

NB:

 $\overline{\mathbf{C}}$

▸ Mean population payoff is quadratic in *x* # symmetric matching

NB:

▶ \nMean population payoff is multilinear in x \n# asymmetric matching

▸ *Edge cost function ce*(*ℓe*)*:* cost along edge *e* when edge load is *ℓ^e*

 \blacktriangleright **Path cost:** $c_{\alpha}(f) = \sum_{e \in \alpha} c_e(\ell_e)$

Population games Exponential weights and the replicator dynamics Asymptotic analysis and rationality References *Nash equilibrium* Nash equilibrium (Nash, 1950, 1951) *"No player has an incentive to deviate from their chosen strategy if other players don't"* ▸ In finite games (mixed extension formulation): $u_i(x_i^*, x_{-i}^*) \geq u_i(x_i; x_{-i}^*)$ for all $x_i \in \mathcal{X}_i, i \in \mathcal{N}$ ▸ In population games: $v_{i\alpha_i}(x^*) \ge v_{i\beta_i}(x^*)$ whenever $\alpha_i \in \text{supp}(x^*)$

Population games **Exponential weights and the replicator dynamics** Asymptotic analysis and rational exponential weights and the replicator dynamics **Assumptotic analysis and rationality References Assumptotic analysis and** *Learning, evolution and dynamics* What is "learning" in games? The basic process: ▸ Players choose strategies and receive corresponding payoffs ▸ Depending on outcome and information revealed, they choose new strategies and they play again ▸ Rinse, repeat The basic questions: ▶ *How do populations evolve over time?* \longrightarrow **2008** \longrightarrow **2008** ▸ *How do people learn in a game?* # Economics ▶ *What algorithms should we use to learn in a game?* # Computer science # Computer science ▸ Given a dynamical system on *X* , what is its long-term behavior? # Mathematics

Population games **Exponential weights and the replicator dynamics** Asymptotic analysis and rational exponential weights and the replicator dynamics **Asymptotic analysis and rationality References** COOOOOOOOOOOOOOOOOOOOOOOO *Age the Third (2000's–present): Computer Science* **Learning in finite games Require:** finite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$ **repeat** At each epoch *t* ≥ 0 **do simultaneously** for all players *i* ∈ *N* # continuous time
Choose mixed strategy $x_i(t) \in X_i := \Delta(\mathcal{A}_i)$ # mixing Choose **mixed strategy** $x_i(t) \in \mathcal{X}_i := \Delta(\mathcal{A}_i)$ $\mathfrak{p} := \Delta(\mathcal{A}_i)$ # mixing Encounter *mixed payoff vector* $v_i(x(t))$ and get mixed payoff $u_i(x(t)) = \langle v_i(t), x(t) \rangle$ # feedback phase **until** end

Defining elements

- ▸ *Time:* continuous
- ▸ *Players:* finite
- ▸ *Actions:* finite
- ▸ *Mixing:* yes
- ▸ *Feedback:* mixed payoff vectors

Population games Exponential weights and the replicator dynamics Asymptotic analysis and rationality References

Population games Exponential weights and the replicator dynamics **Asymptotic analysis and rationality References**

Asymptotic analysis and rationality References **Asymptotic analysis and rationality References** *Dominated strategies* Suppose $\alpha_i \in \mathcal{A}_i$ is *dominated* by $\beta_i \in \mathcal{A}_i$ ▸ Consistent payoff gap: *v*_{*iα_{<i>i*}}(*x*) ≤ *v*_{*iβ*_{*i*}}(*x*) − *ε* for some *ε* > 0</sub> ▸ Consistent difference in scores: $y_{i\alpha_i}(t) = \int_0^t$ $\int_0^t v_{i\alpha_i}(x) \, ds \leq \int_0^t$ [*viβⁱ* (*x*) [−] *^ε*] *ds* ⁼ *^yiβⁱ* (*t*) − *εt* \blacktriangleright Consistent difference in choice probabilities

$$
\frac{x_{i\alpha_i}(t)}{x_{i\beta_i}(t)} = \frac{\exp(y_{i\alpha_i}(t))}{\exp(y_{i\beta_i}(t))} \le \exp(-\varepsilon t)
$$

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

✒ **Self-check:** extend to *iteratively* dominated strategies

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Population games Exponential weights and the replicator dynamics Asymptotic analysis and rationality References *Stability and equilibrium* **RA** Proposition (Folk) *Suppose that x* ∗ *is Lyapunov stable under* (EW)*/*(RD)*. Then x* ∗ *is a Nash equilibrium.*
Population games **Exponential weights and the replicator dynamics** Asymptotic analysis and rationality References

Asymptotic analysis and rationality References
 Exponential weights and the replicator dynamics COCOOOOO

Stability and equilibrium

Proposition (Folk)

Suppose that x ∗ *is Lyapunov stable under* (EW)*/*(RD)*. Then x* ∗ *is a Nash equilibrium.*

Proof. Argue by contradiction:

▸ Suppose that *x* ∗ is not Nash. Then

 $v_{i\alpha_i^*}(x^*) = u_i(\alpha_i^*; x_{-i}^*) < u_i(\alpha_i; x_{-i}^*) = v_{i\alpha_i}(x^*)$

 $\alpha_i^* \in \text{supp}(x_i^*), \alpha_i \in \mathcal{A}_i, i \in \mathcal{N}$

25/27

Stability and equilibrium

Proposition (Folk)

Suppose that x ∗ *is Lyapunov stable under* (EW)*/*(RD)*. Then x* ∗ *is a Nash equilibrium.*

Proof. Argue by contradiction:

▸ Suppose that *x* ∗ is not Nash. Then

 $v_{i\alpha_i^*}(x^*) = u_i(\alpha_i^*; x_{-i}^*) < u_i(\alpha_i; x_{-i}^*) = v_{i\alpha_i}(x^*)$

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

 $\alpha_i^* \in \text{supp}(x_i^*), \alpha_i \in \mathcal{A}_i, i \in \mathcal{N}$

 $▶$ There exist *ε* > 0 and neighborhood *U* of *x*^{*} such that $v_{i\alpha_i}(x) - v_{i\alpha_i^*}(x) > ε$ for $x ∈ U$

25/27

Stability and equilibrium

Proposition (Folk)

Suppose that x ∗ *is Lyapunov stable under* (EW)*/*(RD)*. Then x* ∗ *is a Nash equilibrium.*

Proof. Argue by contradiction:

▸ Suppose that *x* ∗ is not Nash. Then

$$
v_{i\alpha_i^*}(x^*) = u_i(\alpha_i^*; x_{-i}^*) < u_i(\alpha_i; x_{-i}^*) = v_{i\alpha_i}(x^*)
$$

 $\alpha_i^* \in \text{supp}(x_i^*), \alpha_i \in \mathcal{A}_i, i \in \mathcal{N}$

- $▶$ There exist *ε* > 0 and neighborhood *U* of *x*^{*} such that $v_{i\alpha_i}(x) v_{i\alpha_i^*}(x) > ε$ for $x ∈ U$
- **►** If $x(t)$ is contained in U for all $t \ge 0$ (Lyapunov property), then:

$$
y_{i\alpha_i^*}(t) - y_{i\alpha_i}(t) = c + \int_0^t \big[v_{i\alpha_i^*}(x(s)) - v_{i\alpha_i}(x(s)) \big] ds < c - \varepsilon t
$$

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Stability and equilibrium

Proposition (Folk)

Suppose that x ∗ *is Lyapunov stable under* (EW)*/*(RD)*. Then x* ∗ *is a Nash equilibrium.*

Proof. Argue by contradiction:

▸ Suppose that *x* ∗ is not Nash. Then

$$
v_{i\alpha_i^*}(x^*) = u_i(\alpha_i^*; x_{-i}^*) < u_i(\alpha_i; x_{-i}^*) = v_{i\alpha_i}(x^*)
$$

 $\alpha_i^* \in \text{supp}(x_i^*), \alpha_i \in \mathcal{A}_i, i \in \mathcal{N}$

- $▶$ There exist *ε* > 0 and neighborhood *U* of *x*^{*} such that $v_{i\alpha_i}(x) v_{i\alpha_i^*}(x) > ε$ for $x ∈ U$
- **►** If $x(t)$ is contained in U for all $t \ge 0$ (Lyapunov property), then:

$$
y_{i\alpha_i^*}(t) - y_{i\alpha_i}(t) = c + \int_0^t [v_{i\alpha_i^*}(x(s)) - v_{i\alpha_i}(x(s))] ds < c - \varepsilon t
$$

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

▶ We conclude that $x_{i\alpha_i^*}(t) \to 0$, contradicting the Lyapunov stability of x^* .

25/27

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

The "folk theorem" of evolutionary game theory

Theorem ("folk"; Hofbauer & Sigmund, 2003)

Let Γ *be a finite game. Then, under* (RD)*, we have:*

- 1. *x* ∗ *is a Nash equilibrium* Ô⇒ *x* ∗ *is stationary*
- 2. *x*[∗] is the limit of an interior trajectory $\implies x^*$ is a Nash equilibrium
- 3. x^* is stable $\implies x^*$ is a Nash equilibrium
- 4. *x* ∗ *is asymptotically stable* ⇐⇒ *x* ∗ *is a strict Nash equilibrium*

Notes:

- ▸ Single-population case similar *except* Ô⇒ of (4)
- X Converse to (1) , (2) and (3) does not hold!
- \checkmark Proof of (2) similar to (3) \bullet Do as self-check
- ▶ Proof of " \Longleftarrow " in (4): requires different techniques

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

27/27

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

27/27