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), | Multi-armed bandits

Robbins’ multi-armed bandit problem: how to play in a (rigged) casino?
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Game-theoretic learning

Sequence of events — continuous time

Require: finite game I = ['(N, A, u)

repeat
At each epoch ¢t > 0 do simultaneously for all players i € A/ # continuous time
Choose mixed strategy x; (t) € X; := A(A;) # mixing
Encounter mixed payoff vector v; (x(t)) and get mixed payoff u; (x(t)) = (vi(t), x(t)) #feedback phase
until end

Defining elements
> Time:t>0
> Players: finite
> Actions: finite

> Payoffs: game

> Feedback: mixed payoff vectors
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Online learning

Sequence of events — continuous time

Require: set of actions A = {1,...,m}, stream of payoff vectors v; € [0,1], £ > 0

repeat
At each epoch t > 0 do # continuous time
Choose mixed strategy x; € X #mixing
Encounter payoff vector v; and get mixed payoff us(x:) = (vt, x¢) #feedback phase
until end

Defining elements
> Time: t>0
> Players: single # “unilateral viewpoint”
> Actions: finite

> Payoffs: exogenous # “game against Nature”

*» Feedback: mixed payoff vectors




Online learning in continuous time

Online v. multi-agent learning

How are payoffs generated?

> Multi-agent viewpoint

> Multiple agents
> Endogenous rewards: individual payoffs depend on other agents

> Game-theoretic: underlying mechanism is a (finite) game

> Online viewpoint
> Single agent

> Exogenous rewards: different payoff vector at each stage

> Agnostic: no assumptions on mechanism generating v(t) # dispassionate Nature




Online learning in continuous time

Online v. multi-agent learning

How are payoffs generated?

> Multi-agent viewpoint

> Multiple agents
> Endogenous rewards: individual payoffs depend on other agents

> Game-theoretic: underlying mechanism is a (finite) game

> Online viewpoint
> Single agent
> Exogenous rewards: different payoff vector at each stage

> Agnostic: no assumptions on mechanism generating v(t) # dispassionate Nature

What is the interplay between online and multi-agent learning?




The agent's regret

Performance of a policy x; measured by the agent’s regret

ur(p) — ue(x:)
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Performance of a policy x; measured by the agent’s regret

[ o) - i)




The agent's regret

Performance of a policy x; measured by the agent’s regret

max /:)T[u,(p) —u(xe)] dt

peX
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The agent's regret

Performance of a policy x; measured by the agent’s regret

T T
Reg(T) = r;gf/; [“t(P)—”t(xt)]dt”;g}/; (vep—xi)dt
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The agent's regret

Performance of a policy x; measured by the agent’s regret

T T
Reg(T) = r;gf/; [“t(P)—”t(xt)]dt”;g}/; (vep—xi)dt

No regret: Reg( T) = O(T) # the smaller the better

“The chosen policy is as good as the best fixed strategy in hindsight.”
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The agent's regret

Performance of a policy x; measured by the agent’s regret

T T
Reg(T) = r;gf/; [“t(P)—”t(xt)]dt”;g}/; (vep—xi)dt

No regret: Reg( T) = O(T) # the smaller the better

“The chosen policy is as good as the best fixed strategy in hindsight.”

Prolific literature:
» Economics *6 Hannan (1957), Fudenberg & Levine (1998)

» Mathematics o Blackwell (1956), Bubeck & Cesa-Bianchi (2012)

» Computer science = Shalev-Shwartz (2011), Cesa-Bianchi & Lugosi (2006)
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Exponential weights for online learning

Exponential weight dynamics

Y=Vt x0 = A(yr) (EWD)
where A:R* — X is the logit map
exp(ya)
Aaly) = o2 0e)_
P S peaexp(rp)

Does (EWD) lead to no regret?

BNHaTIKGY



Online learning in continuous time
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Bounding the regret

> Fix a comparator p € X

> Consider associated regret

T
Reg,(T) = -/0 (ve, p— x¢) dt
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Bounding the regret

> Fix a comparator p € X

> Consider associated regret

T
Reg,(T) = -/0 (ve, p— x¢) dt

> Focus on integrand

(vesxe = p) = (96, A(ye) - p)
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Bounding the regret

> Fix a comparator p € X

> Consider associated regret

T
Reg,(T) = -/0 (ve, p— x¢) dt

> Focus on integrand
(visxt = p) = (76 A(yr) - p)
> Suppose we can find a potential function ®(y) such that

VO() =A) - p = T2 = (A - )

EKMA, Thiu
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Bounding the regret

> Fix a comparator p € X

> Consider associated regret

T
Reg,(T) = /0 (ve, p— x¢) dt

> Focus on integrand
(visxt = p) = (76 A(yr) - p)
> Suppose we can find a potential function ®(y) such that

VO() =A) - p = T2 = (A - )

> Then ¢ do
Reg,(T) =~ | = dt=2(p) = ®(yr)

EKMA, Thiu
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Bounding the regret

> Fix a comparator p € X

> Consider associated regret

T
Reg,(T) = /0 (ve, p— x¢) dt

> Focus on integrand
(visxt = p) = (76 A(yr) - p)
> Suppose we can find a potential function ®(y) such that
do .
Vo) =AW -p = = (uA(y) - p)
> Then

T dd
Reg,(T) =~ | = dt=2(p) = ®(yr)

If suitable potential exists == Reg(T) < ®(yo) — min ®

EKMA, Thiu
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Finding a potential

What could a potential function look like?




ontinuous time

O

Minimizing the potential

What is the minimum value of the potential?
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Energy functions

We can encode the above with the help of the following energy functions:

> The Fenchel coupling:

F(p,y) = 3. palogpe+log 3 exp(ya) = 3. paye
acA acA acA
> Substituting x < A(y) yields the Kullback-Leibler divergence:

Dxi(p,x) = ) palog Pa

acA Xa

d
Key property: EF(p, yt) = {ve, xc — p)

EKMA, Thiju
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Regret of (EWD)

Theorem (Sorin, 2009)

Under (EWD), the learner enjoys the regret bound
Reg, (T) < F(p, y0) = ) palogpa +log E;leXp(ya,o) = Z;Apaya,o
acA ae ae

In particular, if (EWD) is initialized with yo = 0, we have

Reg(T) <logm

EKMA, Thiipa MaBnuatuby
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Online learning in discrete time

Sequence of events — discrete time

Require: set of actions A; sequence of payoff vectors v, t = 1,2,. ..
forallt=1,2,... do
Choose mixed strategy x; € X := A(A)

Play action a; ~ x;
Encounter payoff vector v; and receive payoff u;(eat;) = v,

end for

Defining elements

> Time: discrete
*> Players: single
> Actions: finite

»> Payoffs: exogenous

> Feedback: depends (full or partial information, ...)
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Online learning in discrete time

Sequence of events — discrete time

Require: set of actions A; sequence of payoff vectors v, t = 1,2,. ..
forallt=1,2,... do
Choose mixed strategy x; € X := A(A)

Play action a; ~ x;
Encounter payoff vector v; and receive payoff u;(eat;) = v,

end for
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The feedback process

Types of feedback

From best to worst (more to less info):

> Full informatl’on: Vi # deterministic vector feedback
> NOl'Sy payojfvectors: Ve + 2y # stochastic vector feedback

> Bandit/ Payoﬂ-based: u,(zx,) = Va,,t # stochastic scalar feedback
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The feedback process

Types of feedback

From best to worst (more to less info):

> Full information: Vi # deterministic vector feedback
> NOl'Sy payojfvectors: Ve + 2y # stochastic vector feedback
> Bandit/ Payoﬁ-based: u,((x,) = Va,,t # stochastic scalar feedback
v
m Play x; < (1/2,1/3,1/6) ~ Draw a; <1

Full information

17]|7]7 " () () ()

A\
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The feedback process

Types of feedback

From best to worst (more to less info):

> Full information: Vi
> Noisy payoff vectors: Ve + 2y

» Bandit/ Payoff-based:  u;(ct;) = Ve,

ndit feedback

# deterministic vector feedback
# stochastic vector feedback

# stochastic scalar feedback
v

Play x; < (1/2,1/3,1/6) ~ Draw a; <1

@

Noisy payoff vectors

Vt+Z[

A\
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The feedback process

Types of feedback

From best to worst (more to less info):

> Full information: Vi
> Noisy payoff vectors: Ve + 2y

» Bandit/ Payoff-based:  u;(ct;) = Ve,

ndit feedback

# deterministic vector feedback
# stochastic vector feedback

# stochastic scalar feedback
v

Play x; < (1/2,1/3,1/6) ~ Draw a; <1

Bandit / Payoff-based

- © @ ©

A\
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The feedback process

Types of feedback

From best to worst (more to less info):

> Full informatl’on: Vi # deterministic vector feedback
> NOl'Sy payojfvectors: Ve + 2y # stochastic vector feedback
> Bandit/ Payoﬂ-based: u,(zx,) = Va,,t # stochastic scalar feedback

Defining features:

> Vector (all payoffs) vs. Scalar (bandit)

» Deterministic (full info) vs. Stochastic (noisy, bandit)

i Randomness defined relative to history of play F; := F(x1,...,x:)

1= Other feedback models also possible (noisy / delayed observations....)




Online learning in discrete time
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Regret

The agent’s regret in discrete time

T
Realized regret: Reg(T) = me}i(Z[ut(oc) —u(ay)]
€A =1

T T

Mean regret: Reg(T) = max Y [u/(p) — u:(x;)] = max Y (vi, p — x;)
peX 5 peX 45
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[e]e]e] Je]ele]ele]e]

Regret

The agent’s regret in discrete time

T
Realized regret: Reg(T) = me}i(Z[ut(oc) —u(ay)]
€A =1

T T

Mean regret: Reg(T) = max Y [u/(p) — u:(x;)] = max Y (vi, p — x;)
peX 5 peX 45

*> Adversarial framework: regret guarantees against any given sequence v;

> No distinction between mean regret and pseudo-regret

¢ Bubeck & Cesa-Bianchi (2012)

» Not here: stochastic, Markovian, oblivious/non-oblivious,...

*¢ Cesa-Bianchi & Lugosi (2006)
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Feedback

Three types of feedback (from best to worst):
> Full, exact information: observe entire payoff vector v;

*> Full, inexact information: observe noisy estimate of v;

> Partial information / Bandit: only chosen component u;(a;) = vq,.;
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Feedback

Three types of feedback (from best to worst):
> Full, exact information: observe entire payoff vector v;
*> Full, inexact information: observe noisy estimate of v;

> Partial information / Bandit: only chosen component u;(a;) = vq,.;

The oracle model

A stochastic first-order oracle (SFO) model of v; is a random vector of the form
1A/t =V + U[ aF bt (SFO)

where Uy is zero-mean and b, = E[¥; | F;] — v(x;) is the bias of 7,

> Bias: |b¢] < B

> Variance: E[|U:|? | Fi] < 0f
2 ‘ Ft] < Mtz

> Second moment: E[|V:
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Reconstructing payoff vectors

Importance weighted estimators

Fix a payoff vector v € R* and a probability distribution P on A. Then the importance weighted estimator of v,
relative to P is the random variable
1, V| Py if o is drawn («a =
o= —S v = / (=f) (IWE)
Py 0 otherwise  (a # )

IWE as an oracle model

> Unbiased:

» Second moment:
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The Hedge algorithm

Algorithm Hebce # ExpPWEIGHT with full information

Require: set of actions .4; sequence of payoff vectors v; € [0, 1]““, t=12,...
Initialize: y; € RA
forallt=1,2,... do

setx; < A(yr) # mixed strategy
play o ~ x¢ and receive Vo, t # choose action / get payoff
observe v¢ #full info feedback
set yri1 < Yr + Yive # update scores
end for
Basic idea:

> Aggregate payoff information

> Choose actions with probability exponentially proportional to their scores

> Rinse & repeat
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Regret analysis

> Use constant Ye=Y # complications otherwise

> Fix benchmark strategy p € X and consider the Fenchel coupling:

Fi=F(p,y:) = Y. palogpa +log Y exp(ya:) = (¥ p)
ac A ae A

> Energyi lity:
gy inequality o
Fe <Fr+y(vexe = p) + 57" vl

> Telescope to get

F] yT
Reg,(T) < 5 o

> How to proceed?
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Regret analysis, cont'd

How to choose y?
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Regret of Hedge

Theorem (Auer et al., 1995)

= Assume:
> Sequence of payoff vectors v; € [0,1]; Full info feedback

> y=/Clogm)/T

1= Then: HEDGE enjoys the bound

Reg,(T) <\/2logm - T = O(VT)

BnpatKdy
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Regret of Hedge

Theorem (Auer et al., 1995)

= Assume:
> Sequence of payoff vectors v; € [0,1]; Full info feedback

> y=/Clogm)/T

1= Then: HEDGE enjoys the bound

Reg,(T) <\/2logm - T = O(VT)

Remarks:
» Cannot achieve O(1) regret as in continuous time # Why?
> This bound is tightin T s Abernethy et al, 2008

> Logarithmic dependence on m & Can deal with exponentially many arms!
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Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of v; is a random vector ¥; of the form

1A/t =V + Ut aF ht (SFO)

where Uy is zero-mean and b, = E[?; | F;] — v(x:) is the bias of ?;
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Oracle feedback

The oracle model

A stochastic first-order oracle (SFO) model of v; is a random vector ¥; of the form
1A/t =V + Ut ar ht

where Uy is zero-mean and b, = E[?; | F;] — v(x:) is the bias of ?;

(SFO)

> Bias: [b¢]eo < B:
> Variance: E[||U:|% | Fi] < of
» Second moment: K[|V, 2 | Fi] < M?

\,
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Oracle feedback

andit feedback

The oracle model

A stochastic first-order oracle (SFO) model of v, is a random vector 7, of the form
1A/t =V + U[ A b[

where Uy is zero-mean and b, = E[; | F;] — v(x;) is the bias of 7,

(SFO)

Algorithm Hepce-O

# ExPWEIGHT with SFO feedback

Require: set of actions A; sequence of payoff vectors v; € RA t=1,2,...
Initialize: y; € RA
forallt=1,2,... do
setx; < A(yr)
play a; ~ x; and receive vq,
observe V; < v;
set yer1 < Y+ yide

end for

# mixed strategy
# choose action/ get payoff
#full info feedback

# update scores
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Regret analysis

> Use constant Yt =Y # complications otherwise

» Fix benchmark strategy p € X and consider the Fenchel coupling:

F =F(p,y1) = ZAP« log pa +log ZAexp(ya,r) ~(ysp)

> Energy inequality:
1.2

Fri SFt+y<{}t>xt_P)+§y 2

oo

Vi

> Expand and rearrange:

F,—F
(ves p—x:) < %+(Uhxt—p)+(bt,xt—p)+%

2

oo

Vit

> How to proceed?




Regret analysis, cont'd

Bound each term separately:
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Regret of Hedge-O

= Assume:
> Sequence of payoff vectors v; € R; SFO feedback

2logm
SN k= v
T M

15 Then: forall p € X, HEpce-O enjoys the bound

i T
Regp(T)SZZB¢+ 2logm -y M?
=1 =1

1 MaBnuatikev
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Regret of Hedge-O

= Assume:
> Sequence of payoff vectors v; € R; SFO feedback

2logm
Py= T2
i My

15 Then: forall p € X, HEpce-O enjoys the bound

i T
Regp(T)SZZB¢+ 2logm -y M?
=1 =1

> (’)(ﬁ) regret if feedback is unbiased (b; = 0) and has finite variance (M; < M)

Remarks:

> This bound is tightin T *¢ Abernethy et al., 2008

»> Logarithmic dependence on m é Can deal with exponentially many arms!

1 MaBnuatikev
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Regret of Hedge

Theorem (Auer et al., 1995)

= Assume:
> Sequence of payoff vectors v; € [0,1]; Full info feedback

> y=/Clogm)/T

1= Then: HEDGE enjoys the bound

Reg,(T) <\/2logm - T = O(VT)

BnpatKdy
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Regret of Hedge

Theorem (Auer et al., 1995)

= Assume:
> Sequence of payoff vectors v; € [0,1]; Full info feedback

> y=/Clogm)/T

1= Then: HEDGE enjoys the bound

Reg,(T) <\/2logm - T = O(VT)

Remarks:
» Cannot achieve O(1) regret as in continuous time # Why?
> This bound is tightin T > Abemnethy et al, 2008

> Logarithmic dependence on m & Can deal with exponentially many arms!
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Learning with bandit feedback

Three types of feedback (from best to worst):

> Partial information / Bandit: only chosen component u; (o) = vq,,¢

Importance weighted estimators

Fix a payoff vector v € R** and a probability distribution P on A. Then the importance weighted estimator of v
is the random variable

1, {Va/Pa if o is drawn (& = f8) (IWE)

0 otherwise (a # f8)

» Unbiased: E[Va] = va w by =0

» Second moment: E[vﬁ] = vi/Pa w M, = O(1/ ming xq)

110 MAaBNUaTIKGY
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The EXP3 algorithm

Algorithm Exponential weights for exploration and exploitation (EXP3) # Hepce with bandit feedback

Require: set of actions .4; sequence of payoff vectors v; € [0,1]4, £ =1,2,...

Initialize: y; € RA

forallt=1,2,... do

set xy « A(yt) # mixed strategy
play o ~ x¢ and receive Vot # choose action / get payoff
N Vay,t .
set vy < €q; #IW estimator
Xyt
set yrip < yr + PVt # update scores

end for
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Regret analysis

> Use constant y; = y # complications otherwise

» Fix benchmark strategy p € X and consider the Fenchel coupling:

Fi=F(p,y:) = ), palogpa +1og 3 exp(ya) = (y1,p)
ac A acA

*> Energy inequality:
1.2

Fin SFt+)/<1A’t>xt—P)+§)/ :

oo

143

> Expand and rearrange:

Fi —Fin Y

+(Ut,xt—p)+£ 2

oo

A

Vit

(vi,p—xt) <

> No bias, but E[ io] = O(1/ ming x4,¢) is unbounded X

Ve

> How to proceed?
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Energy inequality

Basic lemma

Fix some y, w € R, and let x oc exp(y). Then:

log 3" exp(ya +wa) <log 3 exp(ya) + (x.w) + 4 [l
acA acA
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[e]e]e]e] Jele)

Energy inequality

Basic lemma

Fix some y € RA, w € (—o0,1]*, and let x oc exp(y). Then:

log > exp(ya +wa) <log > exp(ya) + (x,w) + > XaWe
acA acA acA

Bnuatikiy
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Regret of EXP3

Theorem (Auer et al., 1995)

= Assume:

> EXP3is run for T iterations with y = \/logm/(mT)
> Then: Forall p € X, the learner enjoys the bound

E[Reg,(T)] <2/mlogm-T

BnpatKdy



Learning with bandit feedback
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Regret of EXP3

Theorem (Auer et al., 1995)

= Assume:

> EXP3is run for T iterations with y = \/logm/(mT)
> Then: Forall p € X, the learner enjoys the bound

E[Reg,(T)] <2/mlogm-T

Remarks:

v Tightin T > Abernethy et al, 2008
X Worse than full info bound by a factor of /m

> Regret can be improved to O(v/mT) but no lower

» T must be known

# cf. Hedge-O

= Audibert & Bubeck, 2010; Abernethy et al,, 2015

A\ Thoughts?
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