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Multi-armed bandits

Robbins’ multi-armed bandit problem: how to play in a (rigged) casino?

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Outline

1 Online learning in continuous time

2 Online learning in discrete time

3 Learning with oracle feedback

4 Learning with bandit feedback
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Game-theoretic learning

Sequence of events — continuous time

Require: finite game Γ ≡ Γ(N ,A, u)
repeat

At each epoch t ≥  do simultaneously for all players i ∈ N # continuous time

Choose mixed strategy x i(t) ∈ Xi ∶= ∆(Ai) # mixing

Encounter mixed payoff vector v i(x(t)) and get mixed payoff u i(x(t)) = ⟨v i(t), x(t)⟩ # feedback phase

until end

Defining elements

▸ Time: t ≥ 
▸ Players: finite
▸ Actions: finite
▸ Payoffs: game
▸ Feedback: mixed payoff vectors

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Online learning

Sequence of events — continuous time

Require: set of actions A = {, . . . ,m}, stream of payoff vectors vt ∈ [, ]A , t ≥ 
repeat

At each epoch t ≥  do # continuous time

Choose mixed strategy xt ∈ X # mixing

Encounter payoff vector vt and get mixed payoff ut(xt) = ⟨vt , xt⟩ # feedback phase

until end

Defining elements

▸ Time: t ≥ 
▸ Players: single # “unilateral viewpoint”

▸ Actions: finite
▸ Payoffs: exogenous # “game against Nature”

▸ Feedback: mixed payoff vectors

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Online v. multi-agent learning

How are payoffs generated?

▸ Multi-agent viewpoint
▸ Multiple agents
▸ Endogenous rewards: individual payoffs depend on other agents
▸ Game-theoretic: underlying mechanism is a (finite) game

▸ Online viewpoint
▸ Single agent
▸ Exogenous rewards: different payoff vector at each stage
▸ Agnostic: no assumptions on mechanism generating v(t) # dispassionate Nature

What is the interplay between online and multi-agent learning?

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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The agent's regret

Performance of a policy xt measured by the agent’s regret

Reg(T) = max
p∈X ∫

T


[

ut(p) − ut(xt)

] dt = max
p∈X ∫

T


⟨vt , p − xt⟩ dt

No regret: Reg(T) = o(T) # the smaller the better

“The chosen policy is as good as the best fixed strategy in hindsight.”

Prolific literature:
▸ Economics 2 Hannan (1957), Fudenberg & Levine (1998)

▸ Mathematics 2 Blackwell (1956), Bubeck & Cesa-Bianchi (2012)

▸ Computer science 2 Shalev-Shwartz (2011), Cesa-Bianchi & Lugosi (2006)
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Exponential weights for online learning

Exponential weight dynamics

ẏt = vt xt = Λ(yt) (EWD)

where Λ∶RA → X is the logit map

Λα(y) =
exp(yα)

∑β∈A exp(yβ)

Does (EWD) lead to no regret?

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Bounding the regret

▸ Fix a comparator p ∈ X

▸ Consider associated regret

Regp(T) = ∫
T


⟨vt , p − xt⟩ dt

▸ Focus on integrand
⟨vt , xt − p⟩ = ⟨ ẏt , Λ(yt) − p⟩

▸ Suppose we can find a potential function Φ(y) such that

∇Φ(y) = Λ(y) − p Ô⇒ dΦ
dt
= ⟨ ẏt , Λ(yt) − p⟩

▸ Then

Regp(T) = − ∫
T



dΦ
dt

dt = Φ(y) −Φ(yT)

If suitable potential exists Ô⇒ Reg(T) ≤ Φ(y) −minΦ

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Finding a potential

What could a potential function look like?

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Minimizing the potential

What is the minimum value of the potential?

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Energy functions

We can encode the above with the help of the following energy functions:

▸ The Fenchel coupling:

F(p, y) = ∑
α∈A

pα log pα + log∑
α∈A

exp(yα) − ∑
α∈A

pα yα

▸ Substituting x ← Λ(y) yields the Kullback–Leibler divergence:

DKL(p, x) = ∑
α∈A

pα log
pα
xα

Key property:
d
dt

F(p, yt) = ⟨vt , xt − p⟩

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Regret of (EWD)

Theorem (Sorin, 2009)
Under (EWD), the learner enjoys the regret bound

Regp(T) ≤ F(p, y) = ∑
α∈A

pα log pα + log∑
α∈A

exp(yα ,) − ∑
α∈A

pα yα ,

In particular, if (EWD) is initialized with y = , we have

Reg(T) ≤ logm

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Online learning in discrete time

Sequence of events — discrete time
Require: set of actions A; sequence of payoff vectors vt , t = , , . . .

for all t = , , . . . do
Choose mixed strategy xt ∈ X ∶= ∆(A)
Play action αt ∼ xt
Encounter payoff vector vt and receive payoff ut(αt) = vα t ,t

end for

Defining elements

▸ Time: discrete
▸ Players: single
▸ Actions: finite
▸ Payoffs: exogenous
▸ Feedback: depends (full or partial information, …)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Sequence of events — discrete time
Require: set of actions A; sequence of payoff vectors vt , t = , , . . .

for all t = , , . . . do
Choose mixed strategy xt ∈ X ∶= ∆(A)
Play action αt ∼ xt
Encounter payoff vector vt and receive payoff ut(αt) = vα t ,t

end for

Regret

Reg(T) = max
p∈X

T

∑
t=
[Evαt ,t [αt ∼ p] − Evαt ,t [αt ∼ xt]] = max

p∈X

T

∑
t=
⟨vt , p − xt⟩

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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The feedback process

Types of feedback

From best to worst (more to less info):

▸ Full information: vt # deterministic vector feedback

▸ Noisy payoff vectors: vt + Zt # stochastic vector feedback

▸ Bandit / Payoff-based: ut(αt) = vα t ,t # stochastic scalar feedback

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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▸ Full information: vt # deterministic vector feedback

▸ Noisy payoff vectors: vt + Zt # stochastic vector feedback

▸ Bandit / Payoff-based: ut(αt) = vα t ,t # stochastic scalar feedback

Example

Play xt ← (/, /, /) ; Draw αt ← 

Full information

vt   
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Types of feedback

From best to worst (more to less info):

▸ Full information: vt # deterministic vector feedback

▸ Noisy payoff vectors: vt + Zt # stochastic vector feedback

▸ Bandit / Payoff-based: ut(αt) = vα t ,t # stochastic scalar feedback

Example

Play xt ← (/, /, /) ; Draw αt ← 

Bandit / Payoff-based

vα t ,t  7 7
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The feedback process

Types of feedback

From best to worst (more to less info):

▸ Full information: vt # deterministic vector feedback

▸ Noisy payoff vectors: vt + Zt # stochastic vector feedback

▸ Bandit / Payoff-based: ut(αt) = vα t ,t # stochastic scalar feedback

Defining features:

▸ Vector (all payoffs) vs. Scalar (bandit)
▸ Deterministic (full info) vs. Stochastic (noisy, bandit)

+ Randomness defined relative to history of play Ft ∶= F(x , . . . , xt)
+ Other feedback models also possible (noisy / delayed observations,…)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Regret

The agent’s regret in discrete time

Realized regret: Reg(T) = max
α∈A

T

∑
t=
[ut(α) − ut(αt)]

Mean regret: Reg(T) = max
p∈X

T

∑
t=
[ut(p) − ut(xt)] = max

p∈X

T

∑
t=
⟨vt , p − xt⟩

▸ Adversarial framework: regret guarantees against any given sequence vt

▸ No distinction between mean regret and pseudo-regret

2 Bubeck & Cesa-Bianchi (2012)

▸ Not here: stochastic, Markovian, oblivious/non-oblivious,…

2 Cesa-Bianchi & Lugosi (2006)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Feedback

Three types of feedback (from best to worst):

▸ Full, exact information: observe entire payoff vector vt

▸ Full, inexact information: observe noisy estimate of vt

▸ Partial information / Bandit: only chosen component ut(αt) = vα t ,t

The oracle model
A stochastic first-order oracle (SFO) model of vt is a random vector of the form

v̂t = vt +Ut + bt (SFO)

where Ut is zero-mean and bt = E[v̂t ∣Ft] − v(xt) is the bias of v̂t

Assumptions
▸ Bias: ∥bt∥ ≤ Bt

▸ Variance: E[∥Ut∥ ∣Ft] ≤ σ 
t

▸ Second moment: E[∥v̂t∥ ∣Ft] ≤ M
t

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Reconstructing payoff vectors

Importance weighted estimators

Fix a payoff vector v ∈ RA and a probability distribution P on A. Then the importance weighted estimator of vα
relative to P is the random variable

v̂α =
1α

Pα
vα =

⎧⎪⎪⎨⎪⎪⎩

vα/Pα if α is drawn (α = β)

 otherwise (α ≠ β)
(IWE)

IWE as an oracle model

▸ Unbiased:
E[v̂α] = vα

▸ Second moment:

E[v̂α] =
vα
Pα

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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The Hedge algorithm

Algorithm HEDGE # EXPWEıGHT with full information

Require: set of actions A; sequence of payoff vectors vt ∈ [, ]A , t = , , . . .
Initialize: y ∈ RA

for all t = , , . . . do
set xt ← Λ(yt) # mixed strategy

play αt ∼ xt and receive vα t ,t # choose action / get payoff

observe vt # full info feedback

set yt+ ← yt + γtvt # update scores

end for

Basic idea:

▸ Aggregate payoff information

▸ Choose actions with probability exponentially proportional to their scores

▸ Rinse & repeat

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Regret analysis

▸ Use constant γt ≡ γ # complications otherwise

▸ Fix benchmark strategy p ∈ X and consider the Fenchel coupling:

Ft = F(p, yt) = ∑
α∈A

pα log pα + log∑
α∈A

exp(yα ,t) − ⟨yt , p⟩

▸ Energy inequality:
Ft+ ≤ Ft + γ⟨vt , xt − p⟩ + 

 γ
∥vt∥∞

▸ Telescope to get

Regp(T) ≤
F
γ
+ γT



▸ How to proceed?
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Regret analysis, cont'd

How to choose γ?
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Regret of Hedge

Theorem (Auer et al., 1995)
+ Assume:

▸ Sequence of payoff vectors vt ∈ [, ]A ; Full info feedback

▸ γ =
√
( logm)/T

+ Then: HEDGE enjoys the bound
Regp(T) ≤

√
 logm ⋅ T = O(

√
T)

Remarks:

▸ Cannot achieve O() regret as in continuous time # Why?

▸ This bound is tight in T 2 Abernethy et al., 2008

▸ Logarithmic dependence on m 9 Can deal with exponentially many arms!
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Outline

1 Online learning in continuous time

2 Online learning in discrete time

3 Learning with oracle feedback

4 Learning with bandit feedback
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Oracle feedback

The oracle model
A stochastic first-order oracle (SFO) model of vt is a random vector v̂t of the form

v̂t = vt +Ut + bt (SFO)

where Ut is zero-mean and bt = E[v̂t ∣Ft] − v(xt) is the bias of v̂t
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Oracle feedback

The oracle model
A stochastic first-order oracle (SFO) model of vt is a random vector v̂t of the form

v̂t = vt +Ut + bt (SFO)

where Ut is zero-mean and bt = E[v̂t ∣Ft] − v(xt) is the bias of v̂t

Assumptions
▸ Bias: ∥bt∥∞ ≤ Bt

▸ Variance: E[∥Ut∥∞ ∣Ft] ≤ σ 
t

▸ Second moment: E[∥v̂t∥∞ ∣Ft] ≤ M
t
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Oracle feedback

The oracle model
A stochastic first-order oracle (SFO) model of vt is a random vector v̂t of the form

v̂t = vt +Ut + bt (SFO)

where Ut is zero-mean and bt = E[v̂t ∣Ft] − v(xt) is the bias of v̂t

Algorithm HEDGE-O # EXPWEıGHT with SFO feedback

Require: set of actions A; sequence of payoff vectors vt ∈ RA , t = , , . . .
Initialize: y ∈ RA

for all t = , , . . . do
set xt ← Λ(yt) # mixed strategy

play αt ∼ xt and receive vα t ,t # choose action / get payoff

observe v̂t ← vt # full info feedback

set yt+ ← yt + γt v̂t # update scores

end for
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Regret analysis

▸ Use constant γt ≡ γ # complications otherwise

▸ Fix benchmark strategy p ∈ X and consider the Fenchel coupling:

Ft = F(p, yt) = ∑
α∈A

pα log pα + log∑
α∈A

exp(yα ,t) − ⟨yt , p⟩

▸ Energy inequality:
Ft+ ≤ Ft + γ⟨v̂t , xt − p⟩ + 

 γ
∥v̂t∥∞

▸ Expand and rearrange:

⟨vt , p − xt⟩ ≤
Ft − Ft+

γ
+ ⟨Ut , xt − p⟩ + ⟨bt , xt − p⟩ + γ


∥v̂t∥∞

▸ How to proceed?
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Regret analysis, cont'd

Bound each term separately:

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών



25/32

Online learning in continuous time Online learning in discrete time Learning with oracle feedback Learning with bandit feedback References

Regret of Hedge-O

Theorem
+ Assume:

▸ Sequence of payoff vectors vt ∈ RA ; SFO feedback

▸ γ =
¿
ÁÁÀ  logm

∑T
t= M

t

+ Then: for all p ∈ X , HEDGE-O enjoys the bound

Regp(T) ≤ 
T

∑
t=

Bt +

¿
ÁÁÀ logm ⋅

T

∑
t=

M
t

Remarks:

▸ O(
√
T) regret if feedback is unbiased (bt = ) and has finite variance (Mt ≤ M)

▸ This bound is tight in T 2 Abernethy et al., 2008

▸ Logarithmic dependence on m 9 Can deal with exponentially many arms!
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Outline

1 Online learning in continuous time

2 Online learning in discrete time

3 Learning with oracle feedback

4 Learning with bandit feedback
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Learning with bandit feedback

Three types of feedback (from best to worst):
▸ Full, exact information: observe entire payoff vector vt
▸ Full, inexact information: observe noisy estimate of vt
▸ Partial information / Bandit: only chosen component ut(αt) = vα t ,t

Importance weighted estimators

Fix a payoff vector v ∈ RA and a probability distribution P on A. Then the importance weighted estimator of vα
is the random variable

v̂α =
1α

Pα
vα =

⎧⎪⎪⎨⎪⎪⎩

vα/Pα if α is drawn (α = β)

 otherwise (α ≠ β)
(IWE)

IWE as an oracle model

▸ Unbiased: E[v̂α] = vα + b t = 

▸ Second moment: E[v̂α] = vα/Pα + M t =O(/minα xα ,t)
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The EXP3 algorithm

Algorithm Exponential weights for exploration and exploitation (EXP3) # HEDGE with bandit feedback

Require: set of actions A; sequence of payoff vectors vt ∈ [, ]A , t = , , . . .

Initialize: y ∈ RA

for all t = , , . . . do

set xt ← Λ(yt) # mixed strategy

play αt ∼ xt and receive vα t ,t # choose action / get payoff

set v̂t ←
vα t ,t
xα t ,t

eα t # IW estimator

set yt+ ← yt + γt v̂t # update scores

end for
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Regret analysis

▸ Use constant γt ≡ γ # complications otherwise

▸ Fix benchmark strategy p ∈ X and consider the Fenchel coupling:

Ft = F(p, yt) = ∑
α∈A

pα log pα + log∑
α∈A

exp(yα ,t) − ⟨yt , p⟩

▸ Energy inequality:
Ft+ ≤ Ft + γ⟨v̂t , xt − p⟩ + 

 γ
∥v̂t∥∞

▸ Expand and rearrange:

⟨vt , p − xt⟩ ≤
Ft − Ft+

γ
+ ⟨Ut , xt − p⟩ + γ


∥v̂t∥∞

▸ No bias, but E[∥v̂t∥∞] = O(/minα xα ,t) is unbounded 7

▸ How to proceed?
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Energy inequality

Basic lemma

Fix some y,w ∈ RA , and let x ∝ exp(y). Then:

log∑
α∈A

exp(yα +wα) ≤ log∑
α∈A

exp(yα) + ⟨x ,w⟩ + 
 ∥w∥


∞

Proof.
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Energy inequality

Basic lemma

Fix some y ∈ RA , w ∈ (−∞, ]A , and let x ∝ exp(y). Then:

log∑
α∈A

exp(yα +wα) ≤ log∑
α∈A

exp(yα) + ⟨x ,w⟩ + ∑
α∈A

xαw
α

Proof.
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Regret analysis, cont'd
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Regret of EXP3

Theorem (Auer et al., 1995)
+ Assume:

▸ EXP3 is run for T iterations with γ =
√
logm/(mT)

▸ Then: For all p ∈ X , the learner enjoys the bound

E[Regp(T)] ≤ 
√
m logm ⋅ T

Remarks:

3 Tight in T 2 Abernethy et al., 2008

7 Worse than full info bound by a factor of
√
m # cf. Hedge-O

▸ Regret can be improved to O(
√
mT) but no lower 2 Audibert & Bubeck, 2010; Abernethy et al., 2015

▸ T must be known 2 Thoughts?
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