ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ ΚΑΙ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΔΙΑΛΕΞΗ 7: ΣΥΝΕΧΗ ΠΑΙΓΝΙΑ

Παναγιώτης Μερτικόπουλος

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών

Χειμερινό Εξάμηνο, 2023–2024

Outline

- A modern game
- 2 Definitions and further examples
- 3 Nash equilibrium and characterizations
- 4 Concave games

1/20

I. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθημα

Example 1: Spot the fake

Which person is real?

Example 1: Spot the fake

Which person is real?

● Spoiler: https://thispersondoesnotexist.com

A modern game

Deep learning 101

The "hello world" of deep learning: how to recognize a hand-written digit?

Figure: A sample from the MNIST database

Neural networks: use labeled data to infer hidden structures ("learn")

The perceptron

A digit recognition perceptron:

◆ McCulloch & Pitts (1943)

- 1. x_1 : is image intensity above 10%?
- 2. x_2 : does image contain \triangle ?
- 3. x_3 : does image contain a loop?

Output: $y = f(\sum_i w_i x_i)$: if y = 1, image depicts a 0; else image does not depict a 0

ΕΚΠΑ, Τμήμα Μαθηματικών

The perceptron

A digit recognition perceptron:

◆ McCulloch & Pitts (1943)

- 1. x_1 : is image intensity above 10%?
- 2. x_2 : does image contain \checkmark ?
- 3. x_3 : does image contain a loop?

Output: $y = f(\sum_i w_i x_i)$: if y = 1, image depicts a 0; else image does not depict a 0

✓ Simple, but not simplistic: much better than guessing at random!

Π. Μερτικόπουλος

The perceptron

A digit recognition **perceptron**:

◆ McCulloch & Pitts (1943)

- 1. x_1 : is image intensity above 10%?
- 2. x_2 : does image contain \triangle ?
- 3. x_3 : does image contain a loop?

Output: $y = f(\sum_i w_i x_i)$: if y = 1, image depicts a 0; else image does not depict a 0

- ✓ Simple, but not simplistic: much better than guessing at random!
- X What is f?
- X How do we extract x_i ?

4/20 ΕΚΠΑ, Τμήμα Μαθηματικών

. Τμήμα Μαθηματικών

 28×28

 28×28

"Learn" a classifier $F: \mathbb{R}^{784} \to [0,1]^{10}$

How would this work in practice?

output: $p_i = \mathbb{P}(X = i)$

ΕΚΠΑ, Τμήμα Μαθηματικών

ΕΚΠΑ, Τμήμα Μαθηματικών

 28×28

How would this work in practice?

Π. Μερτικόπουλος

A modern game OOOOO●OOO

Γμήμα Μαθηματικών

ιήμα Μαθηματικών

ωήμα Μαθηματικών

Π. Μερτικόπουλος

7/20

7/20

Μερτικόπουλος

7/20

Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματι

Model likelihood:
$$\ell(G, D) = \prod_{i=1}^{N} D(X_i) \times \prod_{i=1}^{N} (1 - D(G(Z_i)))$$

1. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

GAN training

How to find good generators (G) and discriminators (D)?

Discriminator: maximize (log-)likelihood estimation

$$\max_{D \in \mathcal{D}} \log \ell(G, D)$$

Generator: minimize the resulting divergence

$$\min_{G \in \mathcal{G}} \max_{D \in \mathcal{D}} \log \ell(G, D)$$

A (very complex) zero-sum game!

Taxonomy

Π. Μερτικόπουλος

Outline

- A modern game
- **2** Definitions and further examples
- 3 Nash equilibrium and characterizations
- 4 Concave games

9/20

Continuous games

Definition (Continuous games)

A continuous game is a collection of the following primitives:

- ▶ A finite set of *players* $\mathcal{N} = \{1, ..., N\}$
- A closed convex set of **actions** $\mathcal{X}_i \subseteq \mathbb{R}^{d_i}$ for each player $i \in \mathcal{N}$
- A payoff function u_i : $\mathcal{X} := \prod_j \mathcal{X}_j \to \mathbb{R}$ for each player $i \in \mathcal{N}$

A continuous game with primitives as above will be denoted by $\mathcal{G} \equiv \mathcal{G}(\mathcal{N}, \mathcal{X}, u)$.

Notes:

- Generality: \mathcal{X}_i could be more general, but almost always closed and convex in practice
- ▶ **Differentiability:** convenient to assume u_i differentiable in an open neighborhood of \mathcal{X} in \mathbb{R}^d # $d = \sum_i d_i$

u_i /R

10/20

Π. Μερτικόπουλος

Example: Mixed extensions

Playing with mixed strategies:

▶ Players:
$$\mathcal{N} = \{1, \dots, N\}$$

- ▶ Pure strategies: $a_i \in A_i$
- ▶ Mixed strategies: $x_i \in \mathcal{X}_i \equiv \Delta(\mathcal{A}_i)$
- ▶ Choose mixed strategy $x_i \in \mathcal{X}_i$
- ▶ Choose action $a_i \sim x_i$
- Get payoff $u_i(a_i; a_{-i})$

Example

The **mixed extension** $\Delta(\Gamma)$ of a finite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$ can be seen as a continuous game with

▶ Players:
$$\mathcal{N} = \{1, ..., N\}$$

• Action sets:
$$\mathcal{X}_i = \Delta(\mathcal{A}_i)$$

Payoff functions:
$$u_i(x) = \mathbb{E}_{a \sim x}[u_i(a)] = \sum_{a_1 \in \mathcal{A}_1} \cdots \sum_{a_N \in \mathcal{A}_N} x_{1,a_1} \cdots x_{N,a_N} u_i(a_1, \dots, a_N)$$

11/2

Τ. Μερτικόπουλος

Example: Cournot competition

A **Cournot oligopoly** consists of the following elements:

- N firms compete in a market for a given product
- Each firm i = 1, ..., N can produce up to C_i of the good in question
- Production has a cost of $c_i > 0$ per unit
- ▶ The good is priced as a function $P(x_{\text{tot}})$ of the total production $x_{\text{tot}} = \sum_{i} x_{i}$
- ► The utility of each firm is given by $u_i(x) = x_i P(x_{tot}) c_i x_i$

no product differentiation

 $\# C_i = \text{production capacity}$

usually P(x) = a + bx

Example (Cournot competition)

A Cournot oligopoly can be seen as a continuous game with

Players:

$$\mathcal{N} = \{1, \dots, N\}$$

Action sets: $\mathcal{X}_i = [0, C_i]$

$$\mathcal{X}_i = [0, C_i]$$

Payoff functions: $u_i(x) = x_i P(x_{tot}) - c_i x_i$

utility = revenue - cost

ΕΚΠΑ, Τμήμα Μαθηματικών, Π. Μερτικόπουλος

Proportionally fair resource allocation

➡ Tullock (1967, 1980); Kelly et al. (1998):

Client 1

Client 2

Client 3

Resources

13/20

Π. Μερτικόπουλος

Proportionally fair resource allocation

Resources bid x_1 Client 1 Client 2 bid x_2 — Client 3 bid x_3

◆ Tullock (1967, 1980); Kelly et al. (1998):

13/20

ΕΚΠΑ, Τμήμα Μαθηματι

Proportionally fair resource allocation

→ Tullock (1967, 1980); Kelly et al. (1998):

ΕΚΠΑ, Τμήμα Μαθηματικών

Example (Resource allocation)

A Kelly auction is a continuous game with

Players:
$$\mathcal{N} = \{1, \dots, N\}$$

Action sets:
$$\mathcal{X}_i = [0, B_i]$$

Action sets:
$$\mathcal{X}_i = [0, B_i]$$
Payoff functions: $u_i(x) = \frac{g_i x_i}{x_1 + \dots + x_N} - x_i$

 $\# B_i = \text{maximum budget of player } i$

 $\# q_i = \text{marginal profit from the good}$

ΕΚΠΑ, Τμήμα Μαθηματικών

Outline

- 1 A modern game
- Definitions and further examples
- 3 Nash equilibrium and characterizations
- 4 Concave games

Nash equilibrium

Nash equilibrium

Let $\mathcal{G} \equiv \mathcal{G}(\mathcal{N}, \mathcal{X}, u)$ be a continuous game. An action profile $x^* = (x_1^*, \dots, x_N^*)$ is a **Nash equilibrium** of \mathcal{G} if $u_i(x_i^*; x_{-i}^*) \ge u_i(x_i; x_{-i}^*)$ for all $x_i \in \mathcal{X}_i$ and all $i \in \mathcal{N}$. (NE)

Nash equilibrium and characterizations

Intuition:

- Stability: no player has an incentive to deviate
- Unilateral resilience: stable against individual player deviations, not multi-player ones

Characterization: best responses

Definition (Best responses)

The action $x_i^* \in \mathcal{X}_i$ is a best response to $x_{-i} \in \mathcal{X}_{-i}$ if

$$u_i(x_i^*; x_{-i}) \ge u_i(x_i; x_{-i})$$
 for all $x_i \in \mathcal{X}_i$.

or, equivalently, if

$$x_i^* \in \operatorname{arg\,max}_{x_i \in \mathcal{X}_i} u_i(x_i; x_{-i})$$

The set-valued function $BR_i: \mathcal{X}_{-i} \rightrightarrows \mathcal{X}_i$ given by

$$BR_i(x_i) := arg \max_{x_i \in \mathcal{X}_i} u_i(x_i; x_{-i})$$

is called the $\it best$ $\it response$ $\it correspondence$ of player $\it i$. Collectively, we also let

$$BR(x) = \prod_{i \in i} BR_i(x_i)$$

Characterization: best responses

Definition (Best responses)

The action $x_i^* \in \mathcal{X}_i$ is a best response to $x_{-i} \in \mathcal{X}_{-i}$ if

$$u_i(x_i^*; x_{-i}) \ge u_i(x_i; x_{-i})$$
 for all $x_i \in \mathcal{X}_i$.

or, equivalently, if

$$x_i^* \in \operatorname{arg\,max}_{x_i \in \mathcal{X}_i} u_i(x_i; x_{-i})$$

The set-valued function $BR_i: \mathcal{X}_{-i} \Rightarrow \mathcal{X}_i$ given by

$$BR_i(x_i) := arg \max_{x_i \in \mathcal{X}_i} u_i(x_i; x_{-i})$$

is called the best response correspondence of player i. Collectively, we also let

$$BR(x) = \prod_{i \in i} BR_i(x_i)$$

Nash equilibrium as fixed points

 x^* is a Nash equilibrium of $\mathcal{G} \iff x_i^* \in BR_i(x_{-i}^*)$ for all $i \in \mathcal{N} \iff x^* \in BR(x^*)$

15/20

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Mas δίνωται N=2 εταιρείες με το ίδιο κόσιος Παραχωρός C ανό μονά Sa προϊόντος τ' χραμμική εξάρτιση ανάμεσα στη συνολική παραχωρή τ' την τημή του προϊόντος, δηλ P(xrot) = Q - 6 x τοτ (χrot = x, +π.)

Na unologia Doir ea EEI Mach avroir con porchos Cournot,

$$\frac{|E \cdot B_{i_1 \cdot a_1} \cdot Y_{i_1} \cdot Y_{i_2} \cdot Y_{i_3} \cdot Y_{i_4} \cdot Y_{i_5} \cdot$$

r/b

Π. Μερτικόπουλος

Characterization: payoff gradients

Definition (Individual payoff gradients)

The **individual payoff gradient** of player $i \in \mathcal{N}$ is the vector field

$$v_i(x) = \nabla_{x_i} u_i(x_i; x_{-i})$$

and, collectively, the game's individual gradient field is

$$v(x) = (v_1(x), \ldots, v_N(x))$$

Notes:

- ▶ In finite games: $\partial_{a_i}u_i(x) = u_i(a_i; x_{-i})$ \implies individual gradients = mixed payoff vectors
- In general: convenient to assume u_i differentiable in an open neighborhood of ${\mathcal X}$

Characterization: payoff gradients

Definition (Individual payoff gradients)

The *individual payoff gradient* of player $i \in \mathcal{N}$ is the vector field

$$v_i(x) = \nabla_{x_i} u_i(x_i; x_{-i})$$

and, collectively, the game's individual gradient field is

$$v(x) = (v_1(x), \ldots, v_N(x))$$

Notes:

- In finite games: $\partial_{a_i} u_i(x) = u_i(a_i; x_{-i})$ \Longrightarrow individual gradients = mixed payoff vectors
- In general: convenient to assume u_i differentiable in an open neighborhood of $\mathcal X$

$$\mathcal{U}_{i}(x) = \mathbb{E}_{\mathbf{a} \in \mathcal{A}_{i}} \left[\mathcal{U}_{a_{i} \in \mathcal{A}_{i}} \right] = \mathcal{I}_{\mathbf{a}_{i} \in \mathcal{A}_{i}} \left[\mathcal{I}_{\mathbf{a}_{i} \in \mathcal{A}_{i}} \right] \times \mathcal{U}_{i}(\mathbf{a}_{i} \mid \mathbf{x}_{i}) = \mathcal{U}_{i}(\mathbf{a}_{i} \mid \mathbf{x}_$$

16/20

Piños povopespin v napajingov som prog 1600 noise en

- \rightarrow Av x_i^* pegiozonoidi zu birdependu di $(x_i)x_i^*$) yiu vonoo x_i^* (X_i) zi moopolys vo nolye y_0 zy y_0 n/y_0 $v_i(x_i^*)$?
- > = Exviron apo Gupina zons à llous Maires, QV Xª 468 (1020 no 161 24 60 rape 404 M(x), zi proposye 40 no sye xa 244 n/20 v(x4) = \(\nabla \lambda x \rangle x \rangle \)?

7 pigrozo => x(x) > x(2) =) Hav(on +(+) = u(x++t(x-x)) θα εχει φ'(0) ≤ 0 ¥x

$$\begin{array}{c} O_{yus} & \phi'(o) = \left(\underbrace{\nabla u.(x^*)}_{v(x^*)}, x \cdot z^* \right) \\ & = 1 \end{array}$$

STAZIMOTHTA PPOTHE TABLE => ANAPAITHTH EYNOHKH FIX MCFIETONOIHEH

Characterization: payoff gradients

Definition (Individual payoff gradients)

The **individual payoff gradient** of player $i \in \mathcal{N}$ is the vector field

$$v_i(x) = \nabla_{x_i} u_i(x_i; x_{-i})$$

and, collectively, the game's individual gradient field is

$$v(x) = (v_1(x), \ldots, v_N(x))$$

Nash equilibrium as first-order stationary points

$$u_{i}(x_{i}^{*}; x_{-i}^{*}) \geq u_{i}(x_{i}; x_{i}^{*}) \implies \begin{cases} \langle v_{i}(x^{*}), x_{i} - x_{i}^{*} \rangle \leq 0 & \text{for all } x_{i} \in \mathcal{X}_{i} \text{ and all } i \in \mathcal{N} \\ \langle v(x^{*}), x - x^{*} \rangle \leq 0 & \text{for all } x \in \mathcal{X} \end{cases}$$
(FOS)

16/20

Characterization: payoff gradients

Definition (Individual payoff gradients)

The **individual payoff gradient** of player $i \in \mathcal{N}$ is the vector field

$$v_i(x) = \nabla_{x_i} u_i(x_i; x_{-i})$$

and, collectively, the game's individual gradient field is

$$v(x) = (v_1(x), \ldots, v_N(x))$$

Nash equilibrium as first-order stationary points

$$u_{i}(x_{i}^{*}; x_{-i}^{*}) \geq u_{i}(x_{i}; x_{i}^{*}) \implies \begin{cases} \langle v_{i}(x^{*}), x_{i} - x_{i}^{*} \rangle \leq 0 & \text{for all } x_{i} \in \mathcal{X}_{i} \text{ and all } i \in \mathcal{N} \\ \langle v(x^{*}), x - x^{*} \rangle \leq 0 & \text{for all } x \in \mathcal{X} \end{cases}$$
(FOS)

When do we have $(??) \Longrightarrow (NE)$?

16/20

Outline

- 1 A modern game
- Definitions and further examples
- 3 Nash equilibrium and characterizations
- 4 Concave games

Concave games

Definition (Concave games)

A concave game is a continuous game with individually concave payoff functions, i.e.,

$$u_i(x_i; x_{-i})$$
 is concave in x_i

for all $x_{-i} \in \mathcal{X}_{-i}$ and all $i \in \mathcal{N}$.

ΕΚΠΑ, Τμήμα Μαθηματικών

Concave games

Definition (Concave games)

A concave game is a continuous game with individually concave payoff functions, i.e.,

$$u_i(x_i; x_{-i})$$
 is concave in x_i

for all $x_{-i} \in \mathcal{X}_{-i}$ and all $i \in \mathcal{N}$.

Notes:

Gradient dominance:

$$u_i(x_i; x_{-i}) \le u_i(x_i^*; x_{-i}) + \langle v_i(x_i^*; x_{-i}), x_i - x_i^* \rangle$$

Stationarity implies optimality:

$$\langle v_i(x_i^*; x_{-i}), x_i - x_i^* \rangle \le 0 \implies u_i(x_i; x_{-i}) \le u_i(x_i^*; x_{-i})$$

• Closed convex $\arg \max_{x_i \in \mathcal{X}_i} u_i(x_i; x_{-i})$

ΕΚΠΑ, Τμήμα Μαθηματικών

Concave games

Definition (Concave games)

A concave game is a continuous game with individually concave payoff functions, i.e.,

$$u_i(x_i; x_{-i})$$
 is concave in x_i

for all $x_{-i} \in \mathcal{X}_{-i}$ and all $i \in \mathcal{N}$.

Proposition (Variational characterization of Nash equilibria)

Let $\mathcal{G} \equiv \mathcal{G}(i, \mathcal{X}, u)$ be a concave game. Then

$$x^*$$
 is a Nash equilibrium

$$x^*$$
 is a Nash equilibrium \iff $(v(x^*), x - x^*) \le 0$ for all $x \in \mathcal{X}$

Stampacchia Variational lucquality (SVI)

At Nash equilibrium, individual payoff gradients are outward-pointing

Existence of Nash equilibria

Theorem (Debreu, 1952)

Every concave game with compact action spaces admits a Nash equilibrium.

Existence of Nash equilibria

Theorem (Debreu, 1952)

Every concave game with compact action spaces admits a Nash equilibrium.

Proof idea: #as in finite games

► Fixed point characterization of Nash equilibria

$$x^*$$
 is a Nash equilibrium $\iff x^* \in BR(x^*)$

l. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

as in finite games

Existence of Nash equilibria

Theorem (Debreu, 1952)

Every concave game with compact action spaces admits a Nash equilibrium.

Proof idea:

Fixed point characterization of Nash equilibria

$$x^*$$
 is a Nash equilibrium $\iff x^* \in BR(x^*)$

If the game is concave, BR: $\mathcal{X} \Rightarrow \mathcal{X}$ is **tenemety**, closed and convex

Existence of Nash equilibria

Theorem (Debreu, 1952)

Every concave game with compact action spaces admits a Nash equilibrium.

Proof idea: # as in finite games

Fixed point characterization of Nash equilibria

$$x^*$$
 is a Nash equilibrium $\iff x^* \in BR(x^*)$

- If the game is concave, BR: $\mathcal{X} \Rightarrow \mathcal{X}$ is nonempty, closed and convex
- ▶ Invoke Kakutani's fixed-point theorem for set-valued functions

Theorem (Kakutani, 1941)

Let \mathcal{C} be a nonempty compact convex subset of \mathbb{R}^d , and let $F:\mathcal{C} \Rightarrow \mathcal{C}$ be a set-valued function such that:

- (P1) F(x) is nonempty, closed and convex for all $x \in C$
- (P2) F is **upper hemicontinuous** at all $x \in C$, i.e., $\tilde{x} \in F(x)$ whenever $x_t \to x$ and $\tilde{x}_t \to \tilde{x}$ for sequences $x_t \in C$ and $\tilde{x}_t \in F(x_t)$.

Then there exists some $x^* \in C$ such that $x^* \in F(x^*)$.

ΕΚΠΑ, Τμήμα Μαθηματικών

Whv?

Verify the conditions of Kakutani's theorem for $C \leftarrow \mathcal{X}$ and $F \leftarrow BR$:

- (P1) BR(x) is a face of \mathcal{X} , so it is nonempty, closed and convex
- (P2) Argue by contradiction
 - Suppose there exist sequences $x_t, \tilde{x}_t \in \mathcal{X}, t = 1, 2, \dots$, such that $x_t \to x, \tilde{x}_t \to \tilde{x}$ and $\tilde{x}_t \in BR(x_t)$, but $\tilde{x} \notin BR(x)$.
 - ▶ Then there exists a player $i \in \mathcal{N}$ and a deviation $x_i' \in \mathcal{X}_i$ such that

$$u_i(x_i';x_{-i}) > u_i(\tilde{x}_i;x_{-i})$$

▶ But since $\tilde{x}_{i,t} \in BR(x_{-i,t})$ by assumption, we also have:

$$u_i\big(x_i';x_{-i,t}\big) \leq u_i\big(\tilde{x}_{i,t};x_{-i,t}\big)$$

• Since $x_t \to x$, $\tilde{x}_t \to \tilde{x}$ and u_i is continuous, taking limits gives

$$u_i\big(x_i';x_{-i}\big) \leq u_i\big(\tilde{x}_i;x_{-i}\big)$$

which contradicts our original assumption.

20/20

- [1] Debreu, G. A social equilibrium existence theorem. Proceedings of the National Academy of Sciences of the USA, 38(10):886-893, October 1952.
- [2] Kakutani, S. A generalization of Brouwer's fixed point theorem. Duke Mathematical Journal, 8(3):457-459, September 1941.
- [3] Kelly, F. P., Maulloo, A. K., and Tan, D. K. H. Rate control for communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3):237-252, March 1998.
- [4] McCulloch, W. and Pitts, W. A logical calculus of ideas immanent in nervous activity. *Bulletin of Mathematical Biophysics*, 5(4):115–133, 1943.
- [5] Tullock, G. The welfare costs of tarrifs, monopolies, and theft. Western Economic Journal, 1967.
- [6] Tullock, G. Efficient rent seeking. In Tollison, J. M. B. R. D. and Tullock, G. (eds.), Toward a theory of the rent-seeking society. Texas A&M University Press, 1980.

. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

=> ZITOYPA OXI NASH

