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Example 1: Spot the fake

Which person is real?

✒ Spoiler: https://thispersondoesnotexist.com
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Deep learning 101

The "hello world" of deep learning: how to recognize a hand-written digit?

Figure: A sample from the MNIST database

Neural networks: use labeled data to infer hidden structures (“learn”)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών



4/20

A modern game Definitions and further examples Nash equilibrium and characterizations Concave games References

The perceptron

A digit recognition perceptron: ✒ McCulloch & Pitts (1943)

x

x

x

f output

w

w

w

1. x : is image intensity above %?

2. x : does image contain ?

3. x : does image contain a loop?

Output: y = f (∑i wi xi): if y = , image depicts a ; else image does not depict a 

✓ Simple, but not simplistic: much better than guessing at random!

✗ What is f ?
✗ How do we extract xi?

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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How would this work in practice?

 × 

⋮input: X =

p

p
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output: pi = P(X = i)

p = W!
weights

⋅X +
bias"
b

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

Out(X) = σ(W ⋅ X + b)

“Learn” a classifier F∶R → [, ]

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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5/20

A modern game Definitions and further examples Nash equilibrium and characterizations Concave games References

How would this work in practice?

 × 
⋮input: X =

p

p

p

p

p

p

p

p

p

p

output: pi = P(X = i)

p = W!
weights

⋅X +
bias"
b

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

Out(X) = σ(W ⋅ X + b)

“Learn” a classifier F∶R → [, ]

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Not expressive enough!



5/20

A modern game Definitions and further examples Nash equilibrium and characterizations Concave games References

How would this work in practice?

 × 
⋮input: X =

p

p

p

p

p

p

p

p

p

p

output: pi = P(X = i)

p = W!
weights

⋅X +
bias"
b

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

Out(X) = σ(W ⋅ X + b)

“Learn” a classifier F∶R → [, ]

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Not expressive enough!



5/20

A modern game Definitions and further examples Nash equilibrium and characterizations Concave games References

How would this work in practice?

 × 
⋮input: X =

p

p

p

p

p

p

p

p

p

p

output: pi = P(X = i)

p = W!
weights

⋅X +
bias"
b

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

Out(X) = σ(W ⋅ X + b)

“Learn” a classifier F∶R → [, ]

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Not expressive enough!



5/20

A modern game Definitions and further examples Nash equilibrium and characterizations Concave games References

How would this work in practice?

 × 
⋮input: X =

p

p

p

p

p

p

p

p

p

p

output: pi = P(X = i)

p = W!
weights

⋅X +
bias"
b

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

Out(X) = σ(W ⋅ X + b)

“Learn” a classifier F∶R → [, ]

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Not expressive enough!



5/20

A modern game Definitions and further examples Nash equilibrium and characterizations Concave games References

How would this work in practice?

 × 
⋮input: X =

p

p

p

p

p

p

p

p

p

p

output: pi = P(X = i)

p = W!
weights

⋅X +
bias"
b

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

Out(X) = σ(W ⋅ X + b)

“Learn” a classifier F∶R → [, ]

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Not expressive enough!



5/20

A modern game Definitions and further examples Nash equilibrium and characterizations Concave games References

How would this work in practice?

 × 
⋮input: X =

p

p

p

p

p

p

p

p

p

p

output: pi = P(X = i)

p = W!
weights

⋅X +
bias"
b

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

W,

Out(X) = σ(W ⋅ X + b)

“Learn” a classifier F∶R → [, ]

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Not expressive enough!



6/20

A modern game Definitions and further examples Nash equilibrium and characterizations Concave games References

Deep neural networks

 × 
⋮X =

hidden layers ℓ = , . . . , L

p
p
p
p
p
p
p
p
p
p

pi = P(X = i)

Out = σ ○WL+ ○ ⋯ ○ σ ○W
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The schematics of GANs

noise
Zi

Generator

G

G(Zi)

Discriminator

D

Xi

compare

loss

true/fake

Model likelihood: ℓ(G ,D) = N∏
i=

D(Xi) × N∏
i=
( − D(G(Zi)))
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GAN training

How to find good generators (G) and discriminators (D)?

Discriminator: maximize (log-)likelihood estimation

max
D∈D log ℓ(G ,D)

Generator: minimize the resulting divergence

min
G∈G max

D∈D log ℓ(G ,D)

A (very complex) zero-sum game!

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Taxonomy

Actions

Players
Finite

Finite

Continuous

Continuous

Population Games

Mean Field Games

Finite Games

Continuous Games
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Continuous games

Definition (Continuous games)
A continuous game is a collection of the following primitives:

▸ A finite set of players N = {, . . . ,N}
▸ A closed convex set of actions Xi ⊆ Rdi for each player i ∈N
▸ A payoff function ui ∶X ∶=∏ j X j → R for each player i ∈N

A continuous game with primitives as above will be denoted by G ≡ G(N ,X , u).

Notes:

▸ Generality: Xi could be more general, but almost always closed and convex in practice
▸ Differentiability: convenient to assume ui differentiable in an open neighborhood of X in Rd # d = ∑i d i

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Example: Mixed extensions

Playing with mixed strategies:

▸ Players: N = {, . . . ,N}
▸ Pure strategies: ai ∈ Ai▸ Mixed strategies: xi ∈ Xi ≡ ∆(Ai)▸ Choose mixed strategy xi ∈ Xi▸ Choose action ai ∼ xi▸ Get payoff ui(ai ; a−i)

RR P

S

R

∆{R, P, S}

ePeR

eS

(  , 
 ,


 )

Example
The mixed extension ∆(Γ) of a finite game Γ ≡ Γ(N ,A, u) can be seen as a continuous game with
▸ Players: N = {, . . . ,N}
▸ Action sets: Xi = ∆(Ai)▸ Payoff functions: ui(x) = Ea∼x[ui(a)] = ∑a∈A⋯∑aN∈AN

x,a⋯xN ,aN ui(a , . . . , aN)
Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Example: Cournot competition

A Cournot oligopoly consists of the following elements:
▸ N firms compete in a market for a given product # no product differentiation

▸ Each firm i = , . . . ,N can produce up to Ci of the good in question # Ci = production capacity

▸ Production has a cost of ci >  per unit
▸ The good is priced as a function P(xtot) of the total production xtot = ∑ j x j # usually P(x) = a + bx

▸ The utility of each firm is given by ui(x) = xiP(xtot) − ci xi

Example (Cournot competition)
A Cournot oligopoly can be seen as a continuous game with
▸ Players: N = {, . . . ,N}
▸ Action sets: Xi = [,Ci]▸ Payoff functions: ui(x) = xiP(xtot) − ci xi # utility = revenue - cost

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Example: Resource allocation / Kelly auctions

Proportionally fair resource allocation ✒ Tullock (1967, 1980); Kelly et al. (1998):

Client 1

Client 2

Client 3

Resources

Example (Resource allocation)
A Kelly auction is a continuous game with
▸ Players: N = {, . . . ,N}
▸ Action sets: Xi = [, Bi] # Bi =maximum budget of player i

▸ Payoff functions: ui(x) = дi xi
x +⋯ + xN − xi # дi =marginal profit from the good

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Nash equilibrium

Nash equilibrium

Let G ≡ G(N ,X , u) be a continuous game. An action profile x∗ = (x∗ , . . . , x∗N) is a Nash equilibrium of G if

ui(x∗i ; x∗−i) ≥ ui(xi ; x∗−i) for all xi ∈ Xi and all i ∈N . (NE)

Intuition:
▸ Stability: no player has an incentive to deviate

▸ Unilateral resilience: stable against individual player deviations, not multi-player ones

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Characterization: best responses

Definition (Best responses)

The action x∗i ∈ Xi is a best response to x−i ∈ X−i if

ui(x∗i ; x−i) ≥ ui(xi ; x−i) for all xi ∈ Xi .

or, equivalently, if
x∗i ∈ argmaxxi∈Xi

ui(xi ; x−i)
The set-valued function BRi ∶X−i ⇉ Xi given by

BRi(xi) ∶= argmaxxi∈Xi
ui(xi ; x−i)

is called the best response correspondence of player i . Collectively, we also let

BR(x) =∏i∈i BRi(xi)

Nash equilibrium as fixed points

x∗ is a Nash equilibrium of G ⇐⇒ x∗i ∈ BRi(x∗−i) for all i ∈N ⇐⇒ x∗ ∈ BR(x∗)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Characterization: payoff gradients

Definition (Individual payoff gradients)
The individual payoff gradient of player i ∈N is the vector field

vi(x) = ∇xi ui(xi ; x−i)
and, collectively, the game’s individual gradient field is

v(x) = (v(x), . . . , vN(x))
Notes:

▸ In finite games: ∂ai ui(x) = ui(ai ; x−i) %⇒ individual gradients =mixed payoff vectors
▸ In general: convenient to assume ui differentiable in an open neighborhood of X

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Definition (Individual payoff gradients)
The individual payoff gradient of player i ∈N is the vector field

vi(x) = ∇xi ui(xi ; x−i)
and, collectively, the game’s individual gradient field is

v(x) = (v(x), . . . , vN(x))

Nash equilibrium as first-order stationary points

ui(x∗i ; x∗−i) ≥ ui(xi ; x∗i ) %⇒
⎧⎪⎪⎨⎪⎪⎩
⟨vi(x∗), xi − x∗i ⟩ ≤  for all xi ∈ Xi and all i ∈N
⟨v(x∗), x − x∗⟩ ≤  for all x ∈ X (FOS)
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⎧⎪⎪⎨⎪⎪⎩
⟨vi(x∗), xi − x∗i ⟩ ≤  for all xi ∈ Xi and all i ∈N
⟨v(x∗), x − x∗⟩ ≤  for all x ∈ X (FOS)

When do we have (??) %⇒ (NE) ?
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Concave games

Definition (Concave games)
A concave game is a continuous game with individually concave payoff functions, i.e.,

ui(xi ; x−i) is concave in xi

for all x−i ∈ X−i and all i ∈N .
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Concave games

Definition (Concave games)
A concave game is a continuous game with individually concave payoff functions, i.e.,

ui(xi ; x−i) is concave in xi

for all x−i ∈ X−i and all i ∈N .

Notes:

▸ Gradient dominance:
ui(xi ; x−i) ≤ ui(x∗i ; x−i) + ⟨vi(x∗i ; x−i), xi − x∗i ⟩

▸ Stationarity implies optimality:

⟨vi(x∗i ; x−i), xi − x∗i ⟩ ≤  %⇒ ui(xi ; x−i) ≤ ui(x∗i ; x−i)
▸ Closed convex argmaxxi∈Xi

ui(xi ; x−i)
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Concave games

Definition (Concave games)
A concave game is a continuous game with individually concave payoff functions, i.e.,

ui(xi ; x−i) is concave in xi

for all x−i ∈ X−i and all i ∈N .

Proposition (Variational characterization of Nash equilibria)
Let G ≡ G(i ,X , u) be a concave game. Then

x∗ is a Nash equilibrium ⇐⇒ ⟨v(x∗), x − x∗⟩ ≤  for all x ∈ X
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Geometric characterization

X

TC(x∗)

NC(x∗)

.x
∗

x

v(x∗)

At Nash equilibrium, individual payoff gradients are outward-pointing
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Existence of Nash equilibria

Theorem (Debreu, 1952)
Every concave game with compact action spaces admits a Nash equilibrium.

Proof idea: # as in finite games

▸ Fixed point characterization of Nash equilibria

x∗ is a Nash equilibrium ⇐⇒ x∗ ∈ BR(x∗)

▸ If the game is concave, BR∶X ⇉ X is nonempty, closed and convex

▸ Invoke Kakutani’s fixed-point theorem for set-valued functions

Theorem (Kakutani, 1941)

Let C be a nonempty compact convex subset of Rd , and let F∶C ⇉ C be a set-valued function such that:
(P1) F(x) is nonempty, closed and convex for all x ∈ C
(P2) F is upper hemicontinuous at all x ∈ C , i.e., x̃ ∈ F(x) whenever xt → x and x̃t → x̃ for sequences xt ∈ C and

x̃t ∈ F(xt).
Then there exists some x∗ ∈ C such that x∗ ∈ F(x∗).
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Proof of Debreu's theorem

Verify the conditions of Kakutani’s theorem for C ← X and F ← BR:

(P1) BR(x) is a face of X , so it is nonempty, closed and convex ✒ Why?

(P2) Argue by contradiction
▸ Suppose there exist sequences xt , x̃t ∈ X , t = , , . . . , such that xt → x , x̃t → x̃ and x̃t ∈ BR(xt), but x̃ ∉ BR(x).▸ Then there exists a player i ∈ N and a deviation x′i ∈ Xi such that

ui(x′i ; x−i) > ui(x̃i ; x−i)
▸ But since x̃i ,t ∈ BR(x−i ,t) by assumption, we also have:

ui(x′i ; x−i ,t) ≤ ui(x̃i ,t ; x−i ,t)
▸ Since xt → x , x̃t → x̃ and ui is continuous, taking limits gives

ui(x′i ; x−i) ≤ ui(x̃i ; x−i)
which contradicts our original assumption.
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