the triangle
co{(1, 0, 0), (0, 1, 0), (1, 1, 0)} is at distance at most ε to ET . Using (a) and (b),
we get the convergence of ET to the triangle.

Remark: Here the limit equilibrium payoff set depends on the “joint rationality”
condition: x1 + x2 � 1. This condition comes from the fact that in case of deviation,
player 3 cannot deduce from his signals who among player 1 or player 2 deviated,
and is unable to punish at the same time players 1 and 2. So in the case of a deviation,
he does not know which player he should punish, and if he punishes player 1 (resp.
player 2), he rewards player 2 (resp. player 1). A variant of this example can be
found in Tomala [211] (see also [169]). A general characterization of communication
equilibrium payoffs of repeated games with signals, based in particular on joint
rationality, can be found in Renault and Tomala [170].

Exercise 10
(1) The “only if” part is clear. For the “if” part, assume by contradiction that σ is

not a subgame-perfect equilibrium of Gλ. There exists a history h, a player i and a
strategy τ i such that

γi
λ(σ

−i [h], τ i [h]) > γi
λ(σ[h]).

Since λ > 0 is fixed, the very large stages play only a small rôle and we can assume
w.l.o.g. that τ i differs from σi at finitely many information sets only. This allows us
to define l∗ as the smallest positive integer l such that there exists a strategy τ̂ i of
player i , different from σi after exactly l histories, and satisfying

γi
λ(σ

−i [h], τ̂ i [h]) > γi
λ(σ[h]).
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Let τ ∗i be different from σi after exactly l∗ histories (denoted h1, h2, . . . , hl∗ ),
and such that γi

λ(σ
−i [h], τ ∗i [h]) > γi

λ(σ[h]). By minimality of l∗ each history
h1, h2, . . . , hl∗ extends h, and we consider a history h∗ with maximum length among
h1, h2, . . . , hl∗ .

We have γi
λ(σ

−i [h∗], τ ∗i [h∗]) > γi
λ(σ[h∗]), otherwisemodifying τ ∗i at h∗ only by

τ ∗i (h∗) = σi (h∗)would contradict theminimality of l∗. Now, since h∗ hasmaximum
length τ ∗i [h∗] and σi [h∗] differ only immediately after h∗. Finally, define τ ∗∗i as the
strategy of player i , who plays like σi everywhere except immediately after h∗, where
they play τ ∗i (h∗). τ ∗∗i is a one-shot deviation of σi , and γi

λ(σ
−i [h∗], τ ∗∗i [h∗]) >

γi
λ(σ[h∗]).
(2.a) Let x inR

N be in NEP(λg + (1 − λ)u), for some u : A → E ′
λ. One can con-

struct a subgame-perfect equilibrium of Gλ as follows: play at stage 1 a mixed Nash
equilibrium in NE(λg + (1 − λ)u) with payoff x , and from stage 2 on a subgame-
perfect equilibrium of Gλ with payoff u(a1), where a1 is the action profile played at
stage 1. This shows that Φ(E ′

λ) ⊂ E ′
λ.

Conversely, consider a subgame-perfect equilibrium σ of Gλ with payoff w.
Denote by x the mixed action profile played at stage 1 under σ. We have w =∑

a∈A x(a)(λg(a) + (1 − λ)γλ(σ[a])). Define for each a in A, u(a) = γλ(σ[a]) ∈
E ′

λ. x belongs to NE(λg + (1 − λ)u), so w ∈ NEP(λg + (1 − λ)u) belongs to
Φ(E ′

λ).
(2.b) Let W be a fixed point of Φ, and fix some u0 in W . There exists a mixed

action profile x0 and u1 : A → W such that x0 is in NE(λg + (1 − λ)u1)with payoff
u0. For each a in A, u1(a) ∈ W , so there exists a mixed action profile x1(a) and
u2(a) : A → W such that x1(a) is in NE(λg + (1 − λ)u2(a)) with payoff u1(a).

By induction, for each history h in HT , there is a mixed action profile xT (h)

and uT+1(h) : A → W such that xT (h) is in NE(λg + (1 − λ)uT+1(h)) with payoff
uT (h), with uT+1(h, a) := uT+1(h)(a) for all T and h ∈ HT and a ∈ A.

Let σ be the strategy profile where each player i plays after any history h of
length T the mixed action xiT (h). By construction, there is no one-shot profitable
deviation from σ. By the one-shot deviation principle of (a), σ is a subgame-perfect
equilibrium of Gλ, and its payoff is w.

Remark: W ⊂ Φ(W ) is enough to deduce that W ⊂ E ′
λ.

Exercise 11
Proof of Lemma 8.5.7.
We use ‖ · ‖ = ‖ · ‖∞, and let N denote the number of players. Fix ε > 0 and a

player i in N . There exists an L � 1 such that each point in cog(A) is ε/2-close to a
point in the grid DL = { 1

L (g(a1) + · · · + g(aL)), a1, . . . , aL ∈ A}, and there exists
a λ0 > 0 such that for each λ � λ0, each point in cog(A) is ε-close to a point in the
grid:

DL
λ = { λ

1 − (1 − λ)L

∑L
t=1 (1 − λ)t−1g(at ), a1, . . . , aL ∈ A s.t.

gi (a1) � gi (a2) � · · · � gi (aL)
}
.
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Consider λ small enough, and define μ = 1 − (1 − λ)L . There exists a positive
integer K such that β, defined as 1 − (1 − μ)K , is in [1/2, 2/3]. Consider d =
(d j ) j∈N in R

N such that B∞(d, (3N + 8)ε) ⊂ cog(A). Define d− with i-coordinate
di − (N + 3)ε, and j-coordinate d j for each j �= i , and let c be a point in DL

λ such
that ‖c − d−‖ � ε. We have ci � di − (N + 2)ε, and ‖c − d‖ � (N + 4)ε. Define
now by f the convex combination d = βc + (1 − β) f . ‖d − f ‖ � 2(N + 4)ε, so
B( f, Nε) ⊂ cog(A). Notice that f i � di + (N + 2)ε.

We first show that B( f, Nε) ⊂ cog(A) implies that f can be written as a convex
combination of points in DL

λ which are all (N + 1)ε close to f . Indeed, define for
each j in N , f +( j) and f −( j) by respectively adding and subtracting Nε to/from the
j-coordinate of f . Clearly, f is in the convex hull of { f +( j), j ∈ N } ∪ { f −( j), j ∈
N }, and we now slightly perturb this convex hull. Let e+( j) and e−( j) be points on
the grid DL

λ which are ε-close to, respectively, f +( j) and f −( j). Then f belongs
to the convex hull of the set S = {e+( j), j ∈ N } ∪ {e−( j), j ∈ N } (if not, separate
f from this convex hull to get the existence of a y in R

N such that 〈y, f − e〉 < 0
for each e in S, then use the Cauchy–Schwarz inequality and ‖ · ‖2 �

√
N‖ · ‖∞ in

R
N to get a contradiction). Now, by Carathéodory’s theorem, there exists a subset

S′ = {e1, . . . , eN+1} of N + 1 elements of S such that f can be written as a convex
combination:

f =
N+1∑
m=1

αmem .

Forλ small enough,we haveμ � 1
N+1 so there exists anm1 such thatαm1 � μ.We

can write f = μe(1) + (1 − μ) f (1), with e(1) = em1 and f (1) in co(S′). Similarly,
there exists e(2) in S′ and f (2) in co(S′) such that f (1) = μe(2) + (1 − μ) f (2).
Iterating, we obtain a sequence (e(s))s�1 of points in S′ such that

f =
∞∑
s=1

μ(1 − μ)s−1e(s).

Since d = βc + (1 − β) f , we have

d = (1 − (1 − μ)K )c + (1 − μ)K
∞∑
s=1

μ(1 − μ)s−1e(s),

with

‖c − d‖ � (N + 4)ε, ‖e(s) − d‖ � 3(N + 3)ε, ci � di − (N + 2)ε and

ei (s) � f i − ‖ f − e(s)‖ � di + ε

for each s.
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By definition of DL
λ , we can write c = λ

1−(1−λ)L

∑L
t=1 (1 − λ)t−1g(at ), with

a1, . . . , aL ∈ A and gi (a1) � gi (a2) � · · · � gi (aL). Similarly, for each s � 1,
e(s) = λ

1−(1−λ)L

∑L
t=1 (1 − λ)t−1g(at (s)), with a1(s), . . . , aL(s) ∈ A.

We define a path (bt )t�1 of pure actions in A by consecutive blocks of length L:
in each of the first K blocks, play a1, . . . , aL , then at each block k � K + 1 play
a1(k − K ), . . . , aL(k − K ). Notice that 1 − μ = (1 − λ)L and

∑K L
t=1 λ(1 − λ)t−1 =

(1 − (1 − μ)K ). By construction we have

d = (1 − (1 − μ)K )c + (1 − μ)K
∞∑
s=1

μ(1 − μ)s−1e(s)

=
∞∑
t=1

λ(1 − λ)t−1g(bt ).

For T � 1, denote by d(T ) the continuation payoff
∑∞

t=T λ(1 − λ)t−T g(bt ). If
T = kL + 1 for some k � 0, d(T ) is a convex combination of c, e(1), . . . , e(s), . . . ,
so ‖d − d(T )‖ � 3(N + 3)ε, and if k � K we have di (T ) � di + ε. Moreover,
since ci � di ,wehavedi � di (L + 1) � di (2L + 1) � · · · � di (K L + 1).Assume
that λ is also small enough so that for every sequence (mt )t�1 in A and l =
1, . . . , L , the norm between

∑∞
t=1 λ(1 − λ)t−1g(mt ) and the continuation payoff∑∞

t=l λ(1 − λ)t−lg(mt ) is at most ε. So for any T � 1, ‖d − d(T )‖ � (3N + 10)ε.
If T � K L + 1, di (T ) � di + ε − ε = di . Assume finally that T ∈ [(k − 1)L +
1, kL] for some k = 1, . . . , K . Since gi (al)l=1,...,L is non-decreasing and di (kL +
1) � ci , we have di (T ) � di ((k − 1)L + 1), and this is at least di .

Exercise 12
Let us represent a 2-player quitting game as follows: if player 1 quits alone, the

payoff r({1}) is (a, b), if player 2 quits alone the payoff is (c, d) and if both players
quit for the first time at the same stage, the payoff is (e, f ).

C2 Q2

C1 (0, 0)� (c, d)∗
Q1 (a, b)∗ (e, f )∗

If a � 0 and d � 0, never quitting is a Nash equilibrium, so we assume without
loss of generality that a = 1. We also assume w.l.o.g. that b < f , c > e, and d < 0
(otherwise it is easy to construct a pure Nash equilibrium with payoff (1, b), (e, f )
or (c, d)). Now, either

• b � d: in this case the strategy profile where player 1 quits independently with
probability ε > 0 at each stage, and player 2 always continues, is an ε( f − d)-Nash
equilibrium of the quitting game, or

• 0 > d > b: the strategy profile where player 1 quits independently with proba-
bility ε at each stage, and player 2 quits at every stage, is an ε(c − e)-Nash equilibrium
of the quitting game (for ε > 0 small enough).
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