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Setting

Sequence of events: Online convex optimization (OCO)

Require: convex action set X' € R convex loss functions £;: X = R, t =1,2,...

repeat
Ateachepocht=1,2,... do
Choose action x; € X # action selection
Encounter loss function ¢;: X — R # Nature plays
Incur cost ¢¢ = €¢(x¢t) #reward phase
Observe loss function ¢; #feedback phase
until end

Defining elements
» Time: discrete
> Players: single
> Actions: continuous

> Losses: exogenous

> Feedback: depends (function-based, gradient-based, loss-based, ...)
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Setting

Sequence of events: Online convex optimization (OCO)

Require: convex action set X' € R convex loss functions £;: X = R, t =1,2,...

repeat
Ateachepocht=1,2,... do
Choose action x; € X # action selection
Encounter loss function ¢;: X — R # Nature plays
Incur cost ¢¢ = €¢(x¢t) #reward phase
Observe cost ¢; = £(x;) #feedback phase
until end

Defining elements
» Time: discrete
> Players: single
> Actions: continuous

> Losses: exogenous

> Feedback: depends (function-based, gradient-based, loss-based, ...)
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Convex analysis cheatsheet

If £ is convex:

1. Local minima = global minima = stationary points # stationarity = optimality

2. Graph above tangent: # consistent linear estimates

fG) 2 f(x) +(VSf(x), &' - x)

#subgradient: f(x") > f(x) + (g, x" — x)

3. First-order stationarity:

x" isa minimizer of f <= (Vf(x"),x-x")>0 forallxeX
— (Vf(x),x—x")>0 forallxeX

4. Jensen's inequality: # mean value exceeds value of the mean

f(Z)le,) Z)Lf(x,) forallx;eX,MZO,ZA,'=1.
i izl izl
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Feedback

Types of feedback

From best to worst (more to less info):

> Full information: observe entire loss function €;: X — R # deterministic function feedback
> First-order info, exact: observe (sub)gradient g, € 9€;(x;) # deterministic vector feedback
> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback

> Zeroth-order info (bandit): observe only incurred cost ¢; = €;(x;) # deterministic scalar feedback
V.
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Feedback

Types of feedback

From best to worst (more to less info):

> First-order info, exact: observe (sub)gradient g, € 9€;(x;) # deterministic vector feedback

> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback

The oracle model

A stochastic first-order oracle (SFO) for g; € 0¢:(x:) is a random vector of the form
‘ét =g:+ Ut + bt (SFO)

where U, is zero-mean and b, = E[§; | 7] — g: is the bias of g;

QBNHATIKWY.
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Regret

Performance measured by the agent’s regret (loss formulation):

[£:(xe) — &:(p)]
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Regret

Performance measured by the agent’s regret (loss formulation):

S [e(x0)  €(p)]

t=
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Regret

Performance measured by the agent’s regret (loss formulation):

r;lgg( ; [er(xt) - et(P)]
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Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = max Y [6(x) - Ep)] = Yo x) - mip Y 4(p)
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Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = max ; [6:(xe) = &:(p)] = ;Et(x,) - lg;i;g;&(p)

> No regret: Reg(T) = o(T)

» Adversarial framework: minimize regret against any given sequence ¢;
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Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = max 3" [&:(x:) - £:(p)] = 3" :(x.) - min 3" €:(p)
peX 43 t=1 peX 14

> No regret: Reg(T) = o(T)
» Adversarial framework: minimize regret against any given sequence ¢;

> Expected regret:

~

BlRee(1)) - B[ ma e ) - )|
> Pseudo-regret:

Reg(1) - magE| Slexx) - )]

EKMNA,
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Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = max 3" [&:(x:) - £:(p)] = 3" :(x.) - min 3" €:(p)
peX 43 t=1 peX 14

> No regret: Reg(T) = o(T)
» Adversarial framework: minimize regret against any given sequence ¢;

> Expected regret:

~

BlRee(1)) - B[ ma e ) - )|
> Pseudo-regret:

Reg(1) - magE| Slexx) - )]

» Reg(T) < E[Reg(T)]: bounds do not translate “as is” but “almost”
g g

*¢ Cesa-Bianchi & Lugosi, 2006, Bubeck & Cesa-Bianchi, 2012, Lattimore & Szepesvari, 2020
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Be the leader

> Suppose ¢; is observed before playing x;
> Then the agent can try to be the leader (BTL)

t
X € argmin Z £(x) (BTL)

xeX s=1
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Be the leader

> Suppose ¢; is observed before playing x;
> Then the agent can try to be the leader (BTL)

t
X € argmin Z £(x) (BTL)

xeX =1

Regret of BTL

1= Under (BTL), the learner incurs Reg(T) = 0.

1BNHATKY
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Be the leader

> Suppose ¢; is observed before playing x;
> Then the agent can try to be the leader (BTL)

t
X € argmin Z £(x) (BTL)

xeX =1

Regret of BTL

1= Under (BTL), the learner incurs Reg(T) = 0.

...unrealistic

1BNHATKY
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Follow the leader

> Suppose ¢; is observed after playing x;
> Then the agent can try to follow the leader (FTL)

t
Xt4+1 € argmin Z 2:(x) (FTL)

xeX s=1
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Follow the leader

> Suppose ¢; is observed after playing x;
> Then the agent can try to follow the leader (FTL)

t
Xt4+1 € argmin Z 2:(x) (FTL)

xeX s=1

Does (FTL) lead to no regret?
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Template bound for FTL

FTL regret bound

For all p € X, the regret of (FTL) can be bounded as

T

Reg (T) = é[@,(xt) = e(p)] < Y[e(xe) — e (xea1)]

t=1

BNHaTIKGY
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Template bound for FTL

FTL regret bound
For all p € X, the regret of (FTL) can be bounded as

Reg (T) = i[et(xt) -t(p)] < i[et(xt) = & (xt11)]

t=1

O

EKMA, Thiipa MaBnuatuby
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FTL against quadratic losses

Test (FTL) in an online quadratic optimization (OQO) problem:

i(x)=1]x- pi|* for some sequence of center points p;, t = 1,2, ... (0QO)
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FTL against quadratic losses

Test (FTL) in an online quadratic optimization (OQO) problem:

i(x)=1]x- pi|* for some sequence of center points p;, t = 1,2, ... (0QO)

Regret of FTL in quadratic problems

v Assume: (FTL)is run against (OQO) with sup, | p:| < R
v/ Then: Reg(T) < 4R*(1+ log T)

1BNHATKY
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FTL against quadratic losses

Test (FTL) in an online quadratic optimization (OQO) problem:

i(x)=1]x- pi|* for some sequence of center points p;, t = 1,2, ... (0QO)

Regret of FTL in quadratic problems

v Assume: (FTL)is run against (OQO) with sup, | p:| < R
v/ Then: Reg(T) < 4R*(1+ log T)

1 MaBnuatikiv
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FTL against linear losses

Test (FTL) in an online linear optimization (OLO) problem:

£:(x) = (w,x) for some sequence of loss vectors w; € R t=1,2,... (OLO)
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FTL against linear losses

Test (FTL) in an online linear optimization (OLO) problem:

£:(x) = (w,x) for some sequence of loss vectors w; € R t=1,2,... (OLO)

Chasing the leader

v Assume: X = [-1,1] and (FTL) is run against (OLO) with w; = —1/2 and w; = (-1)" otherwise
/2 What is the incurred regret?
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Follow the regularized leader

Add a fictitious “day zero loss” == follow the regularized leader (FTRL)

t
Xt+1 = argmin{z O (x) + )Lh(x)} (FTRL)
xeX s=1 ——
“o(x)"
where
*> The regularization function h: X — R is strongly convex #h(x) - (K/2)|x|? convex for some K > 0

*> The regularization weight A > 0 can be tuned by the optimizer

Main idea: Regularization = Stability = Less regret

=& Algorithm due to Shalev-Shwartz & Singer, 2006, Shalev-Shwartz, 2011
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Example 1: Euclidean regularization

» Setup: X = R linear losses £;(x) = (w:, x)

> Regularizer:

h(x) = 3]«

> Algorithm:

t
Xig1 = argmin{z we, X) + 7Hx|| }

xeX s=1
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Example 1: Euclidean regularization

» Setup: X = R linear losses £;(x) = (w:, x)

> Regularizer:

h(x) = 3]«

> Algorithm:

t 1 t
Xyl = argmin{z we, X) + 7Hx|| } -1 ZWS =x¢ — (1/A)w;
s=1

xeX s=1
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Example 1: Euclidean regularization

» Setup: X = R linear losses £;(x) = (w:, x)

> Regularizer:

h(x) = 3]«

> Algorithm:

t 1 t
Xyl = argmin{z we, X) + 7Hx|| } -1 ZWS =x¢ — (1/A)w;
s=1

xeX s=1

» Euclidean regularization + linear losses (w; = V&€, (x;)) == gradient descent:

Xte1 =Xt — 1] vet(xt) (GD)

1/
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Example 2: Entropic regularization

> Setup: X = A(A), linear payoffs u;(x) = (v, x) s payoffs instead of costs

> Regularizer:

h(x) = ). xalogxa
acA

> Algorithm:

t
Xer1 = argmaX{Z(vs,x> -1 Xa logxa}

xeX s=1 acA
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Example 2: Entropic regularization

> Setup: X = A(A), linear payoffs u;(x) = (v, x) s payoffs instead of costs

> Regularizer:

h(x) = ). xalogxa
acA

> Algorithm:

t t
Xip1 = argmax{Z(vs,x) -1 Z Xa logxa} = exXP(Lozt Vs/A)

xeX s=1 acA

 Tpeaexp(Xivpe/A)
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Example 2: Entropic regularization

> Setup: X = A(A), linear payoffs u;(x) = (v, x) s payoffs instead of costs

> Regularizer:

h(x) = ). xalogxa
acA

> Algorithm:

Z(vs,x) -1 Z X logxa p =

Xt41 = argmax =
s=1 acA Y pen exp(Ti vg,s/A)

xeX

{ : } exp(Xf vas/A)

» Entropic regularization + linear payoffs == exponential weights:

/)
Yer1 =Y+ H Ve EW
Xt+1 = A(}/t+1) ( )
—

logit map
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Template bound for FTRL

FTRL regret bound

For all p € X, the regret of (FTRL) can be bounded as

Reg, (T) < A[h(p) - h(x)] + Y[6:(x) - &)

t=1

EKMA, Thiipa MaBnuatuby
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Template bound for FTRL

FTRL regret bound
For all p € X, the regret of (FTRL) can be bounded as

Reg, (T) < A[H(p) — h()] + D[6(x) - Eu(xren)]

t=1

O

EKMA, Thiipa MaBnuatuby
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Variability bound for FTRL

Variability of FTRL

15 Assume: h is K-strongly convex; each ¢, is G;-Lipschitz continuous
v Then:

Ce(xt) — e (xe41) < GtHle — x| € G?/(AK)
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Variability bound for FTRL

Variability of FTRL
15 Assume: h is K-strongly convex; each ¢; is G;-Lipschitz continuous

v Then:
et(xt) - et(xtJrl) < Gtth+1 _xt” < G?/(AK)

Bnuatikoy
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Regret of FTRL

Theorem (Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2011)

15 Assume: h is K-strongly convex; each €, is G-Lipschitz continuous
v/ Then: (FTRL) enjoys the regret bound

2

. G
Reg,(T) < A[h(p) —minh] + )L?T

EKMA, Thiipa MaBnuatuby
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Regret of FTRL

Theorem (Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2011)

15 Assume: h is K-strongly convex; each €, is G-Lipschitz continuous
v/ Then: (FTRL) enjoys the regret bound

2

. G
Reg,(T) < A[h(p) —minh] + RT

With assumptions as above, H = max h — min h and A = G\/T/(2KH), (FTRL) enjoys the bound

Reg(T) < G\/(2H/K) T = O(V/T)

EKMA, Thiipa MaBnuatuby
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Regret of FTRL

Theorem (Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2011)

15 Assume: h is K-strongly convex; each €, is G-Lipschitz continuous
v/ Then: (FTRL) enjoys the regret bound

2

. G
Reg,(T) < A[h(p) —minh] + RT

With assumptions as above, H = max h — min h and A = G\/T/(2KH), (FTRL) enjoys the bound

Reg(T) < G\/(2H/K) T = O(V/T)

Remarks:
> The bound is tightin T = Abernethy etal, 2008

> Requires full information and tuning in terms of T # can relax

EKMA, Thiipa MaBnuatuby
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Feedback

Types of feedback

From best to worst (more to less info):

> First-order info, exact: observe (sub)gradient g, € 9€;(x;) # deterministic vector feedback

> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback
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Feedback

Types of feedback

From best to worst (more to less info):

> First-order info, exact: observe (sub)gradient g, € 9€;(x;) # deterministic vector feedback

> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback

The oracle model

A stochastic first-order oracle (SFO) for g; € 0¢:(x:) is a random vector of the form
‘ét =g:+ Ut + bt (SFO)

where Uy is zero-mean and b, = E[g; | F:] — v(x:) is the bias of g;

ONHATIKWY.



Learning with gradient feedback

[o]e] Je]ele]ele]

Follow the linearized leader

Can we relax the full information requirement of FTRL?

> Replace ¢, with first-order surrogate

ét(x)zft(x[)+(gt,xfxt) gr € 08 (x1)

> Pluginto (FTRL)

t

t
Xt+1 = argmin Zes(x) +ih(x) =argmin{qz Gs> X — X +h(x)}
s=1

xeX s=1 xeX
1/n
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Follow the linearized leader

Can we relax the full information requirement of FTRL?

> Replace ¢, with first-order surrogate

ét(x)zft(x[)+(gt,xfxt) gr € 08 (x1)

> Pluginto (FTRL)

t t
Xt41 = argmin Zes(x) + A h(x) =argmin{qz gs» X — Xg +h(x)}
— -

xeX s=1 n xeX s=1
> Follow the linearized leader (FTLL)
t
Xt41 = argmin{q > (gsrx) + h(x)} (FTLL)
xeX s=1

EKMNA,
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Dual averaging

Dual averaging (DA) formulation of FTLL > Nesterov, 2009; Xiao, 2010

Y1 = Yt — NGt

DA
Xt+1 = Q()/Hl) O~

where Q(y) = argmax__,.{{y,x) — h(x)} is the mirror map associated to h

X cR?
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Dual averaging

Dual averaging (DA) formulation of FTLL > Nesterov, 2009; Xiao, 2010

Y1 = Yt — NGt

DA
Xt+1 = Q()/Hl) O~

where Q(y) = argmax__,.{{y,x) — h(x)} is the mirror map associated to h
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Dual averaging

Dual averaging (DA) formulation of FTLL > Nesterov, 2009; Xiao, 2010

Y1 = Yt — NGt

DA
Xt+1 = Q()/Hl) O~

where Q(y) = argmax__,.{{y,x) — h(x)} is the mirror map associated to h
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Dual averaging (DA) formulation of FTLL

¢ Nesterov, 2009; Xiao, 2010
YVtv1 = Yt — NGt (DA)
Xt+1 = Q()/Hl)
where Q(y) = argmax__,.{{y,x) — h(x)} is the mirror map associated to h
y2
}’I/r\
A /S
Yy % \
'y \
\ \
\ \
\ \
\
1
1
1
I
i
I
X1 \f

X2
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Dual averaging

Dual averaging (DA) formulation of FTLL

YVtv1 = Yt — NGt
Xt+1 = Q()/Hl)

where Q(y) = argmax__,.{{y,x) — h(x)} is the mirror map associated to h

\
\
|
1
[
1
1
1

X1 \f

2
N

¢ Nesterov, 2009; Xiao, 2010

(DA)
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Dual averaging

Dual averaging (DA) formulation of FTLL > Nesterov, 2009; Xiao, 2010

Y1 = Yt — NGt

DA
Xt+1 = Q()/Hl) O~

where Q(y) = argmax__,.{{y,x) — h(x)} is the mirror map associated to h

\

1
\
1
1
I
U

Y

.

=
RS SR EE
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Example: online gradient descent

Special case when h(x) = (1/2)]x||5 ~ online gradient descent (OGD) # lazy version
yer=y—nge X =I(yen) (OGD)
X1
e
V2
X

Figure: Schematics of (OGD)
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Example: online gradient descent

Special case when h(x) = (1/2)]x||5 ~ online gradient descent (OGD) # lazy version

Ve = Y — NGt e = H(pes1) (OGD)

Figure: Schematics of (OGD)
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Example: online gradient descent

Special case when h(x) = (1/2)]x||5 ~ online gradient descent (OGD) # lazy version

Ve = Y — NGt e = H(pes1) (OGD)

Figure: Schematics of (OGD)
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Example: online gradient descent

Special case when h(x) = (1/2)]x||5 ~ online gradient descent (OGD) # lazy version

Ve = Y — NGt e = H(pes1) (OGD)

Figure: Schematics of (OGD)
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Online mirror descent (deep dive)

> Gradient signals enter (DA) unweighted / unadjusted # post-adaptation

> Variable weights ~ “lazy”, primal-dual variant of online mirror descent

Yee1 =Yt t Vltét
(OMDy,y)
Xt+1 = Q(}’t+1) lazy
> Primal-primal (“eager”) variant of (OMDy,)
Xt+1 = Px, (11:g¢) (OMD)
with the Bregman proximal mapping P defined as

Py(w) = argmin{({w,x - x") + D(x",x)}
x'eX

where D(x',x) = h(x") = h(x) = (Vh(x"), x — x") is the Bregman divergence of 1
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[o]e]e]e]e] Jele]

Online mirror descent (deep dive)

> Gradient signals enter (DA) unweighted / unadjusted # post-adaptation
> Variable weights ~ “lazy”, primal-dual variant of online mirror descent
Vel = Y+ i gt
(OMDzzy)
Xt+1 = Q(}’t+1) id

> Primal-primal (“eager”) variant of (OMDy,)
Xt+1 = Px, (11:g¢) (OMD)

with the Bregman proximal mapping P defined as

Py(w) = argmin{({w,x - x") + D(x",x)}
x'eX

where D(x',x) = h(x") = h(x) = (Vh(x"), x — x") is the Bregman divergence of 1

Proposition
The iterates of (OMDy.) and (OMD) coincide whenever dom oh = ri X
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Regret under dual averaging

> Gradient trick: # linear model

Ci(x) —€(p) < (g xi—p) forallpeX
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Regret under dual averaging

> Gradient trick: # linear model

Ci(x) —€(p) < (g xi—p) forallpeX

»> Energy function: A take for granted

Fi=h(p)+h"(y)) = (y- p)
where h* (y) = maxyex {(y,x) — h(x)} is the potential of Q ~ Vh* = Q

EKMA, Thiu
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Regret under dual averaging

> Gradient trick: # linear model

Ci(x) —€(p) < (g xi—p) forallpeX

»> Energy function: A take for granted

Fi=h(p)+h"(y)) = (y- p)
where h* (y) = maxyex {(y,x) — h(x)} is the potential of Q ~ Vh* = Q

> Template inequality: A take for granted

2
Frn < Fe=n{gnxe - p) + 2|’

EKMA, Thiu
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Regret under dual averaging

> Gradient trick: # linear model

Ci(x) —€(p) < (g xi—p) forallpeX

»> Energy function: A take for granted

=h(p) + 1" (y:) = (ys, p)
where h* (y) = maxyex {(y,x) — h(x)} is the potential of Q ~ Vh* = Q

> Template inequality: A take for granted
2
Frn < Fe=n{gnxe - p) + 2|’

*> Rearrange & telescope: # build the regret

Reg(T) < 7+ —ZG,Z

EKMNA,
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Regret under dual averaging, cont'd

> Take n =+/2KH/ ¥\, G? A Why?
T
Reg(T) <\/(2H/K) )" _ G?
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Regret under dual averaging, cont'd

> Take 1 = \/ZKH/ZIT:1 G? A Why?
T
Reg(T) <\/(2H/K) )" _ G?

Theorem (Shalev-Shwartz, 2011)

v Assume: h is K-strongly convex; each &; is G-Lipschitz continuous; H = max h — min hand = G™'\/2KH|T
v Then: (DA) / (FTLL) enjoys the regret bound

Reg,(T) < G\/(2H/K)T

EKMA, Thiipa MaBnuatuby
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Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of g; is a random vector g; of the form

ét =g+ U + b: (SFO)

where Uy is zero-mean and b; = E[g: | F¢] — v(x:) is the bias of g;
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Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of g; is a random vector g; of the form

ét =g+ U + b, (SFO)

where Uy is zero-mean and b; = E[g: | F¢] — v(x:) is the bias of g;

> Bias: [b¢] oo < Bs

> Variance: E[|U:||% | F¢] < of
o | Fi]l < M}

» Second moment: K[| g

110 MAaBNUaTIKGY
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[e] e]e]le]e]e)

Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of g; is a random vector g; of the form
gAt =gt + Ut + bt (SFO)

where Uy is zero-mean and b, = E[g; | F¢] — v(x:) is the bias of g;

Algorithm Stochastic gradient descent (SGD) # OGD with stochastic feedback

Require: convex action set X’ ¢ R4; convex loss functions X >R t=12,...
Initialize: y; € RA
forallt=1,2,... do

play x; < H(yt) #action selection
incur ¢y = ft(xt) #incur cost
observe estimate g; of g € 0€:(x;) #SFO feedback
set yri1 < Yt — i’][g[ # update state

end for
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[e]e] Jele]e]e)

Regret under OGD
» Gradient trick: #linear model
Ci(x) = €(p) <(gxi—p) forallpeX
> Energy function: # as before
Fo=5lye=pl* = Slye— x|
> Energy inequality: # g instead of g,
B < Bl p) +
> Expand and rearrange:
(v p =00 < T (U p) = (b= p) + Tl

> How to proceed?
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[e]e]e] le]ele)

Regret analysis, cont'd

Bound each term separately:
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[e]e]e]e] Jele)

Regret of SGD

5 Assume:
> feedback of the form (SFO)

> ;1=diam(z'\f')/\/fM¢2

v Then: forall p € X, the SGD algorithm enjoys the bound

T T
E[Reg,(T)] <2 B: +diam(X)4 | > M7
t=1 t=1

1 MaBnuatikiv
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[e]e]e]e] Jele)

Regret of SGD

5 Assume:
> feedback of the form (SFO)

> ;1=diam(z'\f')/\/fM¢2

v Then: forall p € X, the SGD algorithm enjoys the bound

T T
E[Reg,(T)] <2 B: +diam(X)4 | > M7
t=1 t=1

Remarks:
> O(ﬁ) regret if feedback is unbiased (b; = 0) and has finite variance (M; < M)

> This bound is tight in T o Abernethy etal., 2008

1 MaBnuatikiv
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Stochastic convex optimization

Stochastic convex optimization

minimize  f(x) = Eu-p[F(x; )]

Opt-S
subjectto x e X (OptS)
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[e]e]e]e]e] lo)

Stochastic convex optimization

Stochastic convex optimization

minimize  f(x) = Eu-p[F(x; )]

Opt-S
subjectto x e X (OptS)

> Important for data science ~ finite-sum objectives:

1 N
f) = 5 LI

»> Special case of OCO:
e« f forallt=1,2,...

> Access to stochastic gradients

gt < VF(x3w¢) with w; drawn i.i.d. from P
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[e]e]e]e]le]e] )

Convergence rate of SGD

wr Assume: E[|:|*] < M* and SGD is run for T iterations with 1 = diam(X') /(MV/T)

/ Then: the ergodic average %1 = (1/T) £, x; of SGD enjoys the rate
M diam(X)

L/ (5r) - min f] s =0

EKMA, Thiipa MaBnuatuby



Preliminari Learning with f ) eal h gradient feedback Learning with stochastic gradients

[e]e]e]e]le]e] )

Convergence rate of SGD

wr Assume: E[|:|*] < M* and SGD is run for T iterations with 1 = diam(X') /(MV/T)

/ Then: the ergodic average %1 = (1/T) £, x; of SGD enjoys the rate
M diam(X)

VT

O
v

E[f()_CT) = minf] <

EKMA, Thiipa MaBnuatuby
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