

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ ΚΑΙ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΕΠΑΝΑΛΑΜΒΑΝΟΜΕΝΗ ΚΥΡΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Παναγιώτης Μερτικόπουλος

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών

Χειμερινό Εξάμηνο, 2023-2024

Outline

- Preliminaries
- Learning with full information
- 3 Learning with gradient feedback
- 4 Learning with stochastic gradients

1/29

ι. Μερτικόπουλος

Sequence of events: Online convex optimization (OCO)

Require: convex action set $\mathcal{X} \subseteq \mathbb{R}^d$; convex loss functions $\ell_t : \mathcal{X} \to \mathbb{R}$, t = 1, 2, ...

repeat

At each epoch $t = 1, 2, \dots$ **do**

Choose *action* $x_t \in \mathcal{X}$

Encounter loss function $\ell_t : \mathcal{X} \to \mathbb{R}$

Incur **cost** $c_t = \ell_t(x_t)$

Observe loss function ℓ_t

until end

action selection # Nature plays

#reward phase

feedback phase

Defining elements

- Time: discrete
- **Players:** single
- **Actions:** continuous
- Losses: exogenous
- Feedback: depends (function-based, gradient-based, loss-based, ...)

Sequence of events: Online convex optimization (OCO)

Require: convex action set $\mathcal{X} \subseteq \mathbb{R}^d$; convex loss functions $\ell_t : \mathcal{X} \to \mathbb{R}$, t = 1, 2, ...

repeat

At each epoch $t = 1, 2, \dots$ **do**

Choose *action* $x_t \in \mathcal{X}$

Encounter loss function $\ell_t : \mathcal{X} \to \mathbb{R}$

Incur **cost** $c_t = \ell_t(x_t)$

Observe *gradient* $g_t = \nabla \ell_t(x_t)$

until end

action selection # Nature plays

#reward phase # feedback phase

Defining elements

- Time: discrete
- **Players:** single
- **Actions:** continuous
- Losses: exogenous
- Feedback: depends (function-based, gradient-based, loss-based, ...)

ΕΚΠΑ, Τμήμα Μαθηματικών

Setting

Sequence of events: Online convex optimization (OCO)

Require: convex action set $\mathcal{X} \subseteq \mathbb{R}^d$; convex loss functions $\ell_t : \mathcal{X} \to \mathbb{R}$, t = 1, 2, ...

repeat

At each epoch $t = 1, 2, \dots$ **do**

Choose *action* $x_t \in \mathcal{X}$

Encounter loss function $\ell_t : \mathcal{X} \to \mathbb{R}$

Incur **cost** $c_t = \ell_t(x_t)$

Observe cost $c_t = \ell_t(x_t)$

until end

action selection # Nature plays #reward phase

feedback phase

Defining elements

- Time: discrete
- **Players:** single
- **Actions:** continuous
- Losses: exogenous
- Feedback: depends (function-based, gradient-based, loss-based, ...)

ΕΚΠΑ, Τμήμα Μαθηματικών

Convex analysis cheatsheet

If ℓ is convex:

1. Local minima = global minima = stationary points

stationarity = optimality

2. **Graph above tangent:**

$$f(x') \ge f(x) + \langle \nabla f(x), x' - x \rangle$$

subgradient:
$$f(x') \ge f(x) + \langle g, x' - x \rangle$$

3. First-order stationarity:

$$x^*$$
 is a minimizer of $f \iff \langle \nabla f(x^*), x - x^* \rangle \ge 0$ for all $x \in \mathcal{X}$
 $\iff \langle \nabla f(x), x - x^* \rangle \ge 0$ for all $x \in \mathcal{X}$

4. Jensen's inequality:

mean value exceeds value of the mean

$$f\left(\sum_{i=1}^{m} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{m} \lambda_{i} f\left(x_{i}\right) \qquad \text{for all } x_{i} \in \mathcal{X}, \lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i} = 1.$$

1. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Feedback

Types of feedback

From best to worst (more to less info):

- ▶ **Full information:** observe entire loss function ℓ_t : $\mathcal{X} \to \mathbb{R}$
- ▶ **First-order info, exact:** observe (sub)gradient $g_t \in \partial \ell_t(x_t)$
- **First-order info, inexact**: observe noisy estimate of g_t
- **Zeroth-order info (bandit):** observe only incurred cost $c_t = \ell_t(x_t)$

deterministic function feedback

deterministic vector feedback

stochastic vector feedback

deterministic scalar feedback

Preliminaries

Feedback

Types of feedback

From best to worst (more to less info):

- ▶ Full information: observe entire loss function ℓ_t : $\mathcal{X} \to \mathbb{I}$
- ► First-order info, exact: observe (sub)gradient $g_t \in \partial \ell_t(x_t)$
- **First-order info, inexact:** observe noisy estimate of g_t
- **Zeroth-order info (bandit):** observe only incurred cost $c_t = \ell_t(x_t)$

deterministic function feedback

deterministic vector feedback

stochastic vector feedback

deterministic scalar feedbacl

The oracle model

A **stochastic first-order oracle** (SFO) for $g_t \in \partial \ell_t(x_t)$ is a random vector of the form

$$\hat{g}_t = g_t + U_t + b_t \tag{SFO}$$

where U_t is **zero-mean** and $b_t = \mathbb{E}[\hat{g}_t | \mathcal{F}_t] - g_t$ is the **bias** of \hat{g}_t

4/29

Preliminaries

Regret

Performance measured by the agent's *regret* (loss formulation):

$$[\ell_t(x_t) - \ell_t(p)]$$

Performance measured by the agent's *regret* (loss formulation):

$$\sum_{t=1}^{T} \left[\ell_t(x_t) - \ell_t(p) \right]$$

Performance measured by the agent's *regret* (loss formulation):

$$\max_{p \in \mathcal{X}} \sum_{t=1}^{T} \left[\ell_t(x_t) - \ell_t(p) \right]$$

Performance measured by the agent's *regret* (loss formulation):

$$\operatorname{Reg}(T) = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} \left[\ell_t(x_t) - \ell_t(p) \right] = \sum_{t=1}^{T} \ell_t(x_t) - \min_{p \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(p)$$

ΕΚΠΑ, Τμήμα Μαθηματικών

Performance measured by the agent's **regret** (loss formulation):

$$Reg(T) = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} [\ell_t(x_t) - \ell_t(p)] = \sum_{t=1}^{T} \ell_t(x_t) - \min_{p \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(p)$$

- ▶ **No regret:** Reg(T) = o(T)
- Adversarial framework: minimize regret against any given sequence ℓ_t

Π. Μερτικόπουλος

Performance measured by the agent's regret (loss formulation):

$$Reg(T) = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} [\ell_t(x_t) - \ell_t(p)] = \sum_{t=1}^{T} \ell_t(x_t) - \min_{p \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(p)$$

- No regret: Reg(T) = o(T)
- Adversarial framework: minimize regret against any given sequence ℓ_t
- Expected regret:

$$\mathbb{E}[\operatorname{Reg}(T)] = \mathbb{E}\left[\max_{p \in \mathcal{X}} \sum_{t=1}^{T} [\ell_t(x_t) - \ell_t(p)]\right]$$

Pseudo-regret:

$$\overline{\text{Reg}}(T) = \max_{p \in \mathcal{X}} \mathbb{E} \left[\sum_{t=1}^{T} [\ell_t(x_t) - \ell_t(p)] \right]$$

ΕΚΠΑ, Τμήμα Μαθηματικών

Performance measured by the agent's regret (loss formulation):

$$\operatorname{Reg}(T) = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} \left[\ell_t(x_t) - \ell_t(p) \right] = \sum_{t=1}^{T} \ell_t(x_t) - \min_{p \in \mathcal{X}} \sum_{t=1}^{T} \ell_t(p)$$

- ▶ **No regret:** Reg(T) = o(T)
- Adversarial framework: minimize regret against any given sequence ℓ_t
- Expected regret:

$$\mathbb{E}[\operatorname{Reg}(T)] = \mathbb{E}\left[\max_{p \in \mathcal{X}} \sum_{t=1}^{T} [\ell_t(x_t) - \ell_t(p)]\right]$$

Pseudo-regret:

$$\overline{\text{Reg}}(T) = \max_{p \in \mathcal{X}} \mathbb{E} \left[\sum_{t=1}^{T} [\ell_t(x_t) - \ell_t(p)] \right]$$

▶ $\overline{\text{Reg}}(T) \leq \mathbb{E}[\text{Reg}(T)]$: bounds do not translate "as is" but "almost"

Cesa-Bianchi & Lugosi, 2006, Bubeck & Cesa-Bianchi, 2012, Lattimore & Szepesvári, 2020

Π. Μερτικόπουλος

Outline

- Preliminaries
- 2 Learning with full information
- 3 Learning with gradient feedback
- 4 Learning with stochastic gradients

5/29

Be the leader

- Suppose ℓ_t is observed **before** playing x_t
- ► Then the agent can try to be the leader (BTL)

$$x_t \in \underset{x \in \mathcal{X}}{\arg\min} \sum_{s=1}^t \ell_s(x)$$
 (BTL)

μήμα Μαθηματικών

Be the leader

- Suppose ℓ_t is observed **before** playing x_t
- ► Then the agent can try to be the leader (BTL)

$$x_t \in \underset{x \in \mathcal{X}}{\arg\min} \sum_{s=1}^t \ell_s(x)$$
 (BTL)

Regret of BTL

Under (BTL), the learner incurs Reg(T) = 0.

ΕΚΠΑ, Τμήμα Μαθηματικών

Be the leader

- ▶ Suppose ℓ_t is observed **before** playing x_t
- ► Then the agent can try to be the leader (BTL)

$$x_t \in \underset{x \in \mathcal{X}}{\arg\min} \sum_{s=1}^t \ell_s(x)$$
 (BTL)

Regret of BTL

Under (BTL), the learner incurs Reg(T) = 0.

...unrealistic

Follow the leader

- Suppose ℓ_t is observed **after** playing x_t
- ► Then the agent can try to *follow the leader (FTL)*

$$x_{t+1} \in \underset{x \in \mathcal{X}}{\arg\min} \sum_{s=1}^{t} \ell_s(x)$$
 (FTL)

(FTL)

Follow the leader

- Suppose ℓ_t is observed **after** playing x_t
- ► Then the agent can try to **follow the leader (FTL)**

$$x_{t+1} \in \operatorname*{arg\,min}_{x \in \mathcal{X}} \sum_{s=1}^{t} \ell_s(x)$$

Does (FTL) lead to no regret?

Template bound for FTL

FTL regret bound

For all $p \in \mathcal{X}$, the regret of (FTL) can be bounded as

00000000000

$$\operatorname{Reg}_{p}(T) = \sum_{t=1}^{T} [\ell_{t}(x_{t}) - \ell_{t}(p)] \leq \sum_{t=1}^{T} [\ell_{t}(x_{t}) - \ell_{t}(x_{t+1})]$$

Template bound for FTL

FTL regret bound

For all $p \in \mathcal{X}$, the regret of (FTL) can be bounded as

$$\operatorname{Reg}_{p}(T) = \sum_{t=1}^{T} [\ell_{t}(x_{t}) - \ell_{t}(p)] \leq \sum_{t=1}^{T} [\ell_{t}(x_{t}) - \ell_{t}(x_{t+1})]$$

Proof.

8/29

Ι. Μερτικόπουλος

FTL against quadratic losses

Test (FTL) in an online quadratic optimization (OQO) problem:

Learning with full information 00000000000

$$\ell_t(x) = \frac{1}{2} ||x - p_t||^2$$
 for some sequence of center points $p_t, t = 1, 2, \dots$ (OQO)

FTL against quadratic losses

Test (FTL) in an online quadratic optimization (OQO) problem:

$$\ell_t(x) = \frac{1}{2} ||x - p_t||^2$$
 for some sequence of center points $p_t, t = 1, 2, ...$ (OQO)

Regret of FTL in quadratic problems

Assume: (FTL) is run against (OQO) with $\sup_t ||p_t|| \le R$

✓ Then: $\operatorname{Reg}(T) \leq 4R^2(1 + \log T)$

ΕΚΠΑ, Τμήμα Μαθηματικών

FTL against quadratic losses

Test (FTL) in an online quadratic optimization (OQO) problem:

$$\ell_t(x) = \frac{1}{2} ||x - p_t||^2$$
 for some sequence of center points $p_t, t = 1, 2, \dots$ (OQO)

Regret of FTL in quadratic problems

Assume: (FTL) is run against (OQO) with $\sup_{t} ||p_{t}|| \le R$

✓ Then: $Reg(T) \le 4R^2(1 + \log T)$

Proof.

FTL against linear losses

Test (FTL) in an online linear optimization (OLO) problem:

$$\ell_t(x) = \langle w_t, x \rangle$$
 for some sequence of loss vectors $w_t \in \mathbb{R}^d$, $t = 1, 2, ...$ (OLO)

FTL against linear losses

Test (FTL) in an online linear optimization (OLO) problem:

00000000000

$$\ell_t(x) = \langle w_t, x \rangle$$
 for some sequence of loss vectors $w_t \in \mathbb{R}^d$, $t = 1, 2, ...$ (OLO)

Chasing the leader

Assume: $\mathcal{X} = [-1, 1]$ and (FTL) is run against (OLO) with $w_1 = -1/2$ and $w_t = (-1)^t$ otherwise

△ What is the incurred regret?

Follow the regularized leader

Add a fictitious "day zero loss" \implies follow the regularized leader (FTRL)

$$x_{t+1} = \underset{x \in \mathcal{X}}{\arg \min} \left\{ \sum_{s=1}^{t} \ell_s(x) + \underbrace{\lambda h(x)}_{\text{``}\ell_0(x)\text{''}} \right\}$$
 (FTRL)

where

▶ The *regularization function h*: $\mathcal{X} \to \mathbb{R}$ is strongly convex

- $#h(x) (K/2)||x||^2$ convex for some K > 0
- ▶ The **regularization weight** $\lambda > 0$ can be tuned by the optimizer

Main idea: Regularization ⇒ Stability ⇒ Less regret

Algorithm due to Shalev-Shwartz & Singer, 2006, Shalev-Shwartz, 2011

ΕΚΠΑ, Τμήμα Μαθηματικών

Example 1: Euclidean regularization

- ▶ Setup: $\mathcal{X} = \mathbb{R}^d$, linear losses $\ell_t(x) = \langle w_t, x \rangle$
- ► Regularizer:

$$h(x) = \frac{1}{2} \|x\|^2$$

► Algorithm:

$$x_{t+1} = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \left\{ \sum_{s=1}^{t} \langle w_s, x \rangle + \frac{\lambda}{2} \|x\|^2 \right\}$$

Example 1: Euclidean regularization

- ▶ Setup: $\mathcal{X} = \mathbb{R}^d$, linear losses $\ell_t(x) = \langle w_t, x \rangle$
- ► Regularizer:

$$h(x) = \frac{1}{2} \|x\|^2$$

► Algorithm:

$$x_{t+1} = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \left\{ \sum_{s=1}^{t} \langle w_s, x \rangle + \frac{\lambda}{2} \|x\|^2 \right\} = -\frac{1}{\lambda} \sum_{s=1}^{t} w_s = x_t - (1/\lambda) w_t$$

Example 1: Euclidean regularization

- ▶ Setup: $\mathcal{X} = \mathbb{R}^d$, linear losses $\ell_t(x) = \langle w_t, x \rangle$
- ► Regularizer:

$$h(x) = \frac{1}{2} \|x\|^2$$

▶ Algorithm:

$$x_{t+1} = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \left\{ \sum_{s=1}^{t} \langle w_s, x \rangle + \frac{\lambda}{2} \|x\|^2 \right\} = -\frac{1}{\lambda} \sum_{s=1}^{t} w_s = x_t - (1/\lambda) w_t$$

► Euclidean regularization + linear losses $(w_t = \nabla \ell_t(x_t)) \implies$ gradient descent:

$$x_{t+1} = x_t - \underbrace{\eta}_{1/\lambda} \nabla \ell_t(x_t)$$
 (GD)

payoffs instead of costs

Example 2: Entropic regularization

- ▶ **Setup:** $\mathcal{X} = \Delta(\mathcal{A})$, linear payoffs $u_t(x) = \langle v_t, x \rangle$
- ► Regularizer:

$$h(x) = \sum_{\alpha \in \mathcal{A}} x_{\alpha} \log x_{\alpha}$$

► Algorithm:

$$x_{t+1} = \arg\max_{x \in \mathcal{X}} \left\{ \sum_{s=1}^{t} \langle v_s, x \rangle - \lambda \sum_{\alpha \in \mathcal{A}} x_{\alpha} \log x_{\alpha} \right\}$$

13/7

Example 2: Entropic regularization

▶ **Setup:** $\mathcal{X} = \Delta(\mathcal{A})$, linear payoffs $u_t(x) = \langle v_t, x \rangle$

► Regularizer:

$$h(x) = \sum_{\alpha \in \mathcal{A}} x_{\alpha} \log x_{\alpha}$$

► Algorithm:

$$x_{t+1} = \arg\max_{x \in \mathcal{X}} \left\{ \sum_{s=1}^{t} \langle v_s, x \rangle - \lambda \sum_{\alpha \in \mathcal{A}} x_{\alpha} \log x_{\alpha} \right\} = \frac{\exp(\sum_{s=1}^{t} v_{\alpha,s} / \lambda)}{\sum_{\beta \in \mathcal{A}} \exp(\sum_{s=1}^{t} v_{\beta,s} / \lambda)}$$

Example 2: Entropic regularization

▶ **Setup:** $\mathcal{X} = \Delta(\mathcal{A})$, linear payoffs $u_t(x) = \langle v_t, x \rangle$

payoffs instead of costs

► Regularizer:

$$h(x) = \sum_{\alpha \in \mathcal{A}} x_{\alpha} \log x_{\alpha}$$

► Algorithm:

$$x_{t+1} = \arg\max_{x \in \mathcal{X}} \left\{ \sum_{s=1}^{t} \langle v_s, x \rangle - \lambda \sum_{\alpha \in \mathcal{A}} x_{\alpha} \log x_{\alpha} \right\} = \frac{\exp(\sum_{s=1}^{t} v_{\alpha,s} / \lambda)}{\sum_{\beta \in \mathcal{A}} \exp(\sum_{s=1}^{t} v_{\beta,s} / \lambda)}$$

► Entropic regularization + linear payoffs ⇒ exponential weights:

$$y_{t+1} = y_t + \overbrace{\eta}^{1/\lambda} v_t$$

$$x_{t+1} = \underbrace{\Lambda(y_{t+1})}_{\text{logit map}}$$
(EW)

13/29

Template bound for FTRL

FTRL regret bound

For all $p \in \mathcal{X}$, the regret of (FTRL) can be bounded as

$$\operatorname{Reg}_{p}(T) \leq \lambda [h(p) - h(x_{1})] + \sum_{t=1}^{T} [\ell_{t}(x_{t}) - \ell_{t}(x_{t+1})]$$

Template bound for FTRL

FTRL regret bound

For all $p \in \mathcal{X}$, the regret of (FTRL) can be bounded as

$$\operatorname{Reg}_{p}(T) \leq \lambda[h(p) - h(x_{1})] + \sum_{t=1}^{T} [\ell_{t}(x_{t}) - \ell_{t}(x_{t+1})]$$

Proof.

14/29

. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Variability bound for FTRL

Variability of FTRL

Assume: h is K-strongly convex; each ℓ_t is G_t -Lipschitz continuous

✓ Then:

$$\ell_t(x_t) - \ell_t(x_{t+1}) \le G_t ||x_{t+1} - x_t|| \le G_t^2 / (\lambda K)$$

ΕΚΠΑ, Τμήμα Μαθηματικών

Variability bound for FTRL

Variability of FTRL

Assume: h is K-strongly convex; each ℓ_t is G_t -Lipschitz continuous

✓ Then:

$$\ell_t(x_t) - \ell_t(x_{t+1}) \le G_t ||x_{t+1} - x_t|| \le G_t^2 / (\lambda K)$$

Proof.

15/29

Ι. Μερτικόπουλος

Regret of FTRL

Theorem (Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2011)

- Assume: h is K-strongly convex; each ℓ_t is G-Lipschitz continuous
- ✓ Then: (FTRL) enjoys the regret bound

$$\operatorname{Reg}_{p}(T) \leq \lambda [h(p) - \min h] + \frac{G^{2}}{\lambda K}T$$

Regret of FTRL

Theorem (Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2011)

- Assume: h is K-strongly convex; each ℓ_t is G-Lipschitz continuous
- ✓ Then: (FTRL) enjoys the regret bound

$$\operatorname{Reg}_{p}(T) \le \lambda [h(p) - \min h] + \frac{G^{2}}{\lambda K}T$$

Corollary

With assumptions as above, $H = \max h - \min h$ and $\lambda = G\sqrt{T/(2KH)}$, (FTRL) enjoys the bound

$$\operatorname{Reg}(T) \le G\sqrt{(2H/K)T} = \mathcal{O}(\sqrt{T})$$

Regret of FTRL

Theorem (Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2011)

- Assume: h is K-strongly convex; each ℓ_t is G-Lipschitz continuous
- ✓ Then: (FTRL) enjoys the regret bound

$$\operatorname{Reg}_{p}(T) \le \lambda [h(p) - \min h] + \frac{G^{2}}{\lambda K}T$$

Corollary

With assumptions as above, $H = \max h - \min h$ and $\lambda = G\sqrt{T/(2KH)}$, (FTRL) enjoys the bound

$$\operatorname{Reg}(T) \le G\sqrt{(2H/K)T} = \mathcal{O}(\sqrt{T})$$

Remarks:

- ▶ The bound is tight in *T*
- Requires full information and tuning in terms of T

◆ Abernethy et al., 2008

can relax

.

Π. Μερτικόπουλος

Outline

- Preliminaries
- Learning with full information
- 3 Learning with gradient feedback
- 4 Learning with stochastic gradients

16/29

Feedback

Types of feedback

From best to worst (more to less info):

- **First-order info, exact:** observe (sub)gradient $g_t \in \partial \ell_t(x_t)$
- **First-order info, inexact**: observe noisy estimate of q_t

deterministic vector feedback

stochastic vector feedback

Feedback

Types of feedback

From best to worst (more to less info):

- ▶ Full information: observe entire loss function ℓ_t : $\mathcal{X} \to \mathbb{I}$
- ► First-order info, exact: observe (sub)gradient $g_t \in \partial \ell_t(x_t)$
- **First-order info, inexact:** observe noisy estimate of g_t
- **Zeroth-order info (bandit):** observe only incurred cost $c_t = \ell_t(x_t)$

deterministic function feedback

deterministic vector feedback

stochastic vector feedback

deterministic scalar feedbacl

The oracle model

A **stochastic first-order oracle** (SFO) for $g_t \in \partial \ell_t(x_t)$ is a random vector of the form

$$\hat{g}_t = g_t + U_t + b_t \tag{SFO}$$

where U_t is **zero-mean** and $b_t = \mathbb{E}[\hat{g}_t | \mathcal{F}_t] - v(x_t)$ is the **bias** of \hat{g}_t

17/79

Follow the linearized leader

Can we relax the full information requirement of FTRL?

▶ Replace ℓ_t with first-order surrogate

$$\hat{\ell}_t(x) = \ell_t(x_t) + \langle g_t, x - x_t \rangle$$
 $g_t \in \partial \ell_t(x_t)$

▶ Plug into (FTRL)

$$x_{t+1} = \arg\min_{x \in \mathcal{X}} \left\{ \sum_{s=1}^{t} \hat{\ell}_s(x) + \underbrace{\lambda}_{1/\eta} h(x) \right\} = \arg\min_{x \in \mathcal{X}} \left\{ \eta \sum_{s=1}^{t} \langle g_s, x - x_s \rangle + h(x) \right\}$$

Follow the linearized leader

Can we relax the full information requirement of FTRL?

▶ Replace ℓ_t with first-order surrogate

$$\hat{\ell}_t(x) = \ell_t(x_t) + \langle g_t, x - x_t \rangle$$
 $g_t \in \partial \ell_t(x_t)$

▶ Plug into (FTRL)

$$x_{t+1} = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \left\{ \sum_{s=1}^{t} \hat{\ell}_{s}(x) + \underbrace{\lambda}_{1/\eta} h(x) \right\} = \underset{x \in \mathcal{X}}{\operatorname{arg\,min}} \left\{ \eta \sum_{s=1}^{t} \langle g_{s}, x - x_{s} \rangle + h(x) \right\}$$

► Follow the linearized leader (FTLL)

$$x_{t+1} = \arg\min_{x \in \mathcal{X}} \left\{ \eta \sum_{s=1}^{t} \langle g_s, x \rangle + h(x) \right\}$$
 (FTLL)

18/29

Dual averaging (DA) formulation of FTLL

● Nesterov, 2009; Xiao, 2010

$$y_{t+1} = y_t - \eta g_t x_{t+1} = Q(y_{t+1})$$
 (DA)

Dual averaging (DA) formulation of FTLL

● Nesterov, 2009; Xiao, 2010

$$y_{t+1} = y_t - \eta g_t x_{t+1} = Q(y_{t+1})$$
 (DA)

Dual averaging (DA) formulation of FTLL

● Nesterov, 2009; Xiao, 2010

$$y_{t+1} = y_t - \eta g_t x_{t+1} = Q(y_{t+1})$$
 (DA)

Dual averaging (DA) formulation of FTLL

● Nesterov, 2009; Xiao, 2010

$$y_{t+1} = y_t - \eta g_t x_{t+1} = Q(y_{t+1})$$
 (DA)

Dual averaging (DA) formulation of FTLL

● Nesterov, 2009; Xiao, 2010

$$y_{t+1} = y_t - \eta g_t x_{t+1} = Q(y_{t+1})$$
 (DA)

where $Q(y) = \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$ is the **mirror map** associated to h

Dual averaging (DA) formulation of FTLL

● Nesterov, 2009; Xiao, 2010

$$y_{t+1} = y_t - \eta g_t x_{t+1} = Q(y_{t+1})$$
 (DA)

where $Q(y) = \arg \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$ is the **mirror map** associated to h

Special case when $h(x) = (1/2)||x||_2^2 \sim$ online gradient descent (OGD)

$$y_{t+1} = y - \eta g_t$$
 $x_{t+1} = \Pi(y_{t+1})$

Figure: Schematics of (OGD)

Special case when $h(x) = (1/2) ||x||_2^2 \rightsquigarrow$ online gradient descent (OGD)

$$y_{t+1} = y - \eta g_t$$
 $x_{t+1} = \Pi(y_{t+1})$

lazy version

(OGD)

Figure: Schematics of (OGD)

Special case when $h(x) = (1/2)||x||_2^2 \rightsquigarrow$ online gradient descent (OGD)

$$y_{t+1} = y - \eta g_t$$
 $x_{t+1} = \Pi(y_{t+1})$

lazy version

(OGD)

Figure: Schematics of (OGD)

Π. Μερτικόπουλος

Special case when $h(x) = (1/2)||x||_2^2 \sim$ online gradient descent (OGD)

lazy version
(OGD)

$$y_{t+1} = y - \eta g_t$$
 $x_{t+1} = \Pi(y_{t+1})$

Figure: Schematics of (OGD)

. Μερτικόπουλος

Online mirror descent (deep dive)

▶ Gradient signals enter (DA) unweighted / unadjusted

post-adaptation

(OMD)

▶ Variable weights ~ "lazy", primal-dual variant of online mirror descent

$$y_{t+1} = y_t + \eta_t \hat{g}_t$$

$$x_{t+1} = Q(y_{t+1})$$
(OMD_{lazy})

Primal-primal ("eager") variant of (OMD_{lazy})

$$x_{t+1} = P_{x_t}(\eta_t \hat{g}_t)$$

with the **Bregman proximal mapping** P defined as

$$P_x(w) = \arg\min_{x' \in \mathcal{X}} \{\langle w, x - x' \rangle + D(x', x) \}$$

where $D(x',x) = h(x') - h(x) - \langle \nabla h(x'), x - x' \rangle$ is the **Bregman divergence** of h

21/29

Online mirror descent (deep dive)

Gradient signals enter (DA) unweighted / unadjusted

post-adaptation

▶ Variable weights → "lazy", primal-dual variant of online mirror descent

$$y_{t+1} = y_t + \eta_t \hat{g}_t$$

$$x_{t+1} = Q(y_{t+1})$$
(OMD_{lazy})

Primal-primal ("eager") variant of (OMD_{lazy})

$$x_{t+1} = P_{x_t}(\eta_t \hat{g}_t) \tag{OMD}$$

with the **Bregman proximal mapping** *P* defined as

$$P_x(w) = \underset{x' \in \mathcal{X}}{\arg\min} \{ \langle w, x - x' \rangle + D(x', x) \}$$

where $D(x',x) = h(x') - h(x) - \langle \nabla h(x'), x - x' \rangle$ is the **Bregman divergence** of h

Proposition

The iterates of (OMD_{lazy}) and (OMD) coincide whenever dom $\partial h = ri \mathcal{X}$

21/29

linear model

Regret under dual averaging

► Gradient trick:

$$\ell_t(x_t) - \ell_t(p) \le \langle g_t, x_t - p \rangle$$
 for all $p \in \mathcal{X}$

Regret under dual averaging

▶ Gradient trick:

$$\ell_t(x_t) - \ell_t(p) \le \langle g_t, x_t - p \rangle$$
 for all $p \in \mathcal{X}$

 $F_t = h(p) + h^*(y_t) - \langle y_t, p \rangle$

• Energy function:

where
$$h^*(y) = \max_{x \in \mathcal{X}} \{ (y, x) - h(x) \}$$
 is the **potential** of $Q \leadsto \nabla h^* = Q$

Regret under dual averaging

▶ Gradient trick:

$$\ell_t(x_t) - \ell_t(p) \le \langle g_t, x_t - p \rangle$$
 for all $p \in \mathcal{X}$

► Energy function:

$$F_t = h(p) + h^*(y_t) - \langle y_t, p \rangle$$

where $h^*(y) = \max_{x \in \mathcal{X}} \{ \langle y, x \rangle - h(x) \}$ is the **potential** of $Q \rightsquigarrow \nabla h^* = Q$

► Template inequality:

$$F_{t+1} \leq F_t - \eta \langle g_t, x_t - p \rangle + \frac{\eta^2}{2K} \|g_t\|^2$$

∆ take for granted

▲ take for granted

Regret under dual averaging

Gradient trick:

linear model

$$\ell_t(x_t) - \ell_t(p) \le \langle g_t, x_t - p \rangle$$
 for all $p \in \mathcal{X}$

► Energy function:

★ take for granted

$$F_t = h(p) + h^*(y_t) - \langle y_t, p \rangle$$

where $h^*(y) = \max_{x \in \mathcal{X}} \{ (y, x) - h(x) \}$ is the **potential** of $Q \rightsquigarrow \nabla h^* = Q$

► Template inequality:

▲ take for granted

$$F_{t+1} \leq F_t - \eta \langle g_t, x_t - p \rangle + \frac{\eta^2}{2K} \|g_t\|^2$$

Rearrange & telescope:

build the regret

$$\overline{\text{Reg}}(T) \le \frac{H}{\eta} + \frac{\eta}{2K} \sum_{t=1}^{T} G_t^2$$

77/79

Π. Μερτικόπουλος

Regret under dual averaging, cont'd

$$\blacktriangleright \text{ Take } \eta = \sqrt{2KH/\sum_{t=1}^{T} G_t^2}$$

$$\operatorname{Reg}(T) \leq \sqrt{(2H/K)\sum_{t=1}^{T} G_t^2}$$

Regret under dual averaging, cont'd

$$Take \eta = \sqrt{2KH/\sum_{t=1}^{T} G_t^2}$$

$$\operatorname{Reg}(T) \leq \sqrt{(2H/K)\sum_{t=1}^{T} G_t^2}$$

Theorem (Shalev-Shwartz, 2011)

- **Assume:** h is K-strongly convex; each ℓ_t is G-Lipschitz continuous; $H = \max h \min h$ and $\eta = G^{-1}\sqrt{2KH/T}$
- ✓ Then: (DA) / (FTLL) enjoys the regret bound

$$\operatorname{Reg}_{p}(T) \leq G\sqrt{(2H/K)T}$$

23/29

Outline

- Preliminaries
- 2 Learning with full information
- 3 Learning with gradient feedback
- 4 Learning with stochastic gradients

23/29

Ι. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθημα:

Oracle feedback

The oracle model

A **stochastic first-order oracle (SFO)** model of g_t is a random vector \hat{g}_t of the form

$$\hat{g}_t = g_t + U_t + b_t \tag{SFO}$$

where U_t is **zero-mean** and $b_t = \mathbb{E}[\hat{g}_t | \mathcal{F}_t] - v(x_t)$ is the **bias** of \hat{g}_t

Oracle feedback

The oracle model

A **stochastic first-order oracle (SFO)** model of g_t is a random vector \hat{g}_t of the form

$$\hat{g}_t = g_t + U_t + b_t \tag{SFO}$$

where U_t is **zero-mean** and $b_t = \mathbb{E}[\hat{g}_t \mid \mathcal{F}_t] - v(x_t)$ is the **bias** of \hat{g}_t

Assumptions

▶ Bias: $||b_t||_{\infty} \leq B_t$

• Variance: $\mathbb{E}[\|U_t\|_{\infty}^2 \mid \mathcal{F}_t] \leq \sigma_t^2$

▶ Second moment: $\mathbb{E}[\|\hat{g}_t\|_{\infty}^2 | \mathcal{F}_t] \leq M_t^2$

24/29

Oracle feedback

The oracle model

A **stochastic first-order oracle** (SFO) model of g_t is a random vector \hat{g}_t of the form

$$\hat{g}_t = g_t + U_t + b_t$$

(SFO)

where U_t is **zero-mean** and $b_t = \mathbb{E}[\hat{g}_t \mid \mathcal{F}_t] - v(x_t)$ is the **bias** of \hat{g}_t

Algorithm Stochastic gradient descent (SGD)

#OGD with stochastic feedback

Require: convex action set $\mathcal{X} \subseteq \mathbb{R}^d$; convex loss functions $\ell_t : \mathcal{X} \to \mathbb{R}$, t = 1, 2, ...

```
Initialize: y_1 \in \mathbb{R}^{\mathcal{A}}

for all t = 1, 2, ... do

play x_t \leftarrow \Pi(y_t)

incur c_t = \ell_t(x_t)

observe estimate \hat{g}_t of g_t \in \partial \ell_t(x_t)

set y_{t+1} \leftarrow y_t - \eta_t \hat{g}_t
```

action selection

#incur cost

#SFO feedback

update state

end for

24/29

. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Regret under OGD

▶ Gradient trick:

$$\ell_t(x_t) - \ell_t(p) \le \langle g_t, x_t - p \rangle$$
 for all $p \in \mathcal{X}$

Energy function:

$$F_t = \frac{1}{2} \| y_t - p \|^2 - \frac{1}{2} \| y_t - x_t \|^2$$

Energy inequality:

$$\hat{q}_t$$
 instead of q_t

$$F_{t+1} \leq F_t - \eta \langle \hat{g}_t, x_t - p \rangle + \frac{\eta^2}{2} \| \hat{g}_t \|^2$$

Expand and rearrange:

$$\langle v_t, p - x_t \rangle \leq \frac{F_t - F_{t+1}}{\eta} - \langle U_t, x_t - p \rangle - \langle b_t, x_t - p \rangle + \frac{\eta}{2} \|\hat{g}_t\|_{\infty}^2$$

► How to proceed?

Regret analysis, cont'd

Bound each term separately:

20/.

Regret of SGD

Theorem

- Assume:
 - feedback of the form (SFO)
 - $\eta = \operatorname{diam}(\mathcal{X}) / \sqrt{\sum_{t=1}^{T} M_t^2}$
- **✓ Then:** for all $p \in \mathcal{X}$, the SGD algorithm enjoys the bound

$$\mathbb{E}[\operatorname{Reg}_p(T)] \leq 2\sum_{t=1}^T B_t + \operatorname{diam}(\mathcal{X})\sqrt{\sum_{t=1}^T M_t^2}$$

Regret of SGD

Theorem

- Assume:
 - feedback of the form (SFO)
 - $\eta = \operatorname{diam}(\mathcal{X}) / \sqrt{\sum_{t=1}^{T} M_t^2}$
- ✓ Then: for all $p \in \mathcal{X}$, the SGD algorithm enjoys the bound

$$\mathbb{E}[\operatorname{Reg}_p(T)] \leq 2\sum_{t=1}^T B_t + \operatorname{diam}(\mathcal{X}) \sqrt{\sum_{t=1}^T M_t^2}$$

Remarks:

- $\mathcal{O}(\sqrt{T})$ regret if feedback is unbiased $(b_t = 0)$ and has finite variance $(M_t \le M)$
- ▶ This bound is tight in *T*

◆ Abernethy et al., 2008

Stochastic convex optimization

Stochastic convex optimization

minimize
$$f(x) = \mathbb{E}_{\omega \sim P}[F(x; \omega)]$$

subject to $x \in \mathcal{X}$

(Opt-S)

Stochastic convex optimization

minimize
$$f(x) = \mathbb{E}_{\omega \sim P}[F(x; \omega)]$$

subject to $x \in \mathcal{X}$

(Opt-S)

Important for data science → **finite-sum objectives:**

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$$

Special case of OCO:

$$\ell_t \leftarrow f$$
 for all $t = 1, 2, \dots$

Access to stochastic gradients

$$\hat{g}_t \leftarrow \nabla F(x_t; \omega_t)$$
 with ω_t drawn i.i.d. from P

ΕΚΠΑ, Τμήμα Μαθηματικών

Convergence rate of SGD

Theorem

- Assume: $\mathbb{E}[\|\hat{g}_t\|^2] \leq M^2$ and SGD is run for T iterations with $\eta = \operatorname{diam}(\mathcal{X})/(M\sqrt{T})$
- ✓ Then: the ergodic average $\bar{x}_T = (1/T) \sum_{t=1}^T x_t$ of SGD enjoys the rate

$$\mathbb{E}[f(\bar{x}_T) - \min f] \le \frac{M \operatorname{diam}(\mathcal{X})}{\sqrt{T}}$$

Convergence rate of SGD

Theorem

- Assume: $\mathbb{E}[\|\hat{g}_t\|^2] \leq M^2$ and SGD is run for T iterations with $\eta = \operatorname{diam}(\mathcal{X})/(M\sqrt{T})$
- ✓ Then: the ergodic average $\bar{x}_T = (1/T) \sum_{t=1}^T x_t$ of SGD enjoys the rate

$$\mathbb{E}[f(\bar{x}_T) - \min f] \le \frac{M \operatorname{diam}(\mathcal{X})}{\sqrt{T}}$$

Proof.

]

References I

- [1] Abernethy, J., Bartlett, P. L., Rakhlin, A., and Tewari, A. Optimal strategies and minimax lower bounds for online convex games. In COLT '08: Proceedings of the 21st Annual Conference on Learning Theory, 2008.
- [2] Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1-122, 2012.
- [3] Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games. Cambridge University Press, 2006.
- [4] Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cambridge University Press, Cambridge, UK, 2020.
- [5] Nesterov, Y. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, 2009.
- [6] Shalev-Shwartz, S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107-194, 2011.
- [7] Shalev-Shwartz, S. and Singer, Y. Convex repeated games and Fenchel duality. In NIPS' 06: Proceedings of the 19th Annual Conference on Neural Information Processing Systems, pp. 1265–1272. MIT Press, 2006.
- [8] Xiao, L. Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11: 2543-2596, October 2010.

29/2

References