Online learning in discrete tim 0000000000 earning with oracle feedbac

Learning with bandit feedback

References

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ ΚΑΙ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΛΗΣΤΕΣ, ΚΟΥΛΟΧΕΡΗΔΕΣ, ΚΑΙ ΘΕΩΡΙΑ ΜΑΘΗΣΗΣ

Παναγιώτης Μερτικόπουλος

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Τμήμα Μαθηματικών

Χειμερινό Εξάμηνο, 2023–2024

Online learning in discrete tir

earning with oracle feedbac

Learning with bandit feedback

References

Multi-armed bandits

Robbins' multi-armed bandit problem: how to play in a (rigged) casino?

Online learning in discrete time

3 Learning with oracle feedback

4 Learning with bandit feedback

21/32

Online 0000	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback ○●○○○○	Learning with bandit feedback		
Res and a second se	Oracle feedback					
	The oracle model					
	A stochastic first-order oracle (SFO) model of v_t is a random vector \hat{v}_t of the form					

 $\hat{v}_t = v_t + U_t + b_t$

(SFO)

where U_t is **zero-mean** and $b_t = \mathbb{E}[\hat{v}_t | \mathcal{F}_t] - v(x_t)$ is the **bias** of \hat{v}_t

e learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback	Keterei
Oracle feedback				
The oracle model				
A stochastic first-order	oracle (SFO) model of v_t is	a random vector $\hat{\pmb{v}}_t$ of the f	orm	
	Ŷ	$t = v_t + U_t + b_t$		(SFO)
where U_t is zero-mean	n and $b_t = \mathbb{E}[\hat{v}_t \mid \mathcal{F}_t] - v(x)$	(x_t) is the bias of \hat{v}_t		
Assumptions				
► Bias:	$\ b_t\ _{\infty} \leq B_t$			
Variance:	$\mathbb{E}[\ U_t\ _{\infty}^2 \mid \mathcal{F}_t] \leq \sigma_t^2$			
Second moment:	$\mathbb{E}[\ \hat{\nu}_t\ _{\infty}^2 \mathcal{F}_t] \leq M_t^2$			J

learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback ○●○○○○	Learning with bandit feedback	Reference
Oracle feedback				
The oracle mode	I			
A stochastic first-or	der oracle (SFO) model of v_t i	s a random vector $\hat{\pmb{v}}_t$ of the f	orm	
	i	$\hat{\nu}_t = \nu_t + U_t + b_t$		(SFO)
where U_t is zero-m	ean and $b_t = \mathbb{E}[\hat{v}_t \mathcal{F}_t] - v(\mathbf{x}_t)$	(x_t) is the bias of \hat{v}_t		
Algorithm Hedge-0)		# ExpWeight with SFC) feedback
Require: set of action	ns \mathcal{A} ; sequence of payoff vectors	$v_t \in \mathbb{R}^{\mathcal{A}}, t = 1, 2, \dots$		
Initialize: $y_1 \in \mathbb{R}^A$	$\Lambda(a) = (exp(y)),$,exp(ya))		
set $x_t \leftarrow \Lambda(v_t)$	io ragi Za	exp(zx)	# mixe	ed strategy
play $\alpha_t \sim x_t$ and	d receive $v_{\alpha_t,t}$		# choose action /	/ get payoff
observe $\hat{v}_t \leftarrow v_t$	t		# full info	o feedback

.

set
$$y_{t+1} \leftarrow y_t + \gamma_t \hat{v}_t$$

end for

1

update scores

Online 0000	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback OO●OOO	Learning with bandit feedback	
	Regret analysis				

Use constant
$$\gamma_t \equiv \gamma$$
Fix benchmark strategy *p* ∈ X and consider the *Fenchel coupling*:

$$F_t = F(p, y_t) = \sum_{\alpha \in \mathcal{A}} p_\alpha \log p_\alpha + \frac{\log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha, t})}{\log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha, t})} - \langle y_t, p \rangle$$

Energy inequality:

$$F_{t+1} \leq F_t + \gamma \langle \hat{v}_t, x_t - p \rangle + \frac{1}{2} \gamma^2 \| \hat{v}_t \|_{\infty}^2$$

Expand and rearrange:

$$\langle v_t, p - x_t \rangle \leq \frac{F_t - F_{t+1}}{\gamma} + \langle U_t, x_t - p \rangle + \langle b_t, x_t - p \rangle + \frac{\gamma}{2} \| \hat{v}_t \|_{\infty}^2$$

How to proceed?

ACC.

complications otherwise

Online 000	e learning in continuous time	Online learning in discrete time 000000000	Learning with oracle feedback ○○○○●○	Learning with bandit feedback	
	Regret of Hedge-O				
	Theorem				
	Assume:Sequence of	payoff vectors $v_t \in \mathbb{R}^{\mathcal{A}}$; SFO feed	dback ~> Initialization with	y = 0 => Fi= ly 1A	
	$\qquad \qquad $	$\frac{\log m}{\log m_{t}}$			
	🖙 Then: for all p	$\in \mathcal{X}$, Hedge-O enjoys the bou	nd		
		$\operatorname{Reg}_p(T)$	$\leq 2\sum_{t=1}^{T} B_t + \sqrt{2\log m \cdot \sum_{t=1}^{T} N}$	$\overline{\Lambda_t^2}$	

Theorem

INF Assume:

Sequence of payoff vectors $v_t \in \mathbb{R}^{\mathcal{A}}$; SFO feedback

$$\gamma = \sqrt{\frac{2\log m}{\sum_{t=1}^{T} M_t^2}}$$

Then: for all $p \in \mathcal{X}$, HEDGE-O enjoys the bound

$$\operatorname{Reg}_{p}(T) \leq 2\sum_{t=1}^{T} B_{t} + \sqrt{2\log m \cdot \sum_{t=1}^{T} M_{t}^{2}}$$

Remarks:

- $\mathcal{O}(\sqrt{T})$ regret if feedback is unbiased ($b_t = 0$) and has finite variance ($M_t \leq M$)
- This bound is tight in T
- Logarithmic dependence on m

➡ Abernethy et al., 2008

Can deal with exponentially many arms!

Online I 0000	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback 00000●	Learning with bandit feedback	
	Regret of Hedge				

🖙 Assume:

- Sequence of payoff vectors $v_t \in [0,1]^A$; Full info feedback
- $\flat \ \gamma = \sqrt{(2\log m)/T}$
- ☞ **Then:** HEDGE enjoys the bound

$$\operatorname{Reg}_p(T) \leq \sqrt{2\log m \cdot T} = \mathcal{O}(\sqrt{T})$$

Online I 0000	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback 00000●	Learning with bandit feedback	
	Regret of Hedge				

🖙 Assume:

- Sequence of payoff vectors $v_t \in [0,1]^{\mathcal{A}}$; Full info feedback
- $\flat \quad \gamma = \sqrt{(2\log m)/T}$
- IN Then: HEDGE enjoys the bound

$$\operatorname{Reg}_p(T) \leq \sqrt{2\log m \cdot T} = \mathcal{O}(\sqrt{T})$$

Remarks:

- Cannot achieve $\mathcal{O}(1)$ regret as in continuous time
- This bound is tight in T
- Logarithmic dependence on m

#Why?

✤ Abernethy et al., 2008

Can deal with exponentially many arms!

Online learning in discrete time

3 Learning with oracle feedback

4 Learning with bandit feedback

Π. Μερτικόπουλος

Learning with bandit feedback

Three types of feedback (from best to worst):

- Full, exact information: observe entire payoff vector v_t
- ▶ Full, inexact information: observe noisy estimate of *v*_t
- **Partial information / Bandit:** only chosen component $u_t(\alpha_t) = v_{\alpha_t,t}$

Importance weighted estimators

Fix a payoff vector $v \in \mathbb{R}^{\mathcal{A}}$ and a probability distribution P on \mathcal{A} . Then the *importance weighted estimator* of v_{α} is the random variable $1 \qquad (v_{\alpha}/P_{\alpha}) \qquad \text{if } \alpha \text{ is drawn } (\alpha = \beta)$

$$\hat{v}_{\alpha} = \frac{\mu_{\alpha}}{P_{\alpha}} v_{\alpha} = \begin{cases} v_{\alpha} r_{\alpha} & \text{if } \alpha \text{ is statisfy} (\alpha \neq \beta) \\ 0 & \text{otherwise} & (\alpha \neq \beta) \end{cases}$$
(IWE)

IWE as an oracle model

- Unbiased: $\mathbb{E}[\hat{v}_{\alpha}] = v_{\alpha} \longrightarrow \mathbb{E}[\hat{v}_{\alpha}] = \sum_{\beta} R_{\beta} \underbrace{\frac{1}{(\alpha,\beta)}}_{R_{\beta}} v_{\beta} = \int_{\mathbb{R}} \frac{1}{\alpha} (\alpha,\beta) v_{\beta} = v_{\alpha}$ is $b_{t} = 0$
- Second moment: $\mathbb{E}[\hat{v}_{\alpha}^2] = v_{\alpha}^2/P_{\alpha}$ [Free ise]

Online	learning in continuous time	Online learning in discrete time 000000000	Learning with oracle feedback	Learning with bandit feedback	Reference
Press .	The EXP3 algorith	ım			
	Algorithm Exponer	ntial weights for exploration a	and exploitation (EXP3)	# HEDGE with bandit	feedback
	Require: set of action	is \mathcal{A} ; sequence of payoff vectors	$v_t \in [0,1]^{\mathcal{A}}, t = 1, 2, \dots$		
	Initialize: $y_1 \in \mathbb{R}^{\mathcal{A}}$				
	for all $t = 1, 2,$ d	0			
	set $x_t \leftarrow \Lambda(y_t)$			# mixed	d strategy
	play $\alpha_t \sim x_t$ and	receive $v_{\alpha_t,t}$		# choose action /	get payoff
	set $\hat{v}_t \leftarrow \frac{v_{\alpha_t,t}}{r_{\alpha_t,t}} e^{i\theta_t \cdot \theta_t}$	α_t		#1W	estimator
	set $y_{t+1} \leftarrow y_t +$	$\gamma_t \hat{\nu}_t$		# upda	ate scores

end for

• Use constant $\gamma_t \equiv \gamma$

complications otherwise

Fix benchmark strategy $p \in \mathcal{X}$ and consider the **Fenchel coupling**:

$$F_t = F(p, y_t) = \sum_{\alpha \in \mathcal{A}} p_\alpha \log p_\alpha + \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha, t}) - \langle y_t, p \rangle$$

Energy inequality:

$$F_{t+1} \leq F_t + \gamma \langle \hat{v}_t, x_t - p \rangle + \frac{1}{2} \gamma^2 \| \hat{v}_t \|_{\infty}^2$$

Expand and rearrange:

$$\langle v_t, p - x_t \rangle \leq \frac{F_t - F_{t+1}}{\gamma} + \langle U_t, x_t - p \rangle + \frac{\gamma}{2} \| \hat{v}_t \|_{\infty}^2$$

- ► No bias, but $\mathbb{E}[\|\hat{v}_t\|_{\infty}^2] = \mathcal{O}(1/\min_{\alpha} x_{\alpha,t})$ is unbounded X
- How to proceed?

Online 0000	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback	References
	Energy inequality				
	Basic lemma				

Fix some $y, w \in \mathbb{R}^{\mathcal{A}}$, and let $x \propto \exp(y)$. Then:

$$\log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha} + w_{\alpha}) \leq \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha}) + \langle x, w \rangle + \frac{1}{2} \|w\|_{\infty}^{2}$$

0000	learning in continuous time	Online learning in discrete time	Learning with oracle feedback	Learning with bandit feedback	
53.00	Energy inequality				
	Basic lemma				
	Fix some $y \in \mathbb{R}^{\mathcal{A}}$, $w \in$	$\in (-\infty,1]^{\mathcal{A}}$, and let $x \propto \exp(-\infty,1)^{\mathcal{A}}$	p(y). Then:		
		$\log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha} + w_{\alpha}) \leq$	$\leq \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha}) + \langle x, w \rangle +$	$\sum_{\alpha\in\mathcal{A}}x_{\alpha}w_{\alpha}^{2}$	
	Proof.				
	• Key clement	of the proof: if	t ≤ l, e ^t ≤ l + t +	ť	

Online I 000C	learning in continuous time	Online learning in discrete time	Learning with oracle feedback	Learning with bandit feedback 000000●	
	Regret of EXP3				

IS Assume:

- EXP3 is run for T iterations with $\gamma = \sqrt{\log m/(mT)}$
- ▶ Then: For all $p \in \mathcal{X}$, the learner enjoys the bound

 $\mathbb{E}[\operatorname{Reg}_p(T)] \le 2\sqrt{m\log m \cdot T}$

Online 0000	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback 000000●	
	Regret of EXP3				

INF Assume:

- EXP3 is run for T iterations with $\gamma = \sqrt{\log m/(mT)}$
- ▶ Then: For all $p \in \mathcal{X}$, the learner enjoys the bound

 $\mathbb{E}[\operatorname{Reg}_p(T)] \le 2\sqrt{m\log m \cdot T}$

Remarks:

- ✓ Tight in T
- **X** Worse than full info bound by a factor of \sqrt{m}
- Regret can be improved to $\mathcal{O}(\sqrt{mT})$ but no lower
- T must be known

➡ Abernethy et al., 2008

#cf. Hedge-O

Audibert & Bubeck, 2010; Abernethy et al., 2015

- Abernethy, J., Bartlett, P. L., Rakhlin, A., and Tewari, A. Optimal strategies and minimax lower bounds for online convex games. In COLT '08: Proceedings of the 21st Annual Conference on Learning Theory, 2008.
- [2] Abernethy, J., Lee, C., and Tewari, A. Fighting bandits with a new kind of smoothness. In NIPS '15: Proceedings of the 29th International Conference on Neural Information Processing Systems, 2015.
- [3] Audibert, J.-Y. and Bubeck, S. Regret bounds and minimax policies under partial monitoring. Journal of Machine Learning Research, 11: 2635-2686, 2010.
- [4] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. Gambling in a rigged casino: The adversarial multi-armed bandit problem. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995.
- [5] Blackwell, D. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, 6:1-8, 1956.
- [6] Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1-122, 2012.
- [7] Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games. Cambridge University Press, 2006.
- [8] Fudenberg, D. and Levine, D. K. The Theory of Learning in Games, volume 2 of Economic learning and social evolution. MIT Press, Cambridge, MA, 1998.
- [9] Hannan, J. Approximation to Bayes risk in repeated play. In Dresher, M., Tucker, A. W., and Wolfe, P. (eds.), Contributions to the Theory of Games, Volume III, volume 39 of Annals of Mathematics Studies, pp. 97-139. Princeton University Press, Princeton, NJ, 1957.
- [10] Shalev-Shwartz, S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107-194, 2011.
- [11] Sorin, S. Exponential weight algorithm in continuous time. Mathematical Programming, 116(1):513-528, 2009.