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Practical information

Welcome!

Welcome to SEP19: Topics in Game Theory

“The study of rational decision-making”

*> Instructors: Panayotis Mertikopoulos
> Meeting times: Mondays 09:00-13:00
> e-class: https://eclass.uoa.gr/courses/MATH806/

> Sessions: Focus on general theory with some deep dives / practical sessions (TBD)

» Grading scheme: split between end-of-term project (50%) and final (50%)
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Practical information

Course overview

Rough breakdown of the course:

1. Part 1: Basic elements of game theory

*> Basic notions: Nash equilibrium, dominated strategies,...
> Basic notions: Nash equilibrium, dominated strategies,...
> Game classes: potential games, congestion games, price of anarchy,...

> Game dynamics: replicator dynamics, exponential weights,...

2. Part 2: Multi-armed bandits and online optimization
> Bandits and regret: regret minimization,...
> Algorithms: Hepce, EXP3,...

> Online convex optimization: regret, convexification,...

> Algorithms: leader-following policies, gradient / mirror descent....
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Background & motivation

Why game theory?




Overview & motivation

Congestion

Example 1: A game of roads

A beautiful morning commute in Chicago
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Congestion

The price of congestion

In the US alone, congestion cost $305 billion in 2017 (~1.6% of GDP)

*¢ source: INRIX

> Lost productivity

> Fuel waste

> Environmental impact, quality of life,...
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A very large game!

The city of Chicago
> 2,700,000 people
> 1,261,000 daily trips
> 933 nodes
> 2950 edges
> 870,000 o/d pairs

> ~2%10'° paths
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Machine learning

Example 2: Spot the fake

Which person is real?



https://thispersondoesnotexist.com
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Machine learning

Example 2: Spot the fake

Which person is real?

*¢ Spoiler: https://thispersondoesnotexist.com



https://thispersondoesnotexist.com

Neural networks

The workhorse of deep learning:

input

(.02,.01,.95,...)

hidden layers

The deep learning revolution: breaking the human perception barrier (2010’s)

EKMA, Tufipa
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Machine learning

Neurons

The atoms of any deep learning architecture are its neurons:

@

) W

input @ 2 f output
w3

» Input could be binary {0,1} or real (e.g., average intensity of image)
> Inputs weighed with weight coefficients w;

» Neuron activates on value of f(}; wix;)

=

. Perceptron: binary inputs, step function activation

No

. Sigmoid neuron: real inputs, tanh activation

3. RelU: real inputs, rectified linear activation (f(z) = [2]+)
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Machine learning

The schematics of GANs
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Machine learning

The schematics of GANs

Generator
(o]
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Machine learning

The schematics of GANs
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Machine learning

The schematics of GANs

Discriminator

Yoy ov oy
R
Yoy
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Machine learning

The schematics of GANs

Discriminator
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Machine learning

The schematics of GANs

G(z:) =

Model likelihood: £¢(G,D) = ﬁ D(X;) x ﬁ(l -D(G(Z))))
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Machine learning

GAN training

How to find good generators (G) and discriminators (D)?

Discriminator: maximize (log-)likelihood estimation

max log (G, D
max log £(G, D)
Generator: minimize the resulting divergence

min max log (G, D)

A (very complex) zero-sum game!
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Machine learning

Training landscape

A deep learning loss landscape
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Machine learning

FailGAN

The game does not always work out:

=& A StyleGAN after 8 days of training at Nvidia headquarters (IIl)
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Machine learning

Questions we'll try to answer

1. How should we model player interactions?

> Urban traffic # transit systems # packet networks # ...

> Rational agents # humans # Al algorithms # ...

> Competition # congestion # coordination # ...

2. What is a desired operational state?
> Social optimum # equilibrium = ...

> Static (equilibrium, social optimum) # Bayesian # online (regret) # ...

3. How to compute it?

> Calculation # learning # implementation

*> Informational constraints: feedback, bounded rationality, uncertainty, ...
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Introduction and basic examples

Let's play a game

Scissors

beats paper

What would you play? How can we model this game mathematically?
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Introduction and basic examples

Let's play a game, formally

> Players: “1” and “2”

> Actions associated to each player: A; = {R,P,S},i=1,2

»> Payoff matrix (win: $1; lose —$1; tie $0):

| R P S
R o -1 1
A< pl 1 0 4

> Payoff functions:
> upr Ay x Ay - Rgiven by 41 (R,R) = 0, us(R,P) = —-1,...
> up: Ay x Ay > Rgivenby uz(R,R) = 0,u2(R,P) =1,...
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Introduction and basic examples

Some basics

What's in a game?

A game in normal form is a collection of three basic elements:

1. A set of players N
2. A set of actions (or pure strategies) A; per player i € A
3. An ensemble of payoff functions u;: A = T ; A; — R per player i € N
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Introduction and basic examples

Some basics

What's in a game?

A game in normal form is a collection of three basic elements:

1. A set of players N
2. A set of actions (or pure strategies) A; per player i € A
3. An ensemble of payoff functions u;: A = T ; A; — R per player i € N

Important:

> Player set: atomic vs. nonatomic

» Action sets: finite vs. continuous; shared vs. individual; ...

= NB: do not mix game classes!
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Introduction and basic examples

Taxonomy

Actions

Population Games Finite Finite Games

Players

Continuous Finite

Mean Field Games

Continuous Continuous Games
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Introduction and basic examples

Taxonomy

Actions -
Scissors

beats paper

A®. &N\

Finite Games

Players
Finite
noise loss
z +
] true/fake
Generator Discriminator
o S h0 \. 0
) »Q 0+ e
Mean Field Games g40 o
o r

Continuous*© Continuous Games
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Introduction and basic examples

What's in a game?

Definition (Finite games)

A finite game in normal form is a collection of the following primitives:
> Afinite set of players N' = {1,...,N}
> Afinite set of actions (or pure strategies) A; for each player i ¢ V'

> A payoff function u;: A := []; A; — R for each player i ¢ N

A game with primitives as above will be denoted as T = T'(N, A, u).

Some notes:

> “Normal form” ~ difference with “extensive form” games (Chess, Go....)

> Handy shorthands: (ay,...,a;,...ay) < (a;3a-;) and A_; = [Tjai Aj;
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Introduction and basic examples

The Prisoner's Dilemma

Bonnie and Clyde are captured by the authorities and put in separate cells:
> If both betray each other, they both serve 2 years in prison
> If Bonnie betrays but Clyde remains silent, Bonnie goes free and Clyde serves 3 years

> If Bonnie remains silent but Clyde betrays, Bonnie serves 3 years and Clyde goes free

> If neither betrays the other, they both serve 1 year
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Introduction and basic examples

The Prisoner's Dilemma

Bonnie and Clyde are captured by the authorities and put in separate cells:
> If both betray each other, they both serve 2 years in prison

> If Bonnie betrays but Clyde remains silent, Bonnie goes free and Clyde serves 3 years

> If Bonnie remains silent but Clyde betrays, Bonnie serves 3 years and Clyde goes free

> If neither betrays the other, they both serve 1 year

Normal form representation:
» Players: N = {B,C}
> Actions: Ag = Ac = {betray,silent}

> Payoff bimatrix:
B| C— ‘ betray silent

betray | (-2,-2) (0,-3)
silent (-3,0) (-1,-1)
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Introduction and basic examples

Split or steal?

https://www.youtube.com/watch?v=S0qjK3TWZES8

> If both players steal, they both get nothing

> If one player steals and the other splits, the one who steals gets everything

> If both players split, they split the prize

Do you splitor steal?



https://www.youtube.com/watch?v=S0qjK3TWZE8
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Introduction and basic examples

Split or steal?

https://www.youtube.com/watch?v=S0qjK3TWZES8

> If both players steal, they both get nothing

> If one player steals and the other splits, the one who steals gets everything

> If both players split, they split the prize

Do you splitor steal?

Normal form representation:
» Players: N = {A, B}
> Actions: Aa = Ap = {split,steal}

»> Payoff bimatrix:
Al B— ‘ split steal

split | ($6800,56800) (0, $13600)
steal (813600, 0) (0,0)



https://www.youtube.com/watch?v=S0qjK3TWZE8
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Introduction and basic examples

The battle of the sexes

Robin and Charlie want to go out for the evening:
> Robin prefers to go to a movie

> Charlie prefers to go to the theater

> They both prefer being together instead of alone
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Introduction and basic examples

The battle of the sexes

Robin and Charlie want to go out for the evening:
> Robin prefers to go to a movie

> Charlie prefers to go to the theater

> They both prefer being together instead of alone

Normal form representation:
» Players: N = {R,C}
> Actions: Ag = Ac = {movie, theater}

»> Payoff bimatrix:
R| C— ‘ movie theater

movie (3,2) (0,0)
theater | (0,0) (2,3)
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Introduction and basic examples

The collision game

Robin and Charlie arrive at an uncontrolled intersection:
> If they both drive through, they crash

> If they both yield, they may wait forever

> If one yields and the other drives through, the latter loses less time
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Introduction and basic examples

The collision game

Robin and Charlie arrive at an uncontrolled intersection:
> If they both drive through, they crash

> If they both yield, they may wait forever

> If one yields and the other drives through, the latter loses less time

Normal form representation:
» Players: N = {R,C}

> Actions: Ag = Ac = {drive,yield}

»> Payoff bimatrix:
R| C— | drive yield

drive | (-100,-100)  (2,1)
yield (1,2) (0,0)
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Strategic dominance

Dominated strategies

Sometimes, an action may yield consistently suboptimal payoffs

Definition (Dominated strategies)

1. Astrategy a; € A; is strictly dominated by a; € A; if

ui(ai;a-;) < ui(aj;a_;) foralla_; e A
2. Astrategy a; € A; is weakly dominated by a; € A; if

ui(aiza-;) <ui(aj;a—;) foralla_; e A;

and u;(ai;a—;) < ui(aj;a;) forsome a_; € A_;.

Notation:

> ajis strictly dominated by a’: a; < a!

> a; is weakly dominated by a?: a;<a
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Strategic dominance

Examples, revisited

The prisoner's dilemma:

R| C— ‘ betray silent
betray ‘ (-2,-2) (0,-3)

silent (-3,0) (-1,-1)
Split or steal:
R| C— ‘ split steal
split | ($6800,$6800) (0, $13600)
steal ($13600,0) (0,0)

Battle of the sexes:

R| C— ‘ movie theater
(3,2) (0,0)
(0,0) (2,3)

movie
theater
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Strategic dominance

Iteratively dominated strategies

A larger game:

%4) (3 (32
(0,1)  (46) (6,0)
1) (35 (24)
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Iteratively dominated strategies

A larger game:

%4) (3 (32
(0,1)  (46) (6,0)
21 G5 (24

1. A strategy is called iteratively dominated if it becomes dominated after successive elimination of
dominated strategies.

2. A game is called dominance-solvable if the successive elimination of dominated strategies leads to a
singleton.




Basic elements of game theory

)@0000000

Best responses and Nash equilibrium

Best responses

What if only the strategy of the opposing player(s) is known?

Definition (Best responses)
The strategy a; € Aj; is a best response to a_; € A_; if
ui(ajsa—;) > ui(aiza-;) foralla; e A;

or, equivalently, if
*
a; €argmax, , ui(ai;a-i).

The set-valued function BR;: A_; = A; given by

BR;(a-;) = argmax, . . ui(ai;a—;)

is called the best-response correspondence.
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Best responses and Nash equilibrium

Examples

The prisoner's dilemma:

R| C— ‘ betray silent
betray ‘ (-2,-2) (0,-3)

silent (-3,0) (-1,-1)
Split or steal:
R| C— ‘ split steal
split | ($6800,$6800) (0, $13600)
steal ($13600,0) (0,0)

Battle of the sexes:

R| C— ‘ movie theater
(3,2) (0,0)
(0,0) (2,3)

movie
theater
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Best responses and Nash equilibrium

Dominated strategies and best responses

Some more examples of best responses

%4) (3 (32
(0,1) (46) (6,0)
21) 3535 (28)
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Best responses and Nash equilibrium

Dominated strategies and best responses

Some more examples of best responses

%4) (3 (32
(0,1) (46) (6,0)
21) 3535 (28)

Best responses cannot contain dominated strategies
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Best responses and Nash equilibrium

Dominated strategies and best responses

Some more examples of best responses

%4) (3 (32
(0,1) (46) (6,0)
21) 3535 (28)

Best responses cannot contain dominated strategies

= What about weakly dominated strategies?
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Best responses and Nash equilibrium

Nash equilibrium

Equilibrium: best-responding to each other’s actions

Definition (Nash equilibrium)

An action profile a* = (a1, ..., ay) is a Nash equilibrium if
a; €BR;(a’;) forallie N

or, equivalently, if
ui(aj;a’;) > ui(aiza’;) foralla; e A;andallieN.

Intuition:

> Stability: no player has an incentive to deviate

*> Unilateral resilience: stable against individual player deviations, not multi-player ones
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Best responses and Nash equilibrium

Examples, revisited

The prisoner's dilemma:

R| C— ‘ betray silent
betray ‘ (-2,-2) (0,-3)

silent (-3,0) (-1,-1)
Split or steal:
R| C— ‘ split steal
split | ($6800,$6800) (0, $13600)
steal ($13600,0) (0,0)

Battle of the sexes:

R| C— ‘ movie theater
(3,2) (0,0)
(0,0) (2,3)

movie
theater
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Best responses and Nash equilibrium

RPS, revisited

How about Rock-Paper-Scissors?

Scissors

beats paper

R P S
R| 0 -1 1 %‘3
1

%

) &

— S

p 0 -1 o % @ &
S N
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Best responses and Nash equilibrium

RPS, revisited

How about Rock-Paper-Scissors?

Scissors

beats paper

R P S
R0 -1 1 . © ®
Pl 1 0 -1 o

o
*

N
T &
S|-1 1 0 ¢

Nash equilibria don’t always exist!
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Mixed strategies

Mixed strategies

Instead of playing pure strategies, players could mix their actions:
» Mixed strategy of player i € A/: probability distribution x; on A;

> Notation: x4, = prob. that player i selects a; € A;

> Strategy space of player i:
Xi=A(A) = {x,- e RA . Xia; > 0 and za,-eA, Xia, = 1}
e A(A;) ~ simplex spanned by A;
> Support of x;: actions that are played with positive probability under x;
supp(xi) == {ai € A; : xia, > 0}
> x; is pure when supp(x;) is a singleton, i.e,,

supp(xi) = {ai} forsomea; € A;

=& Origin of the term “pure strategies
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Mixed strategies

RPS, revisited

Playing with mixed strategies:

> Players: N = {1,2}

Paper

beats rock

\_/
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Mixed strategies

RPS, revisited

Playing with mixed strategies:

> Players: N = {1,2}

> Actions: A; = {R,P,S} ®
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Mixed strategies

RPS, revisited

Playing with mixed strategies:

> Players: N = {1,2}

> Actions: A; = {R,P,S}

> Mixed strategy space: X; = A{R,P,S}
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Mixed strategies

RPS, revisited

Playing with mixed strategies:

> Players: N = {1,2}

> Actions: A; = {R,P,S}
> Mixed strategy space: X; = A{R,P,S}

> Choose mixed strategy x; € X;
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Mixed strategies

RPS, revisited

Playing with mixed strategies:

> Players: N = {1,2}

> Actions: A; = {R,P,S}
> Mixed strategy space: X; = A{R,P,S}
> Choose mixed strategy x; € X;

» Choose action a; ~ x;
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Mixed strategies

Mixed strategies (collective)

When all players mix their actions:
> Each player i € A uses a mixed strategy x; € X;

> Prob. of selecting the action profile a = (ai,...,an) € A=1; Ay

Xay,...ay = HjeN' Xjaj

> Prob. of selectinga_; € A_;:

X-iza_; = Hjtixj”f
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Mixed strategies

Mixed strategies (collective)

When all players mix their actions:
> Each player i € A uses a mixed strategy x; € X;

> Prob. of selecting the action profile a = (ai,...,an) € A=1; Ay

v

Prob. of selecting a_; € A_;:
X—isa_; = Hjti Xjaj

> Mixed strategy profile:
x=(x1,...,xn) € X := HieNX,-

> Mixed strategy profile of i's opponents:

Xoi= (X1, xN) € X = X,

J#i

= NB: X = Hj A(Aj) * A(Hj .A/) = A(A) =& mixed vs. correlated strategies
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Mixed strategies

Expected payoffs

Expected payoffs under mixed strategies:

> Expected payoff to a player under a mixed strategy profile:

ui(x) = Z Z Xtar - XN,ay Ui(ay,...,an)

aje A} aneAy

or, in terms of other players’ strategies:

ui(xisx-i) = Z Z Xia; X—isa_; ui(aiza-;)

ajeA;a_jeA_;

> Expected payoff to a pure strategy under a mixed strategy profile:

Via,(x) == ui(aizx_i) = Y, x_ia_ui(aisa-i)

a_jeA_;
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Mixed strategies

Expected payoffs

Expected payoffs under mixed strategies:

> Expected payoff to a player under a mixed strategy profile:

ui(x) = Z Z Xtar - XN,ay Ui(ay,...,an)

aje A} aneAy

or, in terms of other players’ strategies:

ui(xisx-i) = Z Z Xia; X—isa_; ui(aiza-;)

ajeA;a_jeA_;

> Expected payoff to a pure strategy under a mixed strategy profile:

Via,(x) == ui(aizx_i) = Y, x_ia_ui(aisa-i)

a_jeA_;

> Mixed payoff vectors:
vi(x) = (Via, (%)) aren; = (ui(@is%-i) ) aen;

SO

ui(x) = (vi(x), xi)

15 NB: u; is linear in x;; vi4;, and v; are independent of x;
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Mixed strategies

Go-to example: Rock-Paper-Scissors

Playing with mixed strategies:

> Players: V' = {1,2}

> Actions: A; = {R,P,S}

> Mixed strategies: x; € X
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Mixed strategies

Go-to example: Rock-Paper-Scissors

Playing with mixed strategies:

> Players: V' = {1,2}

> Actions: A; = {R,P,S}

> Mixed strategies: x; € X

Mixed strategy payoffs:

ur(x1,x2) = x1rx2R + (0) + x1Rx2,p - (—1) + X1R%2,5 - (1)
+ X1pX2R (1) + X1,pX2p * (0) + X1,pX2,S (—1)
+x1,5%28 - (1) + x1,5%2,p - (1) + x1,5%2,5 - (0)
= xl,R(xZ,S - xz,P) + X1,P(xz,R - xz,s) + Xl,s(xz,P - Xz,R)
T
=x; Ax,

uz(xl,xz) = _ul(-xl)xz)
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Mixed strategies

Mixed extensions

Definition (Mixed extension of a finite game)

The mixed extension of a finite game T = T'(\V, A, u) is the continuous game A(T) with
» Playersie N ={1,...,N}
> Actions x; € X; = A(A;) per playeri e \/
> Payoff functions u;: X - R, i e N

Notes:

> Continuous game: game with continuous action spaces (here X’ instead of A;)

> Context: when clear, we will not distinguish between T and A(T)
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Mixed strategies

Mixed best responses

Extending the notion of best-responding to mixed strategies

Definition (Mixed best responses)

The mixed strategy x; € X is a best response to the mixed profile x_; € X_; if
ui(x73x-1) > ui(xi;x-;) forall x; € &;

or, equivalently, if
*
x; €argmax, .y ui(xi;x-i) = argmax,_ . (vi(x),xi)

As before, we write BR; (x—;) = argmax, _, ui(xi;x-i).

Notes:

> Structure: BR; (x_;) is always a face of X = Why?

> Notation: rely on context to distinguish between pure / mixed best responses
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Nash's theorem

Go-to example: Rock-Paper-Scissors

Playing with mixed strategies:

> Players: N = {1,2}

> Actions: A; = {R,P,S}

> Mixed strategies: x;" € X
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Nash's theorem

Go-to example: Rock-Paper-Scissors

Playing with mixed strategies:
> Players: N = {1,2}

> Actions: A; = {R,P,S}

> Mixed strategies: x;" € X

Mixed strategy payoffs when x{* = x5 = (1/3,1/3,1/3):

et 5) = (1) 3G9 + D) = 0= e )
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Nash’s theorem

Go-to example: Rock-Paper-Scissors

Playing with mixed strategies:
> Players: N = {1,2}

> Actions: A; = {R,P,S}

> Mixed strategies: x;" € X

Mixed strategy payoffs when x{* = x5 = (1/3,1/3,1/3):

et 5) = (1) 3G9 + D) = 0= e )

In fact:
w(x1, %) =0 =us(x,x2) forallx; € Xy, x0€ Xy

so
x; €BRi(x3) and x; € BRy(x])
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Nash's theorem

Nash equilibrium in mixed strategies

Extending the notion of equilibrium to mixed strategies

Definition (Nash equilibrium)

A strategy profile x* = (x{', ..., x5 ) is a Nash equilibrium if
x; € BRi(xY;) forallie N

or, equivalently, if
wi(x;;x%) > ui(xi;x%;) forallx; € X;jandallie AV,

Notes:
*> Unilateral stability: ceteris paribus, no player has an incentive to deviate
> If x* is pure == pure Nash equilibrium = otherwise “mixed”

> If“>"instead of “>” for x; # x} == strict Nash equilibrium

w5 Prove: x* is strict <> BR;(x*,) is asingleton forall i e A
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Nash's theorem

Nash's theorem

RPS admits a Nash equilibrium in mixed strategies - is this always the case?
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Nash'’s theorem

Nash's theorem

RPS admits a Nash equilibrium in mixed strategies - is this always the case?

Theorem (Nash, 1950)

Every finite game admits a Nash equilibrium in mixed strategies.

Notes:
> Support: Nash’s theorem does not specify the support or other properties

> Oddness: generically odd number of equilibria = Wilson (1971)

*> Index: generically, if m pure equilibria, at least m — 1 mixed equilibria = Ritzberger (1994)
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Nash's theorem

Proof, Part |

Skeleton of the proof:
> Introduce collective best-response correspondence BR: X = X’ given by

BR(x) = (BRi(x-i))i=1,...N

> x*is a Nash equilibrium <= x* € BR(x™)

*> Invoke Kakutani’s fixed-point theorem for set-valued functions.

Theorem (Kakutani, 1941)

Let C be a nonempty compact convex subset of R, and let F:C = C be a set-valued function such that:

(P1) E(x) is nonempty, closed and convex for all x € C

(P2) Fis upper hemicontinuous at all x € C, i.e, X € F(x) whenever x; — x and %; — X for sequences x; € C and
J‘et € F(xt).

Then there exists some x™ € C such that x* € F(x").

v

*¢ Upper hemicontinuity «» closed graph
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Nash's theorem

Proof, Part Il

Verify the conditions of Kakutani’s theorem for C <~ X and F < BR:

(P1) BR(x) is a face of X, so it is nonempty, closed and convex > Why?
(P2) Argue by contradiction

>

Suppose there exist sequences x;, % € X, t = 1,2, ..., such that x; - x, ¥, — % and X; € BR(x;), but & ¢ BR(x).
> Then there exists a player i € A" and a deviation x/ € X; such that
ui(xfsx-i) > ui (%3 x-;)
But since X; ; € BR(x_;,;) by assumption, we also have:
ui(xjsxoin) < ui(Fisx-iy)
Since x; — x, X = % and u; is continuous, taking limits gives

ui(xfsx-i) <ui(&i3x-;)

which contradicts our original assumption.
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Potential games and best responses

Going back to pure strategies:
*> In single-player games: Nash equilibria (maximizers) trivially exist

*> In multi-player games: not true

Bridge between single- and multi-player settings?

Definition (Potential games; Monderer & Shapley, 1996)

A finite game T = T(N/, A, u) is a potential game if there exists a function ®: A — R such that
ui(ajsa-i) —ui(ai;a—;) = ®(ajsa-;) - d(ai;a—;)

forall a,a’ € Aandall i e V.
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Potential games

Potential games and best responses

Going back to pure strategies:
*> In single-player games: Nash equilibria (maximizers) trivially exist

*> In multi-player games: not true

Bridge between single- and multi-player settings?

Definition (Potential games; Monderer & Shapley, 1996)

Afinite game T = T'(\V, A, u) is a potential game if there exists a function ®: A — R such that
ui(ajsa-i) —ui(ai;a—;) = ®(ajsa-;) - d(ai;a—;)

foralla,a’ € AandallieN.

> Battle of the sexes

> Congestion games (more later...)
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Basic properties

Existence of equilibria:
*> Any global maximizer a* € arg max @ of @ is a pure Nash equilibrium

» Any unilateral maximizer a* € A of @ is a pure Nash equilibrium

> Unilateral maximizers:
®(a*) > d(asza’;) foralla; e A;andallie N

When is a game a potential one?

Proposition

T is a potential game if and only if
VXng(x) =Vxvi(x) forallxeXandalli,jeN

where vi(x) = (4;(ai;%=i) ) a;e, is the mixed payoff vector of player i € N.
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Best-response dynamics

A natural updating process:
> Players may choose a new action ateach t =1,2,...

> Players best-respond if this strictly increases their payoff

Definition (Best-response dynamics)

The best-response dynamics are defined by the recursion

o € BRif(a—i,,t) if Qi ¢ BR,-,(a_,'t,,) (BRD)
LA Qi t otherwise

where i; is any player that updates at stage t.

Notes:
> Simultaneous: all players update simultaneously

»> lterative: players update in a round robin fashion

> Randomized: random subset of players updates at any given stage
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Convergence

Does (BRD) converge?

X No - and different modes of updating don't help o Think RPS

But good convergence properties in potential games:

Proposition (Monderer & Shapley, 1996)

Let T be a finite potential game. Then the iterative version of (BRD) converges to a pure Nash equilibrium after finitely

many steps.
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Potential games

Convergence

Does (BRD) converge?

X No - and different modes of updating don't help o Think RPS

But good convergence properties in potential games:

Proposition (Monderer & Shapley, 1996)

Let T be a finite potential game. Then the iterative version of (BRD) converges to a pure Nash equilibrium after finitely
many steps.

Notes:
> Simple proof: potential before and after an update is
®(afsa-;) - ®(aia-i) =ui(ajsa-;) —ui(ai;a—;) >0

whenever af # a; == no action profile is visited twice == the process stops

> Iterative vs. simultaneous: the distinction matters, simultaneous (BRD) may cycle
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Congestion games

> Network: multigraph G = (V, &)

> O/D pairs i € N: i-th player travels from O; to D; and induces 1 unit of traffic
> Paths Aj;: (sub)set of paths joining O; ~ D;

> Path choice: player i € N chooses path a; € A;

> Load £, = ¥ ;cnr 1(a; 3 e): total traffic load along edge e

> Edge cost function c. (€. ): cost along edge e when edge load is £,

> Player cost: ¢j(a) = Y.cq, ce(€e)
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Congestion games

Congestion games

> Network: multigraph G = (V, &)

> O/D pairs i € N: i-th player travels from O; to D; and induces 1 unit of traffic
> Paths Aj;: (sub)set of paths joining O; ~ D;

> Path choice: player i € N chooses path a; € A;

> Load £, = ¥ ;cnr 1(a; 3 e): total traffic load along edge e

> Edge cost function c. (€. ): cost along edge e when edge load is £,

> Player cost: ¢j(a) = Y.cq, ce(€e)

> Congestion game (atomic, non-splittable): T = (G, N, A, ¢)




Rosenthal Potential

Potential games

> Potential function: ®(al;a_;) — ®(ai;a-;) = ui(aj;a-;) —ui(ai;a—;) foralla;,aje A

> Pure equilibria exist and can be found by best-response dynamics
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Congestion g

Rosenthal Potential

Potential games

» Potential function: CD(a;;a_f) - ®(aiza-;) = ui(a;;a_i) —ui(ai;a-;) forall ai,a; € A;.

> Pure equilibria exist and can be found by best-response dynamics

Theorem (Rosenthal, 1973)

Any (atomic, non-splittable) congestion game admits the potential function

€. (a)

®(a)=), > c(k) forallae HFA,-

ee€ k=1

MaBnuatiy



Congestion games

Proof of Rosenthal's Theorem

Theorem (Rosenthal, 1973)

Any (atomic, non-splittable) congestion game admits the potential function

te(a)
®d(a)=> > ce(k) forallae [ A
e k=1 ieN

Consider a strategy profile a € [T;.xr Ai and a strategy a; € A;. Then:

. (ajsa;) Le(aj,—a;)
O(aja-) - O(azai) =Y > (k)= > c(k)
ee€ k=1 ecE k=1
= Y ce(le(a)+1) = Y ce(le(a)).
ecal\a; eca;\a/

S 00 O

=& NB: The converse is also true (Monderer & Shapley, 1996).
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Congestion games

The Price of Anarchy

How bad is selfish routing?
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Congestion games

The Price of Anarchy

How bad is selfish routing?

Definition (Social optimum)

The social optimum of a congestion game is the value

Opt(T') = min C(a) (50)

where C(a) = ¥, ci(a) is the game’s social cost function.

Definition (Price of Anarchy; Koutsoupias & Papadimitriou, 1999)

The POA! (POA!) of a congestion game I’ is defined as

_ C(a")
PoA(T) = a eEq(r) Oopt(T)" e

1 MaBnuatikiv
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Congestion games

The Braess network

101 X

Figure: The Braess network




Bounds of PoA: Linear costs |

We will focus on the games with linear costs, i.e, c.(£) = A.€ + Be, Ve.

Theorem (Christodoulou & Koutsoupias '05)

In any (nonatomic splittable) congestion game with linear cost functions PoA(T) < 2.

1= NB: focus for simplicity on the identity cost function ¢, () = ¢
» Let a* be any equilibrium and a®"" be an action minimizing the social cost:
ci(al,a’) <ci(al™ ar) = Y ce(le(al™ a’)) < Y ce(le(a’) +1)

eealopt eeu?p‘

> Then:
C(a*) = .Z/\:/c,-(a*) <SS ce(le(at) +1) = Y e (a®) - [Le(a’) +1]

iEN e 0Pt ee&
i

> The social cost may further be bounded as

c(ay s 3 DL AN Lo Sewom

por 3 3 3
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Congestion games

Bounds of PoA: Linear costs I

582

2
w5 NB: For any positive integers «, 8, we have B(a +1) < % + 2~

> Similar analysis for linear cost (h. # 1, k. # 0). O
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Exponential weights and the replicator dynamics

Basic questions

How do players learn from the history of play?

Do players end up playing a Nash equilibrium?
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Exponential weights and the replicator dynamics

The model

Sequence of events

Require: finite game T = T(N, A, u)

repeat
At each epoch ¢ > 0 do simultaneously for all players i € A/ # continuous time
Choose mixed strategy x; (t) € X; := A(A;) # mixing
Encounter mixed payoff vector v; (x(t)) and get mixed payoff u; (x(t)) = (vi(t), x(t)) #feedback phase

until end
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Exponential weights and the replicator dynamics

The model

Sequence of events

Require: finite game T = T(N, A, u)

repeat
At each epoch ¢ > 0 do simultaneously for all players i € A/ # continuous time
Choose mixed strategy x; (t) € X; := A(A;) # mixing
Encounter mixed payoff vector v; (x(t)) and get mixed payoff u; (x(t)) = (vi(t), x(t)) #feedback phase
until end

Defining elements
> Time: continuous
> Players: finite
> Actions: finite

> Mixing: yes

» Feedback: mixed payoff vectors
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Exponential weights and the replicator dynamics

Exponential weights

Exponential reinforcement mechanism:

> Score each action based on its cumulative payoff over time:

t
Yiar(0) = [ via (x(5)) ds
> Play an action with probability exponentially proportional to its score

Xia; (1) o< exp(yia; (1))

Exponential weight dynamics

Yia; = Via; ()
exp(yia, ) (EW)

Xig, =
o Za;eA, eXP(}’ia;)
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Exponential weights and the replicator dynamics

The replicator dynamics

How do mixed strategies evolve under (EWD)?
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Exponential weights and the replicator dynamics

The replicator dynamics

How do mixed strategies evolve under (EWD)?

The replicator dynamics (Taylor & Jonker, 1978)

)'Ciui = Xia; I:Viui(X) - ZafeA,- x,«a;v,«a;(x)]
i

= Xig, [ui(ais x-i) — ui(x)]

(RD)

“The per capita growth rate of a strategy is proportional to its payoff excess”

= Hofbauer & Sigmund (1998); Weibull (1995); Hofbauer & Sigmund (2003); Sandholm (2010)
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Exponential weights and the replicator dynamics

The replicator dynamics

How do mixed strategies evolve under (EWD)?

The replicator dynamics (Taylor & Jonker, 1978)

)'Ciui = Xia; I:Viui(X) - ZafeA,- x,«agvia;(x)]
i

= Xig, [ui(ais x-i) — ui(x)]

(RD)

“The per capita growth rate of a strategy is proportional to its payoff excess”

= Hofbauer & Sigmund (1998); Weibull (1995); Hofbauer & Sigmund (2003); Sandholm (2010)

Proposition
Solution orbits of (EWD) <= interior orbits of (RD)
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Exponential weights and the replicator dynamics

Evolution of mixed strategies: Examples

What do the dynamics look like?

Replicator dynamics in a Congestion Game

T -

©,0)

0
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Exponential weights and the replicator dynamics

Evolution of mixed strategies: Examples

What do the dynamics look like?

Replicator dynamics in the Battle of the Sexes




Evolution and learning in games

[e]e]e]e] Je]

Exponential weights and the replicator dynamics

Evolution of mixed strategies: Examples

What do the dynamics look like?

Replicator dynamics in Matching Pennies
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Exponential weights and the replicator dynamics

Evolution of mixed strategies: Examples

What do the dynamics look like?

Replicator dy ics in the Prisoner's Dil

04

65 i i 6,0

00 0.2 04 0.6 08 10
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Exponential weights and the replicator dynamics

Evolution of mixed strategies: Examples

What do the dynamics look like?
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Exponential weights and the replicator dynamics

Evolution of mixed strategies: Examples

What do the dynamics look like?

EKMA, Thiju
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What do the dynamics look like?
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Exponential weights and the replicator dynamics

Evolution of mixed strategies: Examples

What do the dynamics look like?




Evolution and learning in games
00000e

Exponential weights and the replicator dynamics

Structural properties

Basic properties of (EWD)/(RD)

> Well-posedness: every initial condition x € X admits a unique solution trajectory x(¢) that exists for all
time

®¢ Proof: Picard-Lindelsf
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time
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> Consistent: x(t) € X forall t >0

*> Assuming x(0) € X'
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Exponential weights and the replicator dynamics

Structural properties

Basic properties of (EWD)/(RD)

> Well-posedness: every initial condition x € X admits a unique solution trajectory x(¢) that exists for all
time
*¢ Proof: Picard-Lindelsf

> Consistent: x(t) € X forall t >0
*> Assuming x(0) € X'

» Faces are forward invariant (“strategies breed true”):

Xia;(0) >0 <= xiq,(t) >0 forallt>0
Xia;(0) =0 < xio,(t) =0 forallt>0
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Asymptotic analysis and rationality

Dynamics and rationality

Are game-theoretic solution concepts consistent with the players’ dynamics?

> Do dominated strategies die out in the long run?
> Are Nash equilibria stationary?
> Are they stable? Are they attracting?

» Do the replicator dynamics always converge?

» What other behaviors can we observe?
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Asymptotic analysis and rationality

Dominated strategies

Suppose a; € A; is dominated by a; € A;

> Consistent payoff gap:

Vig; (x) < v (x) —€e forsomee>0
i
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Dominated strategies

Suppose a; € A; is dominated by a; € A;

> Consistent payoff gap:
Vig; (x) < v (x) —€e forsomee>0

> Consistent difference in scores:

Yia (D)= [ iay () ds < [ Tviag () e ds =y (1) - et
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Asymptotic analysis and rationality

Dominated strategies

Suppose a; € A; is dominated by a; € A;

> Consistent payoff gap:
Vig; (x) < v (x) —€e forsomee>0

> Consistent difference in scores:
t t
Yia; (1) = fo Via; (%) ds < fo [Viay (x) —e]ds = yiar () — et
> Consistent difference in choice probabilities

Xia; (1) _ exp(yia; (1))

< exp(-¢t)

% () (i (D)




Asymptotic analysis and rationality

Dominated strategies

Suppose a; € A; is dominated by a; € A;

> Consistent payoff gap:
Vig; (x) < v (x) —€e forsomee>0

> Consistent difference in scores:
t t
Yia; (1) = fo Via; (%) ds < fo [Viay (x) —e]ds = yiar () — et
> Consistent difference in choice probabilities

Xia (1) _ exp(yia ()
Y () el () PN

Theorem (Samuelson & Zhang (1992))

Let x(t) be a solution orbit of (EWD)/(RD). If a; € A; is dominated, then
Xia, (1) =exp(-O(t)) ast— oo

In words: under (EWD)/(RD), dominated strategies become extinct at an exponential rate.
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Asymptotic analysis and rationality

Dominated strategies

Suppose a; € A; is dominated by a; € A;

> Consistent payoff gap:
Vig; (x) < v (x) —€e forsomee>0

> Consistent difference in scores:
t t
Yia; (1) = fo Via; (%) ds < fo [Viay (x) —e]ds = yiar () — et
> Consistent difference in choice probabilities

Xia (1) _ exp(yia ()
Y () el () PN

Theorem (Samuelson & Zhang (1992))

Let x(t) be a solution orbit of (EWD)/(RD). If a; € A; is dominated, then
Xia, (1) =exp(-O(t)) ast— oo

In words: under (EWD)/(RD), dominated strategies become extinct at an exponential rate.

*¢ Self-check: extend to iteratively dominated strategies
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Asymptotic analysis and rationality

Stationarity of equilibria

Nash equilibrium: vi, (x*) > v;,r (x*) for all a;, aj € A; with Xiy, >0
;

> Supported strategies have equal payoffs:

Via; (x*) = v, (x*) forall a;,aj € supp(x;)
i
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Asymptotic analysis and rationality

Stationarity of equilibria

Nash equilibrium: vi, (x*) > v;,r (x*) for all a;, aj € A; with Xiy, >0
;

> Supported strategies have equal payoffs:

Via; (x*) = v, (x*) forall a;,aj € supp(x;)
i

> Mean payoff equal to equilibrium payoff:

ui(x*) = via, (x*) forall a; € supp(x;)




Evolution and learning in games
[e]e] lele]e]e]

Asymptotic analysis and rationality

Stationarity of equilibria

Nash equilibrium: vi, (x*) > v;,r (x*) for all a;, aj € A; with Xiy, >0
;

> Supported strategies have equal payoffs:

Via; (x*) = v, (x*) forall a;,aj € supp(x;)
i

> Mean payoff equal to equilibrium payoff:

ui(x*) = via, (x*) forall a; € supp(x;)

> Replicator field vanishes at Nash equilibria:

%, [Via; () —ui(x*)] =0 foralla; e A;
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Asymptotic analysis and rationality

Stationarity of equilibria

Nash equilibrium: vi, (x*) > v;,r (x*) for all a;, aj € A; with Xiy, >0
;

> Supported strategies have equal payoffs:
Via, (x*) = vigr (x*) forall a;, aj € supp(x7)
> Mean payoff equal to equilibrium payoff:
ui(x*) = via, (x*) forall a; € supp(x;)
> Replicator field vanishes at Nash equilibria:

%, [Via; () —ui(x*)] =0 foralla; e A;

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x(0) is a Nash equilibrium =— x(t) = x(0) forall t > 0




Stationarity of equilibria

Nash equilibrium: vi, (x*) > v;,r (x*) for all a;, aj € A; with Xiy, >0
;

> Supported strategies have equal payoffs:

Via; (x*) = v, (x*) forall a;,aj € supp(x;)
> Mean payoff equal to equilibrium payoff:
ui(x*) = via, (x*) forall a; € supp(x;)
> Replicator field vanishes at Nash equilibria:

%, [Via; () —ui(x*)] =0 foralla; e A;

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x(0) is a Nash equilibrium =— x(t) = x(0) forall t > 0

X The converse does not hold!

*¢ Self-check: All vertices of X’ are stationary. General statement?
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Asymptotic analysis and rationality

Stability

Are all stationary points created equal?

Definition (Lyapunov stability)

x* is (Lyapunov) stable if, for every neighborhood U of x* in X, there exists a neighborhood U of x* such that
x(0) el = x(t)eU forallt>0

=& Trajectories that start close to x* remain close for all time




Stability and equilibrium

Proposition (Folk)

Suppose that x™ is Lyapunov stable under (EWD)/(RD). Then x* is a Nash equilibrium.
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Proposition (Folk)

Suppose that x™ is Lyapunov stable under (EWD)/(RD). Then x* is a Nash equilibrium.

Proof. Argue by contradiction:
> Suppose that x* is not Nash. Then
Via* (x*) =ui(af;x%;) <ui(aixZ;) = vig, (x*)

forsome af e supp(x}),a; € Aj,ie N

*> There exist ¢ > 0 and neighborhood U of x* such that v;s, (x) — v, (x) > eforx e U




Stability and equilibrium

Proposition (Folk)

Suppose that x™ is Lyapunov stable under (EWD)/(RD). Then x* is a Nash equilibrium.

Proof. Argue by contradiction:
> Suppose that x* is not Nash. Then
Vigr (x7) = wi(a3x2;) <uiaixl;) = via; (x7)
forsome af e supp(x}),a; € Aj,ie N

*> There exist ¢ > 0 and neighborhood U of x* such that v;s, (x) — v, (x) > eforx e U

> If x(t) is contained in U for all ¢ > 0 (Lyapunov property), then:

Viar (0 =i (1) = ¢+ [ 1i0r (40)) = v, (69 ds < c - et




Stability and equilibrium

Proposition (Folk)

Suppose that x™ is Lyapunov stable under (EWD)/(RD). Then x* is a Nash equilibrium.

Proof. Argue by contradiction:
> Suppose that x* is not Nash. Then
Vigr (x7) = wi(a3x2;) <uiaixl;) = via; (x7)
forsome af e supp(x}),a; € Aj,ie N

*> There exist ¢ > 0 and neighborhood U of x* such that v;s, (x) — v, (x) > eforx e U

> If x(t) is contained in U for all ¢ > 0 (Lyapunov property), then:

Viar (0 =i (1) = ¢+ [ 1i0r (40)) = v, (69 ds < c - et

> We conclude that x;,+ (f) — 0, contradicting the Lyapunov stability of x*. O
1




Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;~.. x(t) = x* whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting
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Asymptotic analysis and rationality

Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;~.. x(t) = x* whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).
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Asymptotic analysis and rationality

Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;~.. x(t) = x* whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).

Proof. Compare scores:

> Ifa* = (af,...,ay) isstrict Nash == v, « (x*) > vis, (x*) forall a; € A;\{a]}

> There exist ¢ > 0 and a nhd U of x* such that v; + (x) — via, (x) > eforx e U
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Asymptotic analysis and rationality

Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;~.. x(t) = x* whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).

Proof. Compare scores:
> Ifa* = (af,...,ay) isstrict Nash == v, « (x*) > vis, (x*) forall a; € A;\{a]}
> There exist ¢ > 0 and a nhd U of x* such that v; + (x) — via, (x) > eforx e U

> If x(t) remains in U for all > 0, then

Viar () =it (0 = ¢+ [, (5(5)) = e (5()) ] ds < = e

ie,limisoo Xia; (t) =0
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Asymptotic analysis and rationality

Asymptotic stability

Are Nash equilibria attracting?

> x” is attracting if lim;~.. x(t) = x* whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).

Proof. Compare scores:
> Ifa* = (af,...,ay) is strict Nash == Via* (x*) > vig,(x*) foralla; € A;\ {a]}
> There exist ¢ > 0 and a nhd U of x* such that Via* (x) = Vig,(x) >eforx eld
> If x(t) remains in U for all > 0, then
iar (0= 31 (0 = €4 [ Toiag () = v, (x(5)) ] ds < =t

ie,limisoo Xia; (t) =0

> Proof complete by showing Lyapunov stability o Left as self-check exercise O




d learning in games
OD000000e

Asymptotic analysis and rationality

The "folk theorem" of evolutionary game theory

Theorem ("folk"; Hofbauer & Sigmund, 2003)

Let T be a finite game. Then, under (RD), we have:

1. x* is a Nash equilibrium = x™ is stationary
2. x* is the limit of an interior trajectory == x* is a Nash equilibrium
3. x" isstable = x* is a Nash equilibrium

4. x* is asymptotically stable <= x* is a strict Nash equilibrium

Notes:
X Converse to (1),(2) and (3) does not hold!

v Proof of (2) similar to (3) *> Do as self-check

> Proof of “ <" in (4): requires different techniques
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@ Multi-armed bandits




Multi-armed bandits

Robbins’ multi-armed bandit problem: how to play in a (rigged) casino?
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Online learning in continuous time

Game-theoretic learning

Sequence of events — continuous time

Require: finite game I = T(N, A, u)

repeat
At each epoch t > 0 do simultaneously for all players i € A/ # continuous time
Choose mixed strategy x; (t) € X; := A(A;) # mixing
Encounter mixed payoff vector v; (x(t)) and get mixed payoff u; (x(t)) = (vi(t), x(t)) #feedback phase
until end

Defining elements
> Time: t>0
»> Players: finite
> Actions: finite

*> Payoffs: game

> Feedback: mixed payoff vectors
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Online learning in continuous time

Online learning

Sequence of events — continuous time

Require: set of actions A = {1,..., A}, stream of payoff vectors v; € [0,1]%, ¢ > 0

repeat
At each epoch t > 0 do # continuous time
Choose mixed strategy x; € X # mixing
Encounter payoff vector v and get mixed payoff u;(x¢) = (v¢, x¢) #feedback phase
until end

Defining elements
> Time: t>0
> Players: single # “unilateral viewpoint”
> Actions: finite

> Payoffs: exogenous # “game against Nature”

> Feedback: mixed payoff vectors
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Online learning in continuous time

Online v. multi-agent learning

How are payoffs generated?

> Multi-agent viewpoint

> Multiple agents
> Endogenous rewards: individual payoffs depend on other agents

> Game-theoretic: underlying mechanism is a (finite) game

> Online viewpoint
> Single agent

> Exogenous rewards: different payoff vector at each stage

> Agnostic: no assumptions on mechanism generating v(t) # dispassionate Nature
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Online learning in continuous time

Online v. multi-agent learning

How are payoffs generated?

> Multi-agent viewpoint

> Multiple agents
> Endogenous rewards: individual payoffs depend on other agents

> Game-theoretic: underlying mechanism is a (finite) game

> Online viewpoint
> Single agent
> Exogenous rewards: different payoff vector at each stage

> Agnostic: no assumptions on mechanism generating v(t) # dispassionate Nature

What is the interplay between online and multi-agent learning?
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Online learning in continuous time

The agent's regret

Performance of a policy x; measured by the agent’s regret

ui(p) = ue(xt)
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Online learning in continuous time

The agent's regret

Performance of a policy x; measured by the agent’s regret

[ Tp) - i)
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Online learning in continuous time

The agent's regret

Performance of a policy x; measured by the agent’s regret

max _/;T[ut(p)fut(xt)]dt

peX
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Online learning in continuous time

The agent's regret

Performance of a policy x; measured by the agent’s regret

T T
Reg(T) = max [ [ue(p) - ()] dt = max [ {vi,p ) dt




Multi-armed bandits
[e]e]e] le]ele]e]e]e)

Online learning in continuous time

The agent's regret

Performance of a policy x; measured by the agent’s regret

T T
Reg(T) = max [ [ue(p) - ()] dt = max [ {vi,p ) dt

No regret: Reg(T) = o(T) # the smaller the better

“The chosen policy is as good as the best fixed strategy in hindsight.”
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Online learning in continuous time

The agent's regret

Performance of a policy x; measured by the agent’s regret

T T
Reg(T) = max [ [ue(p) - ()] dt = max [ {vi,p ) dt

# the smaller the better

No regret: Reg(T) = o(T)
“The chosen policy is as good as the best fixed strategy in hindsight.”

Prolific literature:
> Economics *¢ Hannan (1957), Fudenberg & Levine (1998)
» Mathematics =& Blackwell (1956), Bubeck & Cesa-Bianchi (2012)
=& Shalev-Shwartz (2011), Cesa-Bianchi & Lugosi (2006)

» Computer science




Online learning in continuous time

Exponential weights for online learning

Exponential weight dynamics

Vi =V xe = A(yr) (EWD)
where A:R* — X is the logit map
exp(a)
Aa(y) =
Yareaexp(yar)

Does (EWD) lead to no regret?

BnpatKdy
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Online learning in continuous time

Bounding the regret

> Fix a comparator p € X

> Consider associated regret

T

Reg (T) = /; (v, p—x¢) dt
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Online learning in continuous time

Bounding the regret

> Fix a comparator p € X

> Consider associated regret

» Focus on integrand

T

Reg (T) = /; (v, p—x¢) dt

(v, xe = p) = (36, A(y:) - p)
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Online learning in continuous time

Bounding the regret

> Fix a comparator p € X

> Consider associated regret
T

Reg (T) = /; (v, p—x¢) dt

» Focus on integrand
(visxt = p) = (76, A(y:) = p)
> Suppose we can find a potential function ®( y) such that

VO() = A -p = T = (A - )
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Online learning in continuous time

Bounding the regret

> Fix a comparator p € X

> Consider associated regret
T

Reg (T) = /; (v, p—x¢) dt

» Focus on integrand
(visxt = p) = (76, A(y:) = p)
> Suppose we can find a potential function ®( y) such that

VO() = A -p = T = (A - )

> Then
Tdo

Reg,(T) =~ | = dt=®(y0) = ®(yr)

EKMA, Thiu
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Online learning in continuous time

Bounding the regret

> Fix a comparator p € X

> Consider associated regret
T

Reg (T) = /; (v, p—x¢) dt

» Focus on integrand
(visxt = p) = (76, A(y:) = p)
> Suppose we can find a potential function ®( y) such that
do .
VO =AM -p = =6 A) - p)
> Then

Tdo

Reg,(T) =~ | = dt=®(y0) = ®(yr)

If suitable potential exists == Reg(T) < ®(y) — min ®

EKMA, Thiu
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Online learning in continuous time

Finding a potential

What could a potential function look like?
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Online learning in continuous time

Minimizing the potential

What is the minimum value of the potential?
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Online learning in continuous time

Energy functions

We can encode the above with the help of the following energy functions:

> The Fenchel coupling:

F(p,y) =), palogpa +log Z exp(ya) = D PaYa

ae A ac A

> Substituting x < A(y) yields the Kullback-Leibler divergence:

Dxi(p,x) = ), pa 1ng*
acA

d
Key property: EF(‘D’ yt) = (v, xe = p)

EKMNA,



Online learning in continuous time

Regret of (EWD)

Theorem (Sorin (2009))
Under (EWD), the learner enjoys the regret bound

Reg, (T) < F(p,y0) = ) palogpa +log ZAeXP(ya,o) - Z;‘paya,o
acA ae ae

In particular, if (EWD) is initialized with yo = 0, we have

Reg(T) <logA

EKMA, Thiipa MaBnuatuby
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Online learning in discrete time

Online learning in discrete time

Sequence of events — discrete time

Require: set of actions A; sequence of payoff vectors v, t = 1,2, ...
forallt=1,2,... do
Choose mixed strategy x; € X := A(A)

Play action a; ~ x;
Encounter payoff vector v; and receive payoff us(a;) = va,r

end for

Defining elements

> Time: discrete
*> Players: single
> Actions: finite

*> Payoffs: exogenous

> Feedback: depends (full or partial information, ...)




Online learning in discrete time

Sequence of events — discrete time

Require: set of actions A; sequence of payoff vectors v, t = 1,2, ...
forallt=1,2,... do
Choose mixed strategy x; € X := A(A)
Play action a; ~ x;
Encounter payoff vector v; and receive payoff us(a;) = va,r

end for

T

i
Reg(T) = maxZ[va [a:~p] - E,,, ., [ar ~ x,]] = max Z(vt,p - Xt)
PEEE peX

t=1




The feedback process

Types of feedback

From best to worst (more to less info):

> Full information: Vi # deterministic vector feedback
> Noisy payoffvectors: Ve + Z; # stochastic vector feedback

> Bandit/ Payoﬁ-based: ut(a[) = Va,t # stochastic scalar feedback
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Online learning in discrete time

The feedback process

Types of feedback

From best to worst (more to less info):

> Full information: Vi # deterministic vector feedback
> Noisy payoffvectors: Ve + Z; # stochastic vector feedback
> Bandit/ Payoﬁ-based: ut(a[) = Va,t # stochastic scalar feedback
V.
m Play x; < (1/2,1/3,1/6) ~ Draw a; < 1

Full information

17]|7]7 " () ) )

A
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Online learning in discrete time

The feedback process

Types of feedback

From best to worst (more to less info):
> Full information: Vi # deterministic vector feedback
> Noisy payoffvectors: Ve + Z; # stochastic vector feedback
> Bandit/ Payoﬁ-based: ut(a[) = Va,t # stochastic scalar feedback
)
m Play x; < (1/2,1/3,1/6) ~ Draw a; < 1
Noisy payoff vectors
L7171 "t (12)

A
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Online learning in discrete time

The feedback process

Types of feedback

From best to worst (more to less info):
> Full information: Vi # deterministic vector feedback
> Noisy payoffvectors: Ve + Z; # stochastic vector feedback
> Bandit/ Payoﬁ-based: ut(a[) = Va,t # stochastic scalar feedback
)
m Play x; < (1/2,1/3,1/6) ~ Draw a; < 1
Bandit / Payoff-based
CIT - @ @ @

A
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Online learning in discrete time

The feedback process

Types of feedback

From best to worst (more to less info):

> Full information: Vi # deterministic vector feedback
> Noisy payoffvectors: Ve + Z; # stochastic vector feedback
> Bandit/ Payoﬁ-based: ut(a[) = Va,t # stochastic scalar feedback

Defining features:

> Vector (all payoffs) vs. Scalar (bandit)

> Deterministic (full info) vs. Stochastic (noisy, bandit)

i Randomness defined relative to history of play F; := F(x1,...,x;)

1 Other feedback models also possible (noisy / delayed observations,...)
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Online learning in discrete time

Regret

The agent’s regret in discrete time

T
Realized regret: Reg(T) = m:a(z:[u,(a) —u(ar)]
aeA o

T T

Mean regret: Reg(T) = max Y [u:(p) — us(x;)] = max Y (ve, p — x:)
peX =1 peX =1
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Online learning in discrete time

Regret

The agent’s regret in discrete time

T
Realized regret: Reg(T) = m:a(z:[u,(a) —u(ar)]
aeA o

T T

Mean regret: Reg(T) = max Y [u:(p) — us(x;)] = max Y (ve, p — x:)
peX =1 peX =1

*» Adversarial framework: regret guarantees against any given sequence v;

> No distinction between mean regret and pseudo-regret

¢ Bubeck & Cesa-Bianchi (2012)

> Not here: stochastic, Markovian, oblivious/non-oblivious,...

=& Cesa-Bianchi & Lugosi (2006)
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Online learning in discrete time

Feedback

Three types of feedback (from best to worst):
*> Full, exact information: observe entire payoff vector v,

*> Full, inexact information: observe noisy estimate of v,

> Partial information / Bandit: only chosen component u:(a;) = va, ¢
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Online learning in discrete time

Feedback

Three types of feedback (from best to worst):
*> Full, exact information: observe entire payoff vector v,
*> Full, inexact information: observe noisy estimate of v,

> Partial information / Bandit: only chosen component u:(a;) = va, ¢

The oracle model

A stochastic first-order oracle (SFO) model of v; is a random vector of the form
ét =vi+ Ui+ b; (SFO)

where U is zero-mean and by = E[g; | ;] — v(x:) is the bias of g;

> Bias: 6] < B:
> Variance: E[|U|* | F¢] < of

> Second moment: E[|lg:]* | Fe] < M7
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Online learning in discrete time

Reconstructing payoff vectors

Importance weighted estimators

Fix a payoff vector v € R* and a probability distribution P on A. Then the importance weighted estimator of v,

relative to P is the random variable

va/Pa if ais drawn (a = a’
. 1, / ( ) T

Py 0 otherwise (a #a’)

IWE as an oracle model

> Unbiased:

> Second moment:
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Online learning in discrete time

The Hedge algorithm

Algorithm Hepce

# ExpWEIGHT with full information

Require: set of actions A; sequence of payoff vectors v; € [0, I]A, t
Initialize: y; € RA
forallt=1,2,... do
set x; < A(yr)

play a; ~ x; and receive v,
observe v
set yry1 < Yr + Yive

end for

=12,...

# mixed strategy
# choose action/ get payoff
#full info feedback

# update scores

Basic idea:

> Aggregate payoff information

> Choose actions with probability exponentially proportional to their scores

> Rinse & repeat
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Online learning in discrete time

Regret analysis
> Use constant Ye =Y # complications otherwise
> Fix benchmark strategy p € X and consider the Fenchel coupling:

Fi=F(p,y:) = ). palogpa +log Y exp(yar) = (1> p)

ac A acA

> E i lity:
nergy inequality. o 5
Fro < Fr+y(ve, xe — p) + 5Y [vello

> Telescope to get

Fl )/T
Reg (T) < 7 ey

> How to proceed?
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Online learning in discrete time

Regret analysis, cont'd

How to choose y?
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Online learning in discrete time

Regret of Hedge

Theorem (Auer et al.,, 1995; Sorin, 2009)

= Assume:
> sequence of payoff vectors v; € [0,1]*; full info feedback

>y = /(2log AT

1= Then: HEDGE enjoys the bound

Reg,(T) <\/2logA- T = O(VT)

BnpatKdy
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Online learning in discrete time

Regret of Hedge

Theorem (Auer et al.,, 1995; Sorin, 2009)

= Assume:
> sequence of payoff vectors v; € [0,1]*; full info feedback

>y = /(2log AT

1= Then: HEDGE enjoys the bound

Reg,(T) <\/2logA- T = O(VT)

Remarks:
» Cannot achieve O(1) regret as in continuous time #Why?
> This bound is tightin T = Abernethy et al, 2008

» Logarithmic dependence on A é Can deal with exponentially many arms!
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Learning with oracle feedback

Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of v, is a random vector g; of the form

ét =v+ U+ by (SFO)

where Uy is zero-mean and b, = E[g; | F:] — v(x:) is the bias of g;




Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of v, is a random vector g; of the form

ét =v+ U+ by (SFO)

where Uy is zero-mean and b, = E[g; | F:] — v(x:) is the bias of g;

> Bias:

|bt] o < B:
> Variance: E[|U:|% | F:] < of
w | Fil < M?

> Second moment: K[

gt
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Learning with oracle feedback

Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of v; is a random vector g; of the form

gAt:Vt+Ut+b[

where Uy is zero-mean and b; = E[g; | F:] — v(x:) is the bias of g;

(SFO)

Algorithm Hepce-O

# ExpWEIGHT with SFO feedback

Require: set of actions .A; sequence of payoff vectors v, e R4, t = 1,2, ...
Initialize: y; ¢ R4
forallt=1,2,... do
setx; < A(yr)
play a; ~ x; and receive vg,,+
observe g; < v;
set yir1 < Vi + Pige
end for

# mixed strategy
# choose action / get payoff
#full info feedback

# update scores
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Learning with oracle feedback

Regret analysis
» Use constant Yt =Y # complications otherwise
> Fix benchmark strategy p € X and consider the Fenchel coupling:

F=F(p,y:) = Z;,‘Pa log pa +log Z;leXp(ya,z) ~ (5 p)

> Energy inequality:
1,2

Fin SF:'*'Y(ét:M‘P)ﬂ‘gY :

oo

A

gt

> Expand and rearrange:

2

oo

A

Vgt

% +(Ut,xt—p)+(bt,xt—p)+5

> How to proceed?
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Learning with oracle feedback

Regret analysis, cont'd

Bound each term separately:
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Learning with oracle feedback

Regret of Hedge-O

5 Assume:
> sequence of payoff vectors v; € RA; SFO feedback

2log A
NS
a1 M;

1= Then: forall p € X, HEDGE-O enjoys the bound

T T
Reg, (T) <2} Bi+ ‘ 2logA- ) M?
t=1 t=1
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Learning with oracle feedback

Regret of Hedge-O

5 Assume:
> sequence of payoff vectors v; € RA; SFO feedback

2log A
NS
a1 M;

1= Then: forall p € X, HEDGE-O enjoys the bound

T T
Reg, (T) <2} Bi+ ‘ 2logA- ) M?
t=1 t=1

> (’)(ﬁ) regret if feedback is unbiased (b; = 0) and has finite variance (M; < M)

Remarks:

> This bound is tight in T =6 Abernethy etal., 2008

» Logarithmic dependence on A & Can deal with exponentially many arms!




with bandit feedback

Learning with bandit feedback

Three types of feedback (from best to worst):

> Partial information / Bandit: only chosen component u(a;) = va, s

Importance weighted estimators

Fix a payoff vector v € R and a probability distribution P on A. Then the importance weighted estimator of v,
is the random variable

1 va/P, if a is drawn (a = a’
Ga= —Va= / ( ) (IWE)
Py 0 otherwise (a #a')

IWE as an oracle model

» Unbiased: E[ga] = va w by =0

» Second moment: E[gﬁ] = vﬁ/Pu w M, = O(1/ min, x,,)
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Learning with bandit feedback

The EXP3 algorithm

Algorithm Exponential weights for exploration and exploitation (EXP3) # Hepce with bandit feedback

Require: set of actions A; sequence of payoff vectors v € [0,1]4, £ =1,2, ...

Initialize: y; € R4

forallt=1,2,... do

set x; < A(yr) # mixed strategy
play a; ~ x; and receive v,,,+ # choose action/ get payoff
» Vay,t .
set gr < €q, #IW estimator
Xay,t
set yp41 < Yt + )’tﬁt # update scores

end for




Multi-armed bandits
000000

Learning with bandit feedback

Regret analysis
» Use constant Yt =Y # complications otherwise
> Fix benchmark strategy p € X and consider the Fenchel coupling:

F=F(p,y:) = Z;,‘Pa log pa +log Z;leXp(ya,z) ~ (5 p)

> Energy inequality:
1,2

Fin SF:'*'Y(ét:M‘P)ﬂ‘gY :

oo

A

gt

> Expand and rearrange:

2

oo

A

Vgt

% +(Ut,xt—p)+(bt,xt—p)+5

> How to proceed?
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Learning with bandit feedback

Energy inequality

Basic lemma

Fix some y,w € R, and let x oc exp(y). Then:

log > exp(ya +wa) <log ¥~ exp(ya) + (x,w) + 3 |w[
acA ac A
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Learning with bandit feedback

Energy inequality

Basic lemma

Fix some y € R™, w € (—o0,1]*, and let x o< exp(y). Then:

log > exp(ya +wa) <log > exp(ya) + (X, w)+ > XaWe
acA acA acA
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Learning with bandit feedback

Regret analysis, cont'd




Learning with bandit feedback

Regret of EXP3

Theorem (Auer et al., 1995)

= Assume:

> EXP3is run for T iterations with y = \/log A/ (AT)
> Then: Forall p € X, the learner enjoys the bound

E[Reg,(T)] <2\/AlogA-T

BnpatKdy



Learning with bandit feedback

Regret of EXP3

Theorem (Auer et al., 1995)

= Assume:

> EXP3is run for T iterations with y = \/log A/ (AT)
> Then: Forall p € X, the learner enjoys the bound

E[Reg,(T)] <2\/AlogA-T

Remarks:
v Tightin T > Abernethy et al, 2008
X Worse than full info bound by a factor of /A

> Regret can be improved to O(V/AT) but no lower

» T must be known

# cf. Hedge-O

=& Audibert & Bubeck, 2010; Abernethy etal, 2015

A\ Thoughts?

> (IWE) is still unbounded A Thoughts?

BnpatKdy
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Outline

@ Online convex optimization




Online convex optimization

Preliminaries

Setting

Sequence of events: Online convex optimization (OCO)

Require: convex action set X' Rd; convex loss functions £;: X - R, t=1,2,...
repeat
Ateachepocht=1,2,... do

Choose action x; € X

# action selection

Encounter loss function £;: X — R # Nature plays

Incur cost ¢t = €(x;) #reward phase
Observe loss function ¢; #feedback phase
until end

Defining elements
> Time: discrete
> Players: single
> Actions: continuous

> Losses: exogenous

> Feedback: depends (function-based, gradient-based, loss-based, ...)
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Setting

Sequence of events: Online convex optimization (OCO)

Require: convex action set X' Rd; convex loss functions £;: X - R, t=1,2,...
repeat
Ateachepocht=1,2,... do

Choose action x; € X

# action selection

Encounter loss function €;: X — R # Nature plays

Incur cost ¢t = €(x;) #reward phase
Observe gradient gi = V€ (x;) #feedback phase
until end

Defining elements
> Time: discrete
*> Players: single
> Actions: continuous

> Losses: exogenous

> Feedback: depends (function-based, gradient-based, loss-based, ...)




Online convex optimization

Preliminaries

Setting

Sequence of events: Online convex optimization (OCO)

Require: convex action set X' Rd; convex loss functions £;: X - R, t=1,2,...
repeat
Ateachepocht=1,2,... do

Choose action x; € X

# action selection

Encounter loss function £;: X — R # Nature plays

Incur cost ¢t = €(x;) #reward phase
Observe cost ¢; = #;(x¢) #feedback phase
until end

Defining elements
> Time: discrete
> Players: single
> Actions: continuous

> Losses: exogenous

> Feedback: depends (function-based, gradient-based, loss-based, ...)




Feedback

Types of feedback

From best to worst (more to less info):

»> Full information: observe entire loss function £;: X — R # deterministic function feedback
> First-order info, exact: observe (sub)gradient g, € 9€;(x;) # deterministic vector feedback
> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback

> Zeroth-order info (bandit): observe only incurred cost ¢; = €:(x;) # deterministic scalar feedback
o
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Preliminaries

Feedback

Types of feedback

From best to worst (more to less info):

> First-order info, exact: observe (sub)gradient g, € 9€;(x;) # deterministic vector feedback

> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback

The oracle model

A stochastic first-order oracle (SFO) for g; € 0¢:(x:) is a random vector of the form

ét =gt + U[ + bt (SFO)

where Uy is zero-mean and b, = E[§; | 7] — g is the bias of g;
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Preliminaries

Regret

Performance measured by the agent’s regret (loss formulation):

[€:(xt) = &:(p)]
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Regret

Performance measured by the agent’s regret (loss formulation):

S [e(xe) - €(p)]

t=
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Performance measured by the agent’s regret (loss formulation):
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Preliminaries

Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = 1;1:\3( Z:; [:(xe) = €:(p)] = ;ft(;‘o) - I;E/?Z:;Zt(p)




Online convex optimization

Preliminaries

Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = 1;1:\3( Z:; [:(xe) = €:(p)] = ;ft(;‘o) - I;E/?Z:;Zt(p)

> No regret: Reg(T) = o(T)

»> Adversarial framework: minimize regret against any given sequence ¢;




Online convex optimization

Preliminaries

Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = 1;1:\3( Z:; [:(xe) = €:(p)] = ;ft(;‘o) - I;E/?Z:;Zt(p)

> No regret: Reg(T) = o(T)
»> Adversarial framework: minimize regret against any given sequence ¢;

> Expected regret:

BRes(1)] - E| may SlexGx) - 0]
> Pseudo-regret:

Reg(1) - magE| Slexx) - )]

t=1

EKMNA,



Online convex optimization

Preliminaries

Regret

Performance measured by the agent’s regret (loss formulation):

Reg(T) = 1;1:\3( Z:; [:(xe) = €:(p)] = ;ft(;‘o) - I;E/?Z:;Zt(p)

> No regret: Reg(T) = o(T)
»> Adversarial framework: minimize regret against any given sequence ¢;

> Expected regret:

BRes(1)] - E| may SlexGx) - 0]
> Pseudo-regret:

Reg(1) - magE| Slexx) - )]

» Reg(T) < E[Reg(T)]: bounds do not translate “as is” but “almost”

*¢ Cesa-Bianchi & Lugosi, 2006, Bubeck & Cesa-Bianchi, 2012, Lattimore & Szepesvari, 2020
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Learning with full information

Be the leader

> Suppose ¢; is observed before playing x;
> Then the agent can try to be the leader (BTL)

t
x; €argmin Yy £(x) (BTL)

xeX s=1




Be the leader

> Suppose ¢; is observed before playing x;
> Then the agent can try to be the leader (BTL)

t
x; €argmin Yy £(x) (BTL)

xeX s=1

Regret of BTL
= Under (BTL), the learner incurs Reg(T) = 0.




Be the leader

> Suppose ¢; is observed before playing x;
> Then the agent can try to be the leader (BTL)

t
x; €argmin Yy £(x) (BTL)

xeX s=1

Regret of BTL

= Under (BTL), the learner incurs Reg(T) = 0.

...unrealistic
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Learning with full information

Follow the leader

> Suppose ¢; is observed after playing x;
> Then the agent can try to follow the leader (FTL)

t
Xt41 € argmin Z £ (x) (FTL)

xeX s=1
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Learning with full information

Follow the leader

> Suppose ¢; is observed after playing x;
> Then the agent can try to follow the leader (FTL)

t
Xt41 € argmin Z £ (x) (FTL)

xeX s=1

Does (FTL) lead to no regret?




Learning with full information

Template bound for FTL

FTL regret bound

Forall p € X, the regret of (FTL) can be bounded as

T

Reg, (T) = ;[fr(xt) —e(p)] < Y[l (xe) = &i(xe)]

t=1




Learning with full information

Template bound for FTL

FTL regret bound

Forall p € X, the regret of (FTL) can be bounded as

Reg, (T) = ;[&(xt) —e(p)] < Y[l (xe) = &i(xe)]

t=

EKMA, Thiipa MaBnuatuby



Online convex optimization

000e0000000

Learning with full information

FTL against quadratic losses

Test (FTL) in an online quadratic optimization (OQO) problem:

0 (x) =1|x- pi|*> for some sequence of center points p;, t =1,2,... (0QO)




FTL against quadratic losses

Test (FTL) in an online quadratic optimization (OQO) problem:

e(x) =1]x- pi|*> for some sequence of center points p;, t =1,2,... (0QO)

Regret of FTL in quadratic problems

w5 Assume: (FTL) is run against (OQO) with sup, | p:|| < R
v/ Then: Reg(T) < 4R*(1+log T)




Learning with full information

FTL against quadratic losses

Test (FTL) in an online quadratic optimization (OQO) problem:

e(x) =1]x- pi|*> for some sequence of center points p;, t =1,2,... (0QO)

Regret of FTL in quadratic problems

w5 Assume: (FTL) is run against (OQO) with sup, | p:|| < R
v/ Then: Reg(T) < 4R*(1+1logT)

v

O

1 MaBnuatikiv
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Learning with full information

FTL against linear losses

Test (FTL) in an online linear optimization (OLO) problem:

£:(x) = (wi,x) for some sequence of loss vectors w; € Rd, t=12,... (OLO)




FTL against linear losses

Test (FTL) in an online linear optimization (OLO) problem:

2:(x) = (wi,x) for some sequence of loss vectors w; € Rd, t=12,... (OLO)

Chasing the leader

15 Assume: X = [-1,1] and (FTL) is run against (OLO) with w; = —1/2 and w; = (-1)* otherwise

/A What is the incurred regret?
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Learning with full information

Follow the regularized leader

Add a fictitious “day zero loss” == follow the regularized leader (FTRL)

t
Xee1 = argmin{Z Cs(x) + )Lh(x)} (FTRL)
xeX s=1 —
o (x)”
where
*> The regularization function h: X — R is strongly convex #h(x) - (K/2)|x|? convex for some K > 0

> The regularization weight A > 0 can be tuned by the optimizer

Main idea: Regularization == Stability == Less regret

=& Algorithm due to Shalev-Shwartz & Singer, 2006, Shalev-Shwartz, 2011
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Learning with full information

Example 1: Euclidean regularization

> Setup: X = R, linear losses £,(x) = (w, x)

> Regularizer:
2
h(x) = 3%

> Algorithm:

xeX s=1

t
X4l = argmin{Z(Ws, X) + %H‘xnz}
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Learning with full information

Example 1: Euclidean regularization

> Setup: X = R, linear losses £,(x) = (w, x)

> Regularizer:
2
h(x) = 3%

> Algorithm:

xeX s=1

t A 1 t
X4l = argmin{Z(ws,x) + EHxHZ} =-3 >owe=x— (1/M)w,
s=1
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Learning with full information

Example 1: Euclidean regularization

> Setup: X = R, linear losses £,(x) = (w, x)

> Regularizer:
2
h(x) = 3%

> Algorithm:

xeX s=1

t A 1 t
X4l = argmin{Z(ws,x) + EHxHZ} =-3 >owe=x— (1/M)w,
s=1

> Euclidean regularization + linear losses (w; = V€:(x¢)) = gradient descent:

Xep1 =x¢ — 1 VE&(x¢) (GD)
e
1)
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Learning with full information

Example 2: Entropic regularization

> Setup: X = A(A), linear payoffs u,(x) = (v, x) v payoffs instead of costs

> Regularizer:

h(x) = Z Xalogx,
ac A

> Algorithm:

xeX

t
Xipl = argmax{Z(vs,x> -2 Z Xa logx,z}

s=1 acA
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Learning with full information

Example 2: Entropic regularization

> Setup: X = A(A), linear payoffs u,(x) = (v, x)

> Regularizer:

h(x) = Z Xalogx,
ac A

> Algorithm:

xeX

t
Xip1 = argmax{Z(vs,x> -1 Z Xa logxﬂ} =

acA

s=1

1= payoffs instead of costs

exp(Li va.s/A)

YateA exp( Xy Var,s/A)
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Learning with full information

Example 2: Entropic regularization

> Setup: X = A(A), linear payoffs u,(x) = (v, x)

> Regularizer:

h(x) =) xalogx,
acA

> Algorithm:

1= payoffs instead of costs

exp(Li va.s/A)

xeX s=1 acA

t
Xip1 = argmax{Z(vs,x> -1 Z Xa logxﬂ} =

> Entropic regularization + linear payoffs == exponential weights:

1/1

-5
YVis1 =Yt + N Vi

Xt4+1 = A(}’Hl)
—
logit map

YateA exp( Xy Var,s/A)

(EW)




Learning with full information

Template bound for FTRL

FTRL regret bound

Forall p € X, the regret of (FTRL) can be bounded as

T

Reg,(T) < A[h(p) = h(x1)] + D [€:(xe) = €r(x141)]

t=1

1BNHATKY



Learning with full information

Template bound for FTRL

FTRL regret bound

Forall p € X, the regret of (FTRL) can be bounded as

Reg,(T) < A[h(p) = h(x1)] + D [€:(xe) = €r(x141)]

t=1

1 MaBnuatikiv
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Learning with full information

Variability bound for FTRL

Variability of FTRL

1= Assume: h is K-strongly convex; each ¢; is G,-Lipschitz continuous
v Then:

8:(x:) = €(xe31) < Gel|xes — x:| < GZ/(AK)
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Learning with full information

Variability bound for FTRL

Variability of FTRL

1= Assume: h is K-strongly convex; each ¢; is G,-Lipschitz continuous

v Then:
€(x1) = (x11) < Gilxen — x| < G/ (AK)




Learning with full information

Regret of FTRL

Theorem (Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2011)

== Assume: h is K-strongly convex; each €, is G-Lipschitz continuous
v Then: (FTRL) enjoys the regret bound

. G’
Reg,(T) < A[h(p) - minh] + RT

1BNHATKY



Learning with full information

Regret of FTRL

Theorem (Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2011)

== Assume: h is K-strongly convex; each €, is G-Lipschitz continuous
v Then: (FTRL) enjoys the regret bound

. G’
Reg,(T) < A[h(p) - minh] + RT

With assumptions as above, H = max h — min h and A = G\/T/(2KH), (FTRL) enjoys the bound

Reg(T) < G\/(2H/K) T = O(/T)

EKMA, Thiipa MaBnuatuby



Learning with full information

Regret of FTRL

Theorem (Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2011)

== Assume: h is K-strongly convex; each €, is G-Lipschitz continuous
v Then: (FTRL) enjoys the regret bound

. G’
Reg,(T) < A[h(p) - minh] + RT

With assumptions as above, H = max h — min h and A = G\/T/(2KH), (FTRL) enjoys the bound

Reg(T) < G\/(2H/K) T = O(/T)

Remarks:
> The bound is tight in T = Abernethy et al, 2008

> Requires full information and tuning in terms of T # can relax

EKMA, Thiipa MaBnuatuby



Feedback

Types of feedback

From best to worst (more to less info):

> First-order info, exact: observe (sub)gradient g, € 9€;(x;) # deterministic vector feedback

> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback




Online convex optimization
[e] O0@00000000C

ith gradient feedback

Feedback

Types of feedback

From best to worst (more to less info):

> First-order info, exact: observe (sub)gradient g, € 9€;(x;) # deterministic vector feedback

> First-order info, inexact: observe noisy estimate of g; # stochastic vector feedback

The oracle model

A stochastic first-order oracle (SFO) for g; € 0¢:(x:) is a random vector of the form

ét =gt + U[ + bt (SFO)

where Uy is zero-mean and b, = E[g; | F:] — v(x:) is the bias of g,
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Learning with gradient feedback

Follow the linearized leader

Can we relax the full information requirement of FTRL?

> Replace ¢; with first-order surrogate

é,(x):€t(xt)+(gz,x—xz> gteaef(xf)

» Pluginto (FTRL)

t

t
Xt+1 = argmin Z x)+/\h(x) :argmin{ ng,x Xs +h(x)}

xeX s=1 xeX
1/ 1
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Learning with gradient feedback

Follow the linearized leader

Can we relax the full information requirement of FTRL?

> Replace ¢; with first-order surrogate

é,(x):€t(xt)+(gz,x—xz> gteaef(xf)

» Pluginto (FTRL)

t t
Xt+1 = argmin Zés(x) + A h(x)} = argmin{ Z gs» X — Xs +h(x)}
xeX s=1 gt xeX s=1
1/n

»> Follow the linearized leader (FTLL)

t
Xyl = argmin{q > (g x) + h(x)} (FTLL)

xeX s=1
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Learning with gradient feedback

Dual averaging

Dual averaging (DA) formulation of FTLL = Nesterov, 2009; Xiao, 2010

Y1 = Yt — NGt

DA
Xt+1 = Q(}’z+1) A

where Q(y) = argmax __,.{(y,x) — h(x)} is the mirror map associated to h

X cR?
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Learning with gradient feedback

Dual averaging

Dual averaging (DA) formulation of FTLL = Nesterov, 2009; Xiao, 2010

Y1 = Yt — NGt

DA
Xt+1 = Q(}’z+1) A

where Q(y) = argmax __,.{(y,x) — h(x)} is the mirror map associated to h
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Learning with gradient feedback

Dual averaging

Dual averaging (DA) formulation of FTLL = Nesterov, 2009; Xiao, 2010

Y1 = Yt — NGt

DA
Xt+1 = Q(}’z+1) A

where Q(y) = argmax __,.{(y,x) — h(x)} is the mirror map associated to h

Y2
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Learning with gradient feedback

Dual averaging

Dual averaging (DA) formulation of FTLL

*¢ Nesterov, 2009; Xiao, 2010
Y1 = Yt — NGt (DA)
Xt+1 = Q(}’z+1)
where Q(y) = argmax __,.{(y,x) — h(x)} is the mirror map associated to h
b %
1
N
Yy \\ \\
\ \
\ \
\ \
\
1
1
|
I
i
I
¥

X2
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Learning with gradient feedback

Dual averaging

Dual averaging (DA) formulation of FTLL = Nesterov, 2009; Xiao, 2010

Y1 = Yt — NGt (DA)
Xt+1 = Q(}’z+1)

where Q(y) = argmax __,.{(y,x) — h(x)} is the mirror map associated to h

\

1
1
|
I
:
I

¥
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Learning with gradient feedback

Dual averaging

Dual averaging (DA) formulation of FTLL = Nesterov, 2009; Xiao, 2010

Y1 = Yt — NGt (DA)
Xt+1 = Q(}’z+1)

where Q(y) = argmax __,.{(y,x) — h(x)} is the mirror map associated to h

\

1
1
|
I
:
I

¥

2
)
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Learning with gradient feedback

Example: online gradient descent
Special case when h(x) = (1/2)]x||3 ~ online gradient descent (OGD) #1lazy version
Y=y —ng X =(yen) (OGD)
X1
ya
»2
X

Figure: Schematics of (OGD)
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Learning with gradient feedback

Example: online gradient descent

Special case when h(x) = (1/2)]x||3 ~ online gradient descent (OGD) #1lazy version

Y1 =y =g Xen1 = (pea) (OGD)

Figure: Schematics of (OGD)
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Learning with gradient feedback

Example: online gradient descent

Special case when h(x) = (1/2)]x||3 ~ online gradient descent (OGD) #1lazy version

Y1 =y =g Xen1 = (pea) (OGD)

Figure: Schematics of (OGD)
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Learning with gradient feedback

Example: online gradient descent

Special case when h(x) = (1/2)]x||3 ~ online gradient descent (OGD) #1lazy version

Y1 =y =g Xen1 = (pea) (OGD)

Figure: Schematics of (OGD)
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Learning with gradient feedback

Online mirror descent (deep dive)

> Gradient signals enter (DA) unweighted / unadjusted # post-adaptation

> Variable weights ~ “lazy”, primal-dual variant of online mirror descent

Yer1 = Ye + 101G
(OMDy,,,)
Xt41 = Q(}’t+1) lazy
> Primal-primal (“eager”) variant of (OMDy,)
xe41 = P (77t Ge) (OMD)
with the Bregman proximal mapping P defined as

Pe(w) = argmin{(w,x —x") + D(x",x)}
x'eX

where D(x’,x) = h(x") = h(x) — (Vh(x"), x — x") is the Bregman divergence of 1




Online mirror descent (deep dive)

> Gradient signals enter (DA) unweighted / unadjusted # post-adaptation
> Variable weights ~ “lazy”, primal-dual variant of online mirror descent
Vel = Y+ gt
(OMDy,,y)
Xt41 = Q(}’Hl) o

> Primal-primal (“eager”) variant of (OMDy,,)
xt41 = Py, (¢ Gt) (OMD)

with the Bregman proximal mapping P defined as

Pe(w) = argmin{(w,x —x") + D(x",x)}
x'eX

where D(x’,x) = h(x") = h(x) — (Vh(x"), x — x") is the Bregman divergence of 1

Proposition

The iterates of (OMDy.,y) and (OMD) coincide whenever dom oh = ri X
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Learning with gradient feedback

Regret under dual averaging

> Gradient trick: # linear model

2(xt) = €:(p) < (g x: —p) forallpeX
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Learning with gradient feedback

Regret under dual averaging

> Gradient trick: # linear model

2(xt) = €:(p) < (g x: —p) forallpeX

> Energyfunction: A\ take for granted

Fi=h(p) +h" (y)) = (yi, p)
where h*(y) = maxyex {(y, x) — h(x)} is the potential of Q ~ Vh* = Q
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Learning with gradient feedback

Regret under dual averaging

> Gradient trick: # linear model

2(xt) = €:(p) < (g x: —p) forallpeX

> Energyfunction: A\ take for granted

Fi=h(p) +h" (y)) = (yi, p)
where h*(y) = maxyex {(y, x) — h(x)} is the potential of Q ~ Vh* = Q

> Template inequality: A take for granted

Fro1 < Fr = (g, % — p) + ZLKng I*
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Learning with gradient feedback

Regret under dual averaging

> Gradient trick: # linear model

2(xt) = €:(p) < (g x: —p) forallpeX

> Energyfunction: A\ take for granted

=h(p)+h"(y)) = (o, p)
where h*(y) = maxyex {(y, x) — h(x)} is the potential of Q ~ Vh* = Q

v

Template inequality: A take for granted

Fro1 < Fr = (g, % — p) + ZLKng I*

*> Rearrange & telescope: # build the regret

Reg(T) < 7+ —th
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Learning with gradient feedback

Regret under dual averaging, cont'd

> Take y =/2KH/ .\, G? A Why?
T
Reg(T) <\/(2H/K) ), G?




Regret under dual averaging, cont'd

» Take n =/2KH/ Y.\, G? A Why?
T
Reg(T) </ (2H/K) thl G?

Theorem (Shalev-Shwartz, 2011)

15 Assume: h is K-strongly convex; each €; is G-Lipschitz continuous; H = max h — min hand n = G'\/2KH/T
v Then: (DA) / (FTLL) enjoys the regret bound

Reg (T) < G\/(2H/K)T

aBnuatidy



Learning with stochastic gradients

Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of g is a random vector g; of the form

gAt =gt + U[ + bt (SFO)

where Uy is zero-mean and b, = E[g; | F:] — v(x:) is the bias of g;
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Learning with stochastic gradients

Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of g is a random vector g; of the form
ét =gt + U[ + bt (SFO)

where Uy is zero-mean and b, = E[g; | F:] — v(x:) is the bias of g;

> Bias: [b¢] oo < B:
> Variance: E[|U:|% | F] < 0f
io |]:t:| < M,z

> Second moment: K[

ge
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Learning with stochastic gradients

Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of g; is a random vector g; of the form

ét=gt+Uz+br

where Uy is zero-mean and b; = E[g; | F:] — v(x:) is the bias of g;

(SFO)

Algorithm Stochastic gradient descent (SGD)

# OGD with stochastic feedback

Require: convex action set X' R¥; convex loss functions £;: X > R, t=1,2,...
Initialize: y; ¢ R4
forallt=1,2,... do
play x; < I1(y:)
incur ¢; = £¢(x¢)
observe estimate g; of g¢ € 9€;(x¢)
set yip1 < Yt — Nt Gt
end for

# action selection
#incur cost
# SFO feedback

# update state
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Learning with stochastic gradients

Regret under OGD
> Gradient trick: #linear model
Ce(xt) — €:(p) < (gr-xe —p) forallpeX
*> Energy function: # as before
Fi=3lye=pl* = 5lye x|
*> Energy inequality: # g instead of g,
i
Fii <Fi = ﬂ(éhxt —P> + B gt :

> Expand and rearrange:

2

oo

A

gt

S (U= p) - (b= p)

> How to proceed?
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Learning with stochastic gradients

Regret analysis, cont'd

Bound each term separately:




Online convex optimization
)O00@00

Learning with stochastic

Regret of SGD

= Assume:
> feedback of the form (SFO)

> ;7zdiam()€)/\/fMt2

v Then: forall p € X, the SGD algorithm enjoys the bound

T i
E[Reg,(T)] <2 > B, +diam(X)A | > M?
=1 =1

BnpatKdy
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Learning with stochas

Regret of SGD

= Assume:
> feedback of the form (SFO)

> ;7zdiam()€)/\/fMt2

v Then: forall p € X, the SGD algorithm enjoys the bound

T

-
E[Reg,(T)] <2 > B, +diam(X)A | > M?
=1

t=1

Remarks:
> O(ﬁ) regret if feedback is unbiased (b; = 0) and has finite variance (M; < M)

> This bound is tightin T = Abernethy et al, 2008

BNHaTIKGY



Stochastic convex optimization

Stochastic convex optimization

minimize  f(x) = Eu-p[F(x;0)]

Opt-S
subjectto xe X (©pt5)
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Stochastic convex optimization

Stochastic convex optimization

minimize  f(x) = Eu-p[F(x;0)]
subjectto xe X

(Opt-5)

> Important for data science ~ finite-sum objectives:

1 N
10 = 5 2 i)

> Special case of OCO:
i+ f forallt=1,2,...

> Access to stochastic gradients

gt < VF(x3w¢) with w; drawn i.i.d. from P
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Learning with stochas

Convergence rate of SGD

1= Assume: E[

*] < M?* and SGD is run for T iterations with 5 = diam(X)/(Mﬁ)

g
v Then: the ergodic average %1 = (1/T) ¥, x, of SGD enjoys the rate

M diam (X))

E[f(%r) - min f] < i

1BNHATKY
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Learning with stochas

Convergence rate of SGD

w5 Assume: E[|g:|*] < M* and SGD is run for T iterations with 5 = diam(X)/(Mﬁ)

v Then: the ergodic average %1 = (1/T) ¥, x, of SGD enjoys the rate

M diam (X))
VT

O

E[f(%r) - min f] <

1 MaBnuatikiv
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