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Population games, I: Symmetric models

Definition (Single-population games)

A single-population game is a collection of the following primitives:

> A continuous population of players modeled by N = [0,1]
> A finite set of actions/ pure strategies A = {1,..., m}, common for all players in the population
> An ensemble of payoff functions v,: X = A(A) — R, one per a € A

A population game with primitives as above will be denoted by G = G(A, v).
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Population games, I: Symmetric models

Definition (Single-population games)

A single-population game is a collection of the following primitives:
> A continuous population of players modeled by N = [0,1]
> A finite set of actions/ pure strategies A = {1,..., m}, common for all players in the population
» An ensemble of payoff functions v4: X = A(A) - R, one per a € A

A population game with primitives as above will be denoted by G = G(A, v).

Setup of the game:

> Action selection given by some i — y(i) € A # N — Aassumed measurable

> Population state x € X = A(\A) defined as #asameasure: x = Loy
xa = AM(x " (a)) = mass of players playing « € A
> Anonymity: payoffs determined by the state of the population, not individual player choices

v« (x) = payoff to a-players when the population is at state x € X

1 MaBnuatikiv
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Example I: Symmetric random matching

Example (Symmetric / Single-population random matching)
> Given: m x m payoff matrix M # symmetric two-player finite game

> Matching: Two players are drawn randomly to play M #independent draws from x € X’

> If the population is at state x € X
P(matching « against 8) = xqxp
> Mean payoff to an a-strategist:
Va(x) = Epox[Mag] = 35 Mapxp = (Mx)a

> Mean population payoff:

u(x) = Eqpux[Map] = Za,BeA Mopxaxp = x' Mx

.

NB:

> Mean population payoff is quadratic in x # symmetric matching
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Population games, Il: Asymmetric models

Definition (Multi-population games)

A multi-population game is a collection of the following primitives:

» N distinct populations of players: N = 17, [0, pi] # p; = total mass of i-th population
> Afinite set of actions/ pure strategies A; = {1,...,m;} per population
» An ensemble of payoff functions viq;: X = IT; A(Aj) >R onepera; e Aj,i=1,...,N

A population game with primitives as above will be denoted by G = G(N, A, v).
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Population games, Il: Asymmetric models

Definition (Multi-population games)

A multi-population game is a collection of the following primitives:

» N distinct populations of players: N = 17, [0, pi] # p; = total mass of i-th population
> Afinite set of actions/ pure strategies A; = {1,...,m;} per population
» An ensemble of payoff functions viq;: X = IT; A(Aj) >R onepera; e Aj,i=1,...,N

A population game with primitives as above will be denoted by G = G(N, A, v).

Setup of the game:
* Population state x € X =[], A(A;j): # state of i-th population: x; € X; = A(A;)
Xia; = mass of players of population i playing a; € A;
> Anonymity: payoffs determined by the state of the population, not individual player choices

Vi, (x) = payoff to players of population i playing a; € A; when the population is at state x € X

MaBnuatiy
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Example II: Asymmetric random matching

Example (Asymmetric / Multi-population random matching)

> Given: finite game I = T(N, A,u); N unit mass populations

> Matching: N players are drawn randomly to play T, one per population #independent draws from x € X

> If the population is at state x € A
P(matching a; against a—;) = Xia, * X—i,a_;
> Mean payoff to an a-strategist of population i:
Vie; (%) = Ba_jmx_ [ta (s 0-i) ] = ui (ois 1)
> Mean payoff of population i:

ui(x) = Eqnx[ui(a)] = ZaleAl"'ZaNeAN Xy XNy Ui, .. 5 aN)

NB:

> Mean population payoff is multilinear in x # asymmetric matching
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Example IlI: Nonatomic congestion games

> Network: multigraph G = (V,€)
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Example IlI: Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends p; units of traffic to destination D;
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Example IlI: Nonatomic congestion games

> Network: multigraph G = (V,€)
> O/D pairs i € N: origin O; sends p; units of traffic to destination D;
> Paths Aj;: (sub)set of paths joining O; ~ D;
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Example IlI: Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends p; units of traffic to destination D;

> Paths Aj;: (sub)set of paths joining O; ~ D;

> Routing flow fq: traffic along & € A = [; A; generated by O/D pair owning «




Population games
00000@0000

Example IlI: Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends p; units of traffic to destination D;

> Paths Aj;: (sub)set of paths joining O; ~ D;

> Routing flow fq: traffic along & € A = [; A; generated by O/D pair owning «

> Load €. = },5, fa: total traffic along edge e
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Example IlI: Nonatomic congestion games

c1(€1)

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends p; units of traffic to destination D;

> Paths Aj;: (sub)set of paths joining O; ~ D;

> Routing flow fq: traffic along & € A = [; A; generated by O/D pair owning «

> Load €. = },5, fa: total traffic along edge e

> Edge cost function c. (€. ): cost along edge e when edge load is €.
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Example IlI: Nonatomic congestion games

c1(€1)

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends p; units of traffic to destination D;

> Paths Aj;: (sub)set of paths joining O; ~ D;

> Routing flow fq: traffic along & € A = [; A; generated by O/D pair owning «

> Load €. = },5, fa: total traffic along edge e

> Edge cost function c. (€. ): cost along edge e when edge load is €.

> Path cost: cx(f) = X peq Ce(fe)
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Example IlI: Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends p; units of traffic to destination D;

> Paths Aj;: (sub)set of paths joining O; ~ D;

> Routing flow fq: traffic along & € A = [; A; generated by O/D pair owning «
> Load €. = },5, fa: total traffic along edge e

> Edge cost function c. (€. ): cost along edge e when edge load is €.

> Path cost: cx(f) = X peq Ce(fe)

> Nonatomic congestion game: G = G(N, A, —¢)
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Mixing versus matching

N Symmetric Random matching + Mixed extension

# Population matched against itself == symmetric interactions

/\ Asymmetric random matching = Mixed Extension

# Populations matched against each other == asymmetric interactions

/\ Multi-population games 2 Mixed Extensions

# Nonatomic congestion games, ...
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Relations between classes

Finite Games

Mixed Extensions

Random Matching Multilinear Games

Population Games Continuous Games
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Nash equilibrium

Nash equilibrium (Nash, 1950, 1951)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

> In finite games (mixed extension formulation):
ui(x5x%) > ui(xisxl;) forallx;e X, ie N

> In population games:

Via; (x*) 2 vip,(x*) whenever a; € supp(x™)
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Nash equilibrium

Nash equilibrium (Nash, 1950, 1951)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

> In finite games (mixed extension formulation):
ui(x5x%) > ui(xisxl;) forallx;e X, ie N

> In population games:
Via; (x*) 2 vip,(x*) whenever a; € supp(x™)

Variational formulation (Stampacchia, 1964)

(v(x™),x—x")<0 forallxeX

where v(x) = (vi(x),...,vn(x)) is the payoff field of the game

1 MaBnuatikiv
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Geometric characterization

At Nash equilibrium, payoff vectors are outward-pointing

=

X = A(A)
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Geometric characterization

At Nash equilibrium, payoff vectors are outward-pointing

NC(x") v(x")

X = A(A)
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Geometric characterization

At Nash equilibrium, payoff vectors are outward-pointing

NC(x*) v(x®)

X = A(A)
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Geometric characterization

At Nash equilibrium, payoff vectors are outward-pointing

NC(x™)
X =A(A)

v(x*)
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@ Exponential weights and the replicator dynamics




Exponential weights and the replicator dynamics

00000000000

Basic questions

How do players learn from the history of play?

Do players end up playing a Nash equilibrium?
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Learning, evolution and dynamics

What is “learning” in games?
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Learning, evolution and dynamics

What is “learning” in games?

The basic process:
»> Players choose strategies and receive corresponding payoffs

> Depending on outcome and information revealed, they choose new strategies and they play again

> Rinse, repeat
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Learning, evolution and dynamics

What is “learning” in games?

The basic process:
»> Players choose strategies and receive corresponding payoffs
> Depending on outcome and information revealed, they choose new strategies and they play again

> Rinse, repeat

The basic questions:

> How do populations evolve over time? # Population biology
> How do people learn in a game? # Economics
> What algorithms should we use to learn in a game? # Computer science

> Given a dynamical system on X, what is its long-term behavior? # Mathematics
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Age the First (1970's-1990's): Population Biology

> Strategies are phenotypes in a given species

z4 = absolute population mass of type « € A

z= Za zq = absolute population mass
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Age the First (1970's-1990's): Population Biology

> Strategies are phenotypes in a given species

z4 = absolute population mass of type « € A

z= Za zq = absolute population mass
> Utilities measure fecundity / reproductive fitness:
Ve = per capita growth rate of type a

> Population evolution:

Za = ZaVa
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Age the First (1970's-1990's): Population Biology

> Strategies are phenotypes in a given species

z4 = absolute population mass of type « € A

z= Za zq = absolute population mass

> Utilities measure fecundity / reproductive fitness:
Ve = per capita growth rate of type a

> Population evolution:
Za = ZaVa

> Evolution of population shares (x, = z«/2):

. d za ZaZ—ZagZp  z4 Za zg
Xo= === Ve m = )V
dt z Zﬁ A

z? z z
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Age the First (1970's-1990's): Population Biology

> Strategies are phenotypes in a given species

z4 = absolute population mass of type « € A

z= Za zq = absolute population mass
> Utilities measure fecundity / reproductive fitness:
Ve = per capita growth rate of type a

> Population evolution:

Za = ZaVa
> Evolution of population shares (x, = z«/2):
o dze ZeZ-Zalpip z z z
Gy = L Ze . ﬂﬁ:iva,lz lvﬁ
dt z z z z —F 2

Replicator dynamics (Taylor & Jonker, 1978)

Ko = Xa[Va(x) —u(x)]
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Age the Second (1990's-2010's): Economics

> Agents receive revision opportunities to switch strategies

pap(x) = conditional switch rate from « to 8

# NB: dropping player index for simplicity
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Age the Second (1990's-2010's): Economics

> Agents receive revision opportunities to switch strategies
pap(x) = conditional switch rate from « to 8
# NB: dropping player index for simplicity

*> Pairwise proportional imitation:

Pap(x) = xp[vs(x) = va(x) ]+
# Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)
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Age the Second (1990's-2010's): Economics

> Agents receive revision opportunities to switch strategies

pap(x) = conditional switch rate from « to 8

# NB: dropping player index for simplicity

*> Pairwise proportional imitation:
Pap(x) = xp[vs(x) = va(x) ]+
# Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)

> Inflow/outflow:

Incoming toward o = Z/; mass(f ~ a) = Zﬂm xpppa(x)
Outgoing from « = Z;g mass(a ~ f) = x4 ZﬁeA pap(x)
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Age the Second (1990's-2010's): Economics

> Agents receive revision opportunities to switch strategies

pap(x) = conditional switch rate from « to 8

# NB: dropping player index for simplicity

*> Pairwise proportional imitation:
Pap(x) = xp[vs(x) = va(x) ]+
# Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)

> Inflow/outflow:
Incoming toward o = Z/; mass(f ~ a) = Zﬂm xpppa(x)
Outgoing from « = Z;g mass(a ~ f) = x4 ZﬁeA pap(x)

» Detailed balance:

Xq = inflowq (x) — outflows (x) = -+ = x4 [va(x) — u(x)] (RD)
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Age the Third (2000's-present): Computer Science

Learning in finite games

Require: finite game T = T(N, A, u)

repeat

At each epoch t > 0 do simultaneously for all players i € A/
Choose mixed strategy x; (t) € X; := A(A;)
Encounter mixed payoff vector v; (x(t)) and get mixed payoff u; (x(t)) = (vi(t), x(t))

until end

# continuous time
# mixing

#feedback phase

Defining elements
> Time: continuous
*> Players: finite
> Actions: finite

> Mixing: yes

> Feedback: mixed payoff vectors
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Exponential weights

Exponential reinforcement mechanism:

»> Score each action based on its cumulative payoff over time:

t
pies (1) = [ e, (x(5)) ds
*> Play an action with probability exponentially proportional to its score

Xia; (1) o< exp(yia; (1))

Exponential weights in continuous time

}.}i"‘i = Viﬂti(x)
exp(ia;) (EW)
D picA; exp(yip,)

Xia; =
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Replicator dynamics

How do mixed strategies evolve under (EW)?




Exponential weights and the replicator dynamics ] alysis and rationalit

00000008000

Replicator dynamics

How do mixed strategies evolve under (EW)?

Replicator dynamics (Taylor & Jonker, 1978)

Xia; = Xia; [Viai (x) - ZﬁiGAi Xip; Vip; (x)]

= Xia; [wi (@i 0-i) —ui(x)]

(RD)

“The per capita growth rate of a strategy is proportional to its payoff excess”

= Hofbauer & Sigmund (1998); Weibull (1995); Hofbauer & Sigmund (2003); Sandholm (2010)
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Replicator dynamics

How do mixed strategies evolve under (EW)?

Replicator dynamics (Taylor & Jonker, 1978)

xia,- = Xia; I:Via,- (X) - Zﬁ;&A,‘ xiﬂiviﬁ[ (x)]

= Xia; [wi (@i 0-i) —ui(x)]

(RD)

“The per capita growth rate of a strategy is proportional to its payoff excess”

= Hofbauer & Sigmund (1998); Weibull (1995); Hofbauer & Sigmund (2003); Sandholm (2010)

Proposition

Solution orbits of (EW) <= Interior orbits of (RD)

MaBnuatiy
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Basic properties

Replicator dynamics

Xia; = Xia; [Via; (x) = ui(x)] (RD)
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Basic properties

Replicator dynamics

Xia; = Xia; [Via; (x) = ui(x)] (RD)

Structural properties = Weibull, 1995; Hofbauer & Sigmund, 1998

> Well-posed: every initial condition x € X admits unique solution trajectory x(t) that exists for all time
# Assuming v Lipschitz

> Consistent: x(t) € X forall t >0
# Assuming x(0) € X’

> Faces are forward invariant (“strategies breed true”):

Xia;(0) >0 < xis;(t) >0 forallt>0
Xia;(0) =0 <= xis;(t) =0 forallt>0
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Evolution of mixed strategies I: 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in a Random Game

10 -

0.7,-0.2) (0.9,-0.7)
0.8
0.6
A
0.4
0.2
(-1,-0.3)
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Evolution of mixed strategies I: 2 x 2 games

What do the dynamics look like?

Replicator Dynamics in Battle of the Sexes

0,0) (3,1

# phase portraits
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Evolution of mixed strategies I: 2 x 2 games

What do the dynamics look like?

0.8

0.6

0.4

0.2

0.0

Replicator Dynamics in the Prisoners' Dilemma

[
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A
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# phase portraits
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Evolution of mixed strategies I: 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in Split or Steal

1.0 —- -

(6,0) (3,3)

0.8

- '///
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0,0)

0.0
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Evolution of mixed strategies I: 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in Matching Pennies

1.0} o > -
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0.6
A
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Evolution of mixed strategies Il: 2 x 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in Pure Coordination
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Evolution of mixed strategies Il: 2 x 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in a Harmonic Game
1,1,-3)

(5,-3,-3)
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Evolution of mixed strategies Il: 2 x 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in Twisted Matching Pennies
(0.1,1,0)

(0,0,1)
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Evolution of mixed strategies Il: 2 x 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in Adjacent Matching Pennies
,1,6)

1,-2,2)
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Evolution of mixed strategies Il: 2 x 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in Jordan's Matching Pennies

1,-1,1)
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Evolution of mixed strategies Il: 2 x 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in a Random Game
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Evolution of mixed strategies Il: 2 x 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in a Random Game
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Evolution of mixed strategies Il: 2 x 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in a Random Game
09,05,0.8)
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Evolution of mixed strategies Il: 2 x 2 x 2 games

What do the dynamics look like? # phase portraits

Replicator Dynamics in a Random Game
-1,07,06)

(0.1,04,0.7)
(0.9,09,0.2).

(-03,-03,0.5)

(=09, 0.5, 0.6)

(0.8,-0.1,-0.7)
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Asymptotic analysis and rationality
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Dynamics and rationality

Are game-theoretic solution concepts consistent with the players’ dynamics?

> Do dominated strategies die out in the long run?
> Are Nash equilibria stationary?
> Are they stable? Are they attracting?

> Do the replicator dynamics always converge?

> What other behaviors can we observe?
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Dominated strategies

Suppose «a; € Aj; is dominated by f3; € A;

> Consistent payoff gap:

Vig; (x) < vip,(x) —¢e forsomee >0
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[o]e] Je]e]e]ele]

Dominated strategies

Suppose «a; € Aj; is dominated by f3; € A;

> Consistent payoff gap:
Vig; (x) < vip,(x) —¢e forsomee >0

> Consistent difference in scores:

ym,.(t):fo'vm,(x) dss/(;r[v,-/;i(x)—s] ds = yig, (1) - et
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[o]e] Je]e]e]ele]

Dominated strategies

Suppose «a; € Aj; is dominated by f3; € A;

> Consistent payoff gap:
Vig; (x) < vip,(x) —¢e forsomee >0

> Consistent difference in scores:
t t
Vi, () = fo Vie, (x) ds < fo [vig, (x) — €] ds = yip, (£) — et
> Consistent difference in choice probabilities

Xia; (1) _ exp(yia; (£))

< exp(-et)

xig, (1) exp(yig, (1))
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Dominated strategies

Suppose «a; € A; is dominated by f3; € A;

> Consistent payoff gap:

Vig; (x) < vip,(x) —¢e forsomee >0

> Consistent difference in scores:
t t
Yia (1) = fo Vie, (x) ds < fo [vig, (x) — €] ds = yip, (£) — et
> Consistent difference in choice probabilities

Yia (1) _ ep(yia, (1))
xip (1) ey, (1)

< exp(-et)

Theorem (Samuelson & Zhang, 1992)

Let x(t) be a solution orbit of (EW)/(RD). If a; € A; is dominated, then
Xia; (t) = exp(—O(t)) ast— oo

In words: under (EW)/(RD), dominated strategies become extinct at an exponential rate.




Asymptotic analysis and rationality
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Dominated strategies

Suppose «a; € A; is dominated by f3; € A;

> Consistent payoff gap:
Vig; (x) < vip,(x) —¢e forsomee >0

> Consistent difference in scores:
t t
Yia (1) = fo Vie, (x) ds < fo [vig, (x) — €] ds = yip, (£) — et
> Consistent difference in choice probabilities

Yia (1) _ ep(yia, (1))
xip (1) ey, (1)

< exp(-et)

Theorem (Samuelson & Zhang, 1992)

Let x(t) be a solution orbit of (EW)/(RD). If a; € A; is dominated, then
Xia; (t) = exp(—O(t)) ast— oo

In words: under (EW)/(RD), dominated strategies become extinct at an exponential rate.

=¢ Self-check: extend to iteratively dominated strategies

BnpatKdy
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Stationarity of equilibria

Nash equilibrium: via, (x™) > vig, (x™) for all a;, Bi € A; with x7,, >0

> Supported strategies have equal payoffs:

Vig (x7) = v,ﬁ[(x*) forall a;, B; € supp(x;)
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Stationarity of equilibria

Nash equilibrium: via, (x™) > vig, (x™) for all a;, Bi € A; with x7,, >0
> Supported strategies have equal payoffs:

Vig (x7) = v,ﬁ[(x*) forall a;, B; € supp(x;)

> Mean payoff equal to equilibrium payoff:

ui(x*) =viq,(x*) forall a; € supp(x;)
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[o]e]e] Jele]ele]

Stationarity of equilibria

Nash equilibrium: via, (x™) > vig, (x™) for all a;, Bi € A; with x7,, >0
> Supported strategies have equal payoffs:

Vig (x7) = v,ﬁ[(x*) forall a;, B; € supp(x;)

> Mean payoff equal to equilibrium payoff:

ui(x*) =viq,(x*) forall a; € supp(x;)

> Replicator field vanishes at Nash equilibria:

xfax_ Vi, (x*) —ui(x*)] =0 foralla; € A;




Asymptotic analysis and rationality

[o]e]e] Jele]ele]

Stationarity of equilibria

Nash equilibrium: via, (x™) > vig, (x™) for all a;, Bi € A; with x7,, >0

> Supported strategies have equal payoffs:

Vig;(x*) = vig, (x*) forall a;, B; € supp(x])
> Mean payoff equal to equilibrium payoff:
ui(x*) =viq,(x*) forall a; € supp(x;)
> Replicator field vanishes at Nash equilibria:

xfax_ Vi, (x*) —ui(x*)] =0 foralla; € A;

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x(0) is a Nash equilibrium == x(t) = x(0) forall t > 0
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Stationarity of equilibria

Nash equilibrium: via, (x™) > vig, (x™) for all a;, Bi € A; with x7,, >0

> Supported strategies have equal payoffs:

Vig;(x*) = vig, (x*) forall a;, B; € supp(x])
> Mean payoff equal to equilibrium payoff:
ui(x*) =viq,(x*) forall a; € supp(x;)
> Replicator field vanishes at Nash equilibria:

xfax_ Vi, (x*) —ui(x*)] =0 foralla; € A;

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x(0) is a Nash equilibrium == x(t) = x(0) forall t > 0

X The converse does not hold!

*¢ Self-check: All vertices of X are stationary. General statement?
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Stability

Are all stationary points created equal?

Definition (Lyapunov stability)

x* is (Lyapunov) stable if, for every neighborhood U of x* in X, there exists a neighborhood U of x* such that
x(0) el = x(t)eU forallt>0

=0 Trajectories that start close to x* remain close for all time
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Stability and equilibrium

Proposition (Folk)

Suppose that x* is Lyapunov stable under (EW)/(RD). Then x™ is a Nash equilibrium.

1BNHATKY
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Stability and equilibrium

Proposition (Folk)

Suppose that x* is Lyapunov stable under (EW)/(RD). Then x™ is a Nash equilibrium.

Proof. Argue by contradiction:
> Suppose that x* is not Nash. Then

Vigr (¢7) = wiais x%;) <ui(aizxl;) = vie, (x7)

forsome a € supp(x}), a; € Aj,i e N
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Stability and equilibrium

Proposition (Folk)

Suppose that x* is Lyapunov stable under (EW)/(RD). Then x™ is a Nash equilibrium.

Proof. Argue by contradiction:
> Suppose that x* is not Nash. Then
Vigr (¢7) = wiais x%;) <ui(aizxl;) = vie, (x7)

forsome a € supp(x}), a; € Aj,i e N

> There exist ¢ > 0 and neighborhood U of x* such that vi, (x) = v;o* (x) > eforx e U
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Stability and equilibrium

Proposition (Folk)

Suppose that x* is Lyapunov stable under (EW)/(RD). Then x™ is a Nash equilibrium.

Proof. Argue by contradiction:
> Suppose that x* is not Nash. Then
Vigr (¢7) = wiais x%;) <ui(aizxl;) = vie, (x7)

forsome a € supp(x}), a; € Aj,i e N

> There exist ¢ > 0 and neighborhood U of x* such that vi, (x) = v;o* (x) > eforx e U

> If x(t) is contained in U for all t > 0 (Lyapunov property), then:

Piar (0= yiay (1) = ¢+ [ Toigs (5(5)) = via, (x(5)) ] ds < ¢ —et
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Stability and equilibrium

Proposition (Folk)

Suppose that x* is Lyapunov stable under (EW)/(RD). Then x™ is a Nash equilibrium.

Proof. Argue by contradiction:
> Suppose that x* is not Nash. Then
Vigr (¢7) = wiais x%;) <ui(aizxl;) = vie, (x7)

forsome a € supp(x}), a; € Aj,i e N

> There exist ¢ > 0 and neighborhood U of x* such that vi, (x) = v;o* (x) > eforx e U

> If x(t) is contained in U for all t > 0 (Lyapunov property), then:

Piar (0= yiay (1) = ¢+ [ Toigs (5(5)) = via, (x(5)) ] ds < ¢ —et

> We conclude that x;,+ (t) — 0, contradicting the Lyapunov stability of x*. |
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Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;—... x(t) = x™ whenever x(0) is close enough to x*

> x” is asymptotically stable if it is stable and attracting
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Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;—... x(t) = x™ whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).
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Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;—... x(t) = x™ whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).

Proof. Compare scores:

> lfa* = (af,...,af)isstrict Nash == v, _»(x¥) > viq, (x*) forall a; € A; \ {aF
1 N ia* i i
i

» There exist ¢ > 0 and a nhd U of x* such that v; « (x) — via; (x) > eforx e U
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Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;—... x(t) = x™ whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).

Proof. Compare scores:
> Ifa* = (af,...,af) isstrict Nash == Via (x*) > vig; (x*) forall aj € A; \ {a}}
> There exist ¢ > 0 and a nhd U of x* such that Vigr (%) = vig; (x) > eforx eld
> If x(t) remains in U forall t > 0, then
Viar (1) = yiar (1) = ¢ [Ty () = vigp (x(5)) ] ds < c =t

i.e, limseo Xig; (£) = 0
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Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;—... x(t) = x™ whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).

Proof. Compare scores:
> Ifa* = (af,...,af) isstrict Nash == Via (x*) > vig; (x*) forall aj € A; \ {a}}
> There exist ¢ > 0 and a nhd U of x* such that Vigr (%) = vig; (x) > eforx eld
> If x(t) remains in U forall t > 0, then
Viar (1) = yiar (1) = ¢ [Ty () = vigp (x(5)) ] ds < c =t

i.e, limseo Xig; (£) = 0

> Proof complete by showing Lyapunov stability ¢ Left as self-check exercise |
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The "folk theorem" of evolutionary game theory

Theorem ("folk"; Hofbauer & Sigmund, 2003)

Let I be a finite game. Then, under (RD), we have:

1. x* is a Nash equilibrium == x~ is stationary
2. x* is the limit of an interior trajectory == x* is a Nash equilibrium
3. x* isstable = x" is a Nash equilibrium

4. x* is asymptotically stable <= x* is a strict Nash equilibrium

Notes:
> Single-population case similar except = of (4)
X Converse to (1), (2) and (3) does not hold!
v/ Proof of (2) similar to (3) ¢ Do as self-check

> Proof of “ <" in (4): requires different techniques

1 MaBnuatikiv
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