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Setting

Sequence of events: Online convex optimization (OCO)

Require: convex action set X’ € R convex loss functions £;: X = R, t =1,2,...

repeat
Ateachepocht=1,2,... do
Choose action x; € X # action selection
Encounter loss function ¢;: X — R # Nature plays
Incur cost ¢¢ = €¢(x¢t) #reward phase
Observe loss function ¢; #feedback phase
until end

Defining elements
» Time: discrete
> Players: single
> Actions: continuous

> Losses: exogenous

> Feedback: depends (function-based, gradient-based, loss-based, ...)
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Convex analysis cheatsheet

If £ is convex:

1. Local minima = global minima = stationary points # stationarity = optimality

# consistent linear estimates

2. Graph above tangent:

fG) 2 f(x) +(Vf(x),x" - x)

?"l)_ /. _J\gww»,i-z»
' ! #subgradient: f(x") > f(x) + (g, x" — x)
| —

3. First-order stationarity:

x" isa minimizer of f <= (Vf(x"),x—x")>0 forallxeX

— (Vf(x),x—x")>0 forallxeX
4. Jensen's mequahty # mean value exceeds value of the mean
e &
m

Z)le, SZ)L f(xi) forallx; e X, A; >0, Z}l =1
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Feedback

Types of feedback

From best to worst (more to less info):

> Full information: observe entire loss function €;: X — R # deterministic function feedback
> First-order info, exact: observe (@légradient@t € B&(x,)) 1{: v,&Cxt) # deterministic vector feedback
> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback

> Zeroth-order info (bandit): observe only incurred cost ¢; = €;(x;) # deterministic scalar feedback
V.
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Feedback

Types of feedback

From best to worst (more to less info):

> First-order info, exact: observe (sub)gradient g, € 9€;(x;) # deterministic vector feedback

> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback

The oracle model

A stochastic first-order oracle (SFO) for g; € 0¢:(x) is a random vector of the form
‘ét =g:+ Ut + bt (SFO)

where U, is zero-mean and b, = E[§; | 7] — g: is the bias of g;

QBNHATIKWY.
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Regret

Performance measured by the agent’s regret (loss formulation):

[£:(x:) — &(p)]
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Regret

Performance measured by the agent’s regret (loss formulation):

S [e(x0) — €4(p)]

t=
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Regret

Performance measured by the agent’s regret (loss formulation):

r;lgg( ; [er(xt) - et(P)]
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Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = max 3°[6(x0) ~€i(p)] = - 2:(x0) - mip Y 2:(p)
\t}_\’_J =1 =1

Q%g &Y
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Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = max ; [6:(xe) = &:(p)] = ;Et(x,) - lg;i;g;&(p)

> No regret: Reg(T) = o(T)

» Adversarial framework: minimize regret against any given sequence ¢;
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Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = max 3" [&:(x:) - £:(p)] = 3" () - min 3" €:(p)
peX 43 t=1 peX 14

> No regret: Reg(T) = o(T)
» Adversarial framework: minimize regret against any given sequence ¢;

> Expected regret:

~

BlRee(1)) - B ma e ) - )|
> Pseudo-regret:

Reg(1) - magE| Slexx) - )

EKMNA,
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Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = max 3" [&:(x:) - £:(p)] = 3" () - min 3" €:(p)
peX 43 t=1 peX 14

> No regret: Reg(T) = o(T)
» Adversarial framework: minimize regret against any given sequence ¢;

> Expected regret:

~

BlRee(1)) - B ma e ) - )|
> Pseudo-regret:

Reg(1) - magE| Slexx) - )

» Reg(T) < E[Reg(T)]: bounds do not translate “as is” but “almost”
g g

*¢ Cesa-Bianchi & Lugosi, 2006, Bubeck & Cesa-Bianchi, 2012, Lattimore & Szepesvari, 2020
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Be the leader

> Suppose ¢; is observed before playing x;
> Then the agent can try to be the leader (BTL)

t
X € argmin Z £(x) (BTL)

xeX s=1
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Be the leader

> Suppose ¢; is observed before playing x;
> Then the agent can try to be the leader (BTL)

t
X € argmin Z £(x) (BTL)

xeX =1

Regret of BTL

1= Under (BTL), the learner incurs Reg(T) = 0.
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Be the leader

> Suppose ¢; is observed before playing x;
> Then the agent can try to be the leader (BTL)

t
X € argmin Z £(x) (BTL)

xeX =1

Regret of BTL

1= Under (BTL), the learner incurs Reg(T) = 0.

...unrealistic

1BNHATKY
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Follow the leader

> Suppose ¢; is observed after playing x;
> Then the agent can try to follow the leader (FTL)

t
Xt4+1 € argmin Z 2:(x) (FTL)

xeX s=1
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Follow the leader

> Suppose ¢; is observed after playing x;
> Then the agent can try to follow the leader (FTL)

t
Xt4+1 € argmin Z 2:(x) (FTL)

xeX s=1

ALy 6 argmin ;/ﬁé;a = arguin O = x
= ~eX

‘bel

Does (FTL) lead to no regret?
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Template bound for FTL

FTL regret bound

For all p € X, the regret of (FTL) can be bounded as S et e
e dose. 42 Xan
T T .
Reg, (T) = Y [€:(x:) = e(p)] < Y [e:(5) - ‘}(x/t\ﬂ)] ‘Srabilte
t=1 t=1

\/

o ot 1‘ .
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Template bound for FTL

FTL regret bound

For all p € X, the regret of (FTL) can be bounded as

Reg (T) = i[et(xt) -t(p)] < i[et(xt) = & (xt11)]

‘%t \leb‘k °‘( assune +(“+ Z ﬂt(i{«\) i/&t%) V? Wmd' %o $["‘J" iﬂt('t{u) < fZ_ﬁ[C@)
7= S t=

£

- T
\,’_) Z,(,—t ('l—d) = iﬁ((ltd\ Ay 2 L't‘rm < Lﬂtqﬁ s "eT(”(T“> \/
£
@ For y&tra ‘g—ﬂt(th < Z&m..) { w\,\;. E— Le (x) Z Le (p) \;T
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