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PREFACE

In his presidential address to the London Mathematical Society in 1908
(published in the article [a12]), William Burnside remarked that ‘It is
undoubtedly the fact that the theory of groups of finite order has failed,
so far, to arouse the interest of any but a very small number of English
mathematicians . ..” And he ended with the words ‘I wish, in conclusion,
to appeal to those who have the teaching of our younger pure mathe-
maticians to do something to stimulate the study of group-theory in
this country. If, when advice is given for the course of study to be pursued,
the importance of some knowledge of group-theory for a pure mathemati-
cian (which is generally recognized elsewhere) were insisted on, there is
little doubt but that a demand for the serious teaching of the subject
would soon arise.’

Seventy years on, such a plea would be scarcely necessary: the central
importance of group theory is now fully recognized and reflected in the
teaching of mathematics in universities and colleges. No doubt this is
due in no small measure to the profound influence of Burnside’s own
masterly book on the subject of groups ([b3]). Nowadays it is customary
in British universities to provide introductory courses of lectures on
groups and other algebraic systems for undergraduates in their first
year of study. The present work offers material for a further course of
study on group theory. It is based on courses of lectures given by the
author at the University of Newcastle upon Tyne to third year honours
undergraduates and to candidates for the Master’s degree.

The reader is supposed to be familiar with the contents of the kind of
introductory course mentioned above. Specifically, knowledge is pre-
supposed of the notions of isomorphism classes of groups, cyclic and
abelian groups, subgroups and cosets, Lagrange’s theorem, orders of
elements, symmetric groups and the decomposition of a permutation
as a product of disjoint cycles; and of the most elementary properties
of vector spaces, linear maps and matrices, fields and rings. A rather
terse summary of the facts about groups which are presupposed is contain-
ed in the preliminary chapter 0, which also serves to establish notation
used throughout the book. =

Chapter O is followed by another short chapter, chapter 1. This is
intended as a curtain-raiser to the whole book and attempts to trace
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various important themes in terms comprehensible to the reader on
the basis of the presupposed knowledge. The aim is to provide a motivation
for some of the technical definitions and procedures to be treated in
detail later on. The emphasis in chapter 1 is entirely on finite groups,
which are in fact the primary objects of study of the whole book. Neverthe-
less, an attempt has been made to avoid finiteness restrictions wherever
their imposition does not materially simplify the discussion; and certain
important results on infinite groups which arise naturally in context
have been included, especially in chapters 7 and 8.

The systematic treatment begins in chapter 2, where many basic
examples which recur throughout the book are introduced. Subsequent
chapters deal in a fairly leisurely way with a selection of the most important
lines of development in the subject, and an attempt has been made to
give a unified rather than a piecemeal treatment. An indication of the
selection made is given by the chapter titles. In brief, one may say that
chapters 3, 7, 8 and 9 deal with the normal structure of groups and chapters
4, 5 and 6 with the arithmetical structure, while chapters 10 and 11 treat
aspects of the interplay between normal and arithmetical structures.

A particular emphasis is placed on the idea of group actions. This is
conceptually important as typifying the way in which groups occur in
mathematics, as well as providing a powerful method within group theory
itself. The basic facts about group actions are given in chapters 4 and 9,
with applications in chapters 5 and 10.

Chapter 10 calls for special comment. It is devoted to an exposition
of the beautiful treatment of the classical notions of transfer and splitting
by means of group action arguments which was given by Professor
Helmut Wielandt in a lecture at the Mathematisches Forschungsinstitut,
Oberwolfach, in May 1972. This provides a very impressive illustration
of the power of group action techniques within group theory. This
material has not previously appeared in print and I am very greatly
indebted to Professor Wielandt for allowing me to include it here.

Any book which attempts to give a general account of group theory
must inevitably be selective. To the practitioner of the subject who
inspects the book, the omissions are probably more striking than the
topics chosen for inclusion. In offering the present work for scrutiny,
I am especially conscious of two major omissions: the representation
theory of finite groups (and the associated theory of group characters)
and the theory of defining relations of groups. Of these two important
topics, the first may seem a surprising omission from a book which
stresses group actions, since representation theory may be viewed as
the theory of group actions on vector spaces (as is explained at the begin-
ning of chapter 9). I feel, however, that in both cases an adequate treatment
would lengthen the book unacceptably. Moreover, a proper discussion
of defining relations would involve the theory of free groups which,
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although fundamental, is rather different in spirit from the topics treated
here. Good accounts of both representation theory and defining relations
are to be found in several of the general texts on group theory listed
among the references at the end of this book. A number of specific refer-
ences to representation theory are given at the beginning of chapter 9.
On the subject of defining relations, I wish also to mention explicitly
the important established work of reference by H. S. M. Coxeter and
W. O. J. Moser [b6], and the recent book by D. L. Johnson [b22].

The present work is arranged in short sections which are numbered
consecutively through each chapter. In many instances, a section is
devoted to the statement and proof of a single result, to which reference
may be made in other parts of the book by citing the appropriate section
number. The more important results are designated ‘Lemma’ or ‘Theorem’.

The exercises form an essential constituent of the book. They are
numbered consecutively from 1 to 679, their numbers appearing in bold
type. Exercises 1 to 12 appear at the end of chapter 0 and are meant
to be accessible to the reader with the presupposed knowledge. There
are no exercises in chapter 1. From chapter 2 onward, the exercises are
set at roughly equal intervals throughout the text. The aim is to give
exercises which illustrate and extend the material of the formal course
as soon as the relevant facts have been established in the text. There are
many cross-references to exercises, particularly in the later chapters of
the book: these references are given merely by citing exercise numbers;
it is hoped that the regular distribution of the exercises and the bold
type of their numbers will make these easy to locate without the additional
citation of page numbers. The statements of many of the exercises omit
the conventional imperatives ‘prove that’ or ‘show that’; they are neverthe-
less assertions to be proved. I imagine that few readers of the book are
likely to attempt all the exercises. However, a number of definitions and
results given in exercises are needed in the main text, and these are indi-
cated by asterisks against their numbers (e.g. *1); these exercises are
mostly straightforward. Many of the more difficult exercises are accom-
panied by suggested hints for their solution.

Dates have been attached to some results in order to indicate a historical
perspective to the development of the subject. For the same rgason,
various references to early articles and books have been included in
the list at the end of the book. However, no pretence of historical scholar-
ship is made: this is a book on group theory, not on the history of the
subject. For a scholarly account of the early development of group theory,
the reader may consult the book by H. Wussing [b40].

The references to works of other authors are divided into articles,
with numbers prefixed by the letter ‘a’, and books, with numbers prefixed
by the letter ‘b’. The works listed are mainly those to which reference
is made in the text and in no way constitute a comprehensive biblio-
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graphy of the subject. Many of the authors quoted have written other
important works on group theory, and there are of course also many
important works by authors who are not quoted. An impression of the
scope and bulk of publication on group theory in the years 1940 to 1970
may be obtained from the recently published volumes of reviews taken
from the periodical Mathematical Reviews: Reviews on Finite Groups
(ed. D. Gorenstein, Amer. Math. Soc. 1974) and Reviews on Infinite
Groups (2 vols., ed. G. Baumslag, Amer. Math. Soc. 1974).

Iwas fortunate in the mathematicians who provided my first comprehen-
sive impressions of group theory, which were formed by listening to
courses of lectures given by Professor W. L. Edge in Edinburgh, Professor
P. Hall and Dr D. R. Taunt in Cambridge, Professor B. Huppert in
Mainz and Professor H. Wielandt in Tiibingen. Although they might
not care to recognise the views or the modes of treatment of the subject
which I have chosen to adopt here as deriving from their own accounts,
I wish to place on record my sense of indebtedness to them for providing
the original stimulus which led me to pursue the subject. Of my particular
indebtedness to Professor Wielandt regarding the content of chapter 10,
I have already spoken.

During the writing of the book, I have been helped by many friends
and colleagues. I wish especially to offer thanks to Dr R. H. Dye, whose
misfortune it has been to occupy an office adjacent to my own and who
has shown exemplary patience in listening to my trial expositions of
many arguments which have been incorporated (and others which have
not) and frequently brought clarity to my confusion; to Professor A. Mann
for several valuable suggestions which I have adopted; and to Dr S. E.
Stonehewer, who most generously undertook to read the whole manu-
script, performed this task with characteristic conscientiousness, and
helped me with many pertinent comments. I wish also to express warm
thanks to Miss Joyce Edger who cheerfully and skilfully transformed
the manuscript to typescript; and to Dr and Mrs R. H. Dye for their
help with proof-reading.

Newcastle upon Tyne
26 May 1976
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SOME CONVENTIONS AND SOME BASIC
FACTS

In this book, the capital letters G, H,J, K, L (sometimes with subscripts
and superscripts) will always denote groups. The reader is supposed to
be familiar with the elementary basic facts about groups which are
summarized in this chapter. Further details are to be found for instance
in Green [b14], or chapters 1, 2 of Ledermann [b29], or chapters 1, 2, 3
of Macdonald [b30].

A subgroup of G 1s a subset of G which itself forms a group with respect
to the operation defining G. Then, if X is a non-empty subset of G, X
is a subgroup of G ifand only if x, x; ' € X whenever x, and x, are elements
of X. .

We shall usually denote the identity element of a group by 1. Then
if G is the group in question, the subset {1} consisting only of the identity
element of G forms a subgroup which we call the trivial subgroup of G.
Strictly we ought to preserve the notational distinction between the
element 1 and the subgroup {1} of G, but in practice the same symbol
1 without brackets is used for both element and subgroup. A subgroup H
of G is said to be non-trivial if H # 1. We say that G itself is trivial if G
has just one element (in which case G = 1); and similarly that G is non-
trivial if G has more than one element. Sometimes we refer to an element
of G distinct from 1 as a non-trivial element.

Let geG. If the elements g, g%, g, ... of G are all distinct, we say that
g is an element of infinite order in G and we write o(g) = co. If on the
other hand there are distinct positive integers r, s such that g" = g°, we
say that g is of finite order in G: then there is a positive integer n such
that g" =1 and we call the least such n the order of g, denoted in this
book by o(g). If g is of finite order and m is an integer, then g™ = 1 if and
only if o(g) divides m.

Elements g, and g, of G are said to commuteifg,g, = g,9, . Anon-empty
subset X of G is said to be a commuting set of elements if x,x, = x,x,
whenever x, and x, are elements of X. If G is itself a commuting set of
elements then G is called an abelian group (in honour of Niels Henrik
Abel, 1802-29).

If there is an element g of G such that every element of G is expressible
as a power g™ of g (where m is an integer), we say that G is a cyclic group
and that g generates G: then we write G = {g). Any cyclic group is
abelian.
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Let X be any set. If X is infinite we write | X | = co. If X is finite, we
denote by | X | the number of elements in X. Sometimes we write | X | < oo
to signify that X is finite. For any group G, we call |G| the order of G.
In particular, if G is a finite cyclic group with, say, G = (g), then |G| =
o(g): explicitly, if o(g)=n then G = {1,g,4%...,9"~'}. For an arbitrary
group, the trivial subgroup is the only subgroup of order 1.

In a few passing remarks throughout the book we refer to infinite
cardinal numbers. When X is an infinite set, | X | may be interpreted as the
cardinality of X. With this interpretation, various statements to be made
can be refined to give corresponding results which distinguish between
different types of infinite sets. However, the reader who is unfamiliar with
infinite cardinal numbers may ignore all such remarks without impairing
his understanding of the rest of the text.

For sets X, Y we use the notation

Y < X to mean Y is a subset of X,
Y © X to mean Y is a subset of X and Y # X.

In the latter case we say that Y is a proper subset of X. When Y < X we
denote by X \Y the set of elements of X which do not belong to Y. The
empty set is denoted by . In group theory we write

H<GtomeanHisa subgroup of G,
H < G to mean H is a proper subgroup of G.

(Warning. Ledermann and Macdonald use ‘proper’ to mean ‘proper and
non-trivial’, but we do not follow this usage.)

According to Lagrange’s theorem, if G is a finite group and H < G then
| H| divides |G|. This fact is of crucial importance for finite group theory.
We recall that the theorem is proved by partitioning G as the union
of a number of disjoint subsets of G each containing | H| elements. For
these subsets we may select the right cosets of H in G, that is the subsets
Hg={hg:heH} with geG (where each g determines a subset ,Hg).
Alternatively, we may select for the subsets the left cosets of H in G, that
is the subsets gH = {gh : he H} with geG. If g, and g, are elements of G,
we have Hg, = Hg, ifand only if g,g, '€ H, and g, H = g,H if and only if
g7 'g,€eH.

For an arbitrary (not necessarily finite) group G and H < G, the same
argument still applies. We may partition G as the disjoint union of right
cosets of H in G or of left cosets of H in G. If there are only finitely many
distinct right cosets of H in G then there are only finitely many distinct
left cosets of H in G, and conversely, and the numbers of them are the
same. This number is called the index of H in G and denoted by |G : H|.
Note that |G :H|=1 if and only if H=G. If G is a finite group then
|G :H|=|G|/|H|. But it can also happen that an infinite group has
proper subgroups with finite indices. If on the other hand there are
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infinitely many distinct right (or, equivalently, left) cosets of H in G,
we write |G : H| = co. Later on (in chapter 4) we shall place this idea
of partitioning a group as a union of disjoint subsets in a much more
general context, and derive other important results by arguments of
the same kind. It is assumed that the reader is familiar with the idea of an
equivalence relation on a set, and the connexion between this and the
partitioning of a set as a union of disjoint subsets.

If ge H < G, then the order of g in H is the same as the order of g in
G. The element g generates a cyclic subgroup {g> of G, and this subgroup
is finite if and only if o(g) < o0, in which case |{g>|=o(g). Now if G is a
finite group with, say, |G| =n, and geG, then {g) is finite and so o(g)
is finite; and, by Lagrange’s theorem, o(g) divides n. Hence g" =1 for
all geG.

We use the notation ¢ : X — Y to mean that ¢ is a map (the words
mapping and function are synonyms for map) of a set X into a set Y.
Frequently we write x¢ or x? for the image under ¢ of an element xe X.
This convention has the advantage thatif ¢ : X - Yand ¢ : Y — Z then
the composite map of X into Z, defined by applying to each xeX first
¢ and then ), is denoted by @y : thus, by definition, x(py) = (x@)y.
(This corresponds to the European convention of reading from left to
right.) With the functional notation customary in analysis, by which the
image of x under ¢ is denoted by ¢(x), the composite map is denoted
by Yo : (Yo)(x) = Y(¢(x)). However, it is inconvenient to maintain a
consistent convention for notation of maps, and either convention will
be adopted according to circumstances.

If o : X - Y and xe X, we often use the notation ¢ : x — x¢ to show
the effect of ¢ on x. The barred arrow i is used only between elements
of sets.

A map ¢ : X — Y issaid to be injective if x, ¢ # x,¢ whenever x,,x,€X
and x, # Xx,; and to be surjective if every element yeY is expressible
as y = x¢ for some xeX. If ¢ is both injective and surjective, it is said
to be bijective. Let 1, denote the identity mapon X, i.e.themap 1, : X —» X
defined by 1, : x> x for all xeX. Then ¢ : X — Y is injective if and
only if there is a map ¥ : Y — X such that ¢y = 1,. Also, if 1, denotes
the identity map on Y then ¢ : X — Y is surjective if and only if there
is a map ¥: Y - X such that Y@ = 1,. Finally, ¢ : X — Y is bijective
if and only if there is a map ¥ : Y — X such that ¢y =1, and y¢ =1,,
that is, if and only if ¢ is invertible. A bijective map ¢ : X — X is often
called a permutation of X. If X is a finite set then an injectivemap ¢ : X —» X
is necessarily a permutation of X, as is a surjective map ¥ : X - X ; here
the condition of finiteness of X is essential. The reader is supposed to
be familiar with the elementary properties of permutations. These will
be summarized when the symmetric groups are introduced in chapter 2.
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Elements of a set are sometimes called points. A map ¢ : X — X is
said to fix a point xe X if x¢ = x.

Two groups are said to be isomorphic if there is a bijective, structure-
preserving map from one to the other (see 2.6). Then the relation of
isomorphism is an equivalence relation on any set of groups. This relation
is fundamental to group theory in the sense that group theory is concerned
with classifying groups ‘to within isomorphism’. We cannot expect to
distinguish group-theoretically between groups which are isomorphic
but have no elements in common. For the sake of brevity we shall call
an isomorphism class of groups a type. We write G, = G, to denote that
groups G, and G, are isomorphic.

If o : X — Y and S is a subset of X, then the restriction of ¢ to S is the
map ¢, :S — Y defined by ¢, : s> sp for all seS. This is sometimes
denoted by ¢|s. It may happen that there is a subset T of Y such that
speT for all seS. Then we may want to refer to the map y : S — T defined
by ¥ :st> se for all seS. Logically this is a different map from ¢, if
T < Y. We shall say that s is obtained from ¢ by restriction.

If @ =S < X and 1, denotes the identity map on X then 1,|s:S - X
is the inclusion map of S in X.

Throughout this book,

p always denotes a prime number,
@ a set of prime numbers,

C the field of complex numbers,
R the field of real numbers,

Q the field of rational numbers,

Z the ring of integers.

For any positive integer n,

Z, denotes the ring of integers modulo n.
In particular, Z, is a field, sometimes denoted by GF(p) (a so-called
Galois field).
If a and b are integers and n is a positive integer,

a = b mod n means that n divides a — b.

We sometimes write (a,b) for the greatest common divisor of a and b:
this is defined provided that a and b are not both 0. We say that a and
b are co-prime if (a,b) = 1. If a and b are co-prime integers then there
exist integers a’ and b’ such that aa’ + bb’ = 1.

*1 Any group of prime order is cyclic.

*2 Any two cyclic groups of the same finite order are isomorphic.

*3 If g2 = 1 for every geG then G is an abelian group.

4 Letg,,g,€G. Then o(g, g,) = 0(g9,9,)-

*§ (i) Let geG with o(g) = n < 00. Then, for every integer m, o(g™) = n/(m, n).
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(i) If G is a cyclic group of finite order n then the number of distinct elements
which generate G is ¢(n), where ¢ is Euler’s function : that is, ¢ (n) is the number of
positive integers not exceeding n which are co-prime to n.

*6 Let g,,9,€G with o(g,) =n, < 0,0(g,)=n, <oo. If n, and n, are co-prime
and g, and g, commute then o(g, g,) =n,n,.

7 Let geG with o(g) = n, n,, where n, and n, are co-prime positive integers. Then
there are elements g,,g,€G such that g=g,g, =g,9, and o(g,) =n,,0(g,) =n,.
Moreover, g, and g, are uniquely determined by these conditions.

8 By considering orders of elements in the multiplicative group of all non-zero
elements of the field Z,, prove Fermat’s theorem : for every integer a not divisible
by p,a? ! =1mod p.

9 Let G be an abelian group of finite order n. Show that the product of the n distinct
elements of G is equal to the product of all the elements of G of order 2 (where the
latter product is interpreted as 1 if G has no element of order 2). By applying this
result to the multiplicative group of all non-zero elements of the field Z,, prove
Wilson’s theorem for prime numbers: (p — 1)! = — 1 mod p.

10 Let H< G and let g,,g,€G. Then Hg, = Hg, ifand only if g7 *H=g; ' H.
*11 (ifLet J < H<G. Then |G : J| is finite if and only if |G : H| and |H : J| are
both finite, and if so, |G : J|=|G : H||H : J|.

(ii) Let J < H < G with |G : J| = p, prime.
Then either H=J or H=G.

12 Let H < G and geG. If o(g) = n and g™e H, where n and m are co-prime integers,
then geH.
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INTRODUCTION TO FINITE GROUP
THEORY

The ideal aim of finite group theory is to ‘find’ all finite groups: that is,
to show how to construct finite groups of every possible type, and to
establish effective procedures which will determine whether two given
finite groups are of the same type. The attainment of this ideal is of course
quite beyond the reach of present techniques (though the corresponding
aim for finite abelian groups was achieved a hundred years ago: see 8.24,
8.41). But what kind of programme might be devised towards the fulfilment
of such an aim?

To each finite group G there is associated the positive integer |G|.
We note two elementary facts.

1.1. For each positive integer n, there is at least one type of group of order n.
For instance, the set of complex nth roots of unity forms a (cyclic) group
of order n under multiplication: see 2.14.

1.2. For each positive integer n, there are only finitely many different
types of groups of order n.

To see this we observe that for any group G of order n and any set X
of n elements, X can be given the structure of a group isomorphic to G.
All that is needed is to choose some bijective map ¢ : G - X and then to
define multiplication in X by the rule (g, 9)(g,0) =(g,9,)¢ forallg,,g,€G.
It is straightforward to check that this multiplication on X satisfies the
group axioms; then also, by definition, ¢ becomes an isomorphism. This
means that groups of order n of all possible types appear among all
possible assignments of a binary operation to any particular set of n
elements. But the number of different such assignments is n*, and so this
is also an upper bound for the number of types of groups of order n.

(For another proof of 1.2, see 4.24.) For each positive integer n, let
v(n) denote the number of types of groups of order n. Very little is known
about v(n) in general (see 301 for a sharper upper bound on v(n)); but one
simple remark can be made immediately. It follows from Lagrange’s
theorem that a group of prime order must be cyclic (1). Since any two
cyclic groups of the same order are isomorphic (2), we have

1.3. For each prime number p,v(p) = 1.
There are numbers n other than primes for which v(n) = 1. We mention
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a result which characterizes these numbers — though the result is not
of importance in group theory, but merely a curiosity (see 575).

1.4. Let n=py1p52 ... pt, where s,m,,...,m are positive integers and
P1s-..»Dsdistinct primes. Thenv(n) = lifand only ifm; =m, = ... =m ;=1
and for all i,j=1,...,s,p, — 1 is not divisible by p;.

(Thus for example v(15) = 1; see 215.)

Now, for each positive integer n, let v (n) denote the number of types
of abelian groups of order n: then v (n) < v(n). From theorems on the
structure of finite abelian groups (see 8.43), we have

1.5. Let n=p1p52 ... pT, where s,m,,...,m  are positive integers and
Dy,--. .1 distinct primes. Then

v (1) = v (P (P3) ... v (D7),

and, for eachj=1,...,s,

v,(P}’) is the number of partitions of m;; that is, the number of ways
of expressing m; as a sum of positive integers (the order of components
being disregarded). In particular, v (p’) = m;.

This shows that there is no upper bound for v,(n) which is independent
of n; and hence also no upper bound for v(n) independent of n.

A natural approach to the problem of constructing finite groups is
to seek an inductive method in terms of group orders. Thus we should
try to describe each finite group in terms of groups of smaller orders:
then in principle we might hope to start with certain basic groups and
to build up a description of all types of finite groups step by step.

Therefore we naturally think about subgroups. What subgroups does
a group G of order n have? By Lagrange’s theorem, the order of any sub-
group of G is a divisor of n. However, it is not necessarily true that G
has a subgroup of order m for each divisor m of n (see 185). The best
general result about existence of subgroups of prescribed orders is the
following consequence of Sylow’s theorem (see 5.32).

1.6. Let G be a group of finite order n. For each prime p and power p™ of
p which divides n, G possesses a subgroup of order p™.

This result directs attention to groups of prime power orders. Such
groups have helpful special properties and play an important part in
the analysis of general finite groups.

Among the subgroups of a group G there are some which are especially
useful in deriving information about G: the so-called normal subgroups.
We use the notation ‘K < G’ to mean ‘K is a normal subgroup of G’. The
explicit definition of the term is given in 3.2, but for the present discussion
we merely state the following key facts (see 3.20-3.22).

1.7. Suppose that K < G. Then we can define a corresponding group G/K

~
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(not a subgroup of G) which is called the quotient group of G by K. In
some sense, G is built up from the two groups K and G/K. In particular,
if G is finite then so are K and G/K, and |G| = |K|.|G/K|.

One always finds among the normal subgroups of G the group G itself
and 1, the trivial subgroup; and G/G = 1 and G/1 = G. But the interesting
normal subgroups are the ones different from these, if they exist.

If, in 1.7, G is finite and K # G and K # 1 then we get a description
of G in terms of two groups K and G/K of smaller orders than G. This
description cannot be regarded as complete, because knowledge of the
types of the groups K and G/K is not in general enough to determine
uniquely the type of G (see 116). This then raises the extension problem:
given groups K and Q, determine the types of all groups G such that
K <G and G/K =~ Q. Note that if K and Q are finite groups then the
number of such types is finite, because all such groups G have the same
finite order |K|.|Q| and therefore the number of types is at most
W(|K]|.|@|). Although the extension problem is hard, it is much more
amenable to attack by currently known methods than some of the pro-
blems mentioned earlier.

Assuming that we can deal with this extension problem, we are en-
couraged to try the following programme. The notation ‘K <1 G’ is used
to mean ‘K is a normal subgroup of G and K # G’. For any finite group
G we consider chains of subgroups

1=K,<K,<K,«...<K,_,<K,=G (i)

which cannot be refined: that is, such that we cannot insert a subgroup
H with K;_, <H <K for any j=1,...,s. Then we try to describe G in
terms of the quotient groups

K,/Ko,K;/Ky, ..., K /K,y
which we have made as small as possible. Note that
|K1/K0i|K2/K1|' IKs/Ks—ll = |G|

Such a chain (i) which cannot be refined is called a composition series
of G.

1.8. Anyfinite group G possesses at least one composition series.

To prove this, we argue by induction on |G|.If |G| =1then1 =K, =G
is a composition series of G. Suppose that |G|> 1. Choose K <t G with
|K| as large as possible (it may be that K = 1). Then |K| < |G|, so that
by the induction hypothesis K has a composition series

1=K,<K,«..<K,_, =K,
where s is a positive integer. Then

1=K ,<K,;<..<K,_;<K;=G



INTRODUCTION TO FINITE GROUP THEORY 9

is a composition series of G. The induction argument goes through.
The most important fact about composition series is contained in
the Jordan—Holder theorem (see 7.9):

1.9. Let G be a finite group and let
1=Ky<K,;<«..<K;=G

s

and
1=H,<H,<..<H,=G

be composition series of G. Then r = s, and the two sequences of s quotient
groups K,/K,X,/K,,...,K,/K,_, and H,/H,,H,/H,,...,H/H _,
contain groups of exactly the same types with the same multiplicities
(possibly in different orderings). We call s the composition length of G
and the groups K, /K,,K,/K,,...,K /K, _, the composition factors of G.

Some groups will have composition length 1: such groups are called
simple. Explicitly, a group G (not necessarily finite) is simple if G 1
and if the only normal subgroups of G are 1 and G. One can show (see 7.2)

1.10. Every composition factor of a non-trivial finite group is a simple
group.

Now we may think of the Jordan—Holder theorem 1.9 as an analogue
for finite groups of the fundamental theorem of arithmetic for positive
integers. Finite simple groups play a corresponding role to prime numbers.
The Jordan—Holder theorem says that every non-trivial finite group G
is a kind of ‘product’ of simple groups, and that these simple factors are
uniquely determined by G (apart from ordering). Of course formation of
a ‘product’ in this context is not a uniquely determined process as it is
for numbers. Nevertheless, the results quoted effect a division of the
original classification problem into two parts: (i) find finite simple groups
of all possible types (the ‘building blocks’ of finite group theory), (ii) solve
the extension problem (that is, find how the building blocks fit together).

A great deal of effort has been devoted during the last ten years to
problem (i) and, although the obstacles ahead look formidable and the
goal is not yet in sight, significant advances have been made. At this
stage we merely mention (see 3.6, 3.60, 3.61, 5.24, 5.28)

1.11. The only abelian simple groups are the groups of prime orders. There
are also-infinitely many types of non-abelian finite simple groups.

How might we attempt to investigate the structure of a non-abelian
simple group? We have no non-trivial proper normal subgroup, by means
of which we might hope to express the structure of the group in terms
of the structures of two smaller groups; but we should still like to work
from smaller groups up to larger groups. Therefore we think about
subgroups which are not normal. A starting point is provided by the
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following result, which is one of the most striking achievements of the
modern period.

1.12 (W. Feit and J. G. Thompson [a23]). Every non-abelian finite
simple group has even order.

The result was a conjecture of Burnside in 1911: see [b3] p. 503. In
fact, in the first edition of his book in 1897, Burnside had already recom-
mended an investigation of the existence or non-existence of a non-abelian
simple group of odd order, without predicting the outcome. The question
was finally settled in 1963 with the publication of article [a23]. A proof
of this theorem is unfortunately beyond the scope of any textbook at
present, though D. Gorenstein’s book [b13] gives an account of many
of the techniques involved. The importance of the Feit—Thompson
theorem is that it ensures the existence of elements of order 2 in non-/
abelian finite simple groups.

1.13. Let G be any group of even order. Then G possesses at least one
element of order 2. (Any such element is called an involution.)

The result is an immediate consequence of 1.6. Alternatively, there is a
more elementary proof as follows. Let T ={xeG:x*=1} and U =
{x€G :x*>+# 1}. Then T and U are subsets of G such that G = Tu U and
T U = @. Now we count the elements of U. Possibly U = 0, in which
case |U|=0. If not, choose x,€U. Then x, # x; 'eU. Possibly U =
{x,,x '}, in which case |U|= 2. If not, choose another element x,eU.
Then x, # x; 'eU, and also x; ! # x, and x; ! # x; ! (since x, # x; ! and
X, #x,). Possibly U= {x,,x;!x,,x;'}, in which case |U|=4. If
not, ... We continue until all elements of U are exhausted. We see that
in any case |U| is even. Since also |G| is even and |G|=|T|+|U|, it
follows that | T| is even. But T # (), since 1€ T. Hence | T | > 2. Therefore
there is an element te T with ¢ # 1. Such an element ¢ is an involution.

Now let G be any group. For each xe G we define

Co(x)={geG :gx = xg}.

Itis easy to check that C,(x) is a subgroup of G; it is called the centralizer
of x in G (see 4.25). Also

() Ce(x) = {geG : gx = xg for all xeG}

xeG
is a subgroup of G, called the centre of G and denoted by Z(G) (see 117).
Note that, immediately from these definitions, if xeG and H = Cg4(x)
then xe Z(H).

A good deal of the recent discussion of finite simple groups has been

concerned with centralizers of involutions. An important reason for
this lies in the following result (see 6.9).

1.14 (R. Brauer and K. A. Fowler [a8], 1955). Let G be anon-abelian
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finite simple group (so that, by 1.12,| G| is even) and let t be an involution in G.
Then Cg(t) # G, and if | Cy(t)| = m then |G| < (3m(m + 1))!

This raises the possibility of characterizing a simple group G in terms
of the structure of the centralizer of an involution, a group of smaller
order than G. Specifically, from 1.14 we deduce

1.15. Let H be a group of even order with an involution ue Z(H). Then
there are at most finitely many types of finite simple group G possessing an
involutier t with Cg(t) = H.

To prove this, we note first that if such a simple group G is abelian then,
by 1.11,|G| = 2. On the other hand, any non-abelian such group G has,
by 1.14, order at most (3|H|(|H|+ 1))!, a number dependent only on
the given group H. By 1.2, there are only finitely many different types of
groups of any given order; hence also there are only finitely many different
types of groups of orders not exceeding any given number.

The following scheme has been used repeatedly. Start with a known
non-abelian finite simple group E and an involution u€E, and let H =
Cg(u). Then consider finite simple groups G having an involution ¢t with
Cq(t) = H. By 1.15, there are only finitely many types of such groups G.
Try to prove that there is actually only one type, in other words, that
G = E necessarily. If this succeeds, a characterization theorem for E has
been established : a characterization of E in terms of the structure of the
centralizer of one of its involutions (a group of smaller order than E).
Many such characterization theorems are known. But if the attempt
fails because there are groups not isomorphic to E among the groups G,
there may be previously unknown simple groups among the groups G.
This procedure has been a source of discovery of several new finite simple
groups during the past few years.



2

EXAMPLES OF GROUPS AND
HOMOMORPHISMS

It will be convenient to start with the notion of a semigroup since, -
as we shall see, many important examples of groups arise in a natural
way from semigroups. However, we shall not in this book develop the
extensive algebraic theory of semigroups.

2.1 Definition. A semigroup is a non-empty set S, together with an
associative binary operation on S. The operation is often called multipli-
cation and, if x, yeS, the product of x and y (in that ordering) is written
as xy.

The associativity in S is notationally very helpful. It permits us to
write unambiguously x,x,x; for (x,;x,)x; = x,(x,x3), where x,,x,,x;
are any elements of S. Furthermore it follows that we may refer un-
ambiguously to the product of any finite number of elements, taken in a
definite ordering: brackets may be arbitrarily inserted in or removed
from a product x, x, ... x, without altering the result. (For a formal proof
of this, see Ledermann [b29] pp. 3—4 or Macdonald [b30] pp. 18-19.)
There follow the standard power laws: if xeS and m,n are any positive
integers then x™x" = x™*" and (x™)" = x™. Of course it is not in general
permissible to alter the ordering of elements in a product, for we may
have x,x, # x,x,.

2.2 Definitions. Let S be a semigroup.

(i) An element eeS is called an identity element of S if ex =x=xe
for all xeS. If S has an identity element then it is unique: for if e and f are
identity elements of S thenf = ef = e.

(ii) Suppose that S has an identity element e, and let xeS. An element
yeS is called an inverse of x if yx = e = xy. If x has an inverse then it is
unique: for if y and z are inverses of x then y = ye = yxz = ez =z.

Now a group is just a semigroup with an identity element such that
every element has an inverse.

(iii) A subgroup of S is a subset of S which forms a group with respect
to the operation defining S.

13 Give an example of a semigroup without an identity element.

14 Give an example of an infinite semigroup with an identity element e such that no
element except e has an inverse.
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2.3. Let S be a semigroup with an identity element e. An element of S
which has an inverse is called a unit in S. Then the set of all units in S forms
a subgroup of S, called the group of units of S.

Proof. Let U be the set of all units in S. Then U # @, since ecU. Since
the operation defining S is associative, so is the operation on U. Let
X,,%x,€U. Then there are elements y, , y,€S such that

X1y = Y1X T €= XYy =YX,
Then

o
(x1%5)(y2y1) = x1(X292)y; = x,y; = X1y, = e = (y,,)(x,X,)

similarly. Hence x,x,€U. Clearly e is an identity element for U and
y,€U. Thus y, is an inverse of x, in U. Hence U is a subgroup of S.

15 Let S bea semigroup and let xe S. Show that {x} forms a subgroup of S (of order 1)
if and only if x? = x. Such an element x is called an idempotent in S. (Warning. A
semigroup may have several different subgroups of order 1: see 16. Why does a
group have only one subgroup of order 1?)

16 Let X be any non-empty set. Let S be the set of all subsets of X. Show that S is
a semigroup with respect to the operation n. Does S have an identity element, and
if so, what are the units in S? Show that every element of S is an idempotent (15).
Deduce that for all YeS,{Y} is a subgroup of S, and that every subgroup of S has
order 1.

What happens if ~ is replaced by U ?

2.4. If X is any non-empty set, the set My of all maps of X into itself forms
a semigroup with respect to the operation of composition. There is in My
an identity element 1, defined by 1 : x + x for all xe X. The units in M
are just the permutations of X. The group of units of M, is denoted by X,
and called the (unrestricted) symmetric group on X.

Proof. Certainly M, + @ ; and M, is closed with respect to composition,
because the composite of two maps ¢, : X - X and ¢, : X — X isdefined
to be a map ¢,9, : X — X. Moreover, composition is associative: for if

?1,9,,93€ My, the equation (¢,9,)¢; = ¢,(¢,¢;) merely expresses the
fact that for every xe X,

X((@1902)03) = (X(@19,))03 = ((x0)P,)P3 = (X@,)(@,03) = X(@(9,03)).

The map 1 defined above belongs to M, and is obviously an identity
element for M,. Finally, if ¢,yeM,, then ¥ is an inverse of ¢ in M,
if and only if Yy = 1 = Y. For a given ¢, there-is such a y if and only
if ¢ is a bijective map, that is, if and only if ¢ is a permutation of X. Thus
the group of units of M, consists of all permutations of X.

Remark. The restricted symmetric group on a non-empty set X will be
defined in 110.

2.5. If X is afinite set with, say, | X | = n> 0, then |My| = n" and | Z,| = n!
The reader will know the standard notation for permutations of finite
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sets: see for instance Ledermann [b29], pp. 20-6. Thus, if n is a positive

integer,
1 2 ..n 5
a, a,...a, ’

denotes the permutation ¢ of the set {1,2,...,n} ={a,,a,,...,a,} for
which

o:ja; foreachj=1,...,n

Any permutation of a finite set X can be expressed as a product of cycles
on disjoint subsets of X, and the expression is unique apart from the
ordering of the cycles. Moreover, any two disjoint cycles commute.
Thus, for example, :

<12345678

2617538 4>=(1263)(478)=(478)(1?63),

where, for instance, (1263) denotes the permutation ; 2 g :: , and we

adopt the usual convention of suppressing on the right points which are
fixed by the permutation — in this case the point 5. The number of distinct
points which occur in a cycle is called the length of the cycle. So, for
example, the cycle (1263) has length 4.

The notation in terms of cycles is a very convenient one for making
explicit calculations in finite symmetric groups. For instance, if X =
{1,2,3} then, in Z,,

(12)(13)=(123),  while (13) (12) = (132).

This shows that X, is a non-abelian group.
Here, and always in this book, when we are discussing permutations
of a set (rather than maps of other kinds), we shall place the symbols
which denote the permutations on the right of the points to which they
apply. Thus permutations are multiplied together from left to right.
17 Let X be a set with | X | = 2. Do two elements of M necessarily commute? Do
two elements of Z, necessarily commute?
1234567
1574623

Find expressions for 62 and ¢~ ! as products of disjoint cycles.

18 Express the permutation ¢ =( )as a product of disjoint cycles.

We shall often be concerned with particular instances of the following
situation: there are sets X, Y (possibly with X = Y) and a set T of maps of
X into Y. Some or all of the sets X, Y, T will usually be groups. We have
noted one such situation in 2.4, and now consider another.

Suppose that we have two groups G and H (possibly the same). We
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should expect that among all the maps ¢ : G — H, those which are
structure-preserving would be of particular significance.

2.6 Definitions. A map ¢ : G — H is said to be a homomorphism if

(9192)¢ =(9,9)(g,9) forallg,,g,€G.

If in addition ¢ is bijective, it is said to be an isomorphism.

Suppose that ¢ : G — H is an isomorphism and let { : H —» G be the
inverse of the bijective map ¢. Then y is also an isomorphism: for ¥
is bijective, and if h,,h,eH then there are elements g,,g,€G such that
h, =g,0,h, =g,0;hence

(hyho )Y = ((9,9)(92,0) W = ((919)0W = (9,9,)(@Y)
=9,9, = (9,9¥)(g,0¥)
= (9,90 ((9,0)¥) = (h ) (h,¥).

If there is an isomorphism of G onto H we say that G and H are isomor-
phic groups, or that G and H are of the same type, and write G = H. The
relation 2 is an equivalence relation on groups (20). If G and H are not
isomorphic we write G % H.

*19 If 9:G— H and y : H—»J are homomorphisms then the composite map
@y : G — J is also a homomorphism.

*20 Verify that if ¢ is any set of groups then 2 is an equivalence relation on 4.

It is often convenient to regard isomorphic groups whose elements
form disjoint sets as the same group. However, we must be careful in
dealing with subgroups of a group G. It may happen that G has subgroups
H and K which are distinct sets with H = K. Then it is of course not
permissible to say that H = K. In this situation we are concerned with
H and K not merely as abstract groups but also with their relation to
the containing group G.

2.7. If X and Y are non-empty sets such that there is a bijective map
@:X —> Y then Ty =%,. In particular, in studying the finite symmetric
groups it is enough to consider the permutations of a single set of n elements,
for each positive integer n. We often choose for this the set {1,2,...,n}, and
we write X, (in many books, S,) for the symmetric group on n points. Then
X, is called the symmetric group of degree n.

Proof. Since ¢ : X — Y is bijective, thereis an inverse mapy : Y — X ;thus

oy = 1, the identity map on X,
and Y = 1,, the identity map on Y.

For each 6€Zy, Yo : Y — Y. In fact, yopeZ, ; themap Yo~ ¢ : Y - Y
is such that

Woe)(Yo™ ') =1, = Yo~ ') 09).
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Now it is easy to check that the map 6 : X, — Z,, defined by

0:0p Yyop (forall ceX,),
is an isomorphism.

2.8 Definition. If there is an injective homomorphism (sometimes
called a monomorphism) of G into H, we say that G can be embedded in H.
For any groups G and H there is at least one homomorphism ¢ : G — H,
namely the trivial homomorphism ¢ : g > 1 for all geG. But of course
in general G cannot be embedded in H.
*21 (i) Calculate the products (12)(13)(14) and (12)(13)(14)(15) in the group X,,
where n is an integer with n= 5.
(ii) A permutation such as (12), which interchanges two points and fixes all others,
is called a transposition. For any integer n > 1, show that the permutation (123...n)
can be expressed as a product of n — 1 transpositions.

(ili) For any integer n> 1, prove that every non-trivial element of X, can be
expressed as a product of at most n — 1 transpositions.

22 Let n be a positive integer and let 6€X,. Suppose that ¢ can be expressed as a
product of s disjoint cycles of lengths n,,n,,...,n, respectively, where s,n,,...,n

N
are positive integers such that n, +... + n,=n. Then o(o) is the least common
multiple of n,,n,,...,n

S

23 Let n and m be positive integers such that m divides n. Let ¢ be a cycle of length
nin X,. Then o™ is the product of m disjoint cycles of length n/m.

24 Any group which can be embedded in an abelian group is abelian.

25 Prove that if X is a non-empty set and Y a non-empty subset of X then X, can
be embedded in X, . (In particular, whenever m and n are positive integers such that
m < n then X,, can be embedded in %,.) Hence or otherwise show that if | X{ > 2 then
2, is non-abelian.

The next two results give certain basic properties of homomorphisms.

2.9. Let ¢ : G — H be a homomorphism. Then 1¢ = 1, and for every geG,
g '@ =(g9p)~ . The set {gop :geG} is a subgroup of H which we call the
image of ¢ and denote by Im ¢ or Go. Moreover, for every subgroup K
of G, the set Ko = {k¢ :keK} is a subgroup of Im .

Proof. Sincein G 1.1 = 1, it follows that in H

(19)(19) =10,
hence that lo=(1p)(1p) ' =1.

(In the last equation, on the left 1 denotes the identity element of G while
on the right 1 denotes the identity element of H.) Also in G

g 'g=1,
and so in H (9™ 'o)gp)=1p =1,
hence g lo =) .
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Let J ={g¢ :geG}. Then J is a non-empty subset of H. Moreover,
ifg,,g,€G then

9:9)(9,0)" ' =(9,9)(97 '0) = (9,95 oeJ.

Hence J < H.
For any K < G, the map

¢olg:K->H

is a homomorphism, and Im ¢ |, = K¢. Hence K¢ < H, by what we have
proved; and then, since K¢ = Im ¢, K¢ < Im ¢.
We note the following immediate consequence of 2.9.

2.10. (i) If ¢ : G - H is an injective homomorphism then G = Go, and
for every subgroup K of G,K =~ Ko,

(ii) G can be embedded in H if and only if G is isomorphic to a subgroup
of H.

26 If ¢ : G —» H is a homomorphism and G is abelian then Im ¢ is abelian.

*27 Suppose that G, and G, are isomorphic groups, and let ¢ : G, — G, be an
isomorphism. If K, < G, and K, =K, ¢ then |G, :K,|=|G, : K,|.

28 If G and H are finite then a necessary condition that G can be embedded in H is
that |G| divide | H |. Show by an example that this is not a sufficient condition.

It will be convenient at this stage to gather together some important
examples of groups and homomorphisms.

2.11. Any ring R forms an abelian group R* under addition: the additive
group of R. The identity element of R* is the zero element 0 of R, and
the inverse in R* of ae R is the elemert — a. Note in particular the groups

Z* <Q* <Rt <C".
For any aeR (an arbitrary ring)'the maps
A,:R* > R* and p,:R* > R*,
defined by Ag:xt—ax and p,:x xa

for all xeR*, are homomorphisms: this follows from the distributive
laws for the ring R. If multiplication in R is commutative then A, = p,, for
every a€R; but if the multiplication is non-commutative then A, # p,
for some aeR.

If R=F, afield, and 0 # a€F, then 4,: F* — F™ is an isomorphism:
for the map 4, is invertible, with inverse 4, ;.

If R=Z and 0+ neZ, then the map 4,:Z* - Z* is an injective
homomorphism. However, Im A, = {nx : xeZ*}, which is a proper
subgroup of Z™* unless n = + 1. (For instance, Im 4, is the proper sub-
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groupof Z* consisting of all even integers.) Sowhen |n| > 2,4, : Z* —» Z*
is an injective homomorphism which is not an isomorphism; and,
by 2.10, Im A, is a proper subgroup of Z* which is isomorphic to Z*
itself (cf. 30). Note that Z* is a cyclic group with Z* = {1). None of the
groups Q*,R*,C™ is cyclic.
*29 (i) Any infinite cyclic group is isomorphicto Z*.

(i) If G is a non-trivial group of which the only subgroups are 1 and G then G is
cyclic of prime order.

30 (i) If G is finite then no proper subgroup of G is isomorphic to G.

(i) If G is a group such that, whenever J < H < G,J % H then every element of G
has finite order. (An example of an infinite group with this property will be given in
144)

31 Show that Z* has infinitely many distinct subgroups. Deduce that every infinite
group has infinitely many distinct subgroups.

*32 No two of the groups Z*,Q*,R* are isomorphic. (Remark. It is in fact true
that R* = C™*. This can be proved by regarding R and C as vector spaces over Q, and
using vector space theory and facts about infinite cardinals.)

33 Let Hom(G, A) denote the set of all homomorphisms of a group G into an
abelian group A. Define a binary operation +on Hom(G,A) as follows: for
¢,y € Hom(G, 4),

o+yYy:G- A

is defined by o+y:igr gy’

for all geG. Verify that ¢ + Yy eHom(G, A) and that, with respect to +, Hom(G, A)
acquires the structure of an abelian group.

Show that for any abelian group 4, Hom(Z*, 4) = A.

2.12. Any ring R forms a semigroup under multiplication. If R has a
multiplicative identity element 1 then, by 2.3, the elements of R which
have multiplicative inverses in R form a group under multiplication; this
is called the group of units of R. We denote this group by R*. Note in
particular the groups Z* < Q* <R* <C™*.

For any field F, F* is the multiplicative group of all non-zero elements
of F, and is abelian. We mention without proof the fact that if F is any
finite field then |F|= p™ for some prime p and positive integer m, and
F* is cyclic of order p™ — 1 (see Herstein [b19] chapter 7, §1, or Lang
[628] chapter VII, §5, or Zassenhaus [b41] pp. 104-5; see also 9.15(ii)).
Note that Z* = {1, — 1}, while Q*,R*,C™ are infinite.

34 Show thatif ¢ : G — H is a homomorphism, ge G, and n is a positive integer such

that g" = 1, then (g¢)" = 1. Hence, by considering the elements z of C* satisfying
23 =1, or otherwise, show that C* is not isomorphic to either Q* or R*.

35 Prove that Q™ is not isomorphic to R*. (Hint. Note that for any positive real
number a and any positive integer n, there is a unique positive real number b such
thata = b".)

36 Prove that there is no field F such that F* =~ F*, (Hint. Assume that there is a
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field F with an isomorphism ¢ : F* — F* and consider ( — 1)¢.)
37 Let F be a field. Define a binary operation* on F by
a*b=a+b—ab forallabeF.

Prove that the set of all elements of F distinct from 1 forms a group F* with respect
to the operation*, and that F* >~ F*.

2.13. The set of all positive real numbers forms a subgroup R’  of R*.
The map

log :R),, »R™

defined by x> log x forall xeR},,

(where log x denotes the natural logarithm of x) is an isomorphism.
(What is the inverse isomorphism?) Hence
R . =R*.
The map
| |:C* >Ry,
defined by
| |:z+|z| forall zeC™

(where |z| denotes the modulus of z) is a surjective homomorphism
(sometimes called an epimorphism). It is not an isomorphism since, for
instance, | — 1| =|1|. The restriction of this homomorphism to R* is a
surjective homomorphism

| | :R* > R

pos

which is also not an isomorphism.

2.14. For any positive integer n, the set of all complex nth roots of 1 forms
asubgroup C, of C *.Itis a finite group of order n, and it is cyclic, generated
by eZm/n .
Cn = {1’ eZm'/n’ e4m'/n’ s e2(n— l)m'/n} .
In particular, C, = {1, — 1} =Z*. There is a surjective homomorphism
v,:Z* > C,

defined by v, : x> 2™ for all xeZ™.

We call C, the cyclic group of order n, for any cyclic group of order n
is isomorphic to C,, (2).

For any zeC"\ \J C,, the cyclic subgroup {z> of C* is infinite.
n=1
We sometimes denote an infinite cyclic group by C_, for any two such
groups are isomorphic (29).
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38 The set of all positive rational numbers forms a subgroup Q. of Q*, and there
is a surjective homomorphism

| 1:Q" - Qg
which is not an isomorphism.
Is Q.. =Q" (cf. 2.13)?

39 For any positive integer n, the only homomorphism ¢ : C, — C* is the trivial
homomorphism.

*40 Let nbe a positive integer. Then
(i Z}~c,.
(i) Z, is an abelian group of order ¢(n), where ¢ is Euler’s function (see 5).
(ili) By considering orders of elements in Z, prove the Euler—Fermat theorem:
m*™ =1 mod n,
whenever m is an integer co-prime to n. (This generalizes 8).

41 (i) Let G be a group and n a positive integer such that g" = 1 for all geG. Show
that if ¢ :G—C> is a homomorphism then Im ¢ <C,. Hence show that
Hom(G,C*) ~ Hom(G, C,) (cf. 33).

(ii) Deduce that if G is a finite group then so is Hom(G,C*). (Remark. If G is a
finite abelian group then in fact Hom(G, C*) = G, but we do not yet have the means
of proving this. See 454.)

2.15. Any vector space V over a field F forms an abelian group V*
under addition: the additive group of V. For any aeF, the map

At VYoV,
defined by A iv av

for all veV™, is a homomorphism. It is an isomorphism if a 0. If V
has dimension 1 over F then V* ~ F*,

2.16. Let V be any vector space # 0 over a field F. Then the set of all
linear maps of V into itself forms a ring #(V) with respect to the usual
operations of addition and multiplication of linear maps. This ring has
a multiplicative identity element, namely the linear map

1:v>v forallveV.

The group of units of £ (V) (as defined in 2.12) consists of all invertible
(that is, non-singular) linear maps of V to itself. It is called the general
linear group of V and denoted by GL (V).

Suppose that F is a finite field with, say, |F|=p™=gq, and that V
has finite dimension n over F. Then | V| = ¢". Let vectors v, ,...,v, form
a base of V. Then a linear map 0 : V — V is determined by its effect on
vy,...,0,, and 6 is invertible if and only if v,0,...,v,0 form a base of V.
Moreover, for any base w,,...,w, of V there is a unique linear map
0:V - Vsuchthatvd=w,fori=1,...,n Hence
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| GL(V)| = the number of ordered bases of V.

In forming a base w,,...,w, of V we may first choose w, to be any non-
zero vector of V, then w, to be any vector other than a scalar multiple
of w,, then w; to be any vector other than a linear combination of w,
and w,, and so on. Hence

|GL)|=@"-)"- D" —3*)...(d"— q" V).

2.17. Let F be any field and n any positive integer. Then the set of all
invertible (that is, non-singular) n x n matrices with entries in F forms
a group with respect to matrix multiplication. This is called the general
linear group of degree n over F and denoted by GL (F).

If V is a vector space of dimension n over F then GL(V) = GL,(F).
To see this, it is enough to choose a base of V' and then to map each
invertible linear map of V into itself to the matrix representing it with
respect to the chosen base.

There is a surjective homomorphism

det :GL(F) » F~

defined by det : x > det x for all xeGL,(F) (where det x denotes the
determinant of x). Note that this homomorphism is an isomorphism if
and only if n=1; in particular, GL,(F) = F*.

42 Let G be a finite group such that g2 = 1 for all geG. Show that G = V' * for some
finite dimensional vector space V over the field Z,. Deduce that |G| = 2™ for some
integer m = 0. (Hint. By 3, G is abelian. Let V consist of the same elements as G, with
the sum of 2 elements of V equal to their product in G, and scalar multiplication
defined in the obvious way.)

43 Let F be a field and let m, n be positive integers with m < n. Then
(i) GL,,(F) can be embedded in GL,(F),
(i) GL,(F) is non-abelian for all n = 2.

44 GL,(Z,)=%,.

b
45 Let G be the set of all matrices of the form <; ), where a, b, ¢ are real numbers
C

such that ac # 0. Prove that G forms a subgroup of GL,(R), and that the set H of all
elements of G in which a = ¢ = 1 forms a subgroup of G isomorphic toR*.

Find all elements in G of order 2. Hence show that the product of two elements of
order 2 in G can be an element of infinite order.

Our next example associates to every group G another group Aut G
which has an important role to play in the following chapters.

2.18. The set of all homomorphisms of a group G into itself (sometimes
called the endomorphisms of G) forms a semigroup with respect to composi-
tion of maps (by 19): it is a subsemigroup of M, (see 2.4). This semigroup
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has an identity element, namely the homomorphism
l:g—>g forallgeG.

Now the units of the semigroup are just the isomorphisms of G onto G.
These are called the automorphisms of G. By 2.3, the set of all automorph-
isms of G forms a group with respect to composition of maps: it will
be denoted by Aut G. Note that Aut G < Z;.

2.19. To each geG there is associated an automorphism t, of G, defined
as follows. For all xeG,

1,:x g7 'xg;
the element xt, = g~ 'xg is called the conjug;te of x by g. Certainly t,
is a well-defined map of G into itself; and if g,9,,9,,x,x,,x,€G,
(xy1x5)t, =9~ 1x%,9 =97 %997 X, = (x17,)(x57,),

so that 7, is a homomorphism. Furthermore,

XTg.0, = (9192) 7 'X9:9, = 95 197 'x9,9, = x7,,7,,,

and so
. . Tng = tyntgz : (1)
In particular, since 7, = 1,

TTp-1= 1= T,-1T,.

Therefore 7, is invertible: thus t,€Aut G. The automorphism 7, of G
is called the inner automorphism of G induced by g (or conjugation of G
by g). An automorphism of G which is not inner is called an outer auto-
morphism of G.
By 2.9 and 2.10, 7, maps each subgroup K of G to a subgroup Kz, of
Im 7, = G with
K=Kt,={g kg :keK}.

We call Kz, the conjugate of K by g, and denote it by g~ 1Kg. Thus we have
2.20. Forevery K < G and every geG, g~ 1Kg is a subgroup of G isomorphic
to K.

2.21. The map 1:G->Zg,

defined by TigT,

for all geG, is a homomorphism. This is shown by equation (i) of 2.19.
Moreover, Im 7 = {7, : g G} < Aut G. We denote Im by Inn G: it is the
group of all inner automorphzsms of G. Thus

InnG<AutG<Z;.
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When is 7 the trivial homomorphism; that is, when is Inn G = 1?7 We
have

7,=1 ifand onlyif ¢~ 'xg=x

for all xeG, that is, if and only if xg = gx for all xeG. Hence t, = 1 for all
geG if and only if all pairs of elements x,g of G commute. Hence we

have

2.22. Inn G = 1 ifand only if G is abelian.

*46 (i) If R is a ring with a multiplicative identity 1 then R* can be embedded in
AutR*.(Hint. See 2.11.)
(i) AutZ* =~Z" and AutZ; =~ Z for every positive integer n.

*47 Let V be a vector space # 0 over a field F. Then
(i) GL(V) < Aut V™*.(See 2.15,2.16.)
(i) If F=Z, and V has finite dimension n over Z, then Aut |~ GL(Z).

*48 If G, = G, then Aut G, = Aut G, and Inn G, = Inn G,.
*49 Define a relation ~ on G by
x~y ifandonlyif g 'xg=y forsomegeG.

Show that this relation ~ of conjugacy is an equivalence relation on G. (This fact
will be placed in a general context in chapter 4.)
50 If ae Aut G and xeG then

o(x*) = o(x).

In particular, conjugate elements of a group have the same order.
51 Find a group G with a subgroup K and an element g such that g~ *Kg # K.

52 (i) The map defined by g — g~ * for all ge G is an automorphism of G if and only if
G is abelian.

(i) If G is any eroup for which g? # 1 for some geG then Aut G # 1. (Remark.
In fact Aut G +# 1 if and only if |G| > 2. The proof is completed by observing that if
g% = 1for all geG, so that by 3 G is abelian, then G has the structure of a vector space
V over Z,, and any invertible linear map V — V is an automorphism of G. For the
finite case, see 42.)

53 (i) Let ae Aut G and let
H={geG:¢g*=g}.

Prove that H is a subgroup of G :it is called the fixed point subgroup of G under o.
(ii) Let n be a positive integer and F a field. For any n x n matrix y with entries in
F, let y’ denote the transpose of y. Show that the map

+ :GL,(F) > GL(F),
defined by 1 x e (x7YY

for all xe GL,(F), is an automorphism of GL,(F), and that the corresponding fixed
point subgroup consists of all orthogonal n x n matrices with entries in F (that is,
matrices y such that y'y = 1).
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Prove (by assuming the contrary and considering determinants) that * is an outer
automorphism of GL,(F) if F#Z, and F # Z,. (Remark. In fact,*is an outer
automorphism of GL,(F) unless elther F=Z,andn<2orF=Zjandn=1)

54 Let ae Aut G. Then a is said to be fixed-point-free if the fixed point subgroup of
G under a is trivial (see 53); that is, if g* #+ g whenever 1 # geG.

(Remark. The term ‘fixed-point-free’ is standard. It is perhaps a slight abuse of
language, since of course any automorphism of a group fixes the identity element.
To say that an automorphism is fixed-point-free means that it fixes no element of
the group other than the identity element.)

(i) Suppose that « is a fixed-point-free automorphism of the finite group G. Show
that .

{g°9g™ ' :9eG}=G.
Deduce that if o(x) = 2 then, for all xeG,

— v—1
x*=x"1,

and that G is abelian of odd order greater than 1.
(ii) Let G be a finite abelian group of odd order greater than 1. Then the map

aix x"l,

defined for all xeG, is a fixed-point-free automorphism of G of order 2.
(Hints. For (i), show that the map of G into itself defined, for all ge G, by g g°g~?,
is injective. Then use 52(i) and 1.13.)

We mention next some examples of groups which arise in geometric
contexts.

2.23. Let X be a metric space, with distance function d : X x X — R.
Then a bijective map ¢ : X — X is structure-preserving if

d(xe, yp) =d(x,y) forall x,yeX.

Such a map ¢ is called an isometry of X. It is easy to verify that the set
of all isometries of X forms a subgroup Isom X of Z,.

Now if @ €Y S X then Y is a subspace of X: that is, Y is a metric
space with respect to the restriction of dto Y x Y. For each pelsom X let

Yo={yp:yeY}= X.
Then let Sy(Y)={pelsomX : Yo =Y}.
A straightforward verification shows that
Sy(Y) <Isom X.

We call S,(Y) the symmetry group of Y (with respect to the metric space X).

For instance, suppose that X = E2, the euclidean plane, with the usual
distance function. We describe without proof some facts about Isom E?:
for details see Coxeter [b5] chapter 3. (The corresponding facts
about the group of isometries of the euclidean line E! can readily be
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worked out from the definition, and are given in 56.) We begin by noting
some special isometries of E2.

(i) If @ : E>* > E? is a map which moves every point of E? a fixed
distance in a fixed direction then ¢ is called a translation of E®. Any
translation is an isometry. To describe translations in coordinate terms,
choose an arbitrary point of E? as origin and denote it by O. To each
point se E2, we associate the directed line segment Os from O to s. The
set of all such directed line segments forms a vector space V' of dimension
2 over R in a familiar way: addition of vectors is defined by means of
the parallelogram law. . '

s+t

o

Now for every s, te E2, write s + t for the unique point of E? corresponding
to the vector Os + Ot. Then a translation of E? is just a map

1,:s+— s+a forall seE?,
where a is an element of E2. The set
Tr E* = {1, :acE?}

of all translations is an abelian subgroup of Isom E?, and in fact, by
means of the map defined by

Os - 1, -for all seE?,
it is clear that
V*~TrE?.
If we fix a cartesian coordinate system for E? with origin O and identify

each point s of E? with the ordered pair (x, y) of its coordinates in that
system (where x, yeR) then a translation is just a map of the form

(¢, ) (x+b,y+c),

where b, c are real numbers, the same for all x, y.

(ii) A map ¢ : E? - E? is called a reflexion of E? if there is a line |
in E? such that ¢ moves each point of E? to its mirror image with respect
to I. If I is chosen as the x-axis for a cartesian coordinate system then
reflexion about [ is the map
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& Z(Xa}’)'-" (X, —y)

for all x, yeR. Then ¢ is an isometry of E* and &2 = 1.

(iii) Let s be any point of E? and view E? as the Argand diagram with
s as zero: that is, represent the points of E? by complex numbers in the
usual way, with s represented by 0. Then each point is represented in
polar form by an expression re®, where r,0eR with r = 0. A rotation of
E? about s is a map

p, i 1€’ s re@+e

for some aeR. Then p, is an isometry of E2. Since ¢ =1 if and only
if a is an integral multiple of 2, each rotation about s is uniquely expressi-
ble as p, with 0 < a < 27; « is the angle of the rotation. The set

Rot(E?;s) = {p, : 0< a < 27}

of all rotations about s is an abelian subgroup of Isom E2. Note that
there is one such subgroup of Isom E? for each point se E.

Now the structure of Isom E? can be described as follows. Let G =
Isom E? and let H be the set of all translations and rotations of E?:
that is,

H=Tr E*U ) Rot(E?;s).

seE2

Then H is a subgroup of index 2 in G, and if ¢ is any reflexion of E2,
G=HuUHe=HueH.

It is straightforward to calculate products of elements of G from these
definitions.

2.24. As particular symmetry groups, we note the following important
examples. Let n be any integer with n= 3, and let P, denote a regular
polygon in E? with n edges. We consider the symmetry group

Sg:(P,) = L, say.

The elements of L are just the n rotations about the centre of the polygon
through angles 0,2x/n,4x/n, ..., 2(n — 1)7/n, together with the n reflexions
about the lines joining opposite vertices of P, and the lines joining mid-
points of opposite edges of P, (if n is even) or about the lines joining
vertices of P, to mid-points of opposite edges (if n is odd). Thus

|L|=2n.
Let p denote the rotation about the centre of P, through angle 2n/n,

and ¢ any one of the n reflexions in L. Then one verifies that

1

p"=1=¢> and ep=p ¢,
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and the 2n distinct elements of L are
laP,PZ,n-,P"—l,gapg,/’zs,---, n—ls.

The group L is called the dihedral group of order 2n and denoted by
D,,. (The definite article is used because the type of D,, is independent
of the size of the polygon and of its position in the plane: it depends
only on the number n of edges. Some authors use D, or other notations
where we always use D,,.) Note that p~! # p, and so D,,, is a non-abelian
group.
55 Let X be any non-empty set. Let ¢ be any positive real number and define, for all
x,yeX,
0 ifx=y
c ifx#y.
Show that d is a distance function for X, and that for this metric space

IsomX =%,.

56 View R as the euclidean line E! with the usual distance function (that is, for
x,yERad(X,Y) = |x - yl)'
(i) For each aeR, the map

d(x,y) = {

7,:x>x+a forallxeR
is an isometry of R, called a translation, and
RY*>T=/{r,:aeR} < IsomR.
(ii) For each aeR, the map
g :x—a—x forall xeR
is an isometry of R, called a reflexion, and

g=1(=1,) and egr,=1_,¢, foralla,beR.

(iii) Every isometry of R is either a translation or a reflexion.
(iv) IsomR is a non-abelian group and T is an abelian subgroup of index 2.

57 Let the notation be as in 56. Show that for every neZ,

n o
T1 = Two

and that the elements of the symmetry group Sg (Z) are just the isometries
7} forallneZ and tle, forall neZ.

Note that & =1 and &,t, =] '¢,. The group Sg(Z) is called the infinite dihedral
group and denoted by D . .

58 Let n be an integer, n = 3. Then D,, can be embedded in X,. Moreover, Dg =~ X,
but, whenever n > 3,D,,# X, . (It may be assumed that an isometry of E? is uniquely
determined by its effect on any 3 non-collinear points.)

59 Let nbe an integer,n =3, and let L=D,,. Let J = p), where p is defined as in
2.24. Show that every element of L\J has order 2. Deduce that J is the only cyclic
subgroup of L of order n.
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60 Every group of order 6 is isomorphic to either C¢ or Dg. Hence, in the notation
of chapter 1,v(6) = 2.

(Hints. Let G be a non-cyclic group of order 6. By 42, G has an element x of order 3.
Let y be an element of G other than 1,x,x2. Then G = {1,x,x?,y,xy,x%y},y*> =1
and yx = x2y.)

61 (i) For any 2 points s, t of E? there is a unique translation 7, of E2 which maps s
tot.

(ii) For any 2 points s, z of E2, if 7, is the unique translation of E* which maps s to ¢
then

77 Rot(E?;s)t, = Rot (E? ;t/).
Thus any 2 groups of rotations are conjugate subgroups of Isom E2.
62 For any non-empty set X, any map ¢ : X - X and any YS X, let Yo =
{yp :yeY} <= X. Verify that the following analogues of the symmetry groups

introduced in 2.23 are subgroups of the appropriate groups, as stated.
(i) Let X be any non-empty set and Y any non-empty subset of X. Then

Sy(Y)={peZy: Yo=Y} <Z,.

(ii) Let V be any vector space over a field F and Y any non-empty subset of V.
Then

Sy (Y)={9eGL(V): Yp=Y}< GL(V).
(iii) Let G be any group and Y any non-empty subset of G. Then
Se(Y)={peAut G : Yo=Y} < AutG.

2.25. E. Artin [b2] said ‘In modern mathematics the investigation of
the symmetries of a given mathematical structure has always yielded the
most powerful results. Symmetries are maps which preserve certain
properties’. And this is why groups play a fundamental r6le in mathe-
matics today. The symmetries of a structure are the permutations of the
underlying set X which are structure-preserving; and the set of all such
symmetries forms a subgroup of Z,. We may view the group associated
to the structure in this way as a kind of measure of the ‘regularity’ of
the structure.

We have had several instances of this idea in the preceding examples.
For a non-empty set X with no further distinguished structure, the
symmetries of X are just the permutations of X and the corresponding
group is X, itself. For a vector space V, the symmetries of V are the
invertible linear maps ¥V — V and the corresponding group is GL(V).
For a group G, the symmetries of G are the automorphisms of G and the
corresponding group is Aut G. For a metric space X, the symmetries of
X are the isometries of X and the corresponding group is Isom X.

Again, if X is a set with a particular structure and Y is a subset of X,
there is a corresponding relative symmetry group S,(Y) of Y with respect
to X: as for instance in 2.23 and 62.

This idea of a group as a measure of the symmetry of a mathematical
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structure is of fundamental significance. To mention another instance,
one in which we may trace the origins of group theory and indeed of
abstract algebra, the same idea lies at the heart of the Galois theory of
equations: for information about this, we refer to Artin [bl], Herstein
[b19] chapter S, §6, Kaplansky [b25] Part I, Lang [b28] chapter VII,
or Rotman [b34] pp. 96-103.

63 Let X = E2, the euclidean plane.
(i) Let seX,J =S,(s)and K = Rot(X ;s).
ThenK < J, |J : K|=2and J\K consists of all reflexions of X about lines through
s.
(ii) Let s,teX with s+ ¢. Then |Sy({s,t})| =4.
(iii) Let Ibe any line in X, L = Sy(J), and let M consist of all the translations of X
which belongto L. Then M < L,|L: M|=4and M ~R*.

64 Let n be a positive integer, F a field and Va vector space of dimension n over F.
If B is a base of V then S,,(B) = Z,. Hence Z, can be embedded in GL, (F).

65 Let X be aset with | X|>2,and let xe X and Y = X\{x}. Then S,(x) = Z,.

Associated to a group G there are in general many other groups of
different types: for instance, G determines a set of groups as its subgroups
(though it is often impracticable to find these explicitly). The following
observation is immediate from the definition of a subgroup.

2.26. If H< G and K <G then HNK < G. More generally, if {H, :iel}
is any set of subgroups of G (indexed by a set I) then (| H; < G.

iel
*66 If H< G and K < G, with |G : H| < o0 and |G : K| < o0, then |G : HN K| < 0.
(This is often called Poincaré’s theorem. Hint. Apply 11.)

67 Let G be a finite group.
(i) Any two distinct subgroups of G of order p intersect in 1.
(ii) The total number of elements of order p in G is a multiple of p — 1.

Note that intersections of subgroups are always non-empty, for 1
belongs to every subgroup. Of course, an intersection of non-trivial
subgroups may turn out to be trivial.

Now if X is any subset of G, there is certainly at least one subgroup
of G which contains X, namely G itself. Therefore the intersection of all
subgroups of G containing X is a well-defined subgroup of G.

2.27 Definition. Let X = G.-Then the intersection of all subgroups of
G which contain X is called the subgroup of G generated by X and denoted
by (X ) (in some books by Gp{X}). It is the unique smallest subgroup
of G containing X in the sense that, whenever X < H < G, then (X ) < H.
Of course, if H< G then (H) = H.

Note that { @ » = 1. If X is a non-empty finite subset of G, say X =
{x{,...,%,}, then we write {x, ..., x, > rather than {{x,,...,x,} ) for the
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subgroup generated by X. In particular, if X consists of a single element
x then (X ) = {x), the cyclic subgroup of G generated by x; the notation
is consistent with that introduced in chapter 0.

It is easy to give an explicit description of the elements of { X ) in terms
of the elements of X.

2.28 Lemma. Let ) + X = G. Then

(XY ={x}x5...xr : r is a positive integer, each x,€X and each n,eZ}.
(In general an element of { X ) may have many different expressions
of the form on the right.)
Proof. Let H be the set on the right hand side above. Since ( X ) is closed
under multiplication and the forming of inverses, H < { X ). But also,
by definition, X = H; and if h,,h,eH then clearly h,h; 'eH, so that
H<G.Hence{X><H,andso{(X)=H.

2.29 Definition. If X = G and { X ) = G, X is said to be a set of generators
of G. This is to be compared with the notion of a set of vectors spanning
a vector space; though there is in general in group theory no analogue
for group elements of the notion of linear independence of vectors, and
no basis theorem. (For abelian groups and for groups of finite prime
power orders, something of the kind is possible; see 8.24, 11.12.) Obviously
G itself and G\{1} are sets of generators of G. We are usually interested
in ‘small’ sets of generators. If G has a set X of generators with | X|<n,
where n is a positive integer, we say that G is an n-generator group. Thus
the 1-generator groups are just the cyclic groups; and cyclic groups are
n-generator for every positive integer n.

2.30 Examples. (i) We know that the symmetric group X, is non-abelian
whenever n 2 3;then X, is certainly not cyclic. However, 2, is a 2-generator
group, for every n: for instance,

X, =<(12),(123...n)>, whenever n=3.
To see this, let © =(12),0 =(123...n) and
H={o,t)<Z,.

Then H contains ¢ '16=(23),06 %16’ =0"Y(0"'10)0=(34),...,
6~ "~ 276"~ 2 = (n — 1,n). Let m be an integer with 2 < m < n. Then H also
contains

(m—1,m)(m —2,m—1)...(34) (23) (12) (23) (34) ... (m — 1, m) = (1m).

Now let k, | be integers with 1 < k < 1< n. Then H contains (1k) (1]) (1k) =
(kl). Thus H contains all transpositions in Z,. Now it follows from 21
that H=2% .

(i) Let n be a positive integer and let V be a vector space of dimension
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nover Z,. Then V™ is an n-generator group, but is not an m-generator
group for any integer m <n. To see that V" is an n-generator group,
we need only consider a base v,,...,v, of V: then, since every element
of V is expressible as kv, + ... + k,v,, with k... k, integers, it is clear
that {v,,...,0,» = V*. On the other hand, if m is a positive integer and
Wi,..., W, are elements of V such that {w,,...,w, > =V, then vectors
Wy,..., W, also span V as a vector space and hence m = n.

(iii) For every integer n = 3, the dihedral group D,, is a 2-generator
group: for, with the notation of 2.24, D,, = {p, ).

*68 Let @ # X < G. Then every element of { X ) is expressible in the form x{'x% ... x{r
with x,,X,,...,x,€X and ¢ = + 1 for each i = 1,...,r. Moreover, if every element
of X has finite order we can take every ¢; = + 1.

*69 Let r be a positive integer and let x, , ..., x,eG. If x; and x; commute for all i, j
with1 <i<j<rthen{x,,...X,) is an abelian subgroup of G, and every element of
{Xy,...,X,is expressible in the form x}'x32... x", where n,,...,n,eZ.

70 (i) Let H,K <G. Then
HUK<G ifandonlyeither K<H or H<K

(in which case H UK is either H or K). In particular, G cannot be the union of two
proper subgroups.
(i) The dihedral group D4 of order 8 is the union of three proper subgroups.

*71 Let H,K <G. Then (HUK ) is usually denoted by { H,K) and called the
join of H and K : it is the unique smallest subgroup of G containing both H and K.
(i) Every element of { H, K ) is expressible (in general in many different ways) in
the form h,k, h,k, ... hk,, where r is a positive integer and h,,...,h,eH k,,...,
k.eK.
(i) If H and K are finite subgroups of G, is { H, K necessarily finite? (cf. Poincaré’s
theorem :66).

*72 Let X be a (non-empty) set of generators of G. Let ¢ :G—->Hand y :G—> H
be homomorphisms. If, for every xe X,
xXQ = Xy
then
p=y.

73 Suppose that G = {x,y) and that x~! yx = y* for some keZ. Show that every
element of G is expressible in the form x™y” with m,ne Z. Deduce that if x and y have
finite orders then G is a finite group and |G| < o(x)o(y).

74 Let H< G and let X = G\H. Then<{X ) =G.

Next, from any groups H and K we construct another group in which
both H and K can be embedded.

2.31 Definition. From any two sets X and Y (possibly equal) we can
form another set X x Y, called the cartesian product of X and Y: it is
the set of all ordered pairs (x, y) with xe X and yeY. When X and Y are
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finite sets, X x Y is a finite set and
| X xY|=|X]|.|Y].

Now if H and K are any groups then the set H x K acquires the structure
of a group when we define, for all h, e H and k,k'eK,

(h, k) (W, k') = (hl', KK').

The group axioms are easy to verify: closure is immediate from the
definition of multiplication; associativity follows from the associativity
of multiplication in H and in K; the identity element of H x K is (1,1);
and

(k)" t=((h"1k™ ).

From now on, whenever H and K are groups, H x K will denote this
group: it is called the direct product of H and K.

2.32 Examples. (i) Ct=R* xR*:
for the map
a+ib (a,b),

defined for all g, beR, is an isomorphism of C* onto R* x R*.
(i) Q" =Q%, xC,:
for the map

x (| x|, sign x),
defined for all xeQ>, where

sion x = lifx>0
BOX=3 _1ifx<0,

is an isomorphism of Q* onto Q_,, x C,. Similarly

(iii) R*=~R> xC,.

pos
(iv) Let U = {zeC™ :|z| =1}. It is clear that U is a subgroup of C* ; U
is called the circle group. Then

C*=RX xU:

pos

for the map

ze> (|z],2/|z])

defined for all zeC*, is an isomorphism of C* onto R, -x U. Alternatively,
if z is expressed in polar form re®, where r,0€R, this isomorphism is
the map

re’® v (r, ).
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2.33. The group H x K has subgroups
Hx1={(h1):heH}~H
and 1 x K={(1,k):keK} =K.
Ev:‘rﬁ element of H x K is expressible as the product of an element of

H x|1 and an element of 1 x K. Furthermore, every element of H x 1
co

utes with every element of 1 x K, and
(Hx )n(1 xK)=1.
Proof. Let ¢ : H— H x K be defined by
@ :he(h1) for all heH.
Then, for h,,h,eH,
(hihy) = (hyhy, 1) = (hy, 1) (g, 1) = (1, 0) (h,0).

Thus ¢ is a homomorphism, and clearly ¢ is injective.
Hence, by 2.10, H~Hp=H xland H x 1<H x K.
Similarly K~1xK<HxK.
For every he H and keK,

(h,1)(1,k) = (h, k) = (1, k) (h, 1);
and HxD)n(IxK)={1,1)}=1.
75 H x K is abelian if and only if H and K are both abelian.
*76 If H=~ Jand K = L then (H x K) = (J x L).

*77 (i) Let V ={1,(12)(34),(13)(24),(14)(23)} =X,. Show that V <X, and
V= C, x C,. The group V is sometimes called Klein’s four-group.

(ij) C, x C, can be embedded in GL,(Q), but not in F* for any field F.

(iii) C, x C, and C, are non-isomorphic groups of order 4.

(iv) Any group of order 4 is isomorphic to either C, x C, or C,. Hence v(4)=2
(cf. 60).
*78 (i) If m and n are co-prime positive integers, then

C,xC,=C,,-

(ii) Let H and K be finite cyclic groups. Then H x K is cyclic if and only if the
numbers |H | and | K | are co-prime.

Now we note a result converse to 2.33.

2.34 Lemma. Suppose that G has subgroups H and K such that every
element of G is expressible as a product hk with he H and keK, every
element of H commutes with every element of K, and HNK = 1. Then
G~ HXxK.
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Proof. First we note that each geG is expressible uniquely as a product
of an element of H and an element of K : for suppose that

g=hk=Hnk
with h,h'e H and k,k'e K ; then
W)y *h=kk 'eHnK=1,
by hypothesis, so that h =k’ and k = k. Therefore we may define a map
©:G—->HxK
by @ :hk+— (h,k) for all heH and keK.

This map is well defined, by the remark above, and is clearly bijective.
It is an isomorphism, for if h,,h,eH and k,,k,eK then in G,

(hyky) (hyky) = hihok ks,
since by hypothesis k,h, = h,k, ; hence

((hyky) (hyky))p = (hyhy, kiks,)
= (hl’kl) (hz’kz)
= (h,k,)@.(h,k,)p, as required.

This criterion applies directly to the examples in 2.32.

79 Let n be an integer,n > 3, and let G = D,,, the dihedral group of order 2n. Show
that G has a cyclic subgroup H of order n and a subgroup K of order 2 such that

every element of G is expressible as hk with heH and keK,and HNK =1.Is G~
H x K?

2.35. For any groups Hand K, H x K = K x H.
Proof. The map (h,k) — (k,h) (defined for all he H,keK) is an isomor-
phism of H x K onto K x H.

2.36. The definition of the direct product of two groups can evidently
be extended to the direct product of any finite number of groups. Let
n be any positive integer, and let G,,G,,...,G, be any n groups (not
necessarily distinct). Then G, X G, x ... x G, is the set of all ordered
n-tuples (g,,9,,...,9,) With g,€G, for i=1,...,n. This set is given the
structure of a group, called the direct product of G, ,G,,...,G,, by defining
multiplication of n-tuples componentwise. (If n = 1, we naturally identify
this ‘direct product’ with G, .)

For instance, if V is a vector space of finite dimension n> 0 over a
field F, then

V*~F*x..xF*,
the direct product of n copies of F™* (cf. 2.15).
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2.37. For any groups G,H and K,
Gx(HxK)=GxHxK=(Gx H)x K.
80 F be a field and n a positive integer. Show that the set H of all non-singular
diaggnal n x n matrices with entries in F forms a subgroup of GL,(F), and that
H=F*x...x F*,
the darect product of n copies of F*.

*81 A group G is said to be decomposable if it has proper subgroups H and K satis-
fying the hypotheses of 2.34; if not, G is said to be indecomposable.
(i) Let nbean integer,n > 1, and let the factorization of n as a product of primes be

n=phpr...pr,

where s,m,, ..., m, are positive integers and p,, ..., p, distinct primes. Then C, is
decomposable if s > 1, and

C,=C, xCpx%...xC

qs°
where g, = pf* for each i=1,...,s.
(ii) For each prime p and positive integer m,C, is indecomposable.

82 X, is indecomposable (cf. 143).
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NORMAL SUBGROUPS, HOMOMORPHISMS
AND QUOTIENTS

3.1 Definitions. Let H < G and let 4 be a non-empty set of automor-
phisms of G. We say that H is an A-invariant subgroup of G if

h*eH for all heH and acA.

For instance, if 4 = 1 then, trivially, every subgroup of G is A-invariant.

In two important special cases we use special terms. If H is Aut G-
invariant, H is said to be characteristic in G. If H is Inn G-invariant,
H is said to be normal (or invariant or self-conjugate) in G. The concept
of normal subgroup dominates the whole of group theory, and a special
notation is used. We write H < G to mean ‘H is a normal subgroup of
G, and H € G to mean ‘H is not a normal subgroup of G’. Because of
its fundamental importance, we restate explicitly the defining condition
of normality:

3.2 Definition. Let H < G. Then H < G if and only if g~ 'hgeH for all
heH and geG.

The alternative term ‘self-conjugate’ is easily explained. If H < G then,
for any geG,

g 'Hg={g9 'hg:heH}<H. @)
Then also gHg™ ' = (g~ !)"'Hg ™! < H, from which it is easy to see that
H<g 'Hg. (ii)

From (i) and (ii), g 'Hg=H.

If, conversely, g~ 'Hg = H for every geG then certainly H < G. Hence
we have

3.3. Let H<G. Then H<G if and only if g 'Hg = H for every geG;
that is, if and only if H coincides with all its conjugates in G.

34. 14 Gand GLG.

3.5. If G is an abelian group then every subgroup of G is normal in G.
Proof. Let H< G.IfheH and geG then g~ 'hg = hg~'g = heH.
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Recall from chapter 1 that G is called simple if G #+ 1 and the only
normal subgroups of G are 1 and G.

3.6(c
orders.
Progf. If G is a group of prime order then, by Lagrange’s theorem, the
only subgroups of G are 1 and G, and so G is certainly simple.

onversely, if G is an abelian simple group then, by 3.5, the only
subgroups of G are 1 and G. Hence, by 29, G is finite and of prime order.

1.11). The only abelian simple groups are the groups of prime

3.7 Example. Find all the subgroups of Z, and determine which of these
are normal in X,.

First, 1<%, and ;< X;. We have to find the non-trivial proper
subgroups of X;: by Lagrange’s theorem, they can only have orders
2 and 3. By 1, any group of prime order is cyclic. Now

23 has 1 element of order 1 : 1,
3 elements of order 2 : (12), (13), (23),
2 elements of order 3 : (123), (132);

and (132) = (123)%. Hence X, has 3 subgroups of order 2 : {1,(12)} = T,
{1,(13)} =U, {1,(23)} =V, say, and 1 subgroup of order 3: {1,(123),
(132)} = K, say. Now (13)~! (12)(13) = (13)(12)(13) = (23)¢ T, so T Z,.
Similarly, U€ 2, and V 4 Z;. But for all geX,,g 'Kg is a subgroup
of Z, of order 3, by 2.20, and therefore g~ 'Kg = K. Hence K < X,.

The following remark is immediate from 2.26 and the definition of a
normal subgroup.

38. If HL G and K <G then HNK < G. More generally, if {H,:iel}
is any set of normal subgroups of G (indexed by a set I) then (\H; < G.
iel

83 If Q) < A< Aut G andif {H, :iel} is any set of A-invariant subgroups of G then
(\H, is an A-invariant subgroup of G.
iel
84 Let )<= A< Aut G, and let H be an A-invariant subgroup of G,aeAd and
H*={h* :heH}.

(i) Show that H*< H.

(ii) Show by an example that we may have H* < H. (Hint. For an example,
consider G =Q*,H=Z%,4={4,}, where 4, is the automorphism x - 2x of Q*.)

(iii) Prove that if either H is finite or A < Aut G then H* = H.

85 Let V be a vector space over a field F, and suppose that 0 = we V. Let W be the
1-dimensional subspace of V spanned by w and let ae GL(V). Then by 47(i),ae
Aut v+,

Show that w is an eigenvector of « if and only if W™ is an {«}-invariant subgroup
of V'*.

86 Let G be a finite group, of order n say, let m be a divisor of n, and suppose that G
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has just one subgroup H of order m. Then H is characteristicin G.

*87 Suppose that K <J < G. Let ¢ : G —» H be a homomorphism, and let K=Ko
and J=J¢(see 2.9). Then KSQJ< H.

88 Suppose that H < G. Show that if x and y are elements of G such that xye H then
yxeH. Would this be true merely on the hypothesis that H < G?

*89 Consider the direct square G x G of G. Let
G={(9,9):9eG} =G xG.

Show that G is a subgroup of G x G which is isomorphicto G ; G is called the diagonal
subgroup of G x G. Show also that G < G x G if and only if G is abelian.

*90 Let H < G and define H; = () (9~ *Hg).

geG

Then Hy; <G and, whenever K< H<G with K< G,K<H;. Thus H; is the
unique largest normal subgroup of G contained in H : it is called the core (or normal
interior) of H in G.

What is the core of the subgroup {1,(12)} in £,?

91 Let n be an integer,n = 2, and let F be a field.

(i) Consider the set of all n x n matrices with entries in F. Let e;; denote the
(singular) matrix with entry 1 in the ith row and jth column and all other entries
0(1 €is<n,1<j<n). Verify that

€€ = 5jk €5

where Bjk is the Kronecker delta. Show that if i # j then, for any aeF, the matrix
1 +ae;is non-singular, and find its inverse.

(ii) Let G = GL,(F), and let H be the subgroup of G consisting of all diagonal
matrices in G (see 80). Prove that the core H; of H in G consists of all scalar matrices
in G (that is, matrices al with 0 # aeF) and that H, =~ F*. (See 90. Hint. Show that
if xe H, with the ith and jth diagonal entries of x not equal, then the conjugate of x by
1 + ¢;;is not a diagonal matrix.)

*92 Let geG and ae Aut G As in 2.19, let 7, denote the inner automorphism of G
induced by g. Show that o~ r o=71, Deduce that for any group G, Inn G € Aut G.

AN

There is a fundamental connexion between homomorphisms and
normal subgroups, which is the main theme of this chapter.

3.9 Theorem. Let ¢:G — H be a homomorphism,and let K = {geG :gp=1}.
Then K< G. We call K the kernel of ¢ and denote it by Ker ¢. (Compare
with the kernel of a linear map.)

Proof. By 2.9, 1€K, so that K + . If k;,k,eK then, using 2.9, we have

(kyks; o = (k@) (k3 ') = (k@) (ky0) ' =1.171 = 1.
Thus k,k; e K. Hence K < G. Finally, if keK and geG then

(97 'kg)p = (g9~ ') (ko) (gp) = (gp) ' .1.(gp) = 1.
Thus g~ kgeK. Hence K < G.
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3.10. Let ¢ : G > H be a homomorphism. Then ¢ is injective if and only
if Ker ¢ = 1. (Compare with the fact that a linear map 6 between vector
spaces is injective if and only if Ker 0 = 0.)

Proof. If ¢ is injective then, since, by 2.9, 1 = 1, it follows by definition
that Ker ¢ = 1. Conversely, suppose that Ker ¢ =1, and let g,,9,€G
with g, ¢ = g,¢. Then, by 2.9,

9192 e =9,9)(g,9) ' = 1.
Henge g,g, 'eKer ¢ = 1, and so g, = g,. Thus ¢ is injective.

We have seen that the kernel of every homomorphism ¢ : G — H is
a normal subgroup of G. In 3.23 we shall show conversely that, for every
K € G, there is a homomorphism from G to a suitable group with kernel
K. Before doing this, we note some other properties.

3.11. Suppose that G = H x K. Definemapsn, :G—> Handn, : G — K by
n, :(h,ky—>h and =, :(h,k)—k forall (hk)eG.

Then m, and m, are surjective homomorphisms, called the projections
of G onto H and onto K, respectively. In the notation of2.33,Kern, =1 x K
and Kern, =H x 1.

Proof. Immediate, from the definition of H x K.

3.12. Suppose that G=H x K. Then Hx 1< G and 1 x K< G. But
H x 1 and 1 x K need not be characteristic in G.
Proof. The first assertion follows from 3.11 and 3.9. To see that H x 1
and 1 x K need not be characteristic in G, consider the situation when
H=K+1. Thus let H be any non-trivial group and let G=H x H.
Then the map

a:G-G
defined by a:(hy,hy) > (hy,hy) forall (hy,h,)eG

is easily seen to be an automorphism of G. For 1+ heH, (h,1)* = (1, h)¢
H x 1 and (1,h)*=(h,1)¢1 x H. Thus H x 1 and 1 x H are normal but
not characteristic in G.

3.13. If K< G and K< H <G then K < H; but H need not be normal in
G.

Proof. The first assertion is immediate from the definition of normality.
To demonstrate the second assertion, it is enough, by 3.7, to choose
G=Z;,H={1,(12},K=1

Next we show that normality is not a transitive relation.

3.14. It can happen that K <H <G but K< G.
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To see this, let
J=2%2; and G=JxJ.

By 3.7, J has a normal subgroup L of order 3: L = {1, (123), (132)}. Let
H=LxL<G. It is easy to verify that H < G (see 111). Now H is an
abelian group, so that every subgroup of H is normal in H. Let

K ={(1,1),((123), (123)), ((132), (132))},
a subgroup of H of order 3 (see 89). Then K < H. But K€ G, since,

for example,

((12),71((123), (123)) ((12), 1) = ((12) (123) (12), (123))
=((132), (123))¢K.

In view of that negative fact, the following positive result is useful.

3.15 Lemma. If H< G and K is a characteristic subgroup of H then
K<G.

Proof. ForeachgeG, g~ *Hg = H (3.3). Therefore the inner automorphism
7, of G induced by g maps H onto H. Hence, by restriction to H, 7, deter-
mines an automorphism g, of H:

o,:ht>g 'hg forall heH.
Since K is characteristic in H, K is o, -invariant; thus, for all keK,
k°?eK,
that is, g kgeK.
This is true for all g€ G, S(ythat K<G.

93 Let K< H<G. Prove that if ) € A < Aut G, H is an A-invariant subgroup of
G and K is a characteristic subgroup of H, then K is an A-invariant subgroup of G.
(This generalizes 3.15.) In particular, if K is characteristic in H and H is characteristic
in G then K is characteristic in G (cf. 3.14).

*94 Suppose that G = H x K.
(i) Then (Aut H) x (Aut K) can be embedded in Aut G.
(ii) If H x 1 and 1 x K are characteristic in G then Aut G = (Aut H) x (Aut K).

3.16 Definition. For any two non-empty subsets X,Y of G we define
the product set

XY ={xy:xeX,yeY}<G.

If X consists of a single element x, we write xY instead of {x}Y; and
similarly if Y = {y}, we write Xy for X{y}. This accords with the usual
notation for cosets mentioned in chapter 0: when H < G and geG, gH is
aleft coset of H in G and Hy is a right coset of H in G.
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This multiplication of subsets of G is associative; for if X,Y,Z are
non-empty subsets of G,

(XY)Z ={xyz :xeX.yeY,zeZ} = X(YZ).
Hencg

myltiplication is defined as in 3.16.
f course, these definitions remain valid when G is replaced by any
semigroup. Moreover, we can deal with the empty subset () by defining
=@ = QX for every X < G: then 2(G)u { (D} becomes a semigroup
2(G) in which @ plays the multiplicative role of zero. However, we shall

discuss orily 2(G) with G a group.
Note that the previous notation for a conjugate of a subgroup is
consistent with the present definitions: if K < G and geG then the conju-
gate subgroup g~ *Kg is the appropriate product of the sets {g~ '}, K, {g}.

*95 Let H,K < G. Then

@) Every subgroup of G containing both H and K contains the product sets HK
and KH.

(i) HK <G if and only if HK = KH.
(Note. The equation HK = KH does not mean that every element of H commutes
with every element of K. It means that for each he H and keK,hk = k'l for some
k'eK and h'e H, and similarly kh can be expressed as an element of HK )

(i) Find an example for which HK is not a subgroup of G (cf. 71 ; see also 3.38).

96 Let H,K <G and x,yeG with Hx = Ky. Then H = K.

97 The semigroup 2(G) has an identity element, and the group of units of 2(G)
is G.

3.‘1£. The set of all non-empty subsets of G forms a semigroup 2(G), when

*98 Let G be a finite group and let H, K < G. Then
|H| |K|
|HNK]|
(Note. HK and K H need not be subgroups of G: see 95.)

*99 Let G be a finite group and let H,K <G.
(i) Then |[(H,K):K|Z|H :HnK|(see 71).
(i) If|[H :HAK|>3|G :K| then (H,K)»=G.

*100 Let G be a finite group and let H,K <G with (|G : H|,|G : K|)=1. Then
|G:HnK|=|G:H||G:K|and G = HK.

(Hint. Use 11,98 and 99(i). Later we shall be able to remove the condmon of finiteness
of G : see 197.)

|HK | = = |KH|.

Any subgroup of the semigroup 2(G) must contain an identity element,
hence a subset X of G such that X2 = X (that is, an idempotent subset:
see 15).

3.18. (i) If H<G then H* = H.
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(ii) Let Xe2(G). If X* = X and X is finite then X < G. This statement
fails, however, if we delete the condition that X is finite.

Proof. (i) Since H < G,H = 1H < H?. But also, because H < G,H>< H.
Hence H?> = H.

(ii) Let xeX. Then xX < X2 = X. Since X is a finite set and clearly
|xX|=|X], it follows that xX = X. Therefore xexX and so x = xe for
some ecX. But then, in G,1 =x"!x=eecX. Now lexX and so 1 =xy
for some yeX. Then, in G,x~ ! = yeX. Since also X? < X, this shows
that X <G.

For an example to show that we need X to be finite here, let G =Z"
and let X be the set of all non-negative integers. The sum of any two
non-negative integers is a non-negative integer, and, conversely, any
non-negative integer n is the sum of two non-negative integers, for n =
0 + n. Thus X2 = X. But X is not a subgroup of Z™.

By 3.18, for each H< G,{H} is a subgroup of the semigroup 2(G)
of order 1 (and when G is a finite group, every subgroup of 2(G) of order
1is {H} for some H < G). We are going to define some more subgroups of
9(G) associated to normal subgroups of G. Later we shall be able to give
a simple characterization of all the subgroups of 2(G) when G is a finite
group: see 3.57.

First we reformulate the statement of 3.3:

3.19. Let H< G. Then H<L G if and only if Hg = gH for every geG.

101 (G. Horrocks) at X be a non-empty finite subset of G; say X = {x,,...,x,},
where n is a positive integer. Suppose that x;x;€ X whenever 1 <i<j<n.
(i) Prove by induction on m that x["e X for every positive integer m and for

everyi=1,...,n

(ii) Deduce that, for every i = 1,...,n, x; has finite order and x; e X.

(iij) Deduce that whenever x;X = X then also x; !X = X.

(iv) Hence prove by induction on j that, for every j=1,...,n,x;X = X.

(v) By means of 3.18, conclude that X < G.

*102 If H<Gand |G:H|=2then H<G.

103 Let X =E?, the euclidean plane, G=IsomX, T=TrX and H=
Tu ) Rot(X ;s): then, according to 2.23, |G : H| = 2.
seX
(i) Let teH. Then  fixes no point of X ifand only if 1 # 7€ T.
(ii) Let 0,7€G. If 6™ '10 fixes some point of X then so also does 7 fix some point
of X.
(iii) T < G. (Hint. Use 102.)

3.20. Let K 9 G. Let G/K denote the set of all cosets of K in G. (By 3.19,
it is unnecessary to qualify ‘cosets’ by left or right.) Then G/K is a subgroup
of the semigroup 2(G), called the quotient group (or factor group) of G
by K. In G/K,
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(xK)(yK) = xyK,
the identity element of G/K is K, and
xK)"'=x"'K (for x,yeG).

If G is abelian then G/K is also abelian.
ote. G/K is not a subgroup of G: it is a group formed by the multipli-
ation of certain subsets of G.
roof. Let x,yeG. Then in 2(G),

(xK)(yK) = xy(y " 'Ky)K = xyKK = xyK,

by 3.3 and 3.18. Thus the set G/K is closed under the multiplication
defined in 2(G). In particular,

(xK)K = xK = K(xK),
so that G/K has identity element K. Moreover,
(xK)(x"'K)= K = (x"'K)(xK),

so that xK has the element x ~ 'K as inverse in G/K.

Immediately from the definition we have
321. G/12Gand G/G=1.

Let K < G. Then, by definition of G/K,

|G/K|=|G :K|,

the index of K in G. Hence we have

3.22 (cf. 1.7). If K < G and G is a finite group then |G/K|=|G|/|K]|.

104 Let K < G. If the set of all left cosets of K in G forms a subgroup of 2(G) then
K < G. (This is a converse to 3.20.)

*105 Suppose that K < G with |G/K|=n < co.
(i) Then g"eK for every geG.
(ii) If geG and g™eK for some integer m such that (m,n) =1 then geK (cf. 12).

*106 Suppose that K < G with |K|=m < c0. Let xeG and let n be a positive integer
such that (m,n) = 1.
(i) If o(x) = nthen o(xK) = n(where xK is viewed as an element of the group G/K).
(ii) If o(xK)=n then there is an element yeG such that o(y) =n and xK = yK.

*107 Prove by induction on |G| that if G is a finite abelian group such that p divides
|G| then G has an element of order p. (Hint. If G has a proper non-trivial subgroup
K then, since p is prime, either p divides |K | or p does not divide |K | and p divides
|G/K|. In the latter case use 106(ii).)

*108 Let K < G and let G = G/K. For each subset X of G, let X = {xK :xeX}<G.

(i) If X is a set of generators of G then X is a set of generators of G. In particular,
if G is an n-generator group, where n is a positive integer, then G is an n-generator
group.
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(ii) If X is a subset of G such that X is a set of generators of G, and if Y is a set of
generators of K, then X U Y is a set of generators of G.

In particular, if K is an m-generator group and G/K is an n-generator group,
where m and n are positive integers, then G is an (n + m)-generator group.

(Hint. Apply 2.28.)

*109 Let H ¥ G and K < G. Then (3.8) HN K < G. Show that we can define a map
¥ :G/(HNK) - (G/H) x (G/K) by ¥ : g(Hn K) — (gH,gK) (for all geG), and that
¥ is an injective homomorphism. Thus G/(H n K) can be embedded in (G/H) x (G/K).
Deduce that if G/H and G/K are both abelian then G/(H n K) is abelian.

110 Let X be a non-empty set. For each ceX,, we define a subset s(¢) of X by
s(0) = {xeX :xo # x}.
(a) Let 0,7€X,. Then
(i) s6™*) = s(0),

(i) s(o7) = s(o) U s(),

(iii) s(6™'0) = {x0 : xes(1)}.

(@iv) If s(6)ns(t) = @ then o7 = 10.
(b) Let Z, = {0€Zy :|s(o)| < o0 }.
Then X4, < Zy. The group Xy, is called the restricted symmetric group on X.
Furthermore, £, = Z, if and only if | X | < c0; and if X is infinite then Z 4, is an
infinite group in which evrry element has finite order, and the quotient group
Zy/Z x) is infinite.

(Hint. It may be assumed that if X is infinite then there is an injective map of Z
into X.)

The following observation is fundamental.

3.23. Let K <G. Then the map v : G —» G/K defined by
v:g—gK forallgeG

is a surjective homomorphism, and Ker v= K. The map v is called the
natural (or canonical) homomorphism of G onto G/K.

Proof. That v is a surjective homomorphism follows at once from 3.20.
Let geG. Then geKer v if and only if gK = K (the identity element of
G/K), that is, if and only if ge K. Hence Ker v = K.

This establishes the fact, mentioned earlier, that the normal subgroups
of G are precisely the kernels of homomorphisms of G to other groups.
We now complete the description of the links connecting normal sub-
groups, quotient groups and homomorphisms by relating an arbitrary
homomorphism to a suitable natural homomorphism.

3.24 Fundamental theorem on homomorphisms. Let ¢ :G—> H be a
homomorphism and let K = Ker ¢ < G, by 3.9. Let v be the natural homo-
morphism of G onto G/K. Then there is an injective homomorphism
Y :G/K — H such that ¢ = w. In particular, Im ¢ = G/Ker ¢.
Proof. We define the map

v:G/K->H
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by
VY :gK - go (for all geG).

We must check that i is well defined: that is,that if x, ye G and xK = yK
then x¢ = yp. Now xK = yK if and only if x~'yeK, that is, if and only
jz‘ (x~'y)p = 1. By 2.9, this is true if and only if (x¢)~ !(yp) = 1; that is,
if and only if x¢ = yp. This shows that i is well defined and also that
¥ is injective. Moreover,  is a homomorphism, for if x, yeG then

(xK)YKW = (xy KW = (xy)¢ = (x@)(yp).
Now xvy = (xKW = xo.

This is true for all xeG, and so

W = .

Finally, by 2.10,G/K =~ Im { = Im ¢.
We now illustrate the fundamental theorem with some examples.

3.25. Recall from 2.14 the surjective homomorphism

v,:Z* > C,

n

defined by v, : x - >/ for all xeZ™*, where n is a positive integer.
Now Ker v, = {nx : xeZ*}. We denote this subgroup of Z* by nZ*: it
consists of all the integral multiples of n. By the fundamental theorem
we have

C,=Imv,~Z"*/Kerv,=Z"*/nZ".

Thus Z* has a quotient group of order n for every positive integer n.

Now we can classify all subgroups and all quotient groups of Z*.
Remember that, since Z* is abelian, every subgroup is normal in Z* and
therefore has a corresponding quotient group. Let

O<HSZ".

Then H contains positive integers, since if he H then also — heH. Let
n be the least positive integer belonging to H. (Here we use the well
ordering principle for the positive integers.) Then H contains with n
every integral multiple of n: that is, nZ* < H. Let he H. By the division
algorithm for integers, there are integers q and r such that h=nqg +r
and 0<r<n. Since nqenZ* < H,r=h—nqeH. By choice of n, it
follows that r = 0. Hence henZ™*. This proves that H = nZ™*.

Thus the only non-trivial subgroups of Z* are the subgroups nZ*,
one for each positive integer n. Moreover, in the notation of 2.11,
nZ* =ImA,~Z*. We have shown that Z*/nZ* = C,; and of course
Z%* /0= Z". Note that every subgroup and every quotient group of Z*



46 NORMAL SUBGROUPS, HOMOMORPHISMS AND QUOTIENTS

is cyclic; and also that each subgroup is either finite, in which case it is 0,
or has finite quotient group.

We may contrast this with the (abelian) group Q*. Here Z* is an
infinite subgroup of Q*, and also the quotient Q*/Z* is an infinite
group: for if a, b, ¢, d are integers with b # 0 # d then in Q* /Z*,

a + C + .. a ¢ . .
z LA / z_Z :
b +Z yi + if and only if 5" d is an integer

(Cosets are written additively in this case, since the group operation
in Q* is addition.) Thus, for instance, Z*,1 +Z*,1 4+ Z* 1 +Z*, ..
are distinct elements of Q* /Z*. The group Q*/Z"* is called the additive
group of rationals mod 1.

3.26. Let U denote the circle group (see 2.32), and let
n:Rt*->U
be defined by n: gc - e>™  for all xeR™.

Clearly n is a surjective homomorphism, and Ker y=Z*. Hence, by
the fundamental theorem,

UxR*/Z*.

3.27. Suppose that G has subgroups H and K such that G = HK, every
element of H commutes with every element of K, and H nK = 1. Then,
by 2.34, there is an isomorphism ¢ : G - H x K with ¢ : hk — (h, k) for all
heH and all keK. Let n,,n, denote the projections of H x K onto
H, K respectively: see 3.11. Then, by 3.11 and 19,¢n, : G — H is a surjec-
tive homomorphism, and Ker (¢=n,) = {hkeG :h=1,keK} = K. Hence,
by the fundamental theorem,

K<G and G/K=~H.
Similarly,from ¢n, : G — K,
H<G and G/H=K.
Thus, for example, from 2.32 we get
C*/R* @R, C*/R}=U,
C*/U=R; ,=R*/C,,
R*/R,=C, =Q%/Qy,
and Q" /C, = Q-
3.28. For F a field and n a positive integer, consider again the surjective
homomorphism
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det : GL(F) > F* (see 2.17).
Here Ker det = {xeGL,(F) : det x = 1}.

This normal subgroup of GL,(F) is called the special linear group of
degree n over F and denoted by SL (F). By the fundamental theorem,

GL/(F)/SL(F)=F*.
*111 Let J < H and L<L K. Then (J x L) <(H x K) and
(H x K)/(J x L) = (H/J) x (K/L).
112 \Let s E?, the euclidean plane. Then Rot(E?;s) = U, the circle group.

-
113 Let F be a field and » a positive integer. Suppose that for each aeF there is a
unique beF such that b"=a. Then GL(F)~ F* x SL,(F). (In particular, this is
true when F =R and n is odd.)

*114 Let K < G. Then the following two statements are equivalent :
(i) There is a homomorphism ¢ of G onto H with Ker ¢ = K.
(i) G/K=H.

115 (i) Let K < G and ac Aut G. Write K*= {k* :keK}. Then K~ K*< G and
G/K =~ G/K".

(ii) A group G can have normalsubgroups K and L such that K= L but G/K% G/L,
and normal subgroups H and J such that G/H =~ G/J but H % J. (Hint. Consider
G=C,xC,.)

116 Find non-isomorphic groups G, and G, with K, < G, and K, < G, such that
K, =K, and G,/K, = G,/K,. (Hint. Consider groups of order 4.)

*117 The centre of G is defined to be
Z(G)={geG : gx = xg for all xeG}.

Show that Z(G) = Ker 1, where 7 : G —» Z; is the homomorphism defined in 2.21.
Deduce that

Z(G)<G and InnG=G/Z(G).

*118 Z(G) is an abelian characteristic subgroup of G, and every subgroup H of
Z(G) is normal in G. Need such a subgroup H be characteristic in G ?

*119 If K <G and |K|= 2 then K < Z(G).
*120 Let U be the set of all matrices of the form
1 a b
01 ¢
0 01

where a, b, c are arbitrary elements of a field F, and 0 and 1 denote respectively the
zero and identity elements of F. Prove that

USGL,F), Z(U)=F* and U/Z(U)~F* x F*.

*121 Prove that if K < G then Z(K) € G. Show by an example that Z(K) need not
be contained in Z(G).
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*122 For H < G, we define the centralizer of H in G to be
Co(H)={geG :gh=hg for all he H}.
Then Z(G) < C4(H) < G.

123 Let n be an integer and F a field, with n=2 and F #Z,. Let G = GL,(F) and
let H be the subgroup of G consisting of all diagonal matrices in G (see 80).

(i) Prove that C;(H)= H. Deduce, by means of 91, that Z(G) consists of all
scalar matrices in G.

(ii) Suppose further that either n>2 or F#Z,. Let S=SL/(F). Prove that
Cs(HNS)=H and deduce that Z(S) =S Z(G).

124 Let n be an integer,n = 3, and let G = D,,, the dihedral group of order 2n.
Prove that if n is odd, Z(G) = 1, while if n is even, |Z (G)| =2, and in the latter case
that G/Z(G) = D, for n = 6, while for n =4, G/Z(G)~ C, x C,.

*125 If G/Z(Cv)/is cyclic then G is abelian (and so Z(G) = G). (Hint. Let G/Z(G) =
{9Z(G)), where geG. Show that every element of G is expressible in the form g'z,
where r is an integer and ze Z(G).)

126 Let x,yeG and let xy = z. If ze Z(G) then x and y commute.

127 Let K <G and let v:G —» G/K be the natural homomorphism. Then the
surjective homomorphisms G — G/K with kernel K are precisely the maps vf with
pe Aut (G/K). Deduce that if e Aut G and K is mapped onto itself by « then av = vg
for some fe Aut (G/K).

128 C* =R* x (R*/Z*) (cf. C* =R* x R™).

129 C* ~C*/Z*.

130 C*/R* = U/C,, where U is the circle group.

131 Let ¥V = {zeC™ : there is a positive integer n such that z" = 1}, the multiplicative

group of all complex roots of 1. Then V < U, the circle group. Show that
V>Q*/Z" and U/V =R"/Q".

(Remark. By vector space theory it can be shown that R* /Q* =~ R™ ; and we know
from 3.26 that R* /Z* =~ U. Thus U and R* are non-isomorphic groups— why?—
each of which has a quotient group isomorphic to the other.)

*132 Z* is indecomposable (see 81).

*133 (i) If H is any proper subgroup of Q* then Q*/H is infinite. (Use 105. Compare
this with the fact that if K is any non-trivial subgroup of Z*,Z* /K is finite.)

(i) Any two non-trivial subgroups of Q* have non-trivial intersection. Hence
Q" is indecomposable (see 81).

(ili) There is no proper subgroup H of Q™ such that Q*/H is cyclic. (Hint. If
H < Q* with Q™ /H cyclic then, by (ii), HNZ™* # 0. Then use (i).)

Next, we consider the relation which exists between the subgroups
of a homomorphic image of G and the subgroups of G.-

3.29 Theorem. Let ¢ : G — G be a surjective homomorphism. Let & be the
set of all subgroups of G which contain Ker ¢ and let & be the set of all
subgroups of G. Then there is a bijective map
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¢ .F>F
defined by ¢ :Hw Ho={ho :heH} = H, say.

Moreover, for He#, HL G if and only if HS G; and, if so, G/H = G/H
(cf. 87).

Proof. Certainly ¢ is a well-defined map: for, by 2.9, if H< G then
Hop < G. To show that ¢ is bijective, it is enough to show that there
is an inverse map R

We define  as follows. For each Je Z, let
Y :J - {geG :gpel} = J*, say.

(J* is often called the inverse image of J under ¢.)
Then J*e€&. To see this, first note that if geKer ¢ then go = 1€J, and
so geJ*. Thus Ker ¢ = J*. Also, if g,,9,€J* then, by 2.9, (9,9; o =
(9,9)(9,9)" 'eJ, since g,0,9,0€J and J < G. Hence g,g; '€J*. There-
fore Ker ¢ < J* < G. This shows that i is well defined.
Let He #and J€&. Then
Hoy = {geG :gpeHp}

= {geG : go = he for some he H}

= {geG :h~'geKer ¢ for some he H}

= {geG :geH} (since Ker ¢ < H)

=H,

and JPé = {x¢ :xeJ\J}
= {x¢ : xeG and xpeJ}
=J (since J < G = Go).

Thus ¢ = identity on %, and y ¢ = identity on %. Hence / is inverse to
¢, and so ¢ is bijective.

Suppose that Ker ¢ < H<G. Then H<G and, for all gpeG and
hpeH (where geG,heH), (9¢)~ *(ho)(gp) = (g~ *hg)peH, by 2.9 and
since g~ 'hge H. Hence H < G.

Conversely, suppose that H < G, and let v be the natural homomor-
phism G — G/H. By what we have proved above, H = Hp for some
He%.Now ¢vis ahomomorphism of G onto G/H,and

Ker ¢v = {geG : gpeKer v}

={geG :gpeH}
=Hlﬂ

= H}Y
=H.
Hence H < G, and, by the fundamental theorem,

G/H =Im ov=G/H.
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134 With the notation and hypotheses of 3.29, let H,Ke%.
Then
(i) HhnK=AnK,

(i) K< H ifand only if K < H,

(iii) TH,K> =<HA,K). (Hint. Use 71.)

An important special case of 3.29 occurs when K < G and we choose
for ¢ the natural homomorphism v :G — G/K = G. Then K =Ker o,
and if K< H<G,H = {hK :heH} = H/K. So we have

3.30 An isomorphism theorem. Let K < G. Then every subgroup of
G/K is of the form H/K, where K < H < G. Moreover, H/K < G/K if and
only if HL G, and if so, G/K/H/K = G/H.

The fundamental theorem, the result of 3.30 and a result to be proved
soon (3.40) are called by some authors the first, second, and third isomor-
phism theorems. Since there is a lack of unanimity in the assignment
of these numbers, we prefer to refer simply to ‘an isomorphism theorem’
and ‘another isomorphism theorem’.

We illustrate 3.30 by classifying all subgroups and all quotient groups
of cyclic groups.

3.31. We know (29) that any infinite cyclic group is isomorphic to Z*,
and we have already classified all subgroups and quotients of Z* in
3.25. So we need only consider finite cyclic groups. Any cyclic group
of finite order n is isomorphic to C, (2), and, by 3.25,

C,~Z*/nZ*.

By 3.30, every subgroup of Z* /nZ" is of the form H/nZ*, where nZ* <
H<Z". Also, by 3.25, every non-trivial subgroup of Z* is of the form
mZ™*, where m is a positive integer. It is easy to see that nZ* < mZ*
if and only if m divides n. Hence the subgroups of Z* /nZ* are just the
subgroups mZ* /nZ*, one for each divisor m of n.

By 3.30, when m is a divisor of n, we have

Z*/nZ* [mZ* nZ* ~Z* jmZ* =C,,.

Moreover,since |Z* /nZ* | = nand |Z* /mZ™* | = m,by3.22,|mZ* /nZ*|=
n/m. Also mZ* ~Z*, by 3.25 and 2.11, and since every quotient of Z* is
cyclic, mZ* /nZ* is cyclic. Thus every subgroup of Z*/nZ* is cyclic. In
summary we have ‘

3.32. All subgroups and all quotient groups of any cyclic group are cyclic.
If G is a cyclic group of finite order n then G has just one subgroup H of
order s for each divisor s of n, H is cyclic and G/H is cyclic of order n/s.

135 Let G be an abelian group of finite order n. Prove by induction on n that for
every divisor m of n, G has a subgroup of order m. (cf. 185, 5.32, 674, 675, 676. Hint.
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If m> 1, let p be a prime divisor of m, use 107 to show that G has a subgroup K
of order p, and consider G/K.)

*136 Let K be a characteristic subgroup of G.
(i) Let ae Aut G. Let & be the map of G/K into itself defined (for all ge G) by

a:gK +— g*°K.

Then & is well defined and is an automorphism of G/K.

Moreover, the map o + & is a homomorphism of Aut G into Aut (G/K).

(ii) Let K < H <G. If H/K is characteristic in G/K then H is characteristic in G.
(Remark. The converse of (ii) is false : see 137 ; cf. 3.30.)

137 Let G = Dy, the dihedral group of order 8, and let K = Z(G). Then |K| =2 and
G/K = C, x C,: see 124. Let H be the unique cyclic subgroup of G of order 4 (59).

Show that K < H and that H and K are characteristic subgroups of G, but that
H/K is not characteristic in G/K (cf. 136).

*138 (i) Every subgroup of a finite cyclic group G is characteristic in G.

(ii) Let n be an integer, n > 1, and let the factorization of n as a product of primes
be n=pp%>... p™, where s,m,, ..., m  are positive integers and p,, ..., p, distinct
primes. Foreachi=1,...,s,let g, = pi*. We know (81) that

Zy=Z} xZ; x..xZ.
Prove that
Zy =7y xZy x..xZ;.
(Hint. Use 46 and 94.)

*139 Let n be a positive integer.
(i) Let G be a cyclic group of order n. For each divisor s of n, let G, be the unique
subgroup of G of order s (see 3.32). Then

G,={xeG:x*=1}.

(ii) Z ¢(s) = n, where the summation is over all divisors s of n and ¢ is Euler’s
function (see 5).

(iii) Let G be a group of order n such that, for each divisor s of n, G has at most one
subgroup of order s. Then G is cyclic. (See also 9.15(i). Hint. Use (ii) and 5 to show
that G must have an element of order n.)

*140 Let G be a non-trivial group. A proper subgroup M of G is said to be a maximal
subgroup of G if there is no subgroup L such that M <L <G.
(i) Let K< M <G, with K €G. Then M/K is a maximal subgroup of G/K if

and only if M is a maximal subgroup of G.

(i) If G is finite then every proper subgroup of G is contained in a maximal
subgroup of G.

(iii) Every proper subgroup of Z* is contained in a maximal subgroup of Z*.
(Hint. See 3.25 and use (i) and (ii).)

(iv) Q" has no maximal subgroup. (Hint. Use (i), 29(i) and 133(i).)

(v) If M <G and [G M ] = p for some prime p, then M is a maximal subgroup
of G (see 11).

(vi) Suppose that G is finite. Then G has a unique maximal subgroup if and only if
G is cyclic and of order p™ for some prime p and positive integer m.

141 (i) If G is a non-abelian group, Aut G cannot be cyclic. (Hint. See 117 and 125.)
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(ii) There is no finite group G for which Aut G is cyclic of odd order greater than 1.
(Hint. See 42 and 52. Remark. The condition of finiteness of G is actually superfluous
here.)

142 Let G =D, the infinite dihedral group (see 57).
(i) G has just one cyclic subgroup H of index 2 in G, and every element of G\H
has order 2 (¢£.59).

(ii) Let 1 < K < H. We know, by 3.25, that H/K is finite, say of order n. Then
K<Gand G/K=D,,ifn=23,C,xC,ifn=2,C,ifn=1

(iii) Let J< G with J X H. Then |J :HnJ|=2;and if HnJ # 1 then J=D,.

(iv) Say H = {h). By 3.25, the non-trivial subgroups of H are just the subgroups
H, = {h"), one for each positive integer n. Then there are just n distinct subgroups
Jof Gsuch that J&« Hand HnJ =H,. AlsoJ <G ifand only if n < 2.

(v) The proper normal subgroups of G are just the subgroups of H and two
subgroups of index 2 in G, both isomorphic to D .

(vi) Every non-trivial subgroup of G is isomorphic to D or C_, or C,, and every
proper non-trivial quotient of G is isomorphic to D,, for some integer n= 3 or to
C,xC,ortoC,.

(vii) By means of 3.30, or otherwise, classify, for each integer n = 3, all subgroups,
normal subgroups and quotient groups of D,,.

143 Let n be an integer, n = 3.
(i) If n =2m for some odd integer m then D,, =D, x C,.
(i) If n is not twice an odd integer then D,, is indecomposable (see 81).

*144 For each prime p, let
Cpm = {zeC* : there is a positive integer n such that z#" = 1}.
Then pr < V, the multiplicative group of all compleo)é roots of 1, and
1<C,<Cp<Cp<..<Cpp= "L=)0C,,,..

Prove that every proper subgroup of C,« is C,. for some non-negative integer n,
and that Cp«/C,.= C,o. Thus C,« is an infinite group every proper subgroup of
which is finite and every non-trivial quotient of which is isomorphic to C . (Com-
pare with the properties of Z* in 3.25)) Show that C,« has no maximal subgroup
(see 140).

The groups C,, one for each p, are called quasi-cyclic (or Priifer) groups.

We have seen that any subgroup of a 1-generator group is a 1-generator
group (3.32) and also that for any positive integer n, any quotient group
of an n-generator group is an n-generator group (108). We shall show
that in general subgroups of n-generator groups need not be n-generator
groups. A group is said to be finitely generated if it has a finite set of
generators. We shall construct a 2-generator group with a subgroup
which is not even finitely generated.

Before doing this we note a curious property of Q™.

3.33. Every finitely generated subgroup of Q™" is cyclic. Hence Q™ is not
finitely generated.

~
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Proof. Let X be a non-empty finite subset of Q* :sa

a, a a
X=<1 2 ..,-25,
{bl ’ b2 ’ br }
wherea,,...,a,,b,,..., b, are integers, and we may suppose that b, ..., b,
are positive. By 2.28 and the fact that Q™ is abelian (see 69),

r

b " br
Hence every element of { X ) is a rational number of the forma/b;b, ... b,,
where aeZ. Thus (X ) <{1/b,b, ... b, >, a cyclic subgroup of Q*. Hence,
by 3.32,{ X ) is a cyclic subgroup of Q. Since Q* £ Z* (32), Q™ is not
cyclic (29) and hence not finitely generated.

(X):{n1—+n2gz .+nﬂ:n1,...,nreZ}.

3.34. Let H,H,,Hj,... be a sequence of subgroups of G such that H, <
H,< H <.... This is called an ascending sequence of subgroups. Let

H= UH Then H < G.

Proof Certamly H+# Q. Let h,,h,eH. Then there are positive integers
iy,i, such that h,eH, ,h,eH, . Let j = max {11,12} Then H; < H; and
H,, <H;, and soh h eH SmceH <G, hihy eH SO thath h; 'eH.
Hence H < G.

3.35. We may note that Q* is the union of an ascending sequence of
cyclic subgroups (necessarily proper subgroups, since Q* is not cyclic).
To see this, for each positive integer n let H,=<1/n!> < Q™. Then

Z*=H,<H,<H;<..and | ) H,=Q",since any rational number is

expressible as a/b with a, b integers and b > 0, and then

a 1
B = (b - 1) !a.meH,,.
For another example, note that the group C,» defined in 144 is the union
of an ascending sequence of cyclic proper subgroups.
Clearly any group which is the union of an ascending sequence of
proper subgroups must be infinite. In fact, we can prove

3.36. A finitely generated group cannot be the union of an ascending
sequence of proper subgroups.

Proof. Suppose that G = { X ), where X is a non-empty finite subset of G.
Assume that H, < H, < H; < ... is an ascending sequence of subgroups

of G such that H, < G for every positive integer i and U H,=G. Then,

=1
for each xeX, there is a positive integer i(x) such that xeH,,,. Let j=
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max {i(x) : xe X}. Then xe H, for all xe X, and so
G=(X> < H; <G,

a contradiction.
This provides another proof that Q* is not finitely generated. Now
we show

3.37. A 2-generator group can have a subgroup which is not finitely gene-
rated.

Proof. The 2-generator group G will be defined as a subgroup of the
symmetric group X g. Let maps x,y : R — R be defined by

x:a—a+1, y:aw— 2a, forallaeR.
Then x and y are clearly permutations of R. Let
G= {(x,y) S Zp.
For each positive integer n,
y':a—2a and y ":a—27"a, forall aeR.
Let x, = y"xy~"eG. Then one verifies that
x,:a—a+27" forallacR,

hence that for n > 1,

Now let H, =<x,) < G. Then whenever n>1,H,_, < H,, and in fact
H,_ ,<H,, because x,¢H,_,. Thus H, <H,<H; <...<G. Now let

H= ) H,<G, by 3.34. Each H, is a proper subgroup of H, because

n=1

H,<H,,, <H. Hence, by 3.36, H is not finitely generated, although
G is a 2-generator group.

Remark. For the reader familiar with infinite cardinals, we mention
that it is easy to prove that every finitely generated group is countable
although, since Q™ is countable (or by 3.37), not every countable group
is finitely generated. G. Higman, B. H. Neumann and H. Neumann [a58]
proved in 1949 that any countable group can be embedded in a 2-generator
group. A proof of this result is contained in Rotman [b34] p. 275.

145 G is said to be locally cyclic if every finitely generated subgroup of G is cyclic.
Thus, by 3.33, Q™ is locally cyclic.

(i) A locally cyclic group is abelian.

(ii) A group which is the union of an ascending sequence of locally cyclic subgroups
is locally cyclic.
(Note. In fact, a group is locally cyclic if and only if it is isomorphic to a subgroup
of a quotient group of Q*. A proof of this result appears in Schenkman [b35]
§11.2.)
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146 Let G and H be defined as in 3.37. Then H < G, H is locally cyclic (see 145),
and G/H is cyclic. (Hints. Note that in order to prove that H < G, it is enough by
2.28 to show that for each he H, the elements x ™ hx,xhx 1,y *hy, yhy~! all belong
to H. To prove that G/H is cyclic, apply 108.)

147 Suppose that H,,H,,H,,...is an ascending sequence of subgroups of G such

that, for every positive integer n, H, = C,.. Then UH,= C,o. (See 144. Hint.
n=1

By induction on n, show that for each positive integer n there is an element x,eH,

such that H, = (x,>and x, =xZ,,.)

148 Let N denote the set of all positive integers and let G =Z,, the restricted
symmetric group on N (see 110). For each neN, let

G,={0€eG :jo = jfor every jeN with j > n}.
Then
(i) For every neN,G, <G and G, =

(i) G,,G,,G,,...is an ascending sequence of subgroups of G and U G,=G.

n=1

(iii) G contains cyclic subgroups of order n for every ne N ; but G does not contain
asubgroup isomorphic to C,« for any prime p. (cf. 147. Hint. Suppose to the contrary
that G has a subgroup H 1somorph1c to C . Use 22 and 23 to derive a contradiction
by showing that for every positive mteger n the unique subgroup of H of order p
contains an element ¢ such that |s(¢)| =

149 Let G be a finitely generated group. Then every subgroup of finite index in G is
finitely generated. (cf. 3.37. Hints. Let {x,,...,x,} be a set of generators of G and
let H< Gwith |G : H | = m, where n and m are positive integers. Foreachj=1,...,n,

letx,,;=x; ';andletg,,...,qg, be elements of G such that G = | ) Hg;, withg, = 1.

i=1

Then, for each ordered pair (i,j) with ie{l,...,m} and je{1,2,...,2n}, there is a
unique element h;;eH and a unique integer ke{l ,m} such that gix;= h.,9k~
Let heH, and note that h = g,h. Use 68 to show that hedh;ti=1,....m;j=

.,2n>. Remark. It follows from a deeper result of O. Schreier [a87] that if H
is a subgroup of index m in an n-generator group G, where m and n are positive
integers, then H is a (1 + m(n — 1))-generator group; and this bound on the number of
generators of H is the best possible.)

We have observed (95) that if H and K are subgroups of G, HK need not
be a subgroup of G. Now we note

338. fH<Gand K< G then HK <G.
Proof. By definition, HK = {hk : heH,ke K} + .
Let h,,h,eH and k,,k,eK. Then

(hyky) (hyky) ™t = ok, ks Tyt = (hyhy ) (hyk k thy e HK,
since h h; 'eH,k,k;'eK,h, =(h;')"! and K < G. Hence HK <G.

3.39 Corollary. If H<G and K <G then HK ¥ G.
Proof. By 3.38, HK <G. Let geG,heH, keK.
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Then g~ thkg = (g\c lhg) (g~ 'kg)e HK. Hence HK < G.

The following result is very useful.

3.40 Another Isomorphism Theorem. Let H<G and K<G. Then
HNnK<Hand HHHNnK = HK/K.

Proof. Let v be the natural homomorphism G — G/K, and let v, be the
restriction of v to H. Then v, : H » G/K is a homomorphism, with
Ker v, = {heH : heKer v} = Hn K. Hence, by the fundamental theorem,

HnK<H and H/HNnK=Imv,.

By 3.38, K< HK<G. For each heH,hv, =hKeHK/K. Moreover,
each element of HK/K is of the form hkK = hK = hv,, with heH, keK.
Thus Imv, = HK/K.

150 Suppose that K< G. Let G = G/K and Z(G) = Z(G)K/K. _
Show that Z(G) < Z(G). Show by an example that we can have Z(G) < Z(G).

*151 Let H,J and K be normal subgroups of G such that J < H. Prove that if
H/J < Z(G/J)then HK/JK < Z(G/JK) (see 3.39).

*152 G is called metacyclic if it has a cyclic normal subgroup L such that G/L is
cyclic. For instance, every dihedral group is metacyclic: see 79, 102, 142. Prove that
every subgroup and every quotient group of a metacyclic group is also metacyclic.

153 (Holder) Let K < G with G finite and K simple. If | K |* does not divide | G| then
K is the only subgroup of G which is isomorphic to K.

154 There is no proper subgroup H of Q* such that Q* = H + Z*. (Hint. Use
3.40 with 3.25 and 133. Here, since the group operation in Q* is addition, we also use
additive notation for the corresponding semigroup 2(Q™) of non-empty subsets

of Q)
155 Let H,,H,,H;,...be an ascending sequence of subgroups of G, and let

H =) <G (see 3.34). If H, is simple for infinitely many distinct positive integers
i=1

i, then H is simple.

(Hint. Show that if K < H then either H;n K = 1 whenever H; is simple or H; <K

whenever H, is simple.)

3.41 Definitions. Recall our convention that w always denotes a set of
prime numbers.

(i) A positive integer n is said to be a w-number if every prime divisor
of n belongs to w. Note that we do not require that every prime in @
actually divides n: so, for instance, 6 is a {2, 3, 5}-number. By convention,
1 is a w-number for every set @w of primes (and if @ =@, 1 is the only
w-number). If w = {p}, the w-numbers are just the powers of p: 1,p,p?, p>,...

(i) Let G be a finite group. We say that G is a w-group if |G| is a @-
number. Thus, for example, £, and Z, are {2, 3}-groups but Z; is not a
{2, 3}-group. However, £,,Z, and X, are all {2, 3, 5}-groups. If w = {p},
a w-group is called a p-group (rather than a {p}-group).
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3.42. If G is a finite w-group then all subgroups and all quotient groups
of G are w-groups.

Proof. The orders of all subgroups and all quotient groups of G divide
|Gl

3.43. Let G be a finite group. Then G has a unique largest normal ©-
subgroup, which is denoted by O,(G) and called the w-radical of G. (Here
0,(G) is ‘largest’ in the sense that it contains every normal @w-subgroup
of G.)

Proof. Among all the normal subgroups of G, choose a normal w-sub-
group K of largest order. (Possibly K = 1.) Then let H be any normal
w-subgroup of G. By 3.39, HK < G, and, by 3.40, |HK/K|=|H/HnK|,
which, by 3.42, is a w-number. Hence |HK | =|HK/K| |K|, the product
of two w-numbers and therefore a w-number. Thus HK is a normal
w-subgroup of G, and so, by choice of K and since K < HK, HK = K.
Hence H < K. Thus K has the required property of O_(G).

For example, by 3.7,

0,Z,)=1 and 04, ={1,(123),(132)}.

3.44. Let G be a finite group. Then G has a unique smallest normal subgroup
K such that G/K is a w-group. We write K = O"(G) and call G/O”(G) the
w-residual of G. (Here O%(G) is ‘smallest’ in the sense that whenever
H € G and G/H is a w-group then O”(G) < H.)

Proof. Among all the normal subgroups of G, choose K of smallest order
such that G/K is a w-group. (Possibly K = G.) Then let H < G with G/H
a w-group. By 3.8, HN K < G, and, by 3.40, |H/H nK | = |HK/K |, which,
by 3.42, is a w-number, since HK/K < G/K. Hence, by 3.30, |G/HNK| =
|G/H| |H/H K|, the product of two w-numbers and therefore a -
number. Since H N K < K and by choice of K, it follows that HNK = K.
Hence K < H. Thus K has the required property of 0”(G).

For example, by 3.7,

0%Z,)={1,(123),(132)} and O03Z,) =Z,.

3.45 Definitions. It is often convenient to refer to the class of all groups
possessing a particular property. For example, we have the class of
abelian groups, the class of finite groups, the class of finite w-groups, etc.
When we speak of a class X of groups we always understand that if
G = HeX then also Ge X : in words, that if X contains a particular group,
X also contains all groups of the same type. We suppose also that X
contains the trivial group (of order 1).

For a particular group G and class X of groups, we may ask whether
G has an X-radical and an X-residual: that is, whether G has a unique
largest normal X-subgroup H (in which case H is the X-radical of G)
and whether G has a unique smallest normal subgroup K such that
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G/K is an X-group (in which case G/K is the X-residual of G). Here,
as usual in group theory, ‘largest’ and ‘smallest’ are meant in the sense
of containment. Thus 3.43 and 3.44 assert the existence for every finite
group of an X-radical and an X-residual when X is the class of finite
w-groups.

*156 Let G be a finite group. Then O, (G) and O%(G) are characteristic subgroups of
G and G/O(G) has trivial w-radical and O”(G) has trivial w-residual.

*157 Let H < G, a finite group.

(i) Prove that HNnO_(G) < O, (H); and that if H < G then HN0_(G) = 0_(H).
Show by an example that if H is not normal in G, we can have H n O (G) < O (H).
(ii) Prove that O"(H) < H n 0”(G).

Show by an example that even if H is normal in G, we can have O%(H) < H n 0%(G).
158 Let K< G, a finite group. If G/K is a w-group then O0%(K) = 0%(G) (cf. 157(ii)).
159 Let H and K be normal subgroups of a finite group G.

(i) Prove that O, (H)O_(K) < O,(HK).

Show by an example that equality need not hold. (Hint. Consider G=2Z, x C,
and w = {2} : show that G has two distinct normal subgroups isomorphic to X, and

choose these for H and K.)
(ii) Prove that O"(H)O"(K) = O"(HK).

*160 Let X be a class of groups.
(i) If G has an X-radical H then H is a characteristic subgroup of G.
(ii) If G has an X-residual G/K then K is a characteristic subgroup of G (cf. 156).

161 Let X and 9 be classes of groups. We say that G is an X-by-9) group if G has a
normal subgroup L such that LeX and G/Le%). Prove that if every subgroup and
every quotient group of an X-group is an X-group and if every subgroup and every
quotient group of a Y-group is a P-group then every subgroup and every quotient
group of an X-by-9) group is an X-by-9) group. (This generalizes 152.)

We shall show next that every group has an abelian residual (though
in general not an abelian radical —see 171). With this aim in mind, we
make the following

3.46 Definition. The commutator of an ordered pair g,,g, of elements
of G is the element

[91:9.1=91"95"9:9,€G.
Immediately from the definition we note

3.47. Letg,,9,€G. Then

(@) [92-91] =[91,9,]7", and
(i) [g,,9,] =1ifand only if g, and g, commute.

3.48 Definitions. Let H,K <G. Then the corresponding commutator
subgroup is
[H,K]=<{[h k] :heH,keK) <G.
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We emphasize that [H, K] is the subgroup generated by all the commu-
tators [h, k] with he H and ke K: it may happen that the product of two
commutators cannot itself be expressed as a commutator. The particular
subgroup [G, G], generated by all commutators in G, is usually denoted
by G’ and called the derived group (or commutator subgroup) of G.

349. Let HLK<G. Then [H,K] = [K,H].
Proof. By 2.28, if X is a non-empty subset of G and Y = {x" ' :xeX}
then < X » = {Y). The assertion now follows from 3.47 (i).

3.50. Let X be a non-empty subset of G and let A be a non-empty subset
of Aut G. Suppose that x*e{X ) for all xe X and ac A. Then {X ) is an
A-invariant subgroup of G.

Proof. Let ye<{ X ). By 2.28, y can be expressed in the form

y=x'x2 ... xr

where r is a positive integer, and each x;e X,n,eZ. Let ae A. Then
Y= M) )
Since, by hypothesis, each xfe{ X ) < G, it follows that y*e{X >. Hence

{X ) is A-invariant.
From this we deduce

3.51. Let A be a non-empty subset of Aut G and let H and K be A-invariant
subgroups of G. Then [H, K] is an A-invariant subgroup of G. In particular,
the derived group G' is a characteristic subgroup of G.

Proof. Let heH,keK,aec A. Then

[h, k]a — (h— l)a(k— l)ahaka — (ha)— l(ka)— lhaka = [ha’ ka] .

Since, by hypothesis, i*e H and k*eK,[h,k]*e[H,K]. The result now
follows from 3.50.

3.52 Theorem. For any group G, the derived group G’ is the unique smallest
normal subgroup K of G such that G/K is abelian. (Thus G/G' is the abelian
residual of G, sometimes called G made abelian.)

Proof. Let K € G. Then G/K is abelian if and only if (xK) (yK) = (yK) (xK)
for all x,yeG; that is, if and only if xyK = yxK, or, equivalently,
x"'y~'xyK = K; that is, if and only if [x,y]eK for all x,yeG, Thus
G/K is abelian if and only if G’ < K. Since, by 3.51, G’ € G, this completes
the proof.

3.53 Lemma. Let H< Gand K < G. Then[H,K] < H " K. In particular,
if HN K =1 then every element of H commutes with every element of K.
Proof. Let he H and ke K. Then
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[h,k]=h"'(k™'hk)eH, since H<G,
and [hk]=(h"'k~'h)keK, since K<G.
Thus [h,k]eHNK for all heH,keK.
Hence [H,K]<HNK.

The second assertion now follows from 3.47(ii).
We now note a useful reformulation of 2.34 (and its converse).

3.54 Theorem. G = H x K if and only if G has normal subgroups H,,K,
suchthatH, *H,K,=K,G=H,K,and H, nK, = 1.

Proof. If ¢ is an isomorphism of H x K onto G, let H, =(H x )¢, K, =
(1 x K)e and apply 2.33, 3.12 and 3.29. For the converse, suppose that
H=H, <G K=K,<G,G=H K, and H nK,=1. By 3.53, every
element of H, commutes with every element of K,. Then, by 2.34 and
76,G=H, xK,~H x K.

*162 Let K < H < Gwith K < G. Then
(i) HL G ifand only if[H,G] < H,
(i) H/K < Z(G/K) ifand only if [H,G] < K.

163 Every subgroup of G which contains G’ is normal in G.

*164 Let K <G.
(i) If x, yeG then, in G/K,

[xK,yK]=[x,y]K.
(i) If H,J < G then
[HK/K,JK/K]=[H,J]K/K.
In particular, (G/K) = G'K/K (cf. 150).

*165 Let G=H x K.
(i) Ifh,,h,eH and k,,k,eK then
[(hl’kl)’(hZ’kZ)]=([hl’h2]’[kl’k2])'
(i) If H,,H, are subgroups of H and K, K, are subgroups of K then
[H, xK,,H, xK,]=[H,H,] x [K,,K,].
In particular,
G'=H xK'.

166 Let n be an integer, n =3, and let G = D,,, the dihedral group of order 2n.
Then |G/G'| is either 4 or 2, according as n is even or odd.

167 Let A be an abelian group.
(i) For any homomorphism ¢ : G - 4,G' < Ker ¢.
(i) Hom(G, A) =~ Hom(G/G’, A) (see 33).

*168 A group is said to be perfect if it coincides with its derived group, or, equi-
valently, if it has no non-trivial abelian quotient group. Prove that every perfect
subgroup H of an arbitrary group G is contained in G'.
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*169 (i) Let x,y,z€eG. Then
[xy,z] =y [x,z]y[y,z]-
(ii) Let H,J, K be normal subgroups of G. Then
[HJ,K]=[H,K][J,K].

170 (i) Let Z, = Z(G) and define Z, <G by Z,/Z, =Z(G/Z,). Let zeZ,, and
let 6, be the map of G into itself defined, for all xe G, by

0,:x-[x,z].

Prove that 6, is a homomorphism, that Im 6, < Z,, and that G’ < Ker 6,. (Hint.
See 162 and 169.)

(ii) Suppose that G is a perfect group (168). Prove that G/Z(G) has trivial centre.
(Remarks. This result is known as Griin’s lemma. A perfect group need not itself have
trivial centre. For instance, it can be shown that for any field F with more than 3
elements, the group SL, (F) defined in 3.28 is perfect; and if 1 + 15 0 in F then the
centre of SL,(F) has order 2: see 123.)

*171 A group need not have an abelian radical. Demonstrate this by considering
G = Dy, the dihedral group of order 8. Find abelian normal subgroups H and K of
G such that HK = G.

We now show that to each subgroup H of G there is associated a|
unique largest subgroup L of G such that H S L < G.

3.55. Let H<G and define No(H)={geG:g 'Hg=H}. Then H<
Ng(H) <G, and, whenever H<J < G,J < Ng(H). We call Ng(H) the
normalizer of H in G.

Proof. Let L = N4(H), as defined above. Certainly H < L, so that L + Q.
Let x, yeL. Since y~'Hy = H, it follows that H = yHy ™!, and so

(xy™)"'Hxy !'=y(x"'Hx)y"'=yHy ' =H.

Hence xy~'eL. Therefore L < G. Now H < L, and, immediately from
the definition of L, H< L. Finally, if HS J < G and xeJ then xeG and,
by 3.3,x” 'Hx = H. Hence, by definition of L,xe L. Thus J < L.

Note that by 3.3 we have

3.56. Let H<G. Then HS G if and only if Ngy(H)=G.
We can now solve a problem mentioned earlier in this chapter.

3.57. Let G be a finite group. Then the subgroups of the semigroup 2(G)
are precisely the groups H/K, where K < H < G.
Proof. Whenever K € H < G, the quotient H/K is a group whose elements
are non-empty subsets of G and with the same multiplication as in 2(G);
that is, H/K is a subgroup of 2(G).

Now let ¥ be any subgroup of 2(G). Then the identity element of ¥
is a non-empty subset K of G such that K? = K. Since G is finite, it follows,
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by 3.18, that K < G. Now if X €% then there is a Y €% such that XY =K.
Also XK = X = KX. Hence | X|<|K| and |K|<|X|. Therefore | X|=
|K| Let xeX. Then xK < XK =X. Since |xK|=|K|=|X|< o, it
follows that xK = X. Similarly, Kx = X.

Thus every element of 4 is a coset xK of K in G such that xK = KXx,
hence such that K = x~ 'K x; that is, such that xe N 5(K). Thus the elements
of & are elements of N4(K)/K, and the multiplication in ¥ is the same as
in N4(K)/K ;thatis, & is a subgroup of N4(K)/K. Hence, by 3.30,% = H/K,
where K < H < Ng(K); equivalently, by 3.55, where K < H < G.

172 Let G=X, and H = {1,(12)}. What is N;(H)?
173 Let H< G and geG. Then N;(g~'Hg) =g~ 'N4(H)g.
*174 Let H < G. Prove that if H is finite then

Ng(H)={geG :g~'hgeH for all he H}.

Show by an example that thismay fail if H is infinite. (Hints. See 84. For an example,
let G={x,y) be defined as in 3.37, and let H,={x). Then y~'hyeH, for all
heH,but y¢ Ng(H,).)

*175 Let H,J <G. If x"'Hx < H for every xeJ, then J < N4(H). (cf. 174. Hint.
{x"':xeJ}=J.)

176 Let @ = A < Aut G. If H is a finite A-invariant subgroup of G then C;(H) and
Ng(H) are A-invariant subgroups of G (see 84,122,174).

177 Let G = {(g,9) : g€ G}, the diagonal subgroup of G x G (see 89). Then
Ngyo(G)=G ifand only if Z(G) = 1.

*178 Let H < G, and suppose that X and Y are non-empty subsets of G such that
(X>=Gand{Y)=H.
() If x " *Hx = H for all xeX then H <G.
(Hint. Use the fact that Ng(H) < G.)
(ii) If g~ 'ygeH for all geG and ye Y, then H < G.
(Apply 3.50.)

(iii) If x~'yxeH for all xe X and yeY then x~*Hx < H for all xe X. Deduce that
if H is finite then H < G.

(iv) The second assertion of (iii) may fail without the condition of finiteness of H.
(To see this, con51der the group G={(x,y) of 3.37. Let Hy={x). Then
x"1xx=xeH, and y~'xy= x 2eH,, but H,¥ G since yxy~'¢H,.)

) If x~ yer and xyx~'eH for all xeX and yeY, then HSG.

*179 (i) Let H,K < G. Then
[H,K]<(H,K).

(See 71. Hint. Apply 169(), 3.47(i) and 178(v).)
(i)) Let G be a non-abelian simple group, and suppose that H and K are proper
subgroups of G such that G={H,K ). Then

G=[H,K].

(iii) Suppose that G is a non-abelian simple group in which there are elements
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t and x such that o(t) = 2,0(x) = 3 and G = {x,t). Then also
G={xt"xt).

(Remark. We shall see later that such a group G does exist: cf. 5.24, 315. Hint. Use (ii)
to show that G = ([ x,¢t],[ x™%,¢t]) and consider [x~*,¢][x,t]*.)

*180 Let H < G. The normal closure of H in G is defined to be the intersection of all
normal subgroups of G which contain H, and is denoted by HS. Then
(i) HE is the unique smallest normal subgroup of G containing H.
(i) H® =g~ 'hg : geG,heH ). (Hint. Use 178(ii).)
(i) H® = H[ H,G]. (Note that by 179(),[ H,G] < G.)

181 Let G = (j, k) < GL,(C), where

(i 0 (01
’"(0 —i) and k_<—1 0)

LetJ = (j>and K = {k).Show that|J| = | K| = 4and that | J n K| = 2. By means of
178(iii), show that J € G and K < G. Deduce that |G| = 8. Show that the only element
of order 2 in G is j2 = k2. Deduce that every subgroup of G is normal in G, although
G is non-abelian. G is another example of a group which does not have an abelian.
radical (cf. 171).

This group G is denoted by O, and called the quaternion group. If we identify the
complex number i with the matrix

(0 i

then the group elements i,j, k satisfy the relations
P=p=kK=—1, i=jk=—kj, j=ki=—ik, k=ij=—ji,
discovered by Sir William Rowan Hamilton (1805-65) ; and
Qs={1,i,j,k,—1,—i,—j,—k}.
182 Prove that Qg% Dg.

The first examples of non-abelian simple groups were discovered by
Evariste Galois (1811-32). We shall now introduce these groups: simpli-
city will be established in chapter 5.

3.58. Let n be an integer greater than 1, and consider the group X, of all
permutations of the set {1,2,...,n} =X, say. Consider the 3n(n— 1)
unordered pairs {i,j} with i, je X and i + j, and let
N= ][ (j—i),apositive integer.
1<i<j<n
For each oceX, let
N,= [] (o—io).
1<i<j<n

Thus N, = N. Moreover, for any o, N, = + N for, as {i,j} runs through
all the 3n(n — 1) 2-element subsets of X, so does {is, jo} (since if {io,jo} =
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{ko,ls} then either ioc = ko and jo=Ilo or ic =lo and jo = ko, hence
eitheri=kandj=1lori=1Iandj=k, andso {i,j} = {k,1}). We write
N,=¢N:
1 ifN,
thus 8"_{——1 N,

then ¢, is called the sign of .

Note that ¢, =( — 1)'s, where t, is the number of ordered pairs (i,j)
such that i,jeX,i<j and ic > jo. For instance, if ¢ is a transposition
(rs) then e, = — 1: for we may suppose that r < s and then, for each ie X,

N,

I

swheni=r,

i whenever i is distinct from r, s,
ioc =
r when i =s;

hence, for i,je X with i < j,ic > jo if and only if either i=rand r<j<s
orr<i<sand j=s;thust, =2(s —r) — 1, an odd integer.
Now let g, 7€X, and, for each i, je X with i < j, write ic = i, jo = j'. Then
N,.= [l (ot—iot)= T[] (r—1i7.
1<i<j<n 1<i<j<n

In the product on the right we replace any factor j'z —i't for which
i’ > j' by — (i't — j't). Then, by definition of ¢,, we have

N,.=¢, [] (r—1i)

1<i<j<n
=g, N.
However,
N, .=¢,N.
Since these are equations between non-zero numbers, it follows that
85 = €,E,. (i)

This shows that the map
¢:X,»C,={1,—1}, definedbye:ob> ¢,

is a homomorphism; it is called the alternating character on X . Moreover,
it is surjective, for we have pointed out that if ¢ is a transposition then
¢, = — 1. (Note that since n = 2, there are transpositions in X,.) By the
fundamental theorem on homomorphisms,

Kere<dX, and X, /Kerex=Ime=C,.

This means that Ker ¢ is a subgroup of index 2 in X,. We call Ker ¢ the
alternating group of degree n and denote it by A,. The elements of 4,
are called even permutations of X and the elements of £ \A4, are called
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odd permutations of X. Note that
‘Anl = n'/z = |zn\An|

Note also that even and odd permutations multiply as even and odd
integers add :

(even) (even) = even = (odd) (odd), (even) (odd) = odd = (odd) (even).

How can we decide whether a given permutation is even or odd?

3.59. Let n be an integer greater than 1, and let 6€X,. Let the expression
of ¢ as a product of cycles on disjoint sets be 6 =v,v,...v,, and suppose
that the cycle v; has length m;(j=1,...,r). Then the permutation ¢ is

even or odd according as the integer Y (m ; — 1) is even or odd.
j=1

Proof. Consider first a cycle v, say of length m, where 2 < m < n: say

v=(a,a,...qa,)

=(a,a,)(a,a;)...(a,a,) (see2l).
Then €y = €iayan(aras) - Earam> DY €QuAtion (i) of 3.58,
=(=1,

since the sign of any transposition is — 1.
Now if, as in the statement, o=v,v,...V,,

by equation (i) of 3.58, &, =¢€,8, ...8

=(=1m7 (- 1)'"2_1--'~(— Byt
=(—1) wherek= Y (m;—1).

j=1

)

This establishes the result:
For example, in X,

12345
45213

which is odd since (2 — 1) + (3 — 1) = 3, an odd integer.

) = (14) (253),

Galois proved

3.60. Whenever n=5, A, is a non-abelian simple group.

We shall establish this in 5.28. The occurrence of the number 5 in this
result is intimately connected with the unsolvability of the general quintic
equation. For an explanation of this, the reader may consult the references
to Galois theory mentioned in 2.25. The group 4, has order 60, and,
as we shall show in chapter 5, there is no non-abelian simple group of
smaller order.

183 Which of the following permutations in X4 are even and which are odd :
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123456\,
246135 )

*184 Let n be an integer, n> 1, and let H <X, . Prove that if H includes an odd
permutation then H has a subgroup of index 2. Deduce that if H is simple and |H| > 2
then H< 4,.

*185 (i) Write down the 12 elements of 4, and note their orders.

(ii) Prove that Z(4,) = 1. (Hint. Use 6 to show that if Z(4,) # 1 then 4, would
have an element of order 6.)

(ili) Show that 4, has a unique subgroup V of order 4, and deduce that V< 4,.

(iv) Prove that A, has no subgroup of order 6. (Hint. Assume that A, has a
subgroup H of order 6. Consider H N V, and derive a contradiction by means of 102,
3.40, 119 and (ii).)

(123456), (12345),(123)(45),(

3.61. We end this chapter with some remarks on simple groups. We have
mentioned one family of non-abelian finite simple groups containing
infinitely many different types, namely the alternating groups of degrees
5 and greater. We mention some other examples.

Let n be an integer greater than 1 and let F be any field. Let S = SL (F),
the group of all n x n matrices with entries in F and determinant 1 (3.28).
Then it can be shown that Z(S) consists of all the scalar matrices in S;
that is, the matrices al with aeF and 4" = 1. (See 123 for the case when
F+#1Z, and either n>2 or F#Z,.) The group S/Z(S) is called the
projective special linear group of degree n over F and denoted by PSL (F).
It can be proved that PSL,(F) is a non-abelian simple group, except
when n =2 and F is either Z, or Z,. (See Artin [b2] or Huppert [b21]
for the proof) In particular, this provides examples of infinite simple
groups, for when the field F is infinite then the group PSL (F) is infinite.
When F is finite, PSL (F) is finite.

There are other families of simple groups defined in a similar way
from groups of matrices: the so-called orthogonal, symplectic and unitary
groups. For instance, let n be an even positive integer, say n = 2m, where
m is a positive integer, and let F be any field. Let y be a fixed non-singular
skew-symmetric n x n matrix with entries in F: there is such a matrix
because n is even. For each xeGL,,,(F) let x’ denote the transpose of x.
Then the set

{xeGL,,(F) : x'yx = y}

forms a subgroup of GL,,(F) which is called the symplectic group of degree
2m over F and denoted by Sp,,(F). The type of the group does not depend
on the choice of the skew-symmetric matrix y. It can be shown that every
matrix in Sp,,(F) has determinant 1, so that Sp,,(F)< SL,,(F). Let
Y = Sp,,(F). Then Z(Y) consists of the scalar matrices in Y, and in fact
|Z(Y)|=2ifin F,1+ 10, while Z(Y)=1if in F,1+ 1 =0. The group
Y/Z(Y) is called the projective symplectic group of degree 2m over F,
denoted by PSp,,(F), and PSp,,(F) is a non-abelian simple group,
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except when 2m =2 and F is either Z, or Z,, and when 2m =4 and
F=1Z,. (For details of these groups and the orthogonal and unitary
groups, see Artin [b2], Dieudonné [b9] and [b10], and Huppert [b21].)

These families of simple groups defined by means of groups of matrices
were discovered by C. Jordan (1838-1922), and discussed in his book
[b23]. They are usually called the classical simple groups. A further
family was discovered in 1905 by L. E. Dickson (1874-1954), who also
made a detailed study of the classical groups in his book [b8]. Earlier
E. Mathieu (1835-1890) had found five individual simple groups which
have never been identified as belonging to an infinite family; they are
subgroups of the alternating groups A4,,,4,,,4,,,453,4,,. Such
simple groups which do not appear as members of an infinite famil?/
are now referred to as sporadic simple groups.

No further discoveries of finite simple groups were made until 1955.
In that year, C. Chevalley described a method which provided a construc-
tion of the groups of Jordan and Dickson, together with new infinite
families of simple groups. Further families were then discovered by
several other authors by varying Chevalley’s method. For details, we
refer to an article and book of R. W. Carter, [a14] and [b4].

At this point, it was widely expected that the list of finite simple groups
would prove to be complete. However, in 1965 a new simple group was
discovered by Z. Janko: a group of 7 x 7 matrices with entries in the
field Z,, and of order 2%.3.5.7.11.19. Since 1965, around two dozen
more sporadic finite simple groups have been found, and the state of
our understanding of finite simple groups remains unstable. We do not
even know as yet whether our present list of simple groups of orders
less than 1000000 is complete. For further information we refer to
the survey articles of W. Feit [a21] and D. Gorenstein [a44], chapters 16
and 17 of Gorenstein’s book [b13], and the volume edited by M. B.
Powell and G. Higman [b33].



4

GROUP ACTIONS ON SETS

We have discussed in chapter 2 the significance of groups occurring as
symmetry groups of mathematical systems. Let X be some system, that is
to say a set with a certain distinguished structure, it may be algebraic
or geometric, and let G be a subgroup of the symmetry group of X (the
group of all structure-preserving permutations of X). Then each geG
moves each xe X to some element of X (where in using the word ‘moves’
we allow the possibility that g fixes x). Let us write xg for this element
of X to which g moves x. In this way we think of the group G as acting on
the system X. The action is determined when for each geG and xe X the
corresponding element xge X is specified. This simple notion of a group
action has proved very fruitful. We shall find it profitable to build from
a definition which generalizes the initial idea. In this chapter we define
and develop the notion of a group action on a set (without further struc-
ture).

4.1 Definition. We say that G acts on the non-empty set X (or that G
permutes X) if to each geG and each xeX there corresponds a unique
element xge X such that, for all xeX and g,,9,€G,

(xg,)9, = x(g,9,)

and xl =x.

To be explicit, we say under these conditions that G acts on X on
the right. We can define in a similar way what is meant by the action of a
group on a set on the left. Later on (in chapter 10) we shall need to discuss
right and left actions together and so preserve the distinction between
them. Till then, if we speak of a group action without qualification, we
shall mean an action on the right.

4.2 Examples. (i) Let X be any non-empty set and let G <X,. Then G
acts on X. In this case each geG is a map X — X and, for xe X, xg is the
image of x under the map g. The condition (xg,)g, = x(g,g,) of 4.1 is
satisfied by definition of composition of maps, and the condition x1 = x
by definition of the identity element 1 of Z,. This action is called the
natural action of G on X.
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(ii) Let V be a vector space # 0 over a field F. Then, with the usual
vector space notation, to each ae F and ve V there corresponds an element
aveV. By this correspondence, the multiplicative group F* acts on the
left on V (regarded as a set): for if a,,a,€F and veV then, by vector
space axioms, a,(a,v) = (a,a,)v and lv=v. But the additive group F*
does not in this way act on the left on V': for if it did, we should have
a,(ayv) =(a, + ay)v and Ov = v, and these equations are both false unless
eitherv=0o0ra, # 1and a, =a,(a, — 1)~ ..

186 Suppose that G acts (on the right) on the set X. Then we get a left action of G on
X by defining, for all geG and xeX, gx = xg~!. Why will it not do in generalfo
define gx = xg?

We note at once the relation between group actions on a set X and
the symmetry group of X, that is, 2.

4.3 Theorem. Let G act on the set X. Then to each geG there corresponds
amap p,:X — X defined by p, : x \» xg, and this is a permutation of X.
Moreover, the map p : G — X defined by p : g p, is a homomorphism;
it is called the permutation representation of G corresponding to the
group action.

Proof. Let geG. By definition, p, is a map of X into itself. For g,,g,€G
and xe X, using the first axiom of 4.1 we havé

XPyigr = Xg192) = (xg1)g, = (xp, )P,, = X(p,,P,,)

so that

Pgig: = PPy, (i)
Moreover,using the second axiom of 4.1 we have

xp, =x1=x,
so that p,=1€Zy. (ii)
By (i) and (ii),

PgPg-1 = 1= Pg-1Py-

Thus p, is an invertible map of X to itself, that is, a permutation of X.

Then (i) shows that p is a homomorphism of G into X, .

4.4 Theorem. Let ¢ be a homomorphism of G into Zy, where X is a non-
empty set. Then G acts on X when we define, for each geG and xeX,

xg = x(go);

and the permutation representation of G corresponding to this action is o.
Proof. For g,,9,€G and xe X, by definition of composition of maps,
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(x(g,0))(g,0) = x((g,0)(9,0))
= x((9,9,)0),

since ¢ is a homomorphism;
and x(1o) = x, since, by 2.9, ¢ must map 1€G to 1€Z,. Hence, by setting

xg = x(go),

we do define an action of G on X. Let the corresponding permutation
representation of G be p. Then

xp, = xg = x(go),
hence p,=go forall gegG,
and so p=o.

Thus, in considering group actions on a set X, we now look not merely
at subgroups of X, but at homomorphisms of groups into Z,,.

4.5 Definition. Let G act on the set X. We say that the action is faithful
if the corresponding permutation representation of G is injective.

In 4.2(i), the permutation representation is just the inclusion map
G — Zy. This is certainly injective, so that the action is faithful. The
left action of F* on V in 4.2(ii) is also faithful.

4.6 Lemma. Let G act on the set X. We define a relation ~on X by
setting x, ~ x, if and only if x,,x,€X and there is an element geG such
that x,g = x,. Then ~ is an equivalence relation on X.

Proof. For any xeX,x1=x, so that x ~x. If x; ~x, then x,g=x,
for some geG, hence x,g™ ' =(x,9)g” ' =x,1=x,, and so x, ~ x,. If
x, ~x, and x, ~ x; then x,g9, = x, and x,g, = x; for some g,,9,€G,
hence x,(g,9,) = (x,9,)9, = X3, and so x; ~ X;.

The following definition is of fundamental importance.

4.7 Definition. Let G act on the set X. Then X is partitioned into disjoint
equivalence classes with respect to the equivalence relation ~ of 4.6. These
equivalence classes are called the orbits or transitivity classes of the action.
For each xeX, the orbit containing x is called the orbit of x: it is the
subset {xg : geG} of X.

4.8. Let G act on the set X, and let xe X. Set Staby(x) = {geG : xg = x}.
Then Stabg(x) is a subgroup of G, called the stabilizer of x in G. (In the
literature, this subgroup is often denoted by G, and called the isotropy
group of x in G.)

Proof. By 4.1, 1eStabg(x), so that Stabg(x)# . Let g,,g,€Stabg(x).
Then xg, = x = xg,, hence
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x(g,9; 1) = (xg,)9; ' =(xg)95 ' =x1 =x,

and so0 g,g, ' eStabg(x). Hence Stabg(x) < G.
The following fact is an immediate consequence of the definitions
already given.

4.9. Let G act on the set X, and let the corresponding permutation repre-
sentation of G be p. Then
Ker p = ) Stabg(x).

xeX

*187 Suppose that G acts on the set X. For each geG and each non-empty subset
Y of X, define

Yg={yg:yeY}c= X.

Define also
Gy={heG: yh=yforall yeY} =) Stabg(y),

yeY
Gy ={heG: Yh=Y}. Then

() Gy, =g 'Gyg and G}, =g 'G{g.
In particular, for all xe X, Stabg(xg) = g~ ' Stabg(x)g.
(i) Gy € G} <G (cf. 62(i)).
(iif) If Y is an orbit of the action of G on X then G, € G, G acts on Y, and G/G,
is isomorphic to the image of the corresponding permutation representation of G
onY.

188 Suppose that the finite group G acts faithfully on the finite set X. Let the orbits
of the action be X ,..., X,, where s is a positive integer, and let |X,|=n, for i =
1,...,s (where n,+ ... +n,=|X|). Then G can be embedded in the group
Z, X ...x X, .(Hint. Use 187(ii1) and 109.)

4.10 Examples. (i) Let n be a positive integer, c€X, and G =<{s).
Suppose that ¢ is expressed as a product of disjoint cycles as

6=(a,0y3..-01, )y, ... a3,,)... (A ... ag, ),

where s,n,,...,ng are positive integers such that n, + ... + n,=n. Then
the orbits of the natural action of G on the set {1,2, ... ,n} are the s disjoint
subsets {a;y,...,0y,,}, {8515 850} 55 {8y, 005 -

For instance, for n=35 and o =(123) (45), there are just two orbits
{1,2,3} and {4,5}. Note that then Stabg(1) = Stab,(2) = Stab(3) = (¢3)
and Stab,(4) = Staby(5) = (o?). Since o(c) =6, we see that for each
xe{1,2,3,4,5}, the number of elements in the orbit of x is equal to
|G : Stabg(x)|. We shall show in 4.11 that this is not coincidental but
an instance of a general result.

(ii) Let H < G. Then H acts on G (regarded as a set) by right multipli-
cation in G; that is, when to each he H and each geG there corresponds
the element gheG. That this does define an action of H on G follows
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from the associative law for multiplication in G and the defining property
of the identity element. Now, for geG,

Stabg(g) = {heH :gh=g} = 1.

In particular, by 4.9, it follows that the action is faithful. Also, the orbit
of g is the set {gh:heH} =gH, the left coset of H in G containing g.
Thus from 4.6 we can deduce that distinct left cosets of H in G are disjoint,
and hence derive Lagrange’s theorem.

In a similar way, left multiplication of the elements of G by the elements
of H defines a left action of H on G, the orbits of which are the right
cosets of H in G.

The following result on lengths of orbits is a key fact needed for many
applications.

4.11 Lemma. Let G act on the set X, and let xe X. Then

|the orbit of x| =| G : Stabg(x)|.

Proof. Let X, denote the orbit of x, let H = Stabg(x) and let Y denote
the set of right cosets of H in G. Thus

X, ={xg :9eG}.
We define a map
u:X,-Y
by u:xgw+— Hg (for all geG).

We must check that this is well defined. Let g,,9,€G. We need to be
sure that if xg, = xg, then also Hg, = Hg,. Using the axioms of 4.1,
we see that if xg, = xg, then

Xg.95 ") =(xg,)9; ' =(xg,)g; ' =x1 =x,
so that g,95 'eStab,(x) = H,
from which it follows that Hg, = Hg,, as required.
Furthermore, we see conversely that if Hg, = Hg, then g,g, leH,
so that
Xg,9;7 ) = x;
then
xg, = x((9:95 1)9;) = X9,

This shows that u is an injective map. It is clear from its definition that
uis surjective, so that yu is in fact a bijective map. Hence

[ X:|=17],
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as asserted (where this means in particular that |X,|= oo if and only
if| Y| = o0).

189 Let G<ZX,, and consider the natural action of G on the set {1,2,3,4}. For
each of the following choices of G, write down the orbits of the action and find the
stabilizer of each point. Verify the result of 4.11 in each case :

() G=<(123)>,

(i) G=<{(1234)),

(iii) G={1,(12)(34),(13)(24),(14)(23)},

(iv) G={1,(12),(12)(34),(34)},

v) G=4,.

190 Let n be a positive integer, F a field, and V a vector space of dimension n over F.
Let F* act on the left on V, as in 4.2(ii). Find the orbits of this action and the stabilizer
in F* of each ve V, and verify that the result of 4.11 is true in this case. How many
orbits are there if |F| =g < 00 ?

We shall discuss two special group actions which are of great impor-
tance: the action by right multiplication of a group on the set of right
cosets of a subgroup, and the action by conjugation of a group on its
subsets. We shall use information about these actions to obtain funda-
mental results on abstract groups.

4.12 Definition. Let G act on the set X. The action is said to be transitive
if it has just one orbit. An action which is not transitive is called
intransitive.

For instance, let n be a positive integer and let X = {1,2,...,n}. Then
the natural action of £, on X is transitive; so also is the natural action
on X of the cyclic subgroup {(12...n)) of Z,. The natural action of
A, on X is transitive if n=3: for if n=3 and i,j are any two distinct
points of X, there is a point ke X which is distinct from both i and j, and
then (ijk)e A, (by 3.59) and (ijk) moves i to j.

4.13. Let H < G and let X be the set of right cosets of H in G. Then G
acts on X by right multiplication: to each geG and each Hxe X (where
xeG) there corresponds the coset Hxge X.

This does define an action of G on X, forif x,g,,9,€G then (Hxg,)g, =
Hxg,g, and Hx1 = Hx. The action is-transitive, for any two right cosets
of H in G are equivalent under the action: if x,,x,eG then x| 'x,eG
and (Hx,)x; 'x, = Hx,.

Next we note that

Stabg(Hx) = {geG : Hxg = Hx}
={geG :xgx~'eH}

the conjugate of H by x (2.19). Note that, by 4.11, for every xegG,
|G:x"'Hx|=|X|=|G:H|.
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Of course, this is clear from Lagrange’s theorem if G is finite (see also 27).
Let p¥ denote the permutation representation of G corresponding
to the action. Then, by 4.9,

Ker p¥ = () x 'Hx

xeG
=HG’

the core of H in G (90).

When |G :H|< oo we may, by 2.7, identify X, with X; . Then
p" is a homomorphism of G into X |¢.xand the fundamental theorem on
homomorphisms yields the following simple but important fact.

4.14 Theorem. If H is a subgroup of finite index in G then G/Hg can
be embedded in X G y.
The following is an immediate consequence.

4.15 Corollary. If H is a subgroup of finite index in an infinite group G
then there is a normal subgroup K of G such that K < H and G/K is finite.

We now derive two less obvious consequences, due to R. Baer [a5],
for G a finitely generated infinite group.

4.16 Corollary. Let G be a finitely generated infinite group. Then, for
each positive integer n, G has only finitely many subgroups of index n.
Proof. If H is any subgroup of index n in G then, by 4.14, there is a homo-
morphism of G into X, with kernel H. Suppose that G ={x,,...,x,,
where m is a positive integer. Any homomorphism ¢ : G — X, is deter-
mined (by 2.28) as soon as x,¢,...,x,¢ are specified. Hence, since X,
is a finite group, there are only finitely many homomorphisms of G into
%,, and therefore there are only finitely many normal subgroups of G
eligible to be cores in G of subgroups of index n. Moreover, any such
normal subgroup K of G can be the core in G of only finitely many sub-
groups of G of index n, since G/K is a finite group. Hence there are in G
only finitely many subgroups of index n.

4.17 Corollary. Let H be a subgroup of finite index in a finitely generated
infinite group G. Then there is a characteristic subgroup K of G such
that K < H and G/K is finite.

Proof. Let |G : H|=n. By 4.16, G has only finitely many subgroups
of index n: let thembe H=H,,H,,...,H,. Then let

K=()H,.
i=1

Any automorphism of G maps a subgroup of index n to a subgroup of
index n (27), and therefore permutes H,, ..., H, among themselves, hence
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maps K to itself. Hence K is characteristic in G. Finally, by Poincaré’s
theorem (66), G/K is finite.

In 4.16 and 4.17, the condition that G is finitely generated cannot be
omitted, as can be seen by considering the additive group of an infinite-
dimensional vector space over Z,.

The statement in 102 is another immediate consequence of 4.14, since
|Z,| = 2. This can be generalized when G is a finite group.

4.18 Corollary. Suppose that G is finite and that p is the smallest prime
divisor of |G|. If H is a subgroup of index p in G then H < G.

Proof. Suppose that H < G with |G : H| = p. Then |G/Hg|=p|H : Hg]|.
Suppose that |H : Hg| > 1 and let g be a prime divisor of |H : Hg|. Then
q divides |G|, and so, by hypothesis, g = p. On the other hand, by 4.14,
|G/Hg| divides p!, hence pq divides (p — 1)!p, and so g divides (p — 1)!
Since q is prime, it follows that g < p, a contradiction. Therefore we
conclude that |H : Hg| = 1. Hence H = H;< G.

191 Let H < G with |G : H| =n < o0. Let w be the set of all primes not exceeding .
Then G/Hj; is a finite w-group.

192 Let G be a finite simple group with a subgroup H of prime index p. Then p is
the largest prime divisor of | G| and p? does not divide |G|.

193 Let G = GL,(Z,) and K = Z(G). By 2.16 and 2.17,|G| =48, and, by 123,
IK|=2.

@) Let H=1(22):ab,cez, with ac £ 0%,
0c¢ 3

Show that K < H < G, and that |H| = 12.
(i) Prove that H; = K.
(iii) By means of 4.14, deduce that G/K = Z,.

194 An infinite simple group cannot have a proper subgroup of finite index.

*195 A group is said to be periodic if every element has finite order. Thus every
finite group is periodic. There are also infinite periodic groups, for example Q*/Z* :
see 3.25.
(i) All subgroups and all quotient groups of a periodic group are periodic.
(i) If K < G and the groups K and G/K are both periodic, then G is periodic.
(iii) A group is periodic if it has a periodic subgroup of finite index.

196 G is said to be locally finite if every finitely generated subgroup of G is finite.
(i) Every locally finite group is periodic (195). (Remark. The converse is false :
see 8.29.)
(ii) Every periodic abelian group is locally finite. (Hint. Apply 69.)
(iii) (O. J. Schmidt [a86]). If K< G and the groups K and G/K are both locally
finite, then G is locally finite. (Hint. Apply 3.40, 108 and 149.)
(iv) A group is locally finite if it has a locally finite subgroup of finite index.

197 Let H,K <G with |G : H|,|G : K| finite and co-prime. Then |G : HNK|=
|G :H||G : K|and G = HK. (This generalizes 100. Apply 4.15, 66 and 100.)
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Next we shall show that every transitive group action is equivalent, in
the sense of the following definition, to an action of the kind described
in 4.13.

4.19 Definition. Let groups G,,G, act on sets X,,X,, respectively. We
say that the actions are equivalent if there is an isomorphism ¢ : G, — G,
and a bijective map u : X, — X, such that, for all g, G, and x,€X,

(x19)m=(x1)(9,9)-

This defines an equivalence relation on group actions.

4.20 Theorem. Let G act transitively on the set X. Let xeX and let
H = Stabg(x). Then the action of G on X is equivalent to the action by
right multiplication of G on the set of right cosets of H in G.

Proof. Since the action of G on X is transitive,

X = {xg :geG}.
We define a map u from X to the set of right cosets of H in G by
u:xg+ Hg (for all ge@G).

This is well defined, for if xg, = xg,, withg, ,g,€G, theng,g; 'eStabg(x) =
H and so Hg, = Hg,. This argument works also in reverse to show that if
Hg, = Hg, then xg, = xg,. Then clearly u is a bijective map. So far,
the argument is just the same as in 4.11. For all g,g, €G,

((xg)g )= (x(gg,))n = Hgg, = ((xg) )9, -

This establishes the stated equivalence of group actions, when we choose
as the appropriate isomorphism the identity automorphism of G.

4.21. From 4.13 and 4.20, it follows that if H < G and x€G then the action
by right multiplication of G on the set of right cosets of H in G is equivalent

to the action by right multiplication of G on the set of right cosets of
x 'HxinG.

*198 Let X and Y be sets with a bijective map u : X — Y, and suppose that G acts
faithfully on the set X. Then the action is equivalent to the natural action of a suitable
subgroup of £, on Y. (Hint. See 2.7.)

*199 Let groups G, G, act transitively on sets X ;, X ,, respectively. If these actions
are equivalent and x, € X |, x, € X, then Stabg (x,) = Stabg (x,).

200 Let groups G,H act on the same set X, with corresponding permutation
representations p, ¢, respectively. Prove that the actions are equivalent if and only if
there is an isomorphism ¢ : G — H and an element peX, such that o =p1,,
where 7, is the inner automorphism of Zy induced by p.

Deduce that if G < Xy, H < Zy and the actions of G, H on X are the natural ones,
then the actions are equivalent if and only if G, H are conjugate subgroups of Z.
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201 Let G be a finite group and let H,J < G. Consider the actions of G by right
multiplication on the set of right cosets of H in G and on the set of right cosets of J
in G. These actions are equivalent if and only if there is an automorphism a of G such
that H* = J.

202 Consider the actions of a group G on sets. A set X together with an action of
G on X will be called a G-set. If X isa G-set and Y = X, Y is a G-subset of X if the
action of G on X restricts to an action of G on Y that is, if yge Y for all yeY and
g€G. The empty set @ is regarded asa G-subset of every G-set. A non-empty G-set
X is called irreducible if the only G-subsets of X are O and X. A G-map of a G-set X
toaG-set Yisamap ¢ : X — Y such that, for all xe X and geG, (xg)p = (x¢)g.

(i) Let X be a non-empty G-set. Then the orbits of the action of G on X are
irreducible G-subsets of X, and they are the only irreducible G-subsets of X. In
particular,X is irreducible if and only if the action of G on X is transitive.

(i) Let X be a non-empty G-set and let { X, : reR} be the set of all irreducible
G-subsets of X. For every non-empty G-subset Y of X there is a non-empty subset S
of Rsuch that Y =) X,.

seS
(ili) Let ¢ be a Ge-map ofa G-set X toa G-set Y. ThenIm¢p ={x¢p :xeX}isa
G-subset of Y; and for each G-subset W of Y, {xeX : xpeW } is a G-subset of X.
(iv) A G-map of a non-empty G-set to an irreducible G-set is necessarily surjective.
(v) Let @ be a G-map of an irreducible G-set X to a G-set Y. Then, for each
G-subset W of Y, either Imp = Wor Wnlme = Q.
(vi) If X is a non-empty G-set then the set of all bijective G-maps X - X is a
subgroup X§ of Z,.
(vii) If X is an irreducible G-set then |Z§| <|X]|.
(viii) If H < G and X is the set of right cosets of H in G, with action of G on X by
right multiplication as in 4.13, then X is an irreducible G-set and £$ =~ N (H)/H.

4.22 Definition. An action of G on a set X is said to be regular if it is
transitive and Stabg(x) = 1 for each xeX.
It follows from the definition and 4.9 that a regular action is faithful.

4.23. We obtain a regular action of G by choosing H =1 in 4.13. Then
X =G, and G acts on itself by right multiplication. The corresponding
permutation representation p' of G is called the right regular permutation
representation of G: p' maps each geG to the permutation of G obtained
by multiplying all elements of G on the right by g. The use of the qualifying
of G is equivalent, in the sense of 4.19, to the action of G on itself by right
multiplication: this follows from 4.20.

When 2.10 is applied to p', we get the following well known result,
the proof of which derives from ideas in paper [a16] of Cayley in 1854.

4.24 Theorem (A. Cayley). G can be embedded in Z.

This provides another proof of the fact, established in 1.2, that for each
positive integer n, there are only finitely many distinct types of groups of
order n: for, by Cayley’s theorem, every group of order n can be embedded
in X, and X, has, as a finite group, only finitely many subgroups.
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203 Let G act on the set X.

(i) The action is regular if it is transitive and Stabg(x) = 1 for some xeX. (Hint.
See 187(i).)

(i) If G is abelian and the action is faithful and transitive then it is regular.

204 Let G be a finite group which acts transitively on a finite set X, with | X |=n.
Then |G| is a multiple of n; and |G| = nif and only if the action is regular.

*205 Suppose that |G| = 2r, where r is an odd integer with r> 1. By 1.13, there is
in G an element ¢ with o(f) = 2. Show that in the right regular permutation represen-
tation of G, t corresponds to an odd permutation. By means of 184, deduce that G is
not a simple group.

206 Let N denote the set of all positive integers. Every finite group can be embedded
in Xy, the restricted symmetric group on N (see 110, 148).

We now consider another important group action.

4.25. G acts on itself by conjugation. In this case, for each geG and each
xeG we write x? for the element of G to which g moves x, so that by
definition

x? =g 'xg, the conjugate of x by g (2.19).
This does define an action of G on itself, for if x,g,,9,€G then
()2 = g5 (91 'xg1)9> = (9,92)” ' x(g,9,) = x*'**
and x'=1"x1=x.
Now the orbit of x is the set
{97 'xg : geG},
the conjugacy class of x in G (see 49); and

Stabg(x) = {geG : g~ 'xg = x}
= {g€G : xg = gx}
= CG(x),
the centralizer of x in G (see chapter 1). The corresponding permutation
representation of G is the map 7 : G — Z; defined in 2.21. By 4.9,
Ker ©= () C4(x) = Z(G),
asin 117. xeG

When we apply 4.11 and the definition of orbit for this action, we get
the following important results.

4.26 Corollary. For each xeG,
|the conjugacy class of x in G| = |G : Cg(x)|.

4.27 Corollary (The class equation). If G is a finite group with k distinct
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conjugacy classes of elements, and if x,,...,x, are elements of G, one
from each of these k classes, then

k
|G| = 2 |G : Cg(x)]-
i=1

The positive integer k is called the class number of G, which we denote
by k(G).
We note two applications of the class equation.

4.28 Theorem. If |G|=p", where n is a positive integer, then Z(G) # 1.
We shall generalize this result in 5.8, but the statement given here

is sufficiently important to be recorded separately.

Proof. Let xeG. By 4.26, the conjugacy class of x contains just one

element if and only if Cg(x) = G, that is, if and only if xeZ(G). Hence

if Z(G) = 1, the class equation gives

pr=14+my+m;+ ... +m,

where each of the positive integers m,,...,m, is a divisor of p" and is
greater than 1. (In the notation of 4.27, m, = |G : CG(x,.)|.) But then, since
p is prime, each of m,,...,m, is a power of p to a positive exponent, and
som, +my + ... + m, is divisible by p. The equation above then implies
that 1 is divisible by p, a contradiction. We conclude that Z(G) # 1.

This property is fundamental for the investigation of groups of prime
power orders. The property is not in general shared by finite groups
whose orders involve two or more prime numbers: for instance, the
group X, of order 6, has trivial centre.

From 4.28 we make two deductions.

4.29 Corollary. IfG is afinite non-abelian simple group then |G| is divisible
by at least two distinct primes.

As a matter of fact, the order of a finite non-abelian simple group is
divisible by at least three distinct primes. This is an important result of
William Burnside (1852—1927), to which we shall refer again, but which
will not be proved in this book.

4.30 Corollary. Every group of order p? is abelian.
Proof. Suppose to the contrary that |G| = p? and G is non-abelian. Then
Z(G) < G and so, by 4.28 and Lagrange’s theorem, |Z(G)| = p. Hence
|G/Z(G)| = p, and so G/Z(G) is cyclic. But then it follows (125) that G
is abelian, a contradiction.

For every prime p there is a non-abelian group of order p3: see 221.

207 Let G be a finite non-abelian simple group and p the largest prime divisor of | G|.
(i) If H<G then |G :H|>p.
(i) If X is a conjugacy class of non-trivial elements of G then | X |2 p.
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208 Let X be a conjugacy class of elements of G. Then { X > € G. (Hint. Use 3.50.)

209 Let X be a conjugacy class of non-trivial elements of G.

(i) Let ae Aut G and X* = {x* : xe X }. Then X* is a conjugacy class of elements
of G.

(i) Suppose that G is a finite non-abelian simple group and that, for every con-
jugacy class Y of elements of G distinct from X, either | X |+ | Y| or the elements of
X and the elements of Y have different orders. Let |X|=n. Then Aut G can be
embedded in Z,. (Hint. For (ii), show that Aut G acts on X and that (X)) =G.
Use 208 and 2.28.)

210 Let G be a finite group and let x, y be conjugate elements of G. Then the number
of distinct elements ge G such that x? = y is equal to | C4(x)|.

211 Let x€G, a finite group. Then |C4(x)| 2 |G/G’| (where G’ denotes the derived
group of G : see 3.438).

212 Let n be a positive integer and F a field such that |F|>n. Let G = GL,(F),
and let x be a diagonal matrix in G whose n diagonal entries are distinct elements

of F. Prove that Cy(x) is the subgroup of G consisting of all diagonal matrices in
G (cf. 123).

213 Let n be a positive integer and F a field in which 1+ 1+#0. Let G = GL(F)
and, foreachi=0,1,...,n — 1,let t, be the diagonal matrix in G whose first i diagonal
entries are equal to 1 and whose other diagonal entries are equal to — 1.

Prove that every element of order 2 in G is conjugate in G to one of the n elements
to>tys...»t,_ 1. Prove also that no two of the elements ¢,,t,,...,t,_, are conjugate
in G.

Hence G has just n conjugacy classes of elements of order 2. (Hints. Let V be a
vector space of dimension n over F and choose a base of V. With respect to this
base, any element of G of order 2 represents an element 6 of GL(V) of order 2. Note
that for every veV,v=4%(v+ v6) + 4(v — v6). Hence show that there is a base of
V with respect to which 6 is represented by one of the matrices t,,t,,...,t,_;.
Note that two elements of G are conjugate in G if and only if they represent the
same element of GL(V) with respect to suitable basés of V.)

214 Let H be a subgroup of index 2 in the finite group G. Assume that for every
heH with h# 1,C4(h) < H (that is, by 4.26, the G-conjugacy class of h splits into
two H-conjugacy classes). Then G\H forms a single conjugacy class of elements in
G. (Hint. Let ge G\ H. Show that the map h - g*, defined for all he H, is an injective
map of H into G.)

215 Prove that every group of order 15 is abelian. Deduce by means of 107 and 6
that every group of order 15 is cyclic (and therefore that v(15)=1). (Hint. If G
were a non-abelian group of order 15 then, by 125, Z(G) = 1. Then use the class
equation to show that G would have just 1 conjugacy class with 5 elements in it
and that this would consist of all the elements of G of order 3, in contradiction to
67. Remark. This result will be proved in another way in 5.18.)

216 Let G be a non-trivial finite group and let p be the least prime divisor of |G|.
Ifk(G) > | G|/p then Z(G) +# 1.

217 If G is a finite non-abelian group then k(G) > | Z(G)| + 1.

218 Let G be a non-abelian group.
(i) Forevery xeG, Z(G) < Cg(x).
(ii) If |G| = p® then | Z(G)| = p and k(G) = p* + p — 1.
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219 (i) Let H< G. Then H € G if and only if H is a union of G-conjugacy classes
of elements.
(i) Let H € G, afinite group. Then

KG/H)< kG)—j + 1,

where j is the number of G-conjugacy classes of elements in H.
(iii) If G is a finite non-abelian group such that G/Z(G) is abelian then k(G) =
|G/Z(G)| +|Z(G)| - 1.

*220 Use the class equation to prove the following theorem of Cauchy: if G is a
finite group and p divides | G| then G has an element of order p. (Hint. Use induction
on ]Gﬁ and the fact that by 107 the result is true if G is abelian: cf. 1.13. Later we
shall prove Cauchy’s theorem in another way: see 5.11.)

*221 Let U be the subgroup of GL;(F) defined in 120,and let F=Z,.
(i) Then U is a non-abelian group of order p*.
(ii) If p > 2 then x? =1 for every xe U (cf. 3).

222 Every group of order p? is isomorphic to either C 2 0r C, x C,. Hence v(p?) =2
(cf. 77).

It is obvious that if G is a finite group then k(G) < |G| (with equality
if and only if G is abelian). As a second application of the class equation
we shall prove the less obvious fact that | G| is bounded above by a function
of k(G). We follow the formulation of the proof in Scott [b36].

4.31 Theorem (E.Landau [a69], 1903). For each positive integer k, there is
a positive integer N(k) such that, for every finite group G with class number k,
|G| < N(k).

Proof. If G is a finite group with class number k then the class equation
for G gives, with the notation of 4.27,

k
j61= %16 Catxl. 0

Let n; =|C4(x;)|, for each i = 1,..., k. Without loss of generality, we may
suppose x,, ..., X, labelled so that

nZn,= .. 2n. (i)

Note that then n, = |G|, since C4(1) = G. Division of equation (i) by |G|
gives

Mw

1= i (iii)
n;

i=1

In order to complete the proof it will therefore suffice to show that there
are only finitely many sequences (n,,n,,...,n,) of positive integers
satisfying (ii) and (iii): for then we may take for N(k) the largest value of
n, among all such sequences.

To achieve this we shall prove, by induction on k, that for each positive
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integer k and real number A, if &(k, A) denotes the set of all sequences
(ny,n,,...,n) of positive integers satisfying (ii) and

k1
—=A, i
i; n; )
then &(k, A) is a finite set. (It may of course happen that #(k,4)=Q,
as for instance if A < 0, but this does not matter.) This assertion is obvious
if k= 1. Assume that k > 1 and, inductively, that #(k — 1, B) is a finite
set, for every real number B. We may also assume that 4>0. If
(ny,n,,...,m,) is a sequence in F(k, A) then
k1 k

A= Z—S—,
=1

so that n < e

Thus there are only finitely many possible choices for n, .
Now Z(k, A) is a subset of the set 7 (k, A) of all sequences (n,,n,,...,n,)

of positive integers such that n, 2 n, = ... 2 n,_ ,n < Xand

Y —=A-— 0

Since, for each choice of n,,#(k — 1, A — (1/n,)) is a finite set, by the
inductive assumption, and since there are only finitely many choices
for n,, it follows that 7 (k, A) is a finite set. Hence also &#(k, A) is a finite
set, and the induction argument goes through.

There also exist infinite groups with only finitely many distinct conju-
gacy classes. Indeed, G. Higman, B. H. Neumann and H. Neumann [a58]
proved that any infinite group in which no non-trivial element has finite
order can be embedded in a group in which all non-trivial elements
form a single conjugacy class.

223 Let G be a finite group. Then

(i) k(G)=2ifand onlyif G=C,,

(i) k(G)=3if and only if either G= C, or G = Z,.
(Hint. Use the class equation as in the proof of 4.31. In case (ii), show that the possible
orders for G are 3,4, 6 and examine the groups of these orders.)

224 (i) Let X be a conjugacy class of elements in G, and let X* = {x~' :xe X}.
Show that X* is a conjugacy class of elements in G.

(i) Suppose that G is finite. Prove that if |G| is odd then {1} is the only conjugacy
class X such that X = X*, but that if | G| is even then there is at least one conjugacy
class X other than {1} such that X = X*.

(iii) Prove that if G is a finite group with k(G) even then |G| is even. Show by an
example that the converse is false.

(Hint. For the first assertion in (ii), 12 may be helpful.)
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We consider next an extension of the action of G on itself described
in4.25 to an action on the set 2(G) of all non-empty subsets of G.

4.32. G acts on 2(G) by conjugation: for each geG and each non-empty
subset U of G,g moves U to the set

Uf=g~'Ug={g9 'ug :ueU},

which is called the conjugate of U by g. (When U consists of a single
element or is a subgroup of G, this conforms with our previous termino-
logy.) It is easy to check that this does define an action of G on 2(G);
and the action in 4.25 is obtained by restricting this action to the subsets
of G consisting of single elements.

For each Ue2(G), the orbit of U is the set of all conjugates of U, that
is, the set {g~'Ug : geG} of subsets of G: it is called the conjugacy class
of U in G; and Staby(U) = {geG :g~'Ug = U}, called the normalizer
of U in G and denoted by N4(U) (in accordance with the terminology
and notation introduced in 3.55 when U is a subgroup of G).

We sometimes say that H normalizes U to mean that H < N 4(U).

The ‘exponential’ notation U? for the conjugate g~ 'Ug is a very
convenient one, which will be used as standard in the rest of the book.

From 4.11, applied to 4.32, we get the following generalization
of 4.26:

4.33 Corollary. For each non-empty subset U of G,
|the conjugacy class of U in G| =|G : Ng(U)|
(thatis, |G : Ng(U)| is the number of distinct conjugates of U in G).

434, For any H < G, we have seen in 3.55 that Ng(H) is the unique
largest subgroup of G in which H is contained as a normal subgroup.
But for a subset U of G which is not a subgroup, N4;(U) need not even
contain U: see 225. Note that when U = {x} for some xeG,Nyz(U) =
Ng(x) = C4(x). But we can also define in a natural way a subgroup
C4(U) of G for any U € 2(G), and frequently C5(U) # N4(U). In the notation
of 187, with G acting on itself by conjugation and U any non-empty
subset of G, C4(U) = Gy and Ng(U) = G§.

4.35 Definition. For any non-empty subset U of G, we define the centrali-
zer of U in G to be
C4(U) = {geG : ug = gu for all ue U}
=) Csu) < G.

uelU
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(This conforms with the definition in 122 when U = H < G.) Note that
Cs(U) = Gifand only if U = Z(G).

We sometimes say that H centralizes U to mean that H < Cg(U).

It is easy to see that Cy(U) < N4(U) always, and in fact C4(U) < Ny(U)
(233). When U is a subgroup of G, a useful extra assertion can be made.

4.36 Lemma. For every H< G, C4(H)S Ny(H) and N (H)/CyH) can
be embedded in Aut H.

Proof. Since (by 3.55) H<N4;(H),h’eH for every heH and geN4(H).
Then it is clear that N4(H) acts on H by conjugation. Let the corresponding
permutation representation of N;(H) be g, so that for each ge N4(H),

go :h h for all heH.

Then Ker 6 = {geN4(H) : h* = h for all he H}
= {geN4(H) : hg = gh for all heH}
= Cg4(H), since C4(H) < N4(H).

Hence, by the fundamental theorem on homomorphisms,
Cs(H)S N4(H) and Im o = N4(H)/C4(H).

For each ge N4(H), go is a permutation of H. In fact it is an automor-
phism of H, for if h, , h,e H then

(hyhyy =g~ 1h1h2g =g lhlgg_ lhzg = h%hj.

Hence Im o is a subgroup of Aut H, and so N 4(H)/C4(H) can be embedded
in Aut H.

This lemma will be placed in a more general context in chapter 9.
We end this chapter by noting some applications.

If H is a finite group then Aut H is also finite. Hence from 4.36 we
deduce that in an infinite group every finite normal subgroup has a
‘large’ centralizer.

4.37 Corollary. Let G be an infinite group. Then, for any finite normal
subgroup H of G,G/Cy(H) is finite. In particular, if G has no non-trivial
finite quotient then every finite normal subgroup of G is abelian and contained
in Z(G).

Note for example that Q*/Z* and C,« are infinite abelian groups
with no non-trivial finite quotient but many finite subgroups: see 133
and 144.

4.38 Lemma. (i) For any cyclic group G, Aut G is abelian.
(ii) If |G| =p then |Aut G|=p— 1.

Proof. The statements follow from 46, but we give direct proofs here.
Let G =(g). Each automorphism a of G is determined by its effect
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on g. Let o, BeAut G with, say, g* = ¢",g* = g°, where r,seZ. Then
g’ =@V =9"=9"=(@r=9"
Since the automorphisms af, fa of G have the same effect on g, it follows
that aff = fo. Thus Aut G is abelian.
Now let G be finite. Then for any particular integer r, there is an auto-
morphism a of G such that g*=g" provided only that o(g") = o(g). If

o(g) = p then there are p — 1 choices for ¢", so that |AutG|=p— 1.
From 4.36 and 4.38 we deduce

4.39 Corollary. (i) If G is a perfect group (see 168) and K is a cyclic normal
subgroup of G then K < Z(G).

(ii) If G is a finite group, p the smallest prime divisor of |G| and K a
normal subgroup of G of order p then K < Z(G) (cf. 119 and 4.18).

*225 Let G = X,. Find a subset U of G such that Ny (U) = 1.

226 Let U be a non-empty subset of G. Then G acts transitively by conjugation
on the conjugacy class of U in G, and this action is equivalent to the action by right
multiplication of G on the set of right cosets of Ny(U) in G.

227 Let H be a finite subgroup of G, and let K = H®, the normal closure of H in
G (see 180). Then K is a finite normal subgroup of G if and only if |G : Ng(H)| < co.
(cf. 4.14, 4.15. Hints. To prove that if |G : N4(H)| < oo then |K| < oo, let the distinct
conjugates of Hin Gbe H,,H,,...,H,: see 433. Let keK. Use 180(ii) and 2.28 to
show that k is expressible in the form k= h; h, ...h; , where r is a positive integer

and, for each j=1,...,r,i;€{1,2,...,n}and b, €H, . Choose such an expression for
k with r as small as possible. Then observe that if » > n, there are integers j, I such that
1Sj<lIs<randi;=i,and then

hhi,, oo by = (h ) (i Yhy,, hy)...(hi thy_ hy).

ij+1° ij ti+1 0 -1u

Deduce that r < n. This is a special case of a result known as Ditsman’s lemma.)
228 Let F be a field and let G = GL,(F).

0 1
(i) Prove that X, can be embedded in G. (Hint. Show that the elements < 1 —1 )

and 10 of G generate a non-abelian subgroup of order 6, and see 58, 60.)

(ii) Suppose that in F,1+ 1+ 0. Prove that C, x C, x C, cannot be embedded
in G. Deduce that the alternating group A4, cannot be embedded in G. (Hints. Assume
that C, x C, x C, can be embedded in G and derive a contradiction by applying
212 and 213. Note that if L were a subgroup of G isomorphicto 4, then L N Z(G) = 1.
See 123, 185 and 3.54.

Remarks. Since GL,(Z,) = X, (44), A, cannot be embedded in GL,(Z,). However,
there is a field F with |F| =4, and it is known that for this F,SL,(F) = 4, so that
then 4, can be embedded in GL,(F).)

*229 (i) Let U be a non-empty subset of G and let geG. Then
Co(U%) = Cx(UY, Ng(U?) = Ng(UY and (U?)» = (U ).
(ii) Let H,K < G and let geG. Then
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ZH=ZHY,H "K=(HnK) and (H*,K?)> = (H,K)*.

*230 Let K < G.
(i) If H< G and geG, then (HK/K)¥¢ = H°K /K.
(i) If H, and H, are conjugate subgroups of G, then H,K/K and H,K/K are
conjugate subgroups of G/K.
(iii) If J,/K and J,/K are conjugate subgroups of G/K, then J, and J, are conju-
gate subgroups of G.

231 Suppose that G is an infinite simple group.

(i) If U is a non-empty subset of G such that there are only finitely many distinct
conjugates of U in G, then either U = {1} or U =G.

(i) If x is a non-trivial element of G then there are infinitely many distinct conju-
gates of x in G.

232 Let xeG. Prove that if Cg(x) < G then x lies in an abelian normal subgroup
of G. Show by an example that the converse is false. (Hint. If C4(x) < G, show that
{x)%is abelian: see 180.)

*233 Show that for any non-empty subset U of G, C4(U) € Ng(U) and N4(U)/Cg(U)
can be embedded in Z,,. For G = Z,, find a U with C4(U) # Ng4(U).

*234 Let xeG. The extended centralizer of x in G is defined to be the subgroup
C%(x) = Ng({x,x~'}). Show that |C¥(x) : C4(x)| <2. For G=2ZX;, find elements
x, y€G such that |C¥(x) : C4(x)| =2, C&(y)=Cg(y)

235 (i) Suppose that G is non-abelian and let Z = Z(G). Then, for every xeG\Z,
{ x>Z is an abelian subgroup of G containing Z properly.

(i) Let A be an abelian subgroup of G. We say that A4 is a maximal abelian subgroup
of G if there is no abelian subgroup of G which contains 4 properly. Then A is a
maximal abelian subgroup of G if and only if C4(A4) = 4.

236 LetJ < H < G, and let K = Cy(J). Then H < N4(K). In particular, if No(K) = K
then J < Z(H).

237 Let G be a finite group.
(i) If H < G then

U B

9eG

<1+|G|-|G:H].

Hence the union of all the conjugates in G of a proper subgroup of G is a proper
subset of G.

(ii) If K <G and K contains at least one element from each conjugacy class of
elements of G then in fact K = G.

238 Let G be a non-trivial group.

(i) If M is a maximal subgroup of G (see 140) then, for every ge G, M? is a maximal
subgroup of G.

(ii) If G is finite and G has just one conjugacy class of maximal subgroups then
G is cyclic of order p™ for some prime p and positive integer m. (cf. 140(vi). Hint. Use
237(i).)

239 Let V be a vector space of dimension n over a field F, where n is an integer
greater than 1, and let G = GL(V) (2.16). Let 0 # veV, and let H be the set of all
elements of G for which v is an eigenvector. Then

(i) H<G.
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(ii) If F=C then | ) H*=G.

geG
(cf. 237. Hint. When F = C, any xeG has an eigenvector, w say, and then there is
an element ge G such that vg = w.)

240 Let G be an infinite group with Z(G) = 1. By 4.37, if G has no non-trivial finite
quotient then G has no non-trivial finite normal subgroup. Show by an example
that the converse is false. (Hint. Consider the infinite dihedral group D . .)

241 G D_ if and only if G has an infinite cyclic normal subgroup H = (h), say,
such that H < G and, for every positive integer n, C4(h") = H. (Hint. Use 29, 46
and 4.36.)

*242 Let p be an odd prime.

(i) Then Z) has just one element of order 2.

(i) Let G be a group of order 2p. Then G has a cyclic subgroup {x) of order p
and a cyclic subgroup {t) of order 2, and x' is either x or x~*. Hence G is isomorphic
to either C,, or D,,. (cf. 60. Hint. Apply Cauchy’s theorem 220 with 40 and 46.)

*243 If G is a cyclic group of order p", where n is a positive integer, then |Aut G| =
p"— p"~ ! (cf. 4.38(ii), 40, 46).

244 Let J<G. Then CyJ)=1 if and only if Z(H)=1 for every H such that
JSH<G.

245 Theelements of C,,, (Inn G) are called central automorphisms of G. Let acAut G.
Prove that « is a central automorphism of G if and only if g%g~ '€ Z(G) for every
g€G. Deduce that if Z(G) = 1 then Z(Aut G) = 1. (Hint. See 92 and 117.)

For further information about natural actions of groups on sets, see
the books of Passman [b32] and Wielandt [b38].



5

FINITE p-GROUPS AND SYLOW’S
THEOREM

In this chapter we make some further fundamental applications of the
ideas developed in chapter 4 of group actions on sets. These applications
will be concerned especially with finite p-groups and p-subgroups of
finite groups. We shall obtain further information about finite simple
groups and prove the simplicity of the alternating groups A4, for n= 5.

5.1 Definition. Let G act on the set X. Then the fixed point subset of
X is defined to be

Fix,(G)= {xe X : xg = x for all ge G}
= {xeX :Stabg(x) = G}.

Thus Fix,(G) consists of those elements of X each of which forms an
orbit by itself. Of course, it may happen that Fix,(G) = . In particular,
if G acts transitively on X then Fix,(G) = @ unless | X |=1.

For instance, if G <X, and G acts naturally on the set X = {1,2, 3,4}
then, for G = {(123)), Fix,(G) = {4}, while for G = {(12)(34) ), Fix,(G) =

Q.
The following simple application of 4.11 is very helpful. The proof

is essentially the same as the proof of 4.28.
5.2 Lemma. Let G be a finite p-group which acts on the finite set X. Then
|Fix,(G)| = | X | mod p.

Proof. Let the orbits of the action be X,,..., X,, where k is a positive
integer. Now we count the elements of X :

k
1X|= 1%

By 4.11, each | X;| is a divisor of |G| and hence, since p is prime, must
be a power of p. If there are just j orbits consisting of single elements,
where 0 < j < k, then |Fix,(G)| =j and the equation above gives

| X | =j + a sum of powers of p to positive exponents
(where the latter sum is empty if j = k). Hence
|Fix,(G)| =j=|X | mod p.
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We shall make two important deductions from 5.2, using the group
action of 4.13 and the following observation.

5.3. Let G act on the set X. Then each subgroup J of G acts on X by
restriction of the action of G: that is, to each jeJ and each xe X there
corresponds the element xje X determined by the action of G on X.
This correspondence obviously satisfies the conditions for an action of
Jon X.

For each xeX, Stab,(x) = Stabg(x)nJ. Hence xeFix,(J) if and only
if J < Stabg(x). If the permutation representation of G corresponding
to the given action is p, then the permutation representation of J corres-
ponding to the action of J is p|,. If the action of G is faithful, then the
action of J is also faithful. But the action of G may be transitive and the
action of J intransitive.

For instance, let H,J < G and let G act by right multiplication on
_ the set X of right cosets of H in G, as in 4.13. Consider the action by
restriction of J on X. Then, for each geG,Stab,(Hg)=H’nJ, and
HgeFix,(J) if and only if J < H? The action of J on X is transitive if
and only if HJ = G, in which case, by 4.20, this action is equivalent to
the action of J by right multiplication on the set of right cosets of HNJ
inJ.

5.4 Theorem. Let H,J < G. Suppose that |G :H|=r < oo, that J is a
finite p-group and that p does not divide r. Then J < H? for some geG.
Proof. Let X be the set of right cosets of H in G. Then | X|=|G : H|=r.
Let J act on X by restriction of the action of G on X by right multiplication.
By 5.2, |Fix,(J)| =r mod p. Since, by hypothesis, p does not divide r,
it follows that |Fix,(J)| #0, that is, that Fix,(J)# (. Hence, by 5.3,
J < H? for some g€G.

5.5 Theorem. Suppose that H is a p-subgroup of the finite group G and
that p divides |G : H|. Then p divides |N 5(H)/H|.
Proof. Let X be the set of right cosets of H in G, and let H act on X by
restriction of the action of G on X by right multiplication (as in 5.3,
with J = H). By 5.2, |Fixy(H)| = |G : H| mod p. Let geG. By 5.3, Hge
Fix,(H) if and only if H < H? that is (since |H|=|H?|), if and only if
H = H?, or, equivalently, if and only if geNy(H). Hence |Fix,(H)|=
|Ng(H)/H |. Now the result follows.

We state the most important special case of 5.5 as a separate result.
(We shall see that this is actually equivalent to 5.5, once we have proved
Sylow’s theorem.)

5.6 Corollary. In a finite p-group G, every proper subgroup is a proper
subgroup of its normalizer in G.
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This property of groups of prime power orders is not in general shared
by finite groups whose orders involve two or more prime numbers: for
instance, the group X, of order 6, has ‘self-normalizing’ subgroups of
order 2.

246 Suppose that G acts on the set X and Fix,(G)= @. If |G| =35 and | X |=
find the number of orbits of the action and the length of each orbit.

247 Let H,J <G (where possibly H=J). A subset of G of the form HgJ =
{hgj : heH, je J}, where ge G, is called a double coset with respect to H and J. Let X be
the set of right cosets of H in G and let J act on X as in 5.3. For each geG, show that
HgJ is the union of the elements of X which form the orbit of Hg under this action,
and hence (using 4.11) show that if H and J are finite then

|H]||J]
|HeAJ|
Show also that if g,,9,€G and Hg,J + Hg,J then Hg,JnHg,J = . What is the

equivalence relation on G for which the double cosets with respect to H and J
are the equivalence classes?

|HgJ| =

248 Let G be a finite group. We make the following definitions:

(a) Suppose that G acts on the set X. The action is said to be a Frobenius action
if it is transitive but not regular, | X | > 1, and whenever x, x, are distinct elements
of X, Stabg(x,) N Stabg(x,) = 1.

(b) G is said to be a Frobenius group if it has a non-trivial proper subgroup H
such that Ny(H)=H and whenever H?',H?* are distinct conjugates of H in G
(with 9 ,9,€G), H n H? = 1. Any such subgroup H is called a Frobenius comple-
ment in G.

Prove the following statements:

(i) G has a Frobenius action on some set if and only if G is a Frobenius group.
(ii) If Gisa Frobenius group and H is a Frobenius complement in G then |G : H |=
1 mod |H|.

(iii) If G is a Frobenius group then Z(G) = 1.

(iv) Let n be a positive integer, and consider the natural action of X, on the set
{1,2,...,n}. This is a Frobenius action if and only if n = 3.

(v) Let n be an integer, n = 3. Then the dihedral group D,, is a Frobenius group
if and only if n is odd.

(Hints. See 124, 187, 203. For (ii), consider the restriction to H of a suitable Frobenius
action of G, and count orbits. Remarks. Let H be a Frobenius complement in the
Frobenius group G. F. G. Frobenius (1849-1917) proved in [a31] the important
theorem that then K = {1} U(G\|J HY) is a normal subgroup of G. Moreover,

G
G=HK,HnK =1 and any Frobenius complement in G is conjugate to H. Hence
any two Frobenius actions of G are equivalent.)

249 Suppose that |G| = p™r, where m and r are positive integers and p does not
divide r. Then G has a subgroup of order p™. (Hint. Consider a p-subgroup H of
G of greatest possible order and use 5.5 and Cauchy’s theorem 220 to prove that
|H| = p™. This is part of Sylow’s theorem, which will be proved in a different way in
59.)

Next we apply 5.2 to prove
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5.7 Theorem. Let H < G, a finite group, and let J be a p-subgroup of G.
If|H| # 1 mod p then HNCg(J) # 1.

Proof. Since H < G,G acts on H by conjugation. Then, by restriction
of this action, J also acts on H. By definition,

Fix(J)= {heH : W = h for all jeJ}
= {heH : hj=jhfor all jeJ}
=HnCgJ).

Since J is a finite p-group and H is finite, 5.2 shows that
|HNCg(J)| = |H|mod p.

Therefore, since, by hypothesis, |H|#1 mod p, it follows that
HAC4J)# 1.
As the most important special case we note

5.8 Corollary. Let G be a finite p-group and let 1 <H<G. Then
H N Z(G) + 1. (This includes 4.28 as a special case.)
Proof. In 5.7, choose J = G.

Recall that by Lagrange’s theorem, the order of every subgroup of a
finite group G is a divisor of |G|. The converse is false in the sense that
there may be missing divisors: G need not have a subgroup of order n
for every divisor n of |G| (see 185). Sylow’s theorem, which we prove
next, establishes the existence of subgroups of particular orders and
provides valuable information about such subgroups. This theorem
established in 1872, is of fundamental importance in finite group theory;
its discovery has had a decisive effect in determining the character of
the subsequent development of the theory. Several different proofs are
known: one method for part of the result has been indicated in 249. The
proof which we give here is a very successful application of group action
methods, due to H. Wielandt in 1959.

5.9 Theorem (L. Sylow [a95]). Let G be a finite group with |G| = p™r,
where m is a non-negative integer and r is a positive integer such that p
does not divide r. Then

(@) G has a subgroup of order p™. Such a subgroup is called a Sylow
p-subgroup of G.

(b) If H is a Sylow p-subgroup of G and J is any p-subgroup of G then
J< H? for some geG. In particular, the Sylow p-subgroups of G form
a single conjugacy class of subgroups of G.

(c) Let n be the number of distinct Sylow p-subgroups of G. Then n=
|G : Ng(H)|, where H is any particular Sylow p-subgroup of G n divides
r; and n=1mod p.

Proof. (a) (H. Wielandt [a 102]). We consider the set & of all subsets
U of G with |U| = p™ The number of such subsets is
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|3.t,|=<p'"r> p'r P me— 1 P e —2 p r—p" +1

" ptpm—-1T =2 1

If in each term (p™r —j)/(p™ —j) of this product we make all possible
cancellations of common divisors of numerator and denominator, p
does not remain as a divisor of the numerator. This is clear for j=0;
and for j > 0, with, say, j=p'q, where [ is a non-negative integer and
g a positive integer not divisible by p, then I < m,

Pr—j_p"'r—q

=i p"'-q’
and p does not divide p™~'r — q. Since p is prime, it follows that p does
not divide the product of cancelled numerators, and therefore

p does not divide | % |. (i)

For Ue % and geG, Ug = {ug :ue U} is a subset of G with |Ug| = p"
thus Uge &. Now it is clear that G acts on the set & by right multipli-
cation. By this action, & is partitioned into orbits, and it follows from
(i) that

there is an orbit % | such that p does not divide | % | |. (ii)

Let Ve Z,, so that &, is the orbit of V, and let H = Stabg(V) <G.
By 4.11,
|%,|=|G:H|. (iii)
Since |G : H| |H|=|G|=p™, it follows from (ii) and (iii) and the fact
that p is prime that
p" divides |H |. (iv)
Now let Vi={X1,X3,000sXpm}
Then for any heH, Vh=V,

that is, {x,h,x,h, ..., X mh} = {X;,%;, ..., X m}.
Hence x,h = x; for some i, where 1 < i< p™, and then

R |
h=x7"x,.

Thus |H|<p™ W)

By (iv) and (v), |H| = p™: thus H is a Sylow p-subgroup of G.

(b) Now let H be any Sylow p-subgroup of G and let J be any p-sub-
group of G. Since |G :H|=|G|/|H|=r and p does not divide r, 54
applies to show that J < H? for some geG, as asserted. In particular,
if J is a Sylow p-subgroup of G then, since |J|=|H|=|H?|, by 2.20,
it follows that J = H?, a subgroup of G in the same conjugacy class as H.
Since every subgroup of G conjugate to H certainly has the same order
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as H and is therefore a Sylow p-subgroup of G, it follows that the Sylow
p-subgroups of G form a single conjugacy class.
Before proving (c), we note a consequence of (b):

5.10 Lemma. Suppose that H is a Sylow p-subgroup of a finite group G.
Then H is the unique Sylow p-subgroup of N ;(H).

Proof. 1t is easy to see that H is a Sylow p-subgroup of every subgroup
of G which contains H (252); in particular, H is a Sylow p-subgroup
of Ng(H). Let K be any Sylow p-subgroup of N,;(H). By 5.9(b), there is
an element ge N 5(H) such that K = H?. But then, since ge N;(H), H? = H.
Hence H is the unique Sylow p-subgroup of N (H).

Remark. 5.10 can also be proved easily by means of 3.38 and 3.40, without
invoking 5.9(b).

Proof of 5.9(c). Let & denote the set of all Sylow p-subgroups of G and
let HeZ. By (b), & is the conjugacy class of H in G, and so, by 4.33,

n=|%|=|G:NgH)|.
Since r=|G:H|=|G :Ng(H)||NgH) : H|,

it follows that n divides r.
Now G acts transitively on & by conjugation. Then, by restriction of
this action, H acts on & —though not necessarily transitively. By 5.2,

|Fixy(H)| = || mod p.

Let Ke¥. Then KeFix/H) if and only if K" =K for every heH, that
is, if and only if H < N4(K). But, by 5.10, H < N4(K) if and only if H = K.
Hence Fix4(H) = {H}, so that | Fixo(H)| = 1 and

n=1mod p, asclaimed.

*250 (i) Let G be afinite group with a p-subgroup J such that C4(J) is also a p-group.
Show that for every normal subgroup H of G of order not divisible by p,|H|=
1 mod p.

(i) Use (i) to show that the only possible order for a non-trivial normal subgroup
of Z, of order not divisible by 3 is 4. (Hint. See 185.)

251 Let A be an abelian normal subgroup of G. We say that A4 is a maximal abelian
normal subgroup of G if there is no abelian normal subgroup of G which contains
A properly (cf. 235(ii)).

Prove that if G is a finite p-group and A is a maximal abelian normal subgroup
of G, then A is a maximal abelian subgroup of G. (Hints. Suppose that 4 < C(A),
and consider G = G/A. Derive a contradiction by means of 3.30, 4.36, 5.8 and 125.
Remark. If H is a finite non-abelian simple group then 1 is a maximal abelian
normal subgroup of H, but 1 is certainly not a maximal abelian subgroup of H.
See also 392, 400, 644, 645.)

*252 Let G be a finite group and H a Sylow p-subgroup of G.
(i) If H < L< G, then H is a Sylow p-subgroup of L and every Sylow p-subgroup
of L is a Sylow p-subgroup of G.
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p

(i) If K €G, then HNK is a Sylow p-subgroup of K and HK/K is a Sylow
p-subgroup of G/K. Moreover, every Sylow p-subgroup of K is of the form H*n K,
where H* is a Sylow p-subgroup of G; and every Sylow p-subgroup of G/K is of
the form H*K/K, where again H* is a Sylow p-subgroup of G.

(ili) Show by an example that if Kt G, H " K need not be a Sylow p-subgroup
of K.

(iv) 0,(G) < H < 0”(G), where o is any set of primes which does not contain p.
Moreover, G = HO?(G).

253 Let G be a finite group. If G has a normal Sylow p-subgroup then so has every
subgroup and every quotient group of G. ,

254 Let P be a Sylow p-subgroup of the finite group G, and let PSJ<H<G.
Then p does not divide |H : J|.

255 Let K be a finite normal subgroup of G. If K has a normal Sylow p-subgroup
Pthen PLG.

256 Let H < G, a finite group. Let P, be a Sylow p-subgroup of H and let P be a
Sylow p-subgroup of G with P, < P. (Such a subgroup P exists, by 5.9(b).) Then
Py=PnH.

257 Let G be a finite group, and let H and K be normal subgroups of G, and P a
Sylow p-subgroup of G. Then (PH)n(PK) = P(H n K).

258 Let G be a finite group and suppose that H and K are subgroups of G such
that G = HK.

(i) If H and K are normal in G then, for every Sylow p-subgroup P of G,P =
(PAH)(PAK).

(ii) Show by an example that if H and K are not both normal in G, the conclusion
of (i) need not hold.

(iii) However, there is always some Sylow p-subgroup P of G for which
P=(PAH)(PnK).
(Hints. For (iii), use 5.9(b) and 256 to show that there is a Sylow p-subgroup P
of G such that PN H is a Sylow p-subgroup of H and P K is a Sylow p-subgroup
of K. Then use 98.)

*259 Let n be an odd integer, n = 3. Then every Sylow subgroup of the dihedral
group D,, of order 2n is cyclic.

260 Let U be the subgroup of GL,(F) defined in 120. Show that when F=Z,,
U is a Sylow p-subgroup of GL,(Z,).

*261 Find a Sylow 2-subgroup T of £,, and show that T = Dy. How many Sylow
2-subgroups does X, have? (Hint. £, has a cyclic subgroup U of order 4, and; by
Sylow’s theorem, U lies in a Sylow 2-subgroup T of Z,.)

*262 Suppose that |G| = 2"r, where m and r are positive integers with r odd. Suppose
further that the Sylow 2-subgroups of G are cyclic. By generalizing the argument
of 205, show that G has a subgroup of index 2. Hence, by induction on m, prove
that G has a normal subgroup of order r. (Hint. Note that if H < G with |[H|=r
then in fact H is characteristic in G.)

263 Let G be a finite group of even order and let xeG with o(x) = 2. If C4(x) has a
cyclic Sylow 2-subgroup then G has a subgroup of index 2 (and so, if |G|> 2,G is
not simple). (Hint. Use 3.32, 4.28 and 262.)

264 (i) Suppose that G = HK, with H < G and K <G. If Hn K contains a non-
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trivial normal subgroup L of H then L¢ < K (where LS denotes the normal closure
of L in G: see 180); hence G is not simple.

(ii) A simple group G cannot be expressed in the form G = HK with H <G,
K < G,H abelian and Hn K # 1. (Remark. This would fail if we were to allow
HnK = 1. For instance, with G = A, a simple group of order 60 — see 5.24 — there
is a cyclic subgroup H of order S and a subgroup K = 4,, of order 12, and G = HK;
but of coursse HNK = 1.)

(iii) Let G be a finite non-abelian simple group with an abelian Sylow p-subgroup
H and a proper subgroup K of index a power of p. Then |G :K|= |H |, p does not
divide | K|, and H is a maximal abelian subgroup of G. (See 235. Hint. Use 98 and
100.)

We have mentioned Cauchy’s theorem on orders of elements in 220.
This can be used in the proof of existence of Sylow subgroups: see 249.
However, Cauchy’s theorem was not needed in the proof of Sylow’s
theorem given in 5.9 and so we now deduce Cauchy’s theorem from
Sylow’s theorem.

5.11 Theorem (A. Cauchy, 1844). If G is a finite group such that p divides
|G| then G has an element of order p.

Proof. Let H be a Sylow p-subgroup of G. Since p divides |G|, H # 1.
Choose xeH with x # 1. Then o(x)>1 and o(x) divides |H|. Hence
o(x) = p* for some positive integer 5. Then x?"~' is an element of G of
order p.

5.12 Corollary. Let G be a finite group. Then G is a w-group if and only
if the order of every element of G is a w-number (see 3.41).
Proof. If |G| is a w-number then, by Lagrange’s theorem, the order of
every element of G is a w-number. On the other hand, if |G| is not a
w-number then there is a prime p¢w such that p divides |G|. Then, by
Cauchy’s theorem, it follows that G has an element whose order is not
a @-number.

The following simple result is very useful: it is often referred to as
‘the Frattini argument’.

5.13 Lemma (G. Frattini [a29], 1885). If K is a finite normal subgroup of
G and P is a Sylow p-subgroup of K then G = Ny(P)K.
Proof. Let geG. Then

PP K=K,

since K < G. Therefore, since |P?| = |P|, P? is also a Sylow p-subgroup
of K. Hence, by Sylow’s theorem, P and P? are conjugate subgroups of
K; thus

P?=P* for some keK.
Then P*'=Pp,
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so that gk~ 'eN4(P).
Hence geN4(P)K.

This is true for every ge G, and so the result is proved.

5.14 Corollary. Let G be a finite group and P a Sylow p-subgroup of
G. Then, for every subgroup H of G which contains N 4(P), Ng(H) = H.
Proof. Let Ng(P)<S H<G. Then, since PSHS<G, P is certainly a
Sylow p-subgroup of H (252). Let L = N (H). Now apply 5.13 with H
in place of K and L in place of G: this gives L = N, (P)H. Since N, (P) <
Ng(P) < H, it follows that L = H, as asserted.

265 A group G, finite or infinite, is said to be a w-group if the order of every element
of G is finite and a w-number. (If G is finite, 5.12 shows that this definition is consistent
with the definition given in 3.41.)

(i) The set of all complex numbers z which satisfy an equation z" = 1, where n
ranges over all w-numbers, forms an infinite w-subgroup of C*, provided that
o+ Q.

(ii) All subgroups and all quotient groups of a w-group are w-groups.

(i) If H is a subgroup of finite index in a w-group G then |G : H| in a w-number.

*266 Let G be a finite group, p a prime divisor of |G|, and n the number of distinct
Sylow p-subgroups of G. Then the normalizers in G of the Sylow p-subgroups of
G form a single conjugacy class of n subgroups of G.

267 Let H< G. Then H is said to be intravariant in G fif, for every ae Aut G, & maps
H to aconjugate of Hin G.

(i) If G is finite, every Sylow subgroup is intravariant in G.

(i) If H < K € G and H is intravariant in K then G = Ng(H)K. (This generalizes
5.13)

268 Let J < G. Then J is said to be pronormal in G if, for every geG,J? = J* for
some xe{J,J?) ; and to be abnormal in G fif, for every geG,ge{J,J?).
(i) If K is a finite normal subgroup of G then every Sylow subgroup of K is
pronormal in G.
(ii) If J is pronormal in G then N4(J) is abnormal in G.
(iii) If J < H < G and J is abnormal in G then N4(H) = H.
(This generalizes 5.14. See also 270.)

269 Let J be a pronormal subgroup of G (268). Let n be the number of distinct
subgroups in the conjugacy class of J in G and suppose that n < co. Then n # 2.
(Remark. In the particular case when G is finite and J is a Sylow subgroup of G,
the assertion follows immediately from 5.9(c).)

270 LetJ < G. The following statements are equivalent:
(a) J is abnormal in G (268).
(b) Whenever H < G,geG and J < H H? then ge H.

We now show how Sylow’s theorem can be applied to prove that

certain numbers are ineligible as orders of finite simple groups. First
we note

5.15. Let G be a finite non-abelian simple group and let p be a prime divisor
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of |G|. Then the number n of Sylow p-subgroups of G is greater than 1.
Proof. Let P be a Sylow p-subgroup of G. By 4.29, |G| is divisible by
at least two distinct primes, and so 1 < P < G. If P were the only subgroup
of G of order |P| then P would be normal in G, in contradiction to the
simplicity of G. Hence n > 1.

5.16 Theorem. If |G|=pq, where p,q are distinct primes such that
q # 1 mod p, then G has a normal Sylow p-subgroup.

Proof. By Sylow’s theorem, the number n of distinct Sylow p-subgroups
of G is a divisor of ¢, and n = 1 mod p. Since q is prime, 7 is either 1 or g,
and since, by hypothesis, g # 1 mod p, it follows that n = 1. Thus G has
a unique Sylow p-subgroup, P say, and so P < G.

5.17 Corollary. If |G| = pq, where p,q are distinct primes, then G is not
simple.
Proof. We may assume without loss of generality that p > g. Then q — 1
cannot be divisible by p, and so, by 5.16, G has a normal Sylow p-subgroup
P. Since 1 < P < G, G is not simple.

We know that v(p) =1 for every p (1.3). From 5.16 we can show also
(cf. 1.4, 215, 575)

5.18 Cordllary. If p and q are distinct primes such that p % 1 mod q and
q % 1 mod p then w(pq) = 1; that is, every group of order pq is cyclic.

Proof. Suppdse that |G| = pq. By 5.16, G has a normal Sylow p-subgroup
P and a normal Sylow g-subgroup Q. Since P and Q have prime orders,
they are cyclic: say

P={x)> and Q={y).
By Lagrange’s theorem, P~ Q = 1. Hence, by 3.53,
Xy = yx.

Now it follows that the element xy of G has order pq (6), and so
{xy>=0G.

Thus G is cyclic.

5.19 Theorem. If |G|=p®q, where p,q are distinct primes, then G has
either a normal Sylow p-subgroup or a normal Sylow q-subgroup; and so
G is not simple.

Proof. Let n, and n, be, respectively, the number of Sylow p-subgroups
and the number of Sylow g-subgroups of G. Suppose, contrary to what
we wish to show, that n, > 1 and n, > 1. By Sylow’s theorem, n,, divides
g, which is prime: hence n,=gq. Also n,=1 mod p, so it follows that

q > p. Again by Sylow’s theorem, n, divides p?, so that n, is either p or p2.
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Now any element of order g in G generates a subgroup of order g, which
is a Sylow g-subgroup of G. Any two distinct subgroups of G of order
q intersect in 1, and so there are in G n (g —1) distinct elements of order
q. Hence, if n, = p?, there are in G just p2q — p*(q — 1) = p? elements which
are not of order g. But then, since no element of a Sylow p-subgroup P
of G has order g and since |P|=p? P must be the unique Sylow p-
subgroup of G, in contradiction to the supposition that n, > 1. Therefore
n, = p. But since also n, = 1 mod g, this implies that p > g, a final contra-
diction. -

5.20 Theorem. If |G| = pqr, where p,q,r are distinct primes, then G is
not simple.

Proof. We may assume that p > g > r. Suppose, contrary to what we
want to show, that there is a simple group G of order pgr. Let n,,n ,n, be,
respectively, the numbers of Sylow p-, Sylow g-, Sylow r—subgroups
of G. By 5.15, these numbers are all greater than 1. Since they have order
p, any two distinct Sylow p-subgroups of G intersect in 1. Hence the
n, Sylow p-subgroups of G contain n(p — 1) distinct elements of order p.
Similarly, the n, Sylow g-subgroups of G contain n (g — 1) distinct elements
of order g and the n, Sylow r-subgroups of G contain n(r — 1) distinct
elements of order r. Therefore

|G|=parz1+np—1)+nfg—1)+n(r—1).

By Sylow’s theorem, n, divides gr and n, =1 mod p. Since n, > 1 and
p>gq,p > r, it follows that n, = gr. Also, n, divides pr and n, =1 mod g.
Since n,> 1 and g >r,n, 2 p. Finally, n,>1 and n, divides pgq, so that
n, = q. Now we have

pqr=1+qr(p— 1)+ plg — 1) +q(r — 1),

and hence

0=2(p—-1D@-1,
which is plainly false.
271 There is no simple group of order 1000.

272 There is no simple group of order 300. (Hint. Use 4.14 to show that if there
were such a group, it could be embedded in Z ; but this is impossible.)

273 There is no simple group of order 132.

274 Suppose that G has normal subgroups H,J,Lsuchthat L < J < Hand |H/J|=
p,|J/L| = g, where p,q are distinct primes. Show that if p > ¢ then there is a normal
subgroup K of G such that L < K < H and |H/K|=g¢,|K/L|=

275 Suppose that G is a simple group of order 60.
(i) Find the number of subgroups of G of order 5 and show that G has exactly
24 elements of order 5.
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(ii) Show that G has no subgroup of order 15.
(iif) Show that G has exactly 20 elements of order 3.

276 If |G| = p?q, where p and q are distinct primes such that p> % 1 mod g and
q# 1 mod p, then G is abelian. (Hint. Use 3.54.)

277 Suppose that |G| = p™q, where p and g are distinct primes and m is a positive
integer. Let Q be a Sylow g-subgroup of G, and suppose also that Ny(Q) = Q. Then
G has a normal Sylow p-subgroup.

278 Every group of order 255 is cyclic. (Hints. Let |G| = 255. Show that G has a
normal subgroup of order 17 and a subgroup K of order 85. Groups of order 85
are cyclic. Use 4.18 to show that K < G. Then, by 4.36, 46, 78 and 94, K < Z(G).)

*279 (i) Let n= p™r, where m is a positive integer and r is an integer greater than 1
such that p does not divide r. If there is a simple group of order n then p™ divides
(r— 1)! (Hint. Use 4.14.)

(ii) There is no simple group of order 2™ x 5 for any integer m = 4.

We are going to show that the only non-abelian simple group of order at
most 100 is 4. We begin by noting

5.21 Lemma. When n< 4, X has no non-abelian simple subgroup.

Proof. This is clear for n <3, so we consider £,. We know that X, is
not itself simple, for the alternating group A4, is a non-trivial proper
normal subgroup of X, (3.58). If H were a non-abelian simple subgroup
of £, then, since |Z,| =23 x 3 and by 4.29, |H| would be divisible by
both 2 and 3. Hence | H| would be either 2 x 3 or 2% x 3. But these possibi-
lities are ruled out by 5.17 and 5.19 (or by 279).

5.22 Corollary. If G is a finite non-abelian simple group and H < G then
|G : H| = 5(cf. 207).

Proof. Let |G : H|=n. Then, by 4.14, G/H; can be embedded in Z,.
Since H; < H < G and G is simple, H; = 1. Thus G can be embedded in
%, .Hence,by5.21,n= 5.

5.23 Lemma. Let n be a positive integer such that n< 100 and n + 60.
Then there is no non-abelian simple group of order n.

Proof. Suppose that there is a non-abelian simple group G of order n.
Then n > 1 and we can express n in the form

s
n= HP:'",
i=1

where s,m,,...,m, are positive integers and p,,...,p, distinct primes.
We may assume that p, <p,<...<p,. By 429,522 If s=>4 then
n=2x3x5x7>100, a contradiction. Hence s is either 2 or 3. By

5.17, 5.19 and 5.20, Y. m;> 3. If . m; =7 then n>27 > 100, a contra-

i=1 i=1
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diction. Hence
S
4< Z m; < 6.
i=1

Suppose first that s = 2. If p, and p, were both odd then n >33 x 5>
100, a contradiction. Hence p, =2 and p, is some odd prime, say p.
Write m; = land m, = m. Then

n=2p",

where | and m are positive integers such that 4 <[+ m < 6. If [ <2 then
a Sylow p-subgroup of G would be a proper subgroup of index at most
4 in G, and this is ruled out by 5.22. Hence

3<ISS and 1sm<3.

Let the number of Sylow p-subgroups of G be n,. By 5.15, n, > 1; and,
by Sylow’s theorem, n, is the index in G of a subgroup of G (namely,
of the normalizer in G of a Sylow p-subgroup of G), n, divides 2 and
n,=1mod p. Hence n, divides 2° and, by 5.22, n, > 4. We cannot have
n, = 32, for this would imply that p = 31 and therefore that n > 32 x 31 >
100. Hence we must have

n,=8 and p=7, or n,=16 and p=3orSs.

If n,=8 and p=7 then, since |G|<100,|G|=56. Then, since the
Sylow 7-subgroups of G have order 7 and n, = 8, there are in G 8 x 6 =48
elements of order 7. But then there are in G just 56 — 48 = 8 elements
which are not of order 7, and these 8 elements must form the unique
Sylow 2-subgroup of G: this is in contradiction to the simplicity of G.
If n,= 16, then [>4: hence m= 1, since otherwise n>2* x 3> 100,
a contradiction. Thus, if n,=16 and p=3, a Sylow 2-subgroup of G
has index 3 in G, in contradiction to 5.22. Finally, if n,=16 and p=5
then, since |G| < 100, |G| = 80. But this possibility is ruled out by 279.

Now suppose that s = 3. Since n < 100 and n +# 60, this implies that
either n=22x3x7=84 or n=2x3%x5=90. If |G| =84, then the
number, n, say, of Sylow 7-subgroups of G is, by Sylow’s theorem, a
divisor of 12 and n, =1 mod 7. Moreover, n, > 1, by 5.15. These condi-
tions on n, are incompatible. Finally, since 90 =2 x 45 and 45 is an
odd number, we know by 205 that there is no simple group of order 90.
This establishes the lemma.

280 There is no simple group of order 6 x p™ for any prime p and positive integer
m. (Hint. Use 279, 5.20 and 5.22.)

281 Suppose that there is a simple group G of order 144. Then
(i) G has 16 Sylow 3-subgroups.
(i) Let H, and H, be distinct Sylow 3-subgroups of G. Then {(H,,H,> =G.
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Hence if H; nH, # 1 then Z(G) # 1: a contradiction.

(iii) By (ii), any two distinct Sylow 3-subgroups of G intersect trivially. Deduce
that G has only one Sylow 2-subgroup: a contradiction. Conclude that there is
no simple group of order 144. (Hints. Use 99, 4.30 and 5.22.)

282 Suppose that there is a simple group G of order 112. Let T; and T, be distinct
Sylow 2-subgroups of G, chosen so that | T, n T, | is as large as possible. Then
) [T (>4,

(i) Ng(T, N T,)is a 2-subgroup of G.

(iii) By Sylow’s theorem, there is a Sylow 2-subgroup S of G containing
N4(T,nT,). Then T, = S = T, : a contradiction.
Conclude that there is no simple group of order 112. (Hints. Use 99, 5.6 and 5.22.)
(Remark. A variant of this argument proves that there is no simple group of order
p™q, where p and q are distinct primes and m is a positive integer. See Huppert [b21]
p- 41 or Zassenhaus [b41] p. 138.)

5.24 Lemma. A is simple.

Proof. Suppose to the contrary that A is not simple. Let G = A5 and
choose a proper normal subgroup K of G of largest possible order. Then
K # 1. The quotient group G/K is simple: for otherwise G/K would have
a non-trivial proper normal subgroup H/K and then, by 3.30, H would be
a proper normal subgroup of G with |H| > | K|, contrary to the choice of
K. Since G/K is simple and |G/K| < |G| =60, it follows from 5.23 that
G/K is abelian. Hence, by 3.52,

[x,y]eK for all x,yeG.
Let {1,2,3,4,5} = {a,b,c,d,e}.
We see (using 3.59) that the non-trivial elements of A are of three kinds:
Sx4x3x2x1

(abcde) : there are 5 = 24 such elements;

(abc)  :there are S—X%—X—?’ = 20 such elements;
Sx4x3x2

(ab)(cd) : there are VR = 15 such elements.

We may choose for x and y above any elements of these kinds. Now
[ (aeb),(aecbd) ]| = (bea)(dbcea)(aeb)(aecbd)

= (abcde),
[ (adb),(bce) ] = (bda)(ecb)(adb)(bce)
* =(abo),
and [ (abc),(abd) ] = (cba)(dba)(abc)(abd)

= (ab)(cd).
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Hence (by choosing a, b, ¢, d, e appropriately) we see that every non-trivial
element of A belongs to K. Thus K =G, a contradiction. Therefore
we must conclude that A is simple.

It is fair to comment that there are more direct and elementary proofs
of the simplicity of 4. One such proof is given in outline in 287. The
proof given above has been placed in the present context in this book
because the applications of Sylow’s theorem used in the proof of 5.23
are central to the point of view adopted here, and are indeed an essential
part of finite group theory. The simplicity of 4, is then an easy deduction,
as we have seen in 5.24.

We shall now illustrate by an example how Sylow’s theorem may
be used to obtain information about subgroups of a finite group other
than p-subgroups.

5.25 Example. Find the types of all the proper subgroups of As whose
orders are divisible by at least two distinct primes, and find the numbers
of subgroups in each of the conjugacy classes of subgroups in A into which
they fall.

(i) Let G=A5. Then, since G is simple, 5.22 shows that for every
H<G,|G:H|>5 and therefore |H|<12. Hence, since |G|=60, the
possible orders of subgroups to be considered are 6, 10, 12.

(i) Now G has subgroups of order 12: for if we consider the natural
action of G on the set {1, 2, 3,4, 5} then clearly Stabgy(5)~ 4,. Let H < G
with H=~ A,. Then H has a normal subgroup T of order 4 (185), and
since 60 = 2% x 3 x 5, T is a Sylow 2-subgroup of G. Now H < N(T) <G,
since G is simple, and so, by (i), 12 = |H| < |Ng(T)| < 12. Hence Ny(T) =
H, and the number of Sylow 2-subgroups of G is equal to |G : H|=5.
Thus the normalizer in G of a Sylow 2-subgroup of G is isomorphic to
A,, and every subgroup of G isomorphic to A, is the normalizer in G
of some Sylow 2-subgroup of G. It follows by 266 that the subgroups
of G isomorphic to A, form a single conjugacy class of 5 subgroups.

(iii) Let the numbers of Sylow 3-subgroups and Sylow 5-subgroups of
G be, respectively, n, and ng. Then n, divides 2% x 5 and ny; =1 mod 3,
ng divides 2% x 3 and ny = 1 mod 5. Since also n, and n, are both at least 5,
we have n; = 10 and ny = 6. Let U be any subgroup of G of order 3, V any
subgroup of G of order 5, and J = Ng(U),K = Ng(V). Then |G : J| =ny =
10 and |G :K|=ns=6. Hence |J|=6 and |K|=10, so that G has
subgroups of orders 6 and 10. Moreover, 266 shows that the normalizers
in G of the Sylow 3-subgroups of G form a single conjugacy class of 10
subgroups of G of order 6, and the normalizers in G of the Sylow 5-sub-
groups of G form a single conjugacy class of 6 subgroups of G of order 10.

(iv) Now let J be any subgroup of G of order 6 and let K be any sub-
group of G of order 10. Then, by 5.16, J has a normal subgroup U of
order 3and K has a normal subgroup V of order 5. Then, by (iii), [N 4(U)| =



FINITE p-GROUPS AND SYLOW’S THEOREM 103

6 and |N4(V)| = 10, so that J = N4(U) and K = Ny(V). Hence the only
subgroups of G of order 6 are the normalizers in G of the Sylow 3-sub-
groups of G, and the only subgroups of G of order 10 are the normalizers
in G of the Sylow 5-subgroups of G.

(v) By considering the expressions of elements of 4, as products of
disjoint cycles, we see that G has no element of order greater than 5.
Hence the subgroups of G of orders 6 and 10 are not cyclic. Therefore,
242 shows thatif J, K < Gwith|J| = 6,|K|=10thenJ =~ Dgand K = D .

(vi) Finally, let H be any subgroup of G of order 12. Let T be a Sylow
2-subgroup of H and let U be a Sylow 3-subgroup of H. By 5.19, either
T <H or U <H.If U €H then |Ny(U)| = |H|=12; but, since |U| =3,
we know by (iii) that |[Ng(U)| = 6, a contradiction. Hence T < H. Since
|T|=4,T is a Sylow 2-subgroup of G. Thus, by (i), H < Ng(T) = A4,.
Since |H| = 12, it follows that H = N(T).

The required list is therefore as follows:

(a) aconjugacy class of 10 subgroups isomorphic to D,
(b) a conjugacy class of 6 subgroups isomorphicto D,
(c) aconjugacy class of 5 subgroups isomorphicto 4,.

We now use 5.24 as the basis for an inductive proof that A4, is simple
whenever n = 5. For this purpose we need to describe how X, is parti-
tioned into conjugacy classes.

5.26 Lemma. Let n be a positive integer and let 6,7€Z,. Let the expression
of o as a product of disjoint cycles be

0=(ay,0,...ay,)@a,, ...a,,)...(a ...ag),

where s,n,,...,n, are positive integers such that n, + ... + n,=n, and let
= <a“ 3. asns>
by, by,...bg,
0" =(byybyy... by, )by ... byy,) ... (bgy ... b, )

is the expression of 6° as a product of disjoint cycles.
Proof. Foreachi=1,...,sandeachj=1,...,n,

Then

T __ -1 — — —
bjot=bjt ot =0a;01=0;;,,T=b ;.

(where, if j = n;, we replace the subscript i,j + 1 by il).

5.27 Corollary. Let n be a positive integer and let 6,0'€Z,. Then o
and ¢’ are conjugate in Z, if and only if ¢ and ¢’ have the same cycle type;
that is, if and only if the expressions of ¢ and ¢’ as products of disjoint
cycles contain the same number of cycles of length m, for each integer m
such that 1 <Sm<n.
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Proof. Let the expression of ¢ as a product of disjoint cycles be

0=(ay1815-.- A1, )z ... A3y,) ... a5y ... G )

where s,n,,...,n, are positive integers such that n, + ...+ n,=n If
o' = ¢ for some teX, then 5.26 shows that ¢’ has the same cycle type
as o. If, conversely, ¢’ has the same cycle type as ¢ then the expression
of ¢’ as a product of disjoint cycles is of the form

' =(b11by5 b1y )by oo by ) (Byy . by,).

* sng
Then, if we set
a Air...4
T=< 11 12 sn,)ezn,
by by,y...b,

5.26 shows that ¢’ = ¢%, so that ¢ and ¢’ are conjugate in X, .
Remark. It follows that the class number of Z, is equal to the number
of partitions of n (cf. 1.5).

For instance, in Z, the possible cycle types are

()CAON(X), (x x), (x X)(x x), (x x x), (x x X x),
so that the class number of X, is 5. The numbers of elements of these
types are, respectively,
4><3__6 4x3x2x1 4><3><2_8 4x3x2x1

2 7 2x2x2 T3 7 4 -
Note that these numbers are all divisors of |Z,| =24, as they ought
to be, by 4.26, and

1, 6.

1+6+34+8+6=24.

283 Find the class number of Z,. Find the numbers of elements in the conjugacy
classes of elements in X, and verify that these numbers are divisors of 120 whose
sum is 120.

284 Find two elements of 4, which are conjugate in Z, but are not conjugate in
A,.

*285 Show that for every integer n = 3, Z(Z,) = 1.

286 Let n be a positive integer. The number of distinct conjugacy classes of elements
oforder 2in Z,isequal to n/2if nis even, and to (n — 1)/2if nis odd. (cf. 213. Hint. See
22)

287 Let G = A,. Let {1,2,3,4,5} = {a,b,c,d,e}.
(i) Verify that

(ab)(cd) = (acd)(acb)
and (abcde) = (abc)(ade).
Hence show that G = (X ), where X = {xeG : x> = 1}.
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(ii) Let xeG with o(x) = 3. Prove that C4(x) = {x). Deduce that the elements
of order 3 form a single conjugacy class of elements of G. (Hint. Use 4.26 and 5.26.)
(iii) Let u = (ab)(cd), v = (abcde) and g = (ab)(de). Verify that

uu? =(cde) and vv? = (bec).

Hence show that any non-trivial normal subgroup of G must contain an element
of order 3.
(iv) Conclude that G is simple.

*288 Verify that the following is a complete list of the conjugacy classes of non-
trivial proper subgroups of A, : (i) a normal subgroup of order 4, isomorphic to
C, x C,, (ii) a class of 4 subgroups of order 3, and (iii) a class of 3 subgroups of
order 2. (Hint. To eliminate the possibility that 4, has a subgroup of order 6, see
185. Alternatively, apply Sylow’s theorem.)

*289 Verify that the following is a complete list of the conjugacy classes of non-
trivial proper subgroups of Z, : (i) A,, a normal subgroup of order 12, (ii) a class
of 3 subgroups of order 8, isomorphic to Dy, (iii) a class of 4 subgroups of order 3,
(iv) a class of 4 subgroups of order 6, isomorphic to X5, (v) a normal subgroup of
order 4, isomorphic to C, x C,, (vi) a class of 3 cyclic subgroups of order 4, (vii)
a class of 6 subgroups of order 2, (viii) a class of 3 subgroups of order 2, and (ix) a
class of 3 non-cyclic subgroups of order 4, isomorphic to C, x C,. (Hints. To show
that 4, is the only subgroup of Z, of order 12, use 185. See also 229, 250, 261, 266.)

5.28 Theorem (3.60). A, is simple for every integer n = 3.

Proof. We argue by induction on n. The assertion is true when n=>5,
by 5.24. Assume that n >S5 and, inductively, that 4,_, is simple. Let
G = A,, and consider the natural action of G on the set X = {1,2,...,n}.
For each i=1,...,n, let H, = Stab,(i). Note that G acts transitively on
X : see the remarks following 4.12. Hence, by 187 (i), H,, ..., H, all belong
to the same conjugacy class of subgroups of G. Hence (2.20) for every
i=1,...,n, H;=H,~ A,_,, and so H, is simple.

Suppose, contrary to what we wish to show, that G has a non-trivial
proper normal subgroup K. Then, for every i=1,...n,H,n K< H, so
that, since H, is simple, H;n K is either 1 or H,. In fact, H;n K =1 for
every i. For suppose that there were a j such that H;nK = H;; that is,
such that H;< K. Then, by the remarks above, for any i there is an
element yeG such that H,=H}; and so, since K< G, H;SK"=K.
Thus K would contain every H;. But this would imply that K =G,
a contradiction. For if 6eG then either 16 = 1, in which case 6eH, <K,
or 1o =j for some j # 1. In the latter case, we can choose ie X with i # 1,
i#j. Then (jli)eG and ¢ = a(j1i)(j1i)~*. But then a(jli) is an element
of G which fixes the point 1, so that o(jli)e H, < K; and, since |X|> 3,
there is a point le X such that (jli)~! = (i1j))eH, < K. Hence also 6e K.

Thus H;nK =1 for every i=1,...,n. Now let 1+ geK. Thus, for
every i,o¢ H,: that is, ¢ fixes no point of X. Let acX, and let ac =b # a.
Since | X | > 3, there is a point ce X such that c#a,c#b and ¢ #ac™ .
Let co =d: then, since ¢ is a permutation of X which does not fix c,
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d is distinct from a, b and c. Since in fact | X | > 6, we can choose two more
distinct points e,fe X, both distinct from a,b, c,d. Now let

T = (ab)(cdef)eG (by 3.59).

Then, since ¢ moves a to b and ¢ to d, 5.26 shows that ¢* moves b to a
and d to e. Moreover, o°cK, since K < G. Hence o6°cK and o¢° fixes
a and moves ¢ to e(+c¢). Thus 1+ o60°eH,nK: a contradiction. We
conclude that G is simple, and so the induction argument goes through.

It is clear that for each integer n> 2,4, has subgroups isomorphic
to A,_, ; and these subgroups have index n in A4,, since |4,| =n|4,_,|.
Now we note

5.29 Lemma. Let n be any integer with n > 2. Every subgroup of index n in
A, is isomorphic to A, _, .

Proof. This is clear if n <5, so assume that n=> 5. Let H < G = A4, with
|G : H|=n. Consider the action of G by right multiplication on the
set of right cosets of H in G. Since G is simple, by 5.28, this action is
faithful. Hence, by 198, the action is equivalent to the natural action
of a suitable subgroup, J say, of £, on the set {1,2,...,n}. Since |J| = |4,,|
and (see 290 (ii)) the only subgroup of index 2 in X, is 4,, we see that
J = A,. The actions in question are transitive and so, by 199,

H = Stabg(H) = Stab An(n) ~A,_,.

Now we can complete the proof of

5.30 Theorem. Let G be a finite non-abelian simple group of order at most
100. Then G = A;.

Proof. By 5.23, |G| =60. Let n be the number of Sylow 5-subgroups
of G. By 5.15, n > 1, and by Sylow’s theorem, G has a subgroup of index
n, n divides 12 and n =1 mod 5. Hence n = 6. Then, since G has a sub-
group of index 6 and G is simple, it follows from 4.14 that G can be embed-
ded in ;. Let G* be a subgroup of X, isomorphic to G. Then, by 184,
since G* is simple, G* does not contain an odd permutation: thus G* < 4.
Now |G*| =60 and |A¢| = 360, so that |4 : G*| = 6. Hence 5.29 shows
that G* = A4,.

*290 (i) For every integer n = 5, A, is the only non-trivial proper normal subgroup
of Z,. (Hint. Use 119 and 285.) i

(i) For every integer n= 2, A4, is the only subgroup of index 2 in Z,. (Hint. For
the case n = 4, see 289.)
291 Let N denote the set of all positive integers. As in 148, let G = X, the restricted
symmetric group on N, and, for each ne N, let

G,={0eG :jo=j foreveryjeN withj>n}.

Thus, by 148,G = ) G, and G, =~ Z, for every neN.

n=1
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Now let H, =1 and, for each integer n> 1, let H, be the unique subgroup of
index 2 in G, : see 290(ii). Then, for each integern> 1,H,~ A,;and H,,H,,H, ... is
an ascending sequence of subgroups of G.

LetH= () H,< G (3.34). Show that |G : H| = 2 and that H is simple. Show also

n=1
that H has an infinite abelian subgroup.

(The infinite simple group H is denoted by Ay. Hints. See 155. To demonstrate
the existence of an infinite abelian subgroup of H, note that, by 2.28, it is enough
to show that there is an infinite commuting set of elements in H. Remark. The group
A\ is not finitely generated (by 3.36). The existence of finitely generated infinite
simple groups was first established by G. Higman [a57].)

292 Let n be an integer, n = 2. Every subgroup of index n in X, is isomorphic to
2,_,. (Hint. For n 2 5 use an argument similar to the one in 5.29. The appropriate
action is faithful by 290.)

293 There is no simple group of order 120. (Hint. Show that if there were such a
group, it could be embedded in =, and then apply 292.)

294 If G is a simple group of order 12 x p™, for some prime p and positive integer
m, then G = A,. (Hint. Use 272, 273, 279, 5.22 and 5.30.)

295 Suppose that there is a simple group G of order 180 and let n, and n, be, res-
pectively, the numbers of Sylow 3-subgroups and Sylow S-subgroups of G. Then
(i) ny =10 and n, is either 6 or 36.

(ii) If ny;=6 then G can be embedded in Ag; but this would contradict the
simplicity of A4,.

(iii) Hence 15 = 36 and each Sylow 5-subgroup of G coincides with its normalizer
inG.

(iv) Let H, and H, be distinct Sylow 3-subgroups of G,J=<{H,,H,) and
D=H,nH,. ThenD<Z(J)and |J :H,|>4.

(v) If D+ 1 then 5 does not divide |J| and |J : H,| = 4; but this would imply
that G could be embedded in X, which is impossible.

(vi) Hence any two distinct Sylow 3-subgroups of G intersect trivially. Then
there are in G 144 distinct elements of order S and 81 distinct elements of orders
dividing 32. This is too many elements! Conclude that there is no simple group
of order 180. (Hints. Use 99, 184, 4.14, 4.30 and 5.22.)

296 Let n be an integer such that 100 <n <200 and n+# 168. Then there is no
non-abelian simple group of order n. (Hint. Argue as in 5.23 and use 205, 279, 281,
282, 293, 294 and 295. Remark. There is a simple group of order 168, namely the
group PSL,(Z,): see 3.61. This group is in fact isomorphic to GL4(Z,). See also
385.)

Sylow’s theorem provides no information about the internal structure
of a finite p-group G, for then G itself is the unique Sylow p-subgroup
of G. However, the theorem points to the desirability of an investigation
of finite p-groups, since we may expect that their properties will have
an important bearing on the structure of finite groups in general. By
means of group action arguments, we have already established some
special properties of finite p-groups. If G is a non-trivial finite p-group,
we know that

(i) whenever H < G,H < Ng(H) (5.6),
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(ii) whenever 1 < H< G,H nZ(G) # 1 (5.8),
and in particular Z(G) # 1.

We shall have some more to say about finite p-groups in chapter 11.
(For further information, see Gorenstein [b13] chapter 5, and Huppert
[b21] chapter 3.) We end this chapter by proving the following result,
which shows that a finite p-group has normal subgroups of all possible
orders.

5.31 Theorem. Let G be a finite p-group with, say, |G| = p™. Then G has
normal subgroups G, G4, ...,G,, such that

1=G,<G,<...<G,,_, <G, =G

and |G;| = p' for every i=0,1,...,m.

Proof. We argue by induction on m. The assertion is trivial if m < 1.
Suppose that m > 1, and assume inductively that the result is true for
any group of order p"~!. By 5.8, Z(G) # 1. Let 1 # ze Z(G). Then o(z) =
p" for some integer n> 0. Let G, = (z*""' > < Z(G). Then |G,|=p and
(by 118) G, < G. Let G = G/G,. Then |G| =p™~" and, by the inductive
assumption, G has normal subgroups G;(i=0, 1,...,m — 1) with

1=G,<G,<...<G,_,=G and |G,|=pforevery i.
By 3.30, each G, is of the form
Gi=Gi+1/Gl’
where G, < G, , < G. Moreover, by 3.29,
G, <G,<...<G,=G,

and for every i,|G;,,|=|G;||G,|=p'*'. Now (with G,=1) the sub-
groups G,,G,,...,G, of G satisfy the conditions stated, and so the
induction argument goes through.

5.32 Corollary (1.6). Let G be a finite group and let p™ be any prime power
divisor of |G|. Then G has a subgroup of order p™.

Proof. Let H be a Sylow p-subgroup of G and say |H|=p'. Then m<1
and therefore, by 5.31, H has a subgroup J of order p™. Then J is a subgroup
of G of order p™.

Remark. If p™ is a divisor of | G|, but not the highest power of p dividing
|G|, then the subgroups of G of order p™ need not form a single conjugacy
class of subgroups of G: see 289 or consider the group C, x C,. Thus if
we think of 5.32 as a generalization of 5.9(a), the analogous generalization
of 5.9(b) fails. However, part of the analogous generalization of 5.9(c)
holds true: the number of distinct subgroups of G of order p™ is congruent
to 1 mod p. For a proof of this (due to Wielandt) see Ledermann [b29],
theorem 27.
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*297 Let G be a finite group.

(i) If G is a non-trivial p-group then G has a normal subgroup of index p.

(ii) If G is abelian and p divides |G|, then G has a subgroup of index p. (Hint.
Apply 135.)

(iii) In general, G has a normal subgroup of index p if and only if p divides | G/G’ .
(Hint. See 3.52.)

298 Let I,m,n be positive integers such that /=m = n, and suppose that P is a
group of order p'. If R is a subgroup of P of order p" then there is a subgroup Q
of Psuchthat R< Q < Pand |Q| = p™

299 (i) Let G beafinite group and p a prime divisor of | G|. If there is in G a conjugacy
class of elements containing just |G|/p elements then p? does not divide |G|.

(i) The class number of 4, is 4.

(iii) If G is a finite group of order 12 and class number 4 then G =~ A, .
(Hints. For (i), use 298 and 4.30. For (iii), use (i) to show that G has a non-normal
subgroup of order 3, and then use 4.14 and 290.)

300 Let G be a finite group and let p™ be a divisor of |G | Let P be a Sylow p-subgroup
of G and assume that the number of normal subgroups of P of order p™ is congruent to
1 mod p. (This is in fact always true.) Deduce that the number of subgroups of G
of order p™ is congruent to 1 mod p. (Hint. Let P act by conjugation on the set of
all subgroups of G of order p™.)

301 Let G be a finite group and let d(G) denote the least positive integer n such
that G has a set of n generators.

(i) If HS G then d(G) < d(H) + d(G/H).

(ii) If |G| = p™ for some positive integer m then d(G) < m.
(Note that this bound cannot be improved, as is shown by the additive group of a
vector space of dimension m over the field Z,.)

(iii) If |G| = [] p™, where s,m,,...,m, are positive integers and p,,...,p, are
i=1

distinct primes, then d(G) S Y. m; < log, |G]|.

i=1
(iv) Forevery integer n> 1,
W(n) < (nl)los2" < pnlosan,

(Hints. For (ii), use 5.31; for (iii), note that if P, is a Sylow p-subgroup of G for each
i=1,...,sthen G=(P,P,,...,P,>; and for (iv), use Cayley’s theorem 4.24.)



6

GROUPS OF EVEN ORDERS

Throughout this chapter, let G be a finite group of even order. Then we
know by 1.13 (or by 5.11) that G contains at least one involution. Suppose
that there are in total n involutions in G, and let them be denoted by

tiseeerty.

Let the class number of G be k and choose one element from each of the
k conjugacy classes: let these elements be denoted by

1=Xg,%15000s Xy
Fori=0,1,...,k—1, let

c; be the number of ordered pairs (4, v) of involutions in G such that
uw=x;:

then c, is a non-negative integer.
We shall prove the result of R. Brauer and K. A. Fowler stated in
1.14. In order to do this we need several preliminary results.
k—1
6.1. =3 ¢|G:Cglx)|
i=0
Proof. Consider the n? products ¢ U,k =1,...,n). By definition, precisely
¢; of these are equal to x;. For any geG,t/ and ¢ are involutions, and
t;t, =x; if and only if 9 = x{. Hence precisely ¢, of the n> products
are equal to x?. Since the number of elements in the conjugacy class of
x; is |G : C4(x;)| (4.26), the formula stated is correct.
6.2. (i) If x? + 1 then c, is the number of involutions t; such that x/ = x; L
(ii) If x; is an involution then c, + 1 is the number of involutions in Cg(x,).
(iii) ¢q=n.
Proof. Suppose that (u,v) is an ordered pair of involutions in G such
that uv = x;. Then

X=w)=m=v"u"t=x"1

Thus we can define a map

@ :(u,v) u
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from the set of ordered pairs of involutions (u,v) with uv = x; to the set
of involutions u with x¥ = x;'. This map ¢ is injective, for if (u,v) and
(w,v) are pairs of involutions with uv =x;, =u'v' and u=1u' then also
v="0'.

Now suppose that u is an involution in G such that x¥=x;!. Let
v=ux;. Then

w=x, and v?*=xix;=1.

Thus, providing v s 1,(u,v) is an ordered pair of involutions such that
uw=x; and (u,v)p =u. If v =1 then x; =y, an involution. Hence, when
x; is not an involution, the map ¢ is bijective. This proves (i) and (iii).
(In any case, (iii) is obvious.)

Now assume that x; is an involution. Then x;!=Xx;, so that any
involution u such that x¥ = x;”! must belong to Cg(x,). Every involution
in C4(x;), except x; itself, appears as the image under ¢ of some pair:
for if u is such an involution and we set v = ux;, then, because u and Xx;
commute, v*> = 1 and, since u # x;,v # 1; then also uv = x; and (4, V)¢ = u.
(Note that if u = x; and veG with uv = x; then v = 1, not an involution:
this shows that x; does not appear in the image of ¢.) This proves (ii).

6.3 Definition. Let xeG. Then x is said to be real in G if x and x!
are conjugate in G. (The reason for the use of the word ‘real’ here lies
in character theory: see for instance Huppert [b21] p. 537.) Note that
if x> =1 then, trivially, x is real. In general G may have real elements
x with x2 # 1.

6.4. Let xeG and let
C¥(x) = {geG : x* is either x or x~ '},

the extended centralizer of x in G (234). Then C¥(x) < G and

(i) if either x> = 1 or x is non-real in G then C¥(x) = C4(x),

(ii) if x> # 1 and x is real in G then |C¥(x) : C4(x)| = 2.
Proof. 1t is straightforward to verify directly that C¥(x) < G. (Alterna-
tively, apply 234.) The statement (i) is obvious. Suppose that x* # 1 and
x is real in G. Then x~! # x and there is an element ge G such that x? =
x~1. Thus geC¥%(x)\Cq(x). Now let g’ be any element of C¥(x)\Cg(x).
Then x% =x"'=x? and so g’'g~'e€C4x), hence g'eCg(x)g. Therefore
C¥(x) = C4(x) L C4lx)g, and so |C¥(x) : C4(x)| = 2. This proves (ii).

6.5. Let xeG. If x is real in G then the number of elements ge G such that
x? = x"isequalto|Cg(x)|.

Proof. The result is clear if x*> = 1. Suppose that x> # 1. Then, as in the
proof of 6.4, the set of elements geG such that x/=x""! is a coset of
C4(x) in C¥(x), and therefore contains |C4(x)| elements. (This is just a
particular case of 210.)
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6.6. For each i=0,1,...,k—1,¢; < ICG(xi)|. Moreover, if x; is non-real
in G then c; =0, while if x; is an involution then ¢, <|Cg(x;)| — 2.

Proof. The fact that if x; is non-real in G then c; = 0 is immediate from
6.2(i) and 6.3. Now suppose that x; is real in G. By 6.5, the number of
elements ge G such that x{ = x; ! is equal to |Cg4(x;)|. Hence the number
of involutions t; such that x{ = x;” ! is at most |Cg(x;)|. Then if x? + 1,
¢;<|Cg(x)|, by 6.2(). If x; is an involution then ¢; <|Cy(x)| —2, by
6.2(ii) and since 1€Cy(x;) and 1 is not an involution. Finally, if x; =1,
that is if i =0, then, by 6.2(iii), c, =n <|G|=|Cg4(x,)|- This covers all
cases.

302 Let J be a finite group. If there is a non-trivial element xeJ such that x and
x~! are conjugate in J then |J| is even.

303 Suppose that H is a cyclic normal subgroup of G of order 4 such that H € Z(G).
Then every element of H is real in G.

304 Let n be a positive integer.
(i) In Z, every element is real.
(i) Let n= 3. In the dihedral group D,, every element is real.
(iii) In the quaternion group Qg (181) every element is real. (Hint. Apply 303.)

305 In the alternating group A, of degree 4, the only elements x which are real
are those satisfying x? = 1. (Hint. See 185.)

306 Verify the formula of 6.1 for each of the groups Z,,05,4,.

307 Let xeG. Then x is said to be strongly real in G if there is an involution teG
such that x' = x~ 1.
(i) If x? = 1 then x is strongly real in G.
(ii) If x # 1,x is real in G and | C4(x)| is odd, then x is strongly real in G.
(iii) Also, in the notation of this chapter, if x; is strongly real in G then either
¢; > 0 or x; is an involution and the only involution in C4(x;).
(iv) If x; is not strongly real in G then ¢; = 0.

308 Let nbe an integer, n = 2.
(i) InZ, every element is strongly real.
(i) Let n=3.In D,, every element is strongly real.
(iii) In Qg the only elements x which are strongly real are those satisfying x> = 1
(cf. 304).

309 Suppose that G has n involutions. For any subgroup H such that |H |>
|G|/(n + 1), there is an element he H such that h# 1 and h is strongly real in G.
(Hint. If | H| is odd, let I be the set of involutions of G and show that there are distinct
elements x , ye H such that (xI)n(yI) # @.)

310 Let T = {xeG :x*>=1} and suppose that T is a commuting set of elements.
Prove that T < G and that no element of G\T is strongly real in G. Show by an
example that it can happen under these conditions that T < G and all elements of
G arereal in G.

Prove also that if y is an element of G which is real in G then T N Cy(y) # 1. (See
316 for a converse result. Hint. If y has odd order greater than 1, apply 307 (ii).)

6.7 Theorem. (R. Brauer and K. A. Fowler [a8], 1955). Let G be a group
of even order with precisely n involutions, and suppose that |Z(G)| is odd.



GROUPS OF EVEN ORDERS 113

Let a=|G|/n (not an integer in general). Then G has a proper subgroup H
such that either |G : H|=2or |G : H| <}a(a + 1).

Proof. We may suppose the elements x,,X,,...,x,_, labelled so that
Xy,..., X, are involutions, x,,,...,X,_, are real but not involutions,
and x,,...,X,_, are non-real in G, where s and r are integers such that
0<s<r—1<k-—1. Since each of the n involutions in G is conjugate
in G to justone of x, ..., x,, and by 4.26,

s
n= 3 |G:Cq(x)|. @)
i=1
Also, by 6.1,
k—1
= clG:Cox)).
i=0

Hence, by 6.2(iii) and 6.6,

s r—1
n?Sn+ ) (|Cox)| =[G : Colx)|+ X [Colx)] |G : Colx)

i=1 i=s+1

—n+(—=1)|G| -2 |G :Cylx))
i=1

=n+(r—1)|G|—2n, Dby ().
Thus
< (r—1)|G| - n. (ii)
Let j=min{|G:H|:H <G}.

If j = 2, there is nothing more to prove; so suppose j > 2. Since | Z(G)|
is odd, no involution lies in Z(G) and therefore

Csx)<G fori=1,...,s.
Hence JS|G:Cylx)| fori=1,...,s.
Therefore,by (i),

sj<n. (iii)
Fori=s+1,...,r—1,x; is real in G and x? # 1. Hence, by 6.4,
|C&(x)) : Colxy)| = 2.

Since j > 2, G has no subgroup of index 2 and therefore

C¥x)<G fori=s+1,...,r—1.
Hence J<|G : C¥x)|,

that is,
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<3G :Cox)| fori=s+1,...,r—1. (iv)
The total number of real elements in G is
r—1
l+n+ Y |G:C4ex)|<|G].
i=s+1
Hence, by (iv),
1+n+2j(r—s—1)<|G|. )
From (ii),
n?<s|G|+(r—s—1)|G|—n
6l dsl-1-mi6]
J %

by (iii) and (v); thus
2
, nel, IoF _ldl
S TR TH T
Multiply this last inequality by | G|/n?. Then, with |G|/n=a,
2

|G|<m [Gla* _a® _

2j 2 P
2j 2j
Hence
2j<a+a?
and so j<3a(a+1), as asserted.

6.8 Corollary. Let G and a be as in 6.7. Then G has a proper normal
subgroup K such that either |G/K|=2 or |G/K|<[3a(a+1)]! (where,
for any real number b,[b] denotes the largest integer not greater than b).
Proof. Let H be as in the statement of 6.7 and let K = H;, the core of
H in G. Then K is a proper normal subgroup of G and, by 4.14, G/K can
be embedded in g y|. The result follows.

6.9 Corollary (1.14). Let G be a simple group of even order greater than 2,
let t be any involution in G, and let m=|Cg(t)|. Then C4t) <G and
|G| < Gm(m + 1))!

Proof. Since G is simple and has even order greater than 2, G is non-
abelian. Therefore Z(G) is a proper normal subgroup of G and so Z(G) = 1.
Hence C(t) < G. Now we use the notation of the proof of 6.7. The involu-
tion ¢ is conjugate in G to some x, with 1 <! <s. Then
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m= |CG(t)| = |CG(x,)| (229).

Since
n= 3 16:Cqlx)]
i=1

(equation (i) of the proof of 6.7),

1_

oy s 1
a |G|~

Zl ICG(xi)l - |C(;(x,)| Tm

s

Hence

asm.
We now apply 6.8. The conditions are satisfied and, since K is a proper
normal subgroup of G and G is simple, K = 1. Then, since |G| > 2,

|G| < [Za(a+ 1)]!'< Gm(m+ 1)!
Recall the deduction of 1.15 from 1.14.

311 We have tacitly assumed that the proof of 6.7 remains valid when G has no
real element of order greater than 2, that is, when s + 1 =r. Check through the
proof of 6.7 and show that the argument yields the following sharper result in this
case:

Let G be a group of even order with precisely n involutions and let a=|G|/n.
Suppose that |Z(G)| is odd and that there is in G no real element of order greater
than 2. Then G has a proper subgroup H such that either |G : H|=2or |G : H|<a.

312 (i) In the alternating group A, of degree 5, there are just 15 involutions.
(ii) Let G be a simple group of even order greater than 2 and suppose that G has
n involutions. Then n < |G|/3.

313 Let G be a simple group of even order greater than 2, and let ¢ be an involution
in G. Use 6.9 to show that |Cg(t)| > 2. (Remark. A stronger result than this has
been obtained by other methods in 263; cf. 287(ii).)

One of the most striking special properties of groups of even orders
is that the structure of subgroups generated by 2 involutions can be
characterized precisely. Nothing comparable is available for subgroups
generated by elements of orders greater than 2.

6.10 Definition. We shall say that a group D is of dihedral type if it is
non-abelian and has a set of 2 generators {x, t} such that ¢ is an involution
and x' = x"1.

Note that for each integer n = 3, the dihedral group D,, of order 2n
(defined in 2.24) is of dihedral type. We shall now show conversely that
any finite group of dihedral type is isomorphic to D,, for some integer
n=3. (Note also that the infinite dihedral group D (57) is of dihedral
type. Conversely, any infinite group of dihedral type is isomorphic to

D, : see 314))
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6.11. Let D be a finite group of dihedral type. Then D = D,, for some
integer n = 3.

Proof. By definition, D is non-abelian and there are elements x,teD
such that D = {x,t>,0(t) =2 and x' = x . Let o(x) = nand let X = {x).
Since D is non-abelian, X < D. Since D = {x,t> and x' = x™!, it is clear
that X< D. Now (by 108) D/X ={xX,tX)=<tX), since xeX.
Since t¢ X but t?eX, it follows that |D/X | =2. Hence |D|=2|X|=2n
and

D={1,x,x%...,x"" L, t,xt,x?t,...,x" " t}.

Since D is non-abelian, n = 3, by 4.30 (or 77).
Now let G=D,,, the dihedral group of order 2n. In the notation
of 2.24,

G={1,p,p%...,p" & pe,p,...,p" e},
where p"=1=¢% and p®*=p~!. It is now easy to check that the map
xthe pled (i=0,1,...,n—1; j=0,1)

is an isomorphism of D onto G.

6.12. Every group D of dihedral type can be generated by 2 involutions.
Proof. Suppose that D = {x,t), where t is an involution and x' = x~ 1.
Then also D = {xt,t), since x = (xt)t. Certainly xt # 1, since D is non-

abelian, and
(xt)? =xx'=1.

Thus xt is an involution.
The remarkable fact is that the converse is true. The proof is extremely
easy.

6.13 Theorem. Suppose that D is a non-abelian group which can be
generated by 2 involutions. Then D is of dihedral type.

Proof. Suppose that D = (s,t), where o(s) =2 =o0(t). Then also D =
{st,t), since s = (st)t. Moreover,

(st =tst>=t"1s" 1 =(st)" 1.

Hence D is of dihedral type.

Remark. If A is an abelian group which can be generated by 2 involutions,
say A = (s,t), where o(s) = 2 = o(t), then either s=t and 4 ={s>=C,
or s#tand A= {l,s,tst}=C, x C,.

6.14 Corollary. Let s and t be involutions in G. Then either s and t are
conjugate in G or there is an involution ue{s,t) such that u commutes
with both s and t.
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Proof. Let D = (s,t). If D is abelian, there is nothing to prove. Assume
then that D is non-abelian, hence, by 6.13, that D is of dihedral type.
Let x = st. Since G is finite, x has finite order, say n. As in the proof of
6.13, D={x,t> and x'=x"", and, as in the proof of 6.11, |D|=2n. If
nis odd, then {s) and <t are Sylow 2-subgroups of D and are therefore
conjugate in D. Because s,t are the only non-trivial elements of {s),{t)
respectively, the conjugacy of the subgroups {s),{t>» implies the conju-
gacy of the elements s, t.

Now suppose that n is even and let u = x"2. Then ueD and o(u) = 2.

Since

-1 1

X*=ts=x and x'=x"1,
(xn/Z)s = x—n/2 — (xn/2)t,

that is, w=ul=u=1u.

Thus u commutes with both s and t.
We use this to prove

6.15 Theorem (R. Brauer). Suppose that G has at least 2 conjugacy
classes of involutions. Let t be an involution in G such that |Cy(t)| is as
large as possible. Then

|G| <[Cg0)*.

Remark. This result is of course trivial if | Z(G)| is even, for then C(t) = G;
but if | Z(G)| is odd then C4(t) < G.

Proof. Let |C(t)] =m and |G : C4(t)| =j. Then mj=|G| and we want
to prove that j < m2. By hypothesis, there is an involution s in G which
is not conjugate to ¢. Let the distinct involutions in C(s) be

S5=8.,55,...55.
By choice of t, foreach k=1, ...,], )
|Cols )| < m.
In particular,

1<|Cyls)| <m.
1

Hence the number of distinct non-trivial elements in the set () Cg(s,)
k=1
is at most equal to

!
Y |Cols)| —1<Im—1<m?
k=1

By 4.26, t has exactly j distinct conjugates in G, say

t=1ty,t5,...,1;
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Each of these elements is non-trivial, and so the required inequality
1

j<m? will follow if we show that every ¢, lies in () C4(s,). Since each
k=1

t; is conjugate to ¢ but ¢ is not conjugate to s in G, ¢; is not conjugate to

s. Hence, by 6.14, there is in G an involution u; which commutes with

both s and ¢;. Then u;e C4(s) and therefore
u,=s, forsomekwithl<k<l

Hence t,eC(u,) = C4(s,).

Remarks. The conclusion of 6.15 does not hold in general for a group
G with only 1 conjugacy class of involutions: see 318. However, it is
true that for any group G of even order greater than 2, there is a proper
subgroup H of G such that |G| < |H|?: see 319. A corresponding result
holds for groups of odd orders. If K is a non-trivial group of odd order,
with |K| not a prime, then there is a proper subgroup L of K such that
|K| < |L|?. Infact, in this case the assertion can be improved to | K| < |L|?,
and further to |K|<|L|?* unless |K|=p? for some prime p: see 503,
664. But the only known proofs of these facts for groups of odd orders
are made by invoking the very deep Feit—Thompson theorem (1.12).
It would be interesting to find proofs independent of this. For further
information about groups of even orders, we refer to R. Brauer and K. A.
Fowler [a8] and Gorenstein [b13] chapter 9.

314 Let D be an infinite group of dihedral type. Then D = D_ . (See 57. Hint. Argue
asin 6.11.)

315 Let G = A,, the alternating group of degree S. There are in G elements ¢, x, y
such that o(t) = 2, o(x) =3 =o0(y) and G = {x,t)> = {(x,y). (cf. 6.13, 179. Hint. Use
5.25)

316 Suppose that G has no strongly real element of order greater than 2. Then
the set of all involutions in G is a commuting set of elements. (Hint. See 6.13. Remark.
This is a converse to 310.)

317 Let T be a Sylow 2-subgroup of G. Suppose that T ¥ G and that T T? =1
whenever geG and T? # T. Then G has just 1 conjugacy class of involutions. (Hint.
Apply 6.14.)

318 Let G = D,,, the dihedral group of order 2n, where n is an odd integer, n = 3.
Then

(i) G hasjust 1 conjugacy class of involutions (cf. 214).

(ii) Let ¢ be an involution in G. Then Cy(r) = <t). Hence |G| <|C4(t)|* if and
onlyifn=3.
(Note also that Z(G) = 1:see 124; cf. 6.15.)

319 (a) Suppose that G has just 1 conjugacy class of involutions and that | Z(G)|
is odd. Then there is a real element xeG such that C4(x) < G and |G| < |Cg(x)|>.
(Hints. Let the notation be as in the proof of 6.7, where now s = 1. Define m, =
|Colx,)| and, if r=2, m=0, while if r>2,m=max{|Cg(x)|:i=2,...,r—1}.
Use 6.1, 6.2 and 6.6 to show that n®> < (m, — 1)n+ (r — 2)|G|. By counting the
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total number of real elements in G, show that (r — 2)|G|<m(|G|— 1 — n). From
these two inequalities and the fact that m;n = |G|, deduce that |G| < max{m3,m*}.
Finally use 6.4.)

(b) For any group G of even order greater than 2, there is a proper subgroup
H such that |G| < |H|?. (Hints. Argue by induction on |G|. If | Z(G)| is odd, apply
(a)and 6.15.1f| Z(G)| is even, there is an involution ze Z(G). Then consider G = G/{ z).
If |G| is even, apply the induction hypothesis to G, while if |G| is odd, use 205 and
184)
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SERIES

In this chapter we shall develop further the theory introduced in chapter 3
of the normal structure of a group (as distinct from the arithmetical
structure discussed in chapters 4, 5, 6). We shall prove the Jordan—-Holder
theorem (1.9) and introduce two important classes of groups, the classes
of nilpotent groups and soluble groups.

It is sometimes convenient to write G = H to have the same meaning
as H < G; and similarly G > H for H < G and G2 H for HS G. Recall
also from chapter 1 that we use the notation K <G to mean ‘K is a
proper normal subgroup of G’.

7.1 Definitions. Let H < G. Suppose that there is a finite sequence
(H;)o<;<n Of subgroups of G, such that

H=H,<H,<..<H, <H,=G. (a)

Then we call (a) a series of length n from H to G (or from G to H if we wish
to think of the series as ‘descending’ rather than ‘ascending’). The sub-
groups H,,H,,...,H, are called the terms of the series and the quotient
groups H;/H;_,(i=1,...,n) the factors of the series. When we refer to a
series of G (without qualification), we mean a series from 1 to G (or from
G to 1). (Warning. What is here called a series is called by some authors,
e.g. Macdonald [b30], a ‘normal series’. We shall reserve the latter name
for a series in which each term is normal in the whole group: see 7.33.)
The series (a) is called proper if

H,_,<H; foreveryi=1,...,n.
Another series
H=J,<J,9..4J,=G (b)

from H to G is said to be a refinement of (a) if n < m and there are non-
negative integers j, <j; < ... <j, <m such that

H;=J; fori=0,1,...,n;

that is, if (a) can be obtained from (b) by deleting terms of (b). Then (b)
is said to be a proper refinement of (a) if there is a je {0, 1, ..., m} such that

H;#J; fori=0,1,...,n
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A proper series of G which has no proper refinement is called a com-
position series of G. The factors of a composition series of G are called
composition factors of G.

Note that every finite group has a composition series: see 1.8. An
infinite group need not have a composition series. For instance, the
infinite cyclic group Z* is not simple and every non-trivial subgroup of
Z* is isomorphic to Z™* (3.25); therefore, any series of Z* has a proper
refinement. On the other hand, we know that there are infinite groups
which have composition series, for we know that there are infinite simple
groups: see 3.61 and 291.

7.2 (cf. 1.10). A series
1=G6,96G,¢...4G,=G

of G is a composition series of G if and only if the factors G,;/G,;_, of the
series are all simple (i=1,2,...,n).

Proof. If the series is a composition series of G then it is by definition
proper, and so the factors G,/G;_, are all non-trivial (i=1,...,n). If
some factor G;/G;_, were not simple, it would have a proper non-trivial
normal subgroup, say H/G,_,. But then we should have G;,_, <H < G;
(by 3.30) and hence obtain a proper refinement of the original series
by inserting H as an extra term between G;_, and G,;. This is contrary
to the definition of composition series. Hence the factors of a composition
series are all simple.

On the other hand, if the given series is not a composition series then
either the series is not proper, in which case one of its factors is trivial
and therefore not simple; or the series is proper and has a proper refine-
ment, say

1=H,<H,<...<H, =0G.
In this latter case, let I be the largest positive integer for which H, is
not equal to any term of the original series. Then0 <! <mand H,, , =G,

for some integer k with 0 < k < m. Since the series (H )< <,, is a refine-
ment of (G,), and by the choice of /,

G._,<H,<H, ,=G,.

<i<n

Then, by 3.30, H,/G,_, is a proper non-trivial normal subgroup of
G,/G, _,, and thus the factor G,/G, _, is not simple.

320 (i) An abelian group A4 has a composition series if and only if A is finite. (Hint.
Use 7.2))

(i) A subgroup of a group with a composition series need not have a composition
series (see 291).

321 Let n be a positive integer.
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(i) A cyclic group of order p" has just 1 composition series.
(i) The direct product of n groups of order p has y(p") distinct composition

series, where )
o @ =DE =D 1)
V) = =17

322 How many composition series has each of the following groups: Z,,4,,%,?

The following elementary result is often useful.

7.3 (Dedekind’s rule). Let A, B, C be subgroups of G such that B< A. Then
AN(BC)=B(ANC).

(Here we do not assume that BC and B(A n C) are subgroups of G.)
Proof. Certainly B(AnC)< An(BC), since B< A. Let aeAn(BC).
Then

a=>bc forsomebeB and ceC.

Then b~ 'a=ceAnC (since B< A).
Hence aeB(ANC).
Thus ANn(BC)=BANCQ).

In proving some of the main results of this chapter, we shall need
certain deductions from 3.40.

7.4 Lemma. Suppose that BL A< G and C<G. Then
(i) BNnC)E<(AnC)and (AnC)/(BNC)= B(AnC)/B.

(ii) If also C € G then BC < AC and AC/BC = A/B(AnC).
Proof. (i) Since AN C < A and B € 4, we may apply 3.40 with G replaced
by A,H by AnC and K by B. This gives BN C=((ANnC)nB)<(AnC)
and

(AnC)/(BNC)=(ANnC)B/B=B(AnC)/B.

(i) Now suppose that C < G. By 3.38, AC and BC are subgroups of
G and then clearly BC < AC. Since A normalizes B and C and since C
normalizes every subgroup of G containing C, it follows that BC < AC.
Certainly 4 < AC. Now we apply 3.40 with G replaced by AC,H by A
and K by BC. This gives

An(BC)< A and
A/(An(BC))=~ A(BC)/BC.
With 7.3 and since A(BC) = AC, this gives the result.

7.5 Lemma (H. J. Zassenhaus [a107], 1934). Let C,< A4, <G and
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C,<A4,<G. Then

(A;nC)C,€S(4,n4,)C,, (4,nC))C,¥(4,nA4,)C,
and
(4,0 A,)C,/(A;nC,)C  =(4,n A4,)C,/(4,nC,)C,.

Proof. We have
A NC,=((4,nA,)NnC)<(4,nA)),
by 3.40, and similarly
(4,nC)<(4,nA,))=A,NnA,.
Let B=(A4,nC,)(4,nC))<(4,nA4,),
by 3.39. Now, by 7.4(ii), applied to 4, in place of G,

(A,nC,)C,=BC,<(A,n4,)C,
and

(4;nA,)C,/BC,=(A,nA,)/B(A,nA,nC,)=(A,nA4,)/B. (i)
Similarly,

(4,nC,)C,=BC,<(4,nA,)C,
and
(4,nA4,)C,/BC,=(A,nA,)/B. (ii)

Now the stated isomorphism follows from (i) and (ii).

323 Suppose that G = HK, where H < G and K < G. Then
() {V:KSV<G)={JK:J<H)}.
(ii) Every subgroup of G/K is isomorphic to a quotient group of a subgroup of H.

*324 A section of G is a group A/B such that B< A < G. A subgroup C of G is said
to cover a section A/B of G if A = BC, and C is said to avoid A/Bif AnC < B.

Let A/B be a section of G and let C < G. Then

(i) C both covers and avoids A/B if and only if A = B.

(ii) If C covers A/B then (AN C)/(BNnC)= A/B, while if C avoids 4/B then
(AN C)/(BNC) is trivial.

(iii) Suppose that C < G. If C covers A/B then AC/BC is trivial, while if C avoids
A/B then AC/BC =~ A/B.

(iv) If C € G and A/B is simple, then C either covers or avoids 4/B.

325 Let K € G. Suppose that G has a composition series. Then (see 324)

(i) K has a composition series in which every factor is isomorphic to a composi-
tion factor of G covered by K (cf. 320 (ii)). Moreover, every composition factor of G
covered by K is isomorphic to a composition factor of K.

(i) G/K has a composition seties in which every factor is isomorphic to a compo-
sition factor of G avoided by K. Moreover, every composition factor of G avoided
by K is isomorphic to a composition factor of G/K.

7.6 Definition. Two series of G, say
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1=G,9G,<...4G,=G
and
1=H,<H,<...<H, =G,

are said to be equivalent if m = n and there is a permutation 7 of the set
{1,2,...,n} such that

Gi/G;_y = H,,/H,

This obviously defines an equivalence relation on the set of series
of G.

In the form stated in 1.9, the Jordan—Holder theorem asserts that
any two composition series of a finite group are equivalent. Before proving
this in a slightly more general form, we first establish a fundamental
general result about series, proved by Schreier in 1928.

foreveryi=1,...,n

in—1

7.7 Theorem (O. Schreier [a88]). Any two series of G have equivalent
refinements.
Proof. Consider two series of G, say

1=G6,9G,<...4G,=G @)
and
1=H,<H,<..<H,=0G. (b)

We shall construct a refinement of (a) by inserting m — 1 subgroups
G;(j=1,...,m—1) between G;_, and G, for each i=1,...,n; and a
refinement of (b) by inserting n — 1 subgroups H;;(i = 1,...,n — 1) between
H;_, and Hj, for each j=1,...,m. Then these refinements will both
have mn factors:

1=6,<6,,<6,<...<G,,_,<6,<6,,9...<G,,_,<G,=G (o)

m—1

and
1=H,<H,,<H,;¥...<H, -119H, < <H,,]..<H,_,,<H, =G. (d)

We shall arrange that (c) and (d) are equivalent.
For this purpose we define, for every i=1,...,nand everyj=1,...,m,
G,;=(G;nH)G,_,
and
H;=(H;nG)H,_,.
Note that, by 3.38, G, ; and H,; are subgroups of G, since, for example,
G,NnH;< G;and G;_, < G,. Note also that

Gim=Gi and Hnj=H'

i
Fori=1,...,nandj=1,...,m
G_,<G,;<G;,<..<G,=G;

m i
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and
H

i-1S<H,;<H,<..<H,=H,

nj J*

It is convenient also to set
Gio=G;_;=(GinHy)G,_; and Hy;=H; ,=(H;nGyH;_,.
We now apply 7.5, choosing
C,=G;,_,, A, =G, C,=H,_,, A,=H,.
Then 7.5 gives
G,;-19G;, H,

and

G;/G ;= H;/H;_, ;. M
Thus our definitions of G;;, H;; do yield series (c) and (d) of G, and these
are obviously refinements of (a) and (b), respectively. Moreover, the
isomorphism ()(valid for every i=1,...,n and every j=1,...,m) shows

that (c) and (d) are equivalent series.
Next we note

7.8. Any series of G which is equivalent to a composition series of G is
also a composition series of G.
Proof. This follows immediately from the definitions of ‘equivalent’
and ‘composition series’, together with 7.2.

The following theorem includes the fundamental result on composition
series, established in part by Jordan in 1869 and completely for finite
groups by Holder in 1889.

7.9 Theorem. Suppose that G has a composition series.

(i) Every proper series of G has a refinement which is a composition
series of G.

(ii) (C. Jordan [a66], O. Holder [a59]; cf. 1.9.) Any two composition
series of G are equivalent.
Proof. Consider a proper series (a) and a composition series (c) of G.
By Schreier’s theorem 7.7, these two series have equivalent refinements,
say (a*) and (c*) respectively. If now from (a*) and (c*) we discard trivial
factors, that is, delete repetitions of terms, we obtain two equivalent
proper series, say (a’) and (c) respectively. Since (a) and (c) are, by hypothe-
sis, proper series, (a') and (c’) are refinements of (a) and (c) respectively; and
since (c') is a proper series while, by hypothesis, (c) has no proper refine-
ment, (c') must coincide with (c). Thus (a’) is equivalent to a composition
series of G, hence (7.8) is itself a composition series of G. This proves (i).

If also (a) is a composition series of G then, by the same argument, (a’)
must coincide with (a). Then (a) and (c) are equivalent. This proves (ii).
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7.10 Definition. Suppose that G has a composition series. It follows
in particular from 7.9(ii) that any two composition series of G have
the same number, n say, of factors. We call n the composition length of G.

326 Let p and g be distinct primes. Find equivalent refinements of the following two
series of Z* :

0<dpZ* «Z* and0<qZ* aZ".
(Note that Schreier’s theorem 7.7 does not require the hypothesis that G has a
composition series.)

327 (i) Every composition factor of a finite abelian group has prime order.
(ii) Every composition factor of a finite p-group has order p.

s s
328 (i) Every abelian group of order [| p™ has composition length Y m;, (where
s,m,,...,m_ are positive integers and pi R 1 .., b, distinct primes). =
(ii) Every group of order p" has composition length n (where nis a positive integer).
(iii) Give an example of a finite group G whose composition length is not equal
to the sum of the exponents of the distinct primes in the factorization of |G| as a
product of powers of prime numbers.

329 Suppose that G has a composition series and that the composition length of
G is 2. Prove that either G has just 1 composition series or G is isomorphic to a
direct product of simple groups.

Show that there is no upper bound on the number of distinct composition series
which G can have.

The following generalization of the concept of normal subgroup has
proved to be of considerable importance.

7.11 Definition. Let H < G. We say that H is a subnormal subgroup of
G if there is a series from H to G.

Certainly any normal subgroup of G is a subnormal subgroup; that
the converse is not true in general is shown by 3.14. In fact, the definition
of subnormality is made precisely in order to repair the deficiency of
normality in failing to be a transitive relation. It is immediate from
the definition that subnormality is transitive.

7.12. Let K< H<G. If K is subnormal in H and H is subnormal in G
then K is subnormal in G.

Clearly any term of a series of G must be a term of some proper series
of G. Then, in view of 7.9(i), we have

7.13. Let H< G and suppose that G has a composition series. Then H
is subnormal in G if and only if H is a term of some composition series of G.
We note the following consequence of 5.6.

7.14. Let G be a finite p-group. Then every subgroup of G is subnormal
inG.
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Proof. Let H < G. We prove by induction on |G : H| that H is subnormal
in G. If |G ‘H | =1 then H =G and the assertion is trivial. Therefore
we assume that |G : H| > 1 and, inductively, that K is subnormal in G
whenever K< G and |G:K|<|G:H|. Then H<G and so, by 5.6,
H<NgH)<G. Hence |G :Ng(H)| <|G : H| and so, by the inductive
assumption, N;(H) is subnormal in G. Since H <t N4(H), it follows that
H is subnormal in G. This completes the induction argument.

The first systematic development of a theory of subnormal subgroups
was made by H. Wielandt [a100]. We include several of his results here.

715 (cf. 3.40). Let H,K < G. If K is subnormal in G then HNK is sub-
normal in H.

Proof. By hypothesis, there are subgroups K; of G (i=0, 1,...,n) such
that

Then certainly
HnK=HnK,<HnK,s<..<HNnK,=H.
Moreover, fori=1,...,n,
HnK,_,=(HnK)nK,;_)S(HnK),
since K;_, ¥ K;. Thus HNK is subnormal in H.

7.16. Let K< H<G. If K is subnormal in G then K is subnormal in H.
Proof. This follows immediately from 7.15.

7.17. Let HL K< G. If H and K are both subnormal in G then HN K is
subnormal in G.
Proof. This follows immediately from 7.15 and 7.12.

Recall that if H< G and K <G then HK < G (3.38); and then of
course HK = (H,K) (see 71, 95). We now show by an example that
HK need not be a subgroup of G when H and K are subnormal subgroups
of G.

7.18. Let n be an integer, n = 3, and let G = D,n, the dihedral group of
order 2". By 6.12, there are involutions, say h and k, in G such that G =
(hk). Let H=C(h)<G and K=<k)<G. Then |H|=|K|=2 and
HK = {1,h,k,hk}: HK is not a subgroup of G, since the smallest sub-
group of G containing both H and K is G itself and |G|=2">8. On
the other hand, by 7.14, H and K are both subnormal in G.

We shall, however, prove an analogue of 3.39 by showing that if H
and K are subnormal subgroups of a group G with a composition series
then (H,K) is subnormal in G. We begin by proving a special case,
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for which we do not need the assumption that G has a composition
series.

7.19 Lemma. If H is a subnormal subgroup of G and K <G then HK is
subnormal in G.
Proof. By hypothesis, there is a series

H=H,<H,<..<H,=G
from H to G. Then, by 7.4 (ii),
HK=H,K<HKS<..<HK=0G.
This is a series from HK to G. Hence HK is subnormal in G.

*330 Let H < G. Suppose that G has a composition series and that H is subnormal
in G. Then H has a composition series. Moreover, if G has composition length n and
H has composition length m then m < n (cf. 320(ii).)

331 Let H<G.
(i) Consider the following sequence of subgroups of G :

G=J,2J,2J,2..,
where, for each integer i > 0,
J,=H'1,

the normal closure of H in J;_, (see 180). Then H is subnormal in G if and only if
there is a non-negative integer n such that J, = H.
If H is subnormal in G and n is the least integer such that J, = H then

G=J,2J,=..2J,=H

is called the standard series from G to H.

(ii) Suppose that H is subnormal in G. The defect (or index of subnormality) of H in
G is defined to be the least non-negative integer n for which there is a series of length
nfrom H to G. Then the defect of H in G is equal to the length of the standard series
from G to H.

(iii) Suppose that H is subnormal in G and that H < L < G. Then the defect of
H in L is not greater than the defect of H in G.

, the dihedral group of order 2"+!.

332 Let n be an integer, n =2, and let G=D
Then there are elements x,teG such that G ={x,t>, x*"=1=¢%> and x*=x""':
see 2.24,6.10, 6.11. Let H =<t ). By 7.14, H is subnormal in G.

Let J = HS, the normal closure of H in G. Prove that J = {x%,¢). Hence prove that
the defect of H in G is n (see 331).

333 Let G=2X,. Find a subnormal subgroup H of G such that Ny(H) is a Sylow
2-subgroup of G.

(Remark. Note that N;(Ng(H)) = Ng(H). This example shows that for H <G,
the ascending sequence of subgroups of G formed from H by taking successive
normalizers in G need not reach G, even though H is subnormal in G: cf. 331. Hint.
See 289.)

334 Let H < G. Then H is both pronormal and subnormal in G if and only if H < G.
In particular, if G is finite and H is a subnormal Sylow subgroup of G then H< G.
(See 268. Hint. Argue by induction on the length of a series from H to G.)

an+1
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*335 Let H be a subnormal subgroup of G. Then, for any homomorphism ¢ of G
onto a group G, Hy is a subnormal subgroup of G. In particular, for every geG, H?
is subnormal in G.

336 Let X and 9) be classes of groups with the following two properties.

(i) Every normal subgroup of every X-group is an X-group.

(ii) Every X-group has a 9-radical. (See 3.45.)

Then if G is an X-group, every subnormal J-subgroup H of G is contained in
the Y-radical of G.

In particular, if G is any finite group then every subnormal @w-subgroup of G is
contained in O, (G).
(Hint. Argue by induction on the length of a series from H to G and use 160.)

337 Let X and ) be classes of groups with the following three properties.
(i) Every normal subgroup of every X-group is an X-group.

(ii) Every X-group has a 9)-residual. (See 3.45.)

(iii) Whenever J S G and both J and G/J are 9)-groups, G is a Y-group.

Let G be an X-group and let G/K be the Y-residual of G. Suppose that H is a
subnormal subgroup of G such that there is a series from H to G, the factors of
which are all 9-groups. Then K < H.

In particular, if H is a subnormal subgroup of a finite group G such that there is
a series from H to G, all the factors of which are w-groups, then O,(G) < H (see 160).

For the purpose of proving the general result, it will be convenient
to associate to a subnormal subgroup H in a group G with a composition
series a certain non-negative integer j(G : H), which we now define.

7.20 Definition. Let H < G. Suppose that G has a composition series
and that H is subnormal in G. Then H is a term of a composition series
of G (7.13). Let

1=G,<G,;q...<G,=G (@)

be a composition series of G with H as a term: say
G,=H,

where 0 < k< n.
Now consider any other composition series of G of which H is a term.
Let the part of the series from H to G be

H=H,<H,<..<H,=0G.
Then, by 7.2, the series
1=G,<G;<...<G,<«H,<x...<H,=G (b)

is lalso a composition series of G. Therefore, by the Jordan—Holder
theorem (7.9), the series (a) and (b) are equivalent. In particular,

n=k+m.

We define j(G : H) = n — k. In words, j(G : H) is the number of composi-
tion factors above H in any composition series of G of which H is a term.
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The argument above shows that this is well defined. Note that j(G : 1)
is the composition length of G.

The following properties are immediate from the definition, together
with 7.16 and 7.9(i). (See also 330.)

7.21. Let K < H < G. Suppose that G has a composition series and that
H and K are subnormal in G. Then

) J(G :K)=j(G : H) +j(H : K),
(i) G :H)=0 ifand only if H=G.

7.22 Theorem (H. Wielandt [a 100]). Suppose that G has a composition
series. If H and K are subnormal subgroups of G then { H,K ) is subnormal
in G.
Proof. We argue by induction on j(G : K) = n, say.

If K < G then { H,K ) = HK and the result has been proved in 7.19. In
particular, this gives the result if n < 1.

Now suppose that K ¥ G. Then n > 1. There is a series

K=K,<K,<..<K,_, <K, =G

from K to G which is part of a composition series of G. Let G, = (H, K, ).
By 721, j(G:K,;)=n—1 and so, by the induction hypothesis, G, is
subnormal in G. Hence G, has a composition series (330). By 7.16, H
and K are subnormal subgroups of G, .

If G, < G then, by 7.21,j(G, : K) < n. Then, by the induction hypothesis,
{H,K) is subnormal in G,, hence also subnormal in G, by 7.12.

Now suppose that G, = G. If

K"< K forevery heH,
then in fact

K"=K forevery heH:

see 175 or 7.24 (ii).
Then

NyK)=<(H,K,>=G.

This contradicts the supposition that K € G.
Therefore

K" K for some heH.
Let
K*=(K,K"> > K.

Now K"is subnormal in G (335). Moreover,
K'<K, =K, 1,
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since K,_, <G, and so, by 7.16, K" is subnormal in K,_,. Certainly
K, _, has a composition series (330). Since j(K,_, : K) =n— 1, it follows
by the induction hypothesis that K* is subnormal in K,_,. Hence also
K*issubnormal in G. Since K* > K, it follows from 7.21 that j(G : K*) <n.
Hence, by the induction hypothesis, { H, K* ) is subnormal in G. However,
K*< {(H,K), and so

(H,K*)=<(H,K,K">=(H,K).

This completes the induction argument.

Remark. This result fails in the absence of the condition that G has a
composition series. Zassenhaus ([b41] p. 235, ex. 23) has given an example
of a group G with subnormal subgroups H and K such that {H,K)
is not subnormal in G. See also 345.

338 Suppose that H and K are subnormal subgroups of the finite group G. If
(|H|.|K|y=1then{H,K)» = HK = H x K.(cf. 7.18. Hint. Use 336, 3.53, 3.54.)

339 (i) Let H,K < G, a finite group, with { H, K > = G. Suppose that K is subnormal
in G and that every composition factor of G above K has prime order. Then
j(H : HNK) <j(G : K). (cf. 7.15. Remark. This inequality no longer holds in general
in the absence of the condition that every composition factor of G above K has
prime order. For an example see 532.)

(i) Show by an example that for any integer n > 1, it is possible to satisfy all the
conditions of (i) and have j(H : HNnK) =1 and j(G : K) =n.

We end this selection of results by proving an analogue of the isomor-
phism part of the statement of 3.40. What we shall show is that if H and
K are subnormal subgroups of G and if G has a composition series then
the set of types of composition factors of G between H n K and H coincides
with the set of types of composition factors of G between K and {H,K).

7.23 Definition. Suppose that G has a composition series and let H
be a subnormal subgroup of G. Then H is a term of a composition series
of G (7.13). We denote by #(G, H) the set of composition factors of G
above H, where factors of the same type are identified. Thus (G, H)
is a set of pairwise non-isomorphic simple groups; it takes no account
of the multiplicity of occurrences of any particular simple group in a
composition series of G.

A similar argument to the one used in 7.20 to justify the definition
of j(G : H) shows that /#(G, H) is determined by the factors in any parti-
cular composition series of G through H.

If also K is a subnormal subgroup of G with K < H then, by 7.16 and
7.9(i), there is a composition series of G through both H and K, and
then clearly /' (G, K) = #(G, H)u A4 (H, K).

We have #(G,H) = @ if and only if H=G.

We shall use the following lemma.
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7.24 Lemma. Suppose that G has a composition series and let H be a
subnormal subgroup of G and geG. Then
(i) H? is subnormal in G and j(G : H) = j(G : HY).
(i) If H # H? then H? < H. (cf. 174, 175.)
(iii) A°(H,H n H%) = A (H?, H n H?).
Proof. We may assume that H # H?. Let j(G : H) = n. There is a series

H=H,<H,<..<H,=G

from H to G which is part of a composition series of G. It follows from
3.29 that

H'=H{<H{<..<H=G
with HY/HY_ | = H,/H,_, M

foreachi=1,...,n. Now (i) follows, by 7.2.
If H? < H then it follows from (i) and 7.21 that

J(G :H)=j(G : H) = j(G : H) + j(H : H?),
hence that Jj(H : H%) =0.
Thus H=H".

This is contrary to hypothesis, and so we conclude that H? < H. This
proves (ii).

Let L=HNH® By (i) and 7.15, L is subnormal in both H and H®.
By 7.9(i), there is a composition series of G of the form

1=G6G,<G,<...<9G,<G,,,<...<G,<H,<...<H, =G, (a)

where 0</<m,G,=L and G,, = H. Then there is also a composition
series of G of the form

1=Gy<G,<...<4G,<G¥ ,<..<4G* <HI<..<H =G, (b)

where | <m* and G*, = H?. By the Jordan—Holder theorem, the series
(a) and (b) are equivalent. Hence m = m*, and, in view of (}), we must
have

A(H,L)=H(HS, L).

340 Let ¢ be an isomorphism of G, onto G,. Suppose that G, has a composition
series, let H, be a subnormal subgroup of G, and let H, = H,¢ < G,. Then G, has
a composition series, H, is subnormal in G,,#(G,,H,)= X(G,,H,) and

A (H,1)=H(H,, 1)

341 (i) Let H,K <G, a finite group. Suppose that K is subnormal in G and that
every composition factor of G above K has prime order. Then
H'(H,HnK)< X#(G,K).

(ii) Let G = A,, the alternating group of degree 4. Every composition factor of G
has prime order and there are subgroups H,K of G such that (H,K> =G, K is
subnormal in G, and X (H,H n K) # A#(G,K). (cf. 339.)
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342 Suppose that G has a composition series, no two distinct factors of which are
isomorphic. Then

(i) No two distinct normal subgroups of G are isomorphic.
(Hints. Note that if H and K are isomorphic normal subgroups of G then
A (H,HnK)=H(K,HnK).If H# K, consider a composition series of G through
HnK,K and HK, and derive a contradiction to the hypothesis on G.)

(i) Every normal subgroup of G is characteristic in G.

(iii) Every subnormal subgroup of G is normal in G (and hence characteristic in G).
(Hint. Argue by induction on the length of a series from H to G.)

7.25 Theorem (H. Wielandt [a100]). Suppose that G has a composition
series and let H and K be subnormal subgroups of G. Then X" (H,H N K) =
A ((H,K)>,K).

Proof. By 7.15 and 7.16, HN K is subnormal in H and K is subnormal
in (H,K). Since H and { H,K) are both subnormal in G (by 7.22), H
and (H,K ) both have composition series (330). Therefore the assertion
of the theorem makes sense. Furthermore, we may assume without loss
of generality that ( H,K) = G.

We show first that
A (H,HnK) < A(G,K). (i)
Let
1=G,<G,;«...<G,=G (@
be a composition series of G with K as a term: say
G,=K,

where 0 < m < n. By 7.4(i),
1=(GonH)S(G,nH)< ... <(G,nH)=H, (b)
andforeachi=1,...,n,
(G;nH)/(G,_,nH)=G,_,(G;nH)/G,_,.

By 7.15, G,n H is subnormal in-G,. Hence, since G;n H is mapped to
G,_,(G;nH)/G,_, by the natural homomorphism of G, onto G,/G,_,,
G,_,(G;nH)/G,_, is subnormal in G,/G,_, (335). But G,/G,_, is simple
(7.2) and therefore, foreachi= 1,...,n,

either (G;nH)/(G,_, n H) is trivial

or (G;nH)/(G;,_,nH)=G,/G,_,.

Therefore, by 7.2, if from the series (b) we delete repetitions of terms,
wé obtain a composition series (c) of H. Moreover, HN K is a term of
(c) and each factor of (c) above HN K is isomorphic to a factor of (a)
above K. This establishes (i).

Now we show that

A (G,K)< A (H,HNK). (i)

X
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Suppose first that H < G. Then consider any composition factor A/B
of G above K: thus

K<B<A<GQG,

A and B are subnormal in G, and A/B is simple. By 7.4(i),(Bn H) <(A N H)
and '

(AnH)/(BnH)~ B(AnH)/B.
Since H < G,BH < G. Then, since BH = (H,K) =G,
BH =G.
Therefore, by 7.3,

B(AnH)= An(BH) = A.
Hence

(AnH)/(BAH)= A/B.

Thus (4 n H)/(B H) is simple and is therefore a composition factor of G,
since, by 7.17, An H is subnormal in G. Hence every composition factor
of G above K is isomorphic to a composition factor of G between H n K
and H. This establishes (ii) in this special case.

For the general case, we argue by induction on j(G : H) = m, say. If
m<1 then H<G and there is nothing more to prove. Therefore we
assume that m > 1 and also that H € G. There is a series

H=H,<H,<..<H, ,<H,=G

from H to G which is part of a composition series of G. Let L =H,,_, " K.
Then

HnK<L<K.
Suppose that L & H. Then let
J=(H,L)>H.
By 7.17 and 7.22, J is subnormal in G and, by 7.21,
JG:))<j(G:H)=m.
Certainly {J,K ) = ( H,K ) = G. Therefore, by the induction hypothesis,

H(G,K)s A'(J,JNK). (iii)
Since

L<JnK<J,
and all these subgroups are subnormal in G,
A (J,Ly=AH(J,JnK)yuA(JnK,L). (iv)
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Now J < H,,_, < G and therefore, by 7.21,
J(J,H) <j(G,H) =m.

Certainly HhnL=HnK, and of course H and L are subnormal in
J=<{H,L>. Therefore, by the induction hypothesis,

A(J,L)s A (H,HK). v)

Now (ii) follows from (iii), (iv) and (v).
Suppose on the other hand that L < H. Then

L=HnK,
and so

HNnK<K.
Since H € G = (H,K »,K % N4(H). Therefore

H* + H for some keK.
Hence, by 7.24 (ii),
H*$¢ H.

Then let H*=(H,H*>>H.

Since H* is subnormal in G (by 335 or 7.24(i)), H* is subnormal in G,
by 7.22; and by 7.21,

J(G:H¥*) < j(G : H)=m.

Certainly ( H*,K ) = {( H, K ) = G. Therefore, by the induction hypothe-
sis,

A'(G,K) < A (H*, H* n K). (vi)
Now
HNnK<H*nK<H* and HnK<H< H*,
and all these subgroups are subnormal in G. Therefore
A (H* HNK)=A(H* H*nK)u A (H*nK,Hn K) (vii)
= A (H*, H)u A (H,H N K). (viii)

Now H* and H are subnormal in H*. Moreover, since H<H,_, <G,
H* < H,,_, and therefore, by 7.21 and 7.24(i),

\ j(H* : HY <j(G : HY) =m.

Hence, by the induction hypothesis (applied to H* and H* in place of G
and H) and 7.24(ii),

A (H* H)< A (H H ~H*) = 4 (H,H n H"). (ix)
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Since in the present case HNK < K|
HNnK=(HnNKy})<HNH*<H.
These subgroups are subnormal in G, and so
A (H,HAK)=A(H,HNHY U X' (HNH" HnK). (x)

Now (ii) follows from (vi), (vii), (viii), (ix) and (x).
This completes the proof of (ii) in all cases. Together with (i), this
gives the result.

7.26 Corollary. Suppose that G has a composition series and let H and K
be subnormal subgroups of G. Then
A(G,HnK)=A(G,H)u X (G,K).

Proof. By 7.17 and 7.22, HNK and { H,K ) are subnormal in G. Since
HNK<H<GQG,

H(G,HnK)=H(G,H)v A (H,HNK), (i)
andsince K < (H,K) <G,
A(G,K)=H(G,{H,K))uA({H,K),K). (ii)
Moreover, since H< (H,K ),
A(G,{H,K))< H#(G,H). (iii)

By (i) and 7.25,

H#(G,HAK)=H(G,HLH(HK>,K)
= H(G,H)OH (G, H,K>)u A ({(H,K>K) (by i)
= #(G,H)LH(G,K) (by (ii)).

343 Suppose that G has a composition series and let H and K be subnormal sub-
groups of G.

(i) Then o ({(H,K>,1)= X" (H,1)u o (K, 1) (cf. 7.26).

(ii) If H and K are finite then ( H, K ) is finite (cf. 71 (ii). Remark. The statement
in (ii) is in fact true without the condition that G has a composition series. See 344,
345)

344 Suppose that H,K < G with G={(H,K ).
(i) Let J = H, the normal closure of H in G (180). Show that
J=(H":keK).

(Hint. Show that K < N;(J).)

(i) Prove that if H and K are both finite and H is subnormal in G then G is
finite. (cf. 71, 343. See also 345. Hints. Argue by induction on the defect of H in G:
see 331. Use (i) and induction to show that H€ is finite.)

345 Let H, K <G.
(i) Prove that if H is subnormal in G and K < N(H), then K normalizes every
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term of the standard series from G to H. (See 331. Hint. Use an induction argument.)
(ii) Prove that if H and K are both finite subnormal subgroups of G then ( H,K ) is
a finite subnormal subgroup of G. (cf. 7.22, 343, 344. Hints. Let L=< H,K >. Argue
by induction on the defect, n say, of H in L. If n < 1, use (i). For n > 1, use 344 and
induction to show that H” is a finite subnormal subgroup of G. Then note that
L=H"K)

346 Suppose that G has a composition series and let H, H*, K, K* be subnormal
subgroups of G with H* < H and K* < K. Then

A ({H,K),{H*K*))< A (H,H*)u A (K,K*).
(Hint. Note that ( H*,K*) < {H,K* >—< {H,K) and apply 7.25 twice.)
347 Let H and K be subnormal subgroups of the finite group G. Then
0"({H,K})=<0"(H),0"(K)>.
(This generalizes 159 (ii). Hint. Apply 157, 337, and 346.)

348 Let K be a subnormal subgroup of the finite group G, and let J = K€, the normal
closure of K in G (180), and L = K, the core of K in G (90).

(i) Prove that " (J,1) =2 (K,1) and 4 (G,K) =4 (G, L).
(Hint. Apply 340, 343, and 7.26.)

(ii) Show by an example that it can happen that

X(G,J)#+ A (G,K) and K (K,l)#A(L,1).
349 Let H and K be subnormal subgroups of the finite group G and suppose that
AHN)NH (K, 1)=0Q.

Then {H,K>=HK~H x K.
(This generalizes 338. Hint. Use 348, 3.53, 3.54.)

Our next step in the development of the theory of normal structure
is to observe that many of the results obtained are valid more generally
for groups with operators.

7.27 Definitions. A group with operators consists of a group G and a set
Q (the operator domain) such that, to each geG and each weQ, there
corresponds a unique element g©eG, and such that

(9:9,)° =979%5 forallg,,g,€G and weQ.

We say then that G is an Q-group.
Let H < G. We say H is a stable (or admissible) subgroup, or explicitly
that H is an Q-subgroup, if

h®eH for every he H and weQ.
Note that if H is a stable subgroup of the Q-group G then Q is also
an operator domain for H.

7.28 Remarks and examples. (1) If G is an Q-group then, for each weQ,
the map
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grg°,
defined for all geG, is an endomorphism of G (2.18).

If follows that the trivial subgroup 1 is stable; and of course G itself
is certainly stable.

Clearly, any set of endomorphisms of G is a suitable operator domain
for G. However, in 7.27 we do not restrict Q to be a set of endomorphisms
of G since we wish to allow the possibility that there are distinct elements
0, ,w, of Q which operate in the same way on G; that is, for which g** =
g2 for every geG. (This is analogous to the situation in chapter 4, where,
in considering the action of a group G on a set X, we do not restrict G
to be a subgroup of Z,..)

If G is an Q-group and ) = Q < Aut G then the stable subgroups of G
are just the Q-invariant subgroups in the sense of 3.1.

(2) Trivially, we can consider any group G as an Q-group with Q = Q.
Then every subgroup of G is stable and the theory of the Q-group G is
simply the familiar theory of G as a group without operators.

(3) G is an operator domain for itself when G acts on itself by conju-
gation, as in 4.25. For each xeG and each geG the element of G which
corresponds by the operation of g on x is x?, the conjugate of x by g.
In this case, the stable subgroups of G are just the normal subgroups
of G.

(4) Let R be any ring. Then R is an operator domain for R, the additive
group of R (2.11), by right multiplication: for, by ring axioms,

(x; +x5)a=x,a+ x,a

for all x,,x,eR™ and aeR. Then the stable subgroups of R* are precisely
the right ideals of the ring R.

Similarly, R is an operator domain for R* by left multiplication, and
in this case the stable subgroups are the left ideals of R.

(5) Let V be a vector space over a field F. Then F is an operator domain
for V*, the additive group of V (2.15), by scalar multiplication: for, by
vector space axioms,

a(v, +v,) =av, +av,

for all v,,v,eV™ and aeF. Then the stable subgroups are just the sub-
spaces of V.

7.29 Definition. Let G and H be groups with the same operator domain
Q. Then a homomorphism ¢ : G — H is said to be an Q-homomorphism if

9 = (99)”

for all geG and weQ. It is immediate from the definition that then Ker ¢
is a stable normal subgroup of G and Im ¢ is a stable subgroup of H.
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7.30. Let G be an Q-group and suppose that K is a stable normal subgroup
of G. Then Q is in a natural way an operator domain for the quotient
group G/K: we define

9K)” =g“K

(for all ge G and weQ).
This is well defined, for if g,,9,€G and g,K = g,K then

g, =gk
for some ke K, hence
97K = g3k°K = g3K,,
since k”eK.
Note that this definition of G/K as an Q-group makes the natural
homomorphism v : G — G/K an Q-homomorphism.

We shall now verify that the fundamental theorem on homomorphisms
remains valid for groups with operators.

7.31 (cf. 3.24). Let the set Q be an operator domain for the groups G and
H, and let ¢ : G — H be an Q-homomorphism, K = Ker ¢ and v : G - G/K
the natural homomorphism. Then K is stable, G/K is in a natural way an
Q-group, v is an Q-homomorphism, and there is an injective Q-homomor-
phism  : G/K — H such that ¢ = w. In particular, Im ¢ and G/Ker ¢ are
Q-isomorphic Q-groups.

Proof. In view of the remarks above, it is enough to verify that the injective
homomorphism ¥ : G/K — H defined in 3.24 is an Q-homomorphism.
Let geG and weQ. By definition,

KW = go,
and so 9K)*Y = (g°KWY = g“¢ = (g9)”,
since ¢ is an Q-homomorphism; that is,
@K)*¥ = ((gK))°.

Thus y is an Q-homomorphism.

350 Let G be an Q-group. If H and K are stable subgroups of G then so are HN K,
{H,K) and [H,K].

351 If H is a stable subgroup of an Q-group G, N;(H) need not be stable (cf. 176).
Show this by means of the following example.

Let G =Z, and consider G as an Q-group, where Q = {w} and w is an endomor-
phism of G such that Ker w = 4,. Let H be a suitable Sylow 3-subgroup of G.

352 Let G be an Q-group. If H is a stable subgroup and K a stable normal subgroup
of G then HK is a stable subgroup of G. Moreover, HN K is a stable normal sub-
group of H and the Q-groups H/H n K and HK/K are Q-isomorphic (see 3.40).
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*353 (i) Let G be an Q-group. Then the set of all Q-endomorphisms of G forms a
subsemigroup S of the semigroup of all endomorphisms of G (see 2.18). S has an
identity element and the group of units of S consists of all Q-automorphisms of G.
Denote this group by Aut, (G).

(ii) Consider G as a G-group, as in 7.28 (3). Then

Autg(G) = C,,c(InnG) (cf. 245).

7.32 Remarks and definitions. (1) It is equally straightforward to verify
that all the main results on normal structure of groups remain valid
for groups with operators: thus 3.29, 3.30, 3.38, 3.39, 3.40, 7.7 and 7.9
are true when, in their statements and proofs, we replace groups by
Q-groups, subgroups by stable subgroups, homomorphisms by Q-
homomorphisms and isomorphisms by Q-isomorphisms (see for instance
352). We shall not write down explicit proofs but from now on use these
results in their operator versions whenever we need them.

(2) We ought perhaps to say something more about the correct inter-
pretation of 7.7 and 7.9 for groups with operators. Let G be an Q-group.
Then an Q-series of G is a series of G the terms of which are stable sub-
groups of G. The definitions of ‘proper’, ‘refinement’ and ‘proper refine-
ment’ given in 7.1 apply without change. An Q-composition series of G is
a proper Q-series of G which has no proper refinement (as an Q-series).
The definition of ‘equivalence’ of two Q-series of G is exactly as in 7.6,
with the additional requirement that corresponding factors are not
merely isomorphic but Q-isomorphic. Now the versions of 7.7 and 7.9
for Q-groups are clear.

(3) We say that a non-trivial Q-group G is Q-simple if the only stable
normal subgroups of G are 1 and G.

Let G be any Q-group. By previous remarks, we know that the factors
of an Q-series of G are in a natural way Q-groups. Then a repetition ,
of the proof of 7.2 shows that an Q-series of G is an Q-composition series
of G if and only if the factors of the series are all Q-simple.

(4) A simple Q-group is certainly Q-simple. However, an Q-simple
Q-group need not be a simple group. For instance, let V' be a vector
space # 0 over a field F and view V'* as an F-group, as in 7.28 (5). Since
V* is abelian, all its subgroups are normal. The stable subgroups are
the subspaces of V. Thus the F-group V* is F-simple if and only if the
only subspaces of V are 0 and V; that is, if and only if ¥ has dimension 1.
Since V'* is abelian, V" is a simple group if and only if V'* is finite and
of prime order (3.6). Hence, if V has dimension 1 then V' * is an F-simple
F-group which is not a simple group unless F = Z, for some prime p.

Note in passing that for any finite-dimensional vector space V' over
F, the F-group V* has an F-composition series and the length of any
F-composition series of V'* is equal to the dimension of V. Indeed, the
Jordan—Holder theorem for groups with operators provides one method
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of proving that any two bases of a finite-dimensional vector space contain
the same number of elements.

(5) As another example, consider again a vector space V #+ 0 over a
field F. Linear maps of V into itself are certainly endomorphisms of V*.
Therefore the ring £(V) of all linear maps of V into itself is an operator
domain for V*. As an Z(V)-group, V* is £ (V)-simple; or, equivalently,
since V* is abelian, the only stable subgroups of the Z(V)-group V*
are 0 and V'*. To see this, consider any non-trivial stable subgroup W of
V*. Let 0+ weW. Then for any veV, there is a linear map 6:V - V
such that v=w#. Since W is an Z(V)-subgroup of V*, it follows that
veW. Hence W=V".

Note that V'* is £(V)-simple without any condition on the dimension
of ¥, while V" is a simple group only if V has dimension 1 and F=Z,
for some prime p.

7.33 Definitions. The most important special case for group theory of
the idea of a group with operators occurs when we view G as a G-group,
as in 7.28 (3). There is a special terminology for this case.

A G-series of G is called a normal series of G. Thus a normal series
of G is simply a series of G in which each term is normal in G.

A G-composition series of G is called a chief series (or principal series)
of G. The factors of a chief series of G are called chief factors of G.

By Schreier’s theorem for groups with operators, any two normal
series of G have equivalent refinements: these are normal series of G
the factors of which are G-isomorphic in pairs. Also, if G has a chief
series then every proper normal series of G has a refinement which is
a chief series of G; and, by the Jordan—Holder theorem for groups with
operators, any two chief series of G are equivalent.

Note that every finite group G has a chief series. This is clear, for if
G is finite, the process of refining a proper normal series of G must lead
in a finite number of steps to a chief series of G.

7.34. Unlike composition factors, chief factors of a group need not be
simple groups. For example, let G = A,, the alternating group of degree
4. The only non-trivial proper normal subgroup of G is the unique sub-
group V of order 4: sec 185, 288. Thus

1<V<G

is a chief series of G. In this example, the chief factor G/V of G is simple
but the chief factor V/1 is not.
354 Suppose that G has a chief series

1=G,<G,<...<G, =G,

where n is a positive integer. Then G,/G,_, is simple (although the factors G,/G,_,
with 0 < i < n need not be simple: see 7.34).
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355 If G has a composition series then G has a chief series.

(Hint. Any proper normal series of G has length at most equal to the composition
length of G. Remark. It is not true that if G has a chief series then G has a composition
series: see 534.)

356 Let H/J and K/L be G-isomorphic factors of normal series of G. If H/J < Z(G/J)
then K/L< Z(G/L).

We shall need information about the structure of chief factors of finite
groups. We note some preliminary results.

7.35 Definition. Let 1 < K < G. Then K is said to be a minimal normal
subgroup of G if there is no normal subgroup L of G such that 1 <L < K.
(Compare this with the definition of ‘maximal subgroup’ in 140. Just as a
maximal subgroup is a subgroup maximal among proper subgroups, so a
minimal normal subgroup is a normal subgroup minimal among all
non-trivial normal subgroups.)

7.36. Suppose that G has a chief series and let H,K be normal subgroups
of G with K < H. Then H/K is a chief factor of G if and only if H/K is a
minimal normal subgroup of G/K.

Proof. If H/K is a chief factor of G, it follows immediately from 3.30
that H/K is a minimal normal subgroup of G/K.

Suppose conversely that H/K is a minimal normal subgroup of G/K.
By the analogue of 7.9(i) for groups with operators, there is a chief series
of G of which both K and H are terms. By 3.30, no term of this chief
series lies strictly between K and H. Therefore H/K is a chief factor
of G.

7.37 Definition. A non-trivial group G is said to be characteristically
simple if the only characteristic subgroups of G are 1 and G. ‘

Simple groups are certainly characteristically simple, but a charac-
teristically simple group is not necessarily simple, as we shall see presently.

7.38. Suppose that K is a minimal normal subgroup of G. Then K is a
characteristically simple group. In particular (by 7.36), if G has a chief
series then every chief factor of G is characteristically simple.
Proof. Let L be a characteristic subgroup of K. Then, by 3.15, L<G.
Therefore, since L < K and K is minimal normal in G, either L=1 or
L = K. Thus K is characteristically simple.

We defer the main result on the structure of characteristically simple
groups to the next chapter (see 8.10). Here we shall describe the charac-
teristically simple finite abelian groups.

7.39 Definition. An abelian group A4 is said to be elementary if there is
a prime p such that a” =1 for every aeA.
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7.40. Let A be an abelian group. Then the following two statements are
equivalent :

(i) A is elementary.

(i) There is a prime p and a vector space V over Z_ such that A= V™,

p
Proof. Suppose that A is elementary: thus there is a prime p such that

a’ =1

for every ae A. We define a vector space V over Z, as follows (cf. 42).
The elements of V' are the elements of 4. The vector sum of two elements
of V is defined to be the product of the elements in 4. The elements
of Z, are residue classes of integers mod p. Let i€Z, and let n be an
integer in the residue class 7. Then, for each aeV, the scalar product
fia is defined to be the element a"e A. This does not depend on the choice
of n in the residue class i because a” = 1. Now it is easy to check that
V is a vector space over Z,; and clearly, as groups,

AxV*.
Conversely, let V be a vector space over Z,. Then V' is an abelian

group. Moreover, since pv = 0 for every veV, V7 is elementary. Hence
if A~ V* then A is elementary.

7.41. Let A be a finite abelian group, A # 1. Then A is characteristically
simple if and only if A is elementary.
Proof. Suppose that A4 is elementary. By 7.40, we may suppose that
A=V"* where V is a vector space over Z, for some p; and, since 4 is
finite, V is finite-dimensional. Suppose that W is a non-trivial characteris-
tic subgroup of V* and let 0 + weW. Let 0 # veV*. Then v and w are
elements of bases of V. Hence there is an invertible linear map 6 : V — V
such that v = wf. Then since feAut V* and W is characteristic in V7,
veW. Hence W = V™. Thus V* is characteristically simple.

Suppose conversely that A is characteristically simple. Let p be a prime
divisor of | 4| and let

B={acAd:a’=1}.
Since A is abelian, it is clear that B < 4. Let be B and acAut 4. Then
) =P =1,
so that b*eB.

Hence B is characteristic in 4. By 107 or 5.11, there is in 4 an element
a of\ order p. Then
. 1#aeB.

Therefore B # 1. Since A is characteristically simple, it follows that
B=A.
Thus A is elementary.
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357 Suppose that K is a minimal normal subgroup of G. Then either K is abelian
or Z(K)=1.

358 Suppose that K and L are distinct minimal normal subgroups of G. Then
KL=K x L. (Hint. See 3.54.)

359 Suppose that G = HK, where H < G and K is an abelian minimal normal
subgroup of G. Then H is a maximal subgroup of G (see 140) and H n K = 1. More-
over, if K< Z(G) then H<G and G~ H x K.

(Hint. If H < J < G, apply Dedekind’s rule and show that JN K < G.)

360 Z* has no minimal normal subgroup.

*361 (i) Let F be any field. Then the abelian group F* is characteristically simple.
(Hint. See 2.11.)
(i) Z* is not characteristically simple.

362 Suppose that G is characteristically simple. Then G x G is also characteristically
simple. (Hints. Let K be a characteristic subgroup of G x G and let G, =G x 1,
G, =1xG. Show that KNG, is characteristicin G, ;see 94.If G, < K then K=G x G;
see 3.12. Then it may be assumed that KNG, =1 = KN G,. Let m, be the projection
G x G —» G withKern, =G, : see 3.11. Let K, = K=n,. Show that K, is character-
istic in G. If K, = 1 then K = 1. Show that if K, = G then Aut G = 1. Then use the
result stated in 52.)

363 Let L < G. Then L is said to be a maximal normal subgroup of G if there is no
normal subgroup K of G such that L < K < G (cf. 140, 7.35).

(a) Prove that a normal subgroup L of Gis a maximal normal subgroup of G
if and only if G/L is simple.

(b) Suppose that L is a maximal normal subgroup of G. Suppose also that there
is a subnormal subgroup H of G such that

(i) H€ L, and

(ii) whenever J is a subnormal subgroup of G such that J < H,J < L.

(Remark. If G is finite, there is such a subgroup H.) Prove that Hn L is the unique
maximal normal subgroup of H.

We now introduce the classes of nilpotent and soluble groups.

7.42 Definitions. (i) A factor H/K of a series of G is said to be a central
factor of G if K is normal in G and H/K < Z(G/K).

(ii) G is said to be nilpotent if it has a series all of whose factors are
central factors of G. Such a series is called a central series.

(iii) G is said to be soluble (or, by American authors, solvable) if it
has a series all of whose factors are abelian. We shall call such a series
an abelian series. Groups which are not soluble are said to be insoluble.

Note that a central series is necessarily a normal series. An abelian
series need not be a normal series.

The notion of solubility of groups was formulated by Galois in the
earliest stages of the development of group theory. Indeed, the name
‘soluble’ reflects the intimate connexion discovered by Galois between
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the possibility of solving polynomial equations by radicals and the
solubility (in the sense defined above) of the groups associated by Galois
with these equations. (See the references to Galois theory mentioned
in 2.25.)

7.43. Not all groups are soluble, for it is clear that non-abelian simple
groups are insoluble.

A central series is certainly an abelian series and therefore all nilpotent
groups are soluble. However, soluble groups are not necessarily nilpotent.
For example, let G = Z, and let K be the unique subgroup of G of order
3 (see 3.7). Then

1<K<G

is an abelian series of G, and therefore Z, is soluble. On the other hand,
X, is not nilpotent, for Z(Z,) =1 and therefore , cannot have a central
series.

Clearly all abelian groups are nilpotent. However, there are also non-
abelian nilpotent groups, for we show now that all finite p-groups are
nilpotent.

7.44 Theorem. Let G be a finite p-group. Then G is nilpotent.

Proof. We argue by induction on |G|. The assertion is trivial if |G| = 1.
Therefore we assume that G #+ 1 and, inductively, that all finite p-groups
which have smaller orders than G are nilpotent. By 4.28, Z(G) # 1. Thus
|G/Z(G)| < |G|. Since G/Z(G) is a finite p-group, it follows by the inductive
assumption that G/Z(G) is nilpotent. Now it is clear by 3.30 that G is
nilpotent. This completes the induction argument.

7.45 Lemma. A series of G, say

1=G,<6G,<...4G,=0G,
is a central series if and only if, for eachi=1,...,n,
[6,,G]<G,_,

(cf. 162).
Proof. If the given series is a central series then, for eachi=1,...,n,

G,_;, <G and G,;/G;_, SZ(G/G,_,).
Then, for any xeG,; and any yegG,
(xG;- )(¥G;_ 1) = (¥G;_ )(xG;_ 1),
that is xyG;_, = yxG,_,.
Hence [x,y]eG;_;.
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It follows that [G,,G]<G,_,.
Suppose conversely that for each i=1,...,n,
[G;,G]<G,_,.

Let xeG, and yeG. Then
x~1x*=[x,y]eG,;_,.

In particular, since G;_; <G, if xeG,_, then x’€G,;_,. Thus G,_,<G.
Moreover,
xyG;_; = yxG;_,
for every xeG,; and yeG, and so
Gi/Gi-y S Z(G/G; ).

Thus the series is a central series.

7.46 Theorem. (i) If G is nilpotent then all subgroups and all quotient
groups of G are nilpotent.

(ii) If G is soluble then all subgroups and all quotient groups of G are
soluble. :
Proof. Consider a series of G, say

1=G,<4G,<...<4G,=6G. (@)
Let H < G and K < G. Then, by 7.4(i),
1=(GynH)S(G,nH)L ... <(G,nH)=H, (b)
and by 7.4(ii) and 3.30,
K/K =G,K/K<G,K/K<...<4G,K/K=G/K. (c)

Suppose first that G is nilpotent and that (a) is a central series. Then,
by 745, foreachi=1,...,n,

[G,,G] <G,_,.
Hence
[G,nH,HI<SHN[G,;,G]<SHNG,_,,
and by 164,
[GKK/K,G/K]=[G;,G]K/K <G,_,K/K.

Therefore, by 7.45, (b) and (c) are central series, so that H and G/K are
nilpotent.

Now suppose that G is soluble and that (a) is an abelian series. Then,
by 7.4(i), foreachi=1,...,n,

(G;:nH)/(G,_;nH)=G,_(GinH)/G;_, < G;/G,_,,
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so that (G,nH)/(G,_,nH) is abelian. Also, by 3.30 and 7.4(ii),
GK/K [G,_K/K=GK/G,_,K=G,/G,_,(G;nK)=a quotient group
of G,/G,_,, so that G,K/K / G;_,K/K is abelian. Thus (b) and (c) are

abelian series, so that H and G/K are soluble.

The class of soluble groups has the important property that every
‘extension’ of a soluble group by a soluble group is also soluble. This
property is not shared by the class of nilpotent groups.

7.47 Theorem. Let K < G. If K and G/K are soluble then G is soluble.
Proof. Suppose that K and G/K are soluble. Then K has an abelian
series

1=K,<K,<..<K, =K,

m

and G/K has an abelian series
K/K=G,/K<G,/K<...4G,/K=G/K.
Then, by 3.30,
1=K,<K,<...<4K,=G,<G,<...<G, =G,

and since, for each i=1,...,n,G,;/G,_, gGi/K/Gi_l/K, this series of
G is abelian. Hence G is soluble.

Remark. A non-nilpotent group G can have a normal subgroup K such
that K and G/K are both nilpotent. For example, let G =X, and let K
be the unique subgroup of G of order 3. Then K and G/K are both abelian,
hence nilpotent; but, as we have noted in 7.43, G is not nilpotent.

7.48 Corollary. (i) Suppose that H and K are soluble normal subgroups
of G. Then HK is a soluble normal subgroup of G.

(i) Every finite group has a soluble radical (see 3.45).
Proof. (i) By 3.39, HK < G, and, by 3.40,

HK/K =~ H/HNK.

Since H is soluble, H/HN K is soluble, by 7.46. Therefore, since K and
HK/K are soluble, 7.47 shows that HK is soluble.

(ii) Let G be a finite group and let K be a soluble normal subgroup
of G of largest possible order. Then, if H is any soluble normal subgroup
of G,

K < HK,

and, by (i), HK is a soluble normal subgroup of G. Hence, by choice
of K, K = HK and therefore H < K. Thus K has the right property to be
the soluble radical of G.
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The argument above fails if we try to replace ‘soluble’ by ‘nilpotent’.
Nevertheless, finite groups do have nilpotent radicals. This result lies
rather deeper than 7.48 and we defer the proof to 7.63.

*364 Let n be a positive integer. Then X, is soluble if n < 4, and insoluble if n = S.

365 The groups GL,(Z,) and GL,(Z,) are soluble.

(Hint. See 44 and 193. Remark. Let n be an integer, n > 1, and F a field. Since the
group GL,(F) has a section isomorphic to PSL,(F), it follows from 3.61 and 7.46
that GL,(F) is insoluble whenever n > 2 and also when n=2 and |F|> 3

366 (a) Every non-trivial nilpotent group has non-trivial centre (cf. 4.28).
(b) Let G be a finite group. Then the following two statements are equivalent:
(i) G is nilpotent.
(ii) Every non-trivial quotient group of G has non-trivial centre.

367 Let n be an even positive integer. Then every group of order n is nilpotent if and
only if n is a power of 2. (Hint. See 124.)

368 (i) Every quotient group of a finitely generated soluble group is finitely generated
and soluble.

(ii) Let K < G. If K and G/K are both finitely generated and soluble then G is
finitely generated and soluble.

(iii) A normal subgroup of a finitely generated soluble group need not be finitely
generated. (Hint. See 3.37, 145, 146.)

369 Let X be a class of groups with the following two properties.

(i) Every quotient group of an X-group is an X-group.

(ii) Whenever J € H and both J and H/J are X-groups, H is an X-group.

Then the product of two normal X-subgroups of G is a normal X-subgroup of G;
and every finite group has an X-radical.

370 Let X denote the class of all groups with trivial centre.

(i) Prove that if J < H and both J and H/J are X-groups then H is an X-group.

(ii) Let G =X, x C,. Show that |0*G)| = 3 and that G has just three subgroups
of index 2, of which one is isomorphic to C while the other two are isomorphic to
2,. Hence show that G has normal X-subgroups H and K such that G = HK, but
G is not an X-group.

(Remark. This shows that in 369, property (i) is needed. Hint. See 60.)

371 Let H < G. Suppose that H is a maximal soluble subgroup of G; that is, H is
soluble and there is no soluble subgroup of G which contains H properly (cf. 235 (ii)).
Then N4 (H) = H.

7.49 Theorem. Suppose that G=H x K.
(i) If H and K are both nilpotent then G is nilpotent.
(ii) If H and K are both soluble then G is soluble.
Proof. (i) If H and K are both nilpotent then there are central series

l=H,<H,<..<H,=H
and 1=K,9K,<...9K,=K.

By inserting repetitions of terms if necessary, we may assume without
loss of generality that m = n. Then, by 111,

1=(HyxKy))S(H,xK,)<...<(H,xK,)=0G,
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and, by 165 and 7.45, for each i=1,...,n,
[H; x K;,G]=([H;,H] x [K;,K])<(H,_, x K;_,).

Hence, by 7.45, G is nilpotent.
(i) Suppose that H and K are both soluble. We can follow a similar
argument to (i). Alternatively, we can apply 7.48: for, by 2.33 and 3.12,

HHx1)2G and K=(1x K)<G,

and clearly
G=(H x 1)(1 x K).

7.50 Theorem. Suppose that H and K are normal subgroups of G.
(i) If G/H and G/K are both nilpotent then G/(H n K) is nilpotent.
(i) If G/H and G/K are both soluble then G/(H N K) is soluble.
(iii) Every finite group has a nilpotent residual and a soluble residual
(see 3.45).
Proof. (i) By 109, G/(H nK) can be embedded in (G/H) x (G/K). Hence
“if G/H and G/K are both nilpotent, then it follows from 7.49 and 7.46 that
G/(H N K) is nilpotent.
(i) A similar argument to (i) is applicable. Alternatively, we may argue
as follows. By 3.40,

H/(H~K)=~ HK/K < G/K.

Therefore, if G/K is soluble, it follows from 7.46 that H/(H n K) is soluble.
If G/H is also soluble, 3.30 and 7.47 show that G/(H n K) is soluble.

(iii) Let G be a finite group and let K be a normal subgroup of G of
smallest possible order such that G/K is nilpotent. Then, if H < G and
G/H is nilpotent,

HNnK<K

and, by (i), G/(H nK) is nilpotent. Hence, by choice of K, HNK =K
and so K < H. Thus G/K is the nilpotent residual of G. An exactly similar
argument; using (ii), shows that G has a soluble residual.

We shall show that among all the abelian series of a soluble group
there is one which descends most rapidly; and that among all the central
series of a nilpotent group there is one which descends most rapidly
and one which ascends most rapidly.

7.51\ Definition. We define subgroups G™ of G, one for each non:
negative integer n, recursively as follows:
G? =g,
and for each integer n > 0,
G" = [G‘"” 1)’ G- 1)] = (G‘"‘ 1))'~
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Thus GV = G'. It is customary to write G® = G” and G® = G"".
Every G™ is characteristic in G: this follows from 3.51, by induction
on n. By definition,

G=GO=GV=G?> ...

This descending sequence of characteristic subgroups of G is called the
derived series of G.

If, for some n,G™ = G"* Y then clearly G™ = G® for every integer
r 2 n. In this case we say that the derived series terminates. The derived
series of a finite group must terminate; but if G is infinite, the derived
series of G need not terminate and then is not strictly a series in the sense
of 7.1. However, we show that if G is soluble then the derived series of
G terminates in 1.

7.52 Theorem. (i) G is soluble if and only if G™ =1 for some integer n.

(ii) Suppose that G is soluble and let n be the least integer such that
G"™ = 1. Then n is called the derived length of G. For any abelian series
of G, say

G.=GW

14

foreachi=0,1,...,r. Inparticular, r = n.
Proof. If G™ = 1 for some n, then

G=G"=2GV"> .. .>2G6"=1

is a series of G, indeed a normal series of G; and, by 3.52, each factor
G~ V/G% is abelian (i = 1,...,n). Therefore G is soluble.
Suppose conversely that G is soluble, and let

G=G,2G,2..BG,=1
be an abelian series of G. We prove, by induction on i, that
G, =2GY foreachi=0,1,...,r.
This is trivial for i = 0. Assume that i > 0 and, inductively, that
G,_, =GN,
Since G;_, & G, and G,_,/G; is abelian, 3.52 shows that
G,=2G,_, = (G V=G,

Thus the induction argument goes through. In particular, since 1 = G, =
G",G" =1.

Remarks. The statement in (ii) is expressed briefly by the remark that
the derived series of a soluble group is its most rapidly descending abelian
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series. Note that this result shows that a soluble group, which is defined
to be a group with an abelian series, actually has an abelian normal
series. Note also that the soluble groups of derived length 1 are just the
non-trivial abelian groups. We shall show in 9.23 that there are soluble
groups of derived length n for every positive integer n.

372 Find the derived lengths of Z,, 4,,%, (see 364 and 7.46).

*373 Let n and m be positive integers.
(i) Suppose that G is soluble, of derived length n. Every subgroup and every

quotient group of G has derived length at most n.

(i) Let K < G. Suppose that K is soluble, of derived length n, and that G/K is
soluble, of derived length m. Then G has derived length at most n + m.

(iii) Let G = H x K. Suppose that H is soluble, of derived length m, and that K is
soluble, of derived length n. Then the derived length of G is equal to max {m,n}.

(See 7.46, 7.47, 7.49.)

*374 (a) Every non-trivial soluble group has a non-trivial abelian normal subgroup
and a non-trivial abelian quotient group.

(b) Let G be a finite group. Then the following three statements are equivalent:

(i) G is soluble.

(i) Every non-trivial normal subgroup of G has a non-trivial abelian quotient
group.

(i) Every non-trivial quotient group of G has a non-trivial abelian normal
subgroup.

(cf. 366.)

375 Let H< G.
(i) Then H°G' = HG', where HC denotes the normal closure of H in G (see 180).
(ii) Suppose that G is soluble. Then H® = G if and only if HG' = G.

7.53 Definitions. We define subgroups I',(G) and Z,(G) of G recursively
as follows. Let I',(G) = G and Z(G) = 1. Then, for each integer n>1,
r(G)=[TI,-,(G),G], and for each integer n>0,Z,(G)/Z,_,(G)=
Z(G/Z,_,(G)). Then

G=T,(G)>TyG) =2 T4(G)> ... ()
and 1=Z,G) < Z,(G)< Z,G)< ... (b)

The descending sequence (a) is called the lower central series of G and
the ascending sequence (b) is called the upper central series of G.

The terms of (a) and (b) are characteristic subgroups of G: this follows
by induction on n, using 3.51 for (a) and using 118 and 136 for (b). The
factors of (a) and (b) are all central, by 162 for (a) and immediately by
the definition of (b). But (a) and (b) are not central series of G in the sense
of 7.42 if G is non-nilpotent, since they do not terminate in 1 and G,
respectively (and, indeed, they need not terminate if G is infinite). However,
they do if G is nilpotent, as we now show.

Note that the numbering of the terms of (a) starts from 1 while the
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numbering of the terms of (b) starts from 0: this is conventional. Note
also that by definition I',(G)= G'. However, in general, I';(G) + G":
see 376.

7.54 Theorem. (a) The following three statements are equivalent:
(i) G is nilpotent.

(i) I',(G) =1 for some integer n.

(i) Z,(G) = G for some integer n.

(b) Suppose that G is nilpotent. Then for any central series of G, say

1=G6,9G,<...9G, =0,
I_i.1(G)<G,<Z(G) foreachi=0,1,...,r.

Furthermore, the least integer c such that T, (G) =1 is equal to the least
integer ¢ such that Z (G) = G this integer c is called the class of the nilpotent

group G.
Proof. If T (G) = 1 for some n then

G=T,(G)>T,G)=>..2T(G)=1

is a central series of G, and so G is nilpotent.
Similarly, if Z,(G) = G for some n, then

1=Z(G)<Z,(G)<...< Z(G)=G

is a central series of G, so that G is nilpotent.
Now suppose conversely that G is nilpotent and let

1=G,9G,<...<G,=G
be a central series of G. We prove first by induction on i that
G, <Z(G)

for each i=0,1,...,r. This is trivial for i =0. Assume that i >0 and,
inductively, that
G,_,<Z,_,0).
Then
Gi— 1Zi— 1(6) = Zi— 1(G)~

By hypothesis, G;/G;_, < Z(G/G,;_,). Therefore, by 151,
GiZ;_1(G)/Z;-(G) S Z(G/Z,_,(G)) = Z(G)/Z;_(G).
Hence G, < Z(G).
Thus the induction argument goes through. In particular, since
G=G,<Z/(G),Z,(G)=G.
Now we prove by induction on j that

I1(G) <6,
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for each j=0,1,...,r. This is trivial for j=0. Assume that j> 0 and,
inductively, that

T(G)<G,_,,.
By 7.45, [G,_,+1,G]<G,_;.
Hence T;,,(6)=[T(6),G]<[G,_,,,,G]<G,_,.

Again the induction argument goes through. In particular, sinceT, , ;(G) <
G,=1T, ,(G)=1

Let ¢ be the least integer such that Z (G) = G. Then we may choose
G,=Z(G)fori=0,1,...,c and r = c. By what we have proved, it follows
thatT',, ,(G) = 1. Weassert that if c > 0, I"(G) # 1. Suppose to the contrary
that I' (G) = 1. Then we may choose G;=T._(G) for i=0,1,...,c—1
and r = ¢ — 1. But then, by what we have proved, it follows that Z, _,(G) =
G; this is contrary to the definition of c¢. Thus I'(G) # 1 and c is also
the least integer such that I', _,(G) = 1.
Remarks. The theorem shows that if G is a nilpotent group then the
lower central series of G is its most rapidly descending central series and
the upper central series of G is its most rapidly ascending central series.
Note that the nilpotent groups of class 1 are the non-trivial abelian
groups.

*376 (i) For every positive integer n, G~V <T,(G).

(ii) Give an example of a group G such that G” < T'5(G).
377 (i) Suppose that |G| = p", where n is an integer, n = 2. Then G is nilpotent of
class at most n — 1.

(i) Let n be an integer, n = 3. Then the dihedral group D,, of order 2" has class
n— 1. (Hint. See 124.)

378 Let n and m be positive integers.

(i) Suppose that G is nilpotent of class n. Every subgroup and every quotient group
of G has class at most n.

(ii) Let G=H x K. Suppose that H is nilpotent of class m and K is nilpotent of
class n. Then the class of G is equal to max {m, n}.
(See 7.46, 7.49: cf. 373.)

We consider next the composition and chief factors of finite nilpotent
and soluble groups.

7.55 (cf. 3.6). The only soluble simple groups are the groups of prime
orders.

Proof. Let G be a soluble simple group. Since G # 1, 7.52 shows that
G' < G. Then, since G’ << G and G is simple, G’ = 1. Thus G is abelian.
It now follows from 3.6 that G is finite and of prime order.

1.56 Theorem. Let G be a finite group. Then the following three statements
are equivalent :
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(i) G is soluble.
(ii) Every composition factor of G has prime order.
(iii) Every chief factor of G is elementary abelian.
Proof. Suppose that G is soluble. A composition factor H/J of G is
a quotient group of a subgroup of G and is therefore soluble, by 7.46.
But also, by 7.2, H/J is simple. Therefore, by 7.55, H/J has prime order.
Let n be the derived length of G. Then the derived series of G,

1=G"<G" V«a.. <G <G

is a proper normal series of G, which can therefore be refined to a chief
series of G (by the version of 7.9 for groups with operators). Since the
factors of the derived series are abelian, so are the factors of this chief
series. Moreover, by the Jordan—Holder theorem, every chief factor of
G is isomorphic to one of the factors of this particular chief series. Thus
all chief factors of G are abelian. By 7.38, they are also characteristically
simple. Hence, by 7.41, they are elementary.

Suppose conversely that either every composition factor of G has
prime order or every chief factor of G is elementary abelian. Then either
a composition series or a chief series of G is an abelian series of G. Hence
G is soluble.

Remarks. The theorem shows in particular that a finite soluble group has
a series all of whose factors are cyclic. This is not true in general for
infinite soluble groups: see 387.

A finite soluble group does not in general have a normal series all of

whose factors are cyclic: 7.34 shows this. See also 389.

7.57. Suppose that G has a chief series. Any central chief factor of G is
finite and has prime order.

Proof. In view of 7.36, it is enough to consider a minimal normal subgroup
L of G such that L < Z(G) and to show that |L| = p for some prime p.
Since L < Z(G), every subgroup of L is normal in G (118). Therefore,
since L is minimal normal in G, the only subgroups of L are 1 and L.
It follows (29) that |L| = p for some prime p.

7.58 Theorem. Let G be a finite group. Then the following two statements
are equivalent :

(i) G is nilpotent.

(ii) Every chief factor of G is central.
Proof. Suppose that G is nilpotent. Since quotient groups of nilpotent
groups are nilpotent (7.46), it is enough, by 7.36, to prove that every
minimal normal subgroup of G lies in the centre of G. Let L be a minimal
normal subgroup of G. Then, by 3.51 and 3.53,

[L,G]<G and [L,G]<L.
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Since L is minimal normal in G, it follows that either
[L,G]=1o0r[L,G]=L.

Suppose that [L,G] = L. Then we show by induction on n that for
every positive integer n,

L<T/(G).
This is trivial for n = 1. Assume that n > 1 and, inductively, that

L<T,_,G).
Then
L=[L,G]<[TI,_,(G),G] =T,(G), by definition.

This completes the induction argument. Since G is nilpotent, 7.54 shows
that, for some n,

rG)=1.

Thus it follows that L =1. This is in contradiction to the definition
of L. Therefore [L,G] = 1, that is, L < Z(G), as required.

If, conversely, every chief factor of G is central then a chief series of
G is a central series of G, and so G is nilpotent.
Remarks. By 7.57 and 7.58, every chief factor of a finite nilpotent group
has prime order. However, it is not true that if every chief factor of a
finite group G has prime order then G is nilpotent: for example, let
G =X, and see 7.43. The implication (i) = (ii) in 7.58 can also be proved
by applying the Jordan—Hoblder theorem for chief series, together with
356.

379 Let G be a finite group and suppose that |G| = p7p3>... p™, where s,m,, ..., m,
are positive integers and p,, ..., p, distinct primes. Then G is soluble if and only if

the composition length of Gis ). m;.

j=1
380 Let G be a soluble group. Then G has a composition series if and only if G is
finite (cf. 320).

*381 Let G be a finite group.

(a) If G is soluble and non-trivial then there are prime divisors p, g of | G| such that
1< 0,(G) and 0%(G) < G. (Possibly p = q.)

(b) The following three statements are equivalent :

(i) Gissoluble.

(ii) For every proper normal subgroup K of G, there is a prime divisor p of |G/K |
such that K/K < 0,(G/K).

(iii) For every non-trivial characteristic subgroup K of G, there is a prime divisor
g of | K| such that 0%K) < K.
(Hints. To show that (ii) = (i) and (iii) = (i) argue by induction on |G|. Use 93 and
156.)

382 Let p and q be distinct primes and let @ = {p,q}. Then the following two state-
ments are equivalent:
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(i) The only finite simple m-groups are the groups of orders p and g.

(ii) Every finite m-group is soluble.
(Remark. Both these statements are true. They are equivalent versions of the theorem
of Burnside mentioned after 4.29.)

*383 The following two statements are equivalent:

(i) Every non-abelian finitg simple group has even order.

(ii) Every group of odd order is soluble.
(Remark. Both these statements are true. They are equivalent versions of the theorem
of Feit and Thompson quoted in 1.12))

384 If G is insoluble and |G| < 100 then G = A;. (Hint. Apply 5.30.)

385 Let G = GL,4(Z,).
(i) Then |G| =168 =23 x 3 x 7 (see 2.16, 2.17).
(ii) A group of order 168 which is not simple must be soluble. (Hint. Use 384.)
(iii) Find elements in G of orders 3 and 7. Show that G does not have a normal
subgroup of order either 3 or 7. Deduce that if G is soluble then G has a non-trivial
abelian normal 2-subgroup A. (Hint. Note that if G had a normal subgroup of order 3
it would be the unique Sylow 3-subgroup of G; similarly with 7 in place of 3.)

(iv) Let 1 01
g={0 1 0]eG.
0 01

Deduce from (iii) that if G is soluble then ge 4. Show that g does not commute with
every conjugate of g in G. (Hint. See 120, 252(iv), 260 and 5.8.)
(v) Conclude that G is simple.

386 (i) If G is insoluble and |G| < 200 then |G|= 60 or 120 or 168 or 180. (Hint.
See 296,384.)
(ii) There are insoluble groups of orders 60, 120, 168 and 180.

387 A group is said to be polycyclic if it has a series all of whose factors are cyclic.
Thus every polycyclic group is soluble and, by 7.56, every finite soluble group is
polycyclic.

(i) Let G be a polycyclic group. Suppose that G has a series of length n, all of
whose factors are cyclic, where n is a positive integer. Then G is an n-generator group.
Moreover, every subgroup and every quotient group of G has a series of length n, all
of whose factors are cyclic; thus all subgroups and all quotient groups of G are
n-generator polycyclic groups.

(ii) Let K € G. If K and G/K are both polycyclic then G is polycyclic.
(iii) Not every finitely generated soluble group is polycyclic. (Hint. See 368.)

388 (a) Let G be an n-generator abelian group, where n is a positive integer. Then
G is polycyclic (387) and all subgroups of G are n-generator groups.

(b) The following three statements are equivalent :

(i) Every normal subgroup of G is finitely generated and soluble.

(ii) G is polycyclic.

(iif) Every subgroup of G is finitely generated and soluble.
(Hint. To prove that (i) = (ii), consider the derived series of G and apply (a) and
387 (ii).)

*389 A group is said to be supersoluble if it has a normal series all of whose factors
are cyclic. Thus a supersoluble group is in particular polycyclic (387) ; though not
conversely, as 7.34 shows.
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(i) If G is supersoluble then all subgroups and all quotient groups of G are

supersoluble.

(i) Let G = H x K. If H and K are both supersoluble then G is supersoluble.

(iii) Show by an example that a non-supersoluble group G can have a normal
subgroup K such that K and G/K are both supersoluble.

(iv) Every finite nilpotent group is supersoluble. Show by an example that not
every finite supersoluble group is nilpotent.

(v) Suppose that G is finite. Then G is supersoluble if and only if every chief factor
of G has prime order.

*390 (i) Let K< G and K < H < G. The centralizer of H/K in G is defined to be
the subgroup J of G such that K < J and J/K = C ((H/K). We write J = C(H/K).
Thenalso Cy(H/K) = {geG :[g,h]eK for all he H} (cf. 162(ii)). Moreover, if HL G
then C;(H/K) < G and G/C;(H/K) can be embedded in Aut(H/K).
(Hint. Apply 3.30 and 4.36.)
(i) Suppose that there is a normal series of G,
G=G,2G,2..2G, =1,

such that G, = G’ and, for each i 2 1,G,/G,, , is cyclic. Then G’ is nilpotent. (Hint.
Apply (i), 4.38, 3.52 and 7.45.)

(iii) If G is supersoluble (389) then G’ is nilpotent. (Hint. Apply Schreier’s theorem
for groups with operators, and (ii).)

We shall deal with the arithmetical structure of finite nilpotent and
soluble groups in chapter 1}

7.59 Theorem. Let G be a nilpotent group and let the class of G be c. Then,
for every subgroup H of G, there is a series of length c from H to G. In
particular, every subgroup of G is subnormal in G. (Note that this result,
together with 7.44, gives another proof of 7.14.)

Proof. For each integer i 2 0, let Z, = Z(G). Then (see 7.54)

1=2,<Z,<..<Z,=0G.
This is a normal series of G, so that, by 3.38,
H=HZ,<HZ,<..<HZ =G. (a)

Since the centre of a group normalizes every subgroup of the group and
since, by definition, Z,/Z, _, = Z(G/Z,_,),foreachi=1,...,c,

Zi/Zi— S NG/Z!— 1(HZi— 1/ Zi—y)-
Hence
HZi— l/Zi—l < (HZi— 1/Zi— 1)(Zi/zi— 1) = HZi/Zi—l’

and so, by 3.30, foreachi=1,...,c,
HZ, ,<HZ,

Thus (a) is a series of length ¢ from H to G.

7.60. One might ask conversely whether a group in which every subgroup



158 SERIES

is subnormal is necessarily nilpotent. We shall prove in 11.3 that this is
true for finite groups. The general question remained for long unresolved
until in 1968 it was settled negatively by H. Heineken and I. J. Mohamed
[a 54]. They proved that there are infinite soluble groups G, of derived
length 2, with Z(G) =1, hence which are not nilpotent, but such that
all proper subgroups are nilpotent and subnormal in G.

All subgroups of an abelian group A are normal in A. We know also
that there is a non-abelian group in which all subgroups are normal,
namely the quaternion group Qg: see 181. There is a classical result,
due to Dedekind, giving a complete description of the non-abelian
groups in which all groups are normal: see Huppert [b21] p. 308, theorem
3.7.12, or Schenkman [b35] p. 195, theorem 6.4.g, or Scott [b36] p. 253,
theorem 9.7.4, or Zassenhaus [b41] p. 159, §4.6. Such groups are nilpotent
of class 2. Building on this result, J. E. Roseblade [a81] proved that if
G is any group for which there is a positive integer n such that for every
subgroup H of G there is a series of length n from H to G then G is nilpotent
and the class of G is bounded above by a function of n. This theorem
generalizes part of the result to be proved in 11.3.

7.61 Definition. For the purpose of proving the next major result, it
is convenient to define higher commutators. If H,J,K are subgroups
of G then we may have [[H,J],K] #[H,[J,K]]: see 393. In order to
simplify notation, we adopt the convention that [H,J,K]=[[H,J],K].
This is customary.

Let n be a positive integer and let G,,G,,...,G, be subgroups of G
(not necessarily distinct). Then we define

G, ifn=1
G ,G,...,Gn]={ ! . .
[ 6. [[...-[[G,,G,],G;],---,G,_].G,] if n=>2.
For instance, with this notation, for each positive integer n,
r,(G)=I[q,g,...,G],

where on the right G appears n times.

7.62 Lemma. Let r,s be positive integers such that r<s, and let G,
G,,...,G,, H,K be normal subgroups of G. Then

[G1’Gz’---’Gr—1,HK,Gr+1’ G]
=[G1,...,Gr_1,H,G,+1,. s][Gl’ G,_1,K,G,iy5-. Gs]'

Proof. The assertion is trivial if r=s=1. Suppose first that r=s5>1,
and let J =[G,,G,,...,G,_,]. Then

[G,,G,,...,G,_,,HK] = [J, HK](by definition)
=[J,H] [J K] (by 3.49 and 169)
_'[Gl’ r I’H][Gl’ Gr—l’K]' (l)
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Next suppose that r = 1 < s. Then

[HK,G,,G,,...,G] =[[HK,G,],G;,...,G] (by definition)
=[[H, G,][X,G,],G;,...,G] (by 169)
=[[H,G,,G;5][K,G,,G;],...,G,] (similarly)

[H,G,,...,G][K,G,,...,G]. (i)

Now we consider the general case. By (i) and (ii), we may assume that
1 <r<s. Then

[G,.G,,...,G,_,,HK,G,, ,,...,G,]
=[[6G,,...,G,_,,HK],G,,,...,G ] (by definition)
=[[G,.-...G,_1,H][Gy....G,_1.K]. G, ,....G] (by ()
~[[Gys s, G 1, H],Gyry, e, Gl

[[G,,...,G,_;,K], G,,y,-..,G,] (by (ii))
=[G,,...,G._,,H,G,,,,...,G][G,,...,G,_,K,G,, ,,...,G.].

The following important-result was established by Fitting in 1938.

7.63 Theorem (H. Fitting [a27]). (i) Suppose that H and K are nilpotent
normal subgroups of G. Then HK is a nilpotent normal subgroup of G.
Moreover, if H K and HK have classes a, b and c, respectively, then
c<a+b.

(i) Every finite group has a nilpotent radical.
Proof. (i) By hypothesis (see 7.54),

Lo (H)=1=T,, (K).
We wish to show that ', , . ;(HK) = 1. By 7.62, for any positive integer n,

I (HK)=[HK,HK,...,HK]
=[H,HK,...,HK][K, HK, ..., HK]

Thus, by repeated application of 7.62, I' (HK) can be expressed as a
product of 2" commutators [L,,L,,...,L,], where, for each i=1,...,n,
L, is either H or K.

Let r be a positive integer. Since H < G and I'(H) is characteristic
in H,I' (H) € G, by 3.15. Hence, by 3.53,

[T/(H), K] < T(H).

Suppose that in a particular commutator [L,,L,,...,L,],r of the Ls
are equal to H and n — r are equal to K. Then it follows from the last

inclusion that
[L,,L,,....L,] ST /(H).

Similarly, if r < nthen
[(L,,L,,...,L]<T,_/(K).
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Now we choose n = a + b + 1. Then, for any particular [L,,L,,...,L,],
either r=a+1 or n—r=2b+ 1. In the former case, I'(H) =1, while
in the latter case, I', _ (K) = 1. Hence in any case

[L,,L,,...,L]=1.

This is true for every one of the 2" commutators in the product expression
forT(HK)=T,,,, (HK). Hence

Favpr i (HK) =1,

and therefore HK is nilpotent of class at most a + b.
(ii) This follows from (i) by an exactly similar argument to the deduction
of (ii) from (i) in 7.48, with ‘soluble’ replaced by ‘nilpotent’.

7.64 Definition. The nilpotent radical of a finite group G is denoted
by F(G) and called the Fitting subgroup of G. Note that F(G) is a charac-
teristic subgroup of G: see 160.

391 Suppose that G is nilpotent.

(i) If H < G then H < N(H) (cf. 5.6).

(ii) If 1 < K <G then [K,G] < K and KN Z(G) # 1. (cf. 5.8. Hint. Consider the
subgroups K, where K| = K and, for each integer n > 1, K, =[K,_,,G].)

392 Suppose that A4 is a maximal abelian normal subgroup of the nilpotent group G.
Then A is a maximal abelian subgroup of G.
(See 235, 251. Hint. Use 391 (ii) in place of 5.8.)

*393 Let G =2X,. Show that there are subgroups H,J,K of G such that

[[H,J].K]+#[H,[J.K]].

394 If G has abelian normal subgroups H and K such that G = HK then G is nil-
potent of class at most 2. (Remark. G need not be abelian: see 171, 181.)

395 Let G be a finite group.
(i) If K € G then F(K) < F(G).
(ii) Show by an example that F(G) need not contain F(H) for every subgroup H of

396 Let G be a finite group.

(i) Show that if G is soluble and G # 1 then F(G) # 1.

(ii) Define subgroups F,(G) recursively as follows. Let F,(G) =1 and, for each
positive integer n, let F,(G)/F,_,(G) = F(G/F,_,(G)).

Then 1=F,(G)<F,(G)<F,(G)<...,

and this ascending sequence is called the upper nilpotent series (or upper Fitting
series) of G. Prove that G is soluble if and only if F,,(G) = G for some n.

(iii) Suppose that G is soluble. The least integer n for which F,(G) = G is called
the nilpotent length (or Fitting height) of G.

Let 1=G,<G,<..<4G,=G

be any series of G whose factors are all nilpotent. Prove that G; < F(G) for each
i=0,1,...,r. Inparticular, the derived length of G is not less than its nilpotent length.
(Hint. Argue by induction on i. Note that by 336, every nilpotent subnormal subgroup
of a finite group H is contained in F(H).)



SERIES 161

We end this chapter with a few properties of F(G).

7.65 Lemma. Let G be a non-trivial finite group. Then C4(F(G)) contains
every minimal normal subgroup of G.
Proof. Let K = F(G)and H = C4(K). Let L be a minimal normal subgroup
of G. If L« K then, since KnL<L and KNnL<G,KnL=1. Then,
by 3.53, [K,L] = 1. Hence L < H.

If on the other hand L < K then, since 1 < L < K, there must be a
minimal normal subgroup, M say, of K with M < L. Since K is nilpotent,
M < Z(K), by 7.58. Thus Z(K)nL+#1. But Z(K)< G (121). Hence
Z(K)n L € G and therefore, since L is minimal normal in G, Z(K)nL = L.
Hence L < Z(K) < H. This completes the proof.

7.66 Theorem. Let G be a nen-trivial finite group. Then, for any chief
series of G, say

1=G,<G,<...<6,=0G,
F(G)= ﬂ C4(G;/G;_ ).

i=1

(See 390.)
Proof. Let K = F(G), L= ﬂ C4(G,/G;_)).

i=1

Then, L < G. Thus, in order to show that L < K it is enough to show
that L is nilpotent. For each i=1,...,n,L < C4(G,/G,_,) and so, by 390,

[L,G]<G,_,.
Hence
[LAG,L]=[L,LNG,]<LNG,_,.
Therefore, by 7.45, the series
1=(LNnGy)<(LNnG)<L...<(LnG)=L

is a central series of L, and so L is nilpotent. Hence L < K.

To complete the proof, it is enough to show that for each i=1,...,n,
K < C4(G;/G;_ ). Now, by 3.30, 3.39,3.40 and 7.46, KG;_,/G;_,< G/G,_,
and

KG;_,/G;_ = K/(KnG,_,),
which is nilpotent. Hence
KG;_,/G;-y S F(G/G,_,).

Since G,/G;_, is a minimal normal subgroup of G/G;_, (7.36), it follows
from 7.65 that F(G/G,_,) centralizes G,;/G,_, , hence that

KGi—l/Gi—l < CG/Gs-l(Gi/Gi—l)'
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Therefore (see 390),

K <C4(Gi/G,_y).
Thisistrueforeachi=1,...,n.Hence K = L.

7.67 Theorem. Let G be a finite soluble group. Then C4(F(G))< F(G).
Proof. Let K =F(G) and H = C4K). Then H <G, by 4.36. Suppose,
contrary to what we wish to show, that H & K. Then

HNnK<Hand HhK €4G.

There is a chief series of G which includes both HN K and H as terms.
Let J/(H n K) be a chieffactor of G with J < H.
Since G is soluble, J/(H N K) is abelian, by 7.56. Therefore (3.52),

JS<HNK<K.
Hence
r,J)=[J,J,J]=[J,J]<[K,H]=1,

since H = Cy(K). Thus, by 7.54, J is a nilpotent normal subgroup of
G and therefore J < K. Hence J < H n K. This is a contradiction, since,
by definition of J, H n K < J. Therefore we conclude that H < K.

*397 Let G be a finite group. Then S(G), the socle of G, is defined to be the product
of all the minimal normal subgroups of G, if G # 1; and S(G)=1ifG=1.
(i) S(G) is a characteristic subgroup of G.
(i) F(G)<C4(S(G)).
(iii) Let K € G. Then C4(K) =1 if and only if Z(K) = 1 and S(G) S K.

398 Let G be a non-trivial finite group.
@) If

1=G,<G,<...<G,=G

is a chief series of G, then G/F(G) can be embedded in the direct product of the n’
groups Aut(G,/G,_,),i = 1,...,n. (Hint. Use 7.66, 390 and the obvious generalization
of 109 to n normal subgroups of G.)

(ii) Suppose that G is supersoluble (389). Then G/F(G) is abelian. (Hint. Apply
(i) and 4.38(i). Remark. This gives an alternative proof for finite supersoluble groups
of the result in 390 (iii) )

(iii) Suppose that G is supersoluble. Then for any prime divisor g of |G/F(G)| there
is a prime divisor p of |G| such that p = 1 mod q. Hence the largest prime divisor
of | G| does not divide | G/F(G)|. (Hint. Apply (i) and 4.38(ii). See also 609.)

399 Let G be a finite soluble group. Then |G| divides |Z(F(G))|.| Aut(F(G))|.
(Hint. Apply 4.36 and 7.67.)

400 Suppose that G is a finite group such that F(G) is abelian. Then F(G) is the
unique maximal abelian normal subgroup of G. Moreover, if G is soluble then F(G)
is a maximal abelian subgroup of G. (See 235, 251. See also 644, 645.)

401 (i) Suppose that G is a finite soluble group. If F (G) is cyclic then G is supersoluble
(389). (Hint. Apply 4.36, 4.38(i) and 7.67.)
(ii) Give an example of a finite supersoluble group G for which F(G) is not cyclic.
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DIRECT PRODUCTS AND THE STRUCTURE
OF FINITELY GENERATED ABELIAN
GROUPS

In considering possible programmes to classify groups, we may distinguish
two related general problems. On the one hand, there is the problem of
construction: starting from a collection of known groups, we want to
build up other groups from them by explicit procedures. On the other
hand, there is the problem of decomposition: we want to find out how
any given group is built up by these procedures from ‘simpler’ components.

The easiest procedure is the direct product construction introduced
in 2.31 and 2.36. We have obtained criteria in 2.34 and 3.54 for a group to
be decomposable as a direct product of two groups. In the present chapter,
we shall examine this procedure in further detail and eventually show
that it is adequate for a description of the structure of finitely generated
abelian groups.

We begin with a convention which simplifies notation.
8.1. Let G=H x K. Then, by 2.33, we know that the map
hw— (h,1) (defined for all he H)
is an isomorphism of H onto H x 1, and the map
kw (1,k) (defined for all keK)

is an isomorphism of K onto 1 x K. Providing that the groups H and
K have only the identity element 1 in common, we identify H with the
subgroup H x 1 of G by identifying the elements 4 and (h, 1) for all heH,
and similarly we identify K with 1 x K by identifying the elements k and
(1,k) for all ke K. Then, by 2.33 and 3.11,

H<G, K €G, G=HK and HnK=1.

Each element (h,k) of G is then identified with the product hk in G of
the elements he H and ke K, and of course hk = kh. (Note that in making
these identifications we are also identifying the groups H x K and K x H;
cf. 2.35)

With this convention, the converse result contained in 3.54 can be
stated as

8.2. Suppose that H and K are normal subgroups of G such that G = HK and
HNnK=1. Then G=H x K.
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We shall establish a generalization of this result to an arbitrary finite
number of direct factors. First we introduce some notation.

8.3. If H and K are normal subgroups of G then it is easy to see that
HK = KH (cf. 3.38 and 95). It follows that if G,,G,,...,G, are normal
subgroups of G then the product G,G, ... G, does not depend on the

ordering of the factors. We sometimes use the notatlon n G, (and similar
expressions) for this product. Note that, by 3.39, H G; < G

It is clear that the convention of 8.1 can be extended to the direct pro-
duct of any finite number of groups. We sometimes denote the direct pro-

duct of groups G,,G,,...,G, by Dr n G, (instead of G, X G, X ... x G,).
If n = 1, then of course DrH G = G

8.4 Theorem. Suppose that G,,G,,...,G, are normal subgroups of G,
where n is a positive integer. Then the following three statements are
equivalent :

(i) G= Drl_[G

=1
(ii) Every element gofG has a unique expression of the formg =g,9,...49,
with g,€G, for each i=1,.
n

(i) G= [] G, and, for each integer m such that L <m<n,
i=1
m—1
( I1 G,.>n G,=1
i=1
Proof. (i) = (i) If G=Dr [] G, then certainly each element of G is
i=1
expressible in the form g,g, ... ¢g,, with g,eG, for each i =1,...,n. More-
over, the expression is unique, by definition of the direct product.

(ii) = (iii) It is immediate from the hypothesis of (ii) that G = n G;.
i=1
Suppose that m is an integer such that 1 <m < n, and let

m-—1
gme< I1 Gi>n G,.
i=1

Then there are elements g, €G,,9,€G,,...,,,_€G,,_, such that
G =9192 Gm-1-
Hence 1=9,9;- G- 19mIm+1 -+ In>

where, if m<n,g,.,=...=g,=1. Then g,eG, for every i=1,...,n,
and so the hypothesis of uniqueness implies that g, =1 for every i; in
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(ml:ll Gi>n G,=1.

i=1

particular, g,, = 1. Thus

(iii) = (i) Foreachintegerm=1,...,n,let

J.=TIG.
—i=1

Then J,, € G and, by hypothesis, J, = G. We shall show by induction on
m that, foreachm=1,...,n,

This is trivial if m = 1. Suppose that m > 1 and, inductively, that

m—1
J._1=Dr[] G,

m
i=1

Then, by definition, J,, =J,,_,G,,.
Since J,,_, and G,, are normal in G, they are certainly normal in J,, ;
and, by hypothesis,
Jp10G,, = 1.
Therefore (8.2)

m-—1

J,=J,_, xGm=<Drn Gi>xGm=DrI—[Gi.
i=1

i=1
Thus the induction argument goes through. Hence
G=J,=Dr ]G,
i=1
8.5. Wammg Let the notation be as in 8.4. In order to establish that

G=Dr H G,, it is not in general enough to prescribe that G = H G,
i=1
and G; r\G =1 whenever i # j. For instance, consider the group

G=C,xC,,

and let a and b be distinct non-trivial elements of G. Then G = {1, a,b, ab}.
Let

A=<a>, B=<{b>, C=<{ab).

Then A, B, C are distinct subgroups of G of order 2. They are certainly
normal in G. Moreover,

G=ABC and ANnB=BNnC=CnA=1.
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But G+ A x B x C since |G| =4 while |4 x Bx C|=8.

8.6 Theorem. Let G be a non-trivial finite group and let p,...,p, be the

distinct prime divisors of |G|, where s is a positive integer. Suppose that, for

eachi=1,...,s, G has a normal Sylow p;-subgroup P;. Then G =Dr [] P,
i=1

and G is nilpotent.
Proof. For each i=1,...,s, let | P;| = p*. Then

|6l = T1r
For eachm=1,...,s, let

J,=T1P.<G.

i=1

m
i=

We show by induction on m that

IJmI = ‘l:-[lp;"‘.

This is trivial if m = 1, since J, = P,. Suppose that m > 1 and, inductively,
that

m—1
I‘Im—1| = l_[ p:h
i=1
Then, by Lagrange’s theorem, J,,_; N P,, = 1. Hence, by 3.40,

|Jm|= |Jm—le|= 'Jm—1| |Pm| = l——Ilp:"

Thus the induction argument goes through. In particular,

12.1=I1p =6l
so that
G=J,.
Since also J,,_, nP,, =1 whenever 1 <m < s, it follows by 8.4 that
G=Dr[]P,.
i=1

By 7.44, P, is nilpotent for each i = 1,...,s. Hence, by repeated appli-
cation of 7.49(i), G is nilpotent.
Remarks. This result shows that a non-trivial finite abelian group is
the direct product of its distinct Sylow subgroups. In 11.3, we shall prove
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that if G is any non-trivial finite nilpotent group then every Sylow sub-
group of G is normal in G, hence, by 8.6, that G is the direct product
of its distinct Sylow subgroups.

—

*402 Suppose that H and K are normal subgroups of G such that G=H x K.
IfH<J<GthenJ=H x (JnK);and J< G if and only if J n K < K. (Hint. Apply
Dedekind’s rule 7.3.)

403 If H and K are normal subgroups of G such that HK = G then
G/(HnK)=H/(HNK) x K/(HAK)=(G/H) x (G/K) (cf. 109).

404 (i) Prove that G has a composition series if and only if G has only finitely many
distinct subnormal subgroups. (Hints. To prove that if G has a composition series
then G has only finitely many distinct subnormal subgroups, argue by induction on
the composition length, s say, of G. For s> 1, note that every proper subnormal
subgroup of G is contained in a maximal normal subgroup of G (see 363). Hence,
by the induction hypothesis, it is enough to show that G has only finitely many
distinct maximal normal subgroups. Let K be a maximal normal subgroup of G.
Show, by means of the induction hypothesis, that there are only finitely many
maximal normal subgroups of G which intersect K non-trivially. It only remains
to consider the possibility that there is a maximal normal subgroup L of G such

“that Kn L = 1,in which case G = K x L and K and L are both simple. Then consider
Cs(K) and C4(L) and see 3.6.)

(ii) Deduce from (i) that a group cannot have infinitely many distinct composition
series.

(iii) Verify that the argument in (i) can be modified to prove that G has a chief
series if and only if G has only finitely many distinct normal subgroups.

(Remark. A group G with an operator domain Q can have an Q-composition
series but nevertheless have infinitely many distinct subnormal Q-subgroups. For
example, consider a vector space V of dimension 2 over an infinite field F, and
regard F as an operator domain for V'*, as in 7.28 (5). Then the F-group V'* has an
F-composition series (of length 2): see 7.32 (4). The F-subgroups of V* are the
subspaces of V, and these are normal subgroups of V' *, since V' * is abelian. Since F
is infinite, V' has infinitely many distinct 1-dimensional subspaces.)

405 Let G =Dr [ G,, where n is a positive integer. Suppose that for each i=

i=1
1,...,n,G; has a composition series and the composition length of G, is s;. Then G
n

has a composition series and the composition length of G is ) s;.
i=1

*406 Let G = Dr [] G;, where n is a positive integer. Then Z(G) = Dr [] Z(G)).

i=1 i=1

*407 Suppose that n is a positive integer and G,,G,, ..., G, are normal subgroups
n n

of G such that G = Dr [] G,. Let e Aut G. Then also G = Dr [] G2.

i=1 i=1

408 Let n be an integer, n > 1.
n
(i) Suppose that K, K, ..., K, are normal subgroups of G such that (| K; =1
m—1 =

i=1
and, for each integer m with 1 <m<n,G=| () K, |K,,.
i=1
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Then
G=Dr[]G

n

where, for each i=1,...,n,G,= () K;.
j=1
i

(cf. 8.4. Hints. Apply 8.4 to show that ﬁ G,=Dr ]ﬁ[ G,. Prove, by induction on m,
i:l . i=1
that for each integer m=2,...,n,G = H( N Kj).)
g ,,
(ii) SupposethatG,,G,,...,G,are normal subgroups of G such that G = Dr H G;.

i=1

Foreachj=1,2,...,nlet

409 A group G can have normal subgroups G, ,G,, G, such that
(i) G=G,G,G;,,
(i) G,G,,G,G,,G,G, are proper subgroups of G,
(iii) G,nG,=G,NnG;=G;nG, =1,and
(iv) G# G, x G, x G, (cf. 8.4,8.5).
Demonstrate this by considering an elementary abelian group G of order p® and
three suitable subgroups of G of order p2.

*410 Let G be a finite abelian group. Then G is cyclic if and only if every Sylow
subgroup of G is cyclic.

411 Let G,,G,,...,G, be normal subgroups of G such that G = H G,, where n is
i=1
a positive integer. Suppose that G has a composition series.
(i) Every composition factor of G is isomorphic to a composition factor of one
ofG,,G,,...,G,.
(ii) Suppose that whenever i,je{1,2,...,n} with i+ j, no composition factor of
G, is isomorphic to a composition factor of G;. Then G =Dr [] G,.

i=1

8.7 Theorem (R. Remak [a79], 1930). Suppose that K,,K,,...,K, are
minimal normal subgroups of G, where n is a positive integer, and let

K=]]K;. Then there is a subset {i,...,i,} of {1,...,n} such that
i=1
K=Dr[] K,
j=1

Proof. Let & denote the set of all non-empty subsets {i,,...,i,}; of
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m m
{1,...,n} such that i,,...,i, are distinct and [] K, =Dr [] K;,. Tri-

L o
vially, {j}e¥ foreachj=1,...,n ! !
Now choose {i,,...,i,} €% with m as large as possible, and let

L= l_[ K;,=Dr l_[ K;,.
j=1 j=1
By 3.39, K and L are normal subgroups of G and certainly L < K.
If K # L then there is an integer le{l,...,n} such that K, % L. Since
K, is minimal normal in G and L € G, it follows that

K,nL=1.
Then K,L < G and, by 8.2,
K,L=K,x L.

Let i,,, =1 Since Ki, <L for each j=1,...,m, i, is distinct from
ify..,i,and

m+1 m+1

[ K,=LK,=LxK,=Dr [] K,..

Jj=1 j=1
Thus {iy,...,i,,i,+ 1} €. But this is contrary to the choice of m.

Therefore we conclude that K =L and this completes the proof of
the theorem.
Remark. In particular, if G is a non-trivial finite group and S(G) denotes
the product of all the minimal normal subgroups of G (the so-called
socle of G: see 397) then S(G) is the direct product of some of the minimal
normal subgroups of G.

8.8 Definition. G is said to be completely reducible if either G=1 or G
is the direct product of a finite number of simple groups.
In particular, every simple group is completely reducible.

8.9 Lemma (Remak). Suppose that G is a non-trivial finite completely

reducible group: say G=Dr [] K;, where, for each j=1,...,n,K; is a
j=1

simple normal subgroup of G. If Z(G)=1 then K,,...,K, are the only
minimal normal subgroups of G and every non-trivial normal subgroup
of G is a direct product of some of K ,,...,K,.
Proof. For each j=1,...,n,K; is a simple normal subgroup of G, and
therefore K is minimal normal in G.

Now assume that Z(G) =1 and suppose, contrary to what we wish
to show, that there is a minimal normal subgroup L of G distinct from
K,,...,K,. Then, for each j=1,...,n,
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K,nL=1,

and so, by 3.53, [K;,L] = 1.

Hence Ce)= [1K; =6,
j=1

that is L<Z(G)=1,

a contradiction. Thus K, ..., K, are the only minimal normal subgroups
of G.

Let 1 < K € G. We may choose the notation so that K, ..., K,, are the
minimal normal subgroups of G contained in K, while (ifm <n) K,,, ,...,
K, are the minimal normal subgroups of G not contained in K. Let

H=[]K; and J= []K; (withJ=1ifm=n).
j=1

j=m+1

Then
H<Ks<G=Hx/J,
from which it follows (402) that
K =H x (JnK).

Now JAKSG and JNK <J, so that if JAnK # 1,Jn K contains a
minimal normal subgroup K; of G with j > m. But then K is contained
in K, in contradiction to the choice of m. Hence JN K =1 and

K=H=Dr[] K,

j=1

Remarks. (1) With the notation of 8.9, since Z( Dr[[K J.> =Dr [[Z(K)
j=1 j=1

(406), we have Z(G) =1 if and only if every K isj a non—abeliajn simple

group.

(2) Without the condition that Z(G) = 1, the result of 8.9 is not true
in general. For instance, in the example of 8.5, G=A4xB~C, x C,,
so that G is completely reducible; 4 and B are minimal normal subgroups
of G, but there is also a third minimal normal subgroup C of G distinct
from A and B.

(3) 8.9 remains true without the condition that G is finite: see 416.

412 Let G be a finite group. Define S, (G) to be the product of all the abelian minimal
normal subgroups of G (with S,(G) =1 if G has no abelian minimal normal sub-
group) ; and S, (G) to be the product of all the non-abelian minimal normal subgroups
of G (with S,(G) =1 if G has no non-abelian minimal normal subgroup). Let S(G)
denote the socle of G : see 397. Then

(i) S,(G)and S,(G) are characteristic subgroups of G.

(i) S,(G)is abelian (cf. 171).
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(iii) Z(S,(G))=1, and if S,(G) # 1,5,(G) is the direct product of all the minimal
normal subgroups of G which it contains. (Hints. See 357. Follow part of the proof
of 89.)

) S6)=S5,(G) x 5,(G).

413 Suppose that G is a finite completely reducible group.

(i) For any normal subgroup H of G, there is a completely reducible normal
subgroup K of G such that G =H x K. (Hints. If H <G, let {K,,...,K,,} denote
the set of all minimal normal subgroups of G not contained in H; note that this set
is non-empty. Then let & denote the set of all non-empty subsets {i,,...,i,} of

1 1
{1,...,m} suchthati,,...,i aredistinct and H(]_[ K,.j> =H x Dr ﬂ K; . Note that

j=1 j=1
{i}e for each j=1,...,m. Then use a similar argument to the one in the proof of
1

8.7to show that thereisasubset {iy, ..., i} of {1,...,m} suchthat G= H x Dr [ K, .
j=1
Finally, show that each K;_ is simple, for j=1,...,1) !
(ii) Every quotient group and every normal subgroup of G is completely reducible.
(Remark. These results remain true without the condition that G is finite: see 416.)

414 Suppose that G is finite and that L is any product of minimal normal subgroups
of G. Let H 9 G with H < L. Then there is a normal subgroup K of G such that K < L
and L = H x K. (Hint. Modify the argument in 413(i).)

415 Suppose that G is a finite group with the property that, for any normal subgroup
H of G, there is a normal subgroup K of G suchthat G = H x K. Then G is completely
reducible. (Hints. Argue by induction. Use 402 to show that every normal subgroup
of G has the same property as G. Remark. This is a converse to the result of 413(i).)

416 (i) Suppose that G is completely reducible (but not necessarily finite). Prove
that G has a chief series.

(i) Verify that the results of 8.9 and 413 remain true without the hypothesis that
G is finite. Verify also that 415 remains true if the hypothesis that G is finite is replaced
by the hypothesis that G has a chief series. (Hint. See 404 iii).)

417 Suppose that G is completely reducible. Then every non-trivial normal subgroup
of G is a direct product of minimal normal subgroups of G. (Hint. See 8.7, 402,
404 (iii), 413, 416.)

418 (i) Suppose that H is a non-trivial completely reducible normal subgroup of G
such that Z(H) = 1. Then H is a direct product of minimal normal subgroups of G.
(Hints. Argue by induction on the length of a chief series of H : see 416(i). Show that
H contains a minimal normal subgroup, K say, of G and that H = K x Cx(K).)

(i) The assertion in (i) is no longer true in general, without the hypothesis that
Z(H) = 1. Demonstrate this by considering a suitable normal subgroup of the
dihedral group Dg. (Hint. See 5.8 and 124.)

419 (i) Let H and K be completely reducible normal subgroups of G with Z(H) =
1 =Z(K).Then HK is a completely reducible normal subgroup of G with Z(HK) = 1.
(Hint. See 8.7, 8.9, 416, 418.)

(ii) Every finite group has an X-radical, where X is the class of all completely
reducible groups with trivial centre. (See also 426.)

(iii) A finite group need not have a -radical, where 9 is the class of all completely
reducible groups. Demonstrate this by considering the dihedral group Dy.

420 Suppose that G is completely reducible. Then every subnormal subgroup H of
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G is normal in G. (Hint. Argue by induction on the length of a series from H to G,
and see 413 and 416.)

421 (i) Suppose that G has a composition series, say
1=G,<G,<«...<1G, =G,

and suppose that there is no positive integer m such that m<n, G,,_, <G, and
G, .+1/G,,- is the direct product of two isomorphic simple groups. Then every
subnormal subgroup H of G is normal in G. (cf. 342, 420. Hints. Argue by induction
on j(G : H): see 7.20. Apply 7.24(i), 115(i) and 403.)

(ii) Suppose that G is finite and that all Sylow subgroups of G are cyclic. Then
every subnormal subgroup of G is normal in G. (Hints. Show that all sections of G
satisfy the same hypothesis as G, hence that no section of G is isomorphic to C, x C,
for any prime p. See 5.11 and apply (i).

Remark. See also 10.26.)

We can now prove the main result on the structure of finite characteristi-
cally simple groups (see 7.37).

8.10 Theorem. Let G be a non-trivial finite group. Then G is characteristi-
cally simple if and only if G is a direct product of finitely many isomorphic
copies of a simple group.

Proof. Suppose first that G is characteristically simple. Let K, be a
minimal normal subgroup of G. For each acAut G, 3.29 shows that K3
is a minimal normal subgroup of G, and K= K,. Since G is finite,
there are only finitely many distinct subgroups of G of the form K% with
aeAut G, say n of them: let these be K, K,,...,K,. Let

K=1]] K;.
i=1
Now let yeAut G. For each je{l1,2,... ,n},Kj = K{ for some ae Aut G,
and then, since aye Aut G,Kj= K =K, for some le{1,2,...,n}. More-
over, if i,je{1,2,...,n} with i+#j then K?# K. Hence
{K},...,K}={K,,...,K,},
and therefore

K'=T]K}=[]K;=K.
j=1 j=1
This is true for all ye Aut G, and so K is characteristicin G. Since 1 < K, <
K and G is characteristically simple, it follows that
K=0G.
By 8.7, it follows that G is the direct product of some of the subgroups

K,,...,K,. We may choose the notation so that, where m < n,

G=Dr []K,.

i=1
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Now any normal subgroup of K, is easily seen to be normal in G (cf. 111).
Therefore, since K, is minimal normal in G, it follows that K, is simple.
Thus, since K; = K, for each j=1,2,...,m, G is the direct product of m
isomorphic copies of the simple group K ;.

Suppose conversely that G is the direct product of m isomorphic
copies of K, where m is a positive integer and K, a simple group: say

G=Dr[] K,
j=1
where, foreachj=1,...,m K;=K,.

If K, is abelian then |K,|= p for some prime p (3.6). Then |K;|=p
for each j=1,...,m and G is an elementary abelian group of order p™.
By 7.41, G is characteristically simple.

If K, is non-abelian then G is a direct product of non-abelian simple
groups and so Z(G) =1 (406). Let K be a non-trivial characteristic sub-
group of G. Then K contains a minimal normal subgroup of G and so,
by 8.9, K = K, for some ie{1,...,m}. Without loss of generality, we may
" suppose that

K>K,.
Ifm>1,let je{2,...,m}. There is an isomorphism
¢:K,->K;

Each element of G has a unique expression of the form k k, ... k, with
keK; for each i=1,...,m. Then we can define a map « : G — G by

& thyky ek gk gk o K ey KOKKe

for all k,eK,,...,k,eK,,. It is easy to verify that « is an automorphism
of G, and clearly

Since K is characteristic in G,

K=K*>K}=K;.
Thus
K=2K; foreveryj=1,...,m,
and so

K=0¢G.

Hence K is characteristically simple. This completes the proof.
Remarks. (1) It follows in particular that every finite characteristically
simple group is completely reducible.

(2) Without the condition that G is finite, the theorem fails: for instance,
by 361 there are infinite abelian characteristically simple groups, and
these cannot be direct products of finitely many isomorphic copies of
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simple groups, since, by 3.6, abelian simple groups are finite. However,
the theorem does remain true if the hypothesis that G is finite is replaced
by the hypothesis that G has a chief series: see 423.

8.11 Corollary. Let G be a non-trivial finite group. Then every product of
minimal normal subgroups of G is completely reducible.

Proof. Let K be a product of minimal normal subgroups of G. Then, by
8.7, there are minimal normal subgroups K |, ..., K,, of G such that

K=Dr [[K,.
j=1
By 7.38, K; is characteristically simple for each j=1,...,m. Hence, by
8.10, K; is completely reducible for each j=1,...,m. It follows that K
is completely reducible.

422 Let G be a finite group.

(i) Suppose that there is a prime divisor p of | G| such that p? does not divide | G|.
Then, for any minimal normal subgroup K of G, either K is simple or p does not
divide | K|. (Hint. Apply 8.10.)

(ii) Suppose that G has a subgroup H such that |G H|=pand H;=1.Then G
has a unique minimal normal subgroup K, and K is simple. (See also 652. Hint.
Apply 4.14, (i) and 358.)

423 Verify that 8.10 remains true if the hypothesis that G is finite is replaced by the
hypothesis that G has a chief series. (Hint. See 404 (iii) and 416.)

424 Suppose that G has a composition series, and let
A (G,1)={L,,L,,...,L},

where s is a positive integer. Note that (by 355 or 404) G also has a chief series.

(i) Any chief factor of G is the direct product of finitely many isomorphic copies
of L;, for some je{1,2,...,s}. Moreover, for each je{1,2,...,s} there is in any chief
series of G at least one factor which is the direct product of finitely many isomorphic
copies of L;. (Hint. See 423.)

(ii) Suppose that in a composmon series of G there is just one factor isomorphic
to L, . Then in any chief series of G there is a factor which is isomorphic to L, ; and
no other factor of the series is a direct product of isomorphic copies of L, .

425 (a) Suppose that L,,L,,...,L, are maximal normal subgroups of G (see 363),
where n is a positive integer, and let L = ﬂ L;. Then G/L is completely reducible.

(cf. 8.11. Hint. Argue by induction on n, and use 363 and 403.)

(b) Let G be a finite group. We define R(G) to be the intersection of all the maximal
normal subgroups of G, if G# 1; and R(G) =1 if G = 1. As before, S(G) denotes the
socle of G(397). Then the following three statements are equivalent :

(i) R(G)=1.
(ii) G is completely reducible.
(iii) S(G) =

426 Let X denote the class of all completely reducible groups with trivial centre.
Let G be a finite group. Then the X-radical of G (see 419) is the subgroup S, (G) of
G, defined in 412. (Hint. See 418.)
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8.12. We recall the extension problem for groups mentioned in chapter 1:
given groups K and Q, find the groups G for which K < G and G/K =~ Q.
This may be viewed as defining a construction procedure; though, as
we have pointed out, unlike the direct product construction, in general
this does not lead from K and Q to a unique type of group G. (Note that
K x Q is one type of group obtained by this extension procedure.)

The corresponding decomposition procedure for a finite group G
leads to the notion of a composition series of G: the group G is built up by
this procedure from its composition factors, which are simple groups
(7.2) and cannot be further decomposed.

For such decompositions, the Jordan—Holder theorem (7.9) provides
a uniqueness result. Although a finite group G may have several different
composition series, any two of them have the same length and contain as
factors simple groups of exactly the same types with the same multi-
plicities.

We may ask whether such a uniqueness result holds for decompositions
of groups as direct products of indecomposable factors. (Recall (81)
that G is said to be decomposable if it has proper subgroups H and K such
that G = H x K, and if not G is said to be indecomposable.) The answer
is that there is such a result for finite groups; and also for infinite groups
under certain conditions, but not in general. It is called the Krull-Remak—
Schmidt theorem and, for a finite group G, asserts that if

G=H,x..xH, =K, x..xK,,

where H,,...,H,,K,,...,K, are non-trivial and indecomposable, then
m = n and, by relabelling the suffices if necessary,

H; =K, foreachi=1,...,n.

In fact it provides even more information than this. We shall not in this
book prove the general Krull-Remak—Schmidt theorem: for the proof see
Huppert [b21] p. 60, theorem 1.12.3, or Rotman [b34] p. 80, theorem 4.36,
or Scott [b36] p. 83, theorem 4.6.2, or Zassenhaus [b41] p. 114, theorem 7.
However, we shall in 8.18 prove a special case which will be applied in
chapter 9.

We need a few preliminary results. We begin with a result known as
Fitting’s lemma. Recall (2.18) that the endomorphisms of a group form a
semigroup with respect to composition of maps. Thus, for each endo-
morphism ¢ of G and each positive integer k, there is a corresponding
endomorphism ¢* of G.

8.13 Lemma (Fitting [a26], 1934). Let G be a finite group. Regard G as
an operator domain for G, as in 7.28 (3), and let ¢ be a G-endomorphism of
G (see 1.29).

(i) There is a positive integer k such that
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G = Ker ¢* x Im ¢*.

(ii) If G is indecomposable then either peAut G or, for some positive
integer k,q" is the trivial endomorphism of G.
Proof. For each positive integer j, let

K;=Ker ¢’.
Then clearly
K, <K,<K;<..<G.

Since G is finite, it follows that there is a positive integer k such that

K=Ky
By induction on I, we deduce that for every positive integer I,
Ky =Ky

This is true for / = 1. Now suppose that [ > 1 and inductively that K, =
K,.,_,,and letgeK, ,,. Then

(g(pl—l)(pk+1 =gtp"+’ — 1,
so that
go' 'eK,,, =K,.
Hence
g(pk+l—l — 1’
so that
geK, -1 =K,,

by the induction hypothesis. Since also K, < K, ,,, this shows that
Ky =K1

This completes the induction argument.

Now let K=K, and L =Im ¢* Then K <G and, since ¢* is a G-
endomorphism of G (353), L is a G-subgroup of G: that is, L < G. Let
xeKn L. Then

x@* =1 and x = yo*

for some yeG. Thus

yo =1,
so that yeK,, = K,, by the previous paragraph. Hence
x=ypt=1.
Therefore KnL=1.

It follows (3.40) that
L~KL/K.
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But also, by the fundamental theorem on homomorphisms,

L =G/K.
Therefore, since KL < G and G is finite,
G=KL.
Hence, by 8.2,
G=K x L.

Now suppose that G is indecomposable. Then either K =G and L =1
or K =1 and L = G. In the former case, ¢* is the trivial endomorphism
of G. In the latter case, p*eAut G: this implies that ¢ is bijective, hence
that peAut G.

8.14 Definition. For the statement of the next lemma, which is a deduc-
tion from Fitting’s lemma, it is convenient to introduce sums of homo-
morphisms (cf. 33).

Let ¢ and y be homomorphisms of G into H (arbitrary groups). We
define a map

o+y:G—-H
by o +VY: g (go)(gy) forall geG.

In general, ¢ + ¥ is not a homomorphism, and ¢ + ¥ # ¥ + ¢ (although
if @ + Y is a homomorphism then ¢ + Y = + ¢: see 430). However, in
8.15 we shall be concerned with a special situation in which sums of
homomorphisms are again homomorphisms.

The definition is extended in the natural way to arbitrary finite sums
of homomorphisms. Let n be a positive integer and let ¢,,..., ¢, be
homomorphisms of G into H. Then we define the map

Y ¢,:G->H
i=1

by Y 019~ (99,)(gp,)...(ge,) for all geG.
i=1

427 (i) Suppose that H and K are normal subgroups of G such that G=H x K.
Let 7 be the corresponding projection of G onto H (see 3.11) and let 1 be the inclusion
map of H into G. Let ¢ = n1. Then ¢ is a G-endomorphism of G and ¢? = ¢. More-
over, if H and K are proper subgroups of G (so that G is decomposable) then ¢ is not
an automorphism of G and there is no positive integer k such that ¢* is the trivial
endomorphism of G (cf. 8.13(ii)).

(i) Suppose that ¢ is a G-endomorphism of G such that > =¢. Let H=Im ¢
and K =Ker ¢. Then G = H x K and ¢ = 7, where = is the corresponding projec-
tion of G onto H and 1 is the inclusion map of H into G.
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428 (i) Let ¢ be an endomorphism of G and let J = Im ¢. Then ¢ is a G-endomorph-
ism of G if and only if, for every geG, (gp)g ™' € C4(J) (cf. 245, 353(ii)).

(ii) Suppose that G is indecomposable and that Z(G)= 1. Then the only G-
endomorphisms of G are the identity automorphism of G and the trivial endomorph-
ism of G. (cf. 8.13(ii). Hint. Let ¢ be a G-endomorphism of G and let J = Im ¢. Use
(i) and 8.2 to show that G = C4(J) x J.)

429 (i) Any endomorphism ¢ of G such that Im ¢ < Z(G) is a G-endomorphism of
G. (See 428(i).)
(ii) Let G be a finite non-abelian group. Suppose that G has no non-trivial abelian

direct factor. Then, for any endomorphism ¢ of G such that Im ¢ < Z(G), there is a
positive integer k such that ¢ is the trivial endomorphism of G.

430 (i) Let ¢ and iy be homomorphisms of G into H. Then ¢ + y is a homomorphism
if and only if [Im ¢, Imy] = 1. In particular, if ¢ +y is a homomorphism then
o+y=y+o.

(ii) If G is non-abelian and « is any automorphism of G then a + a is not an
endomorphism of G.

431 Let G be an abelian group. Then the set of all endomorphisms of G forms a
ring when addition is defined as in 8.14 and multiplication is defined by composition
of maps (see 2.18). We shall denote this ring by End G. The zero element of End G
is the trivial endomorphism of G; and End G has a multiplicative identity element,
namely the identity automorphism of G.

432 Let R be a ring with a multiplicative identity element 1. Then R is isomorphic
(as a ring) to a subring of End R*. (cf. 46(i), 4.24. Hint. For each aeR, let p, be
defined as in 2.11. Verify that the map a b+ p, is an injective ring homomorphism of R
intoEndR* )

433 The rings Z and End Z* are isomorphic, and, for every positive integer n, the
rings Z, and End Z;} are isomorphic (cf. 46(ii)).

8.15 Lemma. Let G be a non-trivial finite indecomposable group. Suppose
that @,9,,...,¢, are G-endomorphisms of G such that, for eachj=1,...,n,

Jj n
Y. @, is a G-endomorphism of G, and Y’ ¢, = 1, the identity automorphism
i=1 i=1
of G. Then at least one of @, ..., @, is an automorphism of G.
Proof. We argue by induction on n. The result is trivial if n = 1. Now

suppose that n = 2. Then ¢, + ¢, = 1, so that
P =00 +0;) =07+ 0,0,
= (91 + 0)0, = 90} + 0,04,
by definition of composition of maps and since ¢, is an endomorphism
of G. Hence, since G is a group,
P19 =P,

Let { denote the trivial endomorphism of G. If neither ¢, nor ¢, is an
automorphism of G then, by Fitting’s lemma (8.13), there are positive
integers k,,k, such that
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o =0 =1(.
Then, since ¢, + ¢, =1 and ¢,¢, = ¢,0,,
itk (k +k s
1=(p, + @12 = ) ( ' ’)d;‘*""‘fp'z
i=0

(where @9 = @3 =1).
When 0<i<k,,k, +k, —i=>k, and so ¢*'**2~ = Hence also, since

¢} is an endomorphism of G,@%**27ip} ={ When k, <i<k, +k,,
@5 ={ and so also ¢4 **2 g} = (. Therefore the equation above gives
1=¢_.

This is a contradiction since G # 1. We conclude that either ¢, or ¢, must
be an automorphism of G.
Finally, suppose that n > 2. Let

n—1
Y= z ?;.
i=1

By hypothesis, y and ¢, are G-endomorphisms of G and Y +¢,=1.
Hence, by what we have proved above, either Y or ¢, is an automorphism
of G. If ¢,eAutG, we are done. Suppose YyeAutG. Then ¥ 'eAutG
and

n—1
1= oyt
i=1
It is easy to check(see 353)that o Y™, ..., 0, _ ¥~ ! are G-endomorphisms
j
of G and, for each j=1,...,n—1, Z oy~ ! is a G-endomorphism of G.
i=1

Then, by the induction hypothesis, ¢,y “* € Aut G for some ie{1,...,n — 1}.
Then ¢, = (¢~ )Y eAut G. This completes the induction argument.

8.16. Suppose that G,,G,,...,G, are normal subgroups of G such that

G=Dr][] G, where n is a positive integer. Then every element of G is
j=1

uniquely expressible in the formg,g, ... g,, withg;€G, foreachj=1,...,n.

Therefore, for each i = 1,...,n, we can define a map

m,:G -G,
by T;:9:9,...-9,—g; (forallg,eG,,g,€G,,...,9,€G,).

Then =, is called the projection of G onto G, relative to the decomposition
G=G, x ... x G, (cf. 3.11).

Now G, is a G-subgroup of G, and it is easy to verify that =, is a G-
homomorphism. Let y; denote the inclusion map of G, into G; this is
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obviously also a G-homomorphism. Then 7;y, is a G-endomorphism of G,

J
and for each j=1,...,n, the map Z 7;y; is defined:

i=1

j
Y 91959941+ 9u > 9192 .- 9; (for all g, G, ,g,€G,,...9,€G,).
i=1

Jj
Then Y =y, is a G-endomorphism of G, and

i=1
2 myi=1,
i=1
the identity automorphism of G.

8.17. Let G be any non-trivial finite group. Then there are non-trivial
indecomposable normal subgroups G,,G,,...,G, of G such that

G=Dr[] G,
j=1
Proof. We argue by induction on |G|. If G is itself indecomposable, we
set n=1 and G, = G: then there is nothing more to prove. Suppose that
G is decomposable: then there are proper subgroups H and K of G
such that

G=Hx K.

Then H and K are non-trivial and |H| <|G|,|K|<|G|. Hence, by the
induction hypothesis, there are non-trivial indecomposable normal

subgroups G4, ...,G, of Hand G,,, ,,...,G, of K such that H =Dr [] G;
n i=1
and K=Dr [] G;. Then G,,G,,...,G, are non-trivial indecorjnpos-

j=m+1
able normaljsubgroups of G and

G=Dr[[G;xDr [[ G;=Dr[]Gg,.

i=1 j=m+1 j=1
This completes the induction argument.
434 Letoac Aut G.

(i) If a is a G-automorphism of G then there is a unique G-endomorphism ¢ of
G such that

o + ¢ = 1, the identity automorphism of G.

Moreover, if G is non-abelian then @ ¢ Aut G (cf. 8.15).
(ii) If « is not a G-automorphism of G then there is no endomorphism ¢ of G such
that

a+@=1.
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(Hint. See 245, 353(ii) 429(i).)

435 (i) Verify that 8.17 remains true if the hypothesis that G is finite is replaced by
the hypothesis that G has a chief series.

(i) Give an example of an indecomposable group which does not have a chief
series.

We shall now prove a special case of the Krull-Remak—Schmidt
theorem, namely that a non-trivial finite group with trivial centre has
just one decomposition as a direct product of non-trivial indecomposable
normal subgroups (i.e. unique, apart from ordering of the factors).

8.18 Theorem. Let G be a non-trivial finite group with Z(G) = 1. Suppose
that

G=H, x.. xH, =K, x..xK,

where m,n are positive integers and H,,...,H, ,K,,...,K, non-trivial
indecomposable normal subgroups of G. Then m = n and, by relabelling the
_suffices if necessary, H,= K, for each i=1,...,n

Proof. We argue by induction on n. If n = 1 then, since K, is indecompos-
able and H,,...,H, are non-trivial, m=1 and H, = K,. Therefore
we may assume that n > 1. This implies also that m > 1, for a similar
reason.

Let , denote the projection of G onto H |, relative to the decomposition
G=H, x..x H,,and, foreachi=1,...,n, let p, denote the projection
of G onto K, relative to the decomposition G = K, x ... x K,. Further,
let ; denote the inclusion map of K; into G, and let

* —_ . * .
¥ =Kmy =n, |y, K~ H,and pf = p;|y, :H, = K.

Each p¥n}¥ is a G-endomorphism of H, , hence also an H,-endomorphism
ofH,.

Moreover, for each j=1,...,n, Z pix; is defined and is a G-endo-
1
morphism of G (see 8. 16) Therefore since 7, is a G-homomorphism of G

into H,, so also 1s< Y ,o,.tc,.>1r1 , and clearly

'= (12 p.K.)ﬂ: Z pit

The restriction of this to H, is Z p¥n¥, which is thus a G-endomorphism

of H,, hence also an H -endomorphlsm of H,.Forall heH,,

h=hn, =((hp,)(hp,)... (hp,))m,
= (hptn})(hp3n3)... (hpymy
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so that
n
Y ot =1,

i=1

the identity automorphism of H,. Therefore, since H, is non-trivial
and indecomposable, 8.15 shows that for some i, pf ¥ e Aut H,. We may
suppose the notation chosen so that p¥nfeAut H, . It follows in particular
that p¥ is injective.

Let J=H,x..xH, and L=K, x...xK,. Then G=H, xJ=
K, x L.
Since Z(G) = 1, it follows (406) that

ZH)=Z(J)=ZK)=Z(L)=1.
Now
JSCHH)SG=H,xJ,

and so (by 402)
CsH)=(H;NnCyzH,)) xJ=J,since Z(H,)=1.
By exactly similar arguments,
Co(/)=H,,Ci(K,)=L and C4L)=K,.
Now L = Ker p,. Therefore, since p¥ is injective,
1=Ker p¥=H,nKerp,=H,NnL.
Hence, by 3.53, H, < C4(L). Thus
H <K, <G=H,xJ,
and so (again by 402)
K,=H, x (K;nJ).
Since K, is indecomposable and H, + 1, it follows that

K,=H,.
Hence
J=CgzH,)=C4K,)=L.
Thus
J=H,x .. xH, =K, x ... xK,.

Since Z(J)= 1, the induction hypothesis now implies that m =n and,
by suitable choice of the notation,

H;=K,
for each i = 2,...,m. This completes the induction argument.

Let G be a non-trivial finite group with Z(G) = 1. Then, by 8.17 and 8.18, there
js a unique decomposition, say
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G=G,x..xG,

such that G,,...,G, are non-trivial indecomposable normal subgroups of G. Suppose
that no two of the groups G,,...,G, are isomorphic. Then G,,...,G, are character-
istic subgroups of G and

AutG= Aut G, x ... x AutG,.
(cf. 342; also see 94.)

437 Give an example of a finite abelian group G such that G = A x B, where A and B
are non-isomorphic non-trivial indecomposable subgroups of G, and such that G
has subgroups A* and B*, distinct from A and B, and with G = A* x B* (cf. 8.18).

We shall now prove a result about subgroups of the direct product
of two groups. In chapter 9 we shall apply this result to the extension
problem: see 9.28.

8.19 Theorem (Remak [a80], Klein, Fricke [b26]). Let H and K be
normal subgroups of G such that G = H x K, and let © and p be the corres-
ponding projections of G onto H and K, respectively. Let L < G. Then
G HnNL)SLr<H(KnL)SLp<Kand Ln/(HNnL)= Lp/(KNL).
(i) L=(HNL)x (KnL) if and only if Ln =HnL (or if and only if
Lp=KnL).
Proof. (i) We know that = and p are homomorphisms (3.11).
Since H < G,(Hn L)< L < G. Therefore (87)

(HNL)yn<SLr<Gn=H.
By definition, |, is the identity map on H.

Therefore (HhLyr=HANL.
Hence (HNL)S Ln<H.
Similarly (KNnL)S Lp<K.

We now define a map
@:Ln— Lp/(KnL).

For each element he Ln, there is an element keK such that hkeL. Then
keLp, and we define
ho =k(KnL).

The element k is not necessarily uniquely determined by h, and so we must
check that this definition of h¢ does not depend on the choice of k. If
also k'eK with hk'eL then

k™ k' = (hk)" (hk')eK N L,
and so
kK(KnL)=kKnL).

Thus ¢ is well defined.
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Let h,,h,eLn and let k,,k,eK with h k ,h,k,eL. Then h h,eLn,
k,k,eK and, since [H,K] =1,

(hyhy)(kiky) = (hyky) (R, k,)E L.
Therefore
(hyhy)o = kyky(K A L) = (h,0) ().

Thus ¢ is a homomorphism. It is surjective because, for any keLp,
there is an element he H such that hkeL, and then heLn and hg =
k(K n L). Moreover,

Ker ¢ = {heLn : hkeL for some element ke K N L}
={heLn :heL}
=HnL(since(HNnLyr=HnNL).

Therefore, by the fundamental theorem on homomorphisms,
Lrn/HNnL)=Ln/Ker o ~Im ¢ =Lp/(KnL).
(ii) Clearly
(HNL)x (KNL)SL<Lzn x Lp.

If L = H N L then it follows from (i) that Lp = K n L. Then the inclusions
above imply that

L=HnNL)x(KnL).

If, conversely, L = (H n L) x (K n L) then it is clear from the definitions
of m and p that

Lr=HnNL and Lp=KnL.

8.20 Corollary. Let G=H x K. Suppose that G is finite and that
(|H|,|K|)=1. Then, for every subgroup L of G,

L=(HnNL)x(KNL).
Proof. Let L< G and let =, p be defined as in 8.19. Then Ln < H and
Lp < K. Hence, by hypothesis,

(|L=|,|Lp|)=1.

Since, by 8.19(i), Ln/(HNL)= Lp/(K n L), this implies that | Lz /(HNL)| =
1, hence that Ln = H n L. Thus, by 8.19(ii),

L=HnNL)x(KnL).

Remark. This result would of course fail in general without the condition
that (|H|,|K|)= 1. For instance, let G=<a) x {b) with o(a) = o(b) =
2. Then <ab) is a subgroup of G of order 2, but (a)n<ab)=1=
{b)n<{ab).
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438 Let H and K be normal subgroups of G such that G = H x K, and let 7 and p
be the corresponding projections of G onto H and K, respectively. Suppose that

H,<H <H, K,<¥K,<K and H,/H,=K,/K,.
Let 0 be any isomorphism of H,/H, onto K /K, , and let
L={hk:heH, ,keK, and (hH,)0 =kK,}.
Then L < G and
HnL=H,, Lr=H,, KnL=K,, Lp=K,.
439 Let H and K be normal subgroups of G such that G = H x K, and let n be the

corresponding projection of G onto H. Let L< G and let J=(HNL) x (KNL).
Then J €< L and

L/J=Lrn/(HNL).

(See 8.19. Hint. Let n, : L — Ln be defined by restriction of #, and let
v:Ln — Ln/(H N L) be the natural homomorphism. Consider the map =, v.)

440 (Remak [a80]). Let H and K be normal subgroups of G such that G = H x K,
and let @ and p be the corresponding projections of G onto H and K, respectively.
Let L< G. Then the following two statements are equivalent :

@i L<G.

(i) (HNL)<SH, (KnL)<K, Ln/(HNL)<ZH/(HNL)) and Lp/(KNnL)<
Z(K/(K AL)).
(Hint. To prove that (ii) =>(i), let J =(HN L) x (KN L). Note that J < G and use
151 to show that L/J < Z(G/J).)

441 Let H and K be normal subgroups of G such that G = H x K, and let 7 and p
be the corresponding projections of G onto H and K, respectively. A subgroup L of G
is said to be a subdirect product of H and K if Ln = H and Lp = K.
(i) Let L < G. Then L is a subdirect product of H and K if and only if HL =G =

KL.

(ii) Let L be a subdirect product of H and K. Then L € G if and only if G’ < L.
(Hint. Apply 165 and 440.)

(iii) Suppose that G is finite and that (| H/H'|,|K/K'|) = 1. Then no proper normal
subgroup of G is a subdirect product of H and K. (Hint. Apply (i) and 8.19.)

442 Let H € G and K < G. Verify that the homomorphism  defined in 109 maps
G/(H n K) onto a subdirect product of G/H and G/K (see 441).

443 Let H and K be normal subgroups of G such that G = H x K. Then the following
two statements are equivalent :

(i) L is a subdirect product of H and K (441).

(ii) For some group J, there are surjective homomorphisms ¢ : H — J and
¥ : K — J such that

L={hk:heH,keK and h¢ =ky}.
(Hint. To prove that (i) = (ii), see the proof of 8.19.)

It is convenient to regard the direct product of a finite number of
copies of a group G as a group of maps from a suitable set into G. We
introduce this group of maps here; we shall return to it in chapter 9.
The definition can also be generalized to arbitrary direct products: see
444, 445,
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8.21 Lemma. Let X be a non-empty finite set and let G* denote the set
of all maps of X into the group G. For any f, ,f,€G?, let f, f,€G* be defined,
for all xe X, by

(f12) (%) = £1(x) f2(x).

(N.B. This operation of multiplication is not composition of maps, and
in the present case we write the maps on the left of the elements to which
they apply. In his book, Scott uses the notation f; + f, for the map which
we denote here by f, f, : see [b36] p. 14, example 11. This would be consis-
tent with 8.14, but we adopt the notation which is more usual in the
present context) With respect to this operation of multiplication, G*
acquires the structure of a group which we shall denote by Dr GX.
For each xe X, let

«=1{f€G* : f(y) = 1 whenever x + ye X }.

Then
GG, <DrG¥
and DrG*=Dr[]G,.
xeX

Thus Dr G* is the direct product of | X | isomorphic copies of G.

Proof. Certainly G* is non-empty and is closed with respect to the
multiplication defined above. Since multiplication in G is associative,
so also is this multiplication in G*. There is an identity element for
G*, namely the map

e: X->G
defined, for all xe X, by e(x)=1.
Moreover, every element feG* has an inverse f ~'eG*, defined for all
xeX, by

[T =f)7"

Hence G* is a group with respect to the multiplication defined above.
We denote this group by Dr G*.
Now let xe X and let G* = Dr G*. Then we define a map

o, :G > G*,
as follows. For each geG,
Px g Gy,
where g, is the map of X into G defined, for all ye X, by

1if y = x,

gx(y)={gify=x_

Then, for all g,g'€G,
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99): = 9.9:

so that ¢, is a homomorphism. Moreover,
Kero, ={geG:g,=e}=1,
and, by definition,
Im e, =G,.

Thus G=G,<G*.
If ge G and fe G* then, whenever x # ye X,

(719N =) 'g. NS )

=f1 (¥~ 'f(v) (since x +# y)

Therefore f ~'g,feG,. Hence G, < G*.
Finally, we want to show that

G*=Dr[]G,.

xeX

This is obvious if | X |= 1. Suppose that |X|> 1. Then, for each xeX,
any element of [] G, maps x to 1, and so

y¥x
G.nllG, =1
y¥Fx
Moreover, G*=[]G,:
xeX

for if fe G* then we can express fin the form
[=T1)
xeX

(where the ordering of elements in the product on the right is immaterial,
since any two such elements commute). Now the result follows, by 8.4.

444 Let X be a non-empty finite set. To each xe X let there be associated an arbitrary
group G*. (These groups G* need not be distinct.) Let D denote the set of all maps
fof X into the set | ) G* which satisfy the condition

xeX f(x)er
for all xe X. For any f, ,f, €D, we may define a product map f, f, €D, for all xe X, by
(1.£2)(x) = £, (%) £ (%).

Then D acquires the structure of a group with respect to this operation of multipli-
cation.
For each xe X, let

G,={feD:f(y)=1whenever x #+ yeX}.
Then G*=G,<D.
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Moreover, D=Dr[]G,.

xeX
(Remarks. 8.21 is the special case in which G* = G for all xe X. The representation of
the direct product of a finite collection of groups given above is an appropriate basis
for a generalization to a definition of direct products of possibly infinite collections
of groups: see also 445.)

*445 Let X be a non-empty set (possibly infinite) and, as in 8.21, let G* denote
the set of all maps of X into the group G.

(i) Let multiplication of elements of G* be defined as in 8.21. Show that with
respect to this operation of multiplication, GX acquires the structure of a group:
the group is called the cartesian power (or unrestricted direct power) of G with index
set X, and will be denoted by Cr G*. Let C = Cr G*.

For each f e C, the support of fis defined to be the set

s(f)={xeX :f(x)#£1} = X.
Letf, f'eC. Show that (cf. 110)

(i) s(f~ 1) =s(f),

(iii) s(ff") < s(S)vs(f),

(i) s(f ) =s(f").

() Ifs(f)ns(f) = @ prove that ff" = f'f.

(vi) Let D= {feC :|s(f)| < w}. Prove that DL C. The group D is called the
direct power (or restricted direct power) of G with index set X, and is denoted by
Dr GX. Note that this notation is consistent with 8.21: in fact, if G# 1 then D=C
ifand only if | X| < 0.

(vii) For each xe X , let

= {feC :f(y) = 1 whenever x # yeX}.

Prove that G~ G, < C G,<D and [G,,G,] =1 whenever x and y are distinct
elements of X. Moreover every element of D'is expressible in the form ]_[ f.» where

f.€G, for all xeX, and f, = e, the identity element of C, for all but ﬁmtely many
values of x ; and the expression is unique apart from ordering of the factors.
(When it is non-trivial, the ‘product’ [] f, is of course interpreted as the product

xeX
of the ﬁnitely many f, distinct from e. Products of infinitely many elements are not
defined in general.)

(viii) Suppose that Y is a non-empty set such that there is an injective map of Y
into X. Show that Cr G¥ can be embedded in Cr G and that Cr G¥/ Dr G* can be
embedded in Cr G*/ Dr G*.

(ix) Suppose that X is infinite and G # 1. Prove that Cr G*/Dr G is infinite.
(Hint. It may be assumed that there is an injective map of the set N of all positive
integers into X. Hence, by (viii), it is enough to prove that Cr G"/Dr G "is infinite.)

In the remainder of this chapter, we turn our attention to abelian
groups. Starting from cyclic groups, with whose structure we are already
familiar (see 3.25, 3.31, 3.32), we can form many other abelian groups
simply by using the direct product construction. Any group which is a
direct product of finitely many cyclic groups is certainly abelian; and it
is also finitely generated (see 108). We shall prove the fundamental struc-
ture theorem which asserts, conversely, that every finitely generated
abelian group is the direct product of finitely many cyclic subgroups.
This result is one of the outstanding achievements of the classical period



DIRECT PRODUCTS 189

of group theory: for finite groups it was partially known to Gauss, and
proved completely in that case in 1879 by Frobenius and L. Stickelberger
[a33]. We shall also show that we can decide whether or not two finitely
generated abelian groups are of the same type by comparing certain
systems of integers associated with the groups.

Before establishing these results, we make some remarks on notation.

8.22. Abelian groups appear in a natural way in the general framework of
algebra as the additive groups of rings (see 2.11). Perhaps for this reason,
it is conventional in developing the theory of abelian groups to write
the group operation as addition rather than multiplication. This conven-
tion has various notational consequences. The identity element of an
abelian group is called the zero element and denoted by 0. One refers
to the sum of two subgroups H and K of an abelian group G instead
of to their product, and writes H + K instead of HK. If G is the direct sum
of H and K (that is, if G= H + K and H N K = 0) then one writes G =
H® K. Illogically, perhaps, one nevertheless speaks of quotient groups
of an abelian group and denotes them as before. So, for instance, the
isomorphism theorem of 3.40 would, for an abelian group G, be expressed
as follows: if H and K are subgroups of G then H/(H nK) = (H + K)/K.

However, in this book we shall not adopt these conventions. Since
the theory of abelian groups forms only a small part of the subject matter
of the book, it seems more natural and economical to retain the notational
conventions already established in the preceding pages.

We come now to the proof of the structure theorem for finitely generated
abelian groups. Various different methods of proof appear in the literature.
From a wider point of view, it is illuminating to place the structure theorem
in the more general setting of results on modules over rings: see for
instance Hartley and Hawkes [b18] and Rotman [b34] chapters 4 and 9.
For the limited aims of the present chapter, we follow a brief and ingenious
proof due to R. Rado [a77]. An alternative method for finite abelian
groups is outlined in 448—452: this approach is based on results in Fuchs
[b11] vol. 1.

We begin with a lemma. In 8.23 and 8.24, we use the notation

(my,m,,...,m)

to denote the greatest common divisor of a sequence of integers m,,m,, ...,
mg which are not all 0, where s is a positive integer. Note that

(my,my,...,m)=(m; ,m,...,ny.),

where m; ,...,m, are those of the integers m, , ... ,m  which are not 0.

8.23 Lemma. Let H be a finitely generated abelian group. Suppose that
{x,,X,5,..., %} is a set of generators of H, where s is a positive integer.
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Let m,,m,,...,m; be non-negative integers, not all O, such that (m, ,m,, ...,
m,) = 1. Then there is a set of generators {y,,,, ..., y} of H such that

V1= n X
i=1

S
Proof. Let m= Y m,, a positive integer. We argue by induction on m.

i=1

If m=1 then m; # 0 for only one value of i; we may assume without
loss of generality that m, # 0, and then m, = 1. In this case the result
is trivial.

Now suppose that m > 1. Then, since (m,,m,,...,m)=1, m;# 0 for
at least two values of i. We may assume that

m, Zm,>0.
Then m, —m,,m,,m,, ..., m; are non-negative integers, not all 0, and
(m—my,my,,my,....m)=1.

Moreover, {x,,x,x,,X;,...,X,} is a set of generators of H, since x, =
_1 . . . .

x1 '(x;x,). We may apply the induction hypothesis to any suitable set

of generators of H. Then, since

S
m o—m,+ Y m=m-—m,<m,
i=2

the induction hypothesis implies that there is a set of generators
{y1>¥25---,y,} of H such that

—_— g1 —m m. m m
Yy = XTTM(x, x, )" xR X

s
= [] x™ (since H is abelian).
i=1
This completes the induction argument.

446 Show, by considering the group X,, that 8.23 does not remain true in general
for non-abelian groups.

447 Show, by considering the group Cg, that in 8.23 we cannot in general choose
{¥325..-,¥,} to be asubset of {x,,x,,...,X,}.

8.24 Structure theorem for finitely generated abelian groups. Let r be a
positive integer and let G be an r-generator abelian group. Then there are
elements x,,x,,...,x, of G such that

G =Dr l'r'[ {(x;).
i=1

Proof. If r = 1 then G is cyclic and there is nothing more to prove. There-
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fore we may assume that r > 1. We consider the set £ of all ordered sets
(X15%5,.005%,)

of elements of G such that
0x,) < 0(x) < ... S olx,) (i)
and (X15%X5,..00,%,) =G.

Here the elements x,,Xx,,...,x, need not all be distinct; and in the in-
equalities (i), we treat oo as a ‘number’ greater than every positive integer.
Clearly any set of r generators of G can be ordered (possibly in several
different ways) so that it becomes a member of 2. Thus Z + Q.

We choose a member of # which satisfies certain minimality conditions
on orders of elements. For all members (x,,x,,...,x,) of %, let N, be
the smallest value of o(x,); thus N, is either a positive integer or oo.
Then, for all members (x,,Xx,,...,x,) of # such that o(x,)=N,, let N,
be the smallest value of o(x,). Then, for all members (x,,x,,...,x,) of
# such that o(x,) = N, and o(x,) = N,, let N; be the smallest value of
o(x5). And so on.

Now we choose some member

(X1,%3,5...,X,)ER
with, for eachi=1,...,r, o(x;) = N,.

Then {x,,X,,...,x,} is a set of r generators of G with the following
property: whenever {y,,,,...,),} is a set of r generators of G and j
is a positive integer such that (if j > 1)

o(x;)=o(y;) foralli<j,
then o(x)<o(y) foralli=j.
Since G is abelian, every element of G is expressible in the form

‘r
[T
i=1

with suitable integers n,,n,,...,n, (69); and {(x;> < Gforeachi=1,...,r.
Hence

G=[]<{x>.
i=1
We claim that
G=Dr[]<{x>.
i=1

Assume to the contrary that this is false. Then it follows easily from
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8.4 that there are integers n,,n,,...,n, such that
r
[Ix*=1 and xm#1
i=1

for some i. We may suppose without loss of generality that n,,n,,...,n,
are all non-negative: for if, say, n; <0 then, in the argument above, we
may replace x; by x; ! and n; by —n;,. (Since o(x; !) = o(x;), this replace-
ment does not alter the properties prescribed above.)

We define integers I,,1,,...,1, such that, foreach i=1,...,r,

0<I<o(x) and xi=x.

This may be done as follows.

If o(x;) < oo then, by the division algorithm, there are integers g; and
s; such that n,=g,0(x;)+s; and 0<s; <o(x;). Then X' =xj and we
define [, =s;.

If o(x;) = co then we define I/, = n,. (We have arranged above that n,
is non-negative.)

Since, by assumption, x! # 1 for some i,/, > 0 for some i. Let j be the
least positive integer such that [, > 0: thus, if j > 1,1, = 0 for every i <}j.

Now let

d=(,,1,,...,1),
and, foreachi=1,...,r, let
m;=1l/d.
Then m,,m,,...,m, are non-negative integers such that

(m;,m,,....m)=1.

Since m; = 0 for every i <j,

(m;,m;,q,...,m)=1.

Let H=(xj,xj+l,...,x,><G.
Then, by 8.23, there is a set of generators {y;,¥;4,,..-,¥,} of H such that
yi=TTxpm.
i=j
Hence

Y

I
=
.

-
[}
.

I
-

1]
-

x¥ (since I. = 0 whenever i < j
i i J
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= l__[l x7* (by definition of I, , ..., 1)

=1.
But now G={X,..., =15V Vit1sesVe)
and oy) <ds<l;<o(x).

This contradicts the choice of (x,,x,,...,x,). Therefore we conclude
that

G=Dr ﬁ {x).

i=1

448 (i) Let G be a finite abelian group and let x be an element of G of largest possible
order, say n. Then g" =1 for every geG.
(Hint. Use 6 to show that if there were an element ge G with g" # 1 then, for suitable
positive integers j and k, o(g’ x*) > n.)

(ii) Show by an example that the statement in (i) would not be true in general
without the condition that G is abelian.

449 Let H < G, a finite abelian group. Let K be a subgroup of G maximal subject
to Hn K = 1. Suppose that ge G and g?e K for some prime p. Thenge HK (= H x K,
by 8.2). (Hint. If g¢ K, show that there are elements he H and ke K such that h = kg",
where r is an integer not divisible by p.)

450 Let H < G, a finite abelian group. Let K be a subgroup of G maximal subject
to H N K = 1. Then the following two statements are equivalent :

(i) G=H x K.

(ii) For any prime p and any elements ge G, he H, ke K such that g° = hk, there is
an element A'eH such that h = (K')*.
(Hint. To prove that (ii) = (i), suppose that (H x K) < G, consider an element of
prime order in G/(H x K) and apply 449.)

451 Let G be a finite abelian group and let x be an element of G of largest possible
order, say n. Then {x) is a direct factor of G.

(Hints. Let H={x) < G, and let K be d:?ﬁed as in 450. Use 448 and 450 to show
that G = H x K. Deal separately with the/cases in which p divides n and p does not
divide n.)

452 Let G be a non-trivial finite abelian group. Then there are non-trivial elements
XysXg,..-,X, Of G such that G=Dr [ (x;> and (if r>1) o(x;) is divisible by

i=1
o(x;,,) foralli=1,...,r — 1. (Hint. Argue by induction on |G| and use 448 and 451.
Remark. In 463, we shall see that the sequence of positive integers 7, o(x, ), o(x,),...,
o(x,) is uniquely determined by G.)

453 Let G be a non-trivial finite group and let n be a positive integer. Then the
following two statements are equivalent :

(i) G is abelian and g" = 1 for every geG.

(ii) G is a direct product of cyclic subgroups each of which has order dividing n.

454 (i) Suppose that G = H x K and let A be an abelian group. Then
Hom(G, A) = Hom(H, A) x Hom(K, 4) (see 33).
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(i) If J is a finite cyclic group then Hom(J,C*)x J.
(iii) Deduce that if G is a finite abelian group then Hom(G, C*) = G (cf. 41(ii)).

8.25. It is natural to ask whether there is a uniqueness theorem for de-
compositions of a finitely generated abelian group as a direct product
of cyclic groups (cf. 8.12). The proof of 8.24 allows the possibility that
one or more of the elements x, , ..., x, may be equal to the identity element
1. More significantly, the direct factors {x;) in 8.24 need not be inde-
composable: for instance, if o(x;) = 6 then { x;> = {x?> x {x} > (see 81).

Even if the direct factors in 8.24 are non-trivial and indecomposable,
we cannot expect to obtain such a strong uniqueness theorem as in 8.18.
For instance, consider again the group G=C, x C,, and let 4,B,C be
the three distinct subgroups of G of order 2 (see 8.5). Then

G=AxXxB=BxC=CxA,

and these are essentially different decompositions of G as a direct product
of non-trivial indecomposable subgroups. However, we shall prove
that, as in this example, in any two decompositions of a finitely generated
abelian group G as a direct product of non-trivial indecomposable
subgroups, the number of factors in both decompositions is the same
and the factors in one decomposition can be paired isomorphically with
the factors of the other decomposition.

We shall establish this by means of several intermediate results. First,
we note that any non-trivial finitely generated abelian group does have a
decomposition as a direct product of finitely many indecomposable
subgroups.

8.26 (cf. 81, 132). Let G be a finitely generated abelian group. Then G
is indecomposable if and only if G is cyclic of prime power or infinite order.
Proof. Suppose that G is indecomposable. Then, by 8.24, G is cyclic.
If G is finite then it follows from 8.6 that G has prime power order.

Suppose conversely that G is cyclic, of prime power or infinite order.
If |G| = p™, where m is a positive integer, then, by 3.32, every non-trivial
subgroup of G contains the unique subgroup of G of order p, and so
any two non-trivial subgroups of G have non-trivial intersection; thus
G is indecomposable. If G is infinite then it follows from 3.25 that any
two non-trivial subgroups of G again have non-trivial intersection, so
that G is indecomposable.

8.27 Corollary. Let G be a non-trivial finitely generated abelian group.
Then G is the direct product of finitely many indecomposable subgroups.
Proof. By 8.24, there are subgroups H and K of G such that

G=HxK,

where H is finite and either K =1 or K is the direct product of a finite
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number of infinite cyclic subgroups of G. Now the result follows from
8.17 and 8.26.

8.28 Definitions. (i) G is said to be periodic (or to be a torsion group)
if every element of G has finite order. Every finite group is periodic;
and there are also infinite periodic groups, such as Q*/Z* (195).

(i) G is said to be torsion-free (or aperiodic or locally infinite) if every
non-trivial element of G has infinite order. For example, the groups
Z*,Q*,R*,C*,Q., R, are torsion-free. The only group which is
both periodic and torsion-free is the trivial group (of order 1).

(iii) In general, an infinite group may have non-trivial elements of
finite orders and also elements of infinite orders. Such a group is said
to be mixed. For instance, the groups Q*, R*,C* are mixed.

8.29. We mention here a famous problem of Burnside. Clearly any finite
group is both finitely generated and periodic. In 1902, Burnside asked
whether, conversely, a group which is both finitely generated and periodic

- is necessarily finite. This question has a positive answer for soluble groups
(see 455). The general question remained unanswered until 1964, when
E. S. Golod and I. R. Shafarevich ([a41], [a42]) showed that for any
prime p, there is a 3-generator infinite group in which every element
has order a power of p; thus answering Burnside’s question in the negative.
(In this connexion, see Herstein [b20] chapter 8.)

In the Golod—Shafarevich examples, there is no finite upper bound
on the orders of elements. On the other hand, in a finite group G, every
element x satisfies the equation x!° = 1. Therefore one may ask whether
agroup G is necessarily finite if it is finitely generated and there is a positive
integer n such that x"=1 for every y€G. This question has been the
subject of a great deal of study since Byrnside first formulated his problem.
It is easy to show that G must be fipite if n =2 (see 3 and 69); and it is
also known that G is finite if n = 3 (Burnside [a10] and F. W. Levi and
B. L. van der Waerden [a70]; see Huppert [b21] p. 290, theorem 3.6.6)
or if n=4 (I. N. Sanov [a82]) or if n =6 (M. Hall [a46]). The solution
in the case n = 6 uses ideas from a seminal paper of P. Hall and G. Higman
[a52]: this paper has also had a profound influence on later investigations
on finite simple groups.

However, in 1968, P. S. Novikov and S. I. Adyan ([a75]) established
that for every odd integer n = 4381, there is a 2-generator infinite group
G such that x" = 1 for every xeG.

455 A finitely generated periodic soluble group is necessarily finite. (Hint. Argue
by induction on derived length, and apply 108, 195 and 196.)

We shall now show that any abelian group has a ‘periodic radical’
(see 3.45).
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8.30 Theorem. Let G be an abelian group and let H be the set of all elements
of G which have finite orders. Then H is a periodic subgroup of G, and G/H
is torsion-free. We call H the torsion subgroup of G and write H = T(G).
Proof. Certainly 1€ H, so that H #+ Q. Let h;,h,€H, and let

olh))=n,, o(hy) = n,.
Then n,,n, are positive integers and, since G is abelian,
(hyhy tymm = (W) (h5?)~™ = 1.

Therefore, since n,n, is a positive integer, o(h,h; ') < 00, and so h,h; *eH.
Thus H < G. By definition, H is periodic.

Since G is abelian, we can form the quotient group G/H. Let geG,
and suppose that gH is an element of finite order n in G/H. Then

g"H=(gH)\'=H,
by hypothesis, so that g'eH.
Hence o(g") < o :say o(g") = m. Then
g =1,
and nm is a positive integer. Therefore o(g) < o0, and so ge H. Thus
gH=H.

Hence G/H is torsion free.
Remark. In a non-abelian group G, the set of all elements whose orders
are finite need not form a subgroup of G: see 45, 142. See also 458.

8.31 Lemma. Let G be an abelian group. Suppose that G, is a periodic
subgroup of G such that G/G, is torsion-free. Then G, = T(G).

Proof. Since G, is periodic, G, < T(G). Then T(G)/G, is a periodic
subgroup of G/G,,. Since G/G,, is torsion-free, this implies that G, = T(G).

8.32 Lemma. Let G and H be abelian groups. If G = H then T(G) =~ T(H)
and G/T(G)~ H/T(H).

Proof. Suppose that ¢ is an isomorphism of G onto H. If xe T(G) then
x" = 1 for some positive integer n. Hence (x¢@)" = x"¢ = 1,so that xp e T(H).
Thus T(G)e < T(H). Every element of H is expressible in the form yg,
with yeG. If ype T(H) then (yp)" = 1 for some positive integer n. Hence
y"@ =1 and so, since ¢ is an isomorphism, y" = 1. Therefore ye T(G)
and ype T(G)e. Thus T(G)e = T(H), so that ¢ maps T(G) isomorphically
onto T(H). Now it follows by 3.29 that G/T(G) ~ H/T(H).

456 Let H < G, an abelian group. Show that
() TH)=HNT(G),
(ii) T(G)/T(H)= HT(G)/H < T(G/H).
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Show by an example that we may have HT (G)/H < T(G/H).

457 Show that T (Q*)=C,=T[R™), T(C*) =V, the multiplicative group of all
complex roots of 1 (131), and
Q*/TQ")=Qg,, R*/TR*)=R,,
C*/T(C*) =Ry, x RT/Q%).
458 Let G be a (not necessarily abelian) group in which the set of all elements which
have finite orders forms a subgroup H of G. Then H is a periodic characteristic
subgroup of G, and G/H is torsion-free.
459 Let U(G) = {xeG :either x =1 or o(x) = 0 }.
(i) Suppose that G is abelian. Show that U(G) is a subgroup of G if and only if
either U(G) = 1 or U(G) = G ; that is, if and only if G is either periodic or torsion-free.
(ii) Show by an example that if G is non-abelian, U (G) can be a non-trivial proper
subgroup of G.

8.33 Lemma. Let n be a positive integer, and let G and H be abelian
groups.

(i) Let G"={g":geG}. Then G"<G.

(ii) If G =~ H then G" ~ H" and G/G" = H/H".

Proof. Since G is abelian, the map 4, : g — g", defined for all geG, is an
endomorphism of G. Then G" =Im 4, < G.

Now suppose that ¢ is an isomorphism of G onto H. For any x€G,
x"p = (xp)"e H". Thus G"¢ < H". Every element of H is expressible in
the form yo, with yeG, and (y¢)" = y"¢eG"p. Thus G"p = H", so that
¢ maps G" isomorphically onto H". It follows by 3.29 that G/G" =~ H/H".

8.34 Lemma. Let n be a positive integer. Let/G be a finitely generated
abelian group, so that, by 8.24, there are elements x,...,x, of G such that

G =Dr [[{x;>. Then

i=1
G"=Dr li[ .
i=1
Proof. Let geG. Then there are integers m, ..., m, such that
g= ﬁ X
Then =

g" =[] xmmedxy, ..., x").

i=1
Thus G"=<{x],....,x} ).
Since, foreachi=1,...,r,

Xy <<%,
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it follows that ,
G"=Dr ]_[ xty.
i=1

8.35 Definition. Let r be a positive integer. A group which is the direct
product of r infinite cyclic subgroups is said to be free abelian of rank r.
The trivial group (of order 1) is said to be free abelian of rank 0.

Note that any free abelian group is torsion-free.

8.36 Lemma. Let n and r be positive integers. Let G be a free abelian
group of rank r. Then G/G" is the direct product of r cyclic subgroups,
all of order n.

Proof. By hypothesis, there are r elements x,,...,x, of G, all of infinite
order, such that

G=Dr11[ x5

i=1

Then, by 8.34, G"=Dr [] (x").
i=1

Hence (see 111)
G/G" = ({xy > /<X1D) X oo X ({x,2/<x}D).

By 3.25, {x;>/{x}> is cyclic of order n, for eachi=1,...,n.
We deduce that the rank of a free abelian group is uniquely determined
by the group.

8.37 Corollary. Let G and H be free abelian groups of rank r and s,
respectively, where r and s are non-negative integers. Then G = H if and
only ifr=s.
Proof. 1t is clear from the definition that if » = s then G = H. Suppose,
conversely, that G =~ H. We may assume that G and H are non-trivial,
so that r and s are both positive. By 8.33, G/G*> =~ H/H?; and, by 8.36,
G/G* and H/H? are elementary abelian groups, of orders 2" and 2%,
respectively. Since |G/G*|=|H/H?|, it follows that r =s.
460 Let n be a positive integer, G an abelian group and G, = {geG :g" = 1}.

(i) Then G, < G, and G/G, = G".

(i) Suppose that G is finite, so that (by 8.24 or 452) there are elements x,, ..., x,
of G such that

G=Dr [] {x;).
i=1
Foreachi=1,...,r,let m; = o(x;) and k; = m,/(m,,n). Then

G, =Dr [ {xk>.
i=1
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(iti) If G is finite then G/G" =~ G

(iv) Show by an example that if G is infinite, we need not have G/G" =~ G, for any
n>1.

(v) Show by an example that, even when G is finite, for some n > 1 we need not
have G =G, x G".

461 Let n be a positive integer and let G and H be abelian groups. If G =~ H then
G, = H, (see 460).

462 Let G be a non-trivial finite abelian group. Then, by 452, there are non-trivial
elements x,,x,,...,x,of Gsuch that G = Dr H {x;> and (if » > 1) o(x;) is divisible by

o, 1), for all i=1,...,r — 1. =

(1) Ifpisa prlme d1v1sor of o(x,), then G, is elementary abelian of order p" (where
G, is defined as in 460)

(11) The integer r is the least positive integer n such that G is an n-generator group.
(Hint. Apply (i), 2.30(i) and 388.)

463 Let G and H be non-trivial finite abelian groups. Then, by 452, there are positive
integers r and s and non-trivial elements Xy,X5,...,%, of G and y,,y,,...,y, of H

such that G = Dr H(x >,H=Dr H(y]>, and (if r>1) o(x;) is divisible by

o(x,H) for all l= 1 ...,r—1and (1f s> 1) o(y;) is divisible by o(y;, ,) for all j=
,s—1.

Prove that if G H then r=sand o(x;) =o(y,) for all i =1,...,r. (Remark. This
shows that if G is a non-trivial finite abelian group then the posmve integers r,o(x,),
o(x,), ...,0(x,), given by 452, are uniquely determined by G; and, conversely, they
obviously determine uniquely the type of G. The integers o(x,),o(x,), ...,0(x,) are
sometimes called the invariants of G. Hints. By 462(ii), » = s. Argue by induction on
|G| to show that o(x)=o(y,) for all i=1,...,r. Let p be a prime divisor of o(x,).
Then p divides o(x;) for all i = 1,...,r and, by 460(ii), 461 and 462(i), p divides o(y,
foralli=1,...,r. If G and H are not elementary, consider G” and H? and apply 8.33,
8.34 and the induction hypethesis.)

464 Find the invariants (463) of the-finite abelian groups C, x C¢,C¢ x C, 5 X C5,
and C, x C,, x C,s.

465 Let r be a positive integer, and let G be a free abelian group of rank r. Then,
by hypothesis, there are elements x,,...,x, of G, all of infinite order, such that

G=Dr []<x).
i=1
(i) Let geG. Then there are integers n, ,...,n,, uniquely determined by g, such that
g=[Ixp

i=1
(i) Let H be any r-generator abelian group. Then there is a homomorphism of
G onto H.

466 Let r be a positive integer, and let G be a free abelian group of rank r. Let H < G.
Then H is free abelian of rank s for some s < r. (Hint. Apply 388 and 8.24.)

467 Let K < G, an abelian group. Suppose that G/K is free abelian of rank r for some
positive integer r. Then there is a subgroup H of G such that G=H x K. (Hint.

There are r elements x,,...,x, of G such that G/K = Dr H {x;K) and the elements
x,K,...,x,K of G/K all have infinite order. Let H = (xl, ,x ><G)
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468 Let r be a positive integer, and let G be a free abelian group of rank . Then
(i) G can be embedded in Q..
(ii) If r> 1, G cannot be embedded in Q*.

We now note a consequence of the structure theorem 8.24.

8.38 Lemma. Let G and H be finitely generated abelian groups.

(i) There is a non-negative integer r and a free abelian subgroup K of
G of rank r such that G = T(G) x K; and T(G) is finite.

(i) Let G=T(G) x K and H= T(H) x L, where K is a free abelian
subgroup of G of rank r, L a free abelian subgroup of H of rank s, and r
and s are non-negative integers. Then G = H if and only if T(G) = T(H)
andr=s.

Proof. (i) By 8.24, there are subgroups G, and K of G such that

G=G,xK,

with G, finite and K free abelian of rank r, for some non-negative integer
r. Then, since G/G, = K, which is torsion-free, it follows, by 8.31, that
G, =T(G).

(ii) If r =s then K = L. If also T(G) = T(H) then, since G = T(G) x K
and H = T(H) x L, it follows that G =~ H.

Suppose, conversely, that G~ H. Then, by 8.32, T(G)= T(H) and
K=~ G/T(G)~ H/T(H)= L. Then also, by 8.37, r =s.
Remark. Let G be an abelian group. It has been proved by R. Baer [a4]
(1936) and S. V. Fomin [a28] (1937) that if there is a positive integer n
such that x" =1 for every xe T(G) (and, in particular, if T(G) is finite)
then T(G) is a direct factor of G. See Fuchs [b11] vol. 2, p. 187, theorem
100.1. However, in general T(G) need not be a direct factor of G; see for
example Macdonald [b30] p. 223, example 11.14.

The last lemma reduces the problem of finding conditions for two
finitely generated abelian groups to be isomorphic to the corresponding
problem for finite abelian groups. We now make a further reduction.

8.39 Lemma. Let G and H be finite abelian groups. Then G = H if and
only if, for every prime p, G and H have isomorphic Sylow p-subgroups.
Proof. Suppose that ¢ is an isomorphism of G onto H. Let p be any
prime, and let P be the Sylow p-subgroup of G. Then P =~ P¢ < H. More-
over, since |P| = |P¢| and |G| =|H|, P¢ is the Sylow p-subgroup of H.

Suppose, conversely, that for every prime p, G and H have isomorphic
Sylow p-subgroups. If G = 1, it follows immediately that H = 1. Suppose
that G +# 1, and let the distinct prime divisors of |G| be p, ..., p,, where
s is a positive integer. For each i=1,...,s, let P;,Q, denote the Sylow
p;-subgroups of G,H respectively. Then, by hypothesis, for each i=
1,...,s,



DIRECT PRODUCTS 201
P,=Q,
and |H| is divisible by no prime distinct from p,, ..., p,. By 8.6,

G=Dr[[P, and H=Dr[]Q,.
i i=1

i=1
Hence G=~H.

It remains to consider the question of isomorphism of finite abelian
p-groups. We do this next.

8.40 Lemma. Let G and H be non-trivial finite abelian p-groups. By 8.24,
wemay decompose G and H as direct products of non-trivial cyclic subgroups:
say

t u
G=Dr[[<x) and H=Dr[]<y>,

i=1 j=1
where t and u are positive integers. For eachi=1,...,tand eachj =1, ... ,u,
let

o(x)=p™ and oly;)=p".
W e may suppose the notation chosen so that

m2m,2..2m, and n,Zn,=..2n,.

Then G = H if and only if t =u and m; = n, for each i=1,...,t.
Proof. 1t is clea}\(hat ift=uand m;=n,foreachi=1,...,t, then G= H.

Suppose, conversely, that G~ H. We argue by induction on m,. If
m, = 1 then, since, sl;:y\lwﬂpothesis, m, > 0, it follows that m, =1 for every
i=1,...,t. Thus G is an elementary abelian p-group, and so H is also
an elementary abelian p-group. Hence n; =1 for every j=1,...,u. Then
also p' =|G|=|H|=p" so that t = u.

Now suppose that m; > 1. Then also n, > 1, by the case already es-
tablished. Let k be the largest integer such that m, > 1 and let [ be the
largest integer such that n,> 1. Then 1<k<t, and if k <t then m; =1
for all i> k. Similarly, 1<I<wu, and if /<u then n;=1 for all j>1I
Hence

|Gl=p"'l+~~-+mk+l—k and |H|=pn1+...+m+u—l.

Therefore, since G = H,

k !
.Zlm,-+t—k=.zlnj+u—l. ()
i= j=

By 8.33 and 8.34,

Drf[(x{.’>=G";H"=Drf[<y‘;>.

i=1 j=1
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Foreachi=1,...,tandeachj=1,...,u,

o(x))=p™~' and o(yf)=pu'.

Hence also
k 1
G?=Dr[[<{xf> and H?=Dr[] (y?),
i=1 j=1
with o(x?)=p™~*,0(%) =p¥ 1,

m-1z2m,—12...2m —1>0 and n,—12n,—-12..2n-1>0.

Since G? = HP and o(x?) = p™ ™!, it follows, by the induction hypothesis,
that
k=1 and,foreachi=1,....,k,m;—1=n,—1.

Then it follows, by equation (i), that t =u; and also, since m;=1=mn,
whenever i > t,m, = n, for each i =1,...,t. This completes the induction
argument.

469 Let n and m be positive integers, and let G be an abelian group. Then
(1) G™ = (G")"'.
(ii) If m divides n then G" < G™.
(iii) If H < G then (G/H)" = G"H/H.
(iv) If G=H x K then G"=H" x K"; and G"=G if and only if H"=H and
K"=K.
(v) If G is periodic and, for every geG,(o(g),n) = 1, then G" =G.
(vi) Suppose that n > 1 and that G is finitely generated. Then G" = G if and only
if G is finite and (|G|,n) = 1.
(vii) Suppose that n > 1. Then G" = G if and only if G? = G for every prime divisor
pofn.

470 Let G be an abelian group. Then G is said to be divisible (or radicable or complete)
if G"= G for every positive integer n. (We shall keep to the most frequently used
term, divisible, even though it derives from the customary additive notation for
abelian groups and the term radicable would be more appropriate to our multipli-
cative notation.)

(i) The groups Q* s R0, €™, C o (144) are all divisible.

(i) If G is divisible, then so is every quotient group of G.

(i) If G = H x K, then G is divisible if and only if H and K are both divisible.

(iv) If G is divisible and non-trivial, then G cannot be finitely generated.

471 Let G be an abelian group and suppose that H is a divisible subgroup of G
(470). Assume that K is a subgroup of G which is maximal subject to HNK = 1.
(Remark. Zorn’s lemma, which is a version of the so-called axiom of choice for sets,
guarantees the existence of such a subgroup K : see, for instance, Fuchs [b11] vol. 1,
pp. 1-2 and p. 48)

Prove that G = H x K. (Hints. Let J = HK. Suppose, contrary to what we wish
to prove, that J < G. Then there is an element xeG and a positive integer m such
that x¢J and x™eJ. Let n be the least such integer. By the divisibility of H, there is
an element heH such that (xh™!)"e K. Moreover, there are elements h'e H,k'e K
and an integer r such that 1 # h’' = (xh~!yk’; and r is not divisible by n. Use the
division algorithm to derive a contradiction to the choice of n.)
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We have now reached a very satisfactory position with regard to
finitely generated abelian groups. Any such group G determines a certain
system of integers (see 8.41) and the type of G is uniquely determined
by this system.

8.41 Uniqueness theorem for finitely generated abelian groups. Any
finitely generated abelian group G determines a system of non-negative
integers, as follows. There are non-negative integers r and s; and if s > 0,
there are distinct primes p,, ..., p,, positive integers t,, ... ,t, and positive
integers m; (i=1,...,sj=1,...,t); such that G=T(G) x K, where K
is a free abelian group of rank r, and if s = 0, T(G) = 1, while if s > 0, T(G)

is the direct product of Y. t; cyclic subgroups whose orders are pi"i(i =
i=1

1,...,85j=1,...,t). Moreover, two finitely generated abelian groups
are isomorphic if and only if they determine the same system of integers.

Proof. Let G be a finitely generated abelian group. By 8.38, G = T(G) x K,
where K is a free abelian group of rank r for some non-negative integer r,
and T(G) s finite. If T(G) = 1, let s = 0. If T(G) # 1, let s denote the number
of distinct prime divisors of |T(G)|, and let these primes be p,,...,p;.

In this case, by 8.6, T(G) = Dr [] P;, where P, is the unique Sylow p;-

i=1
subgroup of T(G). Finally, by 8.24, for each i=1,...,s, P; is the direct
product of a finite numbey, ¢; say, of non-trivial cyclic subgroups; let
the orders of these cyclic subgroups be pli(j=1,...,t,).

The fact that two finitely geénerated abelian groups are isomorphic
if they determine the same system of integers follows immediately from
the definition of the system of integers. Suppose, conversely, that G and H
are isomorphic finitely generated abelian groups. Then the fact that they
determine the same system of integers follows from 8.38, 8.39 and 8.40.
Remark. Every system of non-negative integers of the kind specified in
the theorem does arise from some finitely generated abelian group. This
is clear: we need only form a suitable direct product of cyclic groups
of prime power and infinite orders.

8.42 Corollary. Let G be a non-trivial finitely generated abelian group,
and let

G=H x..xH,=K,; x..xK,

where m,n are positive integers and H,, ... ,H,,K,, ..., K, are non-trivial
indecomposable subgroups of G. Then m = n and, by relabelling the suffices
if necessary, H,; = K, for eachi=1,...,n.

Proof. For each i=1,...,m, H, is isomorphic to a quotient group of G,
and is therefore finitely generated. Similarly, K, is finitely generated

for each j=1,...,n. Therefore, by 8.26, each H, Jand each K; is cyclic



204 DIRECT PRODUCTS

of prime power or infinite order. Now the result follows, by 8.31 and
8.41.

8.43 Corollary (1.5). Let n=pY'p52... pv, where s,m,, ... ,m_ are positive
integers and p,,...,p, distinct primes. Then, if v (n) denotes the number
of distinct types of abelian groups of order n,

vi(n) = v 0TV, (07%) .. v(PF*),

and for each j=1,...,s,v,p}) is the number of partitions of m;.
Proof. The first assertion follows from 8.6 and 8.39, and the second
assertion from 8.40.

8.44. There is an extensive theory of infinite abelian groups. Some
remarkable phenomena occur. For instance, A. L. S. Corner [a18] has
shown that there is a torsion-free abelian group G for which G =
GxGxGbut GEG xG.

For further information about infinite abelian groups, see Fuchs [b11],
Griffith [b15], Kaplansky [b24], Kurosh [b27] vol. 1, part 2, and Rotman
[b34] chapters 9 and 10. -

472 (i) For each positive integer m, let p(m) denote the number of partitions of m.
Verify that p(1)=1,p(2)=2,p(3)=3,p@4)=5,p(5)=7,p(6)=11 and p(7)=15.
(i) For each positive integer k < 12, find the least positive integer n, such that
v,(n) =k
Show that there is no positive integer n such that v,(n)= 13.

473 (i) Let G be any non-trivial finitely generated abelian group, let n be any integer
with n > 1, and let G* be the direct product of n isomorphic copies of G. Then G % G*.

(ii) Let G be any non-trivial group, let N denote the set of all positive integers,
and let G* = Dr G", the direct power of G with index set N (445). Then G* is an
infinite group, and G* =~ G* x G*.
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GROUP ACTIONS ON GROUPS

In chapters 4 and 5, we have discussed and applied the idea of a group
action on a set. A group can also act on other mathematical systems.
When this occurs, we add to the axioms of 4.1 further axioms to ensure
that the action respects the structure of the particular system on which
the group acts. There is in particular a very highly developed theory of
group actions on vector spaces: this is usually called representation theory.
This theory provides powerful tools for proving results about abstract
groups: for instance, the theorems of Burnside and Frobenius mentioned
_ in 4.29 and 248 are most easily (or, in the case of the theorem of Frobenius,
only) proved by means of representation theory. We shall not in this
book discuss representation theory further, but refer for introductory
treatments to Lang [b28] chapter 18 and Serre [b37]. The most compre-
hensive account available is by Curtis and Reiner [b7].

In this chapter, we shall discuss the idea of a group action on a group.
Note that in the following definition the axioms are those of 4.1 together
with one extra axiom of structure preservation. As usual, H and K always
denote groups.

9.1 Definition. We say that H acts on K (as a group) if, to each he H
and each keK, there corresponds a unique element k"eK such that,
for all k,k,,k,eK and h,h,,h,eH,

(khl)hz — khlhz, kl = k,
and (kyk,)t = KhKh.

For the theory of group actions on groups, the ‘exponential’ notation
k" is a convenient one, which, as we shall see, fits in well with the previous
notation for conjugates.

9.2 Examples. (i) Let R be a ring with a multiplicative identity element 1.
Then the group R acts on the group R* (see 2.11 and 2.12) when we
define, for each aeR* and each beR*,

a® = ab,

the product in the ring R. Here the conditions for the action are that for
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all a,a,,a,,eR"* and b,b,,b,eR™,

(ab,)b, = a(b,b,), al =a,
and (a, +ay)b=a,b+a,b.

These are satisfied, by the associative law of multiplication and a distri-
butive law in R, and the defining property of the identity element of R.

(ii) Let H < Aut K. Then H acts on K. In this case, each heH is an
automorphism of K and, for keK, k" is the image of k under h. The
conditions of 9.1 are clearly satisfied. This action is the natural action
of H on K.

(iii) Let K< G. Then G acts on K (as a group) by conjugation: to
each keK and each geG there corresponds the element

k9 =g ‘kgek,

in accordance with previous notation (4.25). Here the conditions for
the action are that for all k,k,,k,eK and g,9,,9,€G,

(kgx)gz = kangz, kl =k
and (kyky) = kks,

which we have already verified in 4.25 and 4.36 (or 2.19). In particular,
we see that the action defined in 4.25 is an action of G on itself as a group.
On the other hand, the action of G on itself by right multiplication
discussed in 4.23 is an action on G as a set but not as a group, unless
G| =1.
We now note the analogues of 4.3 and 4.4.

9.3 Theorem. Let H act on K. Then, to each heH there corresponds
a map ¢, :K — K, defined by ¢, :k > k", and this is an automorphism
of K. Moreover, the map ¢ : H —» Aut K, defined by ¢ : h — ¢,, is a homo-
morphism. We call ¢ the automorphism representation of H corresponding
to the action; or, more frequently, for brevity, we simply call ¢ the action.
Proof. Let heH. Since the action of H on K is in particular an action
on K as a set, 4.3 shows that ¢,€Z. Then, for k,,k,eK,

(kiky)p, = (klkz)h = ki'ké' = (ky 0,) (k,9,),

and so ¢,eAut K. Hence the map ¢ : h > ¢, (defined for all heH) is a
map of H into Aut K, and, by 4.3, it is a homomorphism.

9.4 Theorem. Let ¢ be a homomorphism of H into Aut K. Then H acts on
K when we define, for each he H and ke K,

k* = k(he),

and the corresponding action is .



GROUP ACTIONS ON GROUPS 207

Proof. Since Aut K <X, it is clear from 4.4 that the equation above
defines an action of H on K as a set. It is an action on K as a group because,
for heH and k, ,k,€K,

(klkz)h = (klkz) (ho)
= (k,(he))(k,(he)) (since hpe Aut K)
hih

=krk?.
Finally, it is clear from 4.3, 44 and 9.3 that the corresponding action
is @.

9.5. In 436 we proved that, whenever H < G,Cy(H)< N4(H) and
N4(H)/C4(H) can be embedded in Aut H. We see now the true context
of this result. Since H < Ng(H), N (H) acts on H as a group by conjugation.
The action has C4(H) as its kernel, and so the result of 4.36 follows from
9.3 and the fundamental theorem on homomorphisms.

474 Formulate the appropriate axioms for a group action on a vector space.
Show that if a group G acts on a vector space V # 0, there is a corresponding

homomorphism G — GL(V) (the linear representation of G corresponding to the
action). Show, conversely, that fg;}th/ﬁomomorphism 0 :G —» GL(V) there is
an action of G on V with corresporiding linear representation 6.

475 Let R be a ring with a mu(ltiplicative identity element 1. Then the action of
R” on R™ defined in 9.2(i) is faithful.

*476 Let K < G, and let the action of G on K by conjugation be ¢ (see 9.2(iii)).
Then Ker ¢ = C;(K).

477 Let H act on K. If K # 1, then the action is intransitive.

Suppose that H acts on K, say with action ¢. Because H and K are
both groups, a construction is available which would not make sense
for group actions on general sets. This construction embeds both H and
K in a group G in such a way that the action ¢ is preserved within G.
This generalizes the direct product construction (2.31).

9.6 Theorem. Let H act on K. Then the set of all ordered pairs (h, k)
with he H and ke K acquires the structure of a group G when we define, for
all hy,h,eH and k, ,k,eK,

(hl ’kl)(hZ’kZ) = (hlhz,k'fzkz)-

Proof. Closure is immediate from the definition of multiplication. Let
hy,h,,hyeH and k,,k,,k;€K. Then, using the associativity of multi-
plication in H and in K,

((h1 ,kl)(hz ,kz))(hs ’ks) = (hlhz ak';zkz)(h;; 7k3)
= (hlhzhs’(kiizkz)haks)
= (hlh2h3 ,k’;zhskgsks),
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by 9.1, and

(hyky)((hy k) (g ks)) = (By k) (Byhy  k52ks)
= (hxhzhs’k'izhakgska)'

By 9.1, k! = k for every ke K. Also by 9.3, for every he H the map k - k*
is an automorphism of K. Therefore 1*=1 and (k™)'= (k")"! (29).
It follows by the rule of multiplication that (1, 1) is the identity element
of G and that any (h, k)e G has an inverse element (h~ !, (k™ )" ")eG.

9.7 Definition. Before naming the group G of 9.6 we make a notational
convention. In forming such a group G from H and K, we shall from now
on assume that H and K have only the identity element 1 in common.
(This is not a serious restriction, because if H and K have common
non-trivial elements, we may replace H or K by an isomorphic copy
in which the elements are denoted by new symbols so that only the
identity elements of the groups bear the same symbol.) Then in the group
G of 9.6 we replace each ordered pair (h, k) by the symbol hk. This conven-
tion simplifies notation considerably. It corresponds to the convention
which we have already adopted in 8.1 for direct products: see also 9.9.
The rule of multiplication in G is then

(h1k1)(h2k2) = (hlhz)(k’lukz)

forallh,,h,eHand k,,k,eK.

Let the action of H on K be ¢. Then we call the group G of all juxtaposed
symbols hk, with he H and ke K and multiplication given by the equation
above, the semidirect product of K by H with action ¢. We shall denote
this group by H, x K. (Warning. This definition and notation differ from
the corresponding ones in Rotman [b34] pp. 135-8. The difference
arises from the fact that Rotman makes maps operate on the left of
elements. When the appropriate translations are made, the definitions
given here are equivalent.)

9.8. For any groups H and K, there is a trivial action of H on K: we
define, for each he H and keK,
k" = k.

The conditions of 9.1 are obviously satisfied. The corresponding auto-
morphism representation of H is the trivial homomorphism{ : H - Aut K,
namely

{:h—1 forall heH.

The semidirect product H, x K of K by H with trivial action consists
of all symbols hk, with he H and ke K, and multiplication given by

(hyky)(hoky) = (hyhy) (ks k),
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forall h,,h,eH and k,, k,€ K. Clearly this group is just the direct product
H x K (with the typical element (h, k) replaced by hk, as in 8.1).

When we form semidirect products with non-trivial actions, we usually
get groups other than direct products. In particular, note that if H and K
are abelian groups and H acts on K with non-trivial action, ¢ say, then
the group H,, x K is non-abelian. This construction process is of consider-
able importance.

9.9 Theorem. Let H act on K, say with action ¢. Let G=H, x K. For
each he H, we identify h with the element hleG and, for each keK, we
identify k with the element 1keG (cf. 8.1). Then H< G,K <G, G/K ~ H,
G = HK and H N K = 1. Moreover, the action of H on K is the restriction
to H of the action by conjugation of G on K (see 9.2(iii)).

Proof. First, note that the map

h hl,

defined for all heH, is an injectjve homomorphism of H into G. This

- justifies the identification of h with hl. Then also H is identified with the
image of the injective homomorphism above, and so H < G. Similarly,
by identification of k with 1k for all keK, K < G. By definition of multi-
plication in G,

hk = (h1)(1k).

Hence, when h has been identified with hl and k with 1k, hk becomes
the product in G of heG and keG (not just a juxtaposition of two un-
related symbols). Thus G = HK. Moreover, HN K = 1, since the only
element of G which has both the forms k1 and 1k is 11, which we now
denote by 1. (Remark. It was in order to ensure that the identifications
made here would be unambiguous that we demanded in 9.7 that groups
H and K should have only the element 1 in common.)

Now consider the map V:G—-H,
defined by VY :hk h

for all he H and ke K. By the definition of multiplication in G given in 9.7,
¥ is a surjective homomorphism and Ker § = K. Hence, by the funda-
mental theorem on homomorphisms, K< G and G/K =~ H. Finally,
let heH and keK. Then in G,

h™kh=h~'hk" = k".

Thus k" is now the conjugate in G of k by h, and so the original action of H
on K is the same as the action defined by restriction to H of the action
by conjugation of G on K.

9.10. We now point out some important examples.
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(i) Let K be any group, and consider the natural action of Aut K on K.
Then the action is the identity map ¢ on Aut K: for every acAut K,

giab>a.
This defines a semidirect product
(AutK), x K,

which is called the holomorph of K and denoted by Hol K.

By 9.9, K< Hol K and, for every acAutK and keK, a™ 'ka =k
(where the product on the left is defined in Hol K). Thus every auto-
morphism of K is obtained by restriction from an inner automorphism
of Hol K.

(ii) More generally, let H < Aut K and consider the natural action
of H on K. Then the action is the inclusion map 1: H — Aut K. The
corresponding semidirect product

H, x K
is said to be a relative holomorph of K. Clearly, by definition,
K<H,x K=HK < Hol K.
(iii) Let A be an abelian group such that b2 # 1 for some be A. Let
n:A- A

be the map 5 :a> a~ ! for every ac A. Then neAut A4, n*> =1 and n # 1
since b~ ! #b.

The relative holomorph {(#>A of A is a non-abelian group, called a
generalized dihedral group, and denoted by Dih 4. Then |Dih 4 : A|=2.

It is easy to see that for each integer n = 3, Dih C, = D,,, the dihedral
group of order 2n, and Dih C_ = D, the infinite dihedral group (57).

478 Let H act on K, say with action ¢, and let G= H, x K.
(i) For each J < H,define
Cy(J)={keK : ki =k for all jeJ}
and, for each L < K, define
Cy(L)={heH :I"=1for all leL}.

Then C,(J)=KnCgz(J) and Cy(L)=HnNCgx(L)

(where C4(J), Cg(L) are the usual centralizers in G).

Note that C, (H) = Fixg(H) and C,(K) = Ker ¢ ; in particular, Fix, (H) < K.
(ii) Ker ¢ € G, and in fact Ker ¢ = H;, the core of H in G.
(iii) For each J < H,Ng;(J) = Ny (J)Cr ().
(iv) For each J < H,N;(J) < N4(Cg(J)).

479 Suppose that H is a finite p-group which acts on the finite group K. If p divides
|K| then | Fix,(H)| > 1.

480 Let the non-trivial group H act on the non-trivial group K, say with action ¢,
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and let G = H,, x K. The following two statements are equivalent:

(i) For every non-trivial element h of H,h¢ is a fixed-point-free automorphism
of K (see 54).

(ii) G is a Frobenius group and H is a Frobenius complement in G (see 248).

481 Let p and g be primes such that p > g.
(i) The only action of a group of order p on a group of order q is the trivial action.
(ii) The only action of a group of order p on a group of order g? is the trivial
action, unless p = 3 and q = 2. (Hint. Use 2.16, 2.17, 2.36, 40, 46, 47, 222.)

482 (i) Aut(C, x C,) = X,.

(i) Hol(C, x C,)>ZX,.
(Hint. Let K = C, x C,.For (ii), consider the action of Hol K by right multiplication
on the set of right cosets of Aut K in Hol K, and use 3.53.)

*483 If K, @K, then Hol K, = Hol K, and every relative holomorph of K, is
isomorphic to a relative holomorph of K, (cf. 48).

484 Let V be a vector space# 0.

(i) Then GL (V) acts naturally6n the additive group V* of V (see 47). Let G
denote the corresponding relative holomorph GL(V)V* of V'*.

(ii) For each linear map A :V — V and each vector veV, let (4;v) be the map
V — V defined, for all xeV. by

(A;v):x > xA+v.

Then (4;v)eZ, if and only if Ae GL(V). Moreover, the set {(1;v) : AeGL(V),veV}
is a subgroup #(V) of Z,,, called the affine group of V, and (V)= G.

485 (i) Let n be an integer, n = 3. Then
DihC,=D,,.
(i) DihC,=D,_.

*486 Let A be an abelian group and let L = Hol A. Then

@) C(A)=A.

(i) If H < Aut 4 and G is the relative holomorph HA of 4 then Z(G) = Fix,(H).
In particular, if H # 1 then G is non-abelian.

487 Let A be acyclic group and let G = Hol 4.
(i) Then G is supersoluble. (See 389. Hint. See 4.38. If | 4| = oo, use 46.)
(ii) If either 4 has odd finite order or A is infinite then Z(G) = 1. (Hint. Use 486.)
(iii) G is nilpotent if and only if | 4| = 2" for some non-negative integer n. (Hints.
See 243. If | A| is finite but not a power of 2, find a subgroup of G which is not
nilpotent.)

488 Let A be an abelian group with an element b such that b # 1, and let D = Dih 4.
(i) Every element of D\A has order 2. (cf. 59, 142. For a converse result see 504).
(i) Z(D)={aeAd :a®>=1}.
(iii) A is a characteristic subgroup of D.
(iv) Aut D =~ Hol A.

489 (i) If H, and H, are conjugate subgroups of Aut K, then the relative holomorphs
H,K and H, K are conjugate subgroups of Hol K.

(ii) Aut K can have isomorphic subgroups H,and H, such that the relative
holomorphs H, K and H, K are not isomorphic. (Hint. Consider K = C, x C, and
suitable subgroups H,,H, of Aut K of order 2.)
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490 Let R be identified with the euclidean line E* in the usual way : see 56. Then
IsomR x> DihR*.

9.11 Definition. Let K < G. We say that G splits over K if there is a
subgroup H of G such that G = HK and H n K = 1. Any such subgroup H
is said to be a complement to K in G.

Note that a subgroup H of G is a complement to K in G if and only
if every element of G is uniquely expressible in the form hk with heH,
keK. Then also, by 3.40, G/K = HK/K = H/(H nK) =~ H. Moreover,
for every geG, H? is a complement to K in G: for

G=G?=H'K?= H°K,
since K<G,and HnK=HnK=(HnNK)y¥=1.

9.12 Lemma. Let K< G and let K<J<G. If G splits over K then J
splits over K.

Proof. Certainly K<J. Let H be a complement to K in G. Then
K < J < G = HK, so that, by Dedekind’s rule (7.3),

J=(HnNJ)K.
Moreover, (HNJ)nK=HnK=1.

Therefore H N J is a complement to K in J.

In chapter 10 we shall establish some important sufficient conditions
for splitting. We show now that there is an intimate connexion between
splitting and semidirect products.

9.13 Theorem. (i) Suppose that H acts on K, say with action ¢, and let
G =H, x K. Then G splits over K, and H is a complement to K in G.

(ii) Let K € G. Suppose that G splits over K, and let H be a complement
to K in G. Let ¢ be the action of H on K defined by restriction of the action
of G on K by conjugation. Then G = H, x K.

Proof. (i) This is immediate from 9.9.

(ii) Let K< G, and suppose that H is a complement to K in G. Let
@ : H — Aut K be the action of H on K defined by restriction of the
action of G on K by conjugation: thus, for every he H,

ho k> k"= h~kh

for every keK. Every element of G is uniquely expressible in the form
hk, with he H and ke K. Moreover, multiplication in G is given by the rule

(h1k1)(hzkz) = hlh2h2_ 1k1hzkz = hlhzk:'zkz

for all h,,h,eH and k,,k,eK. The elements of G are thus the same
as the elements of H, x K and the rule of multiplication is the same.
Hence G=H, x K.
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9.14 Lemma. Let H act on K, say with action ¢, and let J =Im ¢ < Aut K.
If the action is faithful then the group H, x K is isomorphic to the relative
holomorph JK of K.

Proof. Suppose that the given action is faithful; thus the homomorphism
¢ : H - AutK is injective. Let G = H, x K, and define a map

¢* :G - HolK
by @* : hk — (hp)ke Hol K

for every he H and ke K. (This map is well defined since every element
of G is uniquely expressible/in the form ik with heH,keK.) For all
hy,h,eH and k, ,k,eK
((h k) (hT))o* = (hyh K29k, )™ (since K2 = k'>?)
= (hyh,)pk{2%k, . )
= (h,0)(h,0)(h,9) ™ "k, (h, @)k, (in Hol K)
= (h, @)k, (h, 0k,
= ((hyk;)@*)((h k)0*).
“Thus ¢* is a homomorphism. Moreover,

Ker ¢* = {hk : heKer ¢,k =1}
= 1 (since ¢ is injective).

Therefore ¢* is injective, and so
G=~1Im ¢*=JK < Hol K.

491 Let n be a positive integer and F a field. Then
(i) GL,(F) splits over SL,(F).
(ii) If n> 1,%, splits over A4,.
492 Let n be a positive integer and s a divisor of n. Then the cyclic group C, splits
over C, if and only if (s, n/s) = 1.
493 Let 1 <K <G =C_. Then G does not split over K.

494 Let n be a positive integer and let V be a vector space of dimension n over the
field Z,. Then V* splits over every subgroup.

495 Let X = E2, the euclidean plane, G =Isom X, T = Tr X and
H=TulJRot (X;s): see 2.23. Then

seX
(i) G splits over H.
(i) G splits over T, and the complements to T in G are isomorphic to Dih U,
where U is the circle group (see 2.32(iv), 61, 103, 112).

496 Let K < Z(G) (so that, in particular, K < G). If G splits over K, and H is a
complement to K in G, then G = H x K.

497 Let P be a finite non-abelian p-group. Then P does not split over Z(P). (Hint.
Apply 406 and 496.)

498 Let K < G < Hol K. Then G is a relative holomorph of K.

499 Suppose that G splits over an abelian normal subgroup 4, and let H be a
complement to 4 in G. Then Cg(A4) = Hg x A (cf. 478(ii), 486).
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500 Let J and K be normal subgroups of G with K < J.

(i) If G splits over J then G/K splits over J/K. (Hint. Apply 7.3.)

(i) Suppose that G splits over K and let H be a complement to K in G. Then G
splits over J if and only if H splits over HnJ. (Hint. Apply 7.3 again.)

501 Let K and L be normal subgroups of G, and let J = KL < G. Suppose that
G/L splits over J/L, and let H/L be a complement to J/L in G/L. Suppose also that
H splits over HN K. Then G splits over K.

502 Let K < G, a finite group. Suppose that G/K is a p-group and let P be a Sylow
p-subgroup of G. Then G splits over K if and only if P splits over PN K.

503 Let G be a non-trivial finite soluble group, and suppose that |G| is neither a
prime nor the square of a prime. Prove that G has a proper normal subgroup K such
that |G| < |K|*. (See the remarks at the end of chapter 6; see also 664. Hints. Assume
the result false, and suppose that G is a group of least possible order which violates
the result. Let L be a minimal normal subgroup of G. Show that |G/L| = p, for some
prime p, and that |L| < p. Let P be a Sylow p—subgroup of G. Apply 9.13 to show that
G =P, x L for some action ¢ of P on L. If ¢ is non-trivial, use 7.56, 7.40, 47, 2.17
and 2.16 to derive a contradiction.)

504 Let G be a group with a subgroup K of index 2 such that every element of G\K
has order 2. Then K is abelian, and if k2 # 1 for some keK, G = Dih K. (This is a
converse to 488(i). Hint. Use 9.13 and 52(i).)

505 (i) Suppose that J < G,K <G and G = JK (where possibly JNK # 1). Let H
be a group isomorphic to J such that HN K =1, and let 6 be an isomorphism of
H onto J. Then H acts on K when we define, for every heH and keK,

= Khe,
the conjugate in G of k by hé.
Let this action be ¢ : H - Aut K, and let G = H, x K. Then the map

0*:G - G,
defined by 0* thk > (hO)k

for every heH and keK, is a surjective homomorphism, HN Ker 6* =1 =
K~ Ker 6%, and Ker 6* ~ Jn K.

(ii) Let H act on K, say with action ¢, and let G = H,xK.If{LLG,withHNL=
1=K nL, then there are subgroups S of H and T of K and an isomorphism 0 of S
onto T such that S< H; for all seS,heH and keK,s"0 = (s)" and k° = k*®; and
L={s(s"'0):seS}~S.

Conversely, if S < H, T < K and there is an isomorphism 6 of S onto T such that
for all seS,heH and keK,s"0 =(s0)" and k*=k®, then, if L= {s(s™'6):seS},
S L<'GandHr\L-—l—KnL

(iii) Let H act on K, with action @,and let G=H, x K. Suppose that L <G,
with HNL=1=KnL, and let G= G/L H= HL/L and K= KL/L. Then
H~A<G,KxK<G,6=ARand AnK = L.

506 Let H = (h) be a cyclic group of order 4 and K = (k) a cyclic group of order
2n, where n is an integer greater than 1.

(i) There is a unique action ¢ of H on K for which k* = k™!,
Let G=H, x K.

(i) Then Z(G)=<h*) x{k">=C, x C,, and G/Z(G)=D,, for n>3, while
forn=2,G/Z(G)=C, x C,.

(iii)) Let L= <h2k"> < G and let G=G/L, H=HL/L, K=KL/L. Then
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C,H<G,C,,=K<G,G=HK and |[HnK|=2. The group G is called
the dicyclic group of order 4n.

(iv) Let Z(G) = Z(G)/L. Then Z(G) = Z(G), of order 2 (cf. 150).

Hence G/Z(G)= G/Z(G).
(v) G has just one element of order 2, and G does not split over K.

i) G£D,,. _

(vii) If n =2 then G = Qg4 (see 181).

507 Let H act on K with action P. Let G=H, x K,J=Imep<AutK and L=
Ker ¢ < H. Then

(i) LY G and G/L is isomopphic to the relative holomorph JK of K. (This
generalizes 9.14. We know fromn 478 that L < G.)

(i) For each ae Aut H, H-4lso acts on K with action a¢. Then H,, x K= G and
Ker(ap)=L* "= {I*"":leL}.

508 (i) Let K < G, and let v be the natural homomorphism of G onto G/K. Then G
splits over K if and only if there is a homomorphism 6 : G/K — G such that v is
the identity map on G/K.

(ii) Suppose that K < G, with G/K infinite cyclic. Then G splits over K (cf. 467).

(iii) Use (ii), together with 133(i) and (ii), to give another proof that Q* has no
non-trivial cyclic quotient group.

*509 (i) Let K < G, and let ¢ be the action of G on K by conjugation. Let geG.
Then gpe Inn K if and only if ge C;(K) K.

(ii) (Holder[a60]) A group K is said to be complete if Z(K)=1 and AutK =
Inn K. If K € G and K is complete then G = C4;(K) x K. Thus a complete group K
is a direct factor of every extension of K.

(ili) X, is complete. (Remark. In fact,X, is complete for every integer n = 3 with
n # 6. For a proof of this result, see Kurosh [b27] vol. 1, pp. 92-5 or Rotman [b34]
pp. 132-4. X is not complete.)

We shall illustrate these results by applying them to obtain more
information about groups of order pq, where p and q are distinct primes:
cf. 5.16, 5.17, 5.18. In order to do this, we need some further information
about the automorphism group of a group of order p (cf. 4.38).

Recall that a cyclic group G of finite order n has a unique subgroup
G, of order s for each divisor s of n (3.32); moreover, G, is cyclic and it
follows that G, = {xeG : x* =1} (139). We prove a converse result and
use this to show that the automorphism group of a group of order p
is cyclic.

9.15 Lemma. (i) Let G be a group of finite order n such that, for every
divisor s of n, | {x€G : x* = 1}| < 5. Then G is cyclic (cf. 139(iii)).

(i) Let F be any field. Then every finite subgroup of F* is cyclic.

(iii) If|G|= p then Aut G is cyclic of order p — 1.
Proof. (i) Let geG,o(g)=s, and H={g)<G. Then |H|=s, s is a
divisor of n, and h*=1 for every he H. Hence, by hypothesis, H =
{xeG :x*=1}, and so every element of order s in G lies in H. Let
G* be a cyclic group of order n, and let H* be the unique subgroup of
G* of order s (3.32). Since H and H* are cyclic groups of the same order,
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H = H* (2). Therefore, since every element of order s in G lies in H and
every element of order s in G* lies in H*, it follows that G and G* have
exactly the same number of elements of order s. This is true for every
divisor s of n for which G has an element of order s. Hence, since |G| =
|G*| and G* has an element of order n, G must have an element of order n,
and so G is cyclic.

(i) Let G < F* with |G| =n < oo0. It is well known that for any positive
integer s and any polynomial f(x) of degree s with coefficients in a field,
the equation f(x) = 0 has at most s roots in the field. In particular, there
are at most s distinct elements x of F which satisfy the equation x* — 1 =0.
Hence also, for every divisor s of n, | {xeG : x* = 1}| < s. Therefore, by (i),
G is cyclic.

(iii) Since |G|=p,

G=Z; (40).
Hence AutG=Z; (46).

Since p is prime, Z, is a field. Therefore, by (ii), Aut G is cyclic.
We now prove

9.16 Theorem Let p and q be primes such that p>gq. If p#1 mod q
then v(pq) =1, while if p=1 mod q then v(pq) = 2. (This includes the
result of 5.18. Recall that for any positive integer n, v(n) denotes the number
of types of groups of order n.)
Proof. Since p > q,q # 1 mod p. Let G be a group of order pq, P a Sylow
p-subgroup of G, and Q a Sylow g-subgroup of G. Then P=C, and
Q=C,. By 5.16, P < G. Moreover, PQ = G and PN Q = 1. Thus G splits
over P, and Q is a complement to P in G. Hence, by 9.13, G=Q, x P,
where ¢ : Q — Aut P is defined by restriction of the action of G on P
by conjugation. If ¢ is trivial then, by 98, G=QxP=C,xC,=C,,
(78). Suppose that ¢ is non-trivial. Since Q has prime order, it follows
that Ker ¢ = 1: that is, the action is faithful. Let J=Im ¢ < Aut P.
Then |J|=gq and, since |Aut P|=p— 1, it follows that p=1 mod q.
Moreover, by 9.14, G = JP < Hol P. By 9.15, Aut P is cyclic and therefore
(3.32) J is the unique subgroup of Aut P of order q. Therefore JP is the
unique relative holomorph of P of order pq. Thus we have proved that
if p# 1 mod q then G = C,, and so v(pq) = 1; while if p=1 mod g then
G is isomorphic to either C,, or the unique relative holomorph of C,
of order pq (483); hence, since these two groups are non-isomorphic
(486), v(pg) = 2.

We shall establish next an interesting alternative characterization
of the holomorph of a group.

9.17 Theorem. Let K be any group and let p* : K — X be the right regular
permutation representation of K (4.23). Let K*=Im p'<Z,. Then
AntK<Z,,(Aut K)nK* =1 and
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N;_ (K*)=(Aut K)K* = Hol K.
Proof. For each keK, let k* = kp'eZ, : then, for all xeK,
xk* = xk.

Certainly Aut K < Xy (2.18). Let ke K. Then k = 1k* : and if k*eAut K
then 1k* =1, hence k = 1. Th::/Aut K)nK*=1.
Let acAut K. Then, for k,xekK,

o~ ke x - (x* k) = xk®.
Hence
o~ k*a = (k*)*eK*. @)
Thus Aut K < Ny, (K*)= L, say.

Now let ceL. We want to show that ce(Aut K)K*. Suppose that ¢
maps 1€K to teK. Let

t=a(t Y)*eL.
Then 7 fixes 1€ K. Moreover, since K* < L, the map
k* > 17 k*t

(defined for all k*e K*) is an automorphism of K*. Since the map k — k*
is an isomorphism of K onto K*, it is clear that the map Aut K — Aut K*
defined by a — a*, where, for each aeAut K,

o* : k* > (K%)*

(for all keK) is an isomorphism of Aut K onto Aut K* (cf. 48). Hence
there is a unique a€Aut K such that, for all keK,

17 1k*t = (k%)*.
Now, for all xeK,

xT = 1x*7 = 17(x%)* = 1(x*)* = x*.

Hence T=0.
Thus o =at*e(Aut K)K*.
Therefore L = (Aut K)K*.
Finally, define a map
0:Hol K —» X
by 0 : ak — ak*, for every acAut K and keK.

Then, for all §,yeAut K and x, yeK,
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(Bxyy)8 = (Byx"y)6
= By(x"y)*
= By(x")*y*
= Byy™ 'x*yy* (by (i)
= Bx*yy*
= (Bx)0.(yy)0.

Thus 0 is a homomorphism. Moreover, if akeKer 8 then, for all xeK,
x*k = x,

hence (choosing x =1) k=1, and so also « = 1. Thus Ker 0 = 1, so that
0 is injective. Hence Hol K =~ Im 6 = (Aut K)K*.

510 (i) Let K and L be normal subgroups of G such that K~ L = 1. If G/L splits
over KL/L then G splits over K.

(ii) Suppose that Z(K) = 1. Then every extension of K splits over K if and only
if Aut K splits over Inn K (see 9.26).

(iii) Let p be an odd prime. Then the dihedral group D,, of order 2p is complete
(509) if and only if p=3. Every extension of D,, sphts over D, if and only if
p # 1 mod 4. (Hints. Use 117,124, 9.12, 9.15, 476, 488 492, 500, 505

511 Use 452 and the fact that Z, is a field to prove that Z' is cyclic. (Remark. This
gives an alternative method of provmg 9.15(1ii).)

512 Let A be a group of prime order. Then Hol 4 is metacyclic (see 152 ; cf. 487).

513 No two of the following groups of order 30 are isomorphic and every group of
order 30is isomorphicto one of them : C5,,C5 x Dg,C3 x D, ¢, D;,. Hence v(30) =4.
(Hint. Let G be a group of order 30. Show that G has a cyclic normal subgroup K of
order 15 and that G splits over K. Use 78 and 94.)

514 (i) Find five groups of order 12 no two of which are isomorphic. (Hint. See 506.)

(ii) Show that every group of order 12 is isomorphic to one of these groups, and
hence that v(12) = 5. (Hints. Any group G of order 12 has a normal subgroup of order
either 3 or 4 over which G splits. Use 489(i) and 507 (ii).)

515 (i) Let G be a non-cyclic group of order 8 with a cyclic subgroup K of order 4.
Show that if G splits over K then G is isomorphic to either C, x C, or Dg, while
if G does not split over K then G = Q. (Hint. See 505(i) and 506.)

(ii) Hence show that v(8) =

516 (i) Let A4 be a cyclic group of order 8, say A = {a). Show that there is a unique
automorphism a of 4 such that a* = a3, and that o(a) = 2.

Let T be the relative holomorph {a) A of A :then T is called the semidihedral
group of order 16. Show that T’ = (a?), of order 4. Deduce that T has just three
subgroups of index 2, and prove that of these three subgroups, one is isomorphic to
Cg, another to Dy, and the third to Q4. Deduce that each of these three subgroups of
index 2 is characteristic in T, and that T % D, . (Hint. See 59 and 515.)

(i) Let G =GL,(Z,) : then |G| =48 (see 2.16 and 2.17). Let x, ye G be defined as

0 1 1 0
x= and y= .
1 -1 -1 -
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Show that o(x) = 8,0(y) = 2 and x” = x>. Hence prove that the Sylow 2-subgroups
of G are isomorphic to T.(cf. 193. Hint. Apply 9.14.)
517 Let p be a prime, p = 5. If p # 1 mod 4, (4p) = 4, while if p = 1 mod 4, w(dp) = 5.
(Hint. Use 5.19 and 481 ; cf. 514.)
518 Let K be any group and p! : K — X the right regular permutation represen-
tation of K. Let K* =Im p! < X,. For ¢ach keK, let k, : K — K be defined by
ke :x > kx, for all xeK, and let Ky = {ks : k€K}. Then keeZy, K, S X,
Cz (K¥) =K« 2K, K¥*nKx = Z(K), (Aut K)nKx=1,

N (K+) = (Aut K)K4 = (Aut K)K* = N5 (K*)  Cg(K#)=K*
and N; (K*)/Cg, (K*)= AutK = N, (K, )/Cy, (K,).
519 (i) Suppose that 6 is an isomorphism of G, onto G,,K,; < G, and § maps K, to
K, < G,. Then 6 maps C; (K,) to C;,(K)).

(ii) For any group K, C,;,, « (K) = K (cf. 486).
520 Let K be any group, p' : K — I the right regular permutation representation

of K, and K* =1Im p' < Z. Then Ny _(K*) consists of all geZ such that, for all
x,y,zeK,

(xy~'2)0 = (x0)(yo)~ ! (zo).

We shall now associate to any group G and any action of a group
H on a finite set X an action of H on the group Dr G* (see 8.21). This
leads to a useful construction of groups known as wreath products.

9.18 Lemma. Suppose that H acts on the finite set X. Let G be any group
and let G* = Dr G*. Then H acts on G* (as a group) when, for each he H
and each fe G*, we define f*€ G*, for all xe X, by

SHx) =f(xh™Y).

(Note. Here, as in 8.21, the elements of G* are maps of X into G which
are written on the left of the elements of X to which they apply.)

Proof. Let f, f,,f,€G*,h,h;,h,eH and xeX. Then, using the axioms
of 4.1, and the definition of multiplication in G*, we find that

(f")(x) = f"(xh; 1) = f((xh; )hi?)
=f(xh;hy)™") =f""(x),

[l =f(171) =f(),

and
(flfz)h(x) =(fi.S2)(xh~ ) = fi(xh~ l)fz(xh_ Y)
=100 3(x) = (1) (%)
Thus (e = i,
fi=f
and LS =117

This verifies the axioms of 9.1.
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9.19 Definitions. Let H,X,G and G* be as in 9.18. Let ¢ denote the
action of H on G* defined in 9.18. Then the corresponding semidirect
product H, x G* of G* by H is said to be a wreath product of G by H,
often denoted by G|H. The normal subgroup G* is sometimes called
the base group of the wreath product.

We emphasize that a group G| H is determined by G, H and an action
of H on a set. Different actions of H may lead to different wreath products
of G by H, so that the notation GlH is ambiguous. (However, see 9.20
(3) below.)

9.20 Remarks. (1) Note that if G and H are finite groups, then a wreath
product G| H determined by an action of H on a finite set X is a finite
group of order |G|\, |H|.

(2) Suppose that | X | = 1. Then we can evidently identify G and G* =
Dr G¥: we need only identify each geG with the element of G* which
maps the unique element of X to g. The only action of H on X in this
case is trivial, and, by 9.18, the corresponding action of H on G* (= G)
is trivial. Hence, by 9.8, the corresponding wreath product of G by H
in this case is H x G = G x H, the direct product of G and H.

(3) Suppose that H is finite. In the absence of an explicit specification
of the relevant action of H, the notation G]H is conventionally taken
to denote the wreath product of G by H corresponding to the action of
H on itself by right multiplication (4.23). This is called the regular wreath
product of G by H.

Regular wreath products are the most frequently occurring examples
in the literature. We shall have reason to consider also natural wreath
products; namely wreath products determined by actions as in 4.2(i).

(4) Suppose that H acts on an infinite set X. For any group G, there
are corresponding actions of H on both the groups Cr G* and Dr G*
(445), defined in exactly the same way as in 9.18. The corresponding
semidirect products of Cr G* by H and Dr G* by H are called unrestricted
and restricted wreath products of G by H, respectively. Most of the wreath
products which we shall consider in this book will be defined by actions
on finite sets, when this distinction between ‘unrestricted’ and ‘restricted’
does not arise.

9.21. In working with wreath products, it is convenient to adopt the
notation of the proof of 8.21. Suppose that H acts on the finite set X,
let G be any group, W the corresponding wreath product G | H of G by H,
and G* = Dr G*, the base group of W. According to 8.21,

G*=Dr[]G,,

xeX

where, for each xe X,



GROUP ACTIONS ON GROUPS 221
G, = {feG* :f(y) =1 whenever x # yeX}.
For each xe X and each geG, let g, € G* be defined, for all ye X, by

w-{} o1
Recall that the map
g gy
is an injective homomorphism of G into G*, with image
{9.:9€G}=G,.

Now for all geG,heH and x,yeX,
gxy) =g,k ™)

(1 ifyhtEx
g ifyht=x
- = g.4())-

Thus, for all ge G, heH and xe X,
g: = gxh‘

These last equations completely determine the action of H on G*
in the group W.

We make one more remark on notation. Suppose that H is a finite
cyclic group, say H = (h), of order n; and let W be the regular wreath
product G| H. Then

G* = Dr ]__I Gh‘
i=1
and for allgeG and alli=1,...,n,
g:i=g,,a+1.

It is then more economical to suppress the appearances of 4 in the suffices
of elements of G*. We write

G*=Dr [] G,
i=1
where G ={q -
i =1{9::9€G}
and the action of H on G* in W is determined by the equations
h—
9i =9i+1>

where the suffices are now interpreted modulo n: thus g, , =g,.
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521 Suppose that group H acts on the finite set X and let p be the corresponding
permutation representation of H. Let G be any non-trivial group, G* = Dr G*,
and let ¢ be the action of H on G* defined in 9.18. Then Ker ¢ = Ker p.

In particular, if the action of H on X is faithful then the corresponding action of
H on G* is faithful.

522 Let groups H,J act on finite sets X, Y, respectively, and suppose that these
actions are equivalent (4.19). Let G be any group. Then the corresponding wreath
products G) H,G]J are isomorphic.

523 Suppose that group H acts on the finite set X. Let G be any group and let W be
the corresponding wreath product of G by H. Suppose also that G acts on the set Y.
(i) Then W acts on the product set X x ¥ when we define

(x, y)hf = (xh, yf (xh))

for all xe X, yeY,heH and feG* = Dr G*.

(ii) If the actions of H on X and G on Y are both transitive then the action of W
on X x Y defined in (i) is transitive.

(iii) If the actions of H on X and G on Y are both faithful then the action of W on
X x Y defined in (i) is faithful.

(iv) For any positive integers n and m, (nm)! is divisible by (m!)*(n!).

524 Suppose that group H acts transitively on the finite set X. Let G be any group
and let W be the corresponding wreath product G| H.

(i) Let xeX. Then W = {G,,H), where G, is defined as in 9.21. Moreover, if
|X|>1and |G|> 1 then neither G, nor H is normal in W.

(1) If H is an n-generator group and G an m-generator group, where n and m are
positive integers, then W is an (n + m)-generator group.

525 C21C2’5D8, the dihedral group of order 8. (Here, as elsewhere when no
prescription of the relevant action is made, the wreath product in question is the
regular one.)

*526 Suppose that H acts on the finite set X. Let G be any group, W the correspond-
ing wreath product of G by H, and G* the base group of W. Let K < G and let

K* = {feG* :f(x)eK for all xe X }.

(i) Then K* < G*,K*=DrK*,H <Ny, (K*) and HK*=~K|H, the wreath
product corresponding to the given action of H on X.
(ii) If K € G then K* < W and
W/K* ~(G/K)\|H,

the wreath product corresponding to the given action of H on X.

Wreath product constructions provide a very useful source of examples:
they yield relatively complicated groups in which it is nevertheless
practicable to perform calculations. As an illustration, we shall now show
that there are soluble groups of derived length n for every positive integer n
(see 7.52).

9.22 Lemma. Let G be any soluble group, say of derived length n. Then
G|C, is a soluble group of derived length n + 1.
Proof. Let H=(h), of order 2, and let W = G| H, the regular wreath
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product. Let G* be the base group of W: thus
G*=G, xG,={g, :9eG} x {g, : geG},

where the maps g — g, and g > g, are isomorphisms of G onto G, and
G,, respectively. Then W is/the semidirect product HG*, where the
action of H on G* is given, foy all g€ G, by the equations

gi=g,andg;=g,.

For any soluble group J, let 6(J) denote the derived length of J. Since G
is soluble and §(G) = n, it follows that G* is soluble (7.49) and 6(G*)=n
(373(iii)). Since |W/G*|=2,W/G* is abelian. Therefore W is soluble
(7.47) and W’ < G* (3.52).

For every gegG,

91'9:=91"91 =[9,,hleW".

Let 7 denote the projection of G* onto G, (8.16) and let #’ = x|,.. Then
n’ is a homomorphism W’ — G,, and since, for every g&G,

(91 lgz)”’ =9,

7' is surjective. Since 8(G,) = n, it follows by the fundamental theorem
on homomorphisms that

o(wy=2n (3733)).
However, since W’ < G* and 6 (G*) =n,
wWysn (3733)).
Thus o(W')=n,
and therefore (W)y=n+1.
9.23 Corollary. For every positive integer n, there are soluble groups of
derived length n.

Proof. Let A be any non-trivial abelian group. Define groups G,,G,,
G5, ... recursively as follows. Let G, = A and, for each integer n > 1, let

G,=G,_|C,.
Then, by repeated application of 9.22, for every positive integer n, G, is a
soluble group of derived length n.

We shall show next that certain automorphism groups of direct products
are natural wreath products.

9.24 Lemma. Let n be a positive integer and let G be a non-trivial finite
indecomposable group such that Z(G) = 1. For each i=1,...,n, let g g,
(defined for all geG) be an isomorphism of G onto a group G;, and let
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G*=Dr [] G;. Then

i=1
Aut G* = (Aut G)|Z,,

where the wreath product is formed by means of the natural action of Z, on
the set {1,2,...,n}.
Proof. Let A=Aut G. For each i=1,...,n, let a > o, (defined for all

a€A) be an isomorphism of 4 onto a group A;, and let A* =Dr [] 4;.

i=1
There is an obvious embedding of 4* in Aut G* by which we identify
A* with the appropriate subgroup of Aut G*: namely, for each acAut G
and each i = 1,...,n, we identify «; with the unique automorphism of G*
which maps g; to (g%); for all geG and fixes every element of G; for all
j # i. It is clear that then

A* = {BeAut G* : G! =G, foreveryi=1,...,n}.

Let 0€X,. Then it is easy to verify that there is a unique automorphism
o* of G* such that, for allgeG and every i=1,...,n,

gia‘ = gid'
Moreover, the map ¢ — ¢*, defined for all 6€X,, is an injective homo-

morphism of Z, into Aut G*. (Here we need the hypothesis that G # 1.)
Let

H={o*:0€ZX,}.
Thus 2, =~ H < Aut G*.
Since G, is A*-invariant for each i =1, ..., n, we see that
HnA*=1.

Let 0eX,,aeA,geG and i,je{l,2,...,n}. Then

(@*)~ lajo” aio®

gj =gjd“
{g;f;-l ifjo~1+i

g9 ifjc”l=i

o =1

{gj ifj#io

(9%); ifj=ioc
= g;ia.

Hence, for all 6eXZ,,ae4 and every i=1,...,n,

(06*%) " loyo* = o, € A*. @)
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Since A*={(a;:a€d,i=1,...,n), this shows that H< N, s+(4%).
Hence :

A¥ < HA* < Aut G*.

Let W =A\Z,, the natural wreath product. Then we may identify
A* with the base group of W, and then the action of 2, on A* defining
W is determined, for all 6eZ,,xae 4 and every i = 1, ..., n, by the equations

|
o = 0y

Then, in view of the equations (i), it is easy to check that the map
oa* - o*a*,

defined for all ceZ, and all a*e A*, is an isomorphism of W onto HA*.
We complete the proof by showing that HA* = Aut G*. Let yeAut G*.
Then

Dr [] G,=G* =(G*)’ = Dr ]‘[ G! (407).
i=1 i=1

But, for every i=1,...,n,G! = G, = G, a finite indecomposable group
with trivial centre. Then Z(G*)=1 (406) and, by the Krull-Remak-
Schmidt theorem (8.18),

{G,,...,G}={Gl,...,GI}.

Hence there is a permutation g€X, such that

Gl =G,
foreveryi=1,...,n. Let B = (6*)" 'yeAut G*. Then
G! =g,
for every i=1,...,n. Hence fe A*, and so
y=0c*BeHA*.
Thus Aut G*=HA*=W.

9.25 Theorem (Fitting [a27], 1938). Let G be a non-trivial finite group
with Z(G) = 1. By the Krull-Remak—Schmidt theorem (8.18), G is expressible
as the direct product of finitely many non-trivial indecomposable normal
subgroups and, apart from ordering of factors, this decomposition of G
is unique: let this decomposition be

G=G,; XGy;x..XGy, XGyy X... X Gy X oo X Gy X ... X G,

where s,n,,n,,... ,hg are positive integers, the groups G,.j are non-trivial
and indecomposable (i=1,...,s,j=1,...,n), and G;=G,, if and only
ifi=k. Then
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Aut G=((Aut G,,)]Z,) x ((Aut G,)|Z,) x ... x (Aut G,)) |Z,),

where the wreath products are natural.
Proof. Foreachi=1,...,s, let

G;=G;y x...xG,.

Then G=Dr[]G..

i=1
Let yeAut G. Then, by 407 and the Krull-Remak—Schmidt theorem,
we see that for each i=1,...,s and each j=1,...,n, there are integers
k and [ such that

G.?j =Gy.
Moreover, since G}; = G,;, we must have k = i. It follows that, for each
i=1,...,s,
G! =G,.
Thus G, ..., G, are characteristic subgroups of G.
It follows easily that

Aut G = Dr [] Aut G,

i=1
(cf. 94, 436). Since the direct factors G;,,...,G,,, of G, are isomorphic

non-trivial indecomposable groups with trivial centres (406), it follows
from 9.24 that, foreachi=1,...,s,

Aut G, = (Aut G,,)] £

the natural wreath product. This gives the result.

n?

527 Suppose that group H acts faithfully on the finite set X. Let G be any non-trivial
group, W the corresponding wreath product G | H and G* the base group of W. Then
i) Cy(G*)< G*.
(ii) If the action of H on X is also transitive then

Z(W)={feG* . f(x)=f(y)eZ(G)for all x,ye X} ~ Z(G).

528 Suppose that group H acts transitively on the finite set X. Let G be a finite
non-abelian simple group, W the corresponding wreath product G| H, and G* the
base group of W. Then
(i) G* is a minimal normal subgroup of W.
(ii) If the action of H on X is also faithful then G* is the unique minimal normal
subgroup of W. (Hint. For (i) apply 8.9, and for (ii) apply 527(i).)
529 (i) The Sylow p-subgroups of Z,._, are elementary abelian of order p?~*.
(ii) The Sylow p-subgroups of Z,, have order p?** and are isomorphic to Cple.

530 Let A=<a)and H = (h}, groups of order p. Let G = A H and let A* be the
base group of G : thus

A*={a; ) x{ay) x ... x<a,),
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a'=a;,, foreachi=1,..,p—1, and d)=a,.

Let b, = a, and, for each integer i > 1, let b, = [b,_, , h]. By induction on i, show
that bﬁri@ for every i (see 7.53), and also that for each i=23,...,p,
ba; *eDr [] <a;>. Deduce that I (G) # 1.

i=1

Hence show that the p-group G has class p. (Hint. Apply 377.)

531 Aut(Z, x £,)=Z,]C,.

532 Let G = A4 ]|C,. Show that G has subgroups J and K such that { J,K) =G,
K is subnormal in G and j(J : Jn K) > j(G : K) (see 339).

533 Suppose that H acts on the infinite set X. Let G be any group and let G* = Dr G¥,
the restricted direct power of G with index set X (see 445). Verify that H acts on G*
when for each he H and fe G*, f* is defined as in 9.18.

534 Let N denote the set of all positive integers and let H = Ay (see 291). Consider
the natural action of H on N. Let G=C,,G* =Dr G~, and let W be the semidirect
product of G* by H with action as in 533 (with X = N): thus W is the restricted
natural wreath product of G by H (see 9.20(4)).

For each feG*, let s(f) denote the support of f (see 445). Show that for all f, f'e G*
and all heH,

Is(M|=1s(N|

and [sC¢F] = [s(N] +[s(f)] = 2|s(Hns(f)]-
Let K = { feG* :|s(f)| is even}. Prove that K < W, and that
I<K<G*<W

is a chief series of W. Show also that W does not have a composition series. (cf. 355.
Hint. Let G = (g ). For each neN, let g,e G* be defined by

1 whenever x #n
9n(x) = {g if x=n.
If feG* and s(f) = {j,»jzs++-sJm} With j; <j, <... <j, then f=g; g;,...9; )

535 Let H be any infinite group and consider the action of H on itself by right
multiplication (4.23). Let G be any non-trivial group, let G¥ = Dr G¥, and let W be
the semidirect product of G* by H with action as in 533 (with X = H): thus W is
the restricted regular wreath product of G by H (see 9.20(4)).

(i) Then Z(W) = 1 (cf. 527).

(ii) Let G=C, and let H be any infinite p-group (see 265 ; for instance, we may
choose H = C, :see 144). Then W is an infinite p-group and Z(W) = 1(cf. 4.28).

We end this chapter with an application to group extensions.

9.26 Definition. Suppose that K < G and G/K =~ H. Then we shall call
G an extension of K by H.

It follows (see 114) that there is a homomorphism ¢ of G onto H with
Ker ¢ = K. In general there may be several such homomorphisms ¢.
Extension theory deals with the pairs (G, ), which are then called the exten-
sions of K by H, and seeks to classify these pairs. For further information
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on extension theory, see Gruenberg [b16] chapters 5 and 9, Kurosh
[b27] vol. 2, chapter 12, MacLane [b31] chapter 4, Rotman [b34] chapter
7, Scott [b36] chapter 9. In this book, we shall not enter into a further
discussion of general extension theory but merely prove a few special
results.

We remark in passing that if H is finite then every extension of K by
H can be embedded in the regular wreath product K |H; see Huppert
[b21] p. 99, theorem 1.15.9 or Schenkman [b35] p. 100, theorem 3.5.k.
However, we shall not use this fact here.

9.27 Theorem. Let G be an extension of K by H. Then there is a homo-
morphism  :G— H x Aut K such that Kery = Z(K). Moreover, if
G = Gy and = denotes the projection of H x Aut K onto H (8.16), then

Grn=H and GnAutK=InnK.

In particular, if Z(K) = 1 then every extension of K by H can be embedded
in H x Aut K.
Proof. There is a homomorphism ¢ of G onto H with Ker ¢ = K (114).
Since K < G, G acts on K by conjugation. Let ¢ : G - Aut K be the
corresponding action. We may suppose without loss of generality that
H and Aut K have only the identity element in common and then that
H and Aut K are identified with normal subgroups of H x Aut K (see
8.1).

We define a map

V:G-> HxAutK

by ¥ 19~ (99)(g0)
for every geG. Since ¢ and ¢ are homomorphisms and since every element

of H commutes with every element of Aut K in H x Aut K, it is clear
that y is a homomorphism. Moreover,

Ker y =Ker pnKer o
= K~ C4(K) (by 476)
= Z(K).
Now let G = Gy < H x Aut K, and let 7 be the projection of H x Aut K
onto H. Then

(g¥)n =g

for every geG. Since ¢ maps G onto H, it follows that = maps G onto H;
that is,
Gn=H.

Also
GnAut K = {(9¢)(g0) : gG and go = 1}
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= {go :geKer ¢}
= Ko (since Ker ¢ = K)
=Inn K.

If Z(K)=1 then G =~Im ¥ < H x Aut K, so that G can be embedded
inH x Aut K.

Recall that for any group K, Inn K < Aut X (92).

9.28 Corollary. Let X and U be classes of groups with the following three
properties:
(i) Every quotient group of every X-group is an X-group.

(i) Every subgroup of every Y-group is a J)-group.

(iii) The trivial group is the only group which is both an X-group, and a
D-group.

Let H be X-group and let K be a group such that Z(K)=1 and

Aut K/Inn K is a 9-group. Then every extension of K by H is isomorphic
to H x K.
Proof. Let G be an extension of K by H. Let  : G » H x Aut K be the
homomorphism defined in 9.27, G = Gy, and let = and p be the projections
of H x Aut K onto H and Aut K, respectively. Since Z(K) = 1, 9.27 shows
that G = G. By 8.19(i),

Gn/(HNG)=Gp/((Aut K)nG);
that is, by 9.27,
H/(HNG)=Gp/Inn K < Aut K/Inn K.

Since H is an X-group, property (i) implies that H/(H N G) is an X-group;
since Aut K/Inn K is a 9-group, property (ii) implies that Gp/Inn K
is a 9-group. Hence, by property (iii), |H/(H N G)| =1 so that

Gn=H=HNG and Gp=ImK.

Hence, by 8.19(ii),
G=H xInn K.

Since Z(K) =1, Inn K =~ K (117). Hence
G=G=~HXxK.

Remarks. (1) If for X we choose the class of all groups and for Y the
class consisting of the trivial group alone, then X and %) obviously satisfy
(i), (ii), (iii). Thus we deduce from 9.28 that if K is a group such that Z(K) = 1
and Aut K =1Inn K then, for any group H, every extension of K by H
is isomorphic to H x K. (This is the case of a complete group K : see 509.)

(2) .Let H be a simple group. If for ¥ we choose the class consisting
of all groups isomorphic to H, together with the trivial group, and for
9 the class of all groups in which H cannot be embedded then again X and
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9 satisfy (i), (ii), (iii). We deduce from 9.28 that if K is a group such that
Z(K) = 1 and H cannot be embedded in Aut K/Inn K then every extension
of K by H isisomorphicto H x K.

We shall make use of this remark in proving the last result of this
chapter. Before stating this, we mention a famous conjecture.

9.29. Schreier’s conjecture is that for every finite simple group G,
Aut G/Inn G is soluble. No counter-example to this conjecture is known.

9.30 Theorem. Let G be a non-trivial finite group, of composition length

n. Suppose that in a composition series of G there are n, factors isomorphic

to H,,n, factors isomorphic to H,, ... ,n factors isomorphic to H,, where
s

S,ny,..., N, are positive integers such that z n,=n, and H,,...,H, are

mutually non-isomorphic simple groups. Suppose further that, for each
i=1,...,s,

(i) H, is non-abelian and satisfies Schreier’s conjecture, and

(i) n,<4.
Then G is completely reducible (8.8).
Proof. We argue by induction on n. If n=1 then G is simple and the
result is trivial. Suppose that n > 1 and let

1=G,<G,<...4G, =G
be a composition series of G. Let K = G,_; < G. Then
1=G,<G,;«...<G,_, =K

is a composition series of K, of length n — 1. Now it is clear that the
induction hypothesis applies to show that K is completely reducible.
Hence, by (i), K is a direct product of non-abelian simple groups, and
so Z(K)=1.

We may suppose that G/K = H,, so that G is an extension of K by
H,.Then

K=H, x..xH xH,x..xH,x..xH x..xH,

where, on the right, there are n, — 1 copies of H,,n, copies of H,,...,n

copies of H, (and where the copies of H, are omitted if n, = 1). Hence,
by 9.25,

AutK = ((Aut H))|Z, _,) X ((Aut Hy)|Z,) x ... x (Aut H)|Z,),

where the wreath products are natural (and the first factor on the right
is omitted if n, = 1). Then, by means of 111 and 526(ii), we see that

Aut K/Inn K = ((Aut H,/Inn H))|Z, _,) x ((Aut H,/Inn H,)|Z, ) % ...
x ((Aut H,/Inn H)|Z,).
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When m is an integer not exceeding 4, X, is soluble (364): and, by
(ii), Aut H,/Inn H; is soluble, for each i=1,...,s. Hence, by 7.47 and
7.49, Aut K/Inn K is soluble. Since H, is a non-abelian simple group,
it follows that H, cannot be embedded in Aut K/Inn K. Therefore, by
remark (2) after 9.20,

G=H, xK.
Thus G is completely reducible. This completes the induction argument.

536 Suppose that Z(K) =1 and that Aut K/Inn K is soluble. Then every extension
of K by any perfect group H(168) is isomorphic to H x K.

537 (i) Suppose that K is a finite group with Z(K) = 1. Let @ be the set of all prime
divisors of | Aut K/Inn K| and let @’ be the set of all primes which do not belong to
. Then every extension of K by any finite @’ -group H is isomorphic to H x K.

(ii) Let K = D,,, the dihedral group of order 2p, where p is any odd prime. Let H
be any finite group such that (|H|,(p — 1)/2) = 1. Then every extension of K by H
is isomorphic to H x K. (Hint. See 485 and 488.)

(ili) Let K=X; x Z,, and let H be any finite group of odd order. Then every
extension of K by H is isomorphic to H x K.

538 (i) Show by an example that the result of 537(i) does not remain true in general
if the condition that Z(K) = 1 is omitted. (Hint. Consider K =C,.)

(ii) Show by an example that the result of 537(ii) does not remain true in general
if p > 3 and the condition that (|H|,(p — 1)/2) = 1 is omitted.

(iii) Show by an example that the result of 537 (iii) does not remain true in general
if the condition that H has odd order is omitted.

539 Show by an example that the result of 9.30 does not remain true in general if
the condition (ii) is relaxed to n, < 5. (Hint. Let H = A, and let K be any finite non-
abelian simple group satisfying Schreier’s conjecture and not isomorphic to H.
Consider the natural wreath product K|H.)
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TRANSFER AND SPLITTING THEOREMS

We shall establish some fundamental sufficient conditions for a finite
group to split over a normal subgroup; and also define and apply some
important homomorphisms, called transfer maps, of a group G into
abelian sections of G. We follow an elegant approach due to H. Wielandt
which is based on a consideration of group actions on suitable sets.

10.1 Definition. Let H < G. A subset T of G which contains just one
element from each right coset of H in G is called a right transversal to
Hin G. Then |T|=|G :H| and HT = G. Similarly, a left transversal to
H in G is a subset S of G which contains just one element from each
left coset of Hin G:then |S|=|G : H|and SH = G.

10.2. Let H< G and let T be a right transversal to H in G. Let geG.
Then the set Tg = {tg : te T} is again a right transversal to H in G: for
if we consider any right coset Hx of H in G (where xeG) then, by hypothe-
sis, [TnHxg™'|=1 and so |TgnHx|=|(TnHxg ')g|=1. Now it
is clear that G acts (on the right) by right multiplication on the set J of
all right transversals to H in G.

Also, let heH. Then the set hT = {ht : te T} is a right transversal to
H in G: for if Hx is any right coset of H in G (with x€G) then |h T " Hx|=
|T~h™'Hx|=|TnHx|=1. Hence H acts on the left on the set 7 by
left multiplication. We shall study these right and left actions on 4 and
certain other actions determined by them.

540 Let H< G and T = G. Then Tis a right transversal to H in G if and only if
every element of G is uniquely expressible in the form ht with he H and te T.

541 Let H < G. For each non-empty subset X of G, let X* = {x~! : xe X}. Then X
is a right transversal to H in G if and only if X* is a left transversal to H in G.

542 Let H < G, a finite group, and let 7 be the set of all right transversals to H in G.
Let |H|=m and |G : H|=n. Then |7 | =m".
*543 Let H<G.

(i) If H € G, then every right transversal to H in G is also a left transversal to H
in G and every left transversal to H in G is also a right transversal to H in G. In this
case we speak simply of transversals to H in G.

(ii) If H € G, then there is a transversal to H in G which is a subgroup of G if and
only if G splits over H.
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(iii) If every right transversal to H in G is also a left transversal to H in G, then
H<G.

(Remark. It is in fact always true that if G is a finite group then there is some right
transversal to H in G which is also a left transversal to H in G. This depends on
reasoning which lies outside the domain of group theory, for instance on graph
theory. See Zassenhaus [b41] pp. 11-13 or Wilson [b39] p. 126, ex. 27d.)

10.3 Definitions. Let J < H < G, and suppose that |G : H| =n < o and
H/J is abelian. Let J be the set of all right transversals to H in G. To
each ordered pair T, U of elements of J, we shall associate an element
of the group H/J which we denote by T/U and define as follows. Now
|T|=n:say T ={t,,...,t,}. For each i = 1,...,n there is, by hypothesis,
a unique element u,eU such that Ht; = Hu,, and then U = {u,,...,u,}.
Then tu; 'eH for i=1,...,n, and we define

T/U =[] Jtu; *.
i=1
Because the group H/J is abelian, the order in which we multiply together
the n elements Jt,u7!,...,Jt,u; * does not affect the product which we
obtain,andso T/Uisa well-deﬁned element of H/J.
Now let T, U, VeZ, say with

T={t;,....t,} U={u,...,u,}, V={v;,...,0,},
where, fori=1,...,n,

Ht,= Hu, = Hv;,.
Then T/T = ]'[Jtt‘1 J, @)
i=1
the identity element of H/J;
U/T= HJut 1= ]_[(Jt,u“‘“ =(T/U)™ 1, (i)

since H/J is abelian ; and
TV = [[Jto;* = [] Yty Y (Jup7 Y)=T/U.U/V, (iii)
i=1 i=1

again since H/J is abelian.

Wedefine next arelation ~ on J bysetting T ~ Uifand onlyif T,Ue T
and T/U =J. Then equations (i), (ii) and (iii) above show that ~ is an
equivalence relation on . Let Q denote the set of equivalence classes of
this equivalence relation ~. Thus Q is a set of sets of right transversals
to Hin G.

10.4 Definition. Let J < H < G with |G : H| < co and H/J abelian. Let
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T be a right transversal to H in G and let geG. By 10.2, Tyg is a right
transversal to H in G, and so there is an element Tg/TeH/J, defined as
in 10.3. We define a map

t:G->H/J

by T:gb> Tg/T,

and call this the transfer of G into H/J. This was first investigated in [a90]
by I. Schur (1875-1941). We shall show that t is independent of the
choice of right transversal used to define it, and that 7 is a homomorphism.

10.5. Let J S H< G, with |G : H|=n < o0 and H/J abelian. Let T and U
beright transversals to H in G,ge G and he H. Then

(@ Tg/Ug=T/U=hT/hU.

(b) The transfer © of G into H/J is independent of the choice of right
transversal of H in G used to define it, and is a homomorphism.
Proof. (a) Let T ={t,,...,t,} and U= {u,,...,u,}, with Ht,= Hu, for
i=1,...,n. Then,fori=1,...,n,

Htg = Hug
and Hht; = Ht, = Hu, = Hhu,.
Hence
Tg/Ug=[]Jtg)(wg)™* = [[Jta7 ' =T/U
i=1 i=1
and hT/hU = [] J(ht)(hu)~* = [] (J)(Jtu; ) (Ih) !

i=1 1
= [ Jtu;* (since H/J is abelian)
i=1

=T/U.
(b) By 10. 3 (iii), we have
Tg/T =Tg/Ug.Ug/U.U/T
=T/U.Ug/U.(T/U)"! (by (a) and 10.3(ii))
= Ug/U (since H/J is abelian).
This shows that t is independent of the choice of right transversal of

H in G used to define it.
Now let x, yeG. Then

(xyye =Txy/T
=Txy/Ty.Ty/T (by 10.3(iii))
=Tx/T.Ty/T (by (a))
= (x7)(y7).
Thus 7 is a homomorphism.
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10.6. In 10.5, let 7 be the set of all right transversals to H in G and let
~ be the equivalence relation on 7 defined in 10.3. Then 10.5(a) shows
that if T ~ U then also Tg ~ Ug and hT ~ hU for every geG and heH.
Thus the right action of G on J and the left action of H on J defined
in 10.2 respect the equivalence relation ~.

It follows that these actions induce in a natural way a right action
of G on the set Q of equivalence classes of ~, and a left action of H on
Q, when we define, for any weQ, geG, heH, with T an element of J
in the equivalence class w,

wg = the equivalence class containing Tg, and

hw = the equivalence class containing hT.
The remarks above show that these are well defined, and thus obviously
define right and left actions on Q.

10.7. Let the notation and hypotheses be as in the preceding paragraphs.
Let T ={t,,...,t,}€7 and heH. Then, since Hht;= Ht, for i=1,...,n,

hT/T = [] J(ht)t;* = Jh".
i=1
In particular, jT ~ T for every je J. Hence, for every je J and every weQ,
jo=w.

We shall now make a simple application of the transfer.

10.8 Theorem. LetJ < H < G,with|G : H|=n<o0,|H/J|=m < o0 and
H/J abelian. Suppose that (n,m) =1. Then HNG'nZ(G) < J.

Proof. Let 1 be the transfer of G into H/J and let he H N G’ n Z(G). Then,
if T is a right transversal to H in G,

ht=Th/T
= hT/T (since he Z(G))
= Jh" (by 10.7).
Since 7 is a homomorphism (10.5), the fundamental theorem shows that

G/KertImt<H/J.

Hence G/Ker 7 is abelian and so, by 3.52, G’ < Ker 7. Therefore heKer 7.
Now

J=ht=Jh",
and so heJ.
Since (n,m) =1 it follows (105) that

helJ.
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544 Let G be a finite group and H an abelian subgroup of G with |H|=m and
|G :H|=n. Let 7 be the set of all right transversals to H in G, ~ the equivalence
relation on 7 defined in 10.3 and Q the set of e?uivalence classes of ~, where J = 1.
Then each equivalence class of ~ contains m"~* elements of  and |Q|=m.

545 Let K <G, with |K|=n < co and G/K abelian. Suppose that G splits over K
and let H be a complement to K in G. Let 7 be the transfer of G into H ;i the map
G — H defined by Y : hk — h, for all he H and keK (see 9.9); and v the map h+> h"
of H into itself. Then 7 = ywv.

546 Let N be an integer, N > 1,G =X, H = {(12)) and 7 the transfer of G into H.
Then 7 is the trivial homomorphism if and only if N = 4. (Hint. Use 545.)

547 Let N be an integer, N > 1, F a finite field, and G = GL,(F).

(i) Let H be the set of all diagonal matrices in G for which all the diagonal entries
other than the first are equal to 1, the identity element of F. Then F* ~ H < G.

(ii) The transfer of G into H is trivial.

(Hint. Use 545; cf. 491.)

548 Let n be an integer, n> 2, and G = X,. Then

(i) G=<(12),(13),...,(1n)> (see 21 and 2.30(i)).

(ii) Consider the natural action of G on the set {1,2,...,n} and let H = Stab;(1)
and J =A4,nH. Then J < H with |H/J| = 2. The transfer of G into H/J is non-
trivial if and only if n is odd. (Hint. Observe that the set {1,(12),(13),...,(1n)} is a
right transversal to H in G.)

549 Let G be a finite group.
(i) If G has an abelian Sylow p-subgroup then p does not divide |G’ " Z(G)|.

Hence if all Sylow subgroups of G are abelian then G' N Z(G) = 1.

(ii) If G/Z(G) is a w-group then G’ is a w-group.

(iii) Show by an example that the converse of (ii) is false.

(iv) If G is a non-abelian p-group then G'nZ(G) +# 1.
(Remark. If G is a not necessarily finite group such that G/Z(G) is a finite w-group
then G’ is a finite w-group. This is a result of Schur: see Huppert [b21] p. 417,
theorem 4.2.3. J. Wiegold [a99] proved by a neat elementary argument that if
|G/Z(G)| = p" then | G'| divides p"®~1/2))
550 Let G be a finite soluble group with an abelian Sylow p-subgroup P. Let p’
denote the set of all primes distinct from p, and suppose that 0,.(G) = 1. Then P € G.
(Hints. Argue by induction on |G|. Hence show that for every K < G,(PnK) < G.
Then consider C;(0,(G)) and use 157, 252, 381 and 549 (i).)

Now we shall study the left action of H on Q introduced in 10.6. For
this purpose we need two preliminary lemmas.

10.9 Lemma. Let J < H, and suppose that H acts on the left on the set X.
Suppose also that the action by restriction of J on X is trivial, that is, jx = x
for every jeJ and every xe X. Then we obtain a left action of H/J on X
when we define (for all heH, xeX)

(Jh)x = hx.
Proof. Once we know that the defining equation
(Jh)x = hx
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makes sense, in that it does not depend on the choice of element 4 in
the coset Jh, then we obviously obtain in this way a left action of H/J on
X. Let h,h'eH with Jh=Jh, and let xeX. Since J< H,Jh' =h'J, and
so there is an element je J such that

h="Hj.
Then hx = hW(jx)=Wx,

since the action of J on X is trivial.

We shall also need the analogue for a left action of 4.3. We include
it here explicitly, since one point of care is needed in defining the appro-
priate permutation representation because of our invariable convention
of placing permutations on the right of the symbols on which they operate
(see the remarks in chapter 2 before 17).

10.10 Lemma. Suppose that G acts on the left on the set X. Then, to each
g€G there corresponds a map A, : X — X, defined by 4, : x — gx, and this
is a permutation of X. Moreover, the map A*:G — X, defined by
A* :g > A -1 is a homomorphism (cf. 186).

Proof. For g,,9,€G and xeX,

Xhg,g, = (9192)% = 91(9,%) = 9,(x4,,) = XA ,A,,
and so

A, A

ﬂmz= g2""91°

Hence also

A =1

grigrt = Agr1hgr 1
Certainly A, = 1eZ, and therefore, for every gegG,
lglg'l = 1 = lq'l)’g‘

Hence lgezx; and then the equation above shows that the map

A* :g > A,-1 is a homomorphism of G into Z,.

(g192) !

10.11. Let the notation be as in 10.6, and assume further that |H/J | =m < oo
and that n and m are co-prime integers. Consider the left action of H on
Q defined in 10.6. By 10.7 and 10.9, this induces naturally a left action
of H/J on Q. Then

(i) the left action of H on Q is transitive and Stabg(w)=J for every
weQ, and

(ii) the left action of H/J on Q is regular. In particular, | Q| = m (cf. 544).
Proof. (i) To show that the left action of H on Q is transitive, it is enough
to show that, for any T,UeJ, there is some element he H such that
hT ~ U.

By 10.7, for any heH,
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hT/T =Jh",

and, by 10.3(iii), hT/U=hT/T.T/U.
Since (n,m) = 1, there are integers a and b such that

an+bm= —1.
Moreover, since T/UeH/J and |H/J| =m,

(T/Uy" =J.
Hence (T/U* 1t =1].
Therefore, if we set (T /U)* = Jh with heH,
then hT/U=Jh".T/U =(T/Uy"* 1 =J,
and so hT ~U.
Now let weQ. By 10.7,
J < Stabg(w).

Let heStab,(w) and let T be an element of J in the equivalence class
w: then hT ~ T. Hence, by 10.7, Jh" = J, that is, h"e J. Since (n,m) =1 it
follows (105) that

held.

Hence Stab(w) =J.

(i) By (i), the left action of H/J on Q is transitive. Moreover, for any
weQ,

Staby, ,(w) = {Jh : he H and ho = o}
=J/J (by ().
Therefore the action is regular.
We shall apply the following lemma.

10.12 Lemma. Let X be a non-empty set and let A be an abelian subgroup
of Zy. If the natural action of A on X is transitive then Cs (A) = A (cf. 518).
Proof. Let C = Cy (A). Since A is abelian, 4 <C. Let 6eC,xeX and
xo = yeX. Since the action of A is transitive, y = xa for some aeA.
Then, for every fe A,

(xB)o = (x0)p (since 6eC)
= (x) B

= (xf)a (since A is abelian).
Since the action of 4 on X is transitive, this shows that

WO = wa
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for every we X. Therefore, since the action is faithful,
c=o0€cA.

Hence C < A4, and so C = A.

With this lemma, we can show that, under suitable conditions, the
right action of G on Q in 10.6 and the left action of H/J on Q in 10.11
are related in a nice way.

10.13 Theorem (H. Wielandt). Let JSH <G, with |G:H|=n<o,
|H/J|=m< o,(n,m)=1and H/J abelian. Let Q be the set defined in 10.3,
and let G act on the right on Q as in 10.6 and H/J act on the left on Q as in
10.11. Further, let T be the transfer of G into H/J. Then, for every g€G,
there is a unique element g*€ H/J such that

wg = g*w for every weQ.

Moreover, the map g — g* is a homomorphism of G into H/J, and gt =
(g*)"

Proof. For each geG, let p, denote the permutation w - wg of Q. For
each heH, let A,, denote the permutation w — (Jh)w of Q, and let A*
denote the homomorphism Jh > 4 ,,-: of H/J into Z, : see 10.10. Let
A=Im A*<X,. Since H/J is abelian, A4 is abelian. Since the left action
of H/J on Q is transitive (10.11), the natural action of 4 on Q is transitive.

Let geG. Then, by the associativity of multiplication in G,

h(wg) = (hw)g
for all he H and weQ, hence
(Jh)(wg) = ((JH)w)g,
that is, Poan= APy
Since this is true for all he H, and since 4 = {4,, : he H},
P,ECe,(A)= 4,
by 10.12. Hence there is an element g*e H/J such that
Py =(g%) " 'A* =4,

and since the left action of H/J on Q is faithful (10.11), g* is uniquely
determined by g. Then, for every weQ,

wg =g*w.
Now let g,,9,€G. Then, for all weQ,

(9,19,)*0 = w(g,9,) = (vg,)9, = gtwg, = g5(gtw)
= (9397w = (gt 93)w,
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since g¥,g%eH/J, which is abelian. Again since the left action of H/J
is faithful, it follows that

(919,)* = g% 93

Let T be a right transversal to H in G,geG and, say, g* = Jh, where
he H. Then, since wg = g*w = hw for every weQ,

Tg ~ hT,
in the notation of 10.3. Hence

gt=Tyg/T
= Tg/hT.hT/T (by 10.3(iii))
=J.Jh" (by 10.7)

551 Let n be an integer,n > 1. Then the cyclic subgroup {(12...n)) is a maximal
abelian subgroup of X, (see 235).

*552 Let J,H,G,n,m,Q and 7 be as in 10.13; and let 6 : G — H/J be the homomor-
phism g  g* defined in 10.13, and K = Ker 0. Prove that
(i) Kert=K;
(i) for the action of G on Q defined in 10.6, Stab ;(w) = K for every weQ ; and
(i) if the action of G on Q is transitive then the action is equivalent to the action
of G by right multiplication on the set of all cosets of K in G, and G/K = H/J.
Is the action of G on Q necessarily transitive?

10.14. Let J <H <G, with |G :H|=n< oo and H/J abelian, and let
7 be the transfer of G into H/J. Then, for any geG,gt = Tg/T, where,
by 10.5, we may choose for T any right transversal to H in G. For use in
the proof of the next theorem, we observe that, for a particular g, we can
choose T in an especially convenient way for calculating g.

Let geG and let X denote the set of all right cosets of H in G. Then
the action of G on X by right multiplication (4.13) restricts to an action
of ¢g)> on X. Suppose that in this action of {(g) on X there are just s
orbits X ,..., X, (where 1<s<n). For each i=1,...,s, let |X;|=n,
so that n, + ... + n,=n, and let Hx;e X, where x,eG. Then

X, = {Hx;,Hx,g,Hx,g?, ..., Hx,g"~ '}
and Hxg" = Hx;. @)
Now we may choose
T={xg :r=01,...,n,—l;i=1,...,s}:
this is a right transversal to H in G.
Then Tg={x;9":r=12,....,n;5i=1,...,s}.

Since x;9"€ Tg N T whenever 0 <r <n;, and by (i), we get
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gt=Tg/T = [ Ix;g"x; !,
i=1

where x,g"x; 'eH for i=1,...,s.

10.15 Definition. We have introduced in chapter 9 the notion of a
complement to a normal subgroup in a group G. It is convenient now
to speak of complements to arbitrary subgroups or, more generally,
of sections of G (324).

Let JSH<G and K <G. We say now that K is a complement to
H/J in G if HK=G and HnK =J. If also K € G, we say that K is a
normal complement to H/J in G.

Note that if K is a complement to H/J in G then HK = KH = G (95).
Note also that if K is a normal complement to H/J in G then, by 3.40,
G/K=HK/K=~H/HnK)=H/J.

We shall now connect the idea of a normal complement to a section
in a group with the ideas already developed in this chapter in the following
main result. It is closely related to results in papers of Frobenius [a30]
and Schur [a90].

10.16. Theorem (H. Wielandt). Let JSXH <G, with |G:H|=n< oo,
|H/J|=m<o0,(n,m)=1 and H/J abelian. Let ~ be the equivalence
relation on the set I of all right transversals to H in G defined in 10.3,
and let T denote the transfer G — H/J. Then the following statements
are equivalent :
(i) There is a normal complement to H/J in G.

(i) Whenever h,,h,eH and h,h, are conjugate in G,Jh, = Jh,.

(iii) For every he H,ht = Jh".

(iv) For every heH and every TeJ ,hT ~ Th.
Proof. (i) = (ii) Suppose that K < G, with HK =G and HNnK =J. Let
heH and geG, with e H. We may express g in the form g = h,k, with
h,eH and keK. Let

h,=h"eH.
Then also hs =hoeH.
Hence, since K < G,
Wh;'=k k"' eHNK =J,
by hypothesis. Therefore h? = jh, for some jeJ, and so
Jh = Jh, = (Jhy'™ = Jh,

since H/J is abelian.
(ii) = (iii) Suppose that whenever h,,h, are elements of H conjugate
in G,Jh, = Jh,. Let he H. By 10.14 (with g = h), there are positive integers



242 TRANSFER AND SPLITTING THEOREMS
s,n, ...,n;and elements x, , ..., x,€G such that
n+..+n,=n,
xh"x7'eH
s
fori=1,...,s, and ht= [] Jx;h"x; 1.
i=1

Then x;h"x;” ! and h™ are elements of H which are conjugate in G. There-
fore, by hypothesis,

Jx;htixt = Jh",
fori=1,...,s. Hence
ht=Jh" . Jh™ ... Jh" = Jh".

(iii) = (iv) Suppose that ht = Jh" for every heH. Let he H and TeJ .
Then, by hypothesis,

Th/T =Jh".
Also, by 10.7, hT /T =Jh".
Hence, by 10.3,
hT/Th=hT/T.(Th/T) *=J,
and so hT ~ Th.

(iv) = (i) Suppose that hT ~ Th for every heH and TeJ . Let Q be
the set of equivalence classes of ~, and consider the action of G on Q
defined in 10.6. Let weQ and K = Stabg(w). By hypothesis, hw = wh
for every he H. Hence, by 10.11, the (right) action of H on Q by restriction
of the action of G is transitive and Staby(w) = J ; that is,

HnK=J. “

Let geG. Then, by the transitivity of the action of H, wg = wh for some
heH. Then

gh~'eK.
Hence G =KH = HK.

Thus K is a complement to H/J in G. Finally, by 552, K is the kernel
of the transfer of G into H/J, and therefore K < G. Thus K is a normal
complement to H/J in G.

10.17 Definition. A subgroup H of a finite group G is said to be a Hall
subgroup of G if (|G : H|,|H|)=1.

Any Sylow subgroup of G is a Hall subgroup of G. In chapter 11, we
shall prove P. Hall’s fundamental generalization for finite soluble groups
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of Sylow’s theorem. This generalization deals with the existence and
properties of Hall subgroups.
As an immediate consequence of 10.16, we note

10.18 Corollary. Suppose that A is an abelian Hall subgroup of the finite
group G. Then there is a normal complement to A in G if and only if no
two distinct elements of A are conjugate in G.

Proof. In 10.16,choose H =A,J = 1.

10.19 Definitions. Let G be a finite group. A complement to a Sylow
p-subgroup of G is called a p-complement of G. Note that a subgroup
H of G is a p-complement of G if and only if |G : H| is a power of p and
p does not divide |H|. In particular, a p-complement of G is a Hall sub-
group of G.

If G has a normal p-complement then G is said to be p-nilpotent. We
shall see that a finite group is nilpotent if and only if it is p-nilpotent
for every prime p: see 563.

A group need not possess a p-complement. For instance, 5.25 shows
that the alternating group A, of degree 5 does not possess either a 2-
complement or a 3-complement; although it does possess 5-complements
(namely, the subgroups isomorphic to 4,). See also 561.

553 Let J < H < G, with |G :H|=n< oo and H/J abelian. Let t be the transfer of
G into H/J. Then, for every ge Z(G),gt = Jg". (Hint. Use 10.14.)

554 Let J < H < G, and suppose that there is a complement K to H/J in G. Then
every conjugate of K in G is a complement to H/J in G. (Hint. Note that every
conjugate of K in G is of the form K* with heH.)

555 Let J < H < G. There is a complement to H/J in G if and only if there is an
action of G on some set X which restricts to a transitive action of H on X and such
that, for some xe X, Stab,(x) =J.

556 (i) Let H<G, with |G:H e < oo. Suppose that H/H' is finite and that
(|G :H|,|H/H'|)= 1. Then (H n[H, G])< H, and there is a normal complement to
H/(HN[H,G])in G.

(ii) Let G be a finite group such that O?(G) = G. If P is a Sylow p-subgroup of G
then P <[P,G].

*557 (Schur [a90]) Let G be a finite group and suppose that H is a Hall subgroup
of G such that H < Z(G). Then there is a subgroup K of G such that G=H x K.
(Remark. This result will be generalized in 10.30 and 10.31.)

558 Let P be a Sylow p-subgroup of the finite group G and let 4 be a maximal
abelian normal subgroup of P (see 251). Then C;(A4) = 4 x B for some subgroup B
of G such that p does not divide | B|. (Hints. Use 235, 236, 251 and 252 to show that
A is a Sylow p-subgroup of C;(4). Then use 557.)

559 (Frobenius [a31]) Let G be a group of order mn, where m and n are co-prime
positive integers. Let X = {xeG :x™"=1} and Y = {yeG :y"=1}. Suppose that
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|X|<mand |Y|<n. Then
(i) XnY=1,G=XY,|X|=m,|Y|=n, and every element of X commutes

with every element of Y. (Hint. Use 7.)

(i) Let H=C4X)<G (by 4.35), and let X, =XH and |X,|=m,. Then
X, < G,|H|=mgn, and m, divides m.

(ili) H= X, x Y, for some subgroup Y, of H. (Hint. Use 557.)

(iv) Y=Y and hence Y <G.

(V) X<GandG=X x Y.

(Warning. It is not obvious that X and Y are subgroups of G until (i), (ii), (iii) and
(iv) have been proved.)

*560 Let G be a finite group.

(i) If G has a p-complement L then I = O?(G) (where IS is the normal closure
of L in G : see 180).

(ii) If G is p-nilpotent then G has just one p-complement and this is O”(G).

561 There is no prime divisor p of |A6| for which A4 has a p-complement. (Hints.
Suppose to the contrary that A, has a p-complement for some p dividing | 44| and
derive a contradiction. If p = 2, consider a subgroup of 44 isomorphic to A5 and use
99(i) and 5.25. If p = 3, show that a 3-complement of A¢ would have a normal Sylow
S-subgroup, and calculate the total number of Sylow 5-subgroups of A,. If p =5,
use 4.14 and 5.28.)

562 If G is a p-nilpotent finite group then every subgroup and every quotient group
of G is p-nilpotent.
*563 Let G be a finite group. Then the following statements are equivalent:
(i) G is p-nilpotent.
(ii) Every chief factor of G of order divisible by p is central.
Hence G is nilpotent if and only if G is p-nilpotent for every prime p.

(Hints. For (i) = (ii), it is enough to show that if L is a minimal normal subgroup
of G such that p divides |L|, then L < Z(G). Use 3.53 and 5.8. For (ii) = (i), use
induction on |G| :hence if L is a minimal normal subgroup of G, G/L is p-nilpotent.
If p divides |L|, use 557.)

564 Let G be a finite group with |G| = 3r, where r is an odd positive integer not
divisible by 3. Then G is 3-nilpotent. (Hint. Use 302 and 10.18. Remark. Note that
the result of 205 follows at once from 10.18. In 10.24 we shall prove a more general
result.)

We shall apply 10.18 to establish a useful criterion for a finite group
to be p-nilpotent. For the proof we also need

10.20 Lemma (Burnside [b3], p. 155). Let P be a Sylow p-subgroup of
the finite group G. Then any two elements of Z(P) which are conjugate in
G are infact conjugate in N g(P).

Proof. Let xeZ(P),geG and x?eZ(P). Then P < Cg4x)nCgy(x?)=
Cs(x) N Cy(x), by 229. Hence (by 252) P and P?"" are Sylow p-subgroups
of C4(x), and are therefore conjugate in C4(x): for some yeCgy(x),

pPl=p,

then yge N4(P) and x? = (x”)? = x*.
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10.21 Theorem (Burnside [a9]). Let P be a Sylow p-subgroup of the finite
group G. If P < Z(N4(P)) then G is p-nilpotent.
Proof. Let H = N4(P). Since P < Z(H), P is in particular abelian. There-
fore we may apply 10.18 with 4 =P. Let x,,x,€P. If x; and x, are
conjugate in G then, by 10.20 (and since P is abelian), x, and x, are
conjugate in H. But then, since P < Z(H),x, = x,. Hence, by 10.18, G
is p-nilpotent.
Remark. It would not be enough in 10.21 merely to suppose P abelian.
In fact, every known finite non-abelian simple group G has cyclic Sylow
p-subgroups for some prime divisor p of |G|; and although (by 262
or 10.24) such a p must be odd, there are many examples of finite non-
abelian simple groups with abelian Sylow 2-subgroups.

We use this theorem to establish another fact about orders of finite
simple groups.

10.22 Corollary. Let G be a finite simple group of even order greater than
2. Then |G| is divisible either by 8 or by 12.

Proof. Suppose that 8 does not divide |G|, and let T be a Sylow 2-subgroup
of G. Since |G| is even and |G| # 2,1 < T < G, by 4.29; and by our sup-
position, |T|< 4. Hence, by 77, T is isomorphic to C, or C, x C, or
C,. (In fact, by 262 or 10.24, T =~ C, x C,, but we do not need to appeal
to these results here.) In particular, T is abelian, so that, by 4.36,

T < C4(T) S NGT).
Since T is a Sylow 2-subgroup of G, N4(T)/C4(T) must have odd order.

If C4(T)=Ng(T) then T < Z(NgT)) and so, by 10.21, G would be 2-
nilpotent, in contradiction to the simplicity of G. Therefore

Co(T) < N(T).

By 4.36, N4(T)/C4(T) can be embedded in Aut T. By 40, 46, 47, 48 and
2.36, Aut T is isomorphic to Z or GL,(Z,) or Z;, hence |Aut T| is
1 or 6 or 2 (see 2.16 or 44). But we have shown that |N4(T)/Cy(T)| is
odd and greater than 1, and so the only possibility is that | N4(T)/C4(T)| =
3and T = C, x C,. Therefore |G| is divisible by 12, as claimed.

10.23. The alternating group A, of degree 5 is an example of a finite
non-abelian simple group of even order not divisible by 8. Any such
simple group G must have its Sylow 2-subgroups isomorphic to C, x C,
(by the proof of 10.22). There is in fact a complete classification theorem
for finite simple groups with Sylow 2-subgroups isomorphic to C, x C,:
any such group is isomorphic to PSL,(F) (see 3.61), where F is a finite
field with | F| = 5and | F| congruent to either 3 or 5 mod 8. (In this connex-
ion, see Gorenstein [b13] chapter 15, where this classification theorem
is proved under the additional assumption that the Sylow 2-subgroups
are self-centralizing. For the general result, see Gorenstein [a43].)



246 TRANSFER AND SPLITTING THEOREMS

In his book ([b3] p. 330, footnote), Burnside remarks that ‘An exami-
nation of the orders of the known non-cyclical simple groups brings
out the remarkable fact that all of them are divisible by 12’. It was long
thought that the orders of finite non-abelian simple groups would all
prove to be divisible by 12; but in 1960, M. Suzuki [a92] announced
the existence of an infinite family of finite non-abelian simple groups
with orders which are not divisible by 3; see also [a93]. The order of
the smallest Suzuki group is 26.5.7.13. No other examples have been
discovered of finite non-abelian simple groups with orders not divisible
by 3, and it is thought likely that the Suzuki groups are the only such
groups.

A refinement of the proof of 10.22, made by analysing the possible
Sylow 2-subgroups of order 8, shows that a finite simple group of even
order greater than 2 must have order divisible by 12, 16 or 56: see 640.

By means of Burnside’s theorem 10.21, we can establish a strong
structure theorem for finite groups in which all Sylow subgroups are
cyclic. First we prove

10.24 Corollary. Let G be a finite group and p the smallest prime divisor
of |G|. If the Sylow p-subgroups of G are cyclic then G is p-nilpotent.
(This generalizes the results of 262 and 564.)

Proof. Let P be a Sylow p-subgroup of G and suppose that P is cyclic.
Then P < Cy(P) € N(P) and, by 4.36, N4(P)/C4(P) can be embedded in
Aut P. Since P < C4(P), | N4(P)/C4(P)| is not divisible by p. Let | P| = p™,
where m is a positive integer. Then, since P is cyclic, | Aut P| = p™ — p™~!
(243). Hence |N4(P)/C4(P)| must divide p— 1. Since p is the smallest
prime divisor of | G|, it follows that | N4(P)/C4(P)| = 1, hence that C4(P) =
Ng(P). Thus P < Z(N4(P)) and so, by Burnside’s theorem, G is p-nilpotent.

We also use

10.25 Lemma (H. J. Zassenhaus [b41]). Let G be a soluble group. If, in
the derived series of G (7.51), the factors G'/G" and G"/G"" are both cyclic
thenG"'=G" = 1.

Proof. Since G is soluble, there is a positive integer r such that G = 1
(7.52). Hence, if G”"=G"", it follows that G” = G" = 1. Therefore (by
replacing G by G/G"’) we may assume that G’ =1, and try to prove
that when G'/G” and G" are both cyclic then G” = 1.

Since G” <G, 4.36 shows that C4,(G")S G and G/Cy4(G”) can be
embedded in Aut G”. Since G” is cyclic, Aut G” is abelian, by 4.38, and
therefore, by 3.52, G’ < C4(G”). Hence G” < Z(G'). Since G'/G” is cyclic,
it follows, by 3.30, that G'/Z(G’) is cyclic and therefore (125) that G’
is abelian. Hence G” = 1.

10.26 Theorem (Holder, Burnside, Zassenhaus [a108], [b41]). Let G be
a finite group such that all Sylow subgroups of G are cyclic. Then G is



TRANSFER AND SPLITTING THEOREMS 247

soluble. Moreover, G/G' and G’ are both cyclic (so that G is metacyclic
(152)), G splits over G’, and G’ is a Hall subgroup of G.

Remarks. If G is a finite cyclic group then all subgroups of G are cyclic
(3.32), in particular all Sylow subgroups of G are cyclic. If G is a finite
abelian group and all its Sylow subgroups are cyclic then G is cyclic (410).
But there are also finite non-abelian groups with all their Sylow subgroups
cyclic: for instance, the dihedral group D,, for every odd integer n =3
(259).

Proof of the theorem. (i) We observe first that every subgroup and every
quotient group of G has the same property as G. Let H < G. By Sylow’s
theorem, every Sylow subgroup of H is a subgroup of some Sylow sub-
group of G. Since subgroups of cyclic groups are cyclic (3.32), all Sylow
subgroups of H are cyclic. Let K < G. Every Sylow subgroup of G/K
is of the form PK/K, where P is a Sylow subgroup of G (252). Since
PK/K = P/(PnK) (3.40) and P is cyclic, PK/K is cyclic. Thus all Sylow
subgroups of G/K are cyclic.

(i) Now we prove by induction on |G| that G is soluble. This is trivial
if |G| = 1, so we assume that |G| > 1. Let p be the smallest prime divisor
of |G|. By 10.24, G is p-nilpotent. Let K be the normal p-complement
of G. Then K < G and, by (i), all Sylow subgroups of K are cyclic. Hence,
by the induction hypothesis, K is soluble. Since G/K is isomorphic to a
Sylow p-subgroup P of G and P is cyclic, it follows (7.47) that G is soluble.

(iii) Now G/G’,G’/G” and G”/G" are abelian groups and all their
Sylow subgroups are cyclic (by (i)). Hence (410) these abelian groups are
cyclic. Therefore, by (ii) and 10.25, G” = 1, and G/G’ and G’ are cyclic.

(iv) Let |G/G’'| =n and |G’'| =m. By (iii), there are elements x,yeG
such that

G'={(x) and G/G'={yG").
Then (108) G ={x,y) and x’€G’, so that
x’=x"
for some integer r. Hence
[x,y]=x"1

Let L ={x""!). Then L is characteristic in G’ (138) and therefore L < G
(3.15). Now

G/L=<{xL,yL>
and
[xL,yL]=[x,y]L=L,

since [x,y]eL. Thus G/L is generated by 2 elements which commute.
Hence G/L is abelian (69), and so G’ < L (3.52). Since also L < G/,
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(x"1Yy=L=G ={x).
Therefore, since o(x) = m,
(r—1,m=1(5).
Because |G/G'| = n,y"eG’ (105), so that
y=x
for some integer s. Then
X =y = (Y = (P =x",
and therefore x"~ V=1, Hence (r — 1)s is divisible by o(x) = m. Since
(r — 1,m) =1, it follows that s is divisible by m.
Hence y'=1.
Since G/G' = {yG’), of order n, this implies that
o(y)=n.
Now G ={y)>G’ and, by 3.40,
G/G'=y>/Ky>nG'.
Since |G/G’| =n=|<y)|, it follows that
] (y>SnG =1.

Thus ¢ y) is a complement to G’ in G.
Suppose that (n,m) > 1. Then there is a prime g which divides both
n and m. Let

n, =n/q and m; = m/q.
Then o(x™) = q = o(y™).
Just as LY G, so {x™ )< G. Then (by 3.38 and 3.40)
J={x™){y")<Gand|J|=q>

Therefore, by Sylow’s theorem, J < @, some Sylow g-subgroup of G.
By hypothesis, Q is cyclic and therefore Q has a unique subgroup of
order g (3.32). But this contradicts the fact that {x™ ) and {y") are
distinct subgroups of J of order g. We conclude therefore that (n,m) = 1.

565 Let P be a Sylow p-subgroup of the finite group G. Let X and Y be non-empty
subsets of P such that P < Ng(X)N N4 (Y) (see 4.32). If X and Y are conjugate in G
then they are conjugate in N4 (P). (This generalizes 10.20.)

566 Let P be a Sylow p-subgroup of the finite group G. Suppose that PN P9 =1
whenever geG and P # P?. Then any two elements of P which are conjugate in G
are conjugate in N;(P).
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567 Suppose that |G| = pr, where r is a positive integer such that p does not divide r.
If G has r distinct subgroups of order p then G has a normal subgroup of order r.

568 If |G| =p®q*, where p, q are distinct primes, then G has either a normal Sylow
p-subgroup or a normal Sylow g-subgroup; and so G is not simple. (Cf. 5.19. Hint.
Use 4.30, Sylow’s theorem and Burnside’s theorem.)

569 If |G| = p®q, where p, q are distinct primes, then G is not simple. (Hints. Suppose
that G is a simple group of order p®q. Show that p < g and use Sylow’s theorem and
Burnside’s theorem to show that the number of Sylow g-subgroups of G is p?.
Deduce that p=2,q =3. Remark. In general, G need not have either a normal
Sylow p-subgroup or a normal Sylow g-subgroup; consider for example G =X,.)

570 Let G be a simple group of order p?qr, where p,q,r are distinct primes, and
let P be a Sylow p-subgroup of G. Then
(i) pisthesmallest prime divisor of | G|;so we may assume without loss of general-
itythatp<g<r,;
(i) P=C,x C,,and |[N;(P)/Cg(P)|is either g or r;
(iii) p=2and g=3;
(iv) G = A;.
(Hint. See the proof of 10.22, and use 294.)
571 Prove that every group of odd order less than 1000 is soluble.
(Hints. Assume that the result is false. Show that this implies that there is a non-

abelian simple group G of order n for some odd integer n < 1000. Let n= []pM™,
i=1

where s,m,,...,m, are positive integers and p,,...,p, distinct odd primes. Apply

4.29, 5.17, 5.19, 5.20, 568, 569, 570 and arithmetic to show that Z m; = 5. Deduce

i=1
that 3 divides n, hence that n must be one of the five numbers 3* x 5,3% x 7,3% x 11,
33 x 52,33 x 5 x 7. Eliminate the first four of these possibilities by means of 279
and Sylow’s theorem. If n =33 x 5 x 7, use Sylow’s theorem to show that G has a
subgroup of index 7,and then apply 4.14 to derive a final contradiction. Remark.
This result is merely a special case of the Feit—Thompson theorem : see 1.12 and 383.)

572 Let |G| =p™q", where p,q are distinct primes and m,n non-negative integers,
and suppose that the Sylow p-subgroups and Sylow g-subgroups of G are abelian.
Then G is soluble. (Hints. By induction on |G|, it is enough to show that G cannot be
simple and non-abelian. Suppose that it is. Let Q be a Sylow g-subgroup of G and
use 100 and 264 (ii) to show that there is no subgroup L of G such that Q <L <G.
Then use Burnside’s theorem. Remark. By another theorem of Burnside-see
11.27 — the condition of abelian Sylow subgroups is in fact superfluous here.)
573 Let T be a Sylow 2-subgroup of the finite group G.

(i) If T C, x C, and |G| is not divisible by 3 then G is 2-nilpotent.

() If T=C, x C, x C, and |G| is not divisible by either 3 or 7 then G is 2-
nilpotent.
574 Suppose that the finite group G has an abelian Sylow p-subgroup P, and let
H = N4(P). Then G is p-nilpotent if and only if H = P x Q for some subgroup Q of H.

s
575 Let n= [] p/, where s,m,,...,m, are positive integers and p,,...,p, distinct

i=1
primes. Then the following two statements are equivalent :
(i) Every group G of order n is cyclic.
(i) Foralli,je{1,2,...,s},m;=1and p; # 1 mod p;.
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(This is the result stated in 1.4. Hints. To show that if (ii) does not hold then (i)
does not hold, if m; > 1 for some i consider abelian groups; if m; =1 for all i, but
p; = 1mod p; for some i,j, apply 9.16. To show that (ii) = (i), let G be a group of
order n and apply 10.26. Note that if G’ # 1 then, by 125,C;(G’) < G. Then apply
4.36,46 and 138.)

We are going to prove that whenever H is a normal Hall subgroup
of a finite group G,G splits over H: cf. the special case of this result
in 557. Recall that when H < G, there is no distinction between left and
right transversals to H in G and we refer simply“to transversals (543).
We observe that then the left action of H on the set 7 of all transversals
to H in G defined in 10.2 extends to a left action of G on 7.

10.27. Let H < G. Then G acts on the left by left multiplication on the
set 7 of all transversals to H in G.
“Proof. Let geG and Te . Then, for any x€ G, using 3.19 we have

|9TnHx|=|Tng 'Hx|=|TnHg 'x|=1,

since T €7 . Hence gT€Z . The result is now clear.

10.28. Let J < H <G, with |G/H|=n< oo and H/J abelian. Let T be
the set of all transversals to H in G. Whenever geG and T,UeZ

gT/gU =Jg(T/U)Jg™*.

Proof. Let T ={t,,...,t,}¢7 and U ={u,,...,u,}€J with Ht,= Huy,
fori=1,...,n. Then (by 3.19) Hgt, = gHt, = gHu,= Hgu, for i=1, ... ,n.
Hence

gT/gU = [1J(gt)(gu)™" = [[ Jgtau; 'g™" = Jg(T/U)Jg™".

i=1

10.29 Theorem. Let A be an abelian normal Hall subgroup of the finite
group G. Then G splits over A. Moreover, the complements to A in G form
a single conjugacy class of subgroups of G.
Proof. In10.3,let H = Aand J = 1. Let 7 denote the set of all transversals
to A in G, ~ the equivalence relation on J defined in 10.3, and Q the
set of equivalence classes of ~. By 10.27, G acts on the left on J by
left multiplication. Moreover, this left action induces naturally a left
action of G on Q: for if geG and T, UeJ with T ~ U, then 10.28 shows
that gT ~ gU. The restriction to A of this left action of G on Q is of course
the left action of 4 on Q already introduced in 10.6: by 10.11 (with J = 1),
it is regular.

Now let weQ and K = Stabg(w) (where this stabilizer refers to the
left action of G on Q). Let geG. Then, by transitivity of the left action
of A on Q,



TRANSFER AND SPLITTING THEOREMS 251

gw = aw
for some ae A4, and then a 'gek.

Her}ce AK =G.
Moreover, AnK = Stab (w) =1,

since the left action of 4 on Q is regular. Thus K is a complement to
Ain G.

Now let L be any complement to 4 in G. Then clearly LeJ (cf. 543).
Let A be the element of Q which contains L. Then, for every le L,

IL=L,
and so A=A
Hence L < Stabg(4).
Because the left action of 4 on Q is transitive,
A=bw

for some be 4, and then, by the left action analogue of 187,
Stabg(4) = b Stabg(w)b !
=K.

Since |L|=|G/A|=|K""],
L=K"".

Since also any conjugate in G of a complement to 4 in G is again a comple-
ment to 4 in G (9.11), the theorem is proved.

We now show that in 10.29, the splitting conclusion holds without
the condition that A is abelian. This important result is called the Schur—
Zassenhaus theorem.

10.30 Theorem (Schur, Zassenhaus [b41]). Let K be a normal Hall
subgroup of the finite group G. Then G splits over K.

Proof. Let |G/K|=n and |K|=m. We note that it is enough to show
that G has a subgroup H of order n: for then, since (n,m)=1, HNnK =1,
hence also, by 3.40, |HK | =nm and so HK = G.

We prove by induction on m that G has a subgroup of order n. This
is trivial if m = 1, so we assume that m > 1. Let p be a prime divisor of
m, P a Sylow p-subgroup of K, and N = N4(P). Then, by Frattini’s lemma
(5.13), G=NK. By 340, NnK <N and N/NnK = G/K, of order n.
If N<Gthen NnK < K, and so |N NnK | is a proper divisor of m. Then,
by the inductive assumption, N has a subgroup H of order n. Then also
H is a subgroup of G of order n.

Therefore we may assume that N = G, that is, that P < G. Since p
divides m, P # 1. Let Z = Z(P). Then, by 4.28 and 121, 1 < Z € G. By 3.30,
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K/Z<G/Zand G/Z / K/Z = G/K, of order n. Moreover, | K/Z | is a proper

divisor of m, and so, by the inductive assumption, G/Z has a subgroup
L/Z of order n, where LS G.

Certainly p does not divide n, and so Z is a normal Hall subgroup of
L. Since Z is also abelian, it follows from 10.29 that L splits over Z, hence
that L has a subgroup H of order n. Then H is also a subgroup of G of
order n. Thus the induction argument goes through.

We now consider whether in 10.30, as in 10.29, complements are
conjugate. We prove

10.31 Theorem (Zassenhaus [b41]). Let K be a normal Hall subgroup of
the finite group G, and suppose that either K or G/K is soluble. Then the
complements to K in G form a single conjugacy class of subgroups of G.
Proof. Let H and H* be complements to K in G. It is enough to show
that H and H* are conjugate in G. We argue by induction on |G|. Let
|G/K|=n and |K|=m. The result is trivial if either n=1 or m=1,
so we may assume that n> 1 and m > 1.

(i) Suppose first that K is soluble. By 3.51 and 3.15, K’ < G. By 3.30,
K/K’ is a normal Hall subgroup of G/K'. Also HK'/K' and H*K'/K’
are complements to K/K' in G/K’ (by 3.40). Since K/K’ is abelian (3.52),
it follows from 10.29 that HK'/K' and H*K'/K' are conjugate in G/K'.
Hence there is an element ge G such that

H*K' = (HK'Y = HK'.

Let |K’| = m'. Then m’ divides m, and since | H*K'/K’| = n, K’ is a normal
Hall subgroup of H*K'. Moreover, H* and H? are complements to K’
in H*K', and K’ is soluble (7.46). Since K is soluble and K # 1, K' <K
(7.52). Therefore |H*K'|=nm <nm=|G|. Hence, by the inductive
assumption, H* and H? are conjugate in H*K'. Therefore H and H*
are conjugate in G. This completes the induction argument in this case.

(i) Now suppose that G/K is soluble. Since K < G, there is a chief
factor J/K of G, and since G/K is soluble, J/K is an elementary abelian
p-group for some p dividing n (7.56). Then K <J <G = HK, so that,
by Dedekind’s rule (7.3), J = (HnJ)K. Similarly, J =(H*nJ)K. Since
p does not divide m,J is p-nilpotent, with normal p-complement K, and
HnJ and H* nJ are Sylow p-subgroups of J. Hence, by Sylow’s theorem,
for some xeJ,

H*AJ = (HAnJy.

Now HNnJ < H, and so H*nJ =(HnJ)*< H*. Also H*nJ < H*.
Let L=H*nJ and N = Ng4(L). Thus N contains both H* and H*. In
particular, NK = G. By 340, Nn K € N and N/(NnK)=~ NK/K = G/K.
Therefore N/(NnK) is soluble and NnK is a Hall subgroup of N.
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Moreover, |H*|=n=|G/K|=|N/NnK|. Now (NnK)L<N (3.39),
so that, by 3.30, (NnK)L/L € N/L and

N/L/(Nn K)L/L=N/(NnK)L=N/(Nn K)/(NmK)L/(Nn K),
which is soluble (7.46). Since also, by 3.40,
" (NAK)L/L=(NnK)/(INNKNnL)=~NnK,

(NNK)L/L is a Hall subgroup of N/L. Moreover, |(NNK)L|=
|[INAK||L|, and so

|H*/L| = |N/(NmK)|/|L| = |N/(NAK)L|.

Hence H*/L and H*/L are complements to (NNK)L/L in N/L. Since
K <J,L#1 and so |[N/L|<|G|. Hence, by the inductive assumption,
H*/L and H*/L are conjugate in N/L. Therefore H and H* are conjugate
in G (230). This completes the induction argument in this case.

Remark. In this theorem, since (|G/K|,|K|)=1, either |G/K| or |K|
is odd. It follows by the Feit—Thompson Theorem (1.12; see 383) that
either G/K or K is necessarily soluble. Therefore the hypothesis in the
theorem that either K or G/K is soluble is superfluous. But no proof
is known of the conjugacy of complements in the general case which
does not an appeal to this very deep result 1.12.

576 Let J S H <G, with |G/H|=n<o0,|H/J|=m< c0,(n,m)=1 and H/J abel-
ian. Let ~ be the equivalence relation on the set J of all transversals to H in G
defined in 10.3. Then the following statements are equivalent:
(i) There is a normal complement to H/J in G.

(i) J € G and G/J = (H/J) x (K/J) for some subgroup K of G.

(iii) For every geG and every TeJ ,gT ~ Tg.
(cf. 10.16. Hints. For (ii) = (iii), let geG and show that there are positive integers
s,ny,...,ng and elements k,,...,k. €K such that n, + ... + n,=n, Hg™"kg" = Hk,
fori=1,....,s,and U={g kg’ :j=0,1,...,n,— 1;i=1,...,s} is a transversal to
H in G. For this U,U? ~ U and hence Ug ~ gU. Deduce that for every TeZ,
T? ~ T and hence Tg ~gT.)

577 Let J € H <€ G, with G/H finite and H/J abelian. Let t be the transfer G - H/J
and let Im 7 = I/J, where J < I < H. Then [G,I] < J.

578 (Zassenhaus [b41]) Let G be a finite group with an abelian normal Hall sub-
group A, and let 7 be the transfer of G into A. Then
(i) Imt=Z(G)n A.
(i) KertnImz=1.
(iii) G=Kert x Im 1.
(iv) AnKert<[A4,G].
(v) AnKert=[4,G] =G nA.
(vi) A=(G'nA) x (Z(G)n A).
(vii) If 4 < G and G is indecomposable (81) then Z(G)nA=1and A< G'.
(Hints. For (i) and (ii), use 553 and 577 ; for (iv), use 10.14; for (v), use 162 ; for (vi),
use 9.12))

579 Give an example of a finite group G with a normal subgroup K such that G



254 TRANSFER AND SPLITTING THEOREMS

splits over K but the complements to K in G do not form a single conjugacy class of
subgroups of G (cf. 10.29, 10.30, 10.31).

580 Let K be a normal Hall subgroup of the finite group G.

(i) Then K is characteristic in G.

(i) Let H be a complement to K in G (which exists, by 10.30) and suppose that
either K or G/K is soluble. Then H is both intravariant and pronormal in G : see
267 and 268.

581 Let K <G,a finite group. Suppose that Aut K splits over Inn K. If
(|G/K|,]Z(K)|) =1 then G splits over K. (Hint. Consider the action of G on K by
conjugation, and apply 9.12, 10.29, and 501.)

582 Let G be a finite group and p a prime divisor of | G|. Suppose that K is a normal
subgroup of G such that p does not divide | G/K|. Then there is a subgroup H of G
such that G = HK and p does not divide |H|. (Hint. Use 5.13 and 10.30.)

Before making another major application of 10.16, we introduce the
notion of fusion. This has figured prominently in the modern analysis
of finite simple groups.

10.32 Definitions. (i) Let H < G. Two elements (or subsets) of H are
said to be fused in H by G if they are conjugate in G but not in H.

For instance, the permutations (123) and (132) are fused in {(123))
by Z,.

Thus 10.16(ii) may be reformulated as follows: ‘whenever h,,h, are
elements of H fused in H by G,Jh, = Jh,’.(This is an equivalent statement,
for if h,,h,eH and h,,h, are conjugate in H then automatically Jh, =
Jh,, because H/J is abelian.) Again, Burnside’s lemma 10.20 may be
stated as ‘if P is a Sylow p-subgroup of a finite group G, then any two
elements of Z(P) which are fused in P by G are also fused in P by N4(P).

(ii) Let H < G. Then the focal subgroup of H in G is defined to be

Focy(H) = {[h,g] : heH,geG,[h,gleH).
Equivalently,
Focg(H) = (h,h; ! : h, h, elements of H conjugate in G ).
Then clearly
H'< Focg(H)<S G'nH.

If H< G then [h,g]eH for every he H and every geG (162), and then
Focs(H) =[H,G]. However, in general we may have [H,G] % H and
then Focy(H) < [H,G].

If there is no fusion in H by G, that is, if elements of H conjugate in G
are already conjugate in H, then Focz(H) = H'. In general, the quotient
Focy(H)/H' may be thought of as measuring in some way the amount
of fusion which takes place in H by G.

10.33 Theorem. Let H < G. Suppose that |G :H|=n< oo,
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|H/H'|=1< o, and (n,l)=1. Then Focg(H)= G nH, and there is a
normal complement to H/(G' " H) in G.
Proof. Let J = Focgz(H). Then

H <J<H,

and so (by 3.30 and 3.52) J < H and H/J is abelian. Moreover, if |[H/J | =
m, then m divides I and so (n,m) = 1. Thus we may apply 10.16. Let h,
and h, be elements of H which are conjugate in G. Then, by definition
of J, h,h;'eJ and so Jh, = Jh,. Hence, by 10.16, there is a normal
complement K to H/J in G.

Then G/K=~H/J.
Hence G/K is abelian, so that (3.52)
G' <K.
Now JSGnNnHS<HNK=J.
Therefore J=GnH.

The most important special case of this result is called the focal subgroup
theorem.

10.34 Corollary (Focal subgroup theorem: D. G. Higman [a56], 1953).
Let P be a Sylow p-subgroup of the finite group G. Then Focz(P) = G' N P.
The following facts make clear the significance of this result.

10.35. (i) For any set w of prime numbers, every finite group G has an
X-residual when X is the class of finite abelian w-groups: this ‘abelian
w-residual’ of G is G/(G'O”(G)) (see 3.44, 3.45).

(ii) For any finite group G and any Sylow p-subgroup P of G, the abelian
p-residual of G is isomorphic to P/(G' n P).

Proof. Let G be a finite group.

(i) Let K < G. Then G/K is an abelian w-group if and only if G' < K
and O0”(G)< K (by 3.52 and 3.44), hence if and only if G'O”(G) < K.
Moreover (by 3.39), G'O"(G) € G.

(ii) Let P be a Sylow p-subgroup of G. Then, by 3.40,

(P/G'nP)= PG'/G', a Sylow p-subgroup of G/G’ (252).

Let R=G'0%G)<G.
Then R/G' = 0¥%(G/G"),
by 3.30 and (i). Hence, since G/G” is abelian, R/G" is the (unique) p-comple-
ment of G/G' and G/G’ / R/G' is isomorphic to the (unique) Sylow p-
subgroup of G/G’ (by 560 and 563). Thus, by 3.30,

G/R= P/(G'n P).
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We now see that the focal subgroup theorem relates the abelian p-
residual of a finite group G to fusion by G of elements of a Sylow p-sub-
group of G.

We shall use the focal subgroup theorem to obtain some information
about finite groups with abelian Sylow p-subgroups. The result stated
is a special case of a theorem of O. Griin [a45] to which we shall return
later.

10.36 Theorem. Let G be a finite group with an abelian Sylow p-subgroup
P, and let H = N 4(P). Then G/O*(G) =~ H/O"(H).

Proof. Since P is abelian and PO?(G) = G (by 252), G/O?(G) is abelian, and
hence is the abelian p-residual of G. Also P is the (unique) Sylow p-
subgroup of H, and so, by the same remark, H/OP(H) is the abelian
p-residual of H. Hence, by 10.35, what we have to prove is that

P/(G'AP)x P/(H'AP).

Obviously H'n P < G’ N P; it remains to show that G "P< H'n P, or,
equivalently, by the focal subgroup theorem, that

Focg(P) < Focy(P).

Let x, and x, be elements of P which are conjugate in G. Then, since
P is abelian, Burnside’s lemma 10.20 shows that x, and x, are conjugate
in H. Hence

Focg4(P) < Focy(P),

and the result is proved.

Next, we shall apply several of the preceding results to prove another
splitting theorem, in this case due to W. Gaschiitz. We shall need the
following lemma.

10.37 Lemma. Suppose that G is a finite group with an abelian normal
Sylow p-subgroup P, and suppose also that O"(G) = G. Let Q be a p-comple-
ment of G (which exists, by 10.29). Then N4(Q) = Q.
Proof. Let R=Ng4(Q) and P,=PnR. Since P <G, P, < R. Moreover,
by definition, Q < R, and since P, is a p-group and p does not divide
|Q|, P, Q = 1. Hence, by 3.53,

[Py, 0]=1.
Therefore, since also P is abelian,

Cs(Py) 2 PQ =G.

Thus P, < Z(G).
Since, by hypothesis, O?(G) =G, p does not divide |G/G’| (297), and
therefore P < G’ (see 252). Hence
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P,<PNnG'nZ(G) =1,
by 10.8 (with H = P, J = 1). Since

Q<Rs<G=PQ,
it follows, by Dedekind’s rule (7.3), that
R=P,0=0,

as asserted.

10.38 Theorem (W. Gaschiitz [a34], 1952). Let G be a finite group. If the
Sylow p-subgroups of O”(G) are abelian then G splits over O¥(G).

Proof. We argue by induction on |G|. The result is trivial if |G| =1,
so we assume that |G| > 1. Let K = 0?(G), and let P be a Sylow p-subgroup
of K. Let L = N (P). By hypothesis, P is abelian, and from the definition
of K,07(K) = K (see 156). Hence, by 10.36, OF(L) = L.

Let H= N4(P). Then HN K = L, and, since K < G, L < H. By Frattini’s
lemma (5.13), HK = G. Thus K is a normal complement to H/L in G.
In particular,

H/L=~GJK,

a p-group. Since we have shown that OP(L) = L, it follows that
L = O%(H).

Since L <K and the Sylow p-subgroups of K are abelian, the Sylow
p-subgroups of L are abelian. Hence if H < G, it follows by the induction
hypothesis that H splits over L. Then, if P, is a complement to L in H,
P, K=P,LK=HK=Gand PLnK=P,nHNnK=P,nL=1,so that
P, is also a complement to K in G.

Therefore we may assume that H = G, that is, that P < G. Then P
is an abelian normal Sylow p-subgroup of K, and so, by 10.29, K splits
over P and the complements to P in K form a single conjugacy class of
subgroups of K. Let Q be a complement to P in K, that is, a p-complement
of K. Then a repetition of the proof of Frattini’s lemma (5.13; see also
267) shows that

Ne(Q)K =G.
Since also OP(K) = K, 10.37 shows that
Ng(Q)NnK =N (Q)=9Q.
Thus K is a normal complement to N4(Q)/Q in G. In particular,
N4(Q)/Q = G/K,
a p-group. Then, if P, is a Sylow p-subgroup of N4(Q),
P,Q =NgQ).
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Hence P,K=P,0K=Ni{Q)K =G
and P,nK=P,nNygQ)nK=P,nQ =1,

since p does not divide |Q|. Thus P, is a complement to K in G and
the induction argument is complete.

583 (i) Let P be a Sylow p-subgroup of the finite group G, where p is a prime divisor
of |G|. Prove that if no two distinct elements of P are fused in P by G, then P % G’
and 0°(G) <G.

(ii) Give an example of a finite soluble group G with a Sylow p-subgroup P for
some prime divisor p of |G| such that P< G'.

584 (i) Prove that if H is an abelian subgroup of G and there is a normal complement
to H in G, then Focg(H) = 1.

(i) Let H < G, and suppose that Foc;(H) = 1. Prove that H is abelian and that
no two distinct elements of H are fused in H by G. Show by an example that there
need not be a normal complement to H in G (cf. 10.18).

585 Give an example of a group G with a subgroup H such that
Focg(H) < HN[H,G].

586 (i) Suppose that H < G, with |G : H| < oo, |H/H'| < o0 and (|G : H|,|H/H'|) =
1. Prove that HN[H,G] = G’ " H (cf. 556 and 10.33).

(i)) Give an example of a group G witha subgroup H such that Hn[H,G] < G'nH.
587 Let H<G. Suppose that |G:H|=n<oo,|H/H|=l<o0 and (n)=1.
Let 7 be the transfer of G into H/(G' " H). Then Im © = H/(G' n H).

588 Let P be a Sylow p-subgroup of the finite group G. Then the following statements
are equivalent :
(i) There is a normal complement to P/P’ in G.

(i) GNAP=P.

589 Give an example of a finite group G with a Sylow p-subgroup P, for some
prime p, such that G/O?(G) % H/OP(H), where H = N;(P) (cf. 10.36).

590 Let G be a finite group with a cyclic Sylow p-subgroup. Then either G is p-
nilpotent or O?(G) = G. (Hint. Use 10.38, 502 and 492.)

We shall end this chapter by proving some important generalizations
of transfer theorems already obtained. It will be convenient to introduce
a new notation for conjugacy of elements: this notation is due to H.
Wielandt. Recall that conjugacy is an equivalence relation on the set
of all elements of a group (49).

10.39 Definition. Let x,yeG. We write x =y if and only if x and y are
conjugate in G.

We shall prove a generalization of part of 10.16, in which the hypothesis
that H/J is abelian is weakened to the assumption that H/J is nilpotent.

10.40 'Theorem (H. Wielandt). Let J < H<G, with |G:H|=n< oo,
|H/J|=m < oo,(n,m) = 1and H/J nilpotent. T hen the following statements
are equivalent :
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(i) Thereis a normal complement to H/J in G.
(ii) Whenever h,,h,eH and h, 7 h,, Jh, ;JJhZ.

Proof. (i) = (i) The argument is exactly the same as for 10.16, (i) = (ii),
with the last equation omitted.

(ii) = (i) We argue by induction on m. The assertion in (i) is trivial
if m=1, and so we assume that m> 1. Let Z(H/J)=J,/J. Then, by
3.30 and 7.46, J, <H and H/J, is nilpotent. Let |H/J,|=m,. Then
m, divides m, so that (n,m,) = 1; and, by 7.54, m; <m. Let h,,h,eH with
h, = h By hypothesis, Jh, —th, and so evidently J,h;, = J 1h,. Now

it follows by the induction hypothes1s that there is a normal complement
K, to H/J, in G. Then

H/J,=G/K,.

Now J<J,<K,, and |K,:J,|=|G:H|=n. Let m,=|J,/J|: then
m, is a divisor of m, and so (n,m,) = 1. Moreover, J,/J is abelian. Let
Xy,X,€J, with x1K= x,. Since x,,x,€H, it follows, by hypothesis, that

Jx —sz Hence, since Jx,,Jx,eJ,/J = Z(H/J), it follows that Jx, =

Jx,. Now by 10.16, there is a normal complement K to J,/J in K.
But now

HK=HJ,K=HK =G
and HnK=HnK nK=J,nK=J.

Thus K is a complement to H/J in G.
Finally, we show that K < G. We have

JSK<K, €G.

Let heH. Then, since also J < H,

J=J'<K'<K'=K,.
By 3.40,

|K*/(K" " K)| = |K"K/K]|.
The left side of this equation divides
|K*:J*"|=|K :J|=|G:H|=n,

whereas the right side divides

|K /K| =T /T|=m,
Since (n,m,) = 1, it follows that K* < K. Similarly K < K". Thus

K"=K.

Since this is true for every he H and since G = HK, this shows that
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K <G.

This completes the induction argument.
As a special case we note the following generalization of 10.18.

10.41 Corollary. Let H be a nilpotent Hall subgroup of the finite group
G. Then there is a normal complement to H in G if and only if no two elements
of H are fused in H by G.

In [a94], M. Suzuki establishes necessary and sufficient conditions
for a (not necessarily nilpotent) Hall subgroup of a finite group G to have
a normal complement in G. The proof makes use of character theory.

As another consequence of 10.40, we prove

10.42 Corollary. Let JSHS<V <G, with |G:H|=n<oo,|H/J|=
m<oo,(n,m)=1 and H/J nilpotent. Assume that whenever h,,h,e H
and h, = h,,h, = h,. Then the following statements are equivalent:

(i) There is a normal complement to H/J in G.

(ii) There is a normal complementto H/J in V.
Proof. (i) = (ii) Suppose that K is a normal complement to H/J in G:
thus K< G=HK and HNnK =J. Then VnK €V and, by Dedekind’s
rule (7.3), V=H({V nK). Moreover HN(VNnK)=HnK =J. Thus
V N K is a normal complement to H/J in V.

(i) = (i) Let h,,h,eH with h, = h,. Then, by hypothesis, h, = h,.

Hence, if there is a normal complement to H/J in V, then, by 1040
(applied to V in place of G), Jh‘;; Jh, ; and then, also by 10.40 (applied

to G), there is a normal complement to H/J in G.
We now use 10.42 to prove an important generalization of 10.36. First
we need a definition.

10.43 Definition. Let G be a finite group and P a Sylow p-subgroup
of G. Suppose that for every Sylow p-subgroup P* of G which contains
Z(P), Z(P*) = Z(P). Then G is said to be p-normal.

It is easy to see that the definition of p-normality depends only on
p and not on the choice of Sylow p-subgroup P of G (see 593(i) and (iii)).
Also it is obvious that G is p-normal in particular if P is abelian.

We shall use

10.44 Lemma. Let G be a p-normal finite group, and let P be a Sylow
p-subgroup of G. If x,,x,€P and x, =X then x, = X2, where W =
Ng(Z(P)).

Proof. Let xeP,geG and x?€P. Then

Z(P) < Cylx) N Cylx?) = Cg(x) N C(x)P
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(229). By Sylow’s theorem, there is a Sylow p-subgroup P, of Cgy(x)
containing Z(P); and then there is also a Sylow p-subgroup P* of G
containing P, . Since Z(PY¥ ™' < Cs(x),
Z(PF <Py
for some yeCg(x). Now
Z(P)< PN P*n(P*)~.

Hence, since G is p-normal and by 229,

Z(P) = Z(P*) = Z(P*)y".
Therefore
Y9eNZ(P*)) = NG(Z(P)) = W.

Thus yg=w
for some weW. Since yeCg4(x),
x? = x¥ =x",

and so x and x? are conjugate in W.
Now we can prove the main theorem about p-normal groups. It is
an improvement by P. Hall of a result of O. Griin. It generalizes 10.36.

10.45 Theorem (O. Griin [a45], P. Hall). Let G be a p-normal finite
group and P a Sylow p-subgroup of G. Then, for any subgroup V of G
which contains N ;(Z(P)), G/O"(G) = V [O*(V).

Proof. Let W = N4(Z(P)). If x,,x,eP and x, =X then, by 10.44,
Xy =X, and therefore, since W <V, x, =X Certainly O?(V) < O*(G)
(157). Since P < V, P is a Sylow p-subgroup of V and therefore PO?(V) =
V (252). Let J =P O?(V)< P. Then O?(V) is a normal complement to
P/J in V. Now, since P/J is nilpotent (7.44), we can apply 10.42 with

H =P and J and V as above. Hence there is a normal complement K
to P/J in G. Then K € G and G/K = P/J, a p-group. Hence

O*(G) < K.
Hence PNnO(G)SPNnK=J=PnO"(V)< PnO"G),
and so PnO?(G)=PnK.

Since OP(G) and K are normal subgroups of G, P~ 0?(G) and PN K are
Sylow p-subgroups of OP(G) and K respectively (252). Hence, since
K/O"(G) is a p-group,

K = 0%(G).

Therefore, since also O?(V) is a normal complement to P/J in V,
G/O"(G)=G/K=P/J=V/O"V).
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Now we shall use 10.42 to prove a fundamental theorem of Frobenius
giving necessary and sufficient conditions for a finite group to be
p-nilpotent. First we prove a lemma. Recall that whenever H <G,
Cs(H)SN4(H) (4.36).

10.46 Lemma. Let G be a finite group and P a Sylow p-subgroup of G.
Suppose that, for every subgroup Q of P,N4(Q)/Cs(Q) is a p-group. Then,
Jor any Sylow p-subgroup P* of G and any xe P N P*, there is an element
yeCg(x) such that P* = P’.

Proof. Let P* be a Sylow p-subgroup of G and Q = Pn P*, We argue
by induction on |P:Q|. If |[P:Q|=1 then P* =P and the assertion is
obvious. Now assume that |P : Q| > 1. Then Q < P and so, by 5.6, Q <
Ny(Q). By Sylow’s theorem, there is a Sylow p-subgroup Q, of N4(Q)
with Np(Q) < Q,, and there is a Sylow p-subgroup P, of G with Q, <P, .
Let xePnP* = Q. Then also xe PN P,. Moreover, since Q < N,(Q) <
PP, |P:PAP,|<|P:Q| Hence, by the induction hypothesis, there
is an element y, eCG(x) such that P, = P,

Also Q < P* and therefore (5. 6) Q < Np.(Q). Since N p+(Q) is a p-
subgroup of N(Q) there is, by Sylow’s theorem, an element we N4 (Q)
such that N,.(Q) < QY. By hypothesis, N;(Q)/C4(Q) is a p-group, and
therefore N4(Q) = Q,C4(Q) (252). Hence we may choose we C4(Q) S Cy(x),
since xeQ.

Now 0 < Np.(Q) < P*AP? = P* A P>,
Let u=(y,w)”'eCgx(x). Then
x =x"€Q" < Np.(Q) < Pn(P*)".
Hence |P:PA(P*‘|<|P:Q| and so, by the induction hypothesis,

there is an element y, e C4(x) such that (P*)* = P2, Then P* = P?'* and
v,y weCgq(x). This completes the induction argument.

10.47 Theorem (Frobenius [a32]). Let G be a finite group and P a Sylow
p-subgroup of G. Then G is p-nilpotent if and only if NG(Q)/CG(Q) is a
p-group for every subgroup Q of P.

Proof. Suppose that N4;(Q)/C4(Q) is a p-group for every Q < P. Then
we want to show that there is a normal complement to P in G. Let V =
Ng(P). Then P< Vand(|V/P|,|P|) = 1,so that, by the Schur—Zassenhaus
theorem (10.30), there is a complement W to P in V. Then (560)

W < OP(V) < C4(P),

since, by hypothesis, N4(P)/C4(P) is a p-group. Hence
P< Cg(W) < Ng(W),

and so WL PW=V.

Thus W is a normal complement to P in V.
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Now we apply 10.42 with J =1,H =P and V = N (P). Note that P
is nilpotent (7.44). It only remains to verify the fusion condition. Let
xeP,geG and x?e P. Then xe P~ P?"', and therefore, by 10.46,

Pl=pY
for some yeCgy(x). Then ygeV and
x? = x".

Hence x and x? are conjugate in V. Hence, by 10.42, there is a normal
complement to P in G.

Suppose, conversely, that G has a normal p-complement K and let
Q < P. Then

QSNgQ), KnNGHQEINQ)
and ONnKnNnNgQ)=0nK=1,
since p does not divide |K | Hence, by 3.53,

[, KnNgQ)]=1,
and so KN NgQ)< C4(Q) S Ny(Q).

Now, by 3.40, Ng(Q)/(KNNg(Q))=KN4Q)/K < G/K,
a p-group. Hence
0%(N4(Q)) S KnNgQ) < C(Q),

and so N4(Q)/C4(Q) is a p-group.

10.48. For p odd, there is a powerful and important improvement of
Frobenius’s theorem 10.47 due to J. G. Thompson: see Huppert [b21]
p. 438, theorem 4.6.2 or Schenkman [b35] p. 273, theorem 9.3.a. Further
refinements of Thompson’s result have been made. For instance, G.
Glauberman has proved that if P is a non-trivial Sylow p-subgroup of
the finite group G, with p odd, there is an explicitly defined non-trivial
abelian characteristic subgroup A of P such that if N (A4) is p-nilpotent
then G is p-nilpotent: see Gorenstein [b13] p. 280, theorem 8.3.1.

For a different approach to transfer theorems, based on delicate fusion
results discovered by J. L. Alperin, see Gorenstein [b13], chapters 7 and 8,
and the lectures of G. Glauberman presented in Powell and Higman
[b33] chapter 1.

591 (G. Zappa [a105] ; see also [a106]) Let H be a nilpotent Hall subgroup of the
finite group G. Then the following statements are equivalent :

(i) There is a normal complement to H in G.

(i) There is a right transversal T to H in G such that, for every he H,hT = Th.

592 The group Z, is not 2-normal.
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593 Let J < H < G. Then J is said to be weakly closed in H with respect to G if H
contains no conjugate of J in G other than J itself.

(i) Show that if J is weakly closed in H with respect to G, and geG, then J? is
weakly closed in H? with respect to G.

(i) Show that if J is weakly closed in H with respect to G, then J < N;(H). Show
by an example that the converse is not true in general.

(iii) Suppose that G is finite and that P is a Sylow p-subgroup of G. Prove that G
is p-normal if and only if Z(P) is weakly closed in P with respect to G.

(iv) Suppose that G is finite and that H is a Sylow p-subgroup of G. Prove that
J is weakly closed in H with respect to G if and only if J is pronormal in G. (See 268.
Hint. Use 7.14 and 334.)

594 Let P be a Sylow p-subgroup of the finite group G.

(a) If G is p-nilpotent then every normal subgroup of P is weakly closed in P with
respect to G (cf. 593(ii)).

(b) The following two statements are equivalent :

(i) G is p-nilpotent.

(ii) G is p-normal and N;(Z(P)) is p-nilpotent.

595 Let P be a Sylow p-subgroup of the finite group G. Suppose that 1 <P <G,
that N;(P) =P and that, whenever P,,P, are distinct Sylow p-subgroups of G,
P,n P, =1. Then G is p-nilpotent. Moreover, if K is the normal p-complement of
G then K = {1}U(G\|J P*).

eG
(Remarks. In the tern‘;inology of 248, the hypothesis is that G is a Frobenius group,
with P as a Frobenius complement in G. The result is a special case of the theorem
of Frobenius mentioned in 248. Hint. Show that if ge G and Z(P) < P? then P = P,
hence in particular that G is p-normal and N (Z(P)) = P.)

596 Let G be a p-normal finite group and P a Sylow p-subgroup of G. Then, for any
subgroup V of G which contains N4z(Z(P)), PnG'=PnV'. (Hint. Use 10.34 and
10.44.)

597 Suppose that the finite group G has a non-trivial Sylow p-subgroup P. Suppose
further that for every non-trivial abelian subgroup Q of P,N;(Q)=P. Then G is
p-nilpotent. (Hint. Use 595.)

598 Suppose that the finite group G has a non-trivial Sylow p-subgroup P. Then G
is p-nilpotent if and only if for every non-trivial subgroup Q of P, N;(Q) is p-nilpotent.

599 (N. It [a62].) Let G be a finite group in which every proper subgroup is
p-nilpotent. If G is not itself p-nilpotent then OF(G)= G,G has a normal Sylow
p-subgroup P, and G/P is a cyclic g-group for some prime g # p ; moreover, every
proper subgroup of G is nilpotent. (Hints. Argue by induction on |G|. Assume that
G is not p-nilpotent and deduce from 598 that there is a non-trivial subgroup Q of P
which is normal in G. By induction, reduce to the case Q = P. Then use 10.47 to
show that there is a subgroup P, of P and an element xe N (P, \Cg;(P,) such that
o(x) is a power of a prime q # p. Show that (x)P =G.)

600 (O. J. Schmidt [a84], K. Iwasawa [a64].) Let G be a finite group with every
proper subgroup nilpotent. Then either G is nilpotent, or there are primes p,q and
positive integers m, n such that |G| = p™q", G has a normal Sylow p-subgroup P
and G/P iscyclic. In any case G is soluble. (Hint. Apply 563 and 599. Remark. For
another proof of this result, due to W. Gaschiitz and avoiding the use of transfer,
see Huppert [b21] pp. 280-3, theorems 3.5.1, 3.5.2.)
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10.49. We end the chapter by mentioning what is perhaps the most
important of the several substantial classification theorems which have
been established during the past ten years: J. G. Thompson’s classification
of the insoluble N-groups ([a98]). An N-group is a finite group in which
the normalizer of every non-trivial soluble subgroup is soluble.
Thompson’s result gives the simple N-groups and, in particular, provides
a list of the so-called minimal simple groups, that is, the finite simple groups
all of whose proper subgroups are soluble. For further information about
classification of simple groups, see the references mentioned at the end
of 3.61.



11

FINITE NILPOTENT AND SOLUBLE
GROUPS

Throughout this chapter, G denotes a finite group. We begin by associating
to G a new characteristic subgroup ®(G), and then prove a result promised
in chapter 7 which relates the normal structure and the arithmetical
structure of a finite nilpotent group in a pleasing way.

11.1 Definitions. (i) Recall from 140 the definition of a maximal sub-
group. A proper subgroup M of G is said to be a maximal subgroup of G
if there is no subgroup L such that M < L <G.

(ii) If G +# 1 then (because G is finite) G certainly contains at least
one maximal subgroup. (Indeed, every proper subgroup of G lies in a
maximal subgroup of G: see 140(ii)). We define @(G) to be the intersection
of all the maximal subgroups of G. If G = 1 we define ®(G) = 1.

®(G) is called the Frattini subgroup of G (after G. Frattini, 1852—-1925,
who first investigated its properties).

Let .# denote the set of all maximal subgroups of G and let acAut G.
From 3.29, if Me./ then M%e.#. Moreover, since a is bijective,
{M®*:MeM} =M.t follows that ®(G) is a characteristic subgroup of G.

11.2 Lemma. Let K <t G. Then K is a maximal subgroup of G if and only
if G/K has prime order.

Proof. Since K <1 G,|G/K|> 1. Now, by 3.30, K is a maximal subgroup
of G if and only if G/K has no non-trivial proper subgroup; that is, (by 29)
if and only if | G/K | = p for some prime p.

11.3 Theorem. The following seven statements are equivalent:
(i) G is nilpotent.
(ii) Every subgroup of G is subnormal in G.
(i) Whenever H < G,H < N4(H).
(iv) Every maximal subgroup of G is normal in G.
v) G < &G).
(vi) Every Sylow subgroup of G is normal in G.

(vii) G is a direct product of groups of prime power orders.
Proof. We may assume that G # 1, since otherwise all the statements
are trivially true.

(i) = (ii) This is a special case of 7.59.
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(ii) = (iii) Let H < G. By (ii), there is a series from H to G. Hence there
is a proper series from H to G, say

H=H,<H <..<H,=0G.

Since H < G,n>0. Then H < H, < N4(H).

(iii) = (iv) Let M be a maximal subgroup of G. By (iii), M < No(M) < G.
Now the maximality of M implies that N;(M) = G. Thus M < G.

(iv) = (v) Let M be a maximal subgroup of G. By (iv), M < G. Then,
by 11.2, G/M is cyclic, of prime order. Therefore, by 3.52, G’ < M. This
is true for every maximal subgroup M of G and so, by definition of ®(G),
G’ < O(G).

(v) = (iv) Let M be a maximal subgroup of G. Then (v) implies that
G'< M. Hence M/G’ is a subgroup of the abelian group G/G’ and so
M/G’ <« G/G'. Hence, by 3.30, M < G.

(iv) = (vi) Let P be a Sylow p-subgroup of G. Suppose that Ng4(P) < G.
Then there is a maximal subgroup M of G which contains Ng(P). But
then, by 5.14, Ny(M) = M, in contradiction to (iv). Hence (iv) implies that
N4z(P)=G, thatis, P<G.

(vi) = (vii) Let the distinct prime divisors of |G] be p,,...,p,, where
s is a positive integer. By (vi), G has a normal Sylow p;subgroup P,
for each i=1,...,s. Then, by 8.6,

G=Dr []P,.

i=1

(vii) = (i) This follows by 7.44 and repeated application of 7.49(i).

*601 Suppose that A4 is an abelian normal subgroup of G such that G splits over A.
Let H be a complement to 4 in G. Then A is a minimal normal subgroup of G if
and only if H is a maximal subgroup of G (cf. 359).

602 Suppose that 4 is an abelian minimal normal subgroup of G. Then either
A < ®(G) or G splits over A (cf. 359).

603 (W. Gaschiitz [a35].) (i) Suppose that M is a maximal subgroup of G.
Then either M 2 Z(G) or M = G’. (Hint. Show that if M 2 Z(G) then M <« G.)
(i) G' " Z(G) < ®(G).

604 G has a maximal subgroup of order 2 if and only if |G| = 2p for some prime p.
(Hint. If G has a maximal subgroup of order 2 which is not normal in G, apply 6.11
and 6.13))

605 (i) A normal maximal subgroup of G is necessarily a maximal normal subgroup
of G (see 363).

(ii) If G is soluble then a maximal normal subgroup of G is necessarily a normal
maximal subgroup of G.

(iii) Show by an example that if G is insoluble then a maximal normal subgroup
of G need not be a maximal subgroup of G.

606 For every prime p,0,(G) is the unique Sylow p-subgroup of F(G), the Fitting
subgroup of G. (Hint. See 7.44 and 11.3.)
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607 If G is nilpotent then, for every set @ of primes,
G = 0,(G) x 0%(G).

608 Suppose that G has a maximal subgroup M such that M; =1 and |G ‘M|=4.
Then M € G and G is isomorphic to either 4, or Z,.

(Hints. Apply 4.14 and 289. Note that by 11.3,G cannot be a 2-group. Remark.
Both A4, and Z, have maximal subgroups of index 4 with trivial core : see 288 and
289)

609 Suppose that G is non-trivial and supersoluble (see 389). Show that if p is the
largest prime divisor of |G| then G has a normal Sylow p-subgroup. By induction on
the number of distinct prime divisors of |G|, deduce that if g is the smallest prime
divisor of |G| then G is g-nilpotent. (Hint. Apply 398(iii) and 603.)

610 (B. Huppert [a61].) If every proper subgroup of G is supersoluble then G is
soluble. (cf. 600. Hint. Use 609 and 599.)

611 Suppose that G acts transitively on the finite set X. For each subset Y of X and
each geG, let Yg = {yg : ye Y} < X (see 187) ; and for each xe X and each subgroup
H of G, let xH = {xh :heH} < X.

A subset Y of X is said to be a block (or set of imprimitivity) for the action if, for
each gegG, either Yg=Y or YgnY = Q. In particular, (), X and all 1-element
subsets of X are obviously blocks : these are called the trivial blocks.

The action is said to be primitive if the only blocks are the trivial blocks ; otherwise
the action is said to be imprimitive.

Prove the following statements.

(i) If Y is a block for the action then, for every ge G, Yg is also a block. Moreover,
if Y # @ then | Y| divides | X|.

Let xeX and let L = Stabg(x).

(ii) For any subgroup H of G containing L, xH is a block.

(iii) Any block containing x is of the form xH, where L< H<G.
(Hint. If Y is a block containing x, let H= {heG : Yh=Y}.)

(iv) Now suppose that | X'| > 1. Then the action is primitive if and only if L is a
maximal subgroup of G.

612 If G acts transitively on a set X such that | X |=p,a prime number, then the
action is primitive. (Hint. Apply 611(i).)

613 Suppose that G acts on the finite set X and let K < G. Let p be the permutation
representation of G corresponding to the action. If the action is primitive, then either
K < Ker p or the action of K on X (by restriction of the action of G) is transitive.
(See 611. Hint. Show that any K-orbit is a block for the action of G.)

614 Suppose that G acts on the finite set X, where | X | = 2. The action is said to be
2-transitive (or doubly transitive) if, whenever (x,x’) and (y, y') are ordered pairs of
distinct elements of X, there is an element geG such that xg =y and x'g=y'.

Prove the following statements.

(i) Let xeX and let L = Stabg(x). Then the action is 2-transitive if and only if
the action is transitive and, furthermore, the action of L on X\{x}, defined by
restriction of the action of G, is transitive.

(i) If the action is 2-transitive and if | X | =n, then |G| is divisible by n(n — 1).
(Hint. Use (i) and 4.11.)

(iii) If the action is 2-transitive then it is primitive (see 611).

615 Let n be an integer,n =2, and let X = {1,2,...,n}.
(i) The natural action of £, on X is 2-transitive, and if n 2 4, the natural action of
A, on X is 2-transitive (see 614).
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(i) X, has a maximal subgroup of index n, and if n 2 3, 4, has a maximal subgroup
of index n. (cf. 5.29, 292. Hint. Apply 611 and 614.)

616 Let H < G and let X be the set of right cosets of H in G. Then the action of G
on X by right multiplication is 2-transitive if and only if there is an element geG
such that G = Hu HgH (see 4.13,614). Moreover, if the action is 2-transitive then
|H| is divisible by |G :H|— 1.

We shall now establish a few properties of ®(G).

11.4 Lemma. Let K < G. Then K< ®(G) if and only if there is no proper
subgroup H of G such that HK = G.
Proof. Suppose first that K < ®(G). Let H < G. Then there is a maximal
subgroup M of G such that H < M < G. Since K < ®(G), K < M. Hence
HK < M < G. Thus there is no proper subgroup H of G such that HK = G.
Now suppose that K & ®(G). Then G # 1 and, by definition of ®(G),
there is a maximal subgroup M of G such that K < M. Then M < MK < G
(3.38). The maximality of M implies that MK = G. Thus in this case M
is a proper subgroup of G such that MK = G.
It is now easy to establish the fundamental property of ®(G) discovered
in 1885 by Frattini.

11.5 Theorem (Frattini [a29]). ®(G) is nilpotent.
Proof. Let P be any Sylow subgroup of ®(G). Since ®(G) € G, Frattini’s
lemma (5.13) shows that

G = N4(P)(G).

Hence, by 11.4, Ng(P) = G. Thus P < G, and so P < ®(G). Now it follows
from 11.3 that ®(G) is nilpotent.

In view of the definition of F(G), the Fitting subgroup of G (7.64),
the following corollary is immediate.

11.6 Corollary. ®(G) < F(G).

11.7 Lemma. Let H< G and K 9 G.

(i) If K < ®(H) then K < ®(G).

(ii) D(K) < O(G) (cf. 395).
Proof. (i)Suppose that K < ®(G). Then, by 11.4, there is a proper subgroup
J of G such that

JK =G.
Assume that K < ®(H). Then
K<H<G=JK,
so that, by Dedekind’s rule (7.3),



270 FINITE NILPOTENT AND SOLUBLE GROUPS

H=(HnJK.
By 11.4, the assumption that K < ®(H) implies that
HnJ=H.
Then K<H</J,
and therefore
G=JK=J<G,

a contradiction. Hence, if K % ®(G), it follows that K < ®(H).

(ii) Since ®(K) is characteristic in K and K <G, 3.15 shows that
®(K) € G. Application now of (i), with ®(K) in place of K and K in place
of H, gives the result.

Remark. It is not true in general that if H < G then ®(H) < ®(G): see
629.

11.8 Lemma. Let K <1 G. Then

(i) ®(G)K/K < O(G/K).

(i) IfK < ®(G) then ®(G)/K = ®(G/K).
Proof. 1t is clear from 3.30 that every maximal subgroup of G/K is of
the form M/K, where M is a maximal subgroup of G containing K.
Moreover, for every such M, M/K is a maximal subgroup of G/K. The
statements (i) and (ii) follow.
Remarks. (1) It is not true in general that if K <G then ®(G)K/K =
®(G/K): see 630.

(2) Note that, by (ii), G/®(G) always has trivial Frattini subgroup.

11.9 Lemma. Let G be a p-group. Then ®(G) = 1 if and only if G is element-
ary abelian.

Proof. We may assume that G # 1. Suppose first that G is elementary
abelian. Since G # 1,®(G) < G (by definition of ®(G)). Moreover, by
741, G is characteristically simple. Therefore, since ®(G) is a proper
characteristic subgroup of G, ®(G) = 1.

Now suppose, conversely, that ®(G) = 1. By 7.44, G is nilpotent. There-
fore, by 11.3, G’ < ®(G). Hence G’ = 1, so that G is abelian. Let M be a
maximal subgroup of G and let geG. Then M<G and so, by 11.2, G/M
has prime order. Since G is a p-group, | G/M | = p. Therefore (105) ge M.
This is true for every maximal subgroup M of G, and so

g°e®(G) = 1.
Hence gf=1

for every geG. Thus G is elementary abelian.

11.10 Corollary. Let G be a p-group. Then ®(G) is the unique smallest
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normal subgroup K of G such that G/K is elementary abelian. (In other
words, G/®(G) is the X-residual of G, when X is the class of elementary
abelian p-groups.)
Proof. Certainly G/®(G) is a p-group, and, by 11.8, G/®(G) has trivial
Frattini subgroup. Hence, by 11.9, G/®(G) is elementary abelian.

Suppose that K € G, with G/K elementary abelian. Then, by 11.8 and
11.9,

®(G)K/K < ®(G/K)= K/K.
Hence P(G)<K.

This completes the proof.
Remark. It follows that if G is a p-group then G/®(G) may be viewed
in a natural way as a finite-dimensional vector space over Z, : see 7.40.

617 Let xeG. Then x is said to be a non-generator of G if, whenever X is a set of
generators of G with xe X, X\{x} is also a set of generators of G.

Prove that ®(G) is the set of all non-generators of G. (Hint. To show that each
element of ®(G) is a non-generator of G, apply 11.4.)

618 Let K < G. A subgroup H of G is said to be a supplement to K in G if HK = G.
In particular, G itself is a supplement to K in G ; and any complement to K in G is
a supplement to K in G.

Let H be a minimal supplement to K in G ; that is, let H be a supplement to K in
G such that no proper subgroup of H is a supplement to K in G. Prove that then
HNK <®(H). (Hint. Apply 11.4))

619 (i) Suppose that G is nilpotent. If G/G’ 1s cyclic then G is cyclic. (Hint. Use 11.3

and 11.4. Remark. The condition that G is nilpotent is needed, as the group X, shows.)
(ii) Let G be a non-trivial p-group. If G has derived length n then |G| = p*"~*.

(Hint. Use (i) and induction on n. Remark. This bound can be improved substantially.

P. Hall [a48] proved that a non-trivial p-group of derived length n has order
> p?"”'+"~ 1 see Huppert [b21] p. 307, theorem 3.7.11.)

620 If G/®(G) is a w-group then G is a w-group. (Hint. Suppose the result does not
hold and apply the Schur—Zassenhaus theorem 10.30, and 11.4.)

621 (W. Gaschiitz [a35].) If K/®(G) is a nilpotent normal subgroup of G/®(G)
then K is nilpotent. Thus F(G/®(G)) = F(G)/®(G). In particular, if G/®(G) is nilpotent
then G is nilpotent. (cf. 11.6. Hint. Show that for any Sylow subgroup P of K,
P®(G)<G, and adapt the proof of 11.5.)

622 Let Xbe a class of groups with the following two properties :

(i) Every quotient group of every X-group is an X-group.

(ii) Whenever H/®(H)eX,HeX.
(For instance, ¥ may be the class of finite @-groups or the class of finite nilpotent
groups : see 620, 621.)

Let K < G and suppose that G/KeX. Prove that there is an X-subgroup of G
which is a supplement to K in G (see 618). Show by an example that there need not
be a complement to K in G.

623 Let G be a non-trivial soluble group. Then ®(G) < F(G).
(cf. 11.6. Hint. Apply 396(i) and 621.)



272 FINITE NILPOTENT AND SOLUBLE GROUPS

624 (i) F(G)/®(G) is abelian. (cf. 11.6. Hint. Apply 11.3 and 11.7.)
(ii) If G is soluble then C4;(F(G)/®(G)) = F(G); hence G/F(G) can be embedded
in Aut(F(G)/®(G)). (See 390. Hint. Apply 621, 7.67 and (i).)

625 (i) If F(G) is a p-group then F(G)/®(G) is elementary abelian. (Hint. Apply 11.7
and 11.10)

(ii) Suppose that G is soluble and that F(G) is a 2-generator p-group, where p is
either 2 or 3. Let w = {2,3}. Then G is a w-group. Moreover, if p = 2 then the Sylow
3-subgroups of G have order at most 3, and if p = 3 then the Sylow 2-subgroups of G
have order at most 2*. (Hint. Apply (i), 7.40, 47 and 624.)

626 (W. Gaschutz [a35].) (i) If 4 is an abelian normal subgroup of G such that
AN®(G)=1 then G splits over A. (Hint. Apply 618 and 11.7(i).)

(ii) Suppose that ®(G) = 1. If F(G)# 1 then every non-trivial normal subgroup
A of G contained in F(G) is a direct product of abelian minimal normal subgroups
of G and G splits over A. In particular, if G is a non-trivial soluble group such that
®(G) = 1 then F(G) = S(G), the socle of G (see 397), and G splits over F(G). (Hints.
Argue by induction on | A4|. Let B be a minimal normal subgroup of G contained in
A and apply 624 and (i).)

627 (W. Gaschiitz [a35]) ®(G)=1 if and only if G splits over S,(G), where
S,(G) is defined as in 412. (Hints. See 626. If ®(G) + 1, consider a minimal normal
subgroup H of G with H < ®(G). Show that H < S, (G), and apply 414. Then use
11.4 to show that G cannot split over S, (G).)

628 Suppose that H and K are normal subgroups of G such that G = H x K.

(i) For any maximal subgroup L of K, H x L is a maximal subgroup of G ; and
every maximal subgroup of G containing H is of the form H x L, where L is a
maximal subgroup of K. (Hint. Apply 402.)

(ii) If K # 1 then the intersection of all maximal subgroups of G containing H
is H x ®(K).

(iii) ®(G) = P(H) x ®(K). (Hint. Apply (ii) and 11.7.)

(iv) Suppose that M is a subgroup of G which contains neither H nor K. Then M
is a maximal subgroup of G if and only if M is a subdirect product of H and K and
H/H N M is simple (see 441 and 8.19). (Hint. If M is a subdirect product of H and
K, and if M < L < G. show by means of 8.19 and 439 that |L|=|HNL||K|)

(v) Suppose that either H or K is soluble. Then any maximal subgroup M of G
which contains neither H nor K is necessarily normal in G. Moreover, G has such a
maximal subgroup M if and only if (|H/H'|,|K/K'|)> 1. (Hints. Apply (iv), 7.55,
8.19 and 297.)

(vi) If H and K are isomorphic non-abelian simple groups then G has maximal
subgroups which are isomorphic to H (and are not normal in G). (Hint. Apply (iv)
and 438.)

629 Let G =Z,. Then |F(G)| =4, F(G) is the unique minimal normal subgroup of
G,and ®(G) = 1. If H is a Sylow 2-subgroup of G then ®(H) + 1. (cf. 11.7, 623, 624,
625, 626. Hint. See 289.)

630 LetK=C,,M = Aut Cp and G = Hol C,,, where p is any prime. Then
(i) M is a maximal subgroup of G, and M; = 1.
(ii) F(G)=K and ®(G)=1.
(iii) For p=5,®(G/K) is non-trivial (cf. 11.8).
(Hints. See 499,7.65,9.15(iii).)

631 Let M be a maximal subgroup of G. Suppose that M has a normal Sylow p-
subgroup P which is not normal in G. Then N;(P) = M and P is a Sylow p-subgroup
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of G. (Hint. Suppose that P is not a Sylow p-subgroup of G and apply Sylow’s theorem
and 5.6.)

632 Suppose that there is an insoluble finite group with an abelian maximal sub-
group and let G be such a group of least possible order. Let M be an abelian maximal
subgroup of G. Establish the following consequences.
(i) Mg =1. (Hint. If not, apply 7.47.)
(ii) G’ is the unique minimal normal subgroup of G.
(ili) M is a Hall subgroup of G. (Hint. Apply 631.)
(iv) G is p-nilpotent for every prime p dividing |M|. (Hint. Apply Burnside’s
theorem 10.21.)
(v) M is a complement to G’ in G.
(vi) Every complement to G’ in G is conjugate to M. (Hint. 10.31 is applicable.)
(vii) Every subgroup of G isomorphic to M is conjugate to M.

(viii) Let g be a prime divisor of |G| and let Q be a Sylow g-subgroup of G'. Then
N4(Q) has a subgroup M* isomorphic to M. (Hint. Apply Frattini’s lemma 5.13 and
the Schur—Zassenhaus theorem 10.30.)

(ix) M* is a maximal subgroup of G and Q< G.
(x) If follows that G is soluble, a contradiction.

We conclude that a finite group is soluble if it has an abelian maximal subgroup.
(See also 633, 634. Remarks. This result was proved in a more general version by
B. Huppert [a61], and independently by I. N. Herstein [a55]. An insoluble finite
group can have a nilpotent maximal subgroup : for instance, it is known that the
Sylow 2-subgroups of the simple group PSL,(Z, ;) are maximal subgroups. However,
J. G. Thompson [a96] has proved the important result that a finite group is soluble
if it has a nilpotent maximal subgroup of odd order: see Gorenstein [b13] p. 340,
theorem 10.3.2, or Huppert [b21] p. 445, theorem 4.7.4, or Schenkman [b35] p.277,
theorem 9.3.l2.)

633 Suppose that G has an abelian maximal subgroup (so that, by 632, G is soluble).
Then G has derived length at most 3. (Remark. We shall see in 634 that G can have
derived length 3.)

634 Let G=GL,(Z,), G, =SL,(Z;) and K = Z(G). Note that |G/G,|=2 and,
by 123,|K|=2and K <G,.

(i) Show that G,/K = A, and that G, has a normal Sylow 2-subgroup, J say.
(Hint. See 193, 288 and 289.)

(i) Show that J is non-abelian. Deduce that G| = J. (Hints. Note that, by Sylow’s
theorem, J contains every element of G, of order a power of 2. To prove that G| = J,
use 164 and 288.)

(ili) Deduce that G'=G,. Hence G, has derived length 3 and G has derived
length 4.

(iv) Show that G, has a cyclic subgroup M of order 6 and prove that M is a
maximal subgroup of G, . (cf. 633. Hint. If M were not maximal in G, then |G,/G/ |
would be even.)

(v) Show that G, has a unique involution. Deduce from 9.33 that J = Qg, the
quaternion group.

We shall prove next a fundamental result of Burnside on sets of genera-
tors of finite p-groups.

11.11 Definition. Let X be a set of generators of G (2.29). We say that
X is a minimal set of generators of G if, for every proper subset Y of X, {Y)
is a proper subgroup of G.
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It is clear from the definition that any set of generators of G contains
a minimal set of generators of G.

This notion of a minimal set of generators of a group is one possible
analogue of the concept of a base of a vector space. However, even for a
finite abelian group there can be minimal sets of generators containing
different numbers of elements. For instance, let G be a cyclic group of
order 6, say G={x). Then {x} is a minimal set of generators of G.
But also G ={x?,x®) and, because {(x?>> <G and {x*) <G, {x? x3}
is a minimal set of generators of G.

What we are going to prove is that if G is a p-group then any two
minimal sets of generators of G do contain the same number of elements.

11.12 Burnside’s basis theorem. Let G be a non-trivial p-group, G =
G/®(G) and |G| = p*. For each x€G, let X = x®(G)eG, and for each non-
empty subset X of G, let X ={x:xeX}<G. If X is a minimal set of
generators of G then X is a base of G (viewed in the natural way as a vector
space over Z,) and | X |=d. Conversely, if X is a subset of G such that
X|=d and Xis abase of G then X is a minimal set of generators of G.
Proof. Since G # 1,d > 0. By 11.10, G is elementary abelian and therefore
(as in 7.40) can be viewed as a vector space over Z,. Since |G| = p’, the
dimension of this vector space is d.

Let Q=X <G. If (X)=G then <X> G (108). Then, regarded as
a set of vectors of the vector space G, X certainly spans G. Suppose,
conversely, that X is a set of vectors spanning G. Then, by definition
of the vector space structure on G (see 7.40), X is a set of generators of
the elementary abelian group G. Let (X » = H < G. Then

G = (X ) = H®(G)/(G).
Hence G = H®(G).

Now it follows from 11.4 that H = G.

Thus X is a set of generators of G if and only if X is a spanning set
of vectors of the vector space G. Now suppose that X is a minimal set
of generators of G. Then there is no proper subset Y of X such that
Y spans G. Hence X is a minimal spanning set of vectors of G, that is, a
base of G. Since there is no proper subset Y of X such that Y = X, it
follows that

|X|=|X|=

Suppose, conversely, that | X|=d and X is a base of G. Then, since
X spans G, it follows from above that X is a set of generators of G. We
have shown that there is no set of generators of G with fewer than d
elements. Therefore, since | X | = d, X is a minimal set of generators of G.
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11.13 Corollary (P. Hall [a48], 1933). Let G be a p-group and G = G/®(G),
where, say, |G| = p’ and |®(G)| = p™.

(i) Let ¢ : Aut G — Aut G be the homomorph_ism defined by ¢ o> 4,
where, for each ac Aut G,xeG and x = x®(G)eG,

3 =% = x*®(G))

(see 136). Then Ker ¢ is a normal p-subgroup of G of order at most p*™,
and Aut G/Ker ¢ can be embedded in GL(Z,).

(i) |Aut G| divides p™(p* — 1)(p* — p)(0* — P?)...(p* — p*~1).
Proof. (i) Since ®(G) is a characteristic subgroup of G, it is straight-
forward to verify that, for each aeAut G, & is well defined and is an auto-

morphism of G, and that the map ¢ is a homomorphism (136).
Let X be a minimal set of generators of G. By 11.12, | X| = d: say

X ={x;,....,%;}.
Then X = {x,,...,%,} is a base of G. Also, by 11.12, for any choice of d
elements (not necessarily distinct) of ®(G), say u,,...,u,e®(G), the set
{xuy,.. x5}
is a minimal set of generators of G.
Now let . be the set of all ordered subsets of G of the form
(eythy s enny X g),
with u,,...,u;e®(G). Then clearly
|-#|=p"™.
Note thatif y,, ..., y,€G, then the ordered subset (y,, ..., y,) of G belongs
to ./ if and only if
Vi=x;
foreveryi=1,...,d. Let K =Ker ¢. IfaeK and (y,, ..., y,)e.# then
y—7 = )7? ==X
for every i=1,...,d, and therefore (5, ..., y%)e 4.
From this it is clear that K acts in a natural way on the set . If «
belongs to the stabilizer in K of an ordered set (y,, ..., y,)e.#, then
O Yd =050,
hence (since this is an equation between ordered sets)

Yi=

for every i=1,...,d. Then, since {y,,...,y,»> =G, it follows that a =1
(72). Hence, by 4.11, the length of each orbit of the action of K on .4
is equal to |K|. Hence |.#| is a multiple of |K|. Therefore, since |.#|=
p™, K isa p-group and | K | < p*™.
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By the fundamental theorem on homomorphisms, K< AutG and
(Aut G)/K can be embedded in Aut G. Since G is elementary abelian
of order p? (11.10), G is isomorphic to the additive group of a vector
space V' of dimension d over Z,, (7.40). Therefore, by 47, Aut G GL4Z,).

(i) This follows immediately from (i), together with 2.16 and 2.17.
Remark. W. Gaschiitz [a37] has proved the important result that if G
is a p-group with |G| > p then |Aut G/Inn G| is divisible by p: see Huppert
[b21] p. 403, theorem 3.19.1.

635 Let G be a non-trivial p-group and view G = G/®(G) as a vector space over z,
in the natural way. For any base B of G there is a minimal set of generators, X say,
of G such that X = B (where X is defined as in 11.12).

636 Let G be a 2-generator p-group.

(i) If g is any prime divisor of | Aut G| distinct from p then p? = 1 mod q.

(ii) If p> 2 then the largest prime divisor of |Aut G| does not exceed p, while
if p=2 then Aut G either is itself a 2-group or has order 2" x 3, where r is some
positive integer. (cf. 625. Note that, by 141, | Aut G| # 3.

637 If a 3-generator 3-group has an automorphism of prime order g +# 3 then q is
either 2 or 13. (Remark. C; x C; x C, is a 3-generator 3-group with automorphisms
of orders 2 and 13.)

638 Let P be a Sylow p-subgroup of G, and let d be a positive integer such that every
subgroup of G is a d-generator group. If the integers | G| and

@’ — D@E*" ' —1)...(p* = 1)(p — 1) are co-prime then G is p-nilpotent. (Hint. Apply
4.36, 10.47 and 11.13. Remark. This is an improved version of a result of Frobenius

[a32].)

639 Let P be a Sylow p-subgroup of G, where p is the smallest prime divisor of
|G|. Prove that if P is metacyclic (152) then G is p-nilpotent, unless p=2 and |G|
is divisible by 3. Show by an example that if p=2 and |G| is divisible by 3 then G
need not be p-nilpotent. (cf. 10.24. Hint. Use 108, 152 and 638.)

640 Suppose that G is a simple group of even order greater than 2. Then |G| is
divisible by 12, 16, or 56. (cf. 10.22, 10.23. Hint. Use 638.)

641 (i) Prove that every group of order 32 x 5 x 17 is abelian and that every group
of order 33 x 5 x 17 is nilpotent. (cf. 278, 367. Hint. Use 563 and 638.)

(ii) Show that there is a group of order 3* x 5 x 17 which is not nilpotent. (Hint.
Use 486 to show that there is a group of order 3* x 5 which is not nilpotent.)

We shall now prove an important result partially known to Galois.
Other versions of parts of the result are due to O. Ore [a76] and R. Baer

[a6].

11.14 Theorem. Suppose that 0,(G)# 1. Let L=0,G) and |L|=p".
Suppose also that G has a maximal subgroup M such that M= 1. Then
(i) L iselementary abelian,
(ii) M is a complement to L in G, in particular, |G : M| = p",
(iii) L is minimal normal in G, and
(iv) C4(L)=L; hence L is the unique minimal normal subgroup of G.
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Suppose further that there is a prime q such that O (M) # 1. Then, for
any such g,

(v) p"=1mod q; in particular, q # p, and

(vi) every complement to L in G is conjugate to M.

Remark. If G is a non-trivial soluble group with a maximal subgroup
M such that M = 1 then, by 381, there is a prime p such that 0,(G) # 1
and so statements (i) to (iv) hold. In particular, there is only one prime
p such that O,(G) # 1. Furthermore, unless |G|=p, M # 1. Then, since
M is soluble (7.46), there is a prime g such that O (M) # 1 and then state-
ments (v) and (vi) also hold. There may be several such primes q: see 630.
Proof of the theorem. (i) Since M is a maximal subgroup of G, ®(G) < M,
and since ®(G) € G, it follows that &(G) < M; = 1. Thus ®(G) = 1. Then,
because L < G, 11.7 shows that ®(L)= 1. As L is a p-group, it follows
from 11.9 that L is elementary abelian.

(i) Since 1#L<G and M =1, L¥ M. Therefore M < ML<G
(3.38), and so the maximality of M implies that ML = G. Since L <G,
MAL<M and since, by (i), L is abelian, MNL< L. Hence MNL <
ML =G,sothat MNL< M;=1.Thus ML =G and M nL = 1; that is,
M is a complement to L in G. In particular, |G : M|=|L|=p".

(iii) Let 1 <K< G with K< L. Then M < MK <G. Since M; =1,
K ¥ M and so MK # M. Therefore, by the maximality of M, MK = G.
Moreover, MN K< MnL =1, by (ii). Hence M is a complement to K
in G, and so |K|=|G :M|=|L]|, by (ii). Since K <L, it follows that
K = L. Thus 7 is minimal normal in G.

(iv) By (i) and (ii),

L<CygL)y<G=ML.
Therefore, by Dedekind’s rule (7.3),
Co(L) = (M A Ce(L))L.

By 4.36, C4(L) € G. Therefore M N C4(L) < M. Moreover L centralizes
and therefore normalizes M N C4(L).

Hence MnNCyL)ySML=G.
Since M = 1, it follows that M N Cg(L) = 1.
Thus CqL)=L.

Suppose that G has a minimal normal subgroup N # L. Then LAnN <G
and, by (iii), N < L, so that Ln N< N. Since N is minimal normal in G,
it follows that L " N = 1. Then, by 3.53,

[L,N]=1.

Hence N < Cg4(L) = L. This is a contradiction. Therefore L is the unique
minimal normal subgroup of G.
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Now suppose that O (M) # 1 for some prime g. Let @ = O (M).
(v) Since Q <M and LG,

OL< ML =G,
by 7.4 and (ii). Also, by (ii), Q n L = 1 and so, by 3.40,
|oL|=|Q]|L].

Therefore, since Q # 1 and L = 0,(G), it follows that g # p. Thus Q is
a Sylow g-subgroup of QL.

Now 1 <Q <M and, since M; = 1,Q € G. Therefore, the maximality
of M implies that

No(@) =M.
No (@) =(@QL)nM=Q(LnM)=0Q,
by Dedekind’s rule (7.3) and (ii). Thus
by Sylow’s theorem; that is,

Hence

P"=1mod q.

(vi) Let M* be any complement to L in G, and let Q* = O (M*).
The natural homomorphism v of G onto G/L maps Q to QL/L and
Q* to Q*L/L. Since, by (ii), M is a complement to L in G, the restriction
of v to M is an isomorphism of M onto G/L. Therefore, v must map
Q = 0,M) to O,(G/L). Similarly, v must map Q* to O(G/L). Thus

QL/L=0/G/L)=Q*L/L,
so that '
QL =Q*L.

Since, by (v), ¢ # p, it follows that Q and Q* are Sylow g-subgroups
of QL. Therefore, by Sylow’s theorem,

Q* =0

for some xeQL. As in (v),

M = NgQ).
Since Q* < M*, it follows that

M* < Ng(Q*) = Ng(Q7) = M7, !
by 229. Because M and M* are complements to L in G,
|M*|=|G/L|=|M|=|M*|.

Hence M* = M~*,



FINITE NILPOTENT AND SOLUBLE GROUPS 279

11.15 Corollary (Galois). Suppose that G is non-trivial and soluble, and
let M be a maximal subgroup of G. Then |G : M|=p" for some prime
p and positive integer n.

Proof. Let G =G/M; and M =M/M,. Then, by 3.30, M is a maximal
subgroup of G such that M = 1. Since G is soluble (7.46) and non-trivial,
there is a prime p such that 0,(G) # 1 (381). Let |0,(G)| = p". Then, by
11.14,

|G : M|=p".
Hence |G :M|=p".

Remarks. It can be shown that in the group GL,(Z,), which has order
168, every maximal subgroup has index either 7 or 8. We know (see 385)
that GL,(Z,) is simple. It is in fact the only known non-abelian simple
group in which every maximal subgroup has prime power index.

642 Suppose that G has a non-trivial abelian normal subgroup. Then the following
two statements are equivalent :

(i) G has a maximal subgroup M such that M; = 1.

(ii) ®(G) =1 and G has a unique minimal normal subgroup.

643 Suppose that G has an abelian minimal normal subgroup L such that O (G/L)
is non-trivial for some prime g. Then the following two statements are equivalent :
(i) G has a maximal subgroup M such that M; = 1.
(i) Ce(L) = L.
(Hint. To prove that (ii) = (i), apply 7.65, 621 and 642.)

644 Suppose that 0,(G) # 1, and that G has a maximal subgroup M such that
Mg = 1. Then
() 0,(G)=F(G),
(ii) O,(G) is the unique maximal abelian normal subgroup of G, and
(iii) O,(G) is a maximal abelian subgroup of G.

(See 235, 251, 400. Sce also 645.)

645 Let G =GL,(Z;) and K = Z(G). Show that
(i) K is the unique maximal abelian normal subgroup of G,
(i) K < F(G),and
(iii) K is not a maximal abelian subgroup of G.
(cf. 644. Hint. Apply 193, 289 and 634.)

*646 Suppose that G is non-trivial and supersoluble (see 389). Then every maximal
subgroup of G has prime index in G. (Remark. B. Huppert [a61] proved conversely
that a non-trivial finite group in which every maximal subgroup has prime index
is necessarily supersoluble. See 11.16 and the following remarks.)

647 (Ore [a76]). Suppose that G is a non-trivial soluble group, and let M and M*
be maximal subgroups of G. Then M and M* are conjugate subgroups of G if and
only if Mg = M§.

648 Suppose that G is a non-trivial soluble group. Then any two faithful primitive
actions of G on sets are equivalent. (See 611, 4.19. Hint. Apply 611, 647, 4.20, 4.21.)
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*649 Suppose that the group H acts on the abelian group 4, say with action ¢.
Let A =Im ¢ < Aut A4 (see 9.3). We say that ¢ is irreducible if the only H-invariant
subgroups of 4 are 1 and A.

Suppose that A # 1 and let J = H, x A. Then ¢ is irreducible if and only if 4 is
a minimal normal subgroup of J. In particular, if ¢ is irreducible and A4 is finite then
A is an elementary abelian p-group for some p.

650 (i) Let F be any field. Then the action of F* on F* by multiplication (as in
9.2(i)) is irreducible (649).

(ii) For any prime p and any posmve integer n, there is a ﬁmte soluble group G .
with a maximal subgroup of index p" in G. (cf. 11.15. Hints. Apply 601 and 649.
The existence of a field with p” elements may be assumed. For the proof of existence
of such a field, see, for instance, Herstein [b19] p. 316, lemma 7.4, or Lang [b28]
p. 182, §5, or Rotman [b34] p. 155, theorem 8.6.)

651 The following three statements are equivalent :
(i) 0,(G) # 1 and G has a maximal subgroup M such that M, = 1.

(ii) o (G) =;é 1 and there is a faithful primitive action of G on some set (see 611).

(iii) There is a non-trivial elementary abelian p-group 4 and a subgroup H of
Aut A4 such that the natural action of H on A is irreducible and G is isomorphic to
the relative holomorph HA of A (see 649). )
(Hints. To prove that (i)<=>(ii), apply 611. To prove that (i) = (iii), apply 9.13, 9.14,
11.14 and 649. To prove that (iii) = (i), apply 486, 499, 601, 649.) )

652 The following two statements are equivalent : .

(i) G has a non-trivial abelian normal subgroup L, and G has a subgroup M such
that |G : M|=pand Mg=1.

(ii) G is isomorphic to a relative holomorph of a group of order p.
(Hints. To prove that (i) =>(ii), apply 9.13, 9.14 and 11.14. To prove that (ii) = (i),
apply 486 and 499. Remark. If G satlsﬁes (i) and (ii) then in particular, G is meta-
cyclic: see 152 and 512.)

653 Let the group H act on the group K, say with action ¢. Let H = Im ¢ < Aut K.
(i) If J < H, then C(J) is an H-invariant subgroup of K (see 478).
(ii) Suppose that H is finite, K is finite and elementary abelian, say of order p",
and ¢ is irreducible (649). Then, for each prime g, either O, (H) < Ker ¢ or
p"=1modg.

654 (i) Let A be a non-trivial abelian normal subgroup of G. Then the action of G
on A by conjugation is irreducible if and only if 4 is a minimal normal subgroup of
G (see 9.2(iii), 649).

(ii) Suppose that A is an abelian minimal normal subgroup of G. Then |A|=p"
for some prlme p and positive integer n and, for each prime g, either 0,(G/Cs(A4))
is trivial or p" = 1 mod q. In particular, 0,(G/Cg(A)) is trivial. (Hints. Note that the
action of G on 4 by conjugation determmes a faithful action of G/CG(A) on A:
see 476. Apply 653.)

655 Let V be a vector space of finite dimension n over a field F, with n > 0.

(i) The natural action of GL(V) on V™ is irreducible. Moreover, #/(V), the affine
group of V, has a unique minimal normal subgroup 4, and A'= V'* (see 484, 486,
649).

(ii) Suppose that F =Z, for some prime p: then V" is elementary abelian of
order p" and GL(V) is finite. Let 1 < H < GL( V) and suppose that the natural action
of H on V* isirreducible. If H is soluble then p" = 1 mod g for sonte prime divisor g
of [H|, while if H is nilpotent then p" = 1mod q for every prime divisor g of |H |.

(iti) If F = Z,, then there is a cyclic subgroup H of GL(V) such that |[H|=p" — 1
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and the natural action of H on V™ is irreducible.
(Hints. For (ii), apply 653. For (iii), note that V* is isomorphic to the additive group
of a field with p” elements and apply 475, 9.14, 9.15(ii) and 650(i).)

656 Suppose that G has a maximal subgroup M such that |G : M|=6. Then G
has a chief factor isomorphic to either A or A¢. This can be proved by the following
argument :

(i) Note first that in order to establish the result, it will suffice to assume that
Mg =1 and deduce that G has a minimal normal subgroup isomorphic to either
A, or Ag. Suppose then that M = 1, and let K be a minimal normal subgroup of G.

(ii) Use 11.14 to show that K is non-abelian. :

(iii) Note that, by 4.14, |G| divides 2* x 3> x 5. Then use 8.10, together with
5.17 and 5.19, to show that K is simple.

(iv) By 184, K can be embedded in A4. Hence, if K # Ay, | K| < 180.

(v) Finally, apply 5.30 and 296.

(Remark. Both A4 and 44 have maximal subgroups of index 6: see 5.25, 615.)

657 (a) A group of odd order cannot have a maximal subgroup of index 9. This can
be proved by the following argument:

(i) Suppose the result false and let G be a group of least possible odd order with
a maximal subgroup M such that |G : M| =9. Then Mg = 1.

(i) Let K be a minimal normal subgroup of G. Apply 4.36, 11.2, 11.14 and 636
to show that K is non-abelian. )

(iii) Note that, by 4.14, |G| divides 3* x 5 x 7. Then use 8.10 to show that K is
simple.

(iv) Note that |K| is divisible by 9. Use Sylow’s theorem to show that the number
of distinct Sylow 3-subgroups of K is 7, hence that K has a subgroup of index 7.

(v) Deduce, by means of 4.14, that | K| divides 32 x 5 x 7.

(vi) Derive®a final contradiction by applying 5.19 and 570.
(Remark. By the Feit-Thompson theorem, every group of odd order is soluble:
see 383. Then 11.14 is immediately applicable to give the result. However, it is
unnecessary to invoke the Feit—Thompson theorem as the argument outlined above
shows.)

(b) For any prime p such that p= — 1 (mod 3), there is a group of order 3p? with
a maximal subgroup of order 3 and index p?. (cf. 604. Hints. Let 4 be an elementary
abelian group of order p?. Note that, by 601, it is enough to show that there is a
Telative holomorph G of A of order 3p? such that A4 is a minimal normal subgroup
of G. See also 228. If G is a relative holomorph of 4 of order 3p?, use 4.36 and 4.38 to
show that if 4 is not minimal normal in G then there is a subgroup B of A such that
|B|=pand B< Z(G).)

We shall now prove an interesting partial converse to 11.15. We follow
the proof given in Huppert [b21] p. 718, theorem 6.9.4.

11.16 Theorem (P. Hall). Suppose that for every maximal subgroup M
of G,|G : M| is either a prime or the square of a prime. Then G is soluble.
Proof. We argue by induction on |G|. We may suppose G # 1. Let K
‘be a minimal normal subgroup of G. Any maximal subgroup of G/K is
of the form M/K, where M is a maximal subgroup of G. Hence every
maximal subgroup of G/K has index either a prime or the square of a
prime. Therefore, by the induction hypothesis, G/K is soluble.

Let p be the largest prime divisor of | K | and let P be a Sylow p-subgroup
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of K. If Ng(P) =G then, since K is minimal normal in G,K = P. In this
case K is soluble (7.44).

Now suppose that N;(P) < G. Then there is a maximal subgroup M of
G such that N;(P) < M. By Frattini’s lemma (5.13),

G =Ng4(P)K.

Also MNK <M and, since PSMNK<K,P is a Sylow p-subgroup
of M n K and (again by 5.13)

M = N, (P)(M nK).
Now it follows, by 3.40 and Sylow’s theorem, that

|G : N(P)| = |K : Ny(P)| = 1 mod p 6)
and
|[M :Ny(P)|=|MnK :Ny (P)|=1mod p. (i)
Since Ng(P)<S M <G = N4(P)K,
G=MK,
and therefore
|G:M|=|K:MnK]|. (iii)
Moreover,
Ny(P) = MANG(P) = Ng(P)
and |G : Ng(P)|=|G : M||M : N4(P)|.
Therefore we deduce from (i) and (ii) that

|G : M| =1mod p. (iv)

By hypothesis, there is a prime g such that

|G : M| is either g or ¢°. v)
Certainly q # p and, by (iii), ¢ divides |K|. Therefore, by choice of p, it
follows that

q<p.

Together with (iv) and (v), this implies that

|G :M|=q*=1mod p.
This last congruence is possible with g < p only if p=3 and g =2.
Thus |G :M|=4.

Now (iii) shows that K has a subgroup of index 4. Therefore, by 4.14, K
has a proper normal subgroup L such that K/L can be embedded in £,
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which is soluble (364). Then K/L is soluble (7.46), and so K/L has a non-
trivial abelian quotient group (374). Hence, by 3.30, K has a non-trivial
abelian quotient group, so that

K' <K.

Since K’ is characteristic in K (3.51), 3.15 shows that
K'<G.

Because K is minimal normal in G, it follows that
K =1.

Thus K is abelian.

Now in any case both K and G/K are soluble. Therefore, by 7.47, G is
soluble. This completes the induction argument.
Remarks. This result shows in particular that if every maximal subgroup
of G has prime index in G then G is soluble. B. Huppert [a61] proved
even more, that G is supersoluble (389) ; this is the converse of the result of
646. The proof requires rather more information about irreducible group
actions (649) than is included in this book : see Huppert [b21] p. 718,
theorem 6.9.5, or Schenkman [b35] p. 236, theorem 7.7.c, or Scott [b36]
p. 226, 9.3.8.

We shall now prove some fundamental theorems of P. Hall on the
arithmetical structure of finite soluble groups.

11.17 Definition. For any set w of prime numbers, we denote by @’ the set
of all primes which do not belong to w.

Let H<G. Then H is said to be a Hall w-subgroup of G if |H| is a
w-number and |G : H| is a @’ -number (see 3.41).

Note that a Hall w-subgroup of G is a Hall subgroup of G in the sense
of 10.17. A Hall p-subgroup of G is exactly the same thing as a Sylow
p-subgroup of G ; and a Hall p’-subgroup of G is exactly the same thing
as a p-complement of G (see 10.19).

Note also that if G has a Hall w-subgroup H then | H| is determined by
|G| : namely, | H| must be the largest w-number which divides |G|.

*658 Suppose that H is a Hall w-subgroup of G.
(i) If J < G with |J| = |H|, then J is a Hall w-subgroup of G.
(ii) For every element geG, H? is a Hall w-subgroup of G.
(i) If H < L < G, then H is a Hall w-subgroup of L.

*659 Let H< G and K <G.

(i) If H is a w-subgroup of G then HK/K is a w-subgroup of G/K.

(i) If H is a Hall w-subgroup of G then HN K is a Hall w-subgroup of K and
HK/K is a Hall w-subgroup of G/K.

660 Suppose that H is a Hall w-subgroup of G. Then O,(G)< H < 0®(G) and
HO®(G)=G.
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661 G is nilpotent if and only if every Hall subgroup of G is normal in G (cf. 11.3).

Sylow’s theorem guarantees the existence of Sylow p-subgroups for
every prime p in every finite group G. The following theorem of Hall,
established in 1928, guarantees the existence of Hall w-subgroups for
every set @ of primes in every finite soluble group G. It also establishes
an analogue of the statement in 5.9(b).

11.18 Theorem (P. Hall [a47]). Suppose that G is soluble and let w
be any set of primes. Then

(i) G has a Hall w-subgroup.

(ii) If H is a Hall w-subgroup of G and V is any w-subgroup of G then

V < H? for some geG. In particular, the Hall w-subgroups of G form a
single conjugacy class of subgroups of G.
Proof. We prove (i) and the first statement of (ii) together, by induction
on |G|. Then the second statement of (i) obviously follows, since all Hall
w-subgroups of G have the same order and any subgroup of this order
is a Hall w-subgroup of G (see 658).

The theorem is clear if | G| = 1. Suppose that | G| > 1. Since all subgroups
and all quotient groups of G are soluble (7.46), the induction hypothesis
implies that the theorem is true for every proper subgroup of G and for
every quotient of G by a non-trivial normal subgroup.

Let R = 0,(G) and suppose first that R # 1. Then, by the induction
hypothesis, G/R has a Hall w-subgroup H/R, where H < G. Then |H|=
|H/R|.|R|, which is a w-number, and |G : H|=|G/R : H/R|, which is a
@’ -number. Thus H is a Hall w-subgroup of G. Now let V be any m-
subgroup of G. Then VR/R is a w-subgroup of G/R (659) and so, by the
induction hypothesis,

VR/R < (H/R)RI = Hg/R

for some geG (230). Then V < VR < H’ This completes the argument
in this case.

Now suppose that R = 1. Let K = O,, (G) and let L be a minimal normal
subgroup of G. By 7.56, L is an elementary abelian p-group for some prime
p, and since R = 1, p¢w. Hence

L<K.

If K = G then G is a w’-group and the theorem is clearly true : in this case 1
is the unique w-subgroup of G. Therefore we may suppose also that

K <G.

Then there is a chief factor of G of the form J/K, and, by 7.56, J/K is an
elementary abelian g-group for some prime q. If gew’ then, since |J| =
| J/K|.|K|,J would be a normal w-subgroup of G with K < J; contrary to
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the definition of K. Hence gew. Let Q be a Sylow g-subgroup of J. Then,
since J/K is a g-group, J = QK (252). Since Q +# 1 and R=1,N;(Q) < G.
Hence, by the induction hypothesis, N;(Q) has a Hall w-subgroup H.
Now

|G+ H|= |G :No(Q)||No(Q) : H.
By Frattini’s lemma (5.13),
G=Ng(Q)J =Ng(Q)2K =Ng(Q)K.
Therefore, by 3.40,
|G : Ne(@)| =|K : Ng(@)n K],

which is a @' -number. Since | N;(Q) : H | is also a @’ -number, by definition
of H,|G : H|is a w'-number. Thus H is a Hall w-subgroup of G.

Let V be any w-subgroup of G. Then VL/L is a w-subgroup of G/L and
HL/L is a Hall w-subgroup of G/L (659). Hence, by the induction hypo-
thesis,

VL/L<(HL/L)** = H*L/L

for some xeG (230). Then V< VL < H’L<G. Now H* is a Hall w-
subgroup of H*L(658). Therefore if H*L < G it follows, by the induction
hypothesis, that

V< (H*Y = H®

for some ye H*L. This completes the argument in this case.
Now suppose that H*L = G. Then also

HL = (H*Ly* ' =G.

Since H is a w-subgroup of G and p¢w, H n L = 1. Thus H is a complement
to L in G. Hence, by 601, H is a maximal subgroup of G. Moreover, since
H is a normal w-subgroup of G, H; = 1. Clearly L= 0,(G). Let

W=VL.
Then LSW<G=HL,
so that, by Dedekind’s rule (7.3),
W=(WnH)L.
Now W n H is a w-subgroup of W. Also (W n H)n L = 1 and so, by 3.40,
|W:WnH|=|L|,

a @' -number. Thus W H is a Hall @w-subgroup of W. Since also V is
clearly a Hall w-subgroup of W, it follows, by the induction hypothesis,
that if W < G then
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V=WnH)"
for some we W. Then V<H".

Finally, if W = G then V is a complement to L in G and therefore, since
H is soluble and H + 1,11.14(vi) shows that

V =H? forsome geG.

This completes the induction argument.
Remark. The last part of the proof can be shortened slightly by applying
10.29.

11.19 Definition. Let G be a non-trivial group: suppose that |G|=
pripy?...pes, where s,m,,...,m, are positive integers and p,,...,p,
distinct primes. Let S={1,2,...,s}. Then the possible orders of non-
trivial Hall subgroups of G are the 2° — 1 distinct numbers [ | P}, where

T ranges over the 2° — 1 distinct non-empty subsets of S.

Now suppose that G is soluble. Then Hall’s theorem 11.18 guarantees
the existence in G of Hall subgroups of all possible orders. In particular,
for each i€S, G has a subgroup H; of order [ p}¥ and index p}*; that
) Jes\{i) :
is, a p;-complement (10.19).

Anyset ¥ ={H,,H,,...,H,} of s subgroups of G, with H; a p;-comple-
ment of G foreachi=1,...,s, will be called a complement system of G.

662 Let G be a non-trivial soluble group. Then, for every prime divisor p of |G|, G
has a maximal subgroup M such that |G : M| is a power of p (cf. 11.15; see also 677).

663 Suppose that G is a non-trivial group such that for every maximal subgroup M
of G,|G : M| < 5. Prove that G is a soluble w-group, where w = {2,3,5} and that G
has a normal Sylow 5-subgroup (possibly trivial). (Hints. Apply 11.16. To prove that
G has a normal Sylow 5-subgroup, see (i), (ii), and (iv) in the proof of 11.16.)

664 Suppose that G is soluble and that |G| has s distinct prime divisors, where
52 2. Show that for some prime divisor p of |G|,
|G| <[H["",
where H is a p-complement of G (cf. 503).
665 Suppose that G is soluble and that |G| has s distinct prime divisors. Suppose
also that for every prime divisor p of | G|, the p-complements of G are nilpotent.
(i) Prove that if s = 3 then G is nilpotent. (See also 672. Hint. Prove that every

Sylow subgroup of G is normal in G.)
(ii) Show by an example that if s = 2 then G need not be nilpotent.

Hall proved a remarkable converse to 11.18, namely that if G has a
complement system then G is necessarily soluble. We shall prove this
result in 11.26. First we establish a few properties of complement systems.

We show that any complement system of G determines in a very simple
way proper Hall subgroups of all possible orders.
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11.20 Theorem. Let G be a non-trivial soluble group, with
|G| = pT'p3>... p™, where s,m,,...,m are positive integers and p,,...,p,
distinct primes. Let S = {1,2, ..., s}, and for each i€, let H, be a p;-comple-
ment of G. For each non-empty subset T of S, let
H,= ﬂ H;.
JjeT
Then, for each non-empty proper subset T of S, Hgy is a Hall subgroup of
G of order [ p}/ and Hg=1.
jeT

Proof. An equivalent statement is that for each non-empty subset U of
S,Hy is a Hall subgroup of G of index [ pj”. This is established by a

JjeUu
straightforward argument, using induction on |U| and the result of 100.

11.21 Definition. Let G be a non-trivial soluble group and let p,,...,p,
be the distinct prime divisors of |G|. For each i=1,...,s, let H, be a
p;-complement of G, and let &¥ = {H,, ..., H.}, a complement system of G.
For each geG let
9= {HY,...,H?}.

Since |H?| = |H,| for each i=1,...,s5, %7 is also a complement system of
G. Now it is clear that G acts by conjugation on the set of all complement
systems of G. The stabilizer in G of & for this action is the subgroup

{geG : 9=} ={geG :H!=H,foreachi=1,...,s)
=OING(H,.).

We denote this subgroup by N;(¥); it is called a system normalizer of
G.

Now let #* = {H¥,...,H¥} be another complement system of G,
with H¥ a p,-complement of G for each i =1,...,s. By 11.18(ii), there are
elements g,,...,9,€G such that H¥ = H? for each i=1,...,s. We shall
now show that we can choose g, =g, =... =g,.

11.22 Theorem (P. Hall [a50]). Let & and &* be complement systems
of the non-trivial soluble group G. Then * = & for some geG.

Proof. Let p,,...,p, be the distinct prime divisors of |G| and let & =
{H,,...,H,}, where H; is a p,-complement of G. Since, by 11.18(ii),
the p,-complements of G form a single conjugacy class of subgroups of
G, 4.33 shows that for each i =1,..., s, the number of distinct p,;-comple-
ments of G is equal to |G : Ng(H,)|. Hence the number of distinct comple-
ment systems of G is equal to

]__[1|G : Ng(H,)|= n, say.
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For the action of G by conjugation on the set of all complement systems
of G, it follows from 4.11 that the length of the orbit of & is

' |G:NG($")|=|G:C)1NG(Hi)|.

Since H; < N;(H,;) < G,|G : Ng(H,)| is a power of p, for each i=1,...,s.
Hence

(|G:NgH)|,|G :NG(HJ.)I) =1
whenever i # j. Hence, by repeated application of 100,

|G :Nc(y)l'—-_ljllG :Ng(H)|=n.

Thus the orbit of & must include every complement system of G (that is,
the action is transitive). Hence ¥* = & for some geG.

Remark. Let G be a non-trivial soluble group, let p, ,...,p, be the distinct
prime divisors of G,and, for each i =1,...,s, let P, and P} be Sylow p,-
subgroups of G. It is not in general true that there is an element geG such
that P¥ = P? for each i=1,...,s: see 671.

11.23 Corollary. Let G be a non-trivial soluble group. Then the system
normalizers of G form a single conjugacy class of nilpotent subgroups of G.
Proof. Let ¥ ={H,,...,H} be a complement system of G. The corres-
ponding system normalizer of G is the subgroup

L=Ny¥)= .(jl Ng(H,).

For any element geG,

= () No(H)Y = () No(H) = No(#"),
the system normalizer corresponding to the complement system 7.
This remark, together with 11.22, shows that the system normalizers
of G form a single conjugacy class of subgroups of G.

Suppose that for each i=1,...,s, H; is a p;,-complement of G. If s=1
then G is a p, -group,H, =1 and L = N;(H,) = G, which in this case is
nilpotent. Suppose now that s > 1 and, for eachi=1,...,s, let

P; Qi H;.
By 11.20, P; is a Sylow p,-subgroup of G. Moreover, L = N4(¥) S Ng(P;)
for each i. Since P,< N;(P,),LNP;<L; and it is easy to check that
L~ P, is a Sylow p;-subgroup of L. This shows that every Sylow subgroup
of L is normal in L, because p,,..., p, are the only prime divisors of |G |
Hence, by 11.3, L is nilpotent.
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11.24. In his paper [a51], P. Hall proved many other interesting results
about system normalizers. For instance, he showed that any system
normalizer of a non-trivial soluble group G covers every central chief
factor of G and avoids every chief factor of G which is not central (see 324).
It follows that the order of a system normalizer of G is equal to the product
of the orders of the central chief factors in any particular chief series of G.
For further information, see Huppert [b21] §6.11.

666 Let & be a complement system of the non-trivial soluble group G. Then the
number of distinct complement systems of G is equal to |G : Ng(&))|.

667 Find the order of the system normalizers in each of the soluble groups Z,, 4,,
z,.

668 Let G be a non-trivial nilpotent group. Then the unique system normalizer of
G is G itself.

669 Let K < G, a non-trivial soluble group, and let G = G/K. Let the distinct prime
divisors of |G| be py,...,p, and suppose that p,,..., p, are the prime divisors of |G|,
where r <s.Foreachi=1,...,s,let H; be a p-complement of G, let & be the comple-
ment system {H,,...,H } of G and let & = {H,K/K,...,HK/K}. Then & is a
complement system of G and

N3(Z)=Ny4(#)K/K.

(Hints. It is enough to assume that K is a minimal normal subgroup of G. Then K is
a p;-group for some je{l,...,s} and K < H; whenever i # j. Note that if r < s then
r=s—1andj=s. To show that Ng(&) < NG(y)K/K note that H; is a p;-comple-
ment of H;K-and use 11.18.)

670 Let G be a non-trivial soluble group. Prove that if L is a system normalizer of
G then I¢ = G(where IS denotes the normal closure of L in G : see 180). In particular,
the system normalizers of G are non-trivial. (Hint. Suppose the result false and
derive a contradiction by applying 668 and 669.)

671 Let p 2 5 and let G be the natural wreath product c,,p: (see 9.19, 9.20) : then
|G| = 6p>. Let A be the base group of G : thus
A={a,;) x<{a,) x<as),

where each a, has order p; and A4 is the unique Sylow p-subgroup of G. Let ¢ = (123)
and 7 = (12). Then {¢) and {¢**) are Sylow 3-subgroups of G and {7 ) is a Sylow
2-subgroup of G.

Show that there is no element ge G such that

{<o),<(1>, 4} = {{o),{1),4}
(cf. 11.22).

In proving Hall’s converse to 11.18, we shall use the following lemma.

11.25 Lemma (H. Wielandt [a103], 1960). Suppose that G has three
soluble subgroups H,,H,,H;, and suppose that (|G :H,|,|G:H;|)=1
whenever i,je{1,2,3} with i #j. Then G is soluble.

Proof. We argue by induction on |G|. Since (|G : H,|,|G : H,|) = 1,100
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shows that
G=H H,.

Since H, is soluble, we may suppose that H, # 1. Let L, be a minimal
normal subgroup of H,. Then, since H, is soluble, L, is an elementary
abelian p-group for some prime p(7.56). By hypothesis, p does not divide
both |G : H,| and |G : H,|. We suppose, without loss of generality, that
p does not divide |G : H,|.

Let J=H nH,.
Then (G Hy| = | H, o Hy | = |H, 2],
by 98. Thus p does not divide |H, :J|. Since J<H, and L, <H,,
J<JL,<H,. Hence p does not divide |JL, :J|. However, by 98
(or 3.40),
|JL,:J|=|L;:JnL,|,
and, since L, is a p-group,|L, :JNL,| is a power of p. Therefore
|JL, :J|=1,
that is, L, <J.
Now let L = L¢, the normal closure of L, in G (180). Then (cf. 264)
L={x?:xeL,,geG)
={xM":xeL ,h,eH, h,eH,)(since G=H,H,)
<H,,
since L, < H, and L, <J < H,. Since H, is soluble, L is soluble (7.46).
Moreover, 1 <L, S LSG.

We may now apply the induction hypothesis to G/L. Foreachi= 1,2, 3,
H,L/L<G/L and H;L/L = H,/(H;n L)(3.40); this is soluble, since H,
is soluble (7.46). Whenever i # j,

(|G/L: H,L/L|,|G/L: H;L/L|) = (|G : H,L|,|G : H,L|);

this number divides (|G : H,|,| G : H,|) and is therefore equal to 1. Hence
by the induction hypothesis, G/L is soluble.

Finally, since L and G/L are both soluble, it follows by 7.47 that G is
soluble. This completes the induction argument.

The main theorem is the following.

11.26 Theorem (P. Hall [a49]). Suppose that G has a p-complement for
each prime divisor p of |G|. Then G is soluble.

Suppose that |G| = p}* p3?, where p, and p, are distinct primes and m,
and m, non-negative integers. Then a Sylow p, -subgroup of G is a p,-
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complement of G and a Sylow p,-subgroup of G is a p, -complement of G.
Hence it follows from Sylow’s theorem that G has a p-complement for
eachi prime divisor p of |G| and therefore, according to 11.26, G must be
soluble. Thus 11.26 includes as a special case a theorem of Burnside to
which we have referred before (see 4.29,382,572).

11.27 Theorem (Burnside [al1], 1904). Suppose that |G|=p™q", where
p and q are distinct primes and m and n are non-negative integers. Then G
is soluble.

The proof of 11.26 depends on this theorem of Burnside. Burnside’s
proof relies on the theory of group characters and we do not include it
here : see for instance Curtis and Reiner [b7] p. 239, theorem 34.1, or
Gorenstein [b13] p. 131, theorem 4.3.3, or Huppert [b21] p. 492, theorem
5.7.3, or Schenkman [b35] p. 263, theorem 8.5.f, or Scott [b36] p. 334,
12.3.3. There is also a more recent proof of 11.27 which is independent
of character theory, but this too involves techniques not included in this
book : see the papers of H. Bender [a7], D. M. Goldschmidt [a40] and
H. Matsuyama [a73]; see also Gagen [b12].

Proof of 11.26. We may suppose G+ 1. Let |G|=pMp3. .p:",
where s,m,,...,m, are positive integers and p,,...,p, d1st1nct primes.
We argue by induction on s. If s <2, the result is true, by 11.27. Now
assume that s > 2. For each i=1,...,s, let H; be a p,-complement of G.
Leti,je{1,2,...,s} with i # j. Then

(|G :H,|,|G:H,))=1,
and so, by 100,
|H;:H,nH;|=|G :H,nH,|/|G :H,|=|G :H;| =p}".

Hence H,nH; is a p;-complement of H;. Thus H; has a p-complement
for each prlme divisor p of |H,|. Since IH | has just s — 1 distinct prime
divisors, it follows by the induction hypothesis that H; is soluble. This is
true for each i=1,...,s. Since s = 3,11.25 now applies to show that G is
soluble. This completes the induction argument.
Remark. 11.18 and 11.26 together give an arithmetical characterization
of finite soluble groups, namely the equivalence of the following three
statements :

(i) G is soluble.

(i) G has a Hall w-subgroup for every set @ of primes.

(iii) G has a p-complement for every prime divisor p of |G|.

672 Suppose that G has three nilpotent subgroups H 1 H 2-Hy such that

(|G :H,|,|G : H;|) = 1 whenever i,je{1,2, 3} with i # j. Then G is nilpotent. More-
over, lf H,,H, and H, are abelian then G is abelian. (cf. 11.25. This i improves the
result of 665(i). Hint. Prove that every Sylow subgroup of G is normal in G.)
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673 Show by an example that an insoluble group G can have soluble subgroups
H, and H, such that (|G : H,|,|G : H,|) = 1. (cf. 11.25. Hint. See 5.25.)

674 (i) Suppose that G satisfies the converse of Lagrange’s theorem ; that is, that G
has a subgroup of order m for every divisor m of |G|. Then G is soluble (see also
675, 676).

(ii) (D. H. McLain [a74]). Let G be a soluble group of order p7'p5>... p™, where
s,m,,...,mg are positive integers and p,,...,p, are distinct primes. Let 4 be any
abelian group of order p7*~'p72~!...p™~'. Then the group G x A satisfies the
converse of Lagrange’s theorem. (Hint. Apply 11.18 and 135)

675 Let G be a non-trivial group such that every subgroup of G satisfies the converse
of Lagrange’s theorem (see 674). Then G has a normal Sylow p-subgroup, where p
is the largest prime divisor of |G|. (See also 676. Hint. Argue by induction on |G|
If G is not a p-group, use 4.18.)

676 (Ore [a76],G. Zappa [a104], D. H. McLain [a74]). The following three
statements are equivalent :

(i) G is supersoluble (389).

(i) Whenever J < H < G, with J a maximal subgroup of H,|H :J| is a prime
number.

(ili) Each subgroup of G satisfies the converse of Lagrange’s theorem (see 674, 675).

(Hints. For (i) = (ii), see 646. For (ii) =>(iii), argue by induction on |G| and
note that every subgroup of G satisfies the same hypothesis as G. To show that G
itself satisfies the converse of Lagrange’s theorem, use 11.16 and 662 to show that
for any prime divisor p of |G|, G has a subgroup of index p. For (iii) = (i), argue
by induction on |G|. If |G| > 1, note that, by 675, G has a normal Sylow p-subgroup
P for some prime divisor p of |G|. Use 674, 11.18 and the induction hypothesis to
show that G/P is supersoluble. By hypothesis, G has a subgroup M of index p. Use
5.6 and 389 (v) to show that (M " P)<G and G/(M n P) is supersoluble. Choose
K <1 G such that K < M P,G/K is supersoluble and | K| is as small as possible. If
K # 1, note that, by 391,[K, P] < K. Then consider a chief factor K/L of M with
[K,P] <L <K and use 389 (v) to derive a contradiction to the choice of K.)

677 Suppose that for every non-trivial subgroup H of G, H has a proper subgroup
of index a power of p for every prime divisor p of | H|. Then G is soluble (cf. 662, 678).

678 Show by an example that an insoluble group G can have a subgroup of index p
for every prime divisor p of |G| (cf. 662,11.16,11.26. Hint. Let H be a non-abelian
simple group and let G = H x K, where K is a suitable cyclic group.)

679 Suppose that G has abelian subgroups 4 and B such that (|G : 4|,|G : B|) = 1.
Then G is soluble. This can be proved by the following argument.

Suppose the result false, and let G be an insoluble group of least possible order
with abelian subgroups 4, B such that (|G : A|,|G : B|) = 1. Then

(i) A and B are proper subgroups of G, and G = AB. .

(ii) Let 1 < K € G. Then G/K is soluble. (Hint. Use the minimality of G.)

(iii) G is simple. (Hint. If K < G, use the minimality of G.)

(iv) AnB = 1. (Hint. Apply 264(ii).)

(v) A is a maximal subgroup of G. (Hint. Apply 264(ii) again.)

(vi) Derive a contradiction by applying 632.
(cf. 672, 673. Remarks. Other methods yield stronger results than this. For instance,
by brief but ingenious commutator calculations, N. It6 [a63] has shown that
whenever G has abelian subgroups 4 and B such that G = AB then G is soluble,
and in fact G” = 1. This remains true when G is infinite. See also Huppert [b21]
p. 674, theorem 6.4.4. For finite G, a deeper result of H. Wielandt [a101] and O. H.
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Kegel [a67] shows that whenever G has nilpotent subgroups G, and G, such that
G =G,G, then G is soluble. In particular, if G has nilpotent subgroups G, and
G, such that (|G : G,|,|G : G,|) =1 then G is soluble. See Huppert [b21] §6.4, or
Schenkman [b35] p. 269, theorem 9.2.¢, or Scott [b36] §13.2.)

11.28. We end with some remarks on more recent results in the theory of
finite soluble groups. We can only touch on some of the more important
developments and refer for further details to Huppert [b21] chapter 6
and the references given there.

In 1961, R. W. Carter [al3] showed that every finite soluble group
possesses nilpotent self-normalizing subgroups, and that these so-called
Carter subgroups form a single conjugacy class. Every Carter subgroup
contains a system normalizer (11.21) and every system normalizer is
contained in a Carter subgroup, but the classes of Carter subgroups and
system normalizers coincide only in special cases.

In 1963, W. Gaschutz [a36] established a wide-ranging generalization,
containing the main parts of both Carter’s result and Hall’s theorem
11.18. A class & of finite groups is called a formation if it has the following
two properties : (i) every quotient group of every §-group is an -group,
(ii) every finite group has an §-residual (see 3.45). Examples of formations
are the class of finite w-groups for any set w of primes (see 3.44), the class
of finite abelian groups (see 3.52), the class of finite nilpotent groups and
the class of finite soluble groups (see 7.50). A formation § is said to be
saturated if, whenever G is a finite group such that G/®(G) is an §-group,
G is itself an F-group (Gaschutz and U. Lubeseder [a38]). For example,
the formations of finite @-groups, finite nilpotent groups and finite soluble
groups are all saturated (see 620, 621, 11.5 and 7.47), but the formation of
finite abelian groups is not saturated (see 11.10).

Gaschiitz proved that for any saturated formation &, any finite soluble
group G possesses F-subgroups with certain special properties and these
subgroups form a single conjugacy class. The subgroups in question are
now called the -projectors of G, and (by a result of T. O. Hawkes [a53])
are characterized by the following property: a subgroup H of G is an
&-projector of G if and only if, whenever K < G, HK/K is a maximal
&-subgroup of G/K. When & is the saturated formation of finite w-groups,
the §-projectors of G are the Hall w-subgroups of G ; and when § is the
saturated formation of finite nilpotent groups, the §-projectors of G are
the Carter subgroups of G.

In 1967, R. W. Carter and T. O. Hawkes [al5] showed that, for any
saturated formation § which contains the formation of finite nilpotent
groups, it is possible to define in any finite soluble group G a class of
&-subgroups which are analogous to Hall’s system normalizers and which
are called the §-normalizers of G. These form a single conjugacy class of
subgroups of G. Every -projector of G contains an §-normalizer of G
and every &-normalizer is contained in an §-projector of G. When § is
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the formation of finite nilpotent groups, the F-normalizers of G are
simply its system normalizers.

Another significant development is the discovery in 1967 by B. Fischer,
W. Gaschiitz and B. Hartley [a24] of subgroups which are in a sense dual
to projectors. A class 8 of finite groups is called a Fitting class if it has the
following two properties : (i) every normal subgroup of every K-group is
a K-group, (ii) every finite group has a K-radical (3.45). These two proper-
ties are dual to the two properties defining a formation. The class of finite
w-groups is a Fitting class (see 3.43), and so is the class of finite nilpotent
groups (see 7.63).

A subgroup V of G is said to be a K-injector of G if, whenever K is a
subnormal subgroup of G, V n K is a maximal K-subgroup of K. Fischer,
Gaschiitz and Hartley proved that for any Fitting class &, any finite
soluble group G possesses K-injectors and these form a single conjugacy
class of subgroups of G. (Here no extra condition on the Fitting class
corresponding to saturation for formations is needed.) When K is the
Fitting class of finite w-groups, the K-injectors of G are again the Hall
w-subgroups of G; but when & is the Fitting class of finite nilpotent
groups, the K-injectors of G are usually distinct from the Carter subgroups
of G.

The precise significance of these various distinguished conjugacy
classes of subgroups in the theory of finite soluble groups is still an active
subject of investigation.
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always denote groups 1
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subgroup of a group 1

order of a group element g 1

cyclic group generated by element g 1
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finite; or oo, if X is infinite 2

X is a finite set 2

Y isasubset of X 2

Y is a proper subset of X 2

set of elements in X but not in Y (where
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empty set 2

H is a subgroup of G 2

H is a proper subgroup of G 2

right coset of H in G containing g (where
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groups G,, G, are not isomorphic 15
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a prime number 4

a set of prime numbers 4, 56

field of complex numbers 4

field of real numbers 4
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ring of integers 4

ring of integers modulon 4
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Im ¢
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Cn
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V +
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GL(V)

n divides a — b (where a,b,neZ, with
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greatest common divisor of integers

ab 4

number of positive integers m such that
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number of types of groups of order n 6
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ordern 7,204

K is a normal subgroup of G 7, 36
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K is a proper normal subgroup of
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centralizer of x in G (where xeG) 10
centre of G 10, 47

semigroup of maps of set X into itself 13
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X 13
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which maps g; to a forj=1,...,n—1,
anda,toa, 14

symmetric group of degree n 15

image of homomorphism ¢ 16

Im ¢, (Where K < G and ¢ is a homo-
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additive group of ring R 17
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abelian group A 18

group of units of ring R 18
multiplicative group of positive real
numbers 19

cyclic group of order n 19

infinite cyclic group 19

multiplicative group of positive rational
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additive group of vector space V20
ring of linear maps of vector space V
into itself 20

general linear group of vector space V- 20
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field F 21
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22, 41; also denoted by K?: see 83
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see also 164
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kernel of homomorphism ¢ 38
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restricted symmetric group on set X 44
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field F 47
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F 66
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permutation representation of G
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commutator subgroup of G corresponding
to subgroups G,,...,G, 158

Fitting subgroup of G 160

socleof G 162, 169

product of normal subgroups G,,...,G,
of G 164
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G, xG,x..xG, 164

sum of homomorphisms ¢, ...,¢, of a
group into a group 177

set of maps of set X into G 186
direct power of G with index set X
186, 188
cartesian power of G with index set
X 188
torsion subgroup of G (where G is
abelian). 196
subgroup of n-th powers of elements in G
(where G is abelian) 197
semidirect product of K by H with
action ¢ 208
holomorph of K 210
generalized dihedral group corresponding
to abelian group A 210
affine group of vector space V211
a wreath product of G by H 220
set of prime numbers which do not

" belong tow 231, 283
special element of abelian section H/J of
G corresponding to right transversals
T, UtoHin G 233
focal subgroup of H in G (where H < G)
254
x and y are conjugate in G (where
x,yeG) 258
Frattini subgroup of G 266
system normalizer of G corresponding to
complement system & of G (where G is
soluble) 287
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abelian group 1, 36-7, 142-3, 166, 188-204

abelian, group made 59

abelian p-residual, abelian w-residual of a
finite group 255

abelian residual of a group 59

abelian series 144, 150

abnormal subgroup 96

action of a group: on a group 205-15, 219;
on a set 68-74, 76-8, 83, 88-90, 219,
236-7; on a vector space 207

additive group: of a ring 17; of a vector
space 20; of rationals mod 1 46

admissible subgroup 137

affine group of a vector space 211, 280

A-invariant subgroup 36

alternating character 64

alternating group: of degree n 64—6, 101-6;
on the set N of positive integers 107

aperiodic group 195

ascending sequence of subgroups 53

automorphism; group of all automorphisms
of a group 22

automorphism representation of a group 206

avoidance of a section of a group by a
subgroup 123, 289

Baer R. 74,200,276

base group of a wreath product 220

bijective map 3

block for a transitive action 268

Brauer R. 117

Brauer—Fowler theorem 10, 112

Burnside W. 79, 156, 195, 244, 245, 246,
249, 254, 291

Burnside’s basis theorem 274

Burnside’s problem 195

canonical homomorphism 44

Carter R. W.; Carter subgroups of a finite
soluble group 293

Carter R. W. and Hawkes T. O. 293

cartesian power of a group with a given index
set 188

cartesian product of two sets 31

Cauchy’s theorem 81, 95

SUBJECTS

Cayley’s theorem 77

central automorphisms 87

central factor of a group 144

centralizer: of an element in a group 10,
78; of a section in a group 157, 161;
of a subgroup in a group 48; of a subset
in a group 83

central series of a group 144-6, 152-3

centre of a group 10, 47

characteristic subgroup 36

characteristically simple group 142-4, 172-
4

chief factors of a group 141-2

chief series of a group 141

circle group 32, 46

class: of a nilpotent group 152; of groups 57

class equation 78—-82

classical simple groups 67

class number of a group 79

commutator of two elements of a group 58

commutator subgroup: of a group 59; for
two subgroups of a group 58

commuting set of elements 1

complement: to a normal subgroup in a
group 212; to a section in a group 241

complement system of a finite soluble group
286-9

complete abelian group 202

complete group 215,229

completely reducible group 169-71, 173—4,
230-1

composite map 3

composition factors 9, 121, 131-7

composition length 9, 126, 130

composition series 8-9, 121, 125

conjugacy class: of an element in a group
78; of a subset in a group 83

conjugacy, relation of, on a group 23

conjugate: of a subgroup by an element 22,
41,73; of a subset of a group by an element
83; of one element of a group by another
22,78

conjugation of a group by an element 22

conjugation, action by 78, 83, 84, 91, 93,
138, 206, 207, 209, 212, 228, 287-8

co-prime integers 4
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core of a subgroup in a group 38, 74

Corner A.L.S. 204

cosets, right and left, of a subgroup in a
group 2, 40, 72

covering of a section of a group by a sub-
group 123, 289

cycles 14

cycle type of a permutation 103

cyclic group 1, 4, 18, 19, 45-6, 50, 215-16

decomposable group 35, 175

Dedekind’s rule 122

defect of a subnormal subgroup in a group
128

derived group of a group 59

derived length of a soluble group 150

derived series of a group 150

diagonal subgroup of the direct square of
a group 38

dicyclic group 215

dihedral group 27, 115, 210

dihedral type, group of 115-16

direct power, restricted and unrestricted,
of a group with a given index set 188

direct product: of any finite number of
groups 34-5, 164-75, 179-82, 185-8;
of two groups 32-4, 39, 60, 163, 183-5,
208-9, 220

direct square of a group 38

direct sum of two abelian groups 189

Ditsman’s femma 85

divisible abelian group 202

double cosets 90

doubly transitive action 268

elementary abelian group 142-3, 270-1

embedding of one group in another 16

endomorphisms 21, 138; ring of, of an
abelian group 178

epimorphism 19

equivalent group actions 76

equivalent series 124

Euler-Fermat theorem 20

Euler’s function 5

even permutations of a finite set 64-5

even orders, groups of 10-11, 110-19

extended centralizer of an element in a
group 86, 111

extension of one group by another 227-31

extension problem 8, 175

factor group of a group by a normal sub-
group 42

factors of a series 120

faithful action 70

Feit-Thompson theorem 10, 118, 156, 249,
253

Fermat’s theorem 5
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finitely generated group 52

finitely generated abelian groups: structure
theorem 188, 190; uniqueness theorem
194, 203

Fischer B., Gaschiitz W. and Hartley B. 294

Fitting H. 159, 225

Fitting class of finite groups 294

Fitting height of a finite soluble group 160

Fitting’s lemma 175

Fitting subgroup of a finite group 160-2,
269, 271-2

fixed point of a map 4

fixed-point-free automorphism 24, 211

fixed point subgroup of a group under an
automorphism 23

fixed point subset of a set with respect to an
action 88

F-normalizers, F-projectors of a finite
soluble group 293

focal subgroup of a subgroup in a group 254

focal subgroup theorem 255

Fomin S. V. 200

formation of finite groups 293

Frattini G. 269

Frattini’s lemma 95

Frattini subgroup of a finite group 266-7,
269-172, 274-6, 293

free abelian group of rank r 198

Frobenius F. G. 90, 241, 243, 262, 264, 276

Frobenius F. G. and Stickelberger L. 189

Frobenius action of a group on a set 90

Frobenius complement in a group, Frobe-
nius group 90, 211, 264

fusion of subsets of a subgroup by a group
254

Galois E. 65, 276, 279

Gaschiitz W. 257, 264, 267, 271, 272,276, 293

G-endomorphism 175-80

generalized dihedral group 210

general linear group: of a vector space 20;
of degree n over a field 21

generated by a subset, subgroup of a group
29

Glauberman G. 263

Golod E. S. and Shafarevich I. R. 195
Gorenstein D. 245

group with operators 137

Griin O. 256, 261

Griin’s lemma 61

G-set, G-subset, G-map 77

Hall M. 195

Hall P. 261, 271, 275, 281, 284, 287, 289, 290
Hall w-subgroup of a finite group 283
Hall subgroup of a finite group 242

Hawkes T. O. 293

Heineken H. and Mohamed L J. 158
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Herstein 1. N. 273

higher commutators 158

Higman D. G. 255

Higman G. 107

Higman G., Neumann B. H. and Neumann
H. 54, 82

Holder O. 56, 215, 246

holomorph of a group 210, 21618

homomorphisms 15; fundamental theorem
on 44, 139; group of, of a group into an
abelian group 18

Horrocks G. 42

Huppert B. 268, 273, 279, 283

idempotent in a semigroup 13, 41

identity map 3

identity element of a semigroup 12

image of a homomorphism 16

imprimitive action 268

inclusion map 4

indecomposable group 35, 175

index of a subgroup in a group 2

index of subnormality of a subnormal
subgroup in a group 128

injective map 3

inner automorphism of a group, induced
by an element; group of all inner auto-
morphisms of a group 22

insoluble group 144

intransitive action 73

intravariant subgroup 96

invariant subgroup 36

invariants of a finite abelian group 199

inverse of an element in a semigroup 12

inverse image of a subgroup under a
homomorphism 49

invertible map 3

involution 10-11, 110-19

irreducible action of a group on an abelian
group 280

irreducible G-set 77

isometry of a metric space 24

isomorphic groups 4, 15

isomorphism 15

isomorphism theorems 50, 56

isotropy group of a point in a group 70

Itd N. 264, 292

Iwasawa K. 264

Janko Z. 67
join of two subgroups 31
Jordan-Holder theorem 9, 124, 125, 175

Kegel O. H. 293

kernel of a homomorphism 38
SK-injectors of a finite soluble group 294
Klein’s four-group 33
Krull-Remak-Schmidt theorem 175, 181

INDEX OF SUBJECTS

Lagrange’s theorem 2, 72

Landau E. 81

left multiplication, action by 72, 232, 250
length: of a cycle 14 ; of a series 120

Levi F. W. and van der Waerden B. L. 195
linear representation of a group 207
locally cyclic group 54

locally finite group 75

locally infinite group 195

lower central series of a group 151-3

maximal subgroup 51, 266-9, 27683

maximal abelian subgroup 86

maximal abelian normal subgroup 93

maximal normal subgroup 144

maximal soluble subgroup 148

McLain D. H. 292

metacyclic group 56, 247

minimal normal subgroup 142, 168-71

minimal set of generators of a finite group
273

minimal simple group 265

mixed group 195

monomorphism 16

multiplicative group of a field 18

natural action: of a group on a group 206;
of a group on a set 68

natural homomorphism 44, 139

natural wreath products 220, 223-6

n-generator group 30

N-group 265

nilpotent group 144-9, 151-5, 157-60,
166-7, 243-4, 2667

nilpotent length of a finite soluble group 160

nilpotent radical of a finite group 159, 160

nilpotent residual of a finite group 149

non-generator of a finite group 271

non-trivial group, subgroup, element 1

normal subgroup 7, 36

normal closure of a subgroup in a group 63

normal complement to a section in a group
241

normal interior of a subgroup in a group 38

normalizer: of a subgroup in a group 61;
of a subset in a group 83

normal series of a group 141

Novikov P. S. and Adyan S. I. 195

odd permutations of a finite set 65

Q-group, Q-subgroup 137

Q-homomorphism 138

Q-series, Q-composition series 140

Q-simple Q-group 140

operator domain of a group with operators
137

orbits 70

order: of a group 2; of an element 1
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Ore O. 276, 279, 292
outer automorphism 22

partitions of a positive integer 7, 104, 204

p-complement of a finite group 243

perfect group 60

periodic group 75, 195

periodic radical of an abelian group 195-6

permutation of a set 3, 13-14

permutation representation of a group 69,
237

p-group 56, 79, 88-9, 91, 107-8, 126-7,
145, 270-1, 274-6

w-group 56, 95, 96

w-number 56

w-radical, w-residual of a finite group 57

p-nilpotent group 243-6, 262—4

p-normal group 260-1

Poincaré’s theorem 29

points 4

polycyclic group 156

power laws 12

primitive action 268, 279, 280

principal series of a group 141

product set of two subsets of a group 40

projections 39, 177, 179

projective special linear group of degree n,
projective symplectic group of degree
2m, over a field 66

pronormal subgroup 96

proper series ¥20

proper subset 2

proper refinement of a series 120

Priifer group 52

quasi-cyclic group 52

quaternion group of order 8 63

quotient group of a group by a normal
subgroup 8, 42, 139

radicable abelian group 202

RadoR. 189

real element in a group 111

refinement of a series 120

reflexion: of the euclidean line 27; of the
euclidean plane 25

regular action 77

regular wreath product of a group by a
group 220

relative holomorph of a group 210

Remak R. 168, 169, 185

Remak R., Klein F. and Fricke R. 183

restriction of a map to a subset 4

restriction, action by 89

right multiplication, action by 71-2, 73-4,
76-7, 89,92, 106, 232, 240

right regular permutation representation
of a group 77
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Roseblade J. E. 158
rotation of the euclidean plane 26

Sanov L. N. 195

saturated formation 293

Schmidt O. J. 75, 264

Schreier O. 55, 124

Schreier’s conjecture 230

Schur 1. 234,236,241,243

Schur-Zassenhaus theorem 251

section of a group 123

self-conjugate subgroup 36

semidihedral group of order 16 218

semidirect product of a group by a group
with a given action 208-15

semigroup 12; of all non-empty subsets
of a group 41, 61, 83

series 120-6

set of generators of a group 30

set of imprimitivity for a transitive action
268

sign of a permutation of a finite set 64

simple group 9-11, 37, 65-7, 79, 96-102,
105-7, 114-15, 153, 156, 245-6, 249,
265, 276

socle of a finite group 162, 169

soluble, solvable group 144-51, 153-6,
162, 195, 222-3, 246-9, 276-94

soluble radical of a finite group 147

soluble residual of a finite group 149

special linear group of degree n over a
field 47

splitting of a group over a normal subgroup
212-15, 246-8, 250-2, 257-8

sporadic simple groups 67

stabilizer of a point in a group 70

stable subgroup 137

standard series from a group to a subnormal
subgroup 128

strongly real element in a group 112

subdirect product of two groups 185

subgroup: of a group 1; of a semigroup 12

subnormal subgroup 126-37, 157-8, 266-7

sums of homomorphisms 177-82

supersoluble group 156-7, 162, 268, 279,
283,292

supplement to a normal subgroup in a
group 271

support of a map from a set into a group 188

surjective map 3

Suzuki M. 246, 260

Sylow p-subgroup of a finite group 91

Sylow’s theorem 90, 91

symmetric group: of degree n 15, 103-7;
restricted, on a set 44; unrestricted, on a
set 13

symmetry group of a subspace of a metric
space 24



sympleciic group of degree 2m over a field 66
system normalizer of a finite soluble group
287-9,293-4

terms of a series 120

Thompson J. G. 263, 265, 273

torsion, torsion-free group 195

torsion sub~- > - of an abelian group 196

transfer of .. ..oup into an abelian section
234-6,239-42,253

transitive action 73

transitivity classes 70

translation: of the euclidean line 27; of the
euclidean plane 25

transposition 16

transversals, right and left, to a subgroup in
a group 232

trivial block 268

trivial group, subgroup 1

trivial homomorphism 16

trivial action of a group on a group 208

2-transitive action 268—9

type of groups 4

unit in a semigroup 13

units of a ring, group of 18

upper central series of a group 151-3

upper nilpotent series, upper Fitting series
of afinite group 160

weakly closed subgroupina« ., ~yp with
respect to a group 264

Wiegold J. 236

Wielandt H. 91, 108, 130, 133, 239, 241,
258, 289, 292

Wilson’s theorem 5

wreath products 219-28

X-by-9 group 58
X-radical, X-residual of a group 57

Zappa G., 263, 292
Zassenhaus H. J. 131, 246, 252, 253
Zassenhaus’s lemma 122



