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Multi-armed bandits

Robbins’ multi-armed bandit problem: how to play in a (rigged) casino?
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Outline

1 Online learning in continuous time

2 Online learning in discrete time

3 Learning with oracle feedback

4 Learning with bandit feedback
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Oracle feedback

The oracle model
A stochastic first-order oracle (SFO) model of vt is a random vector v̂t of the form

v̂t = vt +Ut + bt (SFO)

where Ut is zero-mean and bt = E[v̂t ∣Ft] − v(xt) is the bias of v̂t
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Oracle feedback

The oracle model
A stochastic first-order oracle (SFO) model of vt is a random vector v̂t of the form

v̂t = vt +Ut + bt (SFO)

where Ut is zero-mean and bt = E[v̂t ∣Ft] − v(xt) is the bias of v̂t

Assumptions
▸ Bias: ∥bt∥∞ ≤ Bt

▸ Variance: E[∥Ut∥∞ ∣Ft] ≤ σ 
t

▸ Second moment: E[∥v̂t∥∞ ∣Ft] ≤ M
t
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Oracle feedback

The oracle model
A stochastic first-order oracle (SFO) model of vt is a random vector v̂t of the form

v̂t = vt +Ut + bt (SFO)

where Ut is zero-mean and bt = E[v̂t ∣Ft] − v(xt) is the bias of v̂t

Algorithm HEDGE-O # EXPWEıGHT with SFO feedback

Require: set of actions A; sequence of payoff vectors vt ∈ RA , t = , , . . .
Initialize: y ∈ RA

for all t = , , . . . do
set xt ← Λ(yt) # mixed strategy

play αt ∼ xt and receive vα t ,t # choose action / get payoff

observe v̂t ← vt # full info feedback

set yt+ ← yt + γt v̂t # update scores

end for
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Regret analysis

▸ Use constant γt ≡ γ # complications otherwise

▸ Fix benchmark strategy p ∈ X and consider the Fenchel coupling:

Ft = F(p, yt) = ∑
α∈A

pα log pα + log∑
α∈A

exp(yα ,t) − ⟨yt , p⟩
▸ Energy inequality:

Ft+ ≤ Ft + γ⟨v̂t , xt − p⟩ + 
 γ

∥v̂t∥∞
▸ Expand and rearrange:

⟨vt , p − xt⟩ ≤ Ft − Ft+
γ

+ ⟨Ut , xt − p⟩ + ⟨bt , xt − p⟩ + γ

∥v̂t∥∞

▸ How to proceed?
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Regret analysis, cont'd

Bound each term separately:
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Regret analysis, cont'd
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Regret of Hedge-O

Theorem
☞ Assume:▸ Sequence of payoff vectors vt ∈ RA ; SFO feedback

▸ γ =
!""#  logm
∑T

t= M
t

☞ Then: for all p ∈ X , HEDGE-O enjoys the bound

Regp(T) ≤  T∑
t=

Bt +
%&&' logm ⋅ T∑

t=
M

t

Remarks:

▸ O(√T) regret if feedback is unbiased (bt = ) and has finite variance (Mt ≤ M)

▸ This bound is tight in T ✒ Abernethy et al., 2008

▸ Logarithmic dependence on m 9 Can deal with exponentially many arms!
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Regret of Hedge

Theorem (Auer et al., 1995)
☞ Assume:▸ Sequence of payoff vectors vt ∈ [, ]A ; Full info feedback

▸ γ =√( logm)/T
☞ Then: HEDGE enjoys the bound

Regp(T) ≤√ logm ⋅ T = O(√T)

Remarks:

▸ Cannot achieve O() regret as in continuous time # Why?

▸ This bound is tight in T ✒ Abernethy et al., 2008

▸ Logarithmic dependence on m 9 Can deal with exponentially many arms!
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Learning with bandit feedback

Three types of feedback (from best to worst):▸ Full, exact information: observe entire payoff vector vt
▸ Full, inexact information: observe noisy estimate of vt
▸ Partial information / Bandit: only chosen component ut(αt) = vα t ,t

Importance weighted estimators

Fix a payoff vector v ∈ RA and a probability distribution P on A. Then the importance weighted estimator of vα
is the random variable

v̂α = 1α

Pα
vα =

⎧⎪⎪⎨⎪⎪⎩
vα/Pα if α is drawn (α = β)
 otherwise (α ≠ β) (IWE)

IWE as an oracle model

▸ Unbiased: E[v̂α] = vα ☞ bt = 

▸ Second moment: E[v̂α] = vα/Pα ☞ Mt =O(/minα xα ,t)
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Regret analysis, cont'd
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The EXP3 algorithm

Algorithm Exponential weights for exploration and exploitation (EXP3) # HEDGE with bandit feedback

Require: set of actions A; sequence of payoff vectors vt ∈ [, ]A , t = , , . . .
Initialize: y ∈ RA

for all t = , , . . . do
set xt ← Λ(yt) # mixed strategy

play αt ∼ xt and receive vα t ,t # choose action / get payoff

set v̂t ← vα t ,t
xα t ,t

eα t # IW estimator

set yt+ ← yt + γt v̂t # update scores

end for
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Regret analysis

▸ Use constant γt ≡ γ # complications otherwise

▸ Fix benchmark strategy p ∈ X and consider the Fenchel coupling:

Ft = F(p, yt) = ∑
α∈A

pα log pα + log∑
α∈A

exp(yα ,t) − ⟨yt , p⟩
▸ Energy inequality:

Ft+ ≤ Ft + γ⟨v̂t , xt − p⟩ + 
 γ

∥v̂t∥∞
▸ Expand and rearrange:

⟨vt , p − xt⟩ ≤ Ft − Ft+
γ

+ ⟨Ut , xt − p⟩ + γ

∥v̂t∥∞

▸ No bias, but E[∥v̂t∥∞] = O(/minα xα ,t) is unbounded ✗

▸ How to proceed?
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Energy inequality

Basic lemma

Fix some y,w ∈ RA , and let x ∝ exp(y). Then:

log∑
α∈A

exp(yα +wα) ≤ log∑
α∈A

exp(yα) + ⟨x ,w⟩ + 
 ∥w∥∞

Proof.
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Energy inequality

Basic lemma

Fix some y ∈ RA , w ∈ (−∞, ]A , and let x ∝ exp(y). Then:

log∑
α∈A

exp(yα +wα) ≤ log∑
α∈A

exp(yα) + ⟨x ,w⟩ + ∑
α∈A

xαw
α

Proof.
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Regret analysis, cont'd
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Regret of EXP3

Theorem (Auer et al., 1995)
☞ Assume:▸ EXP3 is run for T iterations with γ =√logm/(mT)
▸ Then: For all p ∈ X , the learner enjoys the bound

E[Regp(T)] ≤ √m logm ⋅ T

Remarks:

✓ Tight in T ✒ Abernethy et al., 2008

✗ Worse than full info bound by a factor of
√
m # cf. Hedge-O

▸ Regret can be improved to O(√mT) but no lower ✒ Audibert & Bubeck, 2010; Abernethy et al., 2015

▸ T must be known 2 Thoughts?
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