Online learning in discrete tim 0000000000 earning with oracle feedbac

Learning with bandit feedback

References

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΠΑΙΓΝΙΩΝ ΚΑΙ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

ΛΗΣΤΕΣ, ΚΟΥΛΟΧΕΡΗΔΕΣ, ΚΑΙ ΘΕΩΡΙΑ ΜΑΘΗΣΗΣ

Παναγιώτης Μερτικόπουλος

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Τμήμα Μαθηματικών

Χειμερινό Εξάμηνο, 2023–2024

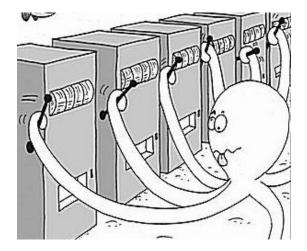
Online learning in discrete tir 0000000000 earning with oracle feedbac

Learning with bandit feedback

References

Multi-armed bandits

Robbins' multi-armed bandit problem: how to play in a (rigged) casino?



Online learning in discrete time

B Learning with oracle feedback

4 Learning with bandit feedback

Online learning in continuous time 0000000000	Online learning in discrete time	Learning with oracle feedback	Learning with bandit feedback	
Game-theoretic l	earning			
	, , . , .			
Sequence of events – continuous time				
Require: finite game	Require: finite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$			
repeat				
At each epoch	$t \ge 0$ do simultaneously for all p	layers $i \in \mathcal{N}$	# contin	uous time
Choose mixed strategy $x_i(t) \in \mathcal{X}_i \coloneqq \Delta(\mathcal{A}_i)$				# mixing
Encounter mixe	ed payoff vector $v_i(x(t))$ and get	mixed payoff $u_i(x(t)) = \langle v_i(t), \rangle$	x(t) #feedb	ack phase
until end				

Defining elements

- ▶ **Time:** *t* ≥ 0
- Players: finite
- Actions: finite
- Payoffs: game
- Feedback: mixed payoff vectors

ne learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback 000000	Learning with bandit feedback 0000000	
Online learning				
Sequence of events	s — continuous time			
Require: set of action	s $\mathcal{A} = \{1, \ldots, m\}$, stream of pay	off vectors $v_t \in [0,1]^{\mathcal{A}}, t \ge 0$		
repeat				
At each epoch t	$\geq 0 \text{ do}$		# contin	uous time
Choose mixed st	rategy $x_t \in \mathcal{X}$			# mixing
Encounter payo f	f vector v_t and get mixed payoff	$u_t(x_t) = \langle v_t, x_t \rangle$	#feedb	ack phase
until end				

Defining elements

- ► Time: *t* ≥ 0
- Players: single
- Actions: finite
- Payoffs: exogenous
- Feedback: mixed payoff vectors

"unilateral viewpoint"

"game against Nature"

Online v. multi-agent learning

How are payoffs generated?

Multi-agent viewpoint

- Multiple agents
- Endogenous rewards: individual payoffs depend on other agents
- ▶ Game-theoretic: underlying mechanism is a (finite) game

Online viewpoint

- Single agent
- Exogenous rewards: different payoff vector at each stage
- Agnostic: no assumptions on mechanism generating v(t)

dispassionate Nature

Online v. multi-agent learning

How are payoffs generated?

Multi-agent viewpoint

- Multiple agents
- Endogenous rewards: individual payoffs depend on other agents
- ▶ Game-theoretic: underlying mechanism is a (finite) game

Online viewpoint

- Single agent
- Exogenous rewards: different payoff vector at each stage
- Agnostic: no assumptions on mechanism generating v(t)

dispassionate Nature

What is the interplay between online and multi-agent learning?

Online learning in discrete ti 0000000000 earning with oracle feedbac.

The agent's regret

Performance of a policy x_t measured by the agent's regret

 $u_t(p) - u_t(x_t)$

Online learning in discrete ti

earning with oracle feedbac

Learning with bandit feedbac 0000000 References

The agent's regret

Performance of a policy x_t measured by the agent's regret

 $\int_0^T [u_t(p) - u_t(x_t)] dt$

Online learning in discrete ti

earning with oracle feedbac

Learning with bandit feedbac 0000000 References

The agent's regret

Performance of a policy x_t measured by the agent's regret

$$\max_{p\in\mathcal{X}}\int_0^T [u_t(p)-u_t(x_t)]\,dt$$

Online learning in discrete t

Learning with oracle feedbac

References

The agent's regret

Performance of a policy x_t measured by the agent's regret

$$\operatorname{Reg}(T) = \max_{p \in \mathcal{X}} \int_0^T \left[u_t(p) - u_t(x_t) \right] dt = \max_{p \in \mathcal{X}} \int_0^T \langle v_t, p - x_t \rangle dt$$

The agent's regret

Performance of a policy x_t measured by the agent's regret

$$\operatorname{Reg}(T) = \max_{p \in \mathcal{X}} \int_0^T \left[u_t(p) - u_t(x_t) \right] dt = \max_{p \in \mathcal{X}} \int_0^T \langle v_t, p - x_t \rangle dt$$

No regret: $\operatorname{Reg}(T) = o(T)$

the smaller the better

"The chosen policy is as good as the best fixed strategy in hindsight."

Online learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback 0000000	

The agent's regret

Performance of a policy x_t measured by the agent's regret

$$\operatorname{Reg}(T) = \max_{p \in \mathcal{X}} \int_0^T [u_t(p) - u_t(x_t)] dt = \max_{p \in \mathcal{X}} \int_0^T \langle v_t, p - x_t \rangle dt$$

No regret: $\operatorname{Reg}(T) = o(T)$

the smaller the better

"The chosen policy is as good as the best fixed strategy in hindsight."

Prolific literature:

- Economics
- Mathematics
- Computer science

- ➡ Hannan (1957), Fudenberg & Levine (1998)
- Blackwell (1956), Bubeck & Cesa-Bianchi (2012)
- ◆ Shalev-Shwartz (2011), Cesa-Bianchi & Lugosi (2006)

Online learning in discrete ti 0000000000 earning with oracle feedbac.

Exponential weights for online learning

Exponential weight dynamics

$$\dot{y}_t = v_t \qquad x_t = \Lambda(y_t)$$
 (EWD)

where $\Lambda: \mathbb{R}^{\mathcal{A}} \to \mathcal{X}$ is the **logit map**

$$\Lambda_{\alpha}(y) = \frac{\exp(y_{\alpha})}{\sum_{\beta \in \mathcal{A}} \exp(y_{\beta})}$$

Does (EWD) lead to no regret?

	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback 000000	Learning with bandit feedback 0000000	
X	Bounding the regret				

- Fix a comparator $p \in \mathcal{X}$
- Consider associated regret

$$\operatorname{Reg}_{p}(T) = \int_{0}^{T} \langle v_{t}, p - x_{t} \rangle \, dt$$

Online learning in continuous time 000000000000		Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback	
X	Bounding the regret				

- Fix a comparator $p \in \mathcal{X}$
- Consider associated regret

$$\operatorname{Reg}_{p}(T) = \int_{0}^{T} \langle v_{t}, p - x_{t} \rangle \, dt$$

$$\langle v_t, x_t - p \rangle = \langle \dot{y}_t, \Lambda(y_t) - p \rangle$$

	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback	
No.	Bounding the regret				

- Fix a comparator $p \in \mathcal{X}$
- Consider associated regret

$$\operatorname{Reg}_p(T) = \int_0^T \langle v_t, p - x_t \rangle \, dt$$

$$\langle v_t, x_t - p \rangle = \langle \dot{y}_t, \Lambda(y_t) - p \rangle$$

• Suppose we can find a **potential function** $\Phi(y)$ such that

$$\nabla \Phi(y) = \Lambda(y) - p \implies \frac{d\Phi}{dt} = \langle \dot{y}_t, \Lambda(y_t) - p \rangle$$

Online learning in continuous time		Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback 0000000	
3 A	Bounding the regret				

- Fix a comparator $p \in \mathcal{X}$
- Consider associated regret

$$\operatorname{Reg}_{p}(T) = \int_{0}^{T} \langle v_{t}, p - x_{t} \rangle \, dt$$

$$\left\langle v_t, x_t - p \right\rangle = \left\langle \dot{y}_t, \Lambda(y_t) - p \right\rangle$$

• Suppose we can find a **potential function** $\Phi(y)$ such that

$$\nabla \Phi(y) = \Lambda(y) - p \implies \frac{d\Phi}{dt} = \langle \dot{y}_t, \Lambda(y_t) - p \rangle$$

Then

$$\operatorname{Reg}_{p}(T) = -\int_{0}^{T} \frac{d\Phi}{dt} dt = \Phi(y_{0}) - \Phi(y_{T})$$

Online learning in continuous time		Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback	
	Bounding the regret				

- Fix a comparator $p \in \mathcal{X}$
- Consider associated regret

$$\operatorname{Reg}_{p}(T) = \int_{0}^{T} \langle v_{t}, p - x_{t} \rangle \, dt$$

$$\left\langle v_t, x_t - p \right\rangle = \left\langle \dot{y}_t, \Lambda(y_t) - p \right\rangle$$

Suppose we can find a **potential function** $\Phi(y)$ such that

$$\nabla \Phi(y) = \Lambda(y) - p \implies \frac{d\Phi}{dt} = \langle \dot{y}_t, \Lambda(y_t) - p \rangle$$

Then

$$\operatorname{Reg}_{p}(T) = -\int_{0}^{T} \frac{d\Phi}{dt} dt = \Phi(y_{0}) - \Phi(y_{T})$$

If suitable potential exists $\implies \operatorname{Reg}(T) \leq \Phi(y_0) - \min \Phi$

Online learning in continuous time		Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback	
	Finding a potential				
	What could a potenti	al function look like?			
					9/37

Online 000	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback 000000	Learning with bandit feedback 0000000	References
	Minimizing the pot	tential			
	What is the minimu	m value of the potential?			
	rivára) Nac				10/32

Online learning in discrete ti 0000000000 earning with oracle feedbac

References

Energy functions

We can encode the above with the help of the following *energy functions*:

The Fenchel coupling:

$$F(p, y) = \sum_{\alpha \in \mathcal{A}} p_{\alpha} \log p_{\alpha} + \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha}) - \sum_{\alpha \in \mathcal{A}} p_{\alpha} y_{\alpha}$$

Substituting $x \leftarrow \Lambda(y)$ yields the Kullback-Leibler divergence:

$$D_{\mathrm{KL}}(p,x) = \sum_{\alpha \in \mathcal{A}} p_{\alpha} \log \frac{p_{\alpha}}{x_{\alpha}}$$

Key property:
$$\frac{d}{dt}F(p, y_t) = \langle v_t, x_t - p \rangle$$

Regret of (EWD)

Theorem (Sorin, 2009)

Under (EWD), the learner enjoys the regret bound

$$\operatorname{Reg}_{p}(T) \leq F(p, y_{0}) = \sum_{\alpha \in \mathcal{A}} p_{\alpha} \log p_{\alpha} + \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha, 0}) - \sum_{\alpha \in \mathcal{A}} p_{\alpha} y_{\alpha, 0}$$

In particular, if (EWD) is initialized with $y_0 = 0$, we have

 $\operatorname{Reg}(T) \leq \log m$

2 Online learning in discrete time

B Learning with oracle feedback

4 Learning with bandit feedback

learning in continuous time	Online learning in discrete time	Learning with oracle feedback	Learning with bandit feedback	
Online learning in d	iscrete time			

Sequence of events - discrete time

```
Require: set of actions A; sequence of payoff vectors v_t, t = 1, 2, ...
```

for all t = 1, 2, ... do

```
Choose mixed strategy x_t \in \mathcal{X} \coloneqq \Delta(\mathcal{A})
```

Play **action** $\alpha_t \sim x_t$

Encounter **payoff vector** v_t and receive **payoff** $u_t(\alpha_t) = v_{\alpha_t,t}$

end for

Defining elements

- Time: discrete
- Players: single
- Actions: finite
- Payoffs: exogenous
- Feedback: depends (full or partial information, ...)

learning in continuous time	Online learning in discrete time OOOOOOOOO	Learning with oracle feedback	Learning with bandit feedback 0000000	
Online learning in d	iscrete time			

Sequence of events - discrete time

Require: set of actions A; sequence of payoff vectors v_t , t = 1, 2, ...

for all *t* = 1, 2, . . . **do**

```
Choose mixed strategy x_t \in \mathcal{X} \coloneqq \Delta(\mathcal{A})
```

Play **action** $\alpha_t \sim x_t$

```
Encounter payoff vector v_t and receive payoff u_t(\alpha_t) = v_{\alpha_t,t}
```

end for

Regret

$$\operatorname{Reg}(T) = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} \left[\mathbb{E}_{v_{\alpha_t,t}} \left[\alpha_t \sim p \right] - \mathbb{E}_{v_{\alpha_t,t}} \left[\alpha_t \sim x_t \right] \right] = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} \langle v_t, p - x_t \rangle$$

earning with oracle feedbacl.

The feedback process

Types of feedback

From best to worst (more to less info):

- Full information: v_t
- Noisy payoff vectors: $v_t + Z_t$
- **•** Bandit / Payoff-based: $u_t(\alpha_t) = v_{\alpha_t,t}$

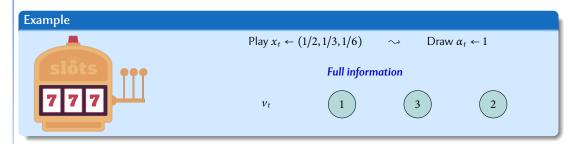
deterministic vector feedback
stochastic vector feedback

The feedback process

Types of feedback

- Full information: v_t
- Noisy payoff vectors: $v_t + Z_t$
- **Bandit / Payoff-based:** $u_t(\alpha_t) = v_{\alpha_t,t}$

deterministic vector feedback
stochastic vector feedback



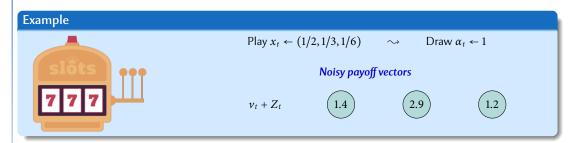
The feedback process

Types of feedback

From best to worst (more to less info):

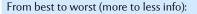
- **Full information:** v_t
- Noisy payoff vectors: $v_t + Z_t$
- **Bandit / Payoff-based:** $u_t(\alpha_t) = v_{\alpha_t,t}$

deterministic vector feedback # stochastic vector feedback



The feedback process

Types of feedback



- **Full information:** v_t
- Noisy payoff vectors: $v_t + Z_t$
- **• Bandit / Payoff-based:** $u_t(\alpha_t) = v_{\alpha_t,t}$

deterministic vector feedback
stochastic vector feedback

deterministic vector feedback

stochastic vector feedback

stochastic scalar feedback

The feedback process

Types of feedback

From best to worst (more to less info):

- Full information: v_t
- Noisy payoff vectors: $v_t + Z_t$
- **• Bandit / Payoff-based:** $u_t(\alpha_t) = v_{\alpha_t,t}$

Defining features:

- Vector (all payoffs) vs. Scalar (bandit)
- Deterministic (full info) vs. Stochastic (noisy, bandit)
- Randomness defined relative to **history of play** $\mathcal{F}_t := \mathcal{F}(x_1, \ldots, x_t)$
- Other feedback models also possible (noisy / delayed observations,...)

The agent's **regret** in discrete time

Realized regret:
$$\operatorname{Reg}(T) = \max_{\alpha \in \mathcal{A}} \sum_{t=1}^{T} [u_t(\alpha) - u_t(\alpha_t)]$$

Mean regret: $\overline{\operatorname{Reg}}(T) = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} [u_t(p) - u_t(x_t)] = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} \langle v_t, p - x_t \rangle$

The agent's **regret** in discrete time

Realized regret:
$$\operatorname{Reg}(T) = \max_{\alpha \in \mathcal{A}} \sum_{t=1}^{T} [u_t(\alpha) - u_t(\alpha_t)]$$

Mean regret: $\overline{\operatorname{Reg}}(T) = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} [u_t(p) - u_t(x_t)] = \max_{p \in \mathcal{X}} \sum_{t=1}^{T} \langle v_t, p - x_t \rangle$

- Adversarial framework: regret guarantees against any given sequence v_t
- No distinction between mean regret and pseudo-regret
- Not here: stochastic, Markovian, oblivious/non-oblivious,...

Bubeck & Cesa-Bianchi (2012)

✤ Cesa-Bianchi & Lugosi (2006)

Feedback

Three types of feedback (from best to worst):

- Full, exact information: observe entire payoff vector v_t
- Full, inexact information: observe noisy estimate of v_t
- Partial information / Bandit: only chosen component $u_t(\alpha_t) = v_{\alpha_t,t}$

Feedback

Three types of feedback (from best to worst):

- Full, exact information: observe entire payoff vector v_t
- Full, inexact information: observe noisy estimate of v_t
- Partial information / Bandit: only chosen component $u_t(\alpha_t) = v_{\alpha_t,t}$

The oracle model

A stochastic first-order oracle (SFO) model of v_t is a random vector of the form

$$\hat{v}_t = v_t + U_t + b_t \tag{SFO}$$

where U_t is **zero-mean** and $b_t = \mathbb{E}[\hat{v}_t | \mathcal{F}_t] - v(x_t)$ is the **bias** of \hat{v}_t

Assumptions

- **Bias:** $||b_t|| \leq B_t$
- Variance: $\mathbb{E}[\|U_t\|^2 | \mathcal{F}_t] \leq \sigma_t^2$
- Second moment: $\mathbb{E}[\|\hat{v}_t\|^2 \mid \mathcal{F}_t] \leq M_t^2$

Reconstructing payoff vectors

Importance weighted estimators

Fix a payoff vector $v \in \mathbb{R}^{\mathcal{A}}$ and a probability distribution P on \mathcal{A} . Then the *importance weighted estimator* of v_{α} relative to P is the random variable

$$\hat{\nu}_{\alpha} = \frac{\mathbb{1}_{\alpha}}{P_{\alpha}} \nu_{\alpha} = \begin{cases} \nu_{\alpha}/P_{\alpha} & \text{if } \alpha \text{ is drawn } (\alpha = \beta) \\ 0 & \text{otherwise} & (\alpha \neq \beta) \end{cases}$$
(IWE)

IWE as an oracle model

Unbiased:

$$\mathbb{E}[\hat{v}_{\alpha}] = v_{\alpha}$$

Second moment:

$$\mathbb{E}[\hat{v}_{\alpha}^2] = \frac{v}{P}$$

e learning in continuous time	Online learning in discrete time 000000€000	Learning with oracle feedback	Learning with bandit feedback 0000000	Refe
The Hedge algorit	hm			
Algorithm Hedge			# ExpWeight with full inf	formation
Require: set of action	s $\mathcal{A};$ sequence of payoff vectors	$v_t \in [0,1]^{\mathcal{A}}, t = 1, 2, \dots$		
Initialize: $y_1 \in \mathbb{R}^{\mathcal{A}}$				
for all $t = 1, 2, d$	0			
set $x_t \leftarrow \Lambda(y_t)$			# mixed	d strategy
play $\alpha_t \sim x_t$ and	receive $v_{\alpha_t,t}$		# choose action / g	get payoff
observe v_t			# full info	feedback
set $y_{t+1} \leftarrow y_t + $	$\gamma_t v_t$		# upda	ate scores
end for				

Basic idea:

- Aggregate payoff information
- Choose actions with probability exponentially proportional to their scores
- Rinse & repeat

• Use constant $\gamma_t \equiv \gamma$

complications otherwise

Fix benchmark strategy $p \in \mathcal{X}$ and consider the **Fenchel coupling**:

$$F_t = F(p, y_t) = \sum_{\alpha \in \mathcal{A}} p_\alpha \log p_\alpha + \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha, t}) - \langle y_t, p \rangle$$

Energy inequality:

$$F_{t+1} \leq F_t + \gamma \langle v_t, x_t - p \rangle + \frac{1}{2} \gamma^2 \| v_t \|_{\infty}^2$$

Telescope to get

$$\operatorname{Reg}_p(T) \le \frac{F_1}{\gamma} + \frac{\gamma T}{2}$$

How to proceed?

)nline 000(learning in continuous time	Online learning in discrete time 00000000●0	Learning with oracle feedback	Learning with bandit feedback	
	Regret analysis, cont	'd			
	How to choose <i>y</i> ?				

🖙 Assume:

- Sequence of payoff vectors $v_t \in [0,1]^{\mathcal{A}}$; Full info feedback
- $\checkmark \gamma = \sqrt{(2\log m)/T}$
- 🖙 Then: HEDGE enjoys the bound

$$\operatorname{Reg}_p(T) \leq \sqrt{2\log m \cdot T} = \mathcal{O}(\sqrt{T})$$

Regret of Hedge

Theorem (Auer et al., 1995)

🖙 Assume:

- Sequence of payoff vectors $v_t \in [0,1]^A$; Full info feedback
- $\gamma = \sqrt{(2\log m)/T}$
- 🖙 Then: HEDGE enjoys the bound

$$\operatorname{Reg}_p(T) \le \sqrt{2\log m \cdot T} = \mathcal{O}(\sqrt{T})$$

Remarks:

- Cannot achieve $\mathcal{O}(1)$ regret as in continuous time
- This bound is tight in T
- Logarithmic dependence on m

#Why?

- ➡ Abernethy et al., 2008
- Can deal with exponentially many arms!

Online learning in continuous time

Online learning in discrete time

3 Learning with oracle feedback

4 Learning with bandit feedback

21/32

	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback ○●○○○○	Learning with bandit feedback	
K	Oracle feedback				
	The oracle model				
	A stochastic first-order	oracle (SFO) model of v_t is	s a random vector \hat{v}_t of the f	orm	

 $\hat{v}_t = v_t + U_t + b_t$

(SFO)

where U_t is **zero-mean** and $b_t = \mathbb{E}[\hat{v}_t | \mathcal{F}_t] - v(x_t)$ is the **bias** of \hat{v}_t

ne learning in continuous time 000000000	Online learning in discrete time 0000000000	Learning with oracle feedback ○●○○○○	Learning with bandit feedback	Referenc
Oracle feedback				
The oracle model				
A stochastic first-order	oracle (SFO) model of v_t is	a random vector \hat{v}_t of the f	orm	
	Ŷ	$t = v_t + U_t + b_t$		(SFO)
where U_t is zero-mean	and $b_t = \mathbb{E}[\hat{v}_t \mathcal{F}_t] - v(x)$	(x_t) is the bias of \hat{v}_t		
Assumptions				
Bias:	$\ b_t\ _{\infty} \leq B_t$			
Variance:	$\mathbb{E}\big[\ U_t\ _{\infty}^2 \mathcal{F}_t \big] \leq \sigma_t^2$			
Second moment:	$\mathbb{E}\big[\ \hat{v}_t\ _{\infty}^2 \mid \mathcal{F}_t\big] \leq M_t^2$			

earning in continuous time 0000000	Online learning in discrete time 0000000000	Learning with oracle feedback ○●○○○○	Learning with bandit feedback	R
Oracle feedback				
The oracle mode				
		is a random vector \hat{v}_t of the f	orm	
		$\hat{v}_t = v_t + U_t + b_t$		(SFO
where U_t is zero-m	ean and $b_t = \mathbb{E}[\hat{v}_t \mid \mathcal{F}_t] - v$	(x_t) is the bias of \hat{v}_t		
Algorithm Hedge-0)		# ExpWeight with SF	O feedbacl
Algorithm Hedge-0) is $\mathcal{A};\;$ sequence of payoff vector	rs $v_t \in \mathbb{R}^{\mathcal{A}}, t = 1, 2, \dots$	# ExpWeight with SF	O feedbacl
Algorithm Hedge-0		$\operatorname{rs} v_t \in \mathbb{R}^{\mathcal{A}}, t = 1, 2, \dots$	# ExpWeight with SF	O feedbacl
Algorithm HEDGE-C Require: set of action	as \mathcal{A} ; sequence of payoff vector	rs $v_t \in \mathbb{R}^{\mathcal{A}}, t = 1, 2, \dots$	# ExpWeight with SF	O feedback
Algorithm Hedge-C Require: set of action Initialize: $y_1 \in \mathbb{R}^A$	is $\mathcal{A};\;$ sequence of payoff vector	rs $v_t \in \mathbb{R}^{\mathcal{A}}, t = 1, 2, \dots$		
Algorithm HEDGE-CRequire: set of actionInitialize: $y_1 \in \mathbb{R}^A$ for all $t = 1, 2, d$	is $\mathcal{A};\;$ sequence of payoff vector $oldsymbol{o}$	rs $v_t \in \mathbb{R}^{\mathcal{A}}, t = 1, 2, \dots$		ked strateg
Algorithm HEDGE-CRequire: set of actionInitialize: $y_1 \in \mathbb{R}^A$ for all $t = 1, 2,, d$ set $x_t \leftarrow \Lambda(y_t)$	is $\mathcal{A};$ sequence of payoff vector lo d receive $\nu_{\alpha_t,t}$	rs $v_t \in \mathbb{R}^{\mathcal{A}}, t = 1, 2, \dots$	# mb # choose action	xed strateg / get payof
Algorithm HEDGE-CRequire: set of actionInitialize: $y_1 \in \mathbb{R}^A$ for all $t = 1, 2,$ set $x_t \leftarrow \Lambda(y_t)$ play $\alpha_t \sim x_t$ and	is \mathcal{A} ; sequence of payoff vector Io I receive $\nu_{\alpha_t,t}$	rs $v_t \in \mathbb{R}^{\mathcal{A}}, t = 1, 2, \dots$	# mix # choose action # full int	ked strategy

• Use constant $\gamma_t \equiv \gamma$

complications otherwise

Fix benchmark strategy $p \in \mathcal{X}$ and consider the **Fenchel coupling**:

$$F_t = F(p, y_t) = \sum_{\alpha \in \mathcal{A}} p_\alpha \log p_\alpha + \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha, t}) - \langle y_t, p \rangle$$

Energy inequality:

$$F_{t+1} \leq F_t + \gamma \langle \hat{v}_t, x_t - p \rangle + \frac{1}{2} \gamma^2 \| \hat{v}_t \|_{\infty}^2$$

Expand and rearrange:

$$\langle v_t, p - x_t \rangle \leq \frac{F_t - F_{t+1}}{\gamma} + \langle U_t, x_t - p \rangle + \langle b_t, x_t - p \rangle + \frac{\gamma}{2} \| \hat{v}_t \|_{\infty}^2$$

How to proceed?

Online 0000	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback 0000000	References
	Regret analysis, cont	'd			
	Bound each term sepa	rately:			
					24/32

	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback	
K	Regret of Hedge-O				

Theorem

ISS Assume:

Sequence of payoff vectors $v_t \in \mathbb{R}^A$; SFO feedback

$$\gamma = \sqrt{\frac{2\log m}{\sum_{t=1}^{T} M_t^2}}$$

■ **Then:** for all $p \in \mathcal{X}$, HEDGE-O enjoys the bound

$$\operatorname{Reg}_{p}(T) \leq 2\sum_{t=1}^{T} B_{t} + \sqrt{2\log m \cdot \sum_{t=1}^{T} M_{t}^{2}}$$

Theorem

INF Assume:

Sequence of payoff vectors $v_t \in \mathbb{R}^{\mathcal{A}}$; SFO feedback

$$\gamma = \sqrt{\frac{2\log m}{\sum_{t=1}^{T} M_t^2}}$$

Then: for all $p \in \mathcal{X}$, HEDGE-O enjoys the bound

$$\operatorname{Reg}_{p}(T) \leq 2\sum_{t=1}^{T} B_{t} + \sqrt{2\log m \cdot \sum_{t=1}^{T} M_{t}^{2}}$$

Remarks:

- $\mathcal{O}(\sqrt{T})$ regret if feedback is unbiased ($b_t = 0$) and has finite variance ($M_t \leq M$)
- This bound is tight in T
- Logarithmic dependence on m

➡ Abernethy et al., 2008

Can deal with exponentially many arms!

	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback 00000●	Learning with bandit feedback 0000000	
K	Regret of Hedge				

🖙 Assume:

- Sequence of payoff vectors $v_t \in [0,1]^A$; Full info feedback
- $\flat \ \gamma = \sqrt{(2\log m)/T}$
- ☞ **Then:** HEDGE enjoys the bound

$$\operatorname{Reg}_p(T) \leq \sqrt{2\log m \cdot T} = \mathcal{O}(\sqrt{T})$$

	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback 00000●	Learning with bandit feedback 0000000	
K	Regret of Hedge				

🖙 Assume:

- Sequence of payoff vectors $v_t \in [0,1]^{\mathcal{A}}$; Full info feedback
- $\flat \quad \gamma = \sqrt{(2\log m)/T}$
- IN Then: HEDGE enjoys the bound

$$\operatorname{Reg}_p(T) \leq \sqrt{2\log m \cdot T} = \mathcal{O}(\sqrt{T})$$

Remarks:

- Cannot achieve $\mathcal{O}(1)$ regret as in continuous time
- This bound is tight in T
- Logarithmic dependence on m

#Why?

➡ Abernethy et al., 2008

Can deal with exponentially many arms!

Online learning in continuous time

Online learning in discrete time

3 Learning with oracle feedback

4 Learning with bandit feedback

Π. Μερτικόπουλος

Learning with bandit feedback

Three types of feedback (from best to worst):

- Full, exact information: observe entire payoff vector v_t
- Full, inexact information: observe noisy estimate of v_t
- **Partial information** / **Bandit:** only chosen component $u_t(\alpha_t) = v_{\alpha_t,t}$

Importance weighted estimators

Fix a payoff vector $v \in \mathbb{R}^{\mathcal{A}}$ and a probability distribution P on \mathcal{A} . Then the **importance weighted estimator** of v_{α} is the random variable

$$\hat{v}_{\alpha} = \frac{\mathbb{1}_{\alpha}}{P_{\alpha}} v_{\alpha} = \begin{cases} v_{\alpha}/P_{\alpha} & \text{if } \alpha \text{ is drawn } (\alpha = \beta) \\ 0 & \text{otherwise} & (\alpha \neq \beta) \end{cases}$$
(IWE)

IWE as an oracle model

► Unbiased:
$$\mathbb{E}[\hat{v}_{\alpha}] = v_{\alpha}$$

► Second moment: $\mathbb{E}[\hat{v}_{\alpha}^{2}] = v_{\alpha}^{2}/P_{\alpha}$
► $M_{t} = \mathcal{O}(1/\min_{\alpha} x_{\alpha,t})$

learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback ○○●○○○○	
The EXP3 algorith	ım			
Algorithm Exponer	ntial weights for exploration a	and exploitation (EXP3)	# HEDGE with bandit	teedback
Require: set of action	as \mathcal{A} ; sequence of payoff vectors	$v_t \in [0,1]^{\mathcal{A}}, t = 1, 2, \dots$		
Initialize: $y_1 \in \mathbb{R}^{\mathcal{A}}$				
for all $t = 1, 2,$ d	lo			
set $x_t \leftarrow \Lambda(y_t)$			# mixe	d strategy
play $\alpha_t \sim x_t$ and	receive $v_{\alpha_t,t}$		# choose action /	get payoff
$set\hat{v}_t \leftarrow \frac{v_{\alpha_t,t}}{x_{\alpha_t,t}}\epsilon$	$2\alpha_t$		# IW	estimator
set $y_{t+1} \leftarrow y_t +$	$\gamma_t \hat{\nu}_t$		# upda	ate scores
1.6				

end for

• Use constant $\gamma_t \equiv \gamma$

complications otherwise

Fix benchmark strategy $p \in \mathcal{X}$ and consider the **Fenchel coupling**:

$$F_t = F(p, y_t) = \sum_{\alpha \in \mathcal{A}} p_\alpha \log p_\alpha + \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha, t}) - \langle y_t, p \rangle$$

Energy inequality:

$$F_{t+1} \leq F_t + \gamma \langle \hat{v}_t, x_t - p \rangle + \frac{1}{2} \gamma^2 \| \hat{v}_t \|_{\infty}^2$$

Expand and rearrange:

$$\langle v_t, p - x_t \rangle \leq \frac{F_t - F_{t+1}}{\gamma} + \langle U_t, x_t - p \rangle + \frac{\gamma}{2} \| \hat{v}_t \|_{\infty}^2$$

- ► No bias, but $\mathbb{E}[\|\hat{v}_t\|_{\infty}^2] = \mathcal{O}(1/\min_{\alpha} x_{\alpha,t})$ is unbounded X
- How to proceed?

	learning in continuous time	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback	References
X	Energy inequality				
	Basic lemma				

Fix some $y, w \in \mathbb{R}^{\mathcal{A}}$, and let $x \propto \exp(y)$. Then:

$$\log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha} + w_{\alpha}) \leq \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha}) + \langle x, w \rangle + \frac{1}{2} \|w\|_{\infty}^{2}$$

	learning in continuous time	Online learning in discrete time	Learning with oracle feedback	Learning with bandit feedback ○○○○●○○	
XV XV	Energy inequality				
	Basic lemma				
	Fix some $y \in \mathbb{R}^{\mathcal{A}}$, w	$\in (-\infty,1]^{\mathcal{A}}$, and let $x \propto \exp(-\infty)$	p(y). Then:		
		$\log\sum_{\alpha\in\mathcal{A}}\exp(y_{\alpha}+w_{\alpha})\leq$	$\leq \log \sum_{\alpha \in \mathcal{A}} \exp(y_{\alpha}) + \langle x, w \rangle +$	$\sum_{\alpha\in\mathcal{A}}x_{\alpha}w_{\alpha}^{2}$	
	Proof.				

Online 000C	earning in continuous time 0000000	Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback 00000●0	References
	Regret analysis, cont	'd			
					31/32

Online learning in continuous time 00000000000		Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback ○○○○○○●	
3	Regret of EXP3				

IS Assume:

- EXP3 is run for T iterations with $\gamma = \sqrt{\log m/(mT)}$
- ▶ Then: For all $p \in \mathcal{X}$, the learner enjoys the bound

 $\mathbb{E}[\operatorname{Reg}_p(T)] \le 2\sqrt{m\log m \cdot T}$

Online learning in continuous time		Online learning in discrete time 0000000000	Learning with oracle feedback	Learning with bandit feedback 000000●	
	Regret of EXP3				

INF Assume:

- EXP3 is run for T iterations with $\gamma = \sqrt{\log m/(mT)}$
- ▶ Then: For all $p \in \mathcal{X}$, the learner enjoys the bound

 $\mathbb{E}[\operatorname{Reg}_p(T)] \le 2\sqrt{m\log m \cdot T}$

Remarks:

- ✓ Tight in T
- **X** Worse than full info bound by a factor of \sqrt{m}
- Regret can be improved to $\mathcal{O}(\sqrt{mT})$ but no lower
- T must be known

Abernethy et al., 2008

#cf. Hedge-O

Audibert & Bubeck, 2010; Abernethy et al., 2015

- Abernethy, J., Bartlett, P. L., Rakhlin, A., and Tewari, A. Optimal strategies and minimax lower bounds for online convex games. In COLT '08: Proceedings of the 21st Annual Conference on Learning Theory, 2008.
- [2] Abernethy, J., Lee, C., and Tewari, A. Fighting bandits with a new kind of smoothness. In NIPS '15: Proceedings of the 29th International Conference on Neural Information Processing Systems, 2015.
- [3] Audibert, J.-Y. and Bubeck, S. Regret bounds and minimax policies under partial monitoring. Journal of Machine Learning Research, 11: 2635-2686, 2010.
- [4] Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. Gambling in a rigged casino: The adversarial multi-armed bandit problem. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995.
- [5] Blackwell, D. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, 6:1-8, 1956.
- [6] Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1-122, 2012.
- [7] Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games. Cambridge University Press, 2006.
- [8] Fudenberg, D. and Levine, D. K. The Theory of Learning in Games, volume 2 of Economic learning and social evolution. MIT Press, Cambridge, MA, 1998.
- [9] Hannan, J. Approximation to Bayes risk in repeated play. In Dresher, M., Tucker, A. W., and Wolfe, P. (eds.), Contributions to the Theory of Games, Volume III, volume 39 of Annals of Mathematics Studies, pp. 97-139. Princeton University Press, Princeton, NJ, 1957.
- [10] Shalev-Shwartz, S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107-194, 2011.
- [11] Sorin, S. Exponential weight algorithm in continuous time. Mathematical Programming, 116(1):513-528, 2009.