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% Example 1: Spot the fake

Which person is real?
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% Example 1: Spot the fake

Which person is real?

*% Spoiler: https://thispersondoesnotexist.com




Deep learning 101

The "hello world" of deep learning: how to recognize a hand-written digit?
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Figure: A sample from the MNIST database

Neural networks: use labeled data to infer hidden structures (“learn”)
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The perceptron
A digit recognition perceptron: = McCulloch & Pitts (1943)
w1
O @ w2 f output
w3

1. xy: is image intensity above 10%?
2. x;: does image contain * ?

3. x3: does image contain a loop?

y = f(X;wix;): if y =1, image depicts a 0; else image does not depict a 0
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1. xy: is image intensity above 10%?
2. x;: does image contain * ?

3. x3: does image contain a loop?

y = f(X;wix;): if y =1, image depicts a 0; else image does not depict a 0

v’ Simple, but not simplistic: much better than guessing at random!
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The perceptron
A digit recognition perceptron: = McCulloch & Pitts (1943)
w1
0 @ w2 f output
w3

1. xy: is image intensity above 10%?
2. x;: does image contain * ?

3. x3: does image contain a loop?

y = f(X;wix;): if y =1, image depicts a 0; else image does not depict a 0

v’ Simple, but not simplistic: much better than guessing at random!
X Whatis f?

X How do we extract x;?
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How would this work in practice?

28 x 28
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How would this work in practice?
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How would this work in practice?
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How would this work in practice?
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o input: X:<
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28 x 28

output: p; =P(X =)
“Learn” a classifier F:R7** — [0,1]" >
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How would this work in practice?
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How would this work in practice?
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How would this work in practice?

Not expressive enough!
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Deep neural networks
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Deep neural networks
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Deep neural networks

hidden layers ¢ =1,...,L
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Deep neural networks
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The schematics of GANs

R




Amodern game
000000800

The schematics of GANs

Generator
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The schematics of GANs
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The schematics of GANs
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The schematics of GANs

G(z) S

Model likelihood: ¢(G, D) = ﬁ D(X;) x I_NI(I -D(G(Z))))




Amodern game
000000080

GAN training

How to find good generators (G) and discriminators (D)?

Discriminator: maximize (log-)likelihood estimation
max log€(G, D
max log ¢(G, D)
Generator: minimize the resulting divergence

min max log¢(G, D)

A (very complex) zero-sum game!
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Taxonomy

Mean Field Games

Actions
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Definitions and further examples Nash equilibrium and characterizations

O®000

Continuous games

Definition (Continuous games)
A continuous game is a collection of the following primitives:
> Afinite set of players N = {1,...,N}
> A closed convex set of actions X; € R? for each player i € ¥

v
> Apayoff function u;: X := []; X; — R for each player i € N

(usd“a’ab AQ(&'E‘)‘"QL‘&)
A continuous game with primitives as above will be denoted by G = G(N, X, u).
| )

Ut 7270, A0 o

s
Notes: %, u, /;L

> Generality: X; could be more general, but almost always closed and convex in practice

» Differentiability: convenient to assume u; differentiable in an open neighborhood of X inRY  #d =3, d;
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Example: Mixed extensions

Playing with mixed strategies:
» Playerss N ={1,...,N}
> Pure strategies: a; € A;
> Mixed strategies: x; € X; = A(A;)

> Choose mixed strategy x; € X;

» Choose action a; ~ x;

> Get payoff u;(ai;a-;)

The mixed extension A(T) of a finite game I' = I'(V/, A, u) can be seen as a continuous game with
> Players: N={1,...,N}
> Action sets: Xi = A(A)

» Payoff functions:  ui(x) = Earx[ui(a)] = T e Sl Xi,ay" XN,ay Ui (a1 ..., AN)
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Example: Cournot competition

A Cournot oligopoly consists of the following elements:
> N firms compete in a market for a given product # no product differentiation

» Eachfirmi=1,..., N can produce up to C; of the good in question # C; = production capacity

> Production has a cost of ¢; > 0 per unit
> The good is priced as a function P(xtt) of the total production x¢or = INES #usually P(x) = a + bx

> The utility of each firm is given by u; (x) = x;P(Xtot) — cixi

Example (Cournot competition)

A Cournot oligopoly can be seen as a continuous game with
> Players: N=A{1...,N}
> Action sets: Xi =1[0,Ci]

> Payoff functions:  ui(x) = x;P(xtot) — CiXi # utility = revenue - cost
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Example: Resource allocation / Kelly auctions

Proportionally fair resource allocation

Resources
0

= Tullock (1967, 1980); Kelly et al. (1998):
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Example: Resource allocation / Kelly auctions

Proportionally fair resource allocation

bid x,

bid x, —]

bid x;

Resources
0

= Tullock (1967, 1980); Kelly et al. (1998):
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Example: Resource allocation / Kelly auctions

Proportionally fair resource allocation = Tullock (1967, 1980); Kelly et al. (1998):

Resources
0

bid x Client 1

resources

Client 2
resources

bid x, —]

)

Client 3

bid x;
resources




Definitions and further examples
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Example: Resource allocation / Kelly auctions

Resources

get
bi XAt N
“"& Client 1
resources
x
Prp——
— bid x, —{ [ atnts Client 2
resources
,ﬁ Client 3
3 ot 5 resources
S xtn+n

Example (Resource allocation)

A Kelly auction is a continuous game with

> Players: N={,...,N}
> Action sets: X = [0, B,‘] # B; = maximum budget of player i
X
> Payoff functions:  u; (x) = _ X Xi # gi = marginal profit from the good
X1+ + XN
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Nash equilibrium and characterizations
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Nash equilibrium

Nash equilibrium

Let G = G(N, X, u) be a continuous game. An action profile x* = (x1, ..., xy) is a Nash equilibrium of G if

wi(x];x%) > ui(xi;x%;) forallx; € Xjandallie NV, (NE)

Intuition:

»> Stability: no player has an incentive to deviate

*> Unilateral resilience: stable against individual player deviations, not multi-player ones




Nash equilibrium and characterizations

0000

Characterization: best responses

Definition (Best responses)
The action x; € X is a best response to x_; € X_; if
ui(x;3x-1) > ui(xi;x-;) forall x; € &;.

or, equivalently, if
*
Xx; €argmax, ui(xisx—i)

The set-valued function BR;: X_; = & given by
BR;(x;) := argmax, . ui(xisx=i)
is called the best response correspondence of player i. Collectively, we also let

BR(x) = [T,., BRi(xi)




Definitions and further examples Nash equilibrium and characterizations
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Characterization: best responses

Definition (Best responses)

The action x; € X is a best response to x_; € X_; if
ui(x;3x-1) > ui(xi;x-;) forall x; € &;.

or, equivalently, if
*
Xx; €argmax, ui(xisx—i)

The set-valued function BR;: X_; = & given by
BR;(x;) := argmax, . ui(xisx=i)
is called the best response correspondence of player i. Collectively, we also let

BR(x) = [T,., BRi(xi)

Nash equilibrium as fixed points

x” is a Nash equilibrium of G <= x; € BR;(x ;) foralli e ' <= x" ¢ BR(x")

Bnuatikoy
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Nash equilibrium and characterizations
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Characterization: payoff gradients

Definition (Individual payoff gradients)

The individual payoff gradient of player i € A is the vector field
vi(x) = Vi, i (x5 %)
and, collectively, the game’s individual gradient field is

v(x) = (ni(x),...,vn(x))

Notes:

* In finite games: d4,ui(x) = u;(ai;x-;) ==  individual gradients = mixed payoff vectors

> In general: convenient to assume u; differentiable in an open neighborhood of X
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Characterization: payoff gradients

Definition (Individual payoff gradients)

The individual payoff gradient of player i € A is the vector field
vi(x) = Vi, i (x5 %)
and, collectively, the game’s individual gradient field is

v(x) = (ni(x),...,vn(x))

Notes:

* In finite games: d,u;(x) = u;(ai;x-;) ==  individual gradients = mixed payoff vectors

*> In general: conveni

t to assume u; differentiable in an open neighborhood of X’
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Nash equilibrium and characterizations
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Characterization: payoff gradients

Definition (Individual payoff gradients)

The individual payoff gradient of player i € A is the vector field
vi(x) = Vi (xisx=i)
and, collectively, the game’s individual gradient field is

v(x) = (ni(x),...,vn(x))

Nash equilibrium as first-order stationary points

. . (vi(x*),xi—x]) <0 forall xj e Xiand alli e N
ui(x;5x2;) 2 ui(xi3x; ) = (FOS)
v(x*),x-x%)<0 forallx e X

1 MaBnuaTikiv



Definitions and furthe nples Nash equilibrium and characterizations
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Characterization: payoff gradients

Definition (Individual payoff gradients)

The individual payoff gradient of player i € A is the vector field
vi(x) = Vi (xisx=i)
and, collectively, the game’s individual gradient field is

v(x) = (ni(x),...,vn(x))

Nash equilibrium as first-order stationary points

ui(x5x5) > ui(xisx;) = (FOS)

vi(x*),xi —x) < forall xj e Xiand alli e N
*)<0

(v(x*),x—x forallx e X

When do we have (2?) — (NE)?

EKMA, Thipa MaBnuatuy
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Concave games

Definition (Concave games)

A concave game is a continuous game with individually concave payoff functions, i.e.,

ui(xi;x_;) is concave in x;

forall x_; e X_;and all i e \V.
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Concave games

Definition (Concave games)

A concave game is a continuous game with individually concave payoff functions, i.e.,

ui(xi;x_;) is concave in x;

forall x_; e X_;and all i e \V.

Notes:

» Gradient dominance:
wi(xisxoi) S wi(xs2mi) + (vi(x] %), % — x7)

> Stationarity implies optimality:
(vixi5xmi),xi = %) <0 = wi(xisx-i) < wi(x]5%-0)

» Closed convex arg max ui(xisx=i)

X;€X;
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Concave games

Definition (Concave games)

A concave game is a continuous game with individually concave payoff functions, i.e.,

ui(xi;x_;) is concave in x;

forall x_; e X_;and all i e \V.

Proposition (Variational characterization of Nash equilibria)

Let G = G(i, X, u) be a concave game. Then

x"is aNash equilibrium <=  (v(x"),x—x")<0 forallx e X

S‘h “Roc chisd

\/kr;\‘t'lﬂ




Concave games
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Geometric characterization

TC(x")

At Nash equilibrium, individual payoff gradients are outward-pointing
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Existence of Nash equilibria

Theorem (Debreu, 1952)

Every concave game with compact action spaces admits a Nash equilibrium.
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Existence of Nash equilibria

Theorem (Debreu, 1952)

Every concave game with compact action spaces admits a Nash equilibrium.

Proof idea: # as in finite games

> Fixed point characterization of Nash equilibria

x” is a Nash equilibrium <= x* ¢ BR(x")
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Existence of Nash equilibria

Theorem (Debreu, 1952)

Every concave game with compact action spaces admits a Nash equilibrium.

Proof idea: # as in finite games

> Fixed point characterization of Nash equilibria

x” is a Nash equilibrium <= x* ¢ BR(x")

> If the game is concave, BR: X' = X is panespiy, closed and convex
I Xis comect = BRLx) is wonermpty




Nash equilibrium and characterizations Concave games
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Existence of Nash equilibria

Theorem (Debreu, 1952)

Every concave game with compact action spaces admits a Nash equilibrium.

Proof idea: #as in finite games
> Fixed point characterization of Nash equilibria
x” is a Nash equilibrium <= x* ¢ BR(x")
> If the game is concave, BR: X = X is nonempty, closed and convex

*> Invoke Kakutani’s fixed-point theorem for set-valued functions

Theorem (Kakutani, 1941)

Let C be a nonempty compact convex subset of R, and let F:C = C be a set-valued function such that:

(P1) E(x) is nonempty, closed and convex for all x € C

(P2) Fis upper hemicontinuous at all x € C, i.e, X € F(x) whenever x; — x and %; — % for sequences x; € C and
%t € F(x¢).

Then there exists some x™ € C such that x* € F(x™).

MaBnuatiy



Concave games
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Proof of Debreu's theorem

Verify the conditions of Kakutani’s theorem for C < X and F < BR:

(P1) BR(x) is a face of X, so it is nonempty, closed and convex = Why?
(P2) Argue by contradiction

> Suppose there exist sequences x¢, % € X, t = 1,2,...,such that x; - x, ¥, — % and %; € BR(x;), but & ¢ BR(x).
> Then there exists a player i € A and a deviation x| € X; such that

ui(xfsx-i) > ui (%3 x-;)
> Butsince %;,; € BR(x_; ;) by assumption, we also have:
ui(xixoie) < ui(FisXoit)
> Since x; — x, X; — % and u; is continuous, taking limits gives

ui(xfsx_i) <ui(Ri3x-;)

which contradicts our original assumption. |
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