#### ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ ΚΑΙ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ #### ΔΙΑΛΕΞΗ 8: ΕΞΕΛΙΚΤΙΚΕΣ ΔΥΝΑΜΙΚΕΣ Παναγιώτης Μερτικόπουλος Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Χειμερινό Εξάμηνο, 2023–2024 #### Outline 1 Population games Exponential weights and the replicator dynamics 3 Asymptotic analysis and rationality 1/2/ Ι. Μερτικόπουλος ## Population games, I: Symmetric models #### **Definition (Single-population games)** A *single-population game* is a collection of the following primitives: - A continuous **population of players** modeled by $\mathcal{N} = [0,1]$ - ▶ A finite set of *actions* / *pure strategies* $A = \{1, ..., m\}$ , common for all players in the population - ▶ An ensemble of **payoff functions** $v_{\alpha}$ : $\mathcal{X} \equiv \Delta(\mathcal{A}) \rightarrow \mathbb{R}$ , one per $\alpha \in \mathcal{A}$ A population game with primitives as above will be denoted by $\mathcal{G} \equiv \mathcal{G}(\mathcal{A}, \nu)$ . ## Population games, I: Symmetric models #### **Definition (Single-population games)** A **single-population game** is a collection of the following primitives: - A continuous **population of players** modeled by $\mathcal{N} = [0,1]$ - A finite set of actions / pure strategies $A = \{1, ..., m\}$ , common for all players in the population - An ensemble of payoff functions $v_{\alpha}: \mathcal{X} \equiv \Delta(\mathcal{A}) \to \mathbb{R}$ , one per $\alpha \in \mathcal{A}$ A population game with primitives as above will be denoted by $\mathcal{G} \equiv \mathcal{G}(\mathcal{A}, \nu)$ . #### Setup of the game: - Action selection given by some $i \mapsto \chi(i) \in \mathcal{A}$ - **Population state** $x \in \mathcal{X} \equiv \Delta(\mathcal{A})$ defined as # $$\chi$$ : $\mathcal{N} \to \mathcal{A}$ assumed measurable # as a measure: $x = \lambda \circ \chi^{-1}$ $$x_{\alpha} = \lambda(\chi^{-1}(\alpha)) = \text{mass of players playing } \alpha \in \mathcal{A}$$ Anonymity: payoffs determined by the state of the population, not individual player choices $v_{\alpha}(x)$ = payoff to $\alpha$ -players when the population is at state $x \in \mathcal{X}$ Π. Μερτικόπουλος #### **Example 1: Symmetric random matching** #### Example (Symmetric / Single-population random matching) **Given:** $m \times m$ payoff matrix M # symmetric two-player finite game **Matching:** Two players are drawn randomly to play M # independent draws from $x \in \mathcal{X}$ If the population is at state $x \in \mathcal{X}$ : $$\mathbb{P}(\text{matching } \alpha \text{ against } \beta) = x_{\alpha}x_{\beta}$$ Mean payoff to an $\alpha$ -strategist: $$v_{\alpha}(x) = \mathbb{E}_{\beta \sim x}[M_{\alpha\beta}] = \sum_{\beta \in \mathcal{A}} M_{\alpha\beta} x_{\beta} = (Mx)_{\alpha}$$ Mean population payoff: $$u(x) = \mathbb{E}_{\alpha,\beta \sim x}[M_{\alpha\beta}] = \sum_{\alpha,\beta \in \mathcal{A}} M_{\alpha\beta} x_{\alpha} x_{\beta} = x^{\top} M x$$ #### NB: Mean population payoff is quadratic in x # symmetric matching Π. Μερτικόπουλος #### **Definition (Multi-population games)** A *multi-population game* is a collection of the following primitives: • N distinct **populations of players:** $\mathcal{N} = \coprod_{i=1}^{N} [0, \rho_i]$ # $\rho_i$ = total mass of *i*-th population - ▶ A finite set of *actions* / *pure strategies* $A_i = \{1, ..., m_i\}$ per population - An ensemble of payoff functions $v_{i\alpha_i}: \mathcal{X} \equiv \prod_j \Delta(\mathcal{A}_j) \to \mathbb{R}$ , one per $\alpha_i \in \mathcal{A}_i$ , i = 1, ..., N A population game with primitives as above will be denoted by $\mathcal{G} \equiv \mathcal{G}(\mathcal{N}, \mathcal{A}, \nu)$ . ## Population games, II: Asymmetric models #### Definition (Multi-population games) A *multi-population game* is a collection of the following primitives: • *N* distinct **populations of players:** $\mathcal{N} = \coprod_{i=1}^{N} [0, \rho_i]$ # $\rho_i$ = total mass of i-th population - ▶ A finite set of *actions* / *pure strategies* $A_i = \{1, ..., m_i\}$ per population - ► An ensemble of **payoff functions** $v_{i\alpha_i}$ : $\mathcal{X} \equiv \prod_i \Delta(\mathcal{A}_i) \to \mathbb{R}$ , one per $\alpha_i \in \mathcal{A}_i$ , i = 1, ..., N A population game with primitives as above will be denoted by $\mathcal{G} \equiv \mathcal{G}(\mathcal{N}, \mathcal{A}, \nu)$ . #### Setup of the game: ▶ **Population state** $x \in \mathcal{X} \equiv \prod_i \Delta(\mathcal{A}_i)$ : - # state of *i*-th population: $x_i \in \mathcal{X}_i \equiv \Delta(\mathcal{A}_i)$ - $x_{i\alpha_i}$ = mass of players of population i playing $\alpha_i \in A_i$ - ▶ Anonymity: payoffs determined by the state of the population, not individual player choices - $v_{i\alpha_i}(x)$ = payoff to players of population *i* playing $\alpha_i \in \mathcal{A}_i$ when the population is at state $x \in \mathcal{X}$ Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών, #### **Example II: Asymmetric random matching** #### Example (Asymmetric / Multi-population random matching) - Given: finite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$ ; N unit mass populations - **Matching:** N players are drawn randomly to play $\Gamma$ , one per population - If the population is at state $x \in \mathcal{X}$ : $$\mathbb{P}(\text{matching }\alpha_i \text{ against }\alpha_{-i}) = x_{i\alpha_i} \cdot x_{-i,\alpha_{-i}}$$ Mean payoff to an $\alpha$ -strategist of population i: $$v_{i\alpha_i}(x) = \mathbb{E}_{\alpha_{-i} \sim x_{-i}} \big[ u_\alpha(\alpha_i; \alpha_{-i}) \big] = u_i(\alpha_i; x_{-i})$$ Mean payoff of population i: $$u_i(x) = \mathbb{E}_{\alpha \sim x}[u_i(\alpha)] = \sum_{\alpha_1 \in \mathcal{A}_1} \cdots \sum_{\alpha_N \in \mathcal{A}_N} x_{1,\alpha_1} \cdots x_{N,\alpha_N} u_i(\alpha_1, \ldots, \alpha_N)$$ #### NB: Mean population payoff is **multilinear** in *x* # asymmetric matching # independent draws from $x \in \mathcal{X}$ Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών ▶ **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ - **Network:** multigraph G = (V, E) - ▶ **O/D** pairs $i \in \mathcal{N}$ : origin $O_i$ sends $\rho_i$ units of traffic to destination $D_i$ - **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ - ▶ **O/D** *pairs* $i \in \mathcal{N}$ : origin $O_i$ sends $\rho_i$ units of traffic to destination $D_i$ - ▶ Paths $A_i$ : (sub)set of paths joining $O_i \rightsquigarrow D_i$ - **Network:** multigraph G = (V, E) - ▶ O/D pairs $i \in \mathcal{N}$ : origin $O_i$ sends $\rho_i$ units of traffic to destination $D_i$ - ▶ **Paths** $A_i$ : (sub)set of paths joining $O_i \rightsquigarrow D_i$ - ▶ **Routing flow** $f_{\alpha}$ : traffic along $\alpha \in A \equiv \coprod_i A_i$ generated by O/D pair owning $\alpha$ 6/27 . Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών # Population games #### **Example III: Nonatomic congestion games** - **Network:** multigraph G = (V, E) - ▶ **O/D** pairs $i \in \mathcal{N}$ : origin $O_i$ sends $\rho_i$ units of traffic to destination $D_i$ - ▶ **Paths** $A_i$ : (sub)set of paths joining $O_i \rightsquigarrow D_i$ - ▶ Routing flow $f_{\alpha}$ : traffic along $\alpha \in A \equiv \coprod_i A_i$ generated by O/D pair owning $\alpha$ - ▶ **Load** $\ell_e = \sum_{\alpha \ni e} f_{\alpha}$ : total traffic along edge e 6/27 - **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ - ▶ O/D pairs $i \in \mathcal{N}$ : origin $O_i$ sends $\rho_i$ units of traffic to destination $D_i$ - **Paths** $A_i$ : (sub)set of paths joining $O_i \rightsquigarrow D_i$ - **Routing flow** $f_{\alpha}$ : traffic along $\alpha \in A \equiv \coprod_i A_i$ generated by O/D pair owning $\alpha$ - ► **Load** $\ell_e = \sum_{\alpha \ni e} f_{\alpha}$ : total traffic along edge e - **Edge cost function** $c_e(\ell_e)$ : cost along edge e when edge load is $\ell_e$ - **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ - ▶ O/D pairs $i \in \mathcal{N}$ : origin $O_i$ sends $\rho_i$ units of traffic to destination $D_i$ - **Paths** $A_i$ : (sub)set of paths joining $O_i \rightsquigarrow D_i$ - **Routing flow** $f_{\alpha}$ : traffic along $\alpha \in A \equiv \coprod_i A_i$ generated by O/D pair owning $\alpha$ - ► **Load** $\ell_e = \sum_{\alpha \ni e} f_{\alpha}$ : total traffic along edge e - **Edge cost function** $c_e(\ell_e)$ : cost along edge e when edge load is $\ell_e$ - Path cost: $c_{\alpha}(f) = \sum_{e \in \alpha} c_{e}(\ell_{e})$ ΕΚΠΑ, Τμήμα Μαθηματικών ## Population games 00000 € 0000 #### **Example III: Nonatomic congestion games** - **Network:** multigraph G = (V, E) - ▶ O/D pairs $i \in \mathcal{N}$ : origin $O_i$ sends $\rho_i$ units of traffic to destination $D_i$ - ▶ Paths $A_i$ : (sub)set of paths joining $O_i \rightsquigarrow D_i$ - ▶ Routing flow $f_{\alpha}$ : traffic along $\alpha \in A \equiv \coprod_i A_i$ generated by O/D pair owning $\alpha$ - ► **Load** $\ell_e = \sum_{\alpha \ni e} f_{\alpha}$ : total traffic along edge e - Edge cost function $c_e(\ell_e)$ : cost along edge e when edge load is $\ell_e$ - ▶ Path cost: $c_{\alpha}(f) = \sum_{e \in \alpha} c_{e}(\ell_{e})$ - ▶ Nonatomic congestion game: G = G(N, A, -c) 6/27 Π. Μερτικόπουλοι # Population matched against itself **symmetric interactions** **Asymmetric** random matching = Mixed Extension # Populations matched against each other $\implies$ asymmetric interactions **Multi-population games ₹** Mixed Extensions # Nonatomic congestion games, ... Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών #### **Relations between classes** I. Μερτικόπουλος ΕΚΠΑ, Τ<u>μ</u>ήμα Μαθηματικών ## Nash equilibrium ### Nash equilibrium (Nash, 1950, 1951) "No player has an incentive to deviate from their chosen strategy if other players don't" ▶ In finite games (mixed extension formulation): $$u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$$ for all $x_i \in \mathcal{X}_i$ , $i \in \mathcal{N}$ In population games: $$v_{i\alpha_i}(x^*) \ge v_{i\beta_i}(x^*)$$ whenever $\alpha_i \in \text{supp}(x^*)$ ΕΚΠΑ, Τμήμα Μαθηματικών #### Nash equilibrium #### Nash equilibrium (Nash, 1950, 1951) "No player has an incentive to deviate from their chosen strategy if other players don't" ▶ In finite games (mixed extension formulation): $$u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$$ for all $x_i \in \mathcal{X}_i$ , $i \in \mathcal{N}$ In population games: $$v_{i\alpha_i}(x^*) \ge v_{i\beta_i}(x^*)$$ whenever $\alpha_i \in \text{supp}(x^*)$ #### Variational formulation (Stampacchia, 1964) $$\langle v(x^*), x - x^* \rangle \le 0$$ for all $x \in \mathcal{X}$ where $v(x) = (v_1(x), \dots, v_N(x))$ is the **payoff field** of the game Π. Μερτικόπουλος #### **Geometric characterization** #### Outline Population games 2 Exponential weights and the replicator dynamics Asymptotic analysis and rationality 0/27 ## **Basic questions** How do players learn from the history of play? Do players end up playing a Nash equilibrium? # Learning, evolution and dynamics What is "learning" in games? #### Learning, evolution and dynamics What is "learning" in games? #### The basic process: - Players choose strategies and receive corresponding payoffs - Depending on outcome and information revealed, they choose new strategies and they play again - Rinse, repeat #### Learning, evolution and dynamics What is "learning" in games? #### The basic process: - Players choose strategies and receive corresponding payoffs - Depending on outcome and information revealed, they choose new strategies and they play again - Rinse, repeat #### The basic questions: - How do populations evolve over time? - How do people learn in a game? - What algorithms should we use to learn in a game? - Given a dynamical system on $\mathcal{X}$ , what is its long-term behavior? # Population biology # Fconomics # Computer science # Mathematics ► Strategies are *phenotypes* in a given species $$z_{lpha}$$ = absolute population mass of type $lpha \in \mathcal{A}$ $z=\sum_{lpha}z_{lpha}$ = absolute population mass Strategies are phenotypes in a given species $$z_\alpha = \text{absolute population mass of type } \alpha \in \mathcal{A}$$ $$z = \sum_\alpha z_\alpha = \text{absolute population mass}$$ Utilities measure fecundity / reproductive fitness: $$v_{\alpha}$$ = per capita growth rate of type $\alpha$ Population evolution: $$\dot{z}_\alpha=z_\alpha v_\alpha$$ Strategies are phenotypes in a given species $$z_\alpha = \text{absolute population mass of type } \alpha \in \mathcal{A}$$ $$z = \sum_\alpha z_\alpha = \text{absolute population mass}$$ Utilities measure fecundity / reproductive fitness: $v_{\alpha}$ = per capita growth rate of type $\alpha$ ▶ Population evolution: $$\dot{z}_\alpha=z_\alpha \nu_\alpha$$ • Evolution of population shares $(x_{\alpha} = z_{\alpha}/z)$ : $$\dot{x}_{\alpha} = \frac{d}{dt} \frac{z_{\alpha}}{z} = \frac{\dot{z}_{\alpha} z - z_{\alpha} \sum_{\beta} \dot{z}_{\beta}}{z^{2}} = \frac{z_{\alpha}}{z} \nu_{\alpha} - \frac{z_{\alpha}}{z} \sum_{\beta} \frac{z_{\beta}}{z} \nu_{\beta}$$ Strategies are **phenotypes** in a given species $$z_\alpha = \text{absolute population mass of type } \alpha \in \mathcal{A}$$ $$z = \sum_\alpha z_\alpha = \text{absolute population mass}$$ Utilities measure fecundity / reproductive fitness: $v_{\alpha}$ = per capita growth rate of type $\alpha$ Population evolution: $$\dot{z}_\alpha=z_\alpha \nu_\alpha$$ • Evolution of population shares $(x_{\alpha} = z_{\alpha}/z)$ : $$\dot{x}_{\alpha} = \frac{d}{dt} \frac{z_{\alpha}}{z} = \frac{\dot{z}_{\alpha} z - z_{\alpha} \sum_{\beta} \dot{z}_{\beta}}{z^{2}} = \frac{z_{\alpha}}{z} v_{\alpha} - \frac{z_{\alpha}}{z} \sum_{\beta} \frac{z_{\beta}}{z} v_{\beta}$$ #### Replicator dynamics (Taylor & Jonker, 1978) $$\dot{x}_{\alpha} = x_{\alpha} [v_{\alpha}(x) - u(x)]$$ (RD) # Age the Second (1990's-2010's): Economics Agents receive revision opportunities to switch strategies $$\rho_{\alpha\beta}(x)$$ = conditional switch rate from $\alpha$ to $\beta$ # NB: dropping player index for simplicity ## Age the Second (1990's-2010's): Economics Agents receive revision opportunities to switch strategies $$\rho_{\alpha\beta}(x)$$ = conditional switch rate from $\alpha$ to $\beta$ # NB: dropping player index for simplicity ► Pairwise proportional imitation: $$\rho_{\alpha\beta}(x) = x_{\beta}[\nu_{\beta}(x) - \nu_{\alpha}(x)]_{+}$$ # Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998) ## Age the Second (1990's-2010's): Economics Agents receive revision opportunities to switch strategies $$\rho_{\alpha\beta}(x)$$ = conditional switch rate from $\alpha$ to $\beta$ # NB: dropping player index for simplicity Pairwise proportional imitation: $$\rho_{\alpha\beta}(x) = x_{\beta}[\nu_{\beta}(x) - \nu_{\alpha}(x)]_{+}$$ # Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998) Inflow/outflow: **Incoming toward** $$\alpha = \sum_{\beta} \text{mass}(\beta \leadsto \alpha) = \sum_{\beta \in \mathcal{A}} x_{\beta} \rho_{\beta \alpha}(x)$$ Outgoing from $$\alpha = \sum_{\beta} \text{mass}(\alpha \leadsto \beta) = x_{\alpha} \sum_{\beta \in \mathcal{A}} \rho_{\alpha\beta}(x)$$ 14/2 ### Age the Second (1990's-2010's): Economics Agents receive revision opportunities to switch strategies $$\rho_{\alpha\beta}(x)$$ = conditional switch rate from $\alpha$ to $\beta$ # NB: dropping player index for simplicity ► Pairwise proportional imitation: $$\rho_{\alpha\beta}(x) = x_{\beta}[v_{\beta}(x) - v_{\alpha}(x)]_{+}$$ # Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998) Inflow/outflow: **Incoming toward** $$\alpha = \sum_{\beta} \text{mass}(\beta \leadsto \alpha) = \sum_{\beta \in \mathcal{A}} x_{\beta} \rho_{\beta \alpha}(x)$$ Outgoing from $$\alpha = \sum_{\beta} \text{mass}(\alpha \leadsto \beta) = x_{\alpha} \sum_{\beta \in \mathcal{A}} \rho_{\alpha\beta}(x)$$ Detailed balance: $$\dot{x}_{\alpha} = \text{inflow}_{\alpha}(x) - \text{outflow}_{\alpha}(x) = \dots = x_{\alpha}[\nu_{\alpha}(x) - u(x)]$$ (RD) ### Age the Third (2000's-present): Computer Science #### Learning in finite games **Require:** finite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$ repeat until end At each epoch $t \ge 0$ **do simultaneously** for all players $i \in \mathcal{N}$ Choose **mixed strategy** $x_i(t) \in \mathcal{X}_i := \Delta(\mathcal{A}_i)$ Encounter **mixed payoff vector** $v_i(x(t))$ and get **mixed payoff** $u_i(x(t)) = \langle v_i(t), x(t) \rangle$ # continuous time # mixing #feedback phase #### **Defining elements** - Time: continuous - ▶ **Players:** finite - **Actions:** finite - Mixing: yes - Feedback: mixed payoff vectors #### **Exponential reinforcement mechanism:** Score each action based on its cumulative payoff over time: $$y_{i\alpha_i}(t) = \int_0^t v_{i\alpha_i}(x(s)) ds$$ Play an action with probability exponentially proportional to its score $$x_{i\alpha_i}(t) \propto \exp(y_{i\alpha_i}(t))$$ ### Exponential weights in continuous time $$\dot{y}_{i\alpha_i}=v_{i\alpha_i}(x)$$ $$x_{i\alpha_i} = \frac{\exp(y_{i\alpha_i})}{\sum_{\beta_i \in \mathcal{A}_i} \exp(y_{i\beta_i})}$$ (EW) ## **Replicator dynamics** How do mixed strategies evolve under (EW)? How do mixed strategies evolve under (EW)? #### Replicator dynamics (Taylor & Jonker, 1978) $$\dot{x}_{i\alpha_{i}} = x_{i\alpha_{i}} \left[ v_{i\alpha_{i}}(x) - \sum_{\beta_{i} \in \mathcal{A}_{i}} x_{i\beta_{i}} v_{i\beta_{i}}(x) \right] = x_{i\alpha_{i}} \left[ u_{i}(\alpha_{i}; x_{-i}) - u_{i}(x) \right]$$ (RD) "The per capita growth rate of a strategy is proportional to its payoff excess" ◆ Hofbauer & Sigmund (1998); Weibull (1995); Hofbauer & Sigmund (2003); Sandholm (2010) ### **Replicator dynamics** How do mixed strategies evolve under (EW)? #### Replicator dynamics (Taylor & Jonker, 1978) $$\dot{x}_{i\alpha_i} = x_{i\alpha_i} \Big[ v_{i\alpha_i}(x) - \sum_{\beta_i \in \mathcal{A}_i} x_{i\beta_i} v_{i\beta_i}(x) \Big]$$ $$= x_{i\alpha_i} \Big[ u_i(\alpha_i; x_{-i}) - u_i(x) \Big]$$ (RD) "The per capita growth rate of a strategy is proportional to its payoff excess" ◆ Hofbauer & Sigmund (1998); Weibull (1995); Hofbauer & Sigmund (2003); Sandholm (2010) #### **Proposition** Solution orbits of (EW) ← Interior orbits of (RD) 17/2 Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών ### **Basic properties** ## Replicator dynamics $$\dot{x}_{i\alpha_i} = x_{i\alpha_i} [v_{i\alpha_i}(x) - u_i(x)]$$ (RD) #### **Basic properties** #### Replicator dynamics $$\dot{x}_{i\alpha_i} = x_{i\alpha_i} [v_{i\alpha_i}(x) - u_i(x)] \tag{RD}$$ #### **Structural properties** Weibull, 1995; Hofbauer & Sigmund, 1998 - ▶ Well-posed: every initial condition $x \in \mathcal{X}$ admits unique solution trajectory x(t) that exists for all time # Assuming y Lipschitz - ▶ Consistent: $x(t) \in \mathcal{X}$ for all $t \ge 0$ # Assuming $x(0) \in \mathcal{X}$ Faces are forward invariant ("strategies breed true"): $$x_{i\alpha_i}(0) > 0 \iff x_{i\alpha_i}(t) > 0 \text{ for all } t \ge 0$$ $$x_{i\alpha_i}(0) = 0 \iff x_{i\alpha_i}(t) = 0 \text{ for all } t \ge 0$$ What do the dynamics look like? # phase portraits # Replicator Dynamics in Pure Coordination $_{(0.9,1,0.9)}$ What do the dynamics look like? # phase portraits # Replicator Dynamics in a Harmonic Game (-1, 1, -3) What do the dynamics look like? What do the dynamics look like? # phase portraits #### **Replicator Dynamics in Adjacent Matching Pennies** What do the dynamics look like? #### # phase portraits #### Replicator Dynamics in Jordan's Matching Pennies What do the dynamics look like? Population games 2 Exponential weights and the replicator dynamics 3 Asymptotic analysis and rationality 20/27 Τ. Μερτικόπουλος ### **Dynamics and rationality** Are game-theoretic solution concepts consistent with the players' dynamics? - Do dominated strategies die out in the long run? - Are Nash equilibria stationary? - Are they **stable?** Are they **attracting?** - Do the replicator dynamics always converge? - What other behaviors can we observe? Suppose $\alpha_i \in \mathcal{A}_i$ is **dominated** by $\beta_i \in \mathcal{A}_i$ Consistent payoff gap: $$v_{i\alpha_i}(x) \le v_{i\beta_i}(x) - \varepsilon$$ for some $\varepsilon > 0$ Suppose $\alpha_i \in \mathcal{A}_i$ is **dominated** by $\beta_i \in \mathcal{A}_i$ Consistent payoff gap: $$v_{i\alpha_i}(x) \le v_{i\beta_i}(x) - \varepsilon$$ for some $\varepsilon > 0$ Consistent difference in scores: $$y_{i\alpha_i}(t) = \int_0^t \nu_{i\alpha_i}(x) \, ds \le \int_0^t \left[ \nu_{i\beta_i}(x) - \varepsilon \right] \, ds = y_{i\beta_i}(t) - \varepsilon t$$ Suppose $\alpha_i \in \mathcal{A}_i$ is **dominated** by $\beta_i \in \mathcal{A}_i$ Consistent payoff gap: $$v_{i\alpha_i}(x) \le v_{i\beta_i}(x) - \varepsilon$$ for some $\varepsilon > 0$ Consistent difference in scores: $$y_{i\alpha_i}(t) = \int_0^t v_{i\alpha_i}(x) \ ds \le \int_0^t \left[ v_{i\beta_i}(x) - \varepsilon \right] \ ds = y_{i\beta_i}(t) - \varepsilon t$$ Consistent difference in choice probabilities $$\frac{x_{i\alpha_i}(t)}{x_{i\beta_i}(t)} = \frac{\exp(y_{i\alpha_i}(t))}{\exp(y_{i\beta_i}(t))} \le \exp(-\varepsilon t)$$ Suppose $\alpha_i \in \mathcal{A}_i$ is **dominated** by $\beta_i \in \mathcal{A}_i$ Consistent payoff gap: $$v_{i\alpha_i}(x) \le v_{i\beta_i}(x) - \varepsilon$$ for some $\varepsilon > 0$ Consistent difference in scores: $$y_{i\alpha_i}(t) = \int_0^t v_{i\alpha_i}(x) \, ds \le \int_0^t \left[ v_{i\beta_i}(x) - \varepsilon \right] \, ds = y_{i\beta_i}(t) - \varepsilon t$$ Consistent difference in choice probabilities $$\frac{x_{i\alpha_i}(t)}{x_{i\beta_i}(t)} = \frac{\exp(y_{i\alpha_i}(t))}{\exp(y_{i\beta_i}(t))} \le \exp(-\varepsilon t)$$ #### Theorem (Samuelson & Zhang, 1992) Let x(t) be a solution orbit of (EW)/(RD). If $\alpha_i \in A_i$ is dominated, then $$x_{i\alpha_i}(t) = \exp(-\Theta(t))$$ as $t \to \infty$ In words: under (EW)/(RD), dominated strategies become extinct at an exponential rate. ΕΚΠΑ, Τμήμα Μαθηματικών, Π. Μερτικόπουλος Suppose $\alpha_i \in \mathcal{A}_i$ is **dominated** by $\beta_i \in \mathcal{A}_i$ Consistent payoff gap: $$v_{i\alpha_i}(x) \le v_{i\beta_i}(x) - \varepsilon$$ for some $\varepsilon > 0$ Consistent difference in scores: $$y_{i\alpha_i}(t) = \int_0^t v_{i\alpha_i}(x) \, ds \le \int_0^t \left[ v_{i\beta_i}(x) - \varepsilon \right] \, ds = y_{i\beta_i}(t) - \varepsilon t$$ Consistent difference in choice probabilities $$\frac{x_{i\alpha_i}(t)}{x_{i\beta_i}(t)} = \frac{\exp(y_{i\alpha_i}(t))}{\exp(y_{i\beta_i}(t))} \le \exp(-\varepsilon t)$$ #### Theorem (Samuelson & Zhang, 1992) Let x(t) be a solution orbit of (EW)/(RD). If $\alpha_i \in A_i$ is dominated, then $$x_{i\alpha_i}(t) = \exp(-\Theta(t))$$ as $t \to \infty$ In words: under (EW)/(RD), dominated strategies become extinct at an exponential rate. • Self-check: extend to iteratively dominated strategies Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών Nash equilibrium: $\nu_{i\alpha_i}(x^*) \ge \nu_{i\beta_i}(x^*)$ for all $\alpha_i, \beta_i \in \mathcal{A}_i$ with $x^*_{i\alpha_i} > 0$ Supported strategies have equal payoffs: $$v_{i\alpha_i}(x^*) = v_{i\beta_i}(x^*)$$ for all $\alpha_i, \beta_i \in \text{supp}(x_i^*)$ Nash equilibrium: $v_{i\alpha_i}(x^*) \ge v_{i\beta_i}(x^*)$ for all $\alpha_i, \beta_i \in \mathcal{A}_i$ with $x_{i\alpha_i}^* > 0$ Supported strategies have equal payoffs: $$v_{i\alpha_i}(x^*) = v_{i\beta_i}(x^*)$$ for all $\alpha_i, \beta_i \in \text{supp}(x_i^*)$ Mean payoff equal to equilibrium payoff: $$u_i(x^*) = v_{i\alpha_i}(x^*)$$ for all $\alpha_i \in \text{supp}(x_i^*)$ Nash equilibrium: $v_{i\alpha_i}(x^*) \ge v_{i\beta_i}(x^*)$ for all $\alpha_i, \beta_i \in \mathcal{A}_i$ with $x_{i\alpha_i}^* > 0$ Supported strategies have equal payoffs: $$v_{i\alpha_i}(x^*) = v_{i\beta_i}(x^*)$$ for all $\alpha_i, \beta_i \in \text{supp}(x_i^*)$ Mean payoff equal to equilibrium payoff: $$u_i(x^*) = v_{i\alpha_i}(x^*)$$ for all $\alpha_i \in \text{supp}(x_i^*)$ Replicator field vanishes at Nash equilibria: $$x_{i\alpha_i}^* \big[ v_{i\alpha_i} \big( x^* \big) - u_i \big( x^* \big) \big] = 0 \quad \text{for all } \alpha_i \in \mathcal{A}_i$$ **Nash equilibrium:** $v_{i\alpha_i}(x^*) \ge v_{i\beta_i}(x^*)$ for all $\alpha_i, \beta_i \in A_i$ with $x_{i\alpha_i}^* > 0$ Supported strategies have equal payoffs: $$v_{i\alpha_i}(x^*) = v_{i\beta_i}(x^*)$$ for all $\alpha_i, \beta_i \in \text{supp}(x_i^*)$ Mean payoff equal to equilibrium payoff: $$u_i(x^*) = v_{i\alpha_i}(x^*)$$ for all $\alpha_i \in \text{supp}(x_i^*)$ Replicator field vanishes at Nash equilibria: $$x_{i\alpha_i}^* \big[ v_{i\alpha_i} \big( x^* \big) - u_i \big( x^* \big) \big] = 0 \quad \text{for all } \alpha_i \in \mathcal{A}_i$$ #### Proposition (Stationarity of Nash equilibria) Let x(t) be a solution orbit of (RD). Then: $$x(0)$$ is a Nash equilibrium $\implies x(t) = x(0)$ for all $t \ge 0$ Nash equilibrium: $\nu_{i\alpha_i}(x^*) \ge \nu_{i\beta_i}(x^*)$ for all $\alpha_i, \beta_i \in \mathcal{A}_i$ with $x_{i\alpha_i}^* > 0$ Supported strategies have equal payoffs: $$v_{i\alpha_i}(x^*) = v_{i\beta_i}(x^*)$$ for all $\alpha_i, \beta_i \in \text{supp}(x_i^*)$ Mean payoff equal to equilibrium payoff: $$u_i(x^*) = v_{i\alpha_i}(x^*)$$ for all $\alpha_i \in \text{supp}(x_i^*)$ Replicator field vanishes at Nash equilibria: $$x_{i\alpha_i}^* \big[ v_{i\alpha_i} \big( x^* \big) - u_i \big( x^* \big) \big] = 0 \quad \text{for all } \alpha_i \in \mathcal{A}_i$$ #### Proposition (Stationarity of Nash equilibria) Let x(t) be a solution orbit of (RD). Then: $$x(0)$$ is a Nash equilibrium $\implies x(t) = x(0)$ for all $t \ge 0$ X The converse does not hold! • **Self-check:** All vertices of $\mathcal{X}$ are stationary. General statement? 73/7 Π. Μερτικόπουλος ### **Stability** Are all stationary points created equal? #### **Definition** (Lyapunov stability) $x^*$ is (**Lyapunov**) stable if, for every neighborhood $\mathcal{U}$ of $x^*$ in $\mathcal{X}$ , there exists a neighborhood $\mathcal{U}'$ of $x^*$ such that $$x(0) \in \mathcal{U}' \implies x(t) \in \mathcal{U} \quad \text{for all } t \ge 0$$ •• Trajectories that start close to $x^*$ remain close for all time ### Proposition (Folk) Suppose that $x^*$ is Lyapunov stable under (EW)/(RD). Then $x^*$ is a Nash equilibrium. #### **Proposition** (Folk) Suppose that $x^*$ is Lyapunov stable under (EW)/(RD). Then $x^*$ is a Nash equilibrium. #### **Proof.** Argue by contradiction: • Suppose that $x^*$ is not Nash. Then $$v_{i\alpha_{i}^{*}}(x^{*}) = u_{i}(\alpha_{i}^{*}; x_{-i}^{*}) < u_{i}(\alpha_{i}; x_{-i}^{*}) = v_{i\alpha_{i}}(x^{*})$$ for some $\alpha_i^* \in \text{supp}(x_i^*)$ , $\alpha_i \in \mathcal{A}_i$ , $i \in \mathcal{N}$ #### Proposition (Folk) Suppose that $x^*$ is Lyapunov stable under (EW)/(RD). Then $x^*$ is a Nash equilibrium. #### **Proof.** Argue by contradiction: ► Suppose that *x*\* is not Nash. Then $$v_{i\alpha_{i}^{*}}(x^{*}) = u_{i}(\alpha_{i}^{*}; x_{-i}^{*}) < u_{i}(\alpha_{i}; x_{-i}^{*}) = v_{i\alpha_{i}}(x^{*})$$ for some $\alpha_i^* \in \text{supp}(x_i^*)$ , $\alpha_i \in \mathcal{A}_i$ , $i \in \mathcal{N}$ ► There exist $\varepsilon > 0$ and neighborhood $\mathcal{U}$ of $x^*$ such that $v_{i\alpha_i}(x) - v_{i\alpha_i^*}(x) > \varepsilon$ for $x \in \mathcal{U}$ #### **Proposition (Folk)** Suppose that $x^*$ is Lyapunov stable under (EW)/(RD). Then $x^*$ is a Nash equilibrium. #### **Proof.** Argue by contradiction: ► Suppose that *x*\* is not Nash. Then $$v_{i\alpha_{i}^{*}}(x^{*}) = u_{i}(\alpha_{i}^{*}; x_{-i}^{*}) < u_{i}(\alpha_{i}; x_{-i}^{*}) = v_{i\alpha_{i}}(x^{*})$$ for some $\alpha_i^* \in \text{supp}(x_i^*)$ , $\alpha_i \in \mathcal{A}_i$ , $i \in \mathcal{N}$ - ► There exist $\varepsilon > 0$ and neighborhood $\mathcal{U}$ of $x^*$ such that $v_{i\alpha_i}(x) v_{i\alpha_i^*}(x) > \varepsilon$ for $x \in \mathcal{U}$ - If x(t) is contained in $\mathcal{U}$ for all $t \ge 0$ (Lyapunov property), then: $$y_{i\alpha_i^*}(t) - y_{i\alpha_i}(t) = c + \int_0^t \left[ v_{i\alpha_i^*}(x(s)) - v_{i\alpha_i}(x(s)) \right] ds < c - \varepsilon t$$ #### **Proposition** (Folk) Suppose that $x^*$ is Lyapunov stable under (EW)/(RD). Then $x^*$ is a Nash equilibrium. #### **Proof.** Argue by contradiction: ► Suppose that *x*\* is not Nash. Then $$v_{i\alpha_{i}^{*}}(x^{*}) = u_{i}(\alpha_{i}^{*}; x_{-i}^{*}) < u_{i}(\alpha_{i}; x_{-i}^{*}) = v_{i\alpha_{i}}(x^{*})$$ for some $\alpha_i^* \in \text{supp}(x_i^*)$ , $\alpha_i \in \mathcal{A}_i$ , $i \in \mathcal{N}$ - ► There exist $\varepsilon > 0$ and neighborhood $\mathcal{U}$ of $x^*$ such that $v_{i\alpha_i}(x) v_{i\alpha_i^*}(x) > \varepsilon$ for $x \in \mathcal{U}$ - ▶ If x(t) is contained in $\mathcal{U}$ for all $t \ge 0$ (Lyapunov property), then: $$y_{i\alpha_i^*}(t) - y_{i\alpha_i}(t) = c + \int_0^t \left[ v_{i\alpha_i^*}(x(s)) - v_{i\alpha_i}(x(s)) \right] ds < c - \varepsilon t$$ ▶ We conclude that $x_{i\alpha^*}(t) \to 0$ , contradicting the Lyapunov stability of $x^*$ . ### **Asymptotic stability** Are Nash equilibria attracting? #### **Definition** - $x^*$ is attracting if $\lim_{t\to\infty} x(t) = x^*$ whenever x(0) is close enough to $x^*$ - $\triangleright x^*$ is **asymptotically stable** if it is stable and attracting ### **Asymptotic stability** Are Nash equilibria attracting? #### Definition - $x^*$ is attracting if $\lim_{t\to\infty} x(t) = x^*$ whenever x(0) is close enough to $x^*$ - $\triangleright x^*$ is **asymptotically stable** if it is stable and attracting #### **Proposition (Folk)** Strict Nash equilibria are asymptotically stable under (RD). Asymptotic analysis and rationality #### **Asymptotic stability** Are Nash equilibria attracting? #### **Definition** - $x^*$ is attracting if $\lim_{t\to\infty} x(t) = x^*$ whenever x(0) is close enough to $x^*$ - $\triangleright x^*$ is **asymptotically stable** if it is stable and attracting #### **Proposition (Folk)** Strict Nash equilibria are asymptotically stable under (RD). **Proof.** Compare scores: - ▶ If $\alpha^* = (\alpha_1^*, \dots, \alpha_N^*)$ is strict Nash $\implies \nu_{i\alpha_i^*}(x^*) > \nu_{i\alpha_i}(x^*)$ for all $\alpha_i \in \mathcal{A}_i \setminus \{\alpha_i^*\}$ - ► There exist $\varepsilon > 0$ and a nhd $\mathcal{U}$ of $x^*$ such that $v_{i\alpha_i^*}(x) v_{i\alpha_i}(x) > \varepsilon$ for $x \in \mathcal{U}$ Asymptotic analysis and rationality Are Nash equilibria attracting? #### **Definition** - $x^*$ is attracting if $\lim_{t\to\infty} x(t) = x^*$ whenever x(0) is close enough to $x^*$ - $\triangleright x^*$ is **asymptotically stable** if it is stable and attracting #### **Proposition** (Folk) Strict Nash equilibria are asymptotically stable under (RD). **Proof.** Compare scores: - If $\alpha^* = (\alpha_1^*, \dots, \alpha_N^*)$ is strict Nash $\implies \nu_{i\alpha_i^*}(x^*) > \nu_{i\alpha_i}(x^*)$ for all $\alpha_i \in \mathcal{A}_i \setminus \{\alpha_i^*\}$ - ▶ There exist $\varepsilon > 0$ and a nhd $\mathcal{U}$ of $x^*$ such that $v_{i\alpha_i^*}(x) v_{i\alpha_i}(x) > \varepsilon$ for $x \in \mathcal{U}$ - If x(t) remains in $\mathcal{U}$ for all $t \geq 0$ , then $$y_{i\alpha_i}(t) - y_{i\alpha_i^*}(t) = c + \int_0^t \left[ v_{i\alpha_i}(x(s)) - v_{i\alpha_i^*}(x(s)) \right] ds < c - \varepsilon t$$ i.e., $$\lim_{t\to\infty} x_{i\alpha_i}(t) = 0$$ Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών Are Nash equilibria attracting? #### **Definition** - $x^*$ is attracting if $\lim_{t\to\infty} x(t) = x^*$ whenever x(0) is close enough to $x^*$ - $\triangleright x^*$ is asymptotically stable if it is stable and attracting #### **Proposition (Folk)** Strict Nash equilibria are asymptotically stable under (RD). **Proof.** Compare scores: - $\qquad \qquad \mathsf{If} \ \alpha^* = (\alpha_1^*, \dots, \alpha_N^*) \ \mathsf{is} \ \mathsf{strict} \ \mathsf{Nash} \\ \Longrightarrow \ \nu_{i\alpha_i^*}(x^*) > \nu_{i\alpha_i}(x^*) \ \mathsf{for} \ \mathsf{all} \ \alpha_i \in \mathcal{A}_i \setminus \{\alpha_i^*\}$ - ▶ There exist $\varepsilon > 0$ and a nhd $\mathcal{U}$ of $x^*$ such that $v_{i\alpha_i^*}(x) v_{i\alpha_i}(x) > \varepsilon$ for $x \in \mathcal{U}$ - If x(t) remains in $\mathcal{U}$ for all $t \ge 0$ , then $$y_{i\alpha_i}(t) - y_{i\alpha_i^*}(t) = c + \int_0^t \left[ v_{i\alpha_i}(x(s)) - v_{i\alpha_i^*}(x(s)) \right] ds < c - \varepsilon t$$ i.e., $\lim_{t\to\infty} x_{i\alpha_i}(t) = 0$ Proof complete by showing Lyapunov stability Left as self-check exercise ш ### The "folk theorem" of evolutionary game theory #### Theorem ("folk"; Hofbauer & Sigmund, 2003) Let $\Gamma$ be a finite game. Then, under (RD), we have: - 1. $x^*$ is a Nash equilibrium $\implies x^*$ is stationary - 2. $x^*$ is the limit of an interior trajectory $\implies x^*$ is a Nash equilibrium - 3. $x^*$ is stable $\implies x^*$ is a Nash equilibrium - 4. $x^*$ is asymptotically stable $\iff x^*$ is a strict Nash equilibrium #### Notes: - Single-population case similar **except** $\Longrightarrow$ of (4) - X Converse to (1), (2) and (3) does not hold! - ✓ Proof of (2) similar to (3) Do as self-check ▶ Proof of "← " in (4): requires different techniques 27/27 Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών #### References I - [1] Helbing, D. A mathematical model for behavioral changes by pair interactions. In Haag, G., Mueller, U., and Troitzsch, K. G. (eds.), Economic Evolution and Demographic Change: Formal Models in Social Sciences, pp. 330–348. Springer, Berlin, 1992. - [2] Hofbauer, J. and Sigmund, K. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, UK, 1998. - [3] Hofbauer, J. and Sigmund, K. Evolutionary game dynamics. Bulletin of the American Mathematical Society, 40(4):479-519, July 2003. - [4] Nash, J. F. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the USA, 36:48-49, 1950. - [5] Nash, J. F. Non-cooperative games. The Annals of Mathematics, 54(2):286-295, September 1951. - [6] Samuelson, L. and Zhang, J. Evolutionary stability in asymmetric games. Journal of Economic Theory, 57:363-391, 1992. - [7] Sandholm, W. H. Population Games and Evolutionary Dynamics. MIT Press, Cambridge, MA, 2010. - [8] Schlag, K. H. Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits. Journal of Economic Theory, 78(1): 130-156, 1998. - [9] Stampacchia, G. Formes bilineaires coercitives sur les ensembles convexes. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 1964. - [10] Taylor, P. D. and Jonker, L. B. Evolutionary stable strategies and game dynamics. Mathematical Biosciences, 40(1-2):145-156, 1978. - [11] Weibull, J. W. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.